WO2019235355A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2019235355A1
WO2019235355A1 PCT/JP2019/021557 JP2019021557W WO2019235355A1 WO 2019235355 A1 WO2019235355 A1 WO 2019235355A1 JP 2019021557 W JP2019021557 W JP 2019021557W WO 2019235355 A1 WO2019235355 A1 WO 2019235355A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
anisotropic light
absorption layer
formula
light absorption
Prior art date
Application number
PCT/JP2019/021557
Other languages
English (en)
French (fr)
Inventor
正兼 武藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020523668A priority Critical patent/JP7013577B2/ja
Publication of WO2019235355A1 publication Critical patent/WO2019235355A1/ja
Priority to US17/110,379 priority patent/US20210088825A1/en
Priority to US18/117,946 priority patent/US20230205011A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133632Birefringent elements, e.g. for optical compensation with refractive index ellipsoid inclined relative to the LC-layer surface
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133703Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by introducing organic surfactant additives into the liquid crystal material
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • H05B33/24Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/01Number of plates being 1
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • the present invention relates to a display device.
  • a self-luminous display element typified by an organic electroluminescence element (organic EL element) has attracted attention as a display element constituting a flat display device.
  • organic EL element organic electroluminescence element
  • a self-luminous display element having a microcavity structure is excellent in luminance and color purity.
  • the microcavity structure resonates only light of a predetermined wavelength by matching the optical path length between the upper and lower electrodes (that is, the anode electrode and the cathode electrode) of the organic material with the peak wavelength of the spectrum of light to be extracted. It is a structure that weakens light of other wavelengths.
  • the above-described display device when viewed from the normal direction with respect to the light emitting surface (hereinafter also referred to as “front direction”), and in a direction oblique to the light emitting surface (that is, a predetermined direction from the normal direction). It is desired that the hue does not change when viewed from a direction inclined by an angle (hereinafter also referred to as “oblique direction”).
  • oblique direction a direction inclined by an angle
  • the self-luminous display element having a microcavity structure the above problem appears remarkably. In particular, when viewed from an oblique direction, it often has a tint. In the display device, it is desired that coloring is suppressed when viewed from any azimuth angle.
  • the present invention provides a display device in which it is difficult to observe the color when the white display is viewed from the front direction, and it is difficult to observe the color at any azimuth angle when the white display is viewed from the oblique direction. This is the issue.
  • An anisotropic light absorbing layer A self-luminous display element that emits at least red light, green light, and blue light, and a display device comprising:
  • the self-luminous display element has a microcavity structure,
  • An anisotropic light absorption layer is formed using a composition containing a dichroic material and a liquid crystalline compound, The maximum absorption wavelength of the dichroic material is 400 to 500 nm,
  • the dichroic material has a polymerizable group containing an ethylenically unsaturated bond, and an aromatic ring,
  • the liquid crystalline compound has a polymerizable group containing an ethylenically unsaturated bond, and an aromatic ring;
  • the composition further comprises a polymerization initiator.
  • the display device wherein the polymerization initiator is at least one selected from the group consisting of an oxime ester compound and an acylphosphine compound.
  • a polarizer and a ⁇ / 4 plate are included on the viewing side of the self-luminous display element, The polarizer, the ⁇ / 4 plate, and the anisotropic light absorption layer are arranged in this order from the viewing side, or the polarizer, the anisotropic light absorption layer, and the ⁇ / 4 plate are arranged in this order from the viewing side.
  • the display device according to any one of 1) to (6).
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at wavelength ⁇ , respectively. Unless otherwise specified, the wavelength ⁇ is 550 nm.
  • Re ( ⁇ ) and Rth ( ⁇ ) are values measured at a wavelength ⁇ in AxoScan OPMF-1 (manufactured by Optoscience).
  • AxoScan OPMF-1 manufactured by Optoscience.
  • the average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
  • an angle for example, an angle such as “90 °” and a relationship thereof (for example, “orthogonal”, “parallel”, “intersection at 45 °”, etc.) are used in the technical field to which the present invention belongs. It shall include the allowable error range.
  • an allowable error range means that the angle is within a range of a strict angle ⁇ 10 °, and the error from the strict angle is preferably 5 ° or less, preferably 3 ° or less. Is more preferable.
