WO2019237847A1 - 光学透镜系统 - Google Patents

光学透镜系统 Download PDF

Info

Publication number
WO2019237847A1
WO2019237847A1 PCT/CN2019/085184 CN2019085184W WO2019237847A1 WO 2019237847 A1 WO2019237847 A1 WO 2019237847A1 CN 2019085184 W CN2019085184 W CN 2019085184W WO 2019237847 A1 WO2019237847 A1 WO 2019237847A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
lens system
spherical
optical lens
Prior art date
Application number
PCT/CN2019/085184
Other languages
English (en)
French (fr)
Inventor
魏文哲
鲍宇旻
陈伟建
刘绪明
曾吉勇
王克民
Original Assignee
江西联创电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联创电子有限公司 filed Critical 江西联创电子有限公司
Priority to EP19819966.3A priority Critical patent/EP3792674B1/en
Publication of WO2019237847A1 publication Critical patent/WO2019237847A1/zh
Priority to US16/744,155 priority patent/US11340427B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0005Optical objectives specially designed for the purposes specified below having F-Theta characteristic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements

Definitions

  • the present invention relates to the field of optical imaging technology, and in particular, to an optical lens system.
  • driverless driving may become a trend in the development of automobiles in the future.
  • the key to driverless technology is how to obtain sufficiently accurate road information, so driverless driving has unique requirements for each part of the car.
  • the on-vehicle camera lens is a key device for driverlessness, which acts as the driverless eye, and its performance directly affects the driverless safety factor.
  • Unmanned driving requires the front port diameter of the lens to be as small as possible, and the light passing ability to be able to adapt to changes in the external environment.
  • the lens must have high imaging clarity, be able to effectively distinguish the details of the road environment, and have a good
  • the thermal stability of the lens enables the lens to have a good resolution in outdoor high and low temperature environments.
  • the lens is required to have a good resolution of objects that emit or reflect monochromatic light with different wavelengths (such as traffic lights, highway sign information, etc.). To meet the special requirements of driverless systems.
  • the object of the present invention is to provide an optical lens system to meet the requirements of the lens for unmanned driving as much as possible.
  • An optical lens system includes:
  • a second lens having positive power and both sides are convex
  • a third lens having positive power and a convex surface facing the object side;
  • a fourth lens having positive power and both sides are convex
  • a seventh lens with a negative power and a concave surface facing the imaging surface
  • the optical lens system further includes a diaphragm, the diaphragm is disposed between the first lens and the third lens, the first lens, the fourth lens, and the fifth lens They are all glass spherical lenses, and the seventh lens is a glass aspheric lens.
  • the optical lens system in the present invention is provided with a first lens for light collection and distortion correction, and a second lens, a third lens, a fourth lens and a sixth lens for light convergence
  • the third lens and the fourth lens can also play a role in eliminating heat difference and eliminating secondary spectrum
  • a fifth lens capable of acting as a positive lens and a negative lens to eliminate chromatic aberration together with the fourth lens is also provided.
  • the seventh lens that eliminates aberrations and controls the exit angle of the main ray. Therefore, the optical lens system has a strong light passing ability, can adapt to changes in the brightness of the external environment, and has high imaging clarity.
  • each lens is set as a glass lens, which can make the entire lens have better thermal stability.
  • the lens of the present invention can be used in a wide range of visible light. Within the range, it has a good imaging effect on monochromatic light, which improves the resolution of objects that emit or reflect monochromatic light with different wavelengths (such as signal indicators, highway signs, etc.), so as to satisfy unmanned vehicles as much as possible. Lens requirements.
  • optical lens system in the embodiment of the present invention also has the following additional technical features:
  • (dn / dt) 3 and (dn / dt) 4 represent the refractive index temperature coefficients of the third lens and the fourth lens, respectively.
  • Vd 3 and Vd 4 represent Abbe numbers of the third lens and the fourth lens, respectively, and ⁇ Pg, F3, ⁇ Pg, and F4 represent relative partial dispersion deviations of the third lens and the fourth lens, respectively Deviation from Abbe's empirical formula.
  • optical lens system satisfies the following conditional expressions:
  • f 52 and f 61 represent the focal lengths of the fifth lens image side and the sixth lens object side respectively
  • t 52 represents the distance from the fifth lens image side vertex to the imaging plane
  • t 61 represents the first The distance from the apex of the object side of the six lenses to the imaging surface.
  • optical lens system satisfies the following conditional expressions:
  • represents a half field angle of the optical lens system
  • IH represents an image height of the optical lens system when the half field angle is ⁇ .
  • Respective powers of the third lens and the fourth lens are among them.
  • optical lens system satisfies the following conditional expressions:
  • f 1 represents a focal length of the first lens
  • r 1 represents a curvature radius of an object side surface of the first lens
  • optical lens system satisfies the following conditional expressions:
  • CT 2 and CT 3 represent the lens center thicknesses of the second lens and the third lens, respectively.
  • optical lens system satisfies the following conditional expressions:
  • f 3 represents the focal length of the third lens
  • r 5 represents the radius of curvature of the object side surface of the third lens.
  • optical lens system satisfies the following conditional expressions:
  • f 7 represents the focal length of the seventh lens
  • r 13 represents the radius of curvature of the image side of the seventh lens.
  • the optical lens system has high pixels, good thermal stability, and excellent wide-spectrum imaging performance.
  • the edge field magnification of the lens is increased, thereby improving the lens edge.
  • the resolution is sufficient to make it meet the edge field of view.
  • 1a is a schematic cross-sectional structure diagram of an optical lens system in a first embodiment of the present invention
  • 1b is a field curvature diagram of an optical lens system in a first embodiment of the present invention
  • 1c is a distortion diagram of an optical lens system in a first embodiment of the present invention
  • 1d is an axial chromatic aberration diagram of the optical lens system in the first embodiment of the present invention.
  • FIG. 2a is a schematic cross-sectional structure diagram of an optical lens system in a second embodiment of the present invention.
  • 2b is a field curvature diagram of an optical lens system in a second embodiment of the present invention.
  • 2c is a distortion diagram of an optical lens system in a second embodiment of the present invention.
  • 2d is an axial chromatic aberration diagram of an optical lens system in a second embodiment of the present invention.
  • 3a is a schematic cross-sectional structure diagram of an optical lens system in a third embodiment of the present invention.
  • 3b is a field curvature diagram of an optical lens system in a third embodiment of the present invention.
  • 3c is a distortion diagram of an optical lens system in a third embodiment of the present invention.
  • 3d is an axial chromatic aberration diagram of an optical lens system in a third embodiment of the present invention.
  • 4a is a schematic cross-sectional structure diagram of an optical lens system in a fourth embodiment of the present invention.
  • 4b is a field curvature diagram of an optical lens system in a fourth embodiment of the present invention.
  • 4c is a distortion diagram of an optical lens system in a fourth embodiment of the present invention.
  • 4d is an axial chromatic aberration diagram of an optical lens system in a fourth embodiment of the present invention.
  • 5a is a schematic cross-sectional structure diagram of an optical lens system in a fifth embodiment of the present invention.
  • 5b is a field curvature diagram of an optical lens system in a fifth embodiment of the present invention.
