WO2019237217A1 - 一种平板式固体氧化物燃料电池堆 - Google Patents

一种平板式固体氧化物燃料电池堆 Download PDF

Info

Publication number
WO2019237217A1
WO2019237217A1 PCT/CN2018/000327 CN2018000327W WO2019237217A1 WO 2019237217 A1 WO2019237217 A1 WO 2019237217A1 CN 2018000327 W CN2018000327 W CN 2018000327W WO 2019237217 A1 WO2019237217 A1 WO 2019237217A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
cathode
air inlet
air outlet
sealing
Prior art date
Application number
PCT/CN2018/000327
Other languages
English (en)
French (fr)
Inventor
王蔚国
何长荣
陈涛
彭军
翟惠娟
覃朝晖
马晓
姜松林
Original Assignee
宁波索福人能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波索福人能源技术有限公司 filed Critical 宁波索福人能源技术有限公司
Publication of WO2019237217A1 publication Critical patent/WO2019237217A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the utility model relates to the field of solid oxide fuel cells, in particular to a flat-type solid oxide fuel cell stack.
  • a solid oxide fuel cell (Solid Oxid Fuel Cell, SOFC) power generation system is an efficient energy conversion device that directly converts chemical energy in fuels such as natural gas, hydrogen, and synthetic gas into electrical energy.
  • the new energy conversion device of the power generation system has a good application prospect.
  • the battery stack is the core component of the SOFC power generation system. It consists of multiple battery slices and corresponding accessories.
  • the electrochemical conversion is completed in the battery stack.
  • Chinese Patent Application No. 201210053953.5 (Announcement No .: CN103296301A) discloses "Anode-Supported Flat-Type Solid Oxide Fuel Cell Piezoelectric Stack", which is characterized by comprising: a plurality of battery cells stacked together Among them, each battery cell includes: a lower connector, an anode-side metal mesh, an anode support single cell, a cathode-side metal mesh, and an upper connector, which are arranged in order from bottom to top; and the anode-side metal mesh and the cathode-side metal mesh Spacers are provided on all sides, and the spacers around the anode-side metal mesh are connected to the anode side of the lower connector and the anode of the anode supporting unit cell through a sealing material, and the spacers around the cathode
  • the flat-type solid oxide fuel cell stack provided by the patent has the advantages of simple operation process and convenient system integration.
  • the battery stack has problems such as string leakage and difficulty in effective stack integration during use, so problems such as sealing and integration need to be solved.
  • the technical problem to be solved by the present utility model is to provide a flat-type solid oxide fuel cell stack with a perfect sealing structure in view of the above-mentioned prior art. It does not need to punch holes in a single cell, and avoids the occurrence of a single cell during the punching process. Microcracks avoid shortening the life of the battery stack due to the propagation of microcracks.
  • a flat-type solid oxide fuel cell stack including at least one battery cell, and each battery cell includes at least one single cell, which is respectively located on the upper and lower connections of the single cell. And the lower connecting member, and the anode current collecting network and the cathode current collecting network which are respectively located on the upper and lower surfaces of the single cell and between the upper connecting member and the lower connecting member. Two adjacent battery cells are stacked up and down and share the same connection. Pieces
  • One of the left and right sides of the upper connector is provided with a first anode air inlet hole and the other side is provided with a first anode air outlet hole.
  • the first anode air inlet hole communicates with a gas flow channel on the surface of the upper connector.
  • the first anode gas outlet is communicated, the fuel gas on the upper connector passes through the anode current collector network to reach the upper surface of the single cell, and the fuel exhaust gas on the single cell passes through the anode current collector network to the station.
  • a fourth anode vent hole opposite to an anode vent hole is characterized in that:
  • the sealing unit includes a sealing cover and a sealing support plate respectively located on the upper and lower sides of the single battery.
  • the sealing support plate is sealed and fixed, so that the peripheral edges of the single cell are sealed by the sealing cover plate and the sealing support plate; the upper connector and the sealing cover plate are sealed and fixed, so that the anode is collected A current net is located between the upper connector and the single battery; the lower connector and the sealing support plate are sealed and fixed, so that the cathode current collector is located between the lower connector and the single battery between;
  • the first anode air inlet hole and the first anode air outlet hole are divided into the left and right outer edges of the upper connector; the outer edge of the package cover plate, the outer edge of the package support plate and the lower connection
  • a second anode air inlet hole, a third anode air inlet hole, and a fourth anode air inlet hole, which are opposite to the first anode air inlet hole and communicate with each other in this order, are respectively provided on the outer edge of the package.
  • a second anode air outlet, a third anode air outlet, and a fourth anode air outlet are respectively provided on the outer edge of the package support plate and the outer edge of the lower connector, which are opposite to and in communication with the first anode air outlet in order.
  • one side of the left and right outer edges of the upper connector is provided with a first cathode air inlet hole and the other side is provided with a first cathode air outlet hole.
  • An outer edge, an outer edge of the sealing support plate, and an outer edge of the lower connector are respectively provided with a second cathode air inlet hole, a third cathode air inlet hole, which are opposite to the first cathode air inlet hole and communicate with each other in sequence, and
  • a fourth cathode air inlet hole, the outer edge of the seal cover plate, the outer edge of the seal support plate, and the outer edge of the lower connector are respectively provided with a second opposite to the first cathode air outlet hole and communicated in this order.
  • the first cathode air inlet hole, the second cathode air inlet hole, the third cathode air inlet hole, and the fourth cathode air inlet hole are respectively connected to the first anode air outlet hole and the second cathode air inlet hole.
  • the anode air outlet, the third anode air outlet, and the fourth anode air outlet are located on the same side; the first cathode air outlet, the second cathode air outlet, the third cathode air outlet, and the fourth cathode air outlet They are located on the same side as the first anode air inlet hole, the second anode air inlet hole, the third anode air inlet hole, and the fourth anode air inlet hole, respectively.
  • the sealing cover plate and the sealing support plate are sealed and connected by glass glue.
  • the fourth cathode air inlet and the fourth cathode air outlet or the fourth cathode air inlet are not provided on the lower connector. And the fourth cathode air outlet is blocked.
  • the single cell has multiple pieces, the multiple pieces of single cells are located on the same horizontal plane, and two adjacent single cells are not in contact with each other.
  • the areas of the upper connector, the anode current collector network, the sealing cover plate, the seal support plate, the cathode current collector network, and the lower connector are adapted to the areas of multiple single cells, respectively.
  • An anode air inlet hole, the second anode air inlet hole, the third anode air inlet hole, and the fourth anode air inlet hole are matched in size.
  • the first anode outlet corresponding to the same single cell
  • the positions of the air holes, the second anode air outlet holes, the third anode air outlet holes, and the fourth anode air outlet holes are adapted to each other.
  • the single cell has multiple cells, and the multiple cells are located on the same horizontal plane, and two adjacent single cells are not in contact with each other, and are connected to each other.
  • the areas of the anode, the current collector network, the sealing cover plate, the sealing support plate, the cathode current collector network, and the lower connection piece are respectively adapted to the areas of the multiple single cells, and the first cathode corresponding to the same single cell is connected.
  • the positions of the air holes, the second cathode air inlet holes, the third cathode air inlet holes, and the fourth cathode air inlet holes are adapted to each other.
