WO2019238140A1 - 一种变电站或换流站耦连回路地震风险评估方法 - Google Patents

一种变电站或换流站耦连回路地震风险评估方法 Download PDF

Info

Publication number
WO2019238140A1
WO2019238140A1 PCT/CN2019/094716 CN2019094716W WO2019238140A1 WO 2019238140 A1 WO2019238140 A1 WO 2019238140A1 CN 2019094716 W CN2019094716 W CN 2019094716W WO 2019238140 A1 WO2019238140 A1 WO 2019238140A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure
equipment
earthquake
probability
risk
Prior art date
Application number
PCT/CN2019/094716
Other languages
English (en)
French (fr)
Inventor
杨旭
庞准
王奇
孙勇
张长虹
楚金伟
周海滨
Original Assignee
中国南方电网有限责任公司超高压输电公司检修试验中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国南方电网有限责任公司超高压输电公司检修试验中心 filed Critical 中国南方电网有限责任公司超高压输电公司检修试验中心
Priority to JP2019567985A priority Critical patent/JP7011672B2/ja
Publication of WO2019238140A1 publication Critical patent/WO2019238140A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services

Definitions

  • the invention relates to seismic risk assessment, and in particular relates to a seismic risk assessment method for a coupling loop of a substation or converter station.
  • Earthquake risk analysis is based on the full analysis of the hazards of the earthquake (cause of disasters) and the vulnerability of disaster-bearing factors, and the assessment of the possibility of earthquakes in the assessment area and the possibility of disasters and social consequences.
  • the seismic risk assessments of substations / converters are mostly focused on the individual equipment inside the station, mainly focusing on the analysis of the seismic vulnerability of the individual equipment.
  • the existing converter stations that have been operating for many years in seismic design generally focus on the seismic performance of single equipment.
  • each device in the coupling circuit is also different, such as the quality, height, structural form, material, and installation method of the device, which makes each device contribute differently to the interconnection in the coupling circuit.
  • the connecting buses then generate tensile or compressive interaction forces.
  • the equipment itself bears the reaction force transmitted by the buses, so that the bottom of the equipment not only bears its own seismic load, but also bears the load generated by the tension and compression of the bus.
  • the total load after addition may be greater than any of them, and it is more likely to cause equipment damage.
  • Hu Jingjing and others analyzed the seismic vulnerability of substation electrical equipment connected to the pipe bus, established a finite element model of the coupling system of the pipe bus connected electrical equipment, and compared the dynamic characteristics and earthquakes of the single equipment and the pipe bus connected equipment. Response, and explored the impact of different settings of the expansion joint on the connection system. The research results show that in the coupling system, the dynamic response of the coupling system when the expansion joint is connected to low-frequency equipment is smaller than the dynamic response of the system when the expansion joint is connected to high-frequency equipment.
  • Zhang Xuesong established a UHV equipment coupling system and a split wire model, which verified the accuracy of deriving the classification wire position function. And the finite element software is used to prove that the seismic response of the equipment increases with the increase of the stiffness of the wire. The influence of soft bus stiffness on the seismic response of equipment with higher frequency is greater than that of equipment with lower frequency. Similarly, according to the observation of the damage of substations in previous earthquakes, a large part of the damage to the equipment was caused by the tension and drag of its connection bus.
  • the literature "Analysis of Earthquake Vulnerability of Large-scale Substations with Interaction of Electrical Equipment” considers the vulnerability analysis of the main structure of the substation-electrical equipment interaction.
  • the main consideration is the fragility of the building structure in the substation, the coupling circuit between the electrical equipment and the electrical equipment is not considered, the emphasis is different, and the influence of the electrical performance of the electrical equipment is not considered.
  • the literature “Analysis of Vulnerability to Earthquake Disasters for Electrical Equipment” is still an analysis of single equipment, and the vulnerability analysis of transformers, busbars, and towers is mentioned in the article.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and to provide a seismic risk assessment method for the coupling loop of a substation or converter station, so as to more realistically evaluate the damage situation of the transformer substation under the action of an earthquake.
  • a seismic risk assessment method for a coupled loop of a substation or converter station includes:
  • Earthquake risk Probability of site earthquake danger ⁇ Equipment failure probability under coupling action ⁇ Disaster economic loss (1).
  • the failure model of the device under the coupling effect is composed of the following events:
  • Equipment failure structural failure ⁇ electrical failure
  • Structural failure Structural failure 1 + Structural failure 2: Structural failure 1 is: the stress value at the root of the equipment or the dangerous section is greater than the damage stress of the equipment or material divided by the safety factor of the equipment; structural failure 2 is: the root of the equipment or the dangerous section The bending moment value is greater than the breaking moment value of the equipment or material divided by the equipment safety factor;
  • Electrical failure refers to the failure of the equipment due to insufficient insulation margin due to the displacement or residual deformation caused by the earthquake;
  • the failure probability of the equipment body under a given earthquake is expressed as:
  • a represents the effective peak acceleration of the ground motion;
  • ⁇ v is the failure stress, and Mv To destroy the bending moment, Ev is the allowable field strength;
  • the probability of failure of the connecting conductor refers to the probability of damage or fracture of the connecting end of the connecting conductor and the equipment under the action of the seismic force. It is examined whether the tension T at the end of the wire under the action of the earthquake is greater than the maximum allowable of the wire under the action of the earthquake.
  • the tension Tv, its failure probability is expressed as:
  • K tot K 1 ⁇ N 1 + K 2 ⁇ N 2 ⁇ h + K 3 ⁇ p ⁇ h '(12)
  • K tot represents the total economic loss of a single device (10,000 yuan);
  • K 1 , K 2 , and K 3 represent the selling price of the replacement equipment (yuan), the labor cost per installation and commissioning per hour (yuan / hour), and Profit per unit of electricity (yuan / kWh);
  • N 1 and N 2 respectively represent the number of equipment to be replaced and the total number of installation and commissioning personnel;
  • p represents the loss of power.
  • the calculation method of the site seismic risk probability is as follows:
  • the n-th seismic zone has a Pn (A ⁇ a) probability of field ground motion annual surpassing, and the total ground motion year transcending probability of the field is:
  • the seismic risk assessment method for the coupling loop of the substation or converter station further includes calculating an earthquake risk index under the coupling action:
  • n the number of devices connected in series in the coupling circuit; Note: there are n-1 connecting wires in the coupling circuit of n devices;
  • the weakest link in the coupling circuit is the equipment with the highest failure risk value.
  • the ratio of the equipment failure risk to the coupling circuit failure risk is used to describe the contribution of the same coupling circuit equipment to the overall failure under different earthquakes.
  • the present invention has the following beneficial effects:
  • This method not only considers the failure probability of the single equipment, but also considers the failure mode and failure probability of the coupling circuit forming the coupling circuit.
  • the impact on the electrical performance of the equipment when a large displacement occurs under the earthquake is taken as an influence factor for the risk.
  • a coupling loop failure model is proposed.
  • the basic data of the coupling system failure is formed through finite element modeling and dynamic time history analysis.
  • the seismic risk index of the coupling loop is formed, and the risk assessment of the coupling equipment is closer to the substation ⁇ conversion. The real situation of the seismic response of the equipment in the station.
  • FIG. 1 is a flowchart of a specific application of a seismic risk assessment method for a coupling loop of a substation or converter station according to an embodiment of the present invention
  • Figure 3 is a displacement deformation diagram of the casing under the action of an earthquake.
  • the risk assessment method is a comprehensive evaluation of system risk and its related impacts. It is a measure of the probability and severity of undesired results. It usually uses the expression of the product of probability and consequence.
  • Earthquake risk Probability of site earthquake danger ⁇ Equipment failure probability under coupling action ⁇ Disaster economic loss (1).
  • seismic danger refers to the probability of earthquakes of different intensities in a given site during a certain period of time, which depends on the site's geological conditions, the activity of the potential source area, and the attenuation relationship of the ground motion with the epicenter distance. For existing stations, site geological conditions have been determined.
  • the structural vulnerability of the disaster-receiving body refers to the conditional failure probability when the disaster-receiving body reaches or exceeds a certain damage state under the earthquake of a given intensity.
  • Disaster losses include direct economic losses, indirect economic losses, and casualties.
  • the seismic safety assessment report of a general site engineering site contains relevant contents of seismic hazard analysis, which will give the probability of earthquakes of different intensities for a given site within a certain period of time.
  • the calculation principle of earthquake danger probability is as follows:
  • the n-th seismic zone has a Pn (A ⁇ a) probability of field earthquake annual surpassing.
  • the vulnerability of electrical equipment refers to the conditional probability that electrical equipment will suffer a certain degree of damage under the action of earthquakes of various intensities that may be suffered.
  • the patent calculates the maximum stress of a component under the action of horizontal seismic forces and compares it with the ultimate stress of the component material to obtain the failure probability of the component.
  • the electrical equipment of each phase in the converter station or substation is generally interconnected through soft bus bars or hard pipe buses to form a series circuit.
  • the coupled electrical equipment will also Because the connection of the wire is pulled by adjacent equipment, the functional failure of the single equipment in the entire circuit at this time also depends on the damage of the connected conductor in the earthquake. Therefore, the failure model of the equipment under the coupling effect is The following events consist of:
  • the failure model of the equipment body is as follows:
  • the equipment failures considered by this invention include structural failures and electrical performance failures under earthquakes.
  • the definition of failure can be divided into:
  • Structural failure 1 means that the stress value at the root of the equipment or the dangerous section is greater than the damage stress value of the equipment or material divided by 1.67, which is the safety factor of the equipment;
  • Structural failure 2 The bending moment value at the root of the equipment or at the dangerous section is greater than the damage bending moment value of the equipment or material divided by 1.67;
  • Electrical performance failure refers to the failure of equipment due to insufficient insulation margin due to the effects of displacement or residual deformation under the action of an earthquake.
  • the failure of one of the stress, bending moment, and electrical performance results in equipment failure events.
  • the above failure events have the following relationship, that is, the failure model of the equipment body is as follows:
  • conditional probability of the failure of the equipment body under a given earthquake can be expressed as:
  • a represents the effective peak acceleration of the ground motion.
  • the failure of the connecting conductor considered in this invention means that the connecting end of the connecting conductor and the equipment is damaged or broken under the action of seismic force. At this time, it is examined whether the tension T at the end of the wire under the action of the earthquake is greater than the maximum allowable tension Tv of the wire under the action of the earthquake. Its failure probability can also be expressed as:
  • the invention uses a calculation analysis method to obtain the failure probability in the above-mentioned coupling circuit, calculates the maximum stress of the component under the action of the horizontal seismic force according to the reliability theory, and compares it with the limit stress of the component material to obtain the failure probability of the component. Specific steps are as follows:
  • the finite element method can not only simulate static working conditions, but also be used for structural stability analysis and instantaneous dynamic analysis. It is important to accurately and comprehensively understand the stress and deformation distribution laws of the coupled electrical equipment and its connecting wires under earthquake action. significance. You can use ANASYS or ABAQUS to build the finite element model. Pay attention to the following points:
  • connection wire and the electrical equipment are generally connected by a metal fitting, which can be simplified into a connection method such as a fixed connection or a hinge.
  • Z Ge standard value of the equipment's own weight, including the weight of the equipment body, auxiliary components or other additional equivalent weights, N;
  • Z Wk standard wind load value, based on the wind speed once in a hundred years in the local area where the equipment is applied, N;
  • Z Pk other loads such as the standard value of the internal pressure of the device, the actual tension of the wire, N.
  • the time history analysis method is a basic motion equation for engineering seismic calculations. It is a dynamic analysis method that uses stepwise integration of structural differential equations of motion directly by inputting several seismic acceleration records or artificial acceleration time history curves corresponding to the engineering site.