  • 5c is a distortion diagram of an optical lens system in a fifth embodiment of the present invention.
  • 5d is an axial chromatic aberration diagram of an optical lens system in a fifth embodiment of the present invention.
  • 6a is a schematic cross-sectional structure diagram of an optical lens system in a sixth embodiment of the present invention.
  • 6b is a field curvature diagram of an optical lens system in a sixth embodiment of the present invention.
  • 6c is a distortion diagram of an optical lens system in a sixth embodiment of the present invention.
  • 6d is an axial chromatic aberration diagram of an optical lens system in a sixth embodiment of the present invention.
  • FIG. 7a is a schematic cross-sectional structure diagram of an optical lens system in a seventh embodiment of the present invention.
  • 7b is a field curvature diagram of an optical lens system in a seventh embodiment of the present invention.
  • 7c is a distortion diagram of an optical lens system in a seventh embodiment of the present invention.
  • 7d is an axial chromatic aberration diagram of an optical lens system in a seventh embodiment of the present invention.
  • FIG. 8a is a schematic cross-sectional structure diagram of an optical lens system in an eighth embodiment of the present invention.
  • 8b is a field curvature diagram of an optical lens system in an eighth embodiment of the present invention.
  • 8c is a distortion diagram of an optical lens system in an eighth embodiment of the present invention.
  • FIG. 8d is an axial chromatic aberration diagram of an optical lens system in an eighth embodiment of the present invention.
  • FIG. 1 a is a structural diagram of an optical lens system in a first embodiment of the present invention. From the object side to the imaging surface, it includes: a first lens L1 having a negative power and a concave surface facing the object side; and an aperture ST.
  • a second lens L2 having a positive power and both sides having a convex surface
  • a third lens L3 having a positive power and having a convex surface facing the object side
  • a fourth lens L4 having a positive power and both sides having a convex surface
  • Fifth lens L5 having optical power and both sides having concave surfaces
  • the fourth lens L4 and the fifth lens L5 constitute a cemented lens
  • a sixth lens L6 having a positive power and a convex surface facing the object side and a concave surface facing the image side
  • a seventh lens L7 with optical power and a concave surface facing the imaging surface
  • a filter G1 having a positive power and both sides having a convex surface
  • a third lens L3 having a positive power and having a convex surface facing the object side
  • a fourth lens L4 having a positive power and both sides having a convex surface
  • Fifth lens L5 having optical power and both sides having con
  • the first lens L1, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all glass spherical lenses, and the second lens L2 and the seventh lens L7 are glass aspheric lenses.
  • the surface shape of the aspheric lens in the optical lens system satisfies the following equations:
  • z represents the distance of the surface from the surface apex in the optical axis direction
  • c represents the curvature of the surface apex
  • K represents the quadric surface coefficient
  • h represents the distance from the optical axis to the surface
  • B, C, D, E, and F respectively represent four Order, sixth order, eighth order, tenth order, and twelfth order surface coefficients.
  • the third lens L3 and the fourth lens L4 satisfy the following conditional expressions:
  • (dn / dt) 3 and (dn / dt) 4 represent the refractive index temperature coefficients of the third lens L3 and the fourth lens L4, respectively.
  • the refractive index temperature coefficients of the third lens L3 and the fourth lens L4 in the optical lens system of the present invention are both negative values, the optical focal length of the system can be increased at high temperatures and decreased at low temperatures, which is effective.
  • the thermal expansion of the lens structure (such as the lens barrel and the lens holder) is compensated to ensure that the optical lens system has a good resolution at high and low temperatures.
  • the third lens L3 and the fourth lens L4 satisfy the following conditional expressions:
  • Vd 3 and Vd 4 represent the Abbe numbers of the third lens L3 and the fourth lens L4, and ⁇ Pg, F3, ⁇ Pg, and F4 represent the relative partial dispersions of the third lens L3 and the fourth lens L4. Deviation value.
  • the optical lens system in the present invention can effectively correct the second-order spectrum, reduce the difference in focal distance of light with different wavelengths, and effectively improve The MTF value of different monochromatic light in the visible light range, so that the lens of the present invention can further have a good imaging effect on monochromatic light of various wavelengths in a wide range of visible light, which is beneficial to improve the optical lens system's ability to emit light. Or the resolution of objects that reflect monochromatic light of different wavelengths (such as signal indicators, highway signs, etc.).
  • optical lens system satisfies the following conditional expressions:
  • f 52 and f 61 represent the focal lengths of the image side of the fifth lens L5 and the object side of the sixth lens L6, t 52 represents the distance from the apex of the image side of the fifth lens L5 to the imaging surface, and t 61 represents the object side of the sixth lens L6.
  • the distance from the vertex to the imaging surface Satisfying this condition can effectively eliminate the ghost image generated by the lens, and avoid the interference of the ghost image of the lens on the machine or human eye recognition.
  • optical lens system satisfies the following conditional expressions:
  • represents the half field angle of the optical lens system
  • IH represents the image height of the optical lens system when the half field angle is ⁇ .
  • the third lens L3 and the fourth lens L4 satisfy the following conditional expressions:
  • optical lens system satisfies the following conditional expressions:
  • f 1 represents the focal length of the first lens L1
  • r 1 represents the radius of curvature of the object side surface of the first lens L1.
  • optical lens system satisfies the following conditional expressions:
  • CT 2 and CT 3 represent the lens center thicknesses of the second lens L2 and the third lens L3, respectively. Satisfying this condition can ensure that the optical lens system can effectively reduce the field curvature and reduce the shift of the focal point of light in different fields of view.
  • optical lens system satisfies the following conditional expressions:
  • f 3 represents the focal length of the third lens L3
  • r 5 represents the curvature radius of the object side surface of the third lens L3. Satisfying this condition can ensure that the third lens L3 can well condense light, which is beneficial to reducing the rear port diameter of the lens, thereby reducing the lens volume.
  • optical lens system satisfies the following conditional expressions:
  • f 7 represents the focal length of the seventh lens L7
  • r 13 represents the curvature radius of the image side of the seventh lens L7. Satisfying this condition can ensure that the optical lens system can correct aberrations well, and at the same time can effectively control the light exit angle. Beyond the range of this conditional expression, it will increase the difficulty of lens processing, and it is difficult to correct aberration .
  • the optical lens system in this embodiment is provided with a first lens L1 for light collection and distortion correction, and a second lens L2, a third lens L3, a fourth lens L4, and a first lens L1 for light convergence.
  • Six lenses L6, and the third lens L3 and the fourth lens L4 can also play the role of adiabatic difference and eliminate the secondary spectrum, and also set a fifth lens that can play a positive and negative lens with the fourth lens L4 to eliminate chromatic aberration L5, and the Abd number Vd difference between the two is greater than 30, and a seventh lens L7 is provided to eliminate aberrations and control the exit angle of the main light. Therefore, the optical lens system has strong light passing ability and can adapt to the brightness of the external environment. Change, and also has higher imaging clarity.