  • the first cathode air outlet holes, the The positions of the second cathode air outlet, the third cathode air outlet, and the fourth cathode air outlet are adapted to each other.
  • the single cell includes an anode-supported single cell, or an electrolyte-supported single cell.
  • the sealing cover plate is an integral piece made of stainless steel.
  • the sealing support plate is an integral piece made of stainless steel.
  • the utility model has the advantages that the single cells are sealed up and down through the sealing cover and the sealing support plate, which completes the sealing structure, does not need to punch holes in the single cells, and can prevent the edges of the single cells from being damaged. Oxidation solves the problem of string leakage and improves the long-term operation stability and life of the battery stack.
  • the sealing cover plate is provided with a second anode air inlet hole and a second anode air outlet hole
  • the sealing support plate is provided with a first
  • the three anode air inlet holes and the third anode air outlet hole, the unit cell itself is not provided with a vent hole, so the vent tube is changed from the inner manifold to the outer manifold, which avoids micro cracks in the single cell during the drilling process and avoids micro-cracks.
  • the propagation of cracks shortens the life of the stack.
  • the sealing cover plate is provided with a second cathode gas inlet hole and a second cathode gas outlet hole, and the sealing support plate is further provided with a third cathode gas inlet hole and a third cathode gas outlet hole, which is beneficial to the battery stack.
  • FIG. 1 is a schematic diagram of a first embodiment of the utility model (a battery unit, a single battery, and a two-hole structure of the vent hole);
  • FIG. 2 is a schematic diagram of the sealing cover plate in FIG. 1;
  • FIG. 2 is a schematic diagram of the sealing cover plate in FIG. 1;
  • FIG. 3 is a schematic diagram of the sealing support plate in FIG. 1;
  • FIG. 4 is a schematic diagram of a lower connecting member in FIG. 1;
  • FIG. 5 is a schematic diagram of a second embodiment of the utility model (a battery cell, a single cell, and a four-hole structure for the vent hole);
  • FIG. 5 is a schematic diagram of a second embodiment of the utility model (a battery cell, a single cell, and a four-hole structure for the vent hole);
  • FIG. 6 is a schematic diagram of the sealing cover in FIG. 5;
  • FIG. 7 is a schematic diagram of the sealing support plate in FIG. 5;
  • FIG. 8 is a schematic diagram of a lower connecting member in FIG. 5;
  • FIG. 9 is a schematic diagram of a third embodiment of the utility model (a battery cell, a window-type battery stack, and a two-hole structure of a vent hole); FIG.
  • FIG. 10 is a schematic diagram of a fourth embodiment of the utility model (a battery unit, a window-type battery stack, and a four-hole structure with air vents).
  • the flat-type solid oxide fuel cell stack includes at least one battery cell, and each battery cell includes at least one unit cell 4, which are respectively located in the unit cell 4.
  • the upper and lower upper connecting members 1 and 7 and the anode current collecting network 2 and the cathode current collecting network 6 located on the upper and lower surfaces of the single cell 4 and between the upper connecting member 1 and the lower connecting member 7, respectively, are adjacent to each other.
  • Two battery cells are stacked on top of each other and share the same connector;
  • One of the left and right sides of the upper connector 1 is provided with a first anode air inlet hole 8a and the other side is provided with a first anode air outlet hole 9a.
  • the first anode air inlet hole 8a passes the gas on the surface of the upper connector 1
  • the flow channel communicates with the first anode gas outlet hole 9a.
  • the fuel gas on the upper connector 1 passes through the anode current collecting network 2 to the upper surface of the single cell 4.
  • the fuel exhaust gas on the single cell 4 passes through the anode current collecting network 2 to the upper connection.
  • the battery stack includes one battery cell.
  • the one battery cell has one single battery cell 4.
  • the single battery cell 4 may be an anode-supported battery cell, or an electrolyte-supported battery cell, or another type of solid oxide.
  • the fuel cell may be an anode-supported battery cell, or an electrolyte-supported battery cell, or another type of solid oxide.
  • the flat-type solid oxide fuel cell further includes a sealing unit that seals the single cell 4 up and down.
  • the sealing unit includes a sealing cover 3 and a sealing support plate 5 that are located on the upper and lower sides of the single cell 4, respectively.
  • the plate 3 may be a single piece made of stainless steel, and the sealing support plate 5 may also be a single piece made of stainless steel.
  • the sealing support plate 5 is a hollow structure, the hollow part of which is just to accommodate the single battery 4, the sealing cover plate 3 and the sealing support plate 5 are sealed and fixed, so that the peripheral edges of the single battery 4 are sealed by the sealing cover plate 3 and the seal
  • the support plate 5 is sealed, and the sealing cover plate 3 and the sealing support plate 5 can be sealed and connected by glass glue.
  • the sealing cover plate 3 is hollow and has its own thickness, after the sealing cover plate 3 and the sealing support plate 5 are sealed and fixed, the upper part of the single cell 4 and the sealing cover plate 3 constitute a first groove (to receive the anode current collecting network 2). (Not shown). Similarly, since the sealing support plate 5 is hollow and has a thickness of itself, after the sealing support plate 5 and the sealing cover plate 3 are sealed and fixed, the lower part of the single cell 4 and the sealing support plate 5 form a second housing for the cathode current collecting network 6. Groove (not shown).
  • the upper connector 1 and the sealing cover plate 3 are sealed and fixed, so that the anode current collecting network 2 is located between the upper connector 1 and the single cell 4; the lower connector 7 and the sealing support plate 5 are sealed and fixed, so that the cathode current collector The net 6 is located between the lower connection member 7 and the single battery 4.
  • the first anode air inlet hole 8 a and the first anode air outlet hole 9 a are respectively located at the outer edges of the left and right sides of the upper connector 1; the outer edges of the sealing cover 3, the outer edges of the sealing support plate 5 and the lower
  • a second anode air inlet hole 8b, a third anode air inlet hole 8c, and a fourth anode air inlet hole 8d which are opposite to the first anode air inlet hole 8a and communicate with each other in this order are provided on the outer edges of the connecting member 7, and the cover plate 3 is sealed.
  • the outer edge, the outer edge of the sealing support plate 5 and the outer edge of the lower connecting member 7 are respectively provided with a second anode air outlet 9b (see FIG.
  • the battery stack adopts a two-hole structure.
  • the single battery 4 is sealed up and down by a sealing unit, which solves the problem of string air leakage and improves the long-term stability and life of the battery stack.
  • the ventilation holes are provided on the sealing cover plate 3 and the sealing support plate 5 to form an outer manifold, that is, the single battery 4 itself has no ventilation holes.
  • This embodiment is a battery cell.
  • the structure can be extended to multiple battery cells stacked on top of each other to form a battery stack with multiple battery cells.
  • Stack and share the same connector such as a battery stack with 20 battery cells, or a battery stack with 30 battery cells.
  • the flat-type solid oxide fuel cell stack is used as follows:
  • the upper connector 1, the anode current collector 2, the sealing cover plate 3, the single battery 4, the sealing support plate 5, the cathode current collector 6, and the lower connector 7 are arranged from top to bottom.
  • the first anode air inlet 8a communicates with the first anode air outlet 9a through a gas flow path on the surface of the upper connector 1, and the fuel gas on the upper connector 1 passes through the anode current collecting network 2 to the upper surface of the single cell 4.
  • the fuel off-gas on 4 passes through the anode current collecting network 2 to reach the upper surface of the upper connection piece 1, and the fuel off-gas is collected through the first anode air outlet 9a.
  • the cathode gas ie, air enters and exits from the entire side of the battery stack.