  • blue light indicates light having a wavelength of 400 to 500 nm
  • green light indicates light having a wavelength of more than 500 nm and not more than 600 nm
  • red light indicates light having a wavelength of more than 600 nm and not more than 700 nm.
  • One of the features of the display device of the present invention is that an anisotropic light absorption layer that satisfies the requirements of formula (1) and formula (2) described later is used.
  • luminance and color purity are particularly improved in the normal direction (front direction) to the light emitting surface.
  • the resonance conditions are different between the front direction and the oblique direction, the light emitted in the oblique direction is shifted to the short wavelength side, resulting in a change in hue between the front direction and the oblique direction. .
  • the anisotropic light absorption layer includes a dichroic material having a maximum absorption wavelength in a blue light range.
  • the anisotropic light-absorbing layer has a greater absorbance in blue light (wavelength 400 to 500 nm) in the oblique direction (polar angle 60 ° direction) than in the front direction, as represented by the requirement of formula (1).
  • the blue light traveling in the oblique direction with respect to the anisotropic light absorption layer is more absorbed than the blue light traveling in the front direction.
  • the light emitted in the oblique direction is shifted to the blue side, but when this light enters the anisotropic light absorption layer, the blue light is emitted.
  • light passing through the anisotropic light absorption layer becomes white light. That is, even when the observer visually recognizes the display device of the present invention from an oblique direction, the observer can observe white light.
  • the anisotropic light absorption layer has a ratio of the maximum absorbance value to the minimum absorbance value measured at all azimuth angles in the oblique direction (polar angle 60 ° direction) as represented by the requirement of the formula (2). small. That is, in the anisotropic light absorption layer, the difference in absorbance between all azimuth angles in the oblique direction is small. Therefore, white light can be observed when the observer observes the display device of the present invention at any azimuth angle in the oblique direction.
  • FIG. 1 shows a schematic cross-sectional view of a first embodiment of a display device of the present invention.
  • the display device 10 ⁇ / b> A includes a self-luminous display element 12 and an anisotropic light absorption layer 14.
  • the observer observes from the direction of the white arrow.
  • the display device 10A includes the anisotropic light absorption layer 14 and the self-luminous display element 12 in this order from the viewing side.
  • each member which comprises a display apparatus is explained in full detail.
  • the self-luminous display element is a display element that emits at least red light, green light, and blue light.
  • the type of the self-luminous display element is not particularly limited as long as it can emit light of each color described above, but an organic electroluminescence element (organic EL element) is preferable.
  • the organic EL element may be a top emission type organic EL element or a bottom emission type organic EL element.
  • the self-luminous display element has a microcavity structure. As described above, the microcavity structure resonates only light of a predetermined wavelength by matching the optical path length between the upper and lower electrodes of the organic material with the peak wavelength of the spectrum of light to be extracted, and has other wavelengths. It is a structure that weakens light.
  • microcavity effect By adjusting the optical path length between the upper and lower electrodes of the organic EL element to the peak wavelengths of red light, green light, and blue light emitted from the organic EL element, light is transmitted between the electrodes. It is a structure that repeatedly reflects and emphasizes only the light of the peak wavelength by resonating and attenuating the light deviating from the peak wavelength (microcavity effect).
  • the microcavity structure may be any structure as long as the above effect can be obtained, and a known structure is adopted.
  • An anisotropic light absorption layer is a layer arrange
  • Formula (1) 1.50 ⁇ Amax (60) / A (0)
  • the plane (principal plane, plane perpendicular to the thickness direction) of the anisotropic light absorption layer 14 is the xy plane
  • the vector v1 and the z axis Is defined as the polar angle
  • the angle ⁇ formed by the projection of the vector v1 onto the xy plane and the y axis is defined as the azimuth angle. Therefore, as will be described later, the polar angle of 60 ° means an angle where ⁇ in FIG. 2 is 60 °
  • the omnidirectional angle of the polar angle of 60 ° means that when ⁇ in FIG. 2 is 60 °. It means that ⁇ is in the range of 0 to 360 °.