  • the lens can have better thermal stability performance, and at the same time through reasonable power distribution, and the third lens L3, the fourth lens L4 at the same time use the temperature refractive index Materials with a negative coefficient and low relative dispersion and high relative partial dispersion can not only minimize the focus shift of the optical lens system caused by changes in ambient temperature, effectively solve the problem of thermal drift, but also can correct the secondary spectrum well, so that The focal positions of monochromatic light of different wavelengths are closer, so that the lens of the present invention not only has reliable thermal stability, but also has good imaging effect on monochromatic light of each wavelength in a wide range of visible light, which is beneficial to improve The resolution of the lens on objects that emit or reflect monochromatic light with different wavelengths (such as signal indicators, highway signs, etc.), so as to meet the requirements of unmanned lenses as much as possible.
  • the third lens L3, the fourth lens L4 at the same time use the temperature refractive index Materials with a negative coefficient and low relative dispersion and high relative partial dispersion can not only minimize the focus shift of the optical
  • Table 1-1 shows related parameters of each lens in the optical lens system in this embodiment.
  • Table 1-2 shows the aspherical parameters of the second lens L2 and the seventh lens L7 in this embodiment.
  • FIGS. 1b, 1c, and 1d show the field curvature, distortion, and axial chromatic aberration diagrams of the optical lens system in this embodiment.
  • the field curvature and distortion in this embodiment Chromatic aberration can be well corrected.
  • FIG. 2a is a structural diagram of an optical lens system in a second embodiment of the present invention.
  • the lens structure provided by this embodiment is different from the first embodiment in that: (1) the first lens L1 is Is a concave lens, the third lens L3 is a lens with a convex surface on the object side and the seventh lens L7 is a lens with a concave surface on the object side; (2) the diaphragm ST is located between the second lens L2 and the third lens L3 (3) the second lens L2 is a glass spherical lens; (4) the related parameters of other lenses are different, and the specific parameters of each lens are shown in Table 2-1.
  • Table 2-2 shows the aspheric parameters of the seventh lens L7 in this embodiment.
  • FIGS. 2b, 2c, and 2d show the field curvature, distortion, and axial chromatic aberration diagrams of the optical lens system in this embodiment. From 2b to 2d, it can be seen that the field curvature and distortion , Chromatic aberration can be well corrected.
  • FIG. 3a is a structural diagram of an optical lens system in a third embodiment of the present invention.
  • the lens structure provided by this embodiment is different from the first embodiment in that: (1) the first lens L1 is Is a concave lens, the third lens L3 is a lens with a convex surface on the object side and a concave lens on the object side, and the seventh lens L7 is a lens with a convex surface on the object side and a concave surface; (3) the second lens L2 is a glass spherical lens, and the sixth lens L6 is a glass aspheric lens; (4) the relevant parameters of other lenses are different, and the specific parameters of each lens are shown in Table 3-1 .
  • Table 3-2 shows aspherical parameters of the sixth lens L6 and the seventh lens L7 in this embodiment.
  • FIGS. 3b, 3c and 3d show the field curvature, distortion and axial chromatic aberration diagrams of the optical lens system in this embodiment. From 3b to 3d, it can be seen that the field curvature and distortion in this embodiment , Chromatic aberration can be well corrected.
  • FIG. 4a is a structural diagram of an optical lens system in a fourth embodiment of the present invention.
  • the lens structure provided in this embodiment is different from the first embodiment in that: (1) the first lens L1 is A concave lens; (2) the diaphragm ST is located between the second lens L2 and the third lens L3; (3) the second lens L2 is a glass spherical lens, and the third lens L3 is a glass aspheric lens; (4) others
  • the related parameters of each lens are different. The specific parameters of each lens are shown in Table 4-1.
  • Table 4-2 shows aspherical parameters of the third lens L3 and the seventh lens L7 in this embodiment.
  • FIGS. 4b, 4c, and 4d show the field curvature, distortion, and axial chromatic aberration diagrams of the optical lens system in this embodiment. From 4b to 4d, it can be seen that the field curvature and distortion in this embodiment , Chromatic aberration can be well corrected.
  • FIG. 5a is a structural diagram of an optical lens system in a fifth embodiment of the present invention.
  • the lens structure provided in this embodiment is different from the first embodiment in that: (1) the second lens L2 is a glass spherical lens
  • the third lens L3 is a glass aspheric lens; (2)
  • the relevant parameters of other lenses are different.
  • the specific parameters of each lens are shown in Table 5-1.
  • Table 5-2 shows aspherical parameters of the third lens L3 and the seventh lens L7 in this embodiment.
  • FIGS. 5b, 5c, and 5d show the field curvature, distortion, and axial chromatic aberration diagrams of the optical lens system in this embodiment. From 5b to 5d, it can be seen that the field curvature and distortion in this embodiment , Chromatic aberration can be well corrected.
  • FIG. 6a is a structural diagram of an optical lens system in a sixth embodiment of the present invention.
  • the lens structure provided in this embodiment is different from the first embodiment in that: (1) the first lens L1 It is a concave lens; (2) The related parameters of other lenses are different. The specific parameters of each lens are shown in Table 6-1.
  • Table 6-2 shows aspherical parameters of the second lens L2 and the seventh lens L7 in this embodiment.
  • Figs. 6b, 6c and 6d show the field curvature, distortion and axial chromatic aberration diagrams of the optical lens system in this embodiment. From 6b to 6d, it can be seen that the field curvature and distortion , Chromatic aberration can be well corrected.
  • FIG. 7a is a structural diagram of an optical lens system in a seventh embodiment of the present invention.
  • the lens structure provided in this embodiment is different from the first embodiment in that: (1) the first lens L1 Is a concave lens, the seventh lens L7 is a lens with a convex surface on the object side and a concave surface on the image side; (2) the diaphragm ST is located between the second lens L2 and the third lens L3; (4) The related parameters of other lenses are different.
  • the specific parameters of each lens are shown in Table 7-1.
  • Table 7-2 shows the aspheric parameters of the seventh lens L7 in this embodiment.
  • FIGS. 7b, 7c and 7d show the field curvature, distortion and axial chromatic aberration diagrams of the optical lens system in this embodiment. From 7b to 7d, it can be seen that the field curvature and distortion in this embodiment , Chromatic aberration can be well corrected.
  • FIG. 8a is a structural diagram of an optical lens system in an eighth embodiment of the present invention.
  • the lens structure provided in this embodiment is different from the first embodiment in that: (1) the first lens L1 is Is a concave lens, the third lens L3 is a lens with a convex surface on the object side and the seventh lens L7 is a lens with a concave surface on the object side; (2) the diaphragm ST is located between the second lens L2 and the third lens L3 (3) the second lens L2 is a glass spherical lens, and the third lens L3 is a glass aspherical lens; (4) the relevant parameters of each other lens are different.
  • the specific parameters of each lens are shown in Table 8-1.
  • Table 8-2 shows aspherical parameters of the third lens L3 and the seventh lens L7 in this embodiment.
  • FIGS. 8b, 8c and 8d show the field curvature, distortion and axial chromatic aberration diagrams of the optical lens system in this embodiment. From 8b to 8d, it can be seen that the field curvature and distortion , Chromatic aberration can be well corrected.
  • Table 9 shows the above eight embodiments and their corresponding optical characteristics, including the system focal length f, the number of apertures F #, the total system length TTL, and the values corresponding to each of the preceding conditional expressions.
  • the following optical indicators have been achieved: (1) the total optical length TTL ⁇ 33.5mm; (2) the applicable spectral range is: 400nm to 700nm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