  • the fuel gas is delivered to the next battery cell through the first anode air inlet hole 8a, the second anode air inlet hole 8b, the third anode air inlet hole 8c, and the fourth anode air inlet hole 8d;
  • the fourth anode gas outlet hole 9d, the third anode gas outlet hole 9c, the second anode gas outlet hole 9b, and the first anode gas outlet hole 9a discharge the fuel exhaust gas of the next battery cell.
  • FIGS. 5 to 8 FIGS. 5 to 8 (FIG. 5 is a schematic diagram after separation), the structure is basically the same as that of Embodiment 1, except that the left and right outer edges of the upper connecting member 1 are provided with first cathode air inlet holes 10a on one side thereof. The other side is provided with a first cathode air outlet hole 11a, and the outer edge of the sealing cover plate 3, the outer edge of the sealing support plate 5 and the outer edge of the lower connecting member 7 are respectively opposite to the first cathode air inlet hole 10a and communicate in this order.
  • the second cathode air inlet hole 10b see FIG. 6
  • the third cathode air inlet hole 10c see FIG.
  • a second cathode gas outlet hole 11b (see FIG. 6) and a third cathode gas outlet hole 11c (see FIG. 7) opposite to the first cathode gas outlet hole 11a and connected in sequence are respectively provided on the outer edge of the support plate 5 and the outer edge of the lower connecting member 7 respectively.
  • the fourth cathode air outlet (not shown); the fourth cathode air inlet is in communication with the fourth cathode air outlet through a gas flow channel on the surface of the lower connector 7, and the cathode gas on the lower connector 7 passes through the cathode
  • the current collecting network 6 reaches the lower surface of the single cell 4, and the cathode exhaust gas on the single cell 4 passes through the cathode current collecting network 6 to the lower connection piece 7 above. Surface, and the cathode exhaust gas is collected through the fourth cathode air outlet. That is, the battery stack adopts a four-hole structure.
  • the first cathode air inlet hole 10a, the second cathode air inlet hole 10b, the third cathode air inlet hole 10c, and the fourth cathode air inlet hole are respectively connected to the first anode air outlet hole 9a and the second anode air outlet hole.
  • the third anode air outlet 9c, and the fourth anode air outlet 9d are located on the same side; the first cathode air outlet 11a, the second cathode air outlet 11b, the third cathode air outlet 11c, and the fourth cathode air outlet are separately from the first anode
  • the air inlet hole 8a, the second anode air inlet hole 8b, the third anode air inlet hole 8c, and the fourth anode air inlet hole 8d are located on the same side.
  • the third cathode air inlet hole 10c of the sealing support plate 5 has two elongated shapes, and is located on both sides of the third anode air outlet hole 9c of the sealing support plate 5;
  • the three-cathode air outlet holes 11c also have two elongated shapes, and are respectively located on both sides of the third anode air inlet hole 8c sealing the support plate 5.
  • the second cathode air inlet hole 10b and the second cathode air outlet hole 11b of the cover plate 3 are sealed, the fourth cathode air inlet and fourth cathode air outlet of the lower connector 7, and the first cathode of the upper connector 1.
  • the air inlet hole 10a and the first cathode air outlet hole 11a also each have two holes.
  • This embodiment is a state when the lower connecting member 7 is located at the bottom of the battery stack.
  • the fourth connecting member 7 is not provided with the fourth cathode air inlet and the fourth cathode air outlet, and only the fourth anode air inlet 8d and the fourth Anode vent 9d, see FIG. 8.
  • the fourth cathode air inlet and the fourth cathode air outlet may be blocked at this time.
  • the lower connecting member 7 is in addition to the fourth anode air inlet hole 8d and the fourth anode air outlet hole 9d.
  • a fourth cathode air inlet hole and a fourth cathode air outlet hole are also provided.
  • This embodiment is a battery cell.
  • the battery stack can be extended to multiple battery cells stacked on top of each other according to the structure of this embodiment to form a battery stack with multiple battery cells. They can be stacked on top of each other and share the same connector. For example, they can form a battery stack with 10 battery cells or a battery stack with 40 battery cells.
  • the flat-type solid oxide fuel cell stack is used as follows:
  • the principle of use is basically the same as that of Embodiment 1, except that the fourth cathode air inlet is in communication with the fourth cathode air outlet through the gas flow channel on the surface of the lower connection member 7, and the cathode gas on the lower connection member 7 passes through the cathode electrode to collect current.
  • the net 6 reaches the lower surface of the single cell 4, the cathode off-gas on the single cell 4 passes through the cathode current collecting net 6 to the upper surface of the lower connection 7, and the cathode off-gas is collected through the fourth cathode air outlet.
  • the cathode gas passes through the first cathode air inlet hole 10a, the second cathode air inlet hole 10b, the third cathode air inlet hole 10c, and the fourth cathode air inlet hole to transport the cathode gas (that is, air).
  • the cathode exhaust gas of the next unit is discharged through the fourth cathode air outlet, the third cathode air outlet 11c, the second cathode air outlet 11b, and the first cathode air outlet 11a.
  • the structure is basically the same as that of the embodiment 1.
  • the difference is that the single cell 4 has multiple pieces and forms a window-type battery stack.
  • the multiple single cells 4 are located on the same horizontal plane and two adjacent single cells 4 are not in contact with each other.
  • the areas of the upper connector 1, the anode current collector 2, the sealing cover plate 3, the seal support plate 5, the cathode current collector 6, and the lower connector 7 are respectively adapted to the areas of multiple single cells 4, and the same piece
  • the positions of the first anode air inlet hole 8a, the second anode air inlet hole 8b, the third anode air inlet hole 8c, and the fourth anode air inlet hole 8d corresponding to the single battery 4 are mutually matched.
  • the positions of the first anode air outlet hole 9a, the second anode air outlet hole 9b, the third anode air outlet hole 9c, and the fourth anode air outlet hole 9d are adapted to each other.
  • the unit cell 4 has four pieces, and the cathode current collecting net 6 and the anode current collecting net 2 are also four pieces.
  • the lower connecting member 7, the sealing support plate 5, the sealing cover plate 3, and the upper connecting member 1. Both are 1 tablet.
  • This embodiment is a battery cell.
  • the battery stack can be extended to multiple battery cells stacked on top of each other to form a battery stack with multiple battery cells. Two adjacent battery cells are stacked on top of each other. And the same connector is used, for example, it can form a battery stack with 5 battery cells or a battery stack with 35 battery cells.
  • the structure is basically the same as that of Embodiment 2.
  • the difference is that the single cell 4 has multiple pieces and forms a window-type battery stack.
  • the multiple single cells 4 are located on the same horizontal plane, and two adjacent single cells 4 are not in contact with each other.
  • the areas of the upper connector 1, the anode current collector 2, the sealing cover plate 3, the seal support plate 5, the cathode current collector 6, and the lower connector 7 are respectively adapted to the areas of multiple single cells 4, and the same piece
  • the positions of the first cathode air inlet hole 10a, the second cathode air inlet hole 10b, the third cathode air inlet hole 10c, and the fourth cathode air inlet hole corresponding to the single cell 4 are compatible with each other.
  • the positions of the cathode gas outlet holes 11a, the second cathode gas outlet holes 11b, the third cathode gas outlet holes 11c, and the fourth cathode gas outlet holes are adapted to each other.
  • the unit cell 4 has four pieces, and the cathode current collecting net 6 and the anode current collecting net 2 are also four pieces.
  • This embodiment is a battery cell.
  • the battery stack can be extended to multiple battery cells stacked on top of each other to form a battery stack with multiple battery cells. Two adjacent battery cells are stacked on top of each other. And the same connector is used to form a battery stack with 10 battery cells or a battery stack with 50 battery cells.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hybrid Cells (AREA)