  • Amax (60) is obtained when the absorbance of the anisotropic light-absorbing layer at the maximum absorption wavelength of the dichroic material described later is measured at all azimuth angles of 60 ° from the normal direction of the anisotropic light-absorbing layer. Represents the highest absorbance value.
  • Amin (60) is the highest when the absorbance of the anisotropic light-absorbing layer at the maximum absorption wavelength of the dichroic material described later is measured at all azimuth angles of 60 ° from the normal direction of the anisotropic light-absorbing layer. Represents a low absorbance value.
  • a (0) represents the absorbance when the absorbance of the anisotropic light-absorbing layer at the maximum absorption wavelength of the dichroic material described later is measured in the normal direction of the anisotropic light-absorbing layer.
  • a spectrophotometer UV-3150, manufactured by Shimadzu Corporation
  • method: double beam method, wavelength range: 380 to 680 nm in 2 nm steps is used.
  • the absorbance at all azimuth angles in the linear direction and at a polar angle of 60 ° is measured to determine the absorbance at the maximum absorption wavelength.
  • the anisotropic light absorbing layer preferably satisfies the requirement of the formula (1-1) from the viewpoint that the color is more difficult to observe when the white display device is viewed from an oblique direction. It is more preferable to satisfy the requirements.
  • Formula (1-1) 1.70 ⁇ Amax (60) / A (0)
  • Formula (1-2) 1.80 ⁇ Amax (60) / A (0)
  • the upper limit value of Amax (60) / A (0) is not particularly limited, but is often 10,000 or less and more often 100 or less.
  • the anisotropic light absorbing layer preferably satisfies the requirement of the formula (2-1) from the viewpoint that the color tone is more difficult to observe at any azimuth angle when the white display device is viewed from an oblique direction. More preferably, the requirement of formula (2-2) is satisfied.
  • Formula (2-1) 1.00 ⁇ Amax (60) / Amin (60) ⁇ 1.10.
  • Formula (2-2) 1.00 ⁇ Amax (60) / Am
  • the anisotropic light absorbing layer preferably satisfies the requirement of the formula (5-1) from the viewpoint that the color is more difficult to observe when the white display device is viewed from the front direction. It is more preferable to satisfy the requirements.
  • Formula (5-1) 0 ⁇ A (0) ⁇ 0.40
  • Formula (5-2) 0 ⁇ A (0) ⁇ 0.30
  • the anisotropic light absorbing layer preferably satisfies the requirement of the formula (6-1) from the viewpoint that the color tone is more difficult to observe when the white display device is viewed from an oblique direction, and the formula (6-2) It is more preferable to satisfy the requirement of Formula (6-1) 0.25 ⁇ Amax (60) ⁇ 0.55 Formula (6-2) 0.30 ⁇ Amax (60) ⁇ 0.50
  • the anisotropic light absorption layer is formed using a composition containing a dichroic substance and a liquid crystal compound.
  • the dichroic substance has a polymerizable group containing an ethylenically unsaturated bond and an aromatic ring
  • the liquid crystal compound has a polymerizable group containing an ethylenically unsaturated bond and an aromatic ring
  • the anisotropic light absorbing layer preferably satisfies the requirement of the formula (3).
  • P1 is one of two surfaces perpendicular to the thickness direction of the anisotropic light absorption layer (meaning two main surfaces, in other words, two surfaces orthogonal to the thickness direction of the anisotropic light absorption layer). Of the P value on the surface and the P value on the other surface, the smaller P value is represented. P2 represents the larger P value of the P value on one surface and the P value on the other surface of the two surfaces perpendicular to the thickness direction of the anisotropic light absorption layer.
  • P value is a value represented by I (1) / I (2)
  • I (1) is a peak intensity derived from in-plane bending vibration of ethylenically unsaturated bond by infrared total reflection absorption spectrum measurement
  • I (2) represents the peak intensity derived from the stretching vibration of the unsaturated bond of the aromatic ring by infrared total reflection absorption spectrum measurement.
  • P1 / P2 is set to 1.00.
  • the P value represents the ratio of the peak intensity derived from the in-plane bending vibration of the ethylenically unsaturated bond to the peak intensity derived from the stretching vibration of the unsaturated bond of the aromatic ring in the infrared total reflection absorption spectrum measurement.