一种光学透镜系统,从物侧到成像面依次包括:具有负光焦度且凹面朝向物侧的第一透镜(L1);具有正光焦度且双面均为凸面的第二透镜(L2);具有正光焦度且凸面朝向物侧的第三透镜(L3);具有正光焦度且双面均为凸面的第四透镜(L4);具有负光焦度且双面均为凹面的第五透镜(L5),且第四透镜(L4)和第五透镜(L5)组成胶合镜片;具有正光焦度且凸面朝向物侧凹面朝向像侧的第六透镜(L6);具有负光焦度且凹面朝向成像面的第七透镜(L7);其中,光阑(ST)设于第一透镜(L1)与第三透镜(L3)之间,第一透镜(L1)、第四透镜(L4)及第五透镜(L5)均为玻璃球面透镜,第七透镜(L7)为玻璃非球面透镜。光学透镜系统不仅具有热稳定性,而且对发射或反射不同波长单色光的物体具有极高的分辨能力,可满足无人驾驶对镜头的要求。

Description

光学透镜系统 技术领域
本发明涉及光学成像技术领域,特别涉及一种光学透镜系统。
背景技术
近年来随着无人驾驶理念的提倡,并伴随着无人驾驶技术的不断成熟,未来无人驾驶可能成为汽车发展的一种趋势。无人驾驶的技术关键在于,如何获取到足够精确的道路信息,故无人驾驶对汽车各部件均有独特的要求。
其中,车载摄像镜头即为无人驾驶的关键器件,其充当无人驾驶的眼睛,其性能高低直接影响着无人驾驶的安全系数。无人驾驶要求镜头的前端口径要尽量小,通光能力强,能适应外界环境的明暗变化,同时要求镜头有较高的成像清晰度,能有效分辨道路环境的细节,以及还要具有很好的热稳定性,使镜头在室外的高低温环境中都拥有良好的解像力,同时要求镜头能够对发射或反射不同波长单色光的物体(如交通信号灯、公路标识信息等)具有良好的分辨能力,以满足无人驾驶系统的特殊要求。
然而,现有技术当中,目前市场上的光学镜头均不能够很好的满足上述要求,因此,开发一种可以配合无人驾驶的高性能光学镜头是当务之急。
发明内容
基于此,本发明的目的是提供一种光学透镜系统,以尽可能的满足无人驾驶对镜头的要求。
一种光学透镜系统,从物侧到成像面依次包括:
具有负光焦度且凹面朝向物侧的第一透镜;
具有正光焦度且双面均为凸面的第二透镜;
具有正光焦度且凸面朝向物侧的第三透镜;
具有正光焦度且双面均为凸面的第四透镜;
具有负光焦度且双面均为凹面的第五透镜,且所述第四透镜和所述第五透镜组成胶合镜片;
具有正光焦度且凸面朝向物侧凹面朝向像侧的第六透镜;
具有负光焦度且凹面朝向成像面的第七透镜;
其中,所述光学透镜系统还包括一光阑,所述光阑设于所述第一透镜与所述第三透镜之间,所述第一透镜、所述第四透镜及所述第五透镜均为玻璃球面透镜,所述第七透镜为玻璃非球面透镜。
相较于现有技术,本发明中的光学透镜系统通过设置用于光线收集和畸变矫正的第一透镜,并设置用于光线会聚的第二透镜、第三透镜、第四透镜及第六透镜,且第三透镜和第四透镜还能够起到消热差和消除二级光谱的作用,同时还设置能够与第四透镜一同起到正负透镜消除色差作用的第五透镜,并设置用于消除像差和控制主光线出射角度的第七透镜,因此本光学透镜系统具有通光能力强,能适应外界环境的明暗变化,且还具有较高的成像清晰度。除此之外,各个透镜均设置为玻璃镜片,可以使整个镜头具有较好的热稳定性能,同时通过合理的光焦度分配和选用特定的玻璃,可以使本发明镜头在可见光较宽的波段范围内对单色光都有良好的成像效果,提高了对发射或反射不同波长单色光的物体(如信号指示灯、公路标志牌等)的分辨能力,从而尽可能的满足无人驾驶对镜头的要求。
另外,根据本发明实施例中的光学透镜系统,还具有如下附加的技术特征:
进一步地,所述第三透镜和所述第四透镜满足以下条件式:
(dn/dt) 3+(dn/dt) 4<-2×10 -6/℃;
其中,(dn/dt) 3、(dn/dt) 4分别表示所述第三透镜和所述第四透镜的折射率温度系数。
进一步地,所述第三透镜和所述第四透镜满足以下条件式:
Vd 3+Vd 4>150;
ΔPg,F3+ΔPg,F4>0.005;
其中,Vd 3、Vd 4分别表示所述第三透镜和所述第四透镜的阿贝数,ΔPg,F3、ΔPg,F4分别表示所述第三透镜和所述第四透镜的相对部分色散偏离阿贝经验公式的偏离值。
进一步地,所述光学透镜系统满足以下条件式:
0.5<||f 52|-t 52|<13;
0.1<||f 61|-t 61|<10;
其中,f 52、f 61分别表示所述第五透镜像侧面和所述第六透镜物侧面的焦距,t 52表示所述第五透镜像侧面顶点到成像面的距离,t 61表示所述第六透镜物侧面顶点到成像面的距离。
进一步地,所述光学透镜系统满足以下条件式:
0.2<IH/θ<0.3;
其中,θ表示所述光学透镜系统的半视场角,IH表示所述光学透镜系统在半视场角为θ时的像高。
进一步地,所述第三透镜和所述第四透镜满足以下条件式:
Figure PCTCN2019085184-appb-000001
其中,
Figure PCTCN2019085184-appb-000002
分别表示所述第三透镜和所述第四透镜的光焦度。
进一步地,所述光学透镜系统满足以下条件式:
0.5<f 1/r 1<3;
其中,f 1表示所述第一透镜的焦距,r 1表示所述第一透镜物侧面的曲率半径。
进一步地,所述光学透镜系统满足以下条件式:
5<CT 2+CT 3<13;
其中,CT 2、CT 3分别表示所述第二透镜和所述第三透镜的镜片中心厚度。
进一步地,所述光学透镜系统满足以下条件式:
1<f 3/r 5<4;
其中,f 3表示所述第三透镜的焦距,r 5表示所述第三透镜物侧面的曲率半径。
进一步地,所述光学透镜系统满足以下条件式:
-13<f 7/r 13<0;
其中,f 7表示所述第七透镜的焦距,r 13代表所述第七透镜像侧面的曲率半径。
满足上述配置有利于保证该光学透镜系统具有高像素、良好的热稳定性、优良的宽光谱成像性能,此外通过控制f-θ畸变来提高镜头的边缘视场放大倍率,从而提高了镜头边缘的解像能力,使其满足边缘视场画面拉平展开后,有足够的分辨率。
附图说明
图1a为本发明第一实施例中的光学透镜系统的截面结构示意图;
图1b为本发明第一实施例中的光学透镜系统的场曲图;
图1c为本发明第一实施例中的光学透镜系统的畸变图;
图1d为本发明第一实施例中的光学透镜系统的轴向色差图;
图2a为本发明第二实施例中的光学透镜系统的截面结构示意图;
图2b为本发明第二实施例中的光学透镜系统的场曲图;
图2c为本发明第二实施例中的光学透镜系统的畸变图;
图2d为本发明第二实施例中的光学透镜系统的轴向色差图;
图3a为本发明第三实施例中的光学透镜系统的截面结构示意图;
图3b为本发明第三实施例中的光学透镜系统的场曲图;
图3c为本发明第三实施例中的光学透镜系统的畸变图;
图3d为本发明第三实施例中的光学透镜系统的轴向色差图;
图4a为本发明第四实施例中的光学透镜系统的截面结构示意图;
图4b为本发明第四实施例中的光学透镜系统的场曲图;
图4c为本发明第四实施例中的光学透镜系统的畸变图;
图4d为本发明第四实施例中的光学透镜系统的轴向色差图;
图5a为本发明第五实施例中的光学透镜系统的截面结构示意图;
图5b为本发明第五实施例中的光学透镜系统的场曲图;
图5c为本发明第五实施例中的光学透镜系统的畸变图;
图5d为本发明第五实施例中的光学透镜系统的轴向色差图;
图6a为本发明第六实施例中的光学透镜系统的截面结构示意图;
图6b为本发明第六实施例中的光学透镜系统的场曲图;
图6c为本发明第六实施例中的光学透镜系统的畸变图;
图6d为本发明第六实施例中的光学透镜系统的轴向色差图;
图7a为本发明第七实施例中的光学透镜系统的截面结构示意图;
图7b为本发明第七实施例中的光学透镜系统的场曲图;
图7c为本发明第七实施例中的光学透镜系统的畸变图;
图7d为本发明第七实施例中的光学透镜系统的轴向色差图;
图8a为本发明第八实施例中的光学透镜系统的截面结构示意图;
图8b为本发明第八实施例中的光学透镜系统的场曲图;
图8c为本发明第八实施例中的光学透镜系统的畸变图;
图8d为本发明第八实施例中的光学透镜系统的轴向色差图;
主要元件符号说明:
第一透镜 L1 第二透镜 L2
第三透镜 L3 第四透镜 L4
第五透镜 L5 第六透镜 L6
第七透镜 L7 滤光片 G1
光阑 ST    
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例1
请参阅图1a,所示为本发明第一实施例中的光学透镜系统结构图,从物侧到成像面依次包括:具有负光焦度且凹面朝向物侧的第一透镜L1;光阑ST;具有正光焦度且双面均为凸面的第二透镜L2;具有正光焦度且凸面朝向物侧的第三透镜L3;具有正光焦度且双面均为凸面的第四透镜L4;具有负光焦度且双面均为凹面的第五透镜L5,且第四透镜L4和第五透镜L5组成胶合镜片;具有正光焦度且凸面朝向物侧凹面朝向像侧的第六透镜L6;具有负光焦度且凹面朝向成像面的第七透镜L7;以及一滤光片G1。
其中,第一透镜L1、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6均为玻璃球面透镜,第二透镜L2和第七透镜L7为玻璃非球面透镜。
具体地,所述光学透镜系统中的非球面透镜的表面形状均满足下列方程:
Figure PCTCN2019085184-appb-000003
其中,z表示曲面离开曲面顶点在光轴方向的距离,c表示曲面顶点的曲率,K表示二次曲面系数,h表示光轴到曲面的距离,B、C、D、E和F分别表示四阶、六阶、八阶、十阶和十二阶曲面系数。