Abstract

本实用新型涉及一种平板式固体氧化物燃料电池堆,包括至少一个电池单元,每一个电池单元包括至少一片单电池、上连接件、阳极集流网、阴极集流网和下连接件,相邻两电池单元上下堆叠且共用同一连接件;封接盖板和封接支撑板密封固定,上连接件、封接盖板、封接支撑板、下连接件均设有阳极进气孔和阳极出气孔。通过封接盖板和封接支撑板将单电池上下封接,完善了密封结构,无需在单电池上打孔,解决了串漏气问题,提高了电池堆的长期运行稳定性和寿命;且封接盖板和封接支撑板分别设置阳极进气孔和阳极出气孔,形成外歧管通气结构,单电池本身不打通气孔,避免了单电池打孔中产生的微裂纹,避免了因微裂纹的扩展而缩短电堆的寿命。

Description

一种平板式固体氧化物燃料电池堆 技术领域
本实用新型涉及固体氧化物燃料电池领域,具体涉及一种平板式固体氧化物燃料电池堆。
背景技术
固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)发电系统是一种高效的能源转化装置,能将天然气、氢气、合成气等燃料中的化学能直接转化为电能,是一种可用于构建分布式发电系统的新型能源转化装置,具有很好的应用前景。
电池堆是SOFC发电系统的核心部件,由多个电池片以及相应的附件组成,电化学转化在电池堆中完成。例如申请号为201210053953.5(公告号为:CN103296301A)的中国发明专利公开了《一种阳极支撑平板式固体氧化物燃料电池无压电堆》,其特征在于,包括:多个堆叠在一起的电池单元,其中,每一电池单元均包括:由下至上顺序设置的下连接件、阳极侧金属网、阳极支撑单电池、阴极侧金属网和上连接件;且阳极侧金属网和阴极侧金属网的四周均设置有间隔板,所述阳极侧金属网四周的间隔板通过密封材料与所述下连接件的阳极侧和阳极支撑单电池的阳极相连,所述阴极侧金属网四周的间隔板通过密封材料与所述上连接件的阴极侧和阳极支撑单电池的阴极相连;相邻两个电池单元之间共用同一连接件。
该专利提供的平板式固体氧化物燃料电池堆,具有操作过程简单,方便系统集成等优点。但该电池堆在使用过程中存在串漏气、难以有效的堆叠集成等问题,因此需要解决密封、集成等问题。
发明内容
本实用新型所要解决的技术问题是针对上述现有技术,提供一种密封结构完善的平板式固体氧化物燃料电池堆,它无需在单电池上打孔,避免了单电池在打孔过程中产生微裂纹,避免了因微裂纹的扩展而缩短电池堆的寿命。
本实用新型解决上述技术问题所采用的技术方案为:一种平板式固体氧化物燃料电池堆,包括至少一个电池单元,每一个电池单元包括至少一片单电池,分别位于单电池上下方的上连接件和下连接件,和分别位于单电池上下表面、且位于上连接件和下连接件之间的阳极集流网和阴极集流网,相邻两个电池单元之间上下堆叠且共用同一连接件;
所述上连接件的左右两侧的其中一侧设有第一阳极进气孔而另一侧设有第一阳极出气孔,该第一阳极进气孔通过上连接件表面的气体流道与第一阳极出气孔连通,所述上连接件上的燃料气穿过所述阳极集流网抵达所述单电池上表面,所述单电池上的燃料废气穿过所述阳极集流网抵达所述上连接件上表面、并且该燃料废气经所述第一阳极出气孔收集;所述下连接件设有与所述第一阳极进气孔相对的第四阳极进气孔和与所述第一阳极出气孔相对的第四阳极出气孔,其特征在于;
还包括将所述单电池上下封接的封接单元,所述封接单元包括分别位于所述单电池上下两侧的封接盖板和封接支撑板,所述封接盖板和所述封接支撑板密封固定,使得所述单电池的四周边缘被该封接盖板和该封接支撑板密封住;所述上连接件和所述封接盖板密封固定,使得所述阳极集流网位于所述上连接件和所述单电池之间;所述下连接件和所述封接支撑板密封固定,使得所述阴极集流网位于所述下连接件和所述单电池之间;
所述第一阳极进气孔和所述第一阳极出气孔分为位于所述上连接件的左右侧外边缘;所述封装盖板外侧边缘、所述封装支撑板外侧边缘和所述下连接件外侧边缘分别设有与所述第一阳极进气孔相对且依次连通的第二阳极进气孔、第三阳极进气孔和第四阳极进气孔,所述封装盖板外侧边缘、所述封装支撑板外侧边缘和所述下连接件外侧边缘分别设有与所述第一阳极出气孔相对且依次连通的第二阳极出气孔、第三阳极出气孔和第四阳极出气孔。
为了利于电池堆阴极气体的流通与收集,所述上连接件的左右外侧边缘的其中一侧设有第一阴极进气孔而另一侧设有第一阴极出气孔,所述封接盖板外侧边缘、所述封接支撑板外侧边缘和所述下连接件外侧边缘分别设有与所述第一阴极进气孔相对且依次连通的第二阴极进气孔、第三阴极进气孔和第四阴极进气孔,所述封接盖板外侧边缘、所述封接支撑板外侧边缘和所述下连接件外侧边缘分别设有与所述第一阴极出气孔相对且依次连通的第二阴极出气孔、第三阴极出气孔和第四阴极出气孔;所述第四阴极进气孔通过下连接件表面的气体流道与所述第四阴极出气孔连通,所述下连接件上的阴极气体穿过所述阴极集流网抵达所述单电池下表面,所述单电池上的阴极废气穿过所述阴极集流网抵达所述下连接件上表面、并且该阴极废气经所述第四阴极出气孔收集。
作为改进,所述第一阴极进气孔、所述第二阴极进气孔、所述第三阴极进气孔和所述第四阴极进气孔分别与所述第一阳极出气孔、第二阳极出气孔、第三阳极出气孔和第四阳极出气孔位于同一侧;所述第一阴极出气孔、所述第二阴极出气孔、所述第三阴极出气孔和所述第四阴极出气孔分别与所述第一阳极进气孔、第二阳极进气孔、第三阳极进气孔和第四阳极进气孔位于同一侧。
优选地,所述封接盖板和所述封接支撑板通过玻璃胶密封连接。
作为改进,所述下连接件位于电池堆最底端时,所述下连接件上不设置所述第四阴 极进气口和所述第四阴极出气口,或者所述第四阴极进气口和所述第四阴极出气口被堵塞。
为了形成窗口式结构,从而有利于大功率电池堆的集成,提高电池堆集成的功率密度,所述单电池具有多片,多片单电池位于同一水平面、且相邻两片单电池彼此不接触,上连接件、阳极集流网、封接盖板、封接支撑板、阴极集流网和下连接件的面积分别与多片单电池的面积适配,同一片单电池对应的所述第一阳极进气孔、所述第二阳极进气孔、所述第三阳极进气孔和所述第四阳极进气孔位置大小互相适配,同一片单电池对应的所述第一阳极出气孔、所述第二阳极出气孔、所述第三阳极出气孔和所述第四阳极出气孔位置大小互相适配。