  • the dynamic response of displacement, velocity, and acceleration of each particle with time can be obtained, and the time-history relationship of the internal force of the device can be obtained.
  • the time-history analysis can consider the amplitude, frequency spectrum and duration of the earthquake. It can analyze the structure nonlinearly, which is suitable for the seismic response analysis of the coupled loop.
  • the damage strength of porcelain materials can be 50MPa
  • the composite materials can be 80MPa.
  • N ground motions must be selected as the input of the time history analysis method (N ⁇ 30) as the number of randomly sampled samples.
  • the substation ⁇ converter station site engineering site seismic safety evaluation report selects artificial synthetic waves and typical strong earthquake waveform records. At the same time, seismic waves can also be selected as input in the PEER strong earthquake database.
  • the simulation calculation of the coupling circuit takes a long time, and an appropriate number of ground motions should be selected as a sample according to the actual situation. Due to the limitation of the calculation time, the sample is not easy to be too large.
  • the ratio of the peak acceleration of the three-way input is selected to be 1: 0.85: 0.65.
  • M (M ⁇ 1) different acceleration values such as 0.1 g, 0.2g, 0.3g, 0.4g, ..., 1g)
  • one acceleration value corresponds to N different sets of ground motions
  • the seismic response when a certain seismic wave takes different acceleration values is calculated: the root of the equipment or the dangerous section
  • the stress value ⁇ and bending moment value M and the tensile force T at the end of the connecting wire are examples of the connecting wire.
  • conditional probability of the failure of a device body and the failure of the connecting wire when the peak acceleration is a can be obtained by the following formula:
  • K (a) is the number of N seismic waves whose peak acceleration is a;
  • k ⁇ (a) is the stress value at the root or dangerous section of the equipment calculated under N seismic waves with peak acceleration a Times ( ⁇ N);
  • k M (a) is the value of the bending moment at the root or dangerous section of the device under the action of N seismic waves with a peak acceleration of a Times ( ⁇ N);
  • k T (a) is the value of the tension of the wire under the action of N seismic waves with a peak acceleration of a Times ( ⁇ N);
  • the electrical failure probability is solved as follows:
  • the electrical failure probability refers to the failure probability caused by insufficient insulation margin due to the effect of large displacement or residual deformation of the equipment under the action of an earthquake.
  • the failure probability is obtained on the basis of obtaining the seismic response of the equipment.
  • the equipment shape when the maximum displacement of the equipment end in the three directions of X, Y, and Z is used as the model input of the electric field simulation, as shown in FIG. 3, is the earthquake Displacement deformation of the casing under the action.
  • the electric field distribution inside the device may change, resulting in uneven field strength distribution, which may be greater than the allowable field strength value of the device and cause insufficient insulation margin.
  • the equipment shape at the maximum displacement is introduced as a model for electric field simulation, which simplifies features such as bolt holes, chamfers, etc. that have no effect on the calculation of the electric field distribution.
  • each maximum field strength value corresponds to a group of seismic waves in an earthquake acceleration. Therefore, the electrical failure probability under an earthquake with a peak acceleration of a can be calculated by the following formula:
  • k E (a) is the number of times when the maximum field strength value of the equipment is greater than the allowable field strength E ⁇ E V under the action of N seismic waves with a peak acceleration of a ( ⁇ N);
  • the economic losses for equipment failure during an earthquake mainly include the following three aspects: equipment damage replacement costs, labor costs, and power outage losses.
  • K tot K 1 ⁇ N 1 + K 2 ⁇ N 2 ⁇ h + K 3 ⁇ p ⁇ h '(12)
  • K tot represents the total economic loss of a single device (10,000 yuan);
  • K 1 , K 2 , and K 3 represent the selling price of the replacement equipment (yuan), the labor cost per installation and commissioning per hour (yuan / hour), and Profit per unit of electricity (yuan / kWh);
  • N 1 and N 2 respectively represent the number of equipment to be replaced and the total number of installation and commissioning personnel;
  • p represents the loss of power.
  • the method can further solve the seismic risk index under coupling action, and the specific solution process is as follows:
  • n the number of devices connected in series in the coupling circuit; Note: there are n-1 connecting wires in the coupling circuit of n devices.
  • the weakest link in the coupling circuit is the equipment with the highest risk of failure.
  • the ratio of equipment failure risk to coupling loop failure risk can also be used to describe the contribution C of the same coupling loop equipment to overall failure under different earthquakes.
  • Step 1 Select the coupling loop in the substation ⁇ converter station as the seismic risk assessment object, determine the number of equipment n in the loop, and the number of connecting wires n-1;
  • Step 2 Establish a finite element simulation model of the coupling loop where n devices are connected by n-1 wires, as a model for calculating the failure probability of the device under the coupling effect, and determine the limit state S of the device and the wire (here refers to the device Failure stress ⁇ v, failure bending moment Mv and allowable field strength Ev);
  • Step 5 Input N ground motions with peak acceleration a k in the coupled loop finite element analysis model, and use the dynamic time history analysis method to calculate the seismic response under each ground motion (equipment stress, bending moment, wire And the displacement of the device), the conditional probability of failure when the peak acceleration is a k is calculated by equations (8)-(10), and the first and second terms P [S 1 ⁇ V
  • A a k ], P [S 2 ⁇ M V
  • A a k ], and P 2 in formula (5) [S
  • A a k ].
  • Step 6 According to the maximum displacement of the device obtained in step 5, according to the electric field simulation analysis result of the device at the maximum displacement, calculate P [S ⁇ E V
  • A a under the action of the device from the equation (11) k ] to obtain the third term electrical performance failure probability P [S 3 ⁇ E V
  • A ak ] in equation (4);
  • Step 7 Obtain the failure probability of the device under the coupling effect according to formula (6).
  • Step 8 Determine the economic loss of the equipment failure in the coupling circuit, and calculate the economic loss when the i-th equipment body failure, the connection conductor failure and the former two failures in the coupling circuit fail according to formula (12), respectively.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种变电站或换流站耦连回路地震风险评估方法,包括:计算变电站或换流站的站址地震危险性概率;建立变电站或换流站的设备在耦连作用下的失效模型,获得在地震情况下设备在耦连作用下的失效概率;建立设备在地震中的灾害损失模型,以获得在地震中设备失效的经济损失;获得地震风险,所述地震风险:地震风险=站址地震危险性概率×设备在耦连作用下的失效概率×灾害经济损失。本方法不仅考虑单体设备的失效概率还考虑了连接母线的失效模式和失效概率,同时将地震作用下发生大位移时对设备电气性能的影响作为风险的一个影响因子,在此基础上提出了耦连回路失效模型,以形成耦连回路地震风险指标。