需要指出的是,上述非球面形状的方程式不仅仅适用于本实施例当中的非球面镜片,在本发明下述各实施例当中的非球面镜片同样可以适用。
进一步地,第三透镜L3和第四透镜L4满足以下条件式:
(dn/dt) 3+(dn/dt) 4<-2×10 -6/℃;
其中,(dn/dt) 3、(dn/dt) 4分别表示第三透镜L3和第四透镜L4的折射率温度系数。
可以理解的,本发明中的光学透镜系统由于第三透镜L3、第四透镜L4的折射率温度系数均为负值,能够使系统的光学焦距在高温时增大、在低温时减小,有效的补偿了镜头结构件(如镜筒、镜座)的热膨胀,保证了该光学透镜系统在高低温时都具有良好的解像力。
进一步地,第三透镜L3和第四透镜L4满足以下条件式:
Vd 3+Vd 4>150;
ΔPg,F3+ΔPg,F4>0.005;
其中,Vd 3、Vd 4分别表示第三透镜L3和第四透镜L4的阿贝数,ΔPg,F3、ΔPg,F4分别表示第三透镜L3和第四透镜L4的相对部分色散偏离阿贝经验公式的偏离值。
可以理解的,本发明中的光学透镜系统由于第三透镜L3、第四透镜L4的低色散和高相对部分色散,可以有效地矫正二级光谱,减小不同波长光线的焦点距离差,有效提高可见光范围内不同单色光的MTF值,使得本发明中的镜头可以进一步在可见光较宽的波段范围内对各个波长的单色光都有良好的成像效果,有利于提高该光学透镜系统对发射或反射不同波长单色光的物体(如信号指示灯、公路标志牌等)的分辨能力。
进一步地,该光学透镜系统满足以下条件式:
0.5<||f 52|-t 52|<13;
0.1<||f 61|-t 61|<10;
其中,f 52、f 61分别表示第五透镜L5像侧面和第六透镜L6物侧面的焦距,t 52表示第五透镜L5像侧面顶点到成像面的距离,t 61表示第六透镜L6物侧面顶点到成像面的距离。满足此条件可以有效地消除镜头产生的鬼影,避免镜头的鬼影对机器或人眼识别产生的干扰。
进一步地,该光学透镜系统满足以下条件式:
0.2<IH/θ<0.3;
其中,θ表示该光学透镜系统的半视场角,IH表示该光学透镜系统在半视场角为θ时的像高。满足此条件,可以很好的控制该光学透镜系统的f-θ畸变, 能够有效减小由畸变带来的成像变形。
进一步地,第三透镜L3和第四透镜L4满足以下条件式:
Figure PCTCN2019085184-appb-000004
其中,
Figure PCTCN2019085184-appb-000005
分别表示第三透镜L3和第四透镜L4的光焦度。
进一步地,该光学透镜系统满足以下条件式:
0.5<f 1/r 1<3;
其中,f 1表示第一透镜L1的焦距,r 1表示第一透镜L1物侧面的曲率半径。当f 1/r 1的值超过上限值时,不利于减小镜头的口径,当f 1/r 1的值超过下限值时,不利于镜片的加工。
进一步地,该光学透镜系统满足以下条件式:
5<CT 2+CT 3<13;
其中,CT 2、CT 3分别表示第二透镜L2和第三透镜L3的镜片中心厚度。满足此条件,可以保证该光学透镜系统可以有效减小场曲,减小不同视场光线焦点的偏移。
进一步地,该光学透镜系统满足以下条件式:
1<f 3/r 5<4;
其中,f 3表示第三透镜L3的焦距,r 5表示第三透镜L3物侧面的曲率半径。满足此条件,可以保证第三透镜L3能够很好的汇聚光线,有利于减小镜头的后端口径,从而减小镜头体积。
进一步地,该光学透镜系统满足以下条件式:
-13<f 7/r 13<0;
其中,f 7表示第七透镜L7的焦距,r 13表示第七透镜L7像侧面的曲率半径。满足此条件,可以保证该光学透镜系统能很好地矫正像差,同时可以有效控制光线的出射角度,超过此条件式的范围,则会增加镜片加工的难度,且对像差的矫正比较困难。
综上,本实施例当中的光学透镜系统,通过设置用于光线收集和畸变矫正的第一透镜L1,并设置用于光线会聚的第二透镜L2、第三透镜L3、第四透镜L4及第六透镜L6,且第三透镜L3和第四透镜L4还能够起到消热差和消除二级光谱的作用,同时还设置能够与第四透镜L4起到正负透镜消除色差作用的第五透镜L5,且两者阿贝数Vd差值大于30,并设置用于消除像差和控制主光线出射角度的第七透镜L7,因此本光学透镜系统具有通光能力强,能适应外界环 境的明暗变化,且还具有较高的成像清晰度。除此之外,通过将各透镜均设置为玻璃镜片,可以使镜头具有较好的热稳定性能,同时通过合理的光焦度分配,且第三透镜L3、第四透镜L4同时选用温度折射率系数为负且低色散高相对部分色散的材料,不仅能尽量减小因环境温度变化引起的所述光学透镜系统的焦点移动,有效解决热漂移问题,同时可以很好的矫正二级光谱,使不同波长的单色光焦点位置更加接近,使得本发明的镜头不仅有可靠的热稳定性,而且可以在可见光较宽的波段范围内对各个波长单色光都有良好的成像效果,有利于提高镜头对发射或反射不同波长单色光的物体(如信号指示灯、公路标志牌等)的分辨能力,从而尽可能的满足无人驾驶对镜头的要求。
请参阅表1-1,所示为本实施例当中的光学透镜系统中各个镜片的相关参数。
表1-1:
表面序号   表面类型 曲率半径 厚度 折射率 阿贝数
物面 被摄物 球面 无穷 无穷    
S1 第一透镜 球面 -14.494478 2.371605 1.613 37.01
S2   球面 -63.149885 0.261495    
ST 光阑 球面 无穷 1.802385    
S3 第二透镜 非球面 34.746436 4.103308 1.693 53.20
S4   非球面 -74.219015 0.285721    
S5 第三透镜 球面 18.289763 7.072520 1.497 81.59
S6   球面 -18.289763 2.277053    
S7 第四透镜 球面 18.581112 4.773657 1.593 67.33
S8 第五透镜 球面 -11.880198 0.751239 1.689 31.16
S9   球面 11.880198 0.452731    
S10 第六透镜 球面 12.035616 3.044081 1.911 35.26
S11   球面 40.715315 1.599017    
S12 第七透镜 非球面 -13.192815 0.802963 1.693 53.20
S13   非球面 50.505483 1.500000    
S14 滤光片 球面 无穷 0.400000 1.517 64.20
S15   球面 无穷 2.027862    
S16 成像面 球面 无穷    
请参阅表1-2,所示为本实施例中第二透镜L2和第七透镜L7的非球面参数。
表1-2:
Figure PCTCN2019085184-appb-000006
请查阅图1b、1c及1d,所示为在本实施例中的光学透镜系统的场曲图、畸变图和轴向色差图,由1b至1d可以看出,本实施例中场曲、畸变、色差都能被很好的校正。
实施例2
请参阅图2a,所示为本发明第二实施例当中的光学透镜系统结构图,本实施例提供的镜头结构与第一实施例不同之处在于:(1)第一透镜L1是双面均为凹面的透镜,第三透镜L3是物侧凸面像侧凹面的透镜,第七透镜L7是物侧凸面像侧凹面的透镜;(2)光阑ST位于第二透镜L2和第三透镜L3之间;(3)第二透镜L2是玻璃球面透镜;(4)其它各个透镜的相关参数有所不同,具体各个镜片的相关参数如表2-1所示。
表2-1:
表面序号   表面类型 曲率半径 厚度 折射率 阿贝数
物面 被摄物 球面 无穷 无穷    
S1 第一透镜 球面 -11.592661 1.163199 1.613 37.01
S2   球面 19.751587 1.136888    
S3 第二透镜 球面 22.924887 4.092293 1.723 38.02
S4   球面 -17.734275 -0.968123    
ST 光阑 球面 无穷 1.166996    
S5 第三透镜 球面 12.082978 3.674930 1.437 95.10
S6   球面 33.642106 1.095780    
S7 第四透镜 球面 14.100363 6.880603 1.593 67.33
S8 第五透镜 球面 -9.400656 0.612328 1.689 31.16
S9   球面 16.477184 1.220307    
S10 第六透镜 球面 19.128073 2.473526 1.911 35.26
S11   球面 35.740725 0.245258    
S12 第七透镜 非球面 16.489875 5.975151 1.621 63.88
S13   非球面 12.098150 1.500000    
S14 滤光片 球面 无穷 0.400000 1.517 64.20
S15   球面 无穷 2.240201    
S16 成像面 球面 无穷    
请参阅表2-2,所示为本实施例中第七透镜L7的非球面参数。
表2-2:
Figure PCTCN2019085184-appb-000007
请查阅图2b、2c及2d,所示为在本实施例中的光学透镜系统的场曲图、畸变图和轴向色差图,由2b至2d可以看出,本实施例中场曲、畸变、色差都能被很好的校正。
实施例3
请参阅图3a,所示为本发明第三实施例当中的光学透镜系统结构图,本实施例提供的镜头结构与第一实施例不同之处在于:(1)第一透镜L1是双面均为凹面的透镜,第三透镜L3是物侧凸面像侧凹面的透镜,第七透镜L7是物侧凸面像侧凹面的透镜;(2)光阑ST位于第二透镜L2和第三透镜L3之间;(3)第二透镜L2是玻璃球面透镜,第六透镜L6是玻璃非球面透镜;(4)其它各个透镜的相关参数有所不同,具体各个镜片的相关参数如表3-1所示。