  • the degree of polymerization on one surface of the anisotropic light-absorbing layer can be calculated by determining the P value with respect to the peak strength of the unsaturated bond of the aromatic ring that does not react. If P1 / P2 is within the range of the above formula (3), it indicates that the polymerization proceeds well on both of the two surfaces of the anisotropic light absorption layer, and the durability of the anisotropic light absorption layer is excellent.
  • Each range of P1 and P2 is preferably 0.3 or less, and more preferably 0.2 or less, in terms of superior durability of the anisotropic light absorption layer. As for a minimum, 0 is mentioned.
  • the anisotropic light absorption layer preferably has an absorption axis in the thickness direction.
  • having an absorption axis in the thickness direction means that the absorbance in the thickness direction is larger than the absorbance in the in-plane direction.
  • the absorption axis of the anisotropic light absorption layer is preferably substantially parallel to the thickness direction.
  • the absorption axis of the anisotropic light absorption layer is preferably vertically aligned with respect to the surface (main surface) of the anisotropic light absorption layer.
  • substantially parallel means that the angle formed between the absorption axis and the thickness direction is 0 to 10 °.
  • a method of vertically aligning the dichroic material In order to have an absorption axis in the thickness direction of the anisotropic light absorption layer, a method of vertically aligning the dichroic material can be mentioned. In other words, there is a method of orienting the dichroic material so that the long axis direction of the dichroic material is substantially parallel to the thickness direction of the anisotropic light absorption layer.
  • the definition of substantially parallel is as described above.
  • An anisotropic light absorption layer is formed using the composition containing a dichroic substance and a liquid crystalline compound.
  • a dichroic substance containing a dichroic substance and a liquid crystalline compound.
  • a dichroic substance refers to a substance having a property that the absorbance in the major axis direction of a molecule is different from the absorbance in the minor axis direction.
  • the dichroic substances include rod-like dichroic substances and disk-like dichroic substances because of their molecular shapes, and rod-like dichroic substances are preferred.
  • the maximum absorption wavelength of the dichroic material is 400 to 500 nm. Among these, the maximum absorption wavelength of the dichroic material is preferably 440 to 480 nm in that the effect of the present invention is more excellent.
  • a chloroform solution containing the dichroic substance (concentration: 10 mg / L) and a reference not containing the dichroic substance are prepared, and a spectrophotometer (Shimadzu Corporation)
  • the absorption spectrum of the dichroic substance is measured using a company UV-3150) (system: double beam method, wavelength range: 380 to 680 nm in 2 nm steps) to determine the polar absorption wavelength of the dichroic substance.
  • dichroic substances examples include acridine dyes, oxazine dyes, cyanine dyes, naphthalene dyes, azo dyes, and anthraquinone dyes, with azo dyes being preferred.
  • the azo dye examples include monoazo dyes, bisazo dyes, trisazo dyes, tetrakisazo dyes, and stilbene azo dyes, and bisazo dyes or trisazo dyes are preferable. Further, compounds described in JP-A-2018-53167 are also preferable.
  • the dichroic material preferably has a polymerizable group.
  • the dichroic material has a polymerizable group, so that even when the amount of the dichroic material used is large, the degree of cross-linking of the anisotropic light absorption layer does not decrease, and even though it is thin, it exhibits high selective wavelength absorption and is durable.
  • An anisotropic light absorbing layer having excellent properties can be formed.
  • the polymerizable group include an ethylenically unsaturated bond such as vinyl group, vinyloxy group, styryl group, p- (2-phenylethenyl) phenyl group, acryloyl group, methacryloyl group, acryloyloxy group, and methacryloyloxy group.
  • the dichroic material preferably has an aromatic ring.
  • the aromatic ring include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. Among them, an aromatic hydrocarbon ring is preferable, and a benzene ring is more preferable.
  • a 1 (-N NA 2 )
  • p -N NA 3
  • a 1 and A 3 each independently have a phenyl group which may have a substituent, a naphthyl group which may have a substituent, or a substituent.
  • a 2 represents a 1,4-phenylene group which may have a substituent, a naphthalene-1,4-diyl group which may have a substituent, or a group which may have a substituent 2
  • p represents an integer of 1 to 4. When p is an integer greater than or equal to 2 , several A2 may mutually be same or different.