Description

一种变电站或换流站耦连回路地震风险评估方法 技术领域
本发明涉及地震风险评估,具体涉及一种变电站或换流站耦连回路地震风险评估方法。
背景技术
地震风险分析是在充分进行地震(致灾因子)危害性和承灾因子易损性分析的基础上,对评估区遭受地震作用及导致某种程度灾害和社会后果可能性的评估。目前对变电站\换流站的抗震风险评估多针对站内的单体设备,主要集中在单体设备地震易损性的分析上,对耦连体系的地震风险评估方法鲜有报道。同时,由于受到振动台大小的限制,设备动力特性参数的缺失等原因,在抗震设计时运行多年的既有换流站一般重点考虑的也是单体设备的抗震性能。而实际上在考虑变电站\换流站的地震风险时,不仅要考虑单体设备的受损风险,更重要的是设备之间是通过母线相互连接形成的耦连回路的受损风险。一旦强震发生,位于高烈度地震区域的换流站存在设备与设备间的耦连作用,这种耦连作用可能使换流站设备失效或损坏给运行带来风险,给电网带来难以估量的经济损失。
在地震中,由于变电站\换流站各类电气设备不同的动力特性,变电站\换流站相互连接的设备会产生相对运动,从而拉伸或压缩它们之间的母线,动力相互作用通过母线传递。耦连回路中各个设备的作用不同、自身也存在较大差异,如设备的质量、高度、结构形式、材质和安装方式等,使得各个设备在耦连回路中对互连作用的贡献度不同,连接母线随之产生被拉伸或者压缩的相互作用力,同时设备本身则承受母线传递的反作用力,使设备底部不仅承受自身的地震作用荷载,还要承受母线拉压产生的荷载,二者矢量相加后总荷载可能大于其中任何一个,更易引起设备损坏。2010年,胡彧婧等对管母线连接的变电站电气设备地震易损性进行了分析,建立了管母线连接电气设备耦连体系的有限元模型,比较单体设备和管母线连接设备的动力特性和地震响应,并且探讨了伸缩节不同设置方式对连接系统的影响。其研究结果表明,在耦连系统中,伸缩节与低频设备连接时耦连系统的动力响应小于伸缩节与高频设备连接时系统的动力响应。2016年,张雪松建立了特高压设备耦连体系及分裂导线模型,验证了推导了分类导线位型函数的准确性。且利用有限元软件证明使设备的地震反应随着导线刚度的增加而增加。软母线刚度对频率较高的设备其地震反应的影响要大于对设备频率较低设备地震反应的影响。同样,根据历次地震变电站破坏情况的观察,设备破坏的很大一部分原因是由于其连接母线的张拉与牵扯引起的。
其次,地震响应与电气性能相结合的评估方法目前较少涉及,大部分的研究都集中在只 考虑电气设备结构的地震响应,而忽视地震作用对电气性能的影响。实际上发生地震时电气设备大都处在运行状态,在地震作用下电气设备的电气性能如绝缘裕度是否满足要求无从得知,可能存在设备结构未受损但绝缘性能已接近限值的情况,存在只关心结构响应而忽视电力设备功能的问题。
文献资料《电气设备相互作用的大型变电站地震易损性分析研究》中考虑了变电站主体结构-电气设备相互作用的易损性分析。其主要考虑的是变电站中的建筑结构的易损性,未考虑电气设备与电气设备之间的耦连回路,侧重点不一样,同时未考虑电气设备电气性能的影响。文献资料《电气设备的地震灾害易损性分析》中仍然是对单体设备的分析,文中提到了变压器、母线和杆塔的易损性分析。文献资料《滑动金具对互连高压电气设备抗震性能的影响分析》分析不同连接方式下直流回路系统在常规抗震设计地震工况下的应力,研究了连接方式对高压回路系统的动力特性与抗震性能的影响,文章未考虑概率角度考虑风险分析。发明专利《一种基于性能设计的桥梁地震风险概率分析方法》针对桥梁结构,其力学性能、失效形式与电气设备完全不同。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种变电站或换流站耦连回路地震风险评估方法,以更真实的评估变电设施在地震作用下的受损情况。
为实现上述目的,本发明的技术方案是:
一种变电站或换流站耦连回路地震风险评估方法,包括:
计算变电站或换流站的站址地震危险性概率;
建立变电站或换流站的设备在耦连作用下的失效模型,获得在地震情况下设备在耦连作用下的失效概率;
建立设备在地震中的灾害损失模型,以获得在地震中设备失效的经济损失;
获得地震风险,所述地震风险:
地震风险=站址地震危险性概率×设备在耦连作用下的失效概率×灾害经济损失(1)。
具体地,所述设备在耦连作用下的失效模型由下述事件组成:
(设备本体失效∩连接导体正常)∪(设备本体未受损∩连接导体失效)∪(设备本体失效∩连接导体失效)其中,
设备本体失效=结构失效∪电气失效;
结构失效=结构失效1+结构失效2:结构失效1为:设备根部或危险断面处的应力值大于 设备或材料的破坏应力值除以设备安全系数;结构失效2为:设备根部或危险断面处的弯矩值大于设备或材料的破坏弯矩值除以设备安全系数;
电气失效指的是在地震作用下的设备由于位移或发生的残余变形的影响导致绝缘裕度不够引起的失效;
在给定地震作用下设备本体失效概率表示为:
P 1[S|A=a]=P[S 1≥σ V|A=a]+P[S 2≥M V|A=a]+P[S 3≥E V|A=a]        (4)
式中:P 1[S|A=a]表示当发生地震峰值加速度为A=a的地震动时,设备本体失效概率;P[S 1≥σ V|A=a]表示结构失效概率1,P[S 2≥M V|A=a]表示结构失效概率2,P[S 3≥E V|A=a]表示电气失效概率;a代表地震动的有效峰值加速度;σv为破坏应力,Mv为破坏弯矩,Ev为许用场强;
连接导体失效概率是指连接导体与设备的连接端部在地震力的作用下受损或断裂的概率,考查在地震作用时在导线端部的张力T在地震作用下是否大于导线的最大许用张力Tv,其失效概率表示为:
P 2[S|A=a]=P[S 4≥T V|A=a]                         (5)
因此,设备在耦连作用下的失效概率P t[S|A=a]可以表示为:
Figure PCTCN2019094716-appb-000001
具体地,在地震中设备失效的经济损失由如下公式计算而得:
K tot=K 1×N 1+K 2×N 2×h+K 3×p×h'                 (12)
式中:K tot表示单个设备总的经济损失(万元);K 1、K 2、K 3分别代表更换设备的售价(元)、每小时每个安装调试人工劳务费(元/小时)和每度电利润(元/kWh);N 1和N 2分别代表需更换的设备数量和安装调试人员总数;h和h'分别表示安装调试工作时间,单位小时;p表示电量损失。
具体地,所述站址地震危险性概率计算方法如下:
设有N个地震带对场点地震的危险性有贡献,第n个地震带对场点地震动年超越概率为Pn(A≥a),场点总的地震动年超越概率为:
Figure PCTCN2019094716-appb-000002
T年内场地地震动A超过给定值a的概率为:
P d(A≥a)=1-[(1-P n(A≥a)] T
(3)在确定的研究区域的地震统计区与潜在震源区、地震活动性参数及地震动衰减关系后,形成工程场地T年内基岩地震动加速度峰值的超越概率曲线,通过概率曲线求取P d(A=a)。
进一步地,所述变电站或换流站耦连回路地震风险评估方法还包括计算耦连作用下地震风险指标:
按照式(1)和式(6),某次峰值加速度为a的地震作用下互连回路的风险值由下式计算:
Figure PCTCN2019094716-appb-000003
式中:
R(A=a)表示在峰值加速度为a地震作用下耦连回路失效的风险值;
n:为耦连回路中串联的设备数量;注意:有n个设备的耦连回路中有n-1条连接导线;
Figure PCTCN2019094716-appb-000004