为了形成窗口式结构以便于集成,另外为了利于电池堆阴极气体的流通与收集,所述单电池具有多片,多片单电池位于同一水平面、且相邻两片单电池彼此不接触,上连接件、阳极集流网、封接盖板、封接支撑板、阴极集流网和下连接件的面积分别与多片单电池的面积适配,同一片单电池对应的所述第一阴极进气孔、所述第二阴极进气孔、所述第三阴极进气孔和所述第四阴极进气孔位置大小互相适配,同一片单电池对应的所述第一阴极出气孔、所述第二阴极出气孔、所述第三阴极出气孔和所述第四阴极出气孔位置大小互相适配。
作为改进,所述单电池包括阳极支撑单电池,或电解质支撑单电池。
优选地,所述封接盖板采用不锈钢制成的整体件。
优选地,所述封接支撑板采用不锈钢制成的整体件。
与现有技术相比,本实用新型的优点在于:通过封接盖板和封接支撑板将单电池上下封接,完善了密封结构,无需在单电池上打孔,能够防止单电池边缘被氧化,解决了串漏气问题,提高了电池堆的长期运行稳定性和寿命;同时,封接盖板上设有第二阳极进气孔和第二阳极出气孔,封接支撑板设有第三阳极进气孔和第三阳极出气孔,单电池本身没有设置通气孔,这样通气管由内歧管改为外歧管,避免了单电池在打孔过程中产生微裂纹,避免了因微裂纹的扩展而缩短电堆的寿命。在改进的方案中,封接盖板上设有第二阴极进气孔和第二阴极出气孔,封接支撑板还设有第三阴极进气孔和第三阴极出气孔,有利于电池堆阴极气体的流通与收集;通过设置多片单电池,形成窗口式结构,有利于电池堆的集成。
附图说明
图1为本实用新型实施例一(一个电池单元,一片单电池,通气孔为两孔式结构)的示意图;
图2为图1中封接盖板的示意图;
图3为图1中封接支撑板的示意图;
图4为图1中下连接件的示意图;
图5为本实用新型实施例二(一个电池单元,一片单电池,通气孔为四孔式结构)的示意图;
图6为图5中封接盖板的示意图;
图7为图5中封接支撑板的示意图;
图8为图5中下连接件的示意图;
图9为本实用新型实施例三(一个电池单元,窗口式电池堆,通气孔为两孔式结构)的示意图;
图10为本实用新型实施例四(一个电池单元,窗口式电池堆,通气孔为四孔式结构)的示意图。
具体实施方式
以下结合附图实施例对本实用新型作进一步详细描述。
实施例1:
如图1~图4所示(图1为分离后的示意图),该平板式固体氧化物燃料电池堆,包括至少一个电池单元,每一个电池单元包括至少一片单电池4,分别位于单电池4上下方的上连接件1和下连接件7,和分别位于单电池4上下表面、且位于上连接件1和下连接件7之间的阳极集流网2和阴极集流网6,相邻两个电池单元之间上下堆叠且共用同一连接件;
上连接件1的左右两侧的其中一侧设有第一阳极进气孔8a而另一侧设有第一阳极出气孔9a,该第一阳极进气孔8a通过上连接件1表面的气体流道与第一阳极出气孔9a连通,上连接件1上的燃料气穿过阳极集流网2抵达单电池4上表面,单电池4上的燃料废气穿过阳极集流网2抵达上连接件1上表面、并且该燃料废气经第一阳极出气孔9a收集;下连接件7设有与第一阳极进气孔8a相对的第四阳极进气孔8d和与第一阳极出气孔9a相对的第四阳极出气孔9d(见图4)。在本实施例中,该电池堆包括1个电池单元,这1个电池单元具有1片单电池4,单电池4可以是阳极支撑单电池,或电解质支撑单电池,或其它类型的固体氧化物燃料电池。
该平板式固体氧化物燃料电池还包括将单电池4上下封接的封接单元,封接单元包括分别位于单电池4上下两侧的封接盖板3和封接支撑板5,封接盖板3可以采用不锈钢制成的整体件,封接支撑板5也可以采用不锈钢制成的整体件。封接支撑板5为中空结构,其中空部分正好容纳单电池4,封接盖板3和封接支撑板5密封固定,使得单电池4的四周边缘被该封接盖板3和该封接支撑板5密封住,封接盖板3和封接支撑板5可以通过玻璃胶密封连接。因封接盖板3中空且本身具有厚度,封接盖板3和封接支撑板5密封固定后,单电池4上方和封接盖板3组成容纳阳极集流网2的第一凹槽(图中 未画出)。同样地,因封接支撑板5中空且本身具有厚度,封接支撑板5和封接盖板3密封固定后,单电池4下方和封接支撑板5组成容纳阴极集流网6的第二凹槽(图中未画出)。这样,上连接件1和封接盖板3密封固定,使得阳极集流网2位于上连接件1和单电池4之间;下连接件7和封接支撑板5密封固定,使得阴极集流网6位于下连接件7和单电池4之间。
参见图1~图4,第一阳极进气孔8a和第一阳极出气孔9a分别位于上连接件1的左右侧外边缘;封接盖板3外侧边缘、封接支撑板5外侧边缘和下连接件7外侧边缘分别设有与第一阳极进气孔8a相对且依次连通的第二阳极进气孔8b、第三阳极进气孔8c和第四阳极进气孔8d,封接盖板3外侧边缘、封接支撑板5外侧边缘和下连接件7外侧边缘分别设有与第一阳极出气孔9a相对且依次连通的第二阳极出气孔9b(见图2)、第三阳极出气孔9c(见图3)和第四阳极出气孔9d(见图4),即该电池堆采用两孔式结构。通过封接单元将单电池4上下封接,解决了串漏气问题,提高了电池堆长期运行的稳定性和寿命。且通气孔设在封接盖板3和封接支撑板5上,形成外歧管,即单电池4本身没有通气孔。
本实施例为1个电池单元,在其它实施例中,可以按本实施例结构扩展至上下堆叠的多个电池单元,组成具有多个电池单元的电池堆,相邻两个电池单元之间上下堆叠且共用同一连接件,比如可以组成具有20个电池单元的电池堆,也可以组成具有30个电池单元的电池堆。
在本实施例中,该平板式固体氧化物燃料电池堆,使用原理如下:
将这一个电池单元,按照由上至下为上连接件1、阳极集流网2、封接盖板3、单电池4、封接支撑板5、阴极集流网6和下连接件7的顺序设置。第一阳极进气孔8a通过上连接件1表面的气体流道与第一阳极出气孔9a连通,上连接件1上的燃料气穿过阳极集流网2抵达单电池4上表面,单电池4上的燃料废气穿过阳极集流网2抵达上连接件1上表面、并且该燃料废气经第一阳极出气孔9a收集。阴极气体(即空气)从电池堆的侧面整面进出。