  • Examples of the monovalent heterocyclic group include groups in which one hydrogen atom has been removed from a heterocyclic compound such as quinoline, thiazole, benzothiazole, thienothiazole, imidazole, benzimidazole, oxazole, and benzoxazole.
  • Examples of the divalent heterocyclic group include groups in which two hydrogen atoms have been removed from the above heterocyclic compound.
  • substituents optionally have, an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group and a butyl group; an alkoxy group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group and a butoxy group
  • a fluorinated alkyl group having 1 to 4 carbon atoms such as a trifluoromethyl group; a cyano group; a nitro group; a hydroxyl group; a halogen atom such as a chlorine atom and a fluorine atom; an amino group, a diethylamino group, and a pyrrolidino group;
  • Unsubstituted amino group is -NH 2.
  • the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, and a hexyl group.
  • the alkanediyl group having 2 to 8 carbon atoms include ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group Hexane-1,6-diyl group, heptane-1,7-diyl group, and octane-1,8-diyl group.
  • a phenyl group in A 1 and A 3, a naphthyl group, and, as a monovalent substituent heterocyclic group has preferably a substituted group containing a polymerizable group.
  • a substituent containing a polymerizable group a group represented by the formula (11) is preferable.
  • Formula (11) P-Sp 1- (L 1 -A 1 ) n -L 2- * P represents a polymerizable group.
  • the definition of the polymerizable group is as described above.
  • Sp 1 represents an alkylene group having 2 to 16 carbon atoms, and —CH 2 — that is not adjacent to the alkylene group may be substituted with —CO— or —O—.
  • L 1 and L 2 each independently represents a single bond, —O—, —OCO—, —COO—, or —OCOO—.
  • a 1 represents a 1,4-phenylene group, a 1,3-phenylene group, a 1,4-naphthylene group, or a 1,5-naphthylene group, which may have a substituent.
  • n is an integer of 0 to 3.
  • the content of the dichroic substance in the composition is preferably 70 to 130 parts by mass, and more preferably 80 to 120 parts by mass with respect to 100 parts by mass of the liquid crystal compound described later in the composition.
  • a dichroic substance may be used independently and may be used in combination of 2 or more type. When two or more dichroic substances are used, the total amount thereof is preferably within the above range.
  • the liquid crystalline compound preferably has a polymerizable group. That is, the composition preferably contains a polymerizable liquid crystal compound.
  • the definition of a polymeric group is as having demonstrated in the column of the dichroic substance.
  • the liquid crystalline compound preferably has an aromatic ring. Examples of the aromatic ring include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. Among them, an aromatic hydrocarbon ring is preferable, and a benzene ring is more preferable.
  • Examples of the polymerizable liquid crystalline compound include a low molecular liquid crystalline compound having a polymerizable group and a high molecular liquid crystalline compound having a polymerizable group.
  • the “low molecular liquid crystalline compound” means a liquid crystalline compound having no repeating unit in the chemical structure.
  • the “polymer liquid crystalline compound” means a liquid crystalline compound having a repeating unit in the chemical structure.
  • Examples of the low molecular liquid crystal compound include compounds described in JP2013-228706A.
  • Examples of the polymer liquid crystalline compound include a thermotropic liquid crystalline polymer described in JP2011-237513A and a side chain type liquid crystalline compound described in JP2015-107492A. .
  • a rod-like liquid crystal compound is preferable as the low molecular liquid crystal compound.
  • a compound represented by the formula (20) is preferable as the rod-like liquid crystal compound.
  • Formula (20) U 1 ⁇ V 1 ⁇ W 1 ⁇ X 1 ⁇ Y 1 ⁇ X 2 ⁇ Y 2 ⁇ X 3 ⁇ W 2 ⁇ V 2 ⁇ U 2
  • X 1 , X 2 , and X 3 are each independently a 1,4-phenylene group that may have a substituent, or a cyclohexane that may have a substituent Represents a -1,4-diyl group. However, at least one of X 1 , X 2 , and X 3 is an optionally substituted 1,4-phenylene group.