Figure PCTCN2019094716-appb-000005
分别表示耦连回路中第i台设备本体失效、连接导体失效和前两者同时失效时的经济损失;
其中:
Figure PCTCN2019094716-appb-000006
为耦连回路中设备i失效风险值;
耦连回路中的抗震最薄弱环节为失效风险值最大的设备,同时,用设备失效风险值与耦连回路失效风险的比值来描述不同地震作用下同一耦连回路设备对整体失效的贡献度C
Figure PCTCN2019094716-appb-000007
本发明与现有技术相比,其有益效果在于:
本方法不仅考虑单体设备的失效概率还考虑了连接母线形成耦连回路的失效模式和失效概率,同时将地震作用下发生大位移时对设备电气性能的影响作为风险的一个影响因子,在此基础上提出了耦连回路失效模型,通过有限元建模结合动态时程分析法形成耦连体系失效基础数据,最后形成耦连回路地震风险指标,耦连设备的风险评估更加贴近变电站\换流站内设备地震响应的真实情况。
附图说明
图1为本发明实施例提供的变电站或换流站耦连回路地震风险评估方法具体应用时的流程图;
图2为本发明求取设备i失效概率的流程图;
图3为地震作用下套管发生的位移形变图。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
风险评估方法是对系统风险及其相关影响进行综合评价,是对不期望发生的结果的概率和严重性的度量,通常采用概率和后果乘积的表达形式。
实施例:
本实施例提供的变电站或换流站耦连回路地震风险评估方法包括:
计算变电站或换流站的站址地震危险性概率;
建立变电站或换流站的设备在耦连作用下的失效模型,获得在地震情况下设备在耦连作用下的失效概率;
建立设备在地震中的灾害损失模型,以获得在地震中设备失效的经济损失;
获得地震风险,所述地震风险:
地震风险=站址地震危险性概率×设备在耦连作用下的失效概率×灾害经济损失(1)。
具体地,地震危险性是指给定场地在某一时期内不同强度的地震发生的概率,取决于场地的地质条件、潜在震源区的活动情况以及地震动随震中距的衰减关系等。对于既有站来说,场地地质条件已确定。承灾体的结构易损性是指在给定强度的地震作用下,承灾体达到或超过某种破坏状态时的条件失效概率。灾害损失则包括直接经济损失、间接经济损失和人员伤亡损失。
一般站址工程场地地震安全性评价报告中都包含有地震危险性分析的相关内容,其中会给出给定场地在某一时期内不同强度的地震发生的概率。地震危险性概率的计算原理如下:
设有N个地震带对场点地震的危险性有贡献,第n个地震带对场点地震动年超越概率为Pn(A≥a),场点总的地震动年超越概率为:
Figure PCTCN2019094716-appb-000008
T年内场地地震动A超过给定值a的概率为:
P d(A≥a)=1-[(1-P n(A≥a)] T                           (3)
在确定的研究区域的地震统计区与潜在震源区、地震活动性参数及地震动衰减关系后,形成工程场地T年内基岩地震动加速度峰值的超越概率曲线,通过概率曲线可以求取P d(A=a)。
就地震事件而言,电气设备的易损性是指在可能遭受的各种强度的地震作用下,电气设备遭受某种程度破坏的条件概率。该专利计算水平地震力作用下构件的最大应力,并与构件材料的极限应力相比较,得到构件的失效概率。
换流站或变电站内每相的电气设备一般通过软母线或硬管母互联在一起形成串联回路,与单体设备在地震作用下自身功能受损失效相比,耦连后的电气设备还会因为导线的连接受到相邻设备的拉扯,此时单体设备在整个回路中功能失效还取决于与之相连的导体在地震中的受损情况,因此,设备在耦连作用下的失效模型由下述事件组成:
(设备本体失效∩连接导体正常)∪(设备本体未受损∩连接导体失效)∪(设备本体失效∩连接导体失效)
其中:
设备本体失效模型具体如下:
此发明考虑的设备本体失效包括在地震作用下的结构失效和电气性能失效。其中失效定义可分为:
1)结构失效1:指设备根部或危险断面处的应力值大于设备或材料的破坏应力值除以1.67,1.67为设备安全系数;
2)结构失效2:设备根部或危险断面处的弯矩值大于设备或材料的破坏弯矩值除以1.67;
3)电气性能失效:指在地震作用下的设备由于位移或发生的残余变形的影响导致绝缘裕度不够引起的失效。
存在应力、弯矩和电气性能其中之一不满足要求即导致设备失效事件,上述失效事件具有如下关系,即设备本体失效模型如下:
设备本体失效=结构失效∪电气失效=结构失效1∪结构失效2∪电气失效
在给定地震作用下设备本体失效的条件概率可表示为:
P 1[S|A=a]=P[S 1≥σ V|A=a]+P[S 2≥M V|A=a]+P[S 3≥E V|A=a]        (4)
式中:P 1[S|A=a]表示当发生地震强度A=a的地震动时,设备结构达到或超过某种极限状 态S(破坏应力σv、破坏弯矩Mv和许用场强Ev)的条件概率。a代表地震动的有效峰值加速度。
连接导体失效概率的计算过程如下:
此发明考虑的连接导体失效是指连接导体与设备的连接端部在地震力的作用下受损或断裂。此时考查在地震作用时在导线端部的张力T在地震作用下是否大于导线的最大许用张力Tv。其失效概率也可表示为:
P 2[S|A=a]=P[S 4≥T V|A=a]                        (5)
因此,根据对设备在耦连作用下的失效模型,设备在耦连作用下的失效概率P t[S|A=a]可以表示为:
Figure PCTCN2019094716-appb-000009
具体地,上述的失效概率的求取如下
本发明采用计算分析法求取上述的耦连回路中失效概率,根据可靠性理论计算水平地震力作用下构件的最大应力,并与构件材料的极限应力相比较,得到构件的失效概率。具体步骤如下:
(1)建立耦连回路的有限元分析模型
有限元法不但能够模拟静力工况,还能用于结构稳定性分析和瞬时动态分析,对于准确全面的了解地震作用下耦连回路电气设备及其连接导线的应力及变形分布规律具有重要的意义。可利用ANASYS或ABAQUS进行有限元模型的建立。其中要注意以下几点:
1)通过CAD软件导入耦连回路的几何模型:设备耦连回路中包含众多的杆件和连接节,一般可采用梁单元模型进行抗震分析,对有特别需要的细部再建立实体单元有限元模型。连接导线和电气设备间一般通过金具连接,可将金具简化为固定连接或铰接等连接方式。
2)定义设备材料的属性,如弹性模量、泊松比和容许应力;
3)设置设备不同部件之间的接触形式(接触对);
4)依据结构真实的受力和变形情况划分网格;
5)力的加载和边界条件的设置:
6)依据《特高压瓷绝缘电气设备抗震设计及减震装置安装与维护技术规程》中4.4.4节要求,电气设备的地震作用和其它荷载的组合:
Z=Z Ge+Z E+0.25Z Wk+Z Pk                                (7)
Z:地震作用和其它荷载的组合,N;
Z Ge:设备自重标准值,包括设备本体、附属部件重量或其它附加等效重量,N;
Z E:地震作用标准值,N;
Z Wk:风荷载标准值,按照设备应用所在当地百年一遇的风速取值,N;
Z Pk:设备内部压力标准值、导线实际拉力等其它荷载,N。
(2)采用动力时程分析法求位移和应力
时程分析法是工程抗震计算的基本运动方程,输入对应于工程场地的若干条地震加速度记录或人工加速度时程曲线,对结构物的运动微分方程直接进行逐步积分求解的一种动力分析方法,可以得到各质点随时间变化的位移、速度和加速度的动力响应,得到设备内力的时程变化关系。时程分析可以考虑地震的振幅、频谱和持时3个要素,能够对结构进行非线性分析,适合耦连回路的地震响应分析。