多个电池单元上下叠加后,通过第一阳极进气孔8a、第二阳极进气孔8b、第三阳极进气孔8c和第四阳极进气孔8d将燃料气运送到下一个电池单元;通过第四阳极出气孔9d、第三阳极出气孔9c、第二阳极出气孔9b第一阳极出气孔9a将下一电池单元的燃料废气排出。
实施例2:
参见图5~图8(图5为分离后的示意图),与实施例1的结构基本相同,其区别在于:上连接件1的左右外侧边缘的其中一侧设有第一阴极进气孔10a而另一侧设有第一阴极出气孔11a,封接盖板3外侧边缘、封接支撑板5外侧边缘和下连接件7外侧边缘 分别设有与第一阴极进气孔10a相对且依次连通的第二阴极进气孔10b(见图6)、第三阴极进气孔10c(见图7)和第四阴极进气孔(图中未画出),封接盖板3外侧边缘、封接支撑板5外侧边缘和下连接件7外侧边缘分别设有与第一阴极出气孔11a相对且依次连通的第二阴极出气孔11b(见图6)、第三阴极出气孔11c(见图7)和第四阴极出气孔(图中未画出);第四阴极进气孔通过下连接件7表面的气体流道与第四阴极出气孔连通,下连接件7上的阴极气体穿过阴极集流网6抵达单电池4下表面,单电池4上的阴极废气穿过阴极集流网6抵达下连接件7上表面、并且该阴极废气经第四阴极出气孔收集。即该电池堆采用四孔式结构。
在本实施例中,第一阴极进气孔10a、第二阴极进气孔10b、第三阴极进气孔10c和第四阴极进气孔分别与第一阳极出气孔9a、第二阳极出气孔9b、第三阳极出气孔9c和第四阳极出气孔9d位于同一侧;第一阴极出气孔11a、第二阴极出气孔11b、第三阴极出气孔11c和第四阴极出气孔分别与第一阳极进气孔8a、第二阳极进气孔8b、第三阳极进气孔8c和第四阳极进气孔8d位于同一侧。
具体地,封接支撑板5的第三阴极进气孔10c具有2个,呈长条状,且分别位于封接支撑板5的第三阳极出气孔9c的两边;封接支撑板5的第三阴极出气孔11c也具有2个,呈长条状,且分别位于封接支撑板5的第三阳极进气孔8c的两边。同样地,封接盖板3的第二阴极进气孔10b和第二阴极出气孔11b、下连接件7的第四阴极进气孔和第四阴极出气孔、上连接件1的第一阴极进气孔10a和第一阴极出气孔11a也分别具有2个。本实施例为下连接件7位于电池堆最底端时的状态,此时下连接件7上不设置第四阴极进气口和第四阴极出气口而只有第四阳极进气孔8d和第四阳极出气孔9d,参见图8。或者,在其它实施例中,此时第四阴极进气口和第四阴极出气口也可以被堵塞。当电池堆采用本实施例的四孔式结构,且下连接件7出现在上下叠加的电池单元之间时,下连接件7除了第四阳极进气孔8d和第四阳极出气孔9d外,还设有第四阴极进气孔和第四阴极出气孔。
本实施例为1个电池单元,在其它实施例中,电池堆可以按本实施例结构扩展至上下堆叠的多个电池单元,组成具有多个电池单元的电池堆,相邻两个电池单元之间上下堆叠且共用同一连接件,比如可以组成具有10个电池单元的电池堆,也可以组成具有40个电池单元的电池堆。
在本实施例中,该平板式固体氧化物燃料电池堆,使用原理如下:
使用原理与实施例1基本相同,区别在于:第四阴极进气孔通过下连接件7表面的气体流道与第四阴极出气孔连通,下连接件7上的阴极气体穿过阴极极集流网6抵达单电池4下表面,单电池4上的阴极废气穿过阴极集流网6抵达下连接件7上表面、并且该阴极废气经第四阴极出气孔收集。
多个电池单元上下叠加后,阴极气体通过第一阴极进气孔10a、第二阴极进气孔10b、 第三阴极进气孔10c和第四阴极进气孔,将阴极气体(即空气)运送到下一个电池单元:通过第四阴极出气孔、第三阴极出气孔11c、第二阴极出气孔11b和第一阴极出气孔11a,将下一个单元的阴极废气排出。
实施例3:
参见图9,与实施例1的结构基本相同,其区别在于:单电池4具有多片,组成窗口式电池堆,多片单电池4位于同一水平面、且相邻两片单电池4彼此不接触,上连接件1、阳极集流网2、封接盖板3、封接支撑板5、阴极集流网6和下连接件7的面积分别与多片单电池4的面积适配,同一片单电池4对应的第一阳极进气孔8a、第二阳极进气孔8b、第三阳极进气孔8c和第四阳极进气孔8d位置大小互相适配,同一片单电池4对应的第一阳极出气孔9a、第二阳极出气孔9b、第三阳极出气孔9c和第四阳极出气孔9d位置大小互相适配。在本实施例中,单电池4具有4片,阴极集流网6和阳极集流网2也为4片,下连接件7、封接支撑板5、封接盖板3和上连接件1均为1片。
本实施例为1个电池单元,同样地,电池堆可以按本实施例结构扩展至上下堆叠的多个电池单元,组成具有多个电池单元的电池堆,相邻两个电池单元之间上下堆叠且共用同一连接件,比如可以组成具有5个电池单元的电池堆,也可以组成具有35个电池单元的电池堆。
使用原理同实施例1。
实施例4:
参见图10,与实施例2的结构基本相同,其区别在于;单电池4具有多片,组成窗口式电池堆,多片单电池4位于同一水平面、且相邻两片单电池4彼此不接触,上连接件1、阳极集流网2、封接盖板3、封接支撑板5、阴极集流网6和下连接件7的面积分别与多片单电池4的面积适配,同一片单电池4对应的第一阴极进气孔10a、第二阴极进气孔10b、第三阴极进气孔10c和第四阴极进气孔位置大小互相适配,同一片单电池4对应的第一阴极出气孔11a、第二阴极出气孔11b、第三阴极出气孔11c和第四阴极出气孔位置大小互相适配。在本实施例中,单电池4具有4片,阴极集流网6和阳极集流网2也为4片,下连接件7、封接支撑板5、封接盖板3和上连接件1均为1片。
本实施例为1个电池单元,同样地,电池堆可以按本实施例结构扩展至上下堆叠的多个电池单元,组成具有多个电池单元的电池堆,相邻两个电池单元之间上下堆叠且共用同一连接件,比如可以组成具有10个电池单元的电池堆,也可以组成具有50个电池单元的电池堆。
使用原理同实施例2。