表3-1:
表面序号   表面类型 曲率半径 厚度 折射率 阿贝数
物面 被摄物 球面 无穷 无穷    
S1 第一透镜 球面 -11.976029 1.200553 1.613 37.01
S2   球面 18.442265 1.181351    
S3 第二透镜 球面 21.411583 4.145002 1.723 38.02
S4   球面 -19.286256 -0.877432    
ST 光阑 球面 无穷 1.111799    
S5 第三透镜 球面 11.252093 3.838694 1.437 95.10
S6   球面 29.187333 0.329973    
S7 第四透镜 球面 14.256602 7.310105 1.593 67.33
S8 第五透镜 球面 -9.549359 0.612328 1.689 31.16
S9   球面 18.539892 0.782115    
S10 第六透镜 非球面 18.989284 2.670310 1.808 40.92
S11   非球面 39.330426 0.250289    
S12 第七透镜 非球面 19.327695 5.989484 1.621 63.88
S13   非球面 12.028573 1.500000    
S14 滤光片 球面 无穷 0.400000 1.517 64.20
S15   球面 无穷 2.224803    
S16 成像面 球面 无穷    
请参阅表3-2,所示为本实施例中第六透镜L6和第七透镜L7的非球面参数。
表3-2:
Figure PCTCN2019085184-appb-000008
请查阅图3b、3c及3d,所示为在本实施例中的光学透镜系统的场曲图、畸变图和轴向色差图,由3b至3d可以看出,本实施例中场曲、畸变、色差都能被很好的校正。
实施例4
请参阅图4a,所示为本发明第四实施例当中的光学透镜系统结构图,本实施例提供的镜头结构与第一实施例不同之处在于:(1)第一透镜L1是双面均为凹面的透镜;(2)光阑ST位于第二透镜L2和第三透镜L3之间;(3)第二透镜L2是玻璃球面透镜,第三透镜L3是玻璃非球面透镜;(4)其它各个透镜的相关参数有所不同,具体各个镜片的相关参数如表4-1所示。
表4-1:
表面序号   表面类型 曲率半径 厚度 折射率 阿贝数
物面 被摄物 球面 无穷 无穷    
S1 第一透镜 球面 -12.919273 1.289841 1.613 37.01
S2   球面 23.733724 1.026969    
S3 第二透镜 球面 21.252473 3.599612 1.723 38.02
S4   球面 -32.121515 -0.345944    
ST 光阑 球面 无穷 1.690004    
S5 第三透镜 非球面 12.506290 7.143667 1.497 81.56
S6   非球面 -52.754684 0.628636    
S7 第四透镜 球面 16.042089 5.677139 1.593 67.33
S8 第五透镜 球面 -10.081255 0.715993 1.689 31.16
S9   球面 11.246756 0.422645    
S10 第六透镜 球面 10.742125 3.769487 1.911 35.26
S11   球面 25.024764 1.226018    
S12 第七透镜 非球面 -132.998530 2.250446 1.621 63.88
S13   非球面 18.349997 0.500000    
S14 滤光片 球面 无穷 0.400000 1.517 64.20
S15   球面 无穷 2.506232    
S16 成像面 球面 无穷    
请参阅表4-2,所示为本实施例中第三透镜L3和第七透镜L7的非球面参数。
表4-2:
Figure PCTCN2019085184-appb-000009
请查阅图4b、4c及4d,所示为在本实施例中的光学透镜系统的场曲图、畸变图和轴向色差图,由4b至4d可以看出,本实施例中场曲、畸变、色差都能被很好的校正。
实施例5
请参阅图5a,所示为本发明第五实施例当中的光学透镜系统结构图,本实 施例提供的镜头结构与第一实施例不同之处在于:(1)第二透镜L2是玻璃球面透镜,第三透镜L3是玻璃非球面透镜;(2)其它各个透镜的相关参数有所不同。具体各个镜片的相关参数如表5-1所示。
表5-1:
表面序号   表面类型 曲率半径 厚度 折射率 阿贝数
物面 被摄物 球面 无穷 无穷    
S1 第一透镜 球面 -11.768684 1.294693 1.613 37.01
S2   球面 -37.145784 0.116731    
ST 光阑 球面 无穷 1.410072    
S3 第二透镜 球面 71.865315 5.678253 1.702 41.14
S4   球面 -71.865315 0.069331    
S5 第三透镜 非球面 12.904154 6.238990 1.497 81.56
S6   非球面 -21.680249 1.269446    
S7 第四透镜 球面 18.280772 6.154973 1.593 67.33
S8 第五透镜 球面 -11.781805 0.684010 1.689 31.16
S9   球面 11.781805 0.520732    
S10 第六透镜 球面 11.864835 3.357487 1.911 35.26
S11   球面 38.183902 1.689353    
S12 第七透镜 非球面 -8.717423 0.792207 1.693 53.20
S13   非球面 36.697089 1.500000    
S14 滤光片 球面 无穷 0.400000 1.517 64.20
S15   球面 无穷 1.236688    
S16 成像面 球面 无穷    
请参阅表5-2,所示为本实施例中第三透镜L3和第七透镜L7的非球面参数。
表5-2:
Figure PCTCN2019085184-appb-000010
Figure PCTCN2019085184-appb-000011
请查阅图5b、5c及5d,所示为在本实施例中的光学透镜系统的场曲图、畸变图和轴向色差图,由5b至5d可以看出,本实施例中场曲、畸变、色差都能被很好的校正。
实施例6
请参阅图6a,所示为本发明第六实施例当中的光学透镜系统结构图,本实施例提供的镜头结构与第一实施例不同之处在于:(1)第一透镜L1是双面均为凹面的透镜;(2)其它各个透镜的相关参数有所不同,具体各个镜片的相关参数如表6-1所示。
表6-1:
表面序号   表面类型 曲率半径 厚度 折射率 阿贝数
物面 被摄物 球面 无穷 无穷    
S1 第一透镜 球面 -15.086739 3.764504 1.613 37.01
S2   球面 7511.960350 0.787493    
ST 光阑 球面 无穷 0.568907    
S3 第二透镜 非球面 17.873900 3.581276 1.693 53.20
S4   非球面 -66.254643 3.795931    
S5 第三透镜 球面 18.922684 5.073042 1.497 81.59
S6   球面 -22.380420 0.200884    
S7 第四透镜 球面 18.637740 4.801748 1.593 67.33
S8 第五透镜 球面 -13.216421 0.698164 1.689 31.16
S9   球面 13.192973 0.780003    
S10 第六透镜 球面 17.076361 2.643280 1.911 35.26
S11   球面 102.025137 1.768678    
S12 第七透镜 非球面 -10.694324 0.882926 1.693 53.20
S13   非球面 148.880149 1.500000    
S14 滤光片 球面 无穷 0.400000 1.517 64.20
S15   球面 无穷 1.427990    
S16 成像面 球面 无穷    
请参阅表6-2,所示为本实施例中第二透镜L2和第七透镜L7的非球面参数。
表6-2:
Figure PCTCN2019085184-appb-000012
请查阅图6b、6c及6d,所示为在本实施例中的光学透镜系统的场曲图、畸变图和轴向色差图,由6b至6d可以看出,本实施例中场曲、畸变、色差都能被很好的校正。
实施例7
请参阅图7a,所示为本发明第七实施例当中的光学透镜系统结构图,本实施例提供的镜头结构与第一实施例不同之处在于:(1)第一透镜L1是双面均为凹面的透镜,第七透镜L7是物侧凸面像侧凹面的透镜;(2)光阑ST位于第二透镜L2和第三透镜L3之间;(3)第二透镜L2是玻璃球面透镜;(4)其它各个透镜的相关参数有所不同。具体各个镜片的相关参数如表7-1所示。
表7-1:
表面序号   表面类型 曲率半径 厚度 折射率 阿贝数
物面 被摄物 球面 无穷 无穷    
S1 第一透镜 球面 -11.869604 1.184962 1.689 31.16