通过动力时程分析法求解分为以下几个步骤:
1)对耦连回路进行有限元建模;
2)确定设备的破坏应力值或破坏弯矩值,如瓷质材料的破坏强度可取50MPa,复合材料可取80MPa。
3)地震波的选取:由于需要获取耦连回路的失效概率,必须考虑地震的随机性,需选取N条地震动作为时程分析法的输入(N≥30),作为随机抽样的样本数,根据变电站\换流站站址工程场地地震安全性评价报告选取人工合成波和典型的强震波形记录,同时也可在PEER强震数据库中选取地震波作为输入。耦连回路的仿真计算耗时较长,应根据实际情况选取适当数量的地震动作为样本,受计算时长限制,样本不易过大。同时考虑X\Y\Z三个方向的地震作用,三向输入的加速度峰值比值选取为1:0.85:0.65。对选取的第j(j=1,2,....N)条地震动,调整其峰值加速度,从0.1g至1g可以均分生成M(M≥1)个不同加速度值(如:0.1g,0.2g,0.3g,0.4g,…,1g)的地震波波形,即一个加速度值对应N组不同的地震动,分别计算某条地震波取不同加速度值时的地震响应:设备根部或危险断面处的应力值σ和弯矩值M和连接导线端部的拉力T。
4)计算结构失效概率
在给定地震作用下,峰值加速度为a时某设备本体失效和连接导线失效的条件概率可由下式求取:
Figure PCTCN2019094716-appb-000010
Figure PCTCN2019094716-appb-000011
Figure PCTCN2019094716-appb-000012
式中:
K(a)为选取的峰值加速度为a的N条地震波数量;
k σ(a)为在N条峰值加速度为a的地震波作用下,计算出来设备根部或危险断面处的应力值
Figure PCTCN2019094716-appb-000013
时的次数(≤N);
k M(a)为在N条峰值加速度为a的地震波作用下,计算出来设备根部或危险断面处的弯矩值
Figure PCTCN2019094716-appb-000014
时的次数(≤N);
k T(a)为在N条峰值加速度为a的地震波作用下,计算出来导线拉力值
Figure PCTCN2019094716-appb-000015
时的次数(≤N);
电气失效概率求解如下:
电气失效概率是指在地震作用下的设备由于发生大位移或发生的残余变形的影响导致绝缘裕度不够引起的失效概率。该失效概率在求取设备地震响应的基础上进行,以X、Y、Z三个方向中的设备端部发生最大位移时的设备形态作为电场仿真的模型输入,如图3所示,为地震作用下套管发生的位移形变。当设备在地震作用下发生位移时,设备内部的电场分布可能发生变化,导致场强分布不均,可能大于设备的许用场强值造成绝缘裕度不足。
电场仿真可以通过ANASYS软件完成,步骤如下:
1)导入最大位移时的设备形态作为电场仿真的模型,简化掉对计算电场分布无影响的零部件及模型部分螺栓孔、倒角等特征。
2)设置材料特性参数和施加边界条件,计算电压为额定电压时的电场分布。
3)选取计算判据,确定设备不同位置的场强许用值。
4)求解在额定电压下设备发生位移变形后的电场分布,提取最大场强值。
每一个最大场强值对应一个地震加速度中的一组地震波,因此,峰值加速度为a的地震作用下的电气失效概率可以由下式计算:
Figure PCTCN2019094716-appb-000016
式中:
k E(a)为在N条峰值加速度为a的地震波作用下,计算出来设备的最大场强值大于许用场强E≥E V时的次数(≤N);
具体地,对于在地震中设备失效的经济损失主要包括以下三个方面:设备受损更换成本、人工成本、停电损失。
K tot=K 1×N 1+K 2×N 2×h+K 3×p×h'                (12)
式中:K tot表示单个设备总的经济损失(万元);K 1、K 2、K 3分别代表更换设备的售价(元)、每小时每个安装调试人工劳务费(元/小时)和每度电利润(元/kWh);N 1和N 2分别代表需更换的设备数量和安装调试人员总数;h和h'分别表示安装调试工作时间,单位小时;p表示电量损失。
作为本实施例的一种优选,本方法还可以进一步求解耦连作用下地震风险指标,具体的求解过程如下:
按照式(1)和式(6),某次峰值加速度为a的地震作用下互连回路的风险值可以由下式计算:
Figure PCTCN2019094716-appb-000017
式中:
R(A=a)表示在峰值加速度为a地震作用下耦连回路失效的风险值。
n:为耦连回路中串联的设备数量;注意:有n个设备的耦连回路中有n-1条连接导线。
Figure PCTCN2019094716-appb-000018
Figure PCTCN2019094716-appb-000019
分别表示耦连回路中第i台设备本体失效、连接导体失效和前两者同时失效时的经济损失。
其中:
Figure PCTCN2019094716-appb-000020
为耦连回路中设备i失效风险值。
根据上述定义可知,耦连回路中的抗震最薄弱环节为失效风险值最大的设备。同时也可 用设备失效风险值与耦连回路失效风险的比值来描述不同地震作用下同一耦连回路设备对整体失效的贡献度C。
Figure PCTCN2019094716-appb-000021
参阅附图1-2所示,本方法在具体应用时,包括如下步骤:
第一步:选定变电站\换流站中耦连回路作为地震风险评估对象,确定回路中设备数n,连接导线数n-1;
第二步:建立n台设备由n-1条导线连接的耦连回路有限元仿真模型,作为在耦连作用下计算设备失效概率的模型,确定设备和导线的极限状态S(这里是指设备的破坏应力σv、破坏弯矩Mv和许用场强Ev);
第三步:选取有限元仿真模型的输入数据([N×M]条地震波):根据站址位置确定的地震动参数和世界强震数据库,选取地震动条数N,确定峰值加速度个数M,形成N×M矩阵作为随机抽样的样本数,矩阵中每一个元素a jk代表峰值加速度为a jk的地震波,其中j=1:N,k=1:M,且a (1:N,k)=a k即矩阵中每一行的地震动仅幅值不同,每一列中元素中峰值加速度相同但频谱和持时不同;
第四步:通过站址工程场地地震安全性评价中场点总的地震动年超越概率求取站址的地震危险性概率P dk(A=a k);
第五步:分别在耦连回路有限元分析模型中输入峰值加速度为a k的N条地震动,采用动力时程分析法计算每一条地震动下的地震响应(设备的应力、弯矩、导线的拉力和设备的位移),通过式(8)-(10)计算峰值加速度为a k时失效的条件概率,获得式(4)中的第一和第二项P[S 1≥σ V|A=a k]、P[S 2≥M V|A=a k],以及式(5)中的P 2[S|A=a k]=P[S 4≥T V|A=a k]。
第六步:通过在第五步中获取的设备最大位移,根据设备在最大位移处的电场仿真分析结果,由式(11)计算设备在地震作用下的P[S≥E V|A=a k],获得式(4)中的第三项电气性能失效概率P[S 3≥E V|A=a k];
第七步:根据式(6)求取设备在耦连作用下的失效概率。
第八步:确定耦连回路中设备失效的经济损失,分别按照式(12)计算耦连回路中第i台设备本体失效、连接导体失效和前两者同时失效时的经济损失。
第九步:按照式(13)和(14)计算耦连回路的地震失效风险指标R(A=a)和耦连回路 设备对整体失效的贡献度C,至此耦联回路下的地震风险评估完成。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (5)