  • —CH 2 — constituting the cyclohexane-1,4-diyl group may be replaced by —O—, —S—, or —NR—.
  • R represents an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • R a and R b each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • U 1 represents a hydrogen atom or a polymerizable group. The definition of the polymerizable group is as described above.
  • U 2 represents a polymerizable group. The definition of the polymerizable group is as described above.
  • W 1 and W 2 each independently represents a single bond, —O—, —S—, —COO—, or —OCOO—.
  • V 1 and V 2 each independently represents an optionally substituted alkanediyl group having 1 to 20 carbon atoms, and —CH 2 — constituting the alkanediyl group represents —O—, —S -Or -NH- may be substituted.
  • At least one of X 1 , X 2 and X 3 is preferably a 1,4-phenylene group which may have a substituent.
  • the 1,4-phenylene group which may have a substituent is preferably unsubstituted.
  • the cyclohexane-1,4-diyl group which may have a substituent is preferably a trans-cyclohexane-1,4-diyl group which may have a substituent. It is preferable that the trans-cyclohexane-1,4-diyl group which may have a non-substituted group.
  • Examples of the substituent which the 1,4-phenylene group which may have a substituent or the cyclohexane-1,4-diyl group which may have a substituent optionally have include a methyl group, ethyl And a C 1-4 alkyl group such as a butyl group, a halogen atom such as a chlorine atom and a fluorine atom, and a cyano group.
  • Y 1 is preferably —CH 2 CH 2 —, —COO—, or a single bond
  • Y 2 is preferably —CH 2 CH 2 — or —CH 2 O—.
  • U 1 is preferably a polymerizable group.
  • U 1 and U 2 are preferably a polymerizable group, and more preferably a photopolymerizable group.
  • the polymerizable liquid crystalline compound having a photopolymerizable group can be polymerized under a lower temperature condition.
  • alkanediyl group represented by V 1 and V 2 examples include methylene group, ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, pentane- 1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, decane-1,10-diyl group, tetradecane-1,14-diyl And icosane-1,20-diyl group.
  • V 1 and V 2 are preferably alkanediyl groups having 2 to 12 carbon atoms, and more preferably alkanediyl groups having 6 to 12 carbon atoms.
  • substituent that the optionally substituted alkanediyl group having 1 to 20 carbon atoms has include a cyano group, and a halogen atom such as a chlorine atom and a fluorine atom.
  • the alkanediyl group is preferably unsubstituted, and more preferably an unsubstituted and linear alkanediyl group.
  • W 1 and W 2 are preferably each independently a single bond or —O—.
  • Specific examples of the compound represented by the formula (20) include compounds represented by the formulas (1-1) to (1-23) described in paragraphs 0053 to 0056 of JP-A-2016-027387. It is done.
  • the compound represented by Formula (20) may be used independently and may be used in combination of 2 or more type. Moreover, when combining 2 or more types of polymeric liquid crystalline compounds, it is preferable that at least 1 type is a compound represented by Formula (20), and 2 or more types are compounds represented by Formula (20). More preferably.
  • the mixing ratio when combining two kinds of polymerizable liquid crystal compounds is preferably 1:99 to 50:50, more preferably 5:95 to 50:50, and still more preferably 10:90 to 50:50.
  • the compound represented by the formula (20) is, for example, Lub et al. Recl. Trav. Chim. Pays-Bas, 115, 321-328 (1996) and Japanese Patent No. 4719156.
  • Polymer liquid crystal compounds can be broadly classified into main chain liquid crystal compounds and side chain liquid crystal compounds.
  • Main chain liquid crystal compounds are compounds having a structure exhibiting liquid crystallinity in the polymer main chain.
  • the side chain type liquid crystalline compound is a compound having a structure exhibiting liquid crystallinity in the polymer side chain portion.
  • a side chain type liquid crystalline compound is preferable in that the anisotropic light absorption layer obtained has a high degree of orientational order and is excellent in solubility in a solvent when a composition is prepared.
  • a (meth) acrylic resin is preferable, and a compound having a repeating unit represented by the formula (21) is more preferable.
  • Sp 1 represents an alkylene group having 2 to 16 carbon atoms or a polyalkyleneoxy group, and —CH 2 — that is not adjacent to the alkylene group may be substituted with —O—.