S2   球面 56.436099 0.465043    
S3 第二透镜 球面 40.362307 1.799362 1.923 20.88
S4   球面 -67.992181 -0.031767    
ST 光阑 球面 无穷 0.231758    
S5 第三透镜 球面 13.935701 4.004251 1.678 55.56
S6   球面 -36.567965 0.199991    
S7 第四透镜 球面 14.176259 4.595935 1.593 67.33
S8 第五透镜 球面 -13.594701 0.699995 1.741 27.76
S9   球面 10.740992 2.295061    
S10 第六透镜 球面 8.816665 3.190814 1.901 37.05
S11   球面 14.360952 0.919291    
S12 第七透镜 非球面 17.133016 3.891408 1.693 53.20
S13   非球面 11.144885 1.500000    
S14 滤光片 球面 无穷 0.400000 1.517 64.20
S15   球面 无穷 2.508511    
S16 成像面 球面 无穷    
请参阅表7-2,所示为本实施例中第七透镜L7的非球面参数。
表7-2:
Figure PCTCN2019085184-appb-000013
请查阅图7b、7c及7d,所示为在本实施例中的光学透镜系统的场曲图、畸变图和轴向色差图,由7b至7d可以看出,本实施例中场曲、畸变、色差都能被很好的校正。
实施例8
请参阅图8a,所示为本发明第八实施例当中的光学透镜系统结构图,本实施例提供的镜头结构与第一实施例不同之处在于:(1)第一透镜L1是双面均为凹面的透镜,第三透镜L3是物侧凸面像侧凹面的透镜,第七透镜L7是物侧凸面像侧凹面的透镜;(2)光阑ST位于第二透镜L2和第三透镜L3之间;(3)第二透镜L2是玻璃球面透镜,第三透镜L3是玻璃非球面透镜;(4)其它各个透镜的相关参数有所不同。具体各个镜片的相关参数如表8-1所示。
表8-1:
表面序号   表面类型 曲率半径 厚度 折射率 阿贝数
物面 被摄物 球面 无穷 无穷    
S1 第一透镜 球面 -13.728598 1.348103 1.613 37.01
S2   球面 19.460816 1.115384    
S3 第二透镜 球面 19.434470 3.453031 1.723 38.02
S4   球面 -31.003429 -0.390284    
ST 光阑 球面 无穷 2.149615    
S5 第三透镜 非球面 10.793669 5.466395 1.497 81.59
S6   非球面 113.187699 0.880028    
S7 第四透镜 球面 13.996411 5.585765 1.593 67.33
S8 第五透镜 球面 -9.196558 0.699455 1.689 31.16
S9   球面 13.686747 1.027338    
S10 第六透镜 球面 13.866547 3.119939 1.911 35.26
S11   球面 43.336727 0.830557    
S12 第七透镜 非球面 53.858264 2.592158 1.621 63.88
S13   非球面 11.742482 1.500000    
S14 滤光片 球面 无穷 0.400000 1.517 64.20
S15   球面 无穷 2.263113    
S16 成像面 球面 无穷    
请参阅表8-2,所示为本实施例中第三透镜L3和第七透镜L7的非球面参数。
表8-2:
Figure PCTCN2019085184-appb-000014
请查阅图8b、8c及8d,所示为在本实施例中的光学透镜系统的场曲图、畸变图和轴向色差图,由8b至8d可以看出,本实施例中场曲、畸变、色差都能被很好的校正。
表9是上述8个实施例及其对应的光学特性,包括系统焦距f、光圈数F#和系统总长TTL,以及与前面每个条件式对应的数值。
表9:
Figure PCTCN2019085184-appb-000015
Figure PCTCN2019085184-appb-000016
综合上述实施例,均达到了以下的光学指标:(1)光学总长TTL<33.5mm;(2)适用光谱范围为:400nm~700nm。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种光学透镜系统,其特征在于,从物侧到成像面依次包括:
    具有负光焦度且凹面朝向物侧的第一透镜;
    具有正光焦度且双面均为凸面的第二透镜;
    具有正光焦度且凸面朝向物侧的第三透镜;
    具有正光焦度且双面均为凸面的第四透镜;
    具有负光焦度且双面均为凹面的第五透镜,且所述第四透镜和所述第五透镜组成胶合镜片;
    具有正光焦度且凸面朝向物侧凹面朝向像侧的第六透镜;
    具有负光焦度且凹面朝向成像面的第七透镜;
    其中,所述光学透镜系统还包括一光阑,所述光阑设于所述第一透镜与所述第三透镜之间,所述第一透镜、所述第四透镜及所述第五透镜均为玻璃球面透镜,所述第七透镜为玻璃非球面透镜。
  2. 根据权利要求1所述的光学透镜系统,其特征在于,所述第三透镜和所述第四透镜满足以下条件式:
    (dn/dt) 3+(dn/dt) 4<-2×10 -6/℃;
    其中,(dn/dt) 3、(dn/dt) 4分别表示所述第三透镜和所述第四透镜的折射率温度系数。
  3. 根据权利要求1或2所述的光学透镜系统,其特征在于,所述第三透镜和所述第四透镜满足以下条件式:
    Vd 3+Vd 4>150;
    ΔPg,F3+ΔPg,F4>0.005;
    其中,Vd 3、Vd 4分别表示所述第三透镜和所述第四透镜的阿贝数,ΔPg,F3、ΔPg,F4分别表示所述第三透镜和所述第四透镜的相对部分色散偏离阿贝经验公式的偏离值。
  4. 根据权利要求1所述的光学透镜系统,其特征在于,所述光学透镜系统满足以下条件式:
    0.5<||f 52|-t 52|<13;
    0.1<||f 61|-t 61|<10;
    其中,f 52、f 61分别表示所述第五透镜像侧面和所述第六透镜物侧面的焦距,t 52表示所述第五透镜像侧面顶点到成像面的距离,t 61表示所述第六透镜物侧面顶点到成像面的距离。
  5. 根据权利要求1所述的光学透镜系统,其特征在于,所述光学透镜系统满足以下条件式:
    0.2<IH/θ<0.3;
    其中,θ表示所述光学透镜系统的半视场角,IH表示所述光学透镜系统在半视场角为θ时的像高。
  6. 根据权利要求1所述的光学透镜系统,其特征在于,所述第三透镜和所述第四透镜满足以下条件式:
    Figure PCTCN2019085184-appb-100001
    其中,
    Figure PCTCN2019085184-appb-100002
    分别表示所述第三透镜和所述第四透镜的光焦度。
  7. 根据权利要求1所述的光学透镜系统,其特征在于,所述光学透镜系统满足以下条件式:
    0.5<f 1/r 1<3;
    其中,f 1表示所述第一透镜的焦距,r 1表示所述第一透镜物侧面的曲率半径。
  8. 根据权利要求1所述的光学透镜系统,其特征在于,所述光学透镜系统满足以下条件式:
    5<CT 2+CT 3<13;
    其中,CT 2、CT 3分别表示所述第二透镜和所述第三透镜的镜片中心厚度。
  9. 根据权利要求1所述的光学透镜系统,其特征在于,所述光学透镜系统满足以下条件式:
    1<f 3/r 5<4;
    其中,f 3表示所述第三透镜的焦距,r 5表示所述第三透镜物侧面的曲率半径。
  10. 根据权利要求1所述的光学透镜系统,其特征在于,所述光学透镜系统满足以下条件式:
    -13<f 7/r 13<0;
    其中,f 7表示所述第七透镜的焦距,r 13表示所述第七透镜像侧面的曲率半径。
PCT/CN2019/085184 2018-06-14 2019-04-30 光学透镜系统 WO2019237847A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19819966.3A EP3792674B1 (en) 2018-06-14 2019-04-30 Optical lens system
US16/744,155 US11340427B2 (en) 2018-06-14 2020-01-15 Optical lens system and vehicle camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810614191.9 2018-06-14
CN201810614191.9A CN108919459B (zh) 2018-06-14 2018-06-14 光学透镜系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/744,155 Continuation US11340427B2 (en) 2018-06-14 2020-01-15 Optical lens system and vehicle camera