  1. 一种变电站或换流站耦连回路地震风险评估方法,其特征在于,包括:
    计算变电站或换流站的站址地震危险性概率;
    建立变电站或换流站的设备在耦连作用下的失效模型,获得在地震情况下设备在耦连作用下的失效概率;
    建立设备在地震中的灾害损失模型,以获得在地震中设备失效的经济损失;
    获得地震风险,所述地震风险:
    地震风险=站址地震危险性概率×设备在耦连作用下的失效概率×经济损失  (1)。
  2. 如权利要求1所述的变电站或换流站耦连回路地震风险评估方法,其特征在于,所述设备在耦连作用下的失效模型由下述事件组成:
    (设备本体失效∩连接导体正常)∪(设备本体未受损∩连接导体失效)∪(设备本体失效概率∩连接导体失效)其中,
    设备本体失效=结构失效∪电气失效;
    结构失效=结构失效1+结构失效2;结构失效1为:设备根部或危险断面处的应力值大于设备或材料的破坏应力值除以设备安全系数;结构失效2为:设备根部或危险断面处的弯矩值大于设备或材料的破坏弯矩值除以设备安全系数;
    电气失效指的是在地震作用下的设备由于位移或发生的残余变形的影响导致绝缘裕度不够引起的失效;
    在给定地震作用下设备本体失效概率表示为:
    P 1[S|A=a]=P[S 1≥σ V|A=a]+P[S 2≥M V|A=a]+P[S 3≥E V|A=a]  (4)
    式中:P 1[S|A=a]表示当发生地震强度A=a的地震动时,设备本体失效概率;P[S 1≥σ V|A=a]表示结构失效概率1;P[S 2≥M V|A=a]表示结构失效概率2;P[S 3≥E V|A=a]表示电气失效概率;a代表地震动的有效峰值加速度;σv为破坏应力,Mv为破坏弯矩,Ev为许用场强;
    连接导体失效概率是指连接导体与设备的连接端部在地震力的作用下受损或断裂的概率,考查在地震作用时导线端部的张力T是否大于导线的最大许用张力Tv,其失效概率表示为:
    P 2[S|A=a]=P[S 4≥T V|A=a]     (5)
    设备在耦连作用下的失效概率P t[S|A=a]可以表示为:
    Figure PCTCN2019094716-appb-100001
  3. 如权利要求1或2所述的变电站或换流站耦连回路地震风险评估方法,其特征在于,在地震中设备失效的经济损失由如下公式计算而得:
    K tot=K 1×N 1+K 2×N 2×h+K 3×p×h'     (12)
    式中:K tot表示单个设备总的经济损失(万元);K 1、K 2、K 3分别代表更换设备的售价(元)、每小时每个安装调试人工劳务费(元/h)和每度电利润(元/kWh);N 1和N 2分别代表需更换的设备数量和安装调试人员总数;h和h'分别表示安装调试工作时间,单位小时;p表示电量损失。
  4. 如权利要求1所述的变电站或换流站耦连回路地震风险评估方法,其特征在于,所述站址地震危险性概率计算方法如下:
    设有N个地震带对场点地震的危险性有贡献,第n个地震带对场点地震动年超越概率为Pn(A≥a),场点总的地震动年超越概率为:
    Figure PCTCN2019094716-appb-100002
    T年内场地地震动A超过给定值a的概率为:
    P d(A≥a)=1-[(1-P n(A≥a)] T     (3)
    在确定的研究区域的地震统计区与潜在震源区、地震活动性参数及地震动衰减关系后,形成工程场地T年内基岩地震动加速度峰值的超越概率曲线,通过概率曲线求取P d(A=a)。
  5. 如权利要求2所述的变电站或换流站耦连回路地震风险评估方法,其特征在于,还包括计算耦连作用下地震风险指标:
    按照式(1)和式(6),某次峰值加速度为a的地震作用下互连回路的风险值由下式计算:
    Figure PCTCN2019094716-appb-100003
    式中:
    R(A=a)表示在峰值加速度为a地震作用下耦连回路失效的风险值;
    n:为耦连回路中串联的设备数量;注意:有n个设备的耦连回路中有n-1条连接导线;
    Figure PCTCN2019094716-appb-100004
    Figure PCTCN2019094716-appb-100005
    分别表示耦连回路中第i台设备本体失效、连接导体失效和前两者同时失效时的经济损失;
    其中:
    Figure PCTCN2019094716-appb-100006
    为耦连回路中设备i失效风险值;
    耦连回路中的抗震最薄弱环节为失效风险值最大的设备,同时,用设备失效风险值与耦连回路失效风险的比值来描述不同地震作用下同一耦连回路设备对整体失效的贡献度C
    Figure PCTCN2019094716-appb-100007
PCT/CN2019/094716 2019-01-08 2019-07-04 一种变电站或换流站耦连回路地震风险评估方法 WO2019238140A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019567985A JP7011672B2 (ja) 2019-01-08 2019-07-04 変電所又は変換所の結合ループの地震リスク評価方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910014370.3 2019-01-08
CN201910014370.3A CN109919409B (zh) 2019-01-08 2019-01-08 一种变电站或换流站耦连回路地震风险评估方法