  • the number of carbon atoms of alkylene in the polyalkyleneoxy group is preferably 1 to 4, and more preferably 2 to 3.
  • Sp 1 is preferably an alkylene group having 2 to 10 carbon atoms or a polyalkyleneoxy group, and more preferably a polyalkyleneoxy group.
  • Sp 2 represents a single bond or an alkylene group having 1 to 8 carbon atoms, and —CH 2 — that is not adjacent to the alkylene group may be substituted with —O—.
  • L 1 and L 5 each independently represent a single bond, —O—, —OCO—, —COO—, or —OCOO—, and each represents a single bond, —O—, —OCO—, or —COO—.
  • L 2 to L 4 each independently represent a single bond, —OCO— or —COO—, and preferably a single bond or —COO—.
  • At least one of L 1 to L 5 is preferably —OCO— or —COO—.
  • a 1 to A 3 each independently represents an aromatic group which may have a substituent, or a cyclic aliphatic group which may have a substituent. At least one of A 1 to A 3 is preferably an aromatic group which may have a substituent.
  • an aromatic group having 6 to 20 carbon atoms is preferable, an aromatic group having 6 to 14 carbon atoms is more preferable, and an aromatic group having 6 to 10 carbon atoms is more preferable.
  • the aromatic group include a 1,4-phenylene group, a 1,3-phenylene group, a 1,4-naphthylene group, a 1,5-naphthylene group, and an anthracenylene group.
  • a cycloaliphatic group having 3 to 10 carbon atoms is preferable, a cycloaliphatic group having 4 to 8 carbon atoms is more preferable, and a cycloaliphatic group having 5 to 6 carbon atoms is more preferable.
  • Examples of the cycloaliphatic group include a cyclopentylene group and a cyclohexylene group.
  • the aromatic group and the alicyclic group may have a substituent.
  • Substituents include halogen atoms, alkyl groups having 1 to 6 carbon atoms, cyano groups, nitro groups, nitroso groups, carboxy groups, alkylsulfinyl groups having 1 to 6 carbon atoms, alkylsulfonyl groups having 1 to 6 carbon atoms, carbon A fluoroalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylsulfanyl group having 1 to 6 carbon atoms, an N-alkylamino group having 1 to 6 carbon atoms, and N, N— having 2 to 12 carbon atoms Examples thereof include a dialkylamino group, an N-alkylsulfamoyl group having 1 to 6 carbon atoms, and an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms.
  • the above substituent may further have the above substituent.
  • R represents a polymerizable group.
  • the definition of the polymerizable group is as described above.
  • a radical polymerizable group suitable for photopolymerization or a cationic polymerizable group is preferable.
  • an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, An epoxy group or an oxetanyl group is preferable.
  • X represents a hydrogen atom or a methyl group, and a hydrogen atom is preferable.
  • n represents 0 or 1.
  • repeating unit represented by the formula (21) Specific examples of the repeating unit represented by the formula (21) are shown below. In addition to the repeating units exemplified below, there can be mentioned the repeating units exemplified in JP-A-2015-197492.
  • the compound having a repeating unit represented by the formula (21) can be synthesized by combining known synthesis reactions. That is, it can be synthesized with reference to methods described in various documents (for example, Methoden derOrganischen Chemie (Houben-Weyl edition), Some specific methods (Thieme-Verlag, Stuttgart), Experimental Chemistry Course and New Experimental Chemistry Course).
  • Methoden derOrganischen Chemie Houben-Weyl edition
  • Some specific methods Thieme-Verlag, Stuttgart
  • Experimental Chemistry Course and New Experimental Chemistry Course See synthesis methods, U.S. Pat. Nos. 4,683,327, 4,983,479, 5,622,648, 5,770,107, International Patents (WO) 95/022586, 97/000600, 98/047979, and British Patents.
  • WO International Patents
  • the compound having a repeating unit represented by the formula (21) may be a copolymer composed of a plurality of repeating units represented by the formula (21), or may be a repeating unit represented by the formula (21).
  • a copolymer containing a repeating unit other than the unit may be used. Specific examples of such repeating units include the following.