Publications (1)

Publication Number Publication Date
WO2019237847A1 true WO2019237847A1 (zh) 2019-12-19

Family

ID=64421532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085184 WO2019237847A1 (zh) 2018-06-14 2019-04-30 光学透镜系统

Country Status (4)

Country Link
US (1) US11340427B2 (zh)
EP (1) EP3792674B1 (zh)
CN (1) CN108919459B (zh)
WO (1) WO2019237847A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108919459B (zh) 2018-06-14 2019-09-10 江西联创电子有限公司 光学透镜系统
KR20200084180A (ko) * 2019-01-02 2020-07-10 삼성전기주식회사 촬상 광학계
TWI712830B (zh) 2019-12-25 2020-12-11 大立光電股份有限公司 攝影用光學鏡頭組、取像裝置及電子裝置
CN112130300B (zh) * 2020-10-20 2022-03-18 上海帛视光电科技有限公司 超广角成像光学系统
CN112130302B (zh) * 2020-11-25 2021-03-02 深圳市海创光学有限公司 多光谱激光雷达的接收镜头系统
CN114217410B (zh) * 2021-01-13 2024-03-29 浙江舜宇光学有限公司 摄像镜头
CN114217411B (zh) * 2021-01-13 2024-03-29 浙江舜宇光学有限公司 摄像镜头
CN112731630B (zh) * 2021-03-31 2021-06-25 江西联创电子有限公司 光学成像镜头
CN113433661B (zh) * 2021-06-29 2023-03-24 天津欧菲光电有限公司 光学镜头、摄像模组、电子设备及汽车
CN113281886B (zh) * 2021-07-22 2021-10-08 江西联创电子有限公司 光学成像镜头及成像设备
CN113341545B (zh) * 2021-08-09 2021-10-26 江西联益光学有限公司 光学镜头
EP4386461A1 (en) * 2021-08-12 2024-06-19 Jiangxi OFILM Optical Co. Ltd. Optical system, imaging module, electronic device and vehicle
CN113467060B (zh) * 2021-09-03 2022-02-11 江西联创电子有限公司 光学镜头及成像设备
EP4345522A1 (en) * 2022-09-30 2024-04-03 Samsung Electro-Mechanics Co., Ltd. Imaging lens system
CN116560053B (zh) * 2023-07-10 2023-09-19 福建福特科光电股份有限公司 前视镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864435A (en) * 1996-11-19 1999-01-26 Fuji Photo Optical Co. Ltd. Compact wide-angle zoom lens
CN105425363A (zh) * 2015-12-24 2016-03-23 瑞声声学科技(苏州)有限公司 摄影光学系统
CN105700114A (zh) * 2014-12-10 2016-06-22 三星电机株式会社 镜头模块
CN105988193A (zh) * 2015-01-30 2016-10-05 大立光电股份有限公司 光学取像系统、取像装置以及电子装置
CN106154488A (zh) * 2014-10-16 2016-11-23 三星电机株式会社 光学系统
CN106483627A (zh) * 2015-08-28 2017-03-08 先进光电科技股份有限公司 光学成像系统
CN108919459A (zh) * 2018-06-14 2018-11-30 江西联创电子有限公司 光学透镜系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6047701B2 (ja) * 2012-11-30 2016-12-21 株式会社オプトロジック 撮像レンズ
CN107490841B (zh) * 2017-09-21 2020-06-23 浙江舜宇光学有限公司 摄像透镜组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864435A (en) * 1996-11-19 1999-01-26 Fuji Photo Optical Co. Ltd. Compact wide-angle zoom lens
CN106154488A (zh) * 2014-10-16 2016-11-23 三星电机株式会社 光学系统
CN105700114A (zh) * 2014-12-10 2016-06-22 三星电机株式会社 镜头模块
CN105988193A (zh) * 2015-01-30 2016-10-05 大立光电股份有限公司 光学取像系统、取像装置以及电子装置
CN106483627A (zh) * 2015-08-28 2017-03-08 先进光电科技股份有限公司 光学成像系统
CN105425363A (zh) * 2015-12-24 2016-03-23 瑞声声学科技(苏州)有限公司 摄影光学系统
CN108919459A (zh) * 2018-06-14 2018-11-30 江西联创电子有限公司 光学透镜系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3792674A4 *

Also Published As

Publication number Publication date
CN108919459A (zh) 2018-11-30
CN108919459B (zh) 2019-09-10
EP3792674B1 (en) 2022-12-28
EP3792674A1 (en) 2021-03-17
EP3792674A4 (en) 2021-06-23
US11340427B2 (en) 2022-05-24
US20200150386A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
WO2019237847A1 (zh) 光学透镜系统
WO2019228127A1 (zh) 广角镜头
CN109521549B (zh) 超广角镜头
WO2020098384A1 (zh) 光学镜头及成像设备
WO2019214510A1 (zh) 光学成像镜头
WO2019242411A1 (zh) 车载摄像镜头
WO2020024599A1 (zh) 光学镜头
CN108139569B (zh) 广角镜头
WO2021008319A1 (zh) 广角镜头及成像设备
WO2022205690A1 (zh) 光学成像镜头
CN108318995B (zh) 一种透镜系统和镜头
WO2023116241A1 (zh) 光学成像镜头及成像设备
US20100157444A1 (en) Fixed-focus lens
WO2019205874A1 (zh) 光学镜头
CN115220199A (zh) 投影镜头
CN109471243B (zh) 一种超短ttl红外共焦镜头光学系统
TWI742307B (zh) 取像鏡頭及其製造方法
CN113960762A (zh) 定焦镜头
CN116841019B (zh) 光学镜头
CN116027518B (zh) 光学镜头
CN216351482U (zh) 定焦镜头
TWI738354B (zh) 光學成像鏡頭
CN112433346A (zh) 一种大光圈光学系统
CN110412725B (zh) 光学镜头
CN110955017B (zh) 取像镜头及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019819966

Country of ref document: EP

Effective date: 20201209