Publications (1)

Publication Number Publication Date
WO2019238140A1 true WO2019238140A1 (zh) 2019-12-19

Family

ID=66960224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094716 WO2019238140A1 (zh) 2019-01-08 2019-07-04 一种变电站或换流站耦连回路地震风险评估方法

Country Status (3)

Country Link
JP (1) JP7011672B2 (zh)
CN (1) CN109919409B (zh)
WO (1) WO2019238140A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113609637A (zh) * 2021-06-24 2021-11-05 国网浙江杭州市余杭区供电有限公司 一种考虑故障连锁的多灾害配电网弹性评估方法
CN113723742A (zh) * 2021-06-22 2021-11-30 上海交通大学 一种变电站系统的地震风险评估方法及装置
WO2022004116A1 (ja) * 2020-07-01 2022-01-06 株式会社日立製作所 電力系統監視制御システム及び方法
CN114186464A (zh) * 2021-12-14 2022-03-15 西安交通大学 一种加氢站地震事故评估方法及系统
CN114841039A (zh) * 2022-05-12 2022-08-02 同济大学 一种换流站穿墙套管震后快速评估方法
CN115099114A (zh) * 2022-07-18 2022-09-23 大连海事大学 基于多重失效准则的地下结构模糊地震易损性计算方法
CN117114428A (zh) * 2023-10-25 2023-11-24 国网山西省电力公司电力科学研究院 一种电力设备气象灾害分析预警方法
CN117592647A (zh) * 2023-11-20 2024-02-23 国网江苏省电力有限公司经济技术研究院 一种绿色变电站建设方案评价方法
CN117725780A (zh) * 2023-12-01 2024-03-19 国网宁夏电力有限公司电力科学研究院 一种平波电抗器的绝缘故障概率评估方法
CN118966894A (zh) * 2024-08-01 2024-11-15 上海交通大学 一种计及设备脆弱度特性的能源站弹性评估方法及系统
WO2025066161A1 (zh) * 2023-09-28 2025-04-03 中国南方电网有限责任公司超高压输电公司大理局 变电站抗震韧性确定方法、装置、计算机设备和存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109919409B (zh) * 2019-01-08 2020-09-25 中国南方电网有限责任公司超高压输电公司检修试验中心 一种变电站或换流站耦连回路地震风险评估方法
CN112329376B (zh) * 2020-11-02 2022-06-07 同济大学 一种基于蒙特卡洛模拟的变电站系统抗震韧性量化评估方法
CN114372722B (zh) * 2022-01-13 2024-05-31 云南电网有限责任公司电力科学研究院 一种地震条件下典型瓷柱式电力设备电气性能评估方法
CN116383919B (zh) * 2023-02-13 2023-11-10 镇江默勒电器有限公司 一种核电用配电柜抗震性能评估方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050015268A1 (en) * 2001-12-15 2005-01-20 Ramon Diaz Method and apparatus for delivering building safety information
CN104392060A (zh) * 2014-12-04 2015-03-04 国家电网公司 基于全概率理论的电瓷型电气设备地震失效概率评估方法
CN109061722A (zh) * 2018-07-11 2018-12-21 云南电网有限责任公司电力科学研究院 一种变电站抗震评估系统及方法
CN109919409A (zh) * 2019-01-08 2019-06-21 中国南方电网有限责任公司超高压输电公司检修试验中心 一种变电站或换流站耦连回路地震风险评估方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3801063B2 (ja) * 2001-02-27 2006-07-26 株式会社日立製作所 発電設備の運転・保全計画支援システム
JP5758691B2 (ja) * 2011-04-27 2015-08-05 三菱電機株式会社 充放電制御装置、充放電制御プログラム、及び充放電制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050015268A1 (en) * 2001-12-15 2005-01-20 Ramon Diaz Method and apparatus for delivering building safety information
CN104392060A (zh) * 2014-12-04 2015-03-04 国家电网公司 基于全概率理论的电瓷型电气设备地震失效概率评估方法
CN109061722A (zh) * 2018-07-11 2018-12-21 云南电网有限责任公司电力科学研究院 一种变电站抗震评估系统及方法
CN109919409A (zh) * 2019-01-08 2019-06-21 中国南方电网有限责任公司超高压输电公司检修试验中心 一种变电站或换流站耦连回路地震风险评估方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HE, HAILEI ET AL.: "Seisimc Disaster Risk Evaluation for Power Systems Considering Common Cause Failure", PROCEEDINGS OF THE CSEE, vol. 32, no. 28, 5 October 2012 (2012-10-05) *
WANG, XIAOLEI ET AL.: "Review of Seismic Probability Risk Assessment of Nuclear Power Plants", CHINA CIVIL ENGINEERING JOURNAL, vol. 49, no. 11, 15 November 2016 (2016-11-15) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004116A1 (ja) * 2020-07-01 2022-01-06 株式会社日立製作所 電力系統監視制御システム及び方法
JP7544518B2 (ja) 2020-07-01 2024-09-03 株式会社日立製作所 電力系統監視制御システム及び方法
CN113723742A (zh) * 2021-06-22 2021-11-30 上海交通大学 一种变电站系统的地震风险评估方法及装置
CN113609637B (zh) * 2021-06-24 2023-10-27 国网浙江杭州市余杭区供电有限公司 一种考虑故障连锁的多灾害配电网弹性评估方法
CN113609637A (zh) * 2021-06-24 2021-11-05 国网浙江杭州市余杭区供电有限公司 一种考虑故障连锁的多灾害配电网弹性评估方法
CN114186464A (zh) * 2021-12-14 2022-03-15 西安交通大学 一种加氢站地震事故评估方法及系统
CN114186464B (zh) * 2021-12-14 2024-01-16 西安交通大学 一种加氢站地震事故评估方法及系统
CN114841039A (zh) * 2022-05-12 2022-08-02 同济大学 一种换流站穿墙套管震后快速评估方法
CN115099114A (zh) * 2022-07-18 2022-09-23 大连海事大学 基于多重失效准则的地下结构模糊地震易损性计算方法
WO2025066161A1 (zh) * 2023-09-28 2025-04-03 中国南方电网有限责任公司超高压输电公司大理局 变电站抗震韧性确定方法、装置、计算机设备和存储介质
CN117114428A (zh) * 2023-10-25 2023-11-24 国网山西省电力公司电力科学研究院 一种电力设备气象灾害分析预警方法
CN117114428B (zh) * 2023-10-25 2024-01-30 国网山西省电力公司电力科学研究院 一种电力设备气象灾害分析预警方法
CN117592647A (zh) * 2023-11-20 2024-02-23 国网江苏省电力有限公司经济技术研究院 一种绿色变电站建设方案评价方法
CN117725780A (zh) * 2023-12-01 2024-03-19 国网宁夏电力有限公司电力科学研究院 一种平波电抗器的绝缘故障概率评估方法
CN118966894A (zh) * 2024-08-01 2024-11-15 上海交通大学 一种计及设备脆弱度特性的能源站弹性评估方法及系统

Also Published As

Publication number Publication date
CN109919409A (zh) 2019-06-21
CN109919409B (zh) 2020-09-25
JP2020527926A (ja) 2020-09-10
JP7011672B2 (ja) 2022-01-26

Similar Documents

Publication Publication Date Title
WO2019238140A1 (zh) 一种变电站或换流站耦连回路地震风险评估方法
CN106529696B (zh) 一种电网中设备预警方法及预警装置
CN107657090B (zh) 一种判断输电线路耐张塔覆冰失稳的方法
Fu et al. Stress state and failure path of a tension tower in a transmission line under multiple loading conditions
Baghmisheh et al. Effects of rigid bus conductors on seismic fragility of electrical substation equipment
Zhu et al. Seismic failure risk analysis of±800 kV coupling filter circuit considering material strength deviation
Tang et al. Design and application of structural health monitoring system in long-span cable-membrane structure
Li et al. Multihazard fragility assessment of steel‐concrete composite frame structures with buckling‐restrained braces subjected to combined earthquake and wind
Zhu et al. Post-earthquake rapid assessment method for electrical function of equipment in substations
CN109492925A (zh) 山火诱发钢结构杆塔结构失效的仿真模拟和安全预警方法
AU2021100843A4 (en) Simulation And Safety Early-Warning Method For The Structure Failure Of Steel Structure Poles And Towers Induced By Wildfire
CN112903223A (zh) 土结作用的变压器本体地震放大系数确定及抗震评估方法
CN106248799A (zh) 一种采用振动法检测支柱式瓷瓶绝缘子损伤的方法
Yang et al. Dynamic responses of transmission tower-line system under ice shedding
CN102983533A (zh) 一种输电线路导/地线风荷载计算方法
Liang A reliability-based approach to identify critical components in a UHVDC converter station system against earthquakes
Sun et al. Structural behavior of supported tubular bus structure in substations under seismic loading
Xie et al. Coupling effects of power substation equipment with multiple configurations
Xue et al. Seismic Response and Coupling Analysis of 800kV Connected System of Smoothing Reactors
Zhang et al. Analysis of wind-induced response of down lead transmission line-connection fitting systems in ultrahigh-voltage substations
Cheng et al. An innovative structural health monitoring system for large transmission towers based on GPS
He et al. Effects of wire rope isolators on seismic life-cycle cost of UHV bypass switch
Zhang et al. Fracture failure analysis of a lightning rod on a substation frame considering residual thermal stress
Xie et al. An analytical model for seismic response analysis of electrical equipment-steel support structure
Kim et al. Response of a 230 kV outdoor termination according to the frequency characteristics of input seismic waves

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019567985

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820004

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19820004

Country of ref document: EP

Kind code of ref document: A1