Claims (10)

  1. 一种平板式固体氧化物燃料电池堆,包括至少一个电池单元,每一个电池单元包括至少一片单电池(4),分别位于单电池(4)上下方的上连接件(1)和下连接件(7),和分别位于单电池(4)上下表面、且位于上连接件(1)和下连接件(7)之间的阳极集流网(2)和阴极集流网(6),相邻两个电池单元之间上下堆叠且共用同一连接件;
    所述上连接件(1)的左右两侧的其中一侧设有第一阳极进气孔(8a)而另一侧设有第一阳极出气孔(9a),该第一阳极进气孔(8a)通过上连接件(1)表面的气体流道与第一阳极出气孔(9a)连通,所述上连接件(1)上的燃料气穿过所述阳极集流网(2)抵达所述单电池(4)上表面,所述单电池(4)上的燃料废气穿过所述阳极集流网(2)抵达所述上连接件(1)上表面、并且该燃料废气经所述第一阳极出气孔(9a)收集;所述下连接件(7)设有与所述第一阳极进气孔(8a)相对的第四阳极进气孔(8d)和与所述第一阳极出气孔(9a)相对的第四阳极出气孔(9d),其特征在于:
    还包括将所述单电池(4)上下封接的封接单元,所述封接单元包括分别位于所述单电池(4)上下两侧的封接盖板(3)和封接支撑板(5),所述封接盖板(3)和所述封接支撑板(5)密封固定,使得所述单电池(4)的四周边缘被该封接盖板(3)和该封接支撑板(5)密封住;所述上连接件(1)和所述封接盖板(3)密封固定,使得所述阳极集流网(2)位于所述上连接件(1)和所述单电池(4)之间;所述下连接件(7)和所述封接支撑板(5)密封固定,使得所述阴极集流网(6)位于所述下连接件(7)和所述单电池(4)之间;
    所述第一阳极进气孔(8a)和所述第一阳极出气孔(9a)分别位于所述上连接件(1)的左右外侧边缘;所述封接盖板(3)外侧边缘、所述封接支撑板(5)外侧边缘和所述下连接件(7)外侧边缘分别设有与所述第一阳极进气孔(8a)相对且依次连通的第二阳极进气孔(8b)、第三阳极进气孔(8c)和第四阳极进气孔(8d),所述封接盖板(3)外侧边缘、所述封接支撑板(5)外侧边缘和所述下连接件(7)外侧边缘分别设有与所述第一阳极出气孔(9a)相对且依次连通的第二阳极出气孔(9b)、第三阳极出气孔(9c)和第四阳极出气孔(9d)。
  2. 根据权利要求1所述的电池堆,其特征在于:所述上连接件(1)的左右外侧边缘的其中一侧设有第一阴极进气孔(10a)而另一侧设有第一阴极出气孔(11a),所述封接盖板(3)外侧边缘、所述封接支撑板(5)外侧边缘和所述下连接件(7)外侧边缘分别设有与所述第一阴极进气孔(10a)相对且依次连通的第二阴极进气孔(10b)、第三阴极进气孔(10c)和第四阴极进气孔,所述封接盖板(3)外侧边缘、所述封接支撑板(5)外侧边缘和所述下连接件(7)外侧边缘分别设有与所述第一阴极出气孔(11a)相对且依次连通的第二阴极出气孔(11b)、第三阴极出气孔(11c)和第四阴极出气孔;所述第四阴极进气孔通过下连接件(7)表面的气体流道与所述第四阴极出气孔连通,所述下连接件(7)上的阴极气体穿过所述阴极集流网(6)抵达所述单电池(4)下表面,所述单电池(4)上的阴极废气穿过所述阴极集流网(6)抵达所述下连接件(7)上表面、并且该阴极废气经所述第四阴极出气孔收集。
  3. 根据权利要求2所述的电池堆,其特征在于:所述第一阴极进气孔(10a)、所述第二阴极进气孔(10b)、所述第三阴极进气孔(10c)和所述第四阴极进气孔分别与所述第一阳极出气孔(9a)、第二阳极出气孔(9b)、第三阳极出气孔(9c)和第四阳极出气孔(9d)位于同一侧;所述第一阴极出气孔(11a)、所述第二阴极出气孔(11b)、所述第三阴极出气孔(11c)和所述第四阴极出气孔分别与所述第一阳极进气孔(8a)、第二阳极进气孔(8b)、第三阳极进气孔(8c)和第四阳极进气孔(8d)位于同一侧。
  4. 根据权利要求1所述的电池堆,其特征在于:所述封接盖板(3)和所述封接支撑板(5)通过玻璃胶密封连接。
  5. 根据权利要求2所述的电池堆,其特征在于:所述下连接件(7)位于电池堆最底端时,所述下连接件(7)上不设置所述第四阴极进气口和所述第四阴极出气口,或者所述第四阴极进气口和所述第四阴极出气口被堵塞。
  6. 根据权利要求1所述的电池堆,其特征在于:所述单电池(4)具有多片,多片单电池(4)位于同一水平面、且相邻两片单电池(4)彼此不接触,上连接件(1)、阳极集流网(2)、封接盖板(3)、封接支撑板(5)、阴极集流网(6)和下连接件(7)的面积分别与多片单电池(4)的面积适配,同一片单电池(4)对应的所述第一阳极进气孔(8a)、所述第二阳极进气孔(8b)、所述第三阳极进气孔(8c)和所述第四阳极进气孔(8d)位置大小互相适配,同一片单电池(4)对应的所述第一阳极出气孔(9a)、所述第二阳极出气孔(9b)、所述第三阳极出气孔(9c)和所述第四阳极出气孔(9d)位置大小互相适配。
  7. 根据权利要求2所述的电池堆,其特征在于:所述单电池(4)具有多片,多片单电池(4)位于同一水平面、且相邻两片单电池(4)彼此不接触,上连接件(1)、阳极集流网(2)、封接盖板(3)、封接支撑板(5)、阴极集流网(6)和下连接件(7)的面积分别与多片单电池(4)的面积适配,同一片单电池(4)对应的所述第一阴极进气孔(10a)、所述第二阴极进气孔(10b)、所述第三阴极进气孔(10c)和所述第四阴极进气孔位置大小互相适配,同一片单电池(4)对应的所述第一阴极出气孔(11a)、所述第二阴极出气孔(11b)、所述第三阴极出气孔(11c)和所述第四阴极出气孔位置大小互相适配。
  8. 根据权利要求1所述的电池堆,其特征在于:所述单电池(4)包括阳极支撑单电池,或电解质支撑单电池。
  9. 根据权利要求1~8任意一项权利要求所述的电池堆,其特征在于:所述封接盖板(3)采用不锈钢制成的整体件。
  10. 根据权利要求1~8任意一项权利要求所述的电池堆,其特征在于:所述封接支撑板(5)采用不锈钢制成的整体件。
PCT/CN2018/000327 2018-06-13 2018-09-17 一种平板式固体氧化物燃料电池堆 WO2019237217A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820917507.7U CN208444898U (zh) 2018-06-13 2018-06-13 一种平板式固体氧化物燃料电池堆
CN201820917507.7 2018-06-13

Publications (1)

Publication Number Publication Date
WO2019237217A1 true WO2019237217A1 (zh) 2019-12-19

Family

ID=65090354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000327 WO2019237217A1 (zh) 2018-06-13 2018-09-17 一种平板式固体氧化物燃料电池堆

Country Status (2)

Country Link
CN (1) CN208444898U (zh)
WO (1) WO2019237217A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082092B (zh) * 2019-12-24 2021-01-08 西部金属材料股份有限公司 一种测试用质子交换膜燃料电池
CN211125829U (zh) * 2020-01-03 2020-07-28 宁波索福人能源技术有限公司 一种固体氧化物燃料电池堆
CN211125832U (zh) * 2020-01-03 2020-07-28 宁波索福人能源技术有限公司 一种平板式复合型固体氧化物燃料电池
CN112615022B (zh) * 2020-12-08 2022-02-01 国家能源集团宁夏煤业有限责任公司 Sofc发电模块集成阳极的布气底座
CN115051010A (zh) * 2022-06-21 2022-09-13 南京理工大学 一种固体氧化物电池氧电极接触件及电池堆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105340116A (zh) * 2013-06-28 2016-02-17 日本特殊陶业株式会社 燃料电池和其制造方法
CN105684201A (zh) * 2013-10-29 2016-06-15 日本特殊陶业株式会社 带分隔件的燃料电池单电池及燃料电池堆
CN105917507A (zh) * 2014-01-15 2016-08-31 日本特殊陶业株式会社 燃料电池盒及燃料电池堆
CN107579262A (zh) * 2016-07-04 2018-01-12 中国科学院大连化学物理研究所 一种平板型固体氧化物燃料电池连接部件及其应用
KR20180046523A (ko) * 2016-10-28 2018-05-09 한국에너지기술연구원 고체산화물 연료전지용 단전지 모듈 및 스택

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105340116A (zh) * 2013-06-28 2016-02-17 日本特殊陶业株式会社 燃料电池和其制造方法
CN105684201A (zh) * 2013-10-29 2016-06-15 日本特殊陶业株式会社 带分隔件的燃料电池单电池及燃料电池堆
CN105917507A (zh) * 2014-01-15 2016-08-31 日本特殊陶业株式会社 燃料电池盒及燃料电池堆
CN107579262A (zh) * 2016-07-04 2018-01-12 中国科学院大连化学物理研究所 一种平板型固体氧化物燃料电池连接部件及其应用
KR20180046523A (ko) * 2016-10-28 2018-05-09 한국에너지기술연구원 고체산화물 연료전지용 단전지 모듈 및 스택

Also Published As

Publication number Publication date
CN208444898U (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
WO2019237217A1 (zh) 一种平板式固体氧化物燃料电池堆
KR101826821B1 (ko) 대용량 평관형 고체산화물 셀스택, 이를 이용한 고체산화물 연료전지 및 고체산화물 수전해장치
CN108110300B (zh) 固体氧化物燃料电池电堆及为其分配气体的气流分配板
CN113948730B (zh) 自密封金属扁管支撑型固体氧化物燃料电池/电解池结构
CN111477908A (zh) 适用于燃料电池电堆的透气双极板、燃料电池电堆
WO2021136320A1 (zh) 一种固体氧化物燃料电池堆
WO2013183884A1 (ko) 연료 전지용 집전판 및 이를 포함하는 스택 구조물
CN204464354U (zh) 一种平板或平管式固体氧化物燃料电池堆电路连接结构
US20150180075A1 (en) Stacked structure fur fuel cell
CN201402834Y (zh) 一种平板式中温固体氧化物燃料电池堆
CN211125832U (zh) 一种平板式复合型固体氧化物燃料电池
CN202172104U (zh) 一种熔融碳酸盐燃料电池双极板
KR20120012262A (ko) 평관형 고체산화물 셀 스택
CN216054813U (zh) 一种熔融碳酸盐燃料电池密封结构、双极板及燃料电池
CN114497621A (zh) 一种多功能燃料电池用双面密封材
CN207542330U (zh) 一种片式固体氧化物燃料电池堆结构
KR102288307B1 (ko) 평판 형 sofc/soec 단전지 모듈 및 스택
CN113540497A (zh) 一种熔融碳酸盐燃料电池密封结构及其制备方法和应用
CN211125851U (zh) 一种固体氧化物燃料电池堆阵列
CN217768450U (zh) 固体氧化物燃料电池装置
CN203871424U (zh) 一种基于单片电解质的固体氧化物燃料电池组
CN111799495A (zh) 固体氧化物燃料电池电堆的歧管及包括其的固体氧化物燃料电池
KR20120075244A (ko) 매니폴드 밀봉이 없는 평판형 고체산화물 연료 전지
CN109768312B (zh) 一种片式固体氧化物燃料电池堆结构
CN220867526U (zh) 一种金属连接体和固体氧化物电解池堆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922507

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18922507

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18922507

Country of ref document: EP

Kind code of ref document: A1