  • the repeating units exemplified below there can be mentioned the repeating units exemplified in JP-A-2015-197492.
  • the content of the liquid crystal compound in the composition is preferably 10 to 20% by mass and more preferably 12 to 18% by mass with respect to the total solid content in the composition.
  • a liquid crystalline compound may be used independently and may be used in combination of 2 or more type. When 2 or more types of liquid crystalline compounds are used, it is preferable that those total amount is the said range.
  • solid content means the component except the solvent in a composition. Even if the property of the said component is liquid, it calculates as solid content.
  • the composition may contain components other than the dichroic substance and the liquid crystal compound.
  • the composition preferably includes a vertical alignment agent.
  • the alignment of the dichroic material and the liquid crystal compound can be made more vertical, and the degree of alignment order can be made higher.
  • the vertical alignment agent include boronic acid compounds and onium salts.
  • boronic acid compound a compound represented by the formula (30) is preferable.
  • R 1 and R 2 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group.
  • R 3 represents a substituent containing a (meth) acryl group.
  • Specific examples of the boronic acid compound include boronic acid compounds represented by the general formula (I) described in paragraphs 0023 to 0032 of JP-A-2008-225281. As the boronic acid compound, the compounds exemplified below are also preferable.
  • a compound represented by the formula (31) is preferable.
  • ring A represents a quaternary ammonium ion composed of a nitrogen-containing heterocycle.
  • X represents an anion.
  • L 1 represents a divalent linking group.
  • L 2 represents a single bond or a divalent linking group.
  • Y 1 represents a divalent linking group having a 5- or 6-membered ring as a partial structure.
  • Z represents a divalent linking group having 2 to 20 alkylene groups as a partial structure.
  • P 1 and P 2 each independently represent a monovalent substituent having a polymerizable ethylenically unsaturated bond.
  • onium salts include onium salts described in paragraphs 0052 to 0058 of JP2012-208397A, onium salts described in paragraphs 0024 to 0055 of JP2008-026730A, and JP Examples thereof include onium salts described in 2002-037777.
  • the content of the vertical alignment agent in the composition is preferably from 0.1 to 400% by mass, more preferably from 0.5 to 350% by mass, based on the total mass of the liquid crystal compound.
  • a vertical alignment agent may be used independently and may be used in combination of 2 or more type. When two or more kinds of vertical alignment agents are used, the total amount thereof is preferably in the above range.
  • the composition preferably contains a leveling agent.
  • a leveling agent When the composition contains a leveling agent, surface roughness caused by dry wind on the surface of the anisotropic light absorption layer is suppressed, and the dichroic material is more uniformly oriented.
  • the leveling agent is not particularly limited, and a leveling agent containing a fluorine atom (fluorine leveling agent) or a leveling agent containing a silicon atom (silicon type leveling agent) is preferable, and a fluorine leveling agent is more preferable.
  • the fluorine leveling agent examples include fatty acid esters of polyvalent carboxylic acid in which a part of the fatty acid is substituted with a fluoroalkyl group, and polyacrylates having a fluoro substituent.
  • the leveling when a rod-like compound is used as the dichroic substance and the liquid crystalline compound, the leveling includes a repeating unit derived from the compound represented by formula (40) from the viewpoint of promoting the vertical alignment of the dichroic substance and the liquid crystalline compound. Agents are preferred.
  • R 0 represents a hydrogen atom, a halogen atom, or a methyl group.
  • L represents a divalent linking group. L is preferably an alkylene group having 2 to 16 carbon atoms, and any —CH 2 — that is not adjacent to the alkylene group is substituted with —O—, —COO—, —CO—, or —CONH—. May be.
  • n represents an integer of 1 to 18.
  • the leveling agent having a repeating unit derived from the compound represented by formula (40) may further contain another repeating unit.
  • Examples of the other repeating unit include a repeating unit derived from the compound represented by the formula (41).
  • R 11 represents a hydrogen atom, a halogen atom, or a methyl group.
  • X represents an oxygen atom, a sulfur atom, or —N (R 13 ) —.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • R 12 represents a hydrogen atom, an alkyl group which may have a substituent, or an aromatic group which may have a substituent.
  • the alkyl group preferably has 1 to 20 carbon atoms.
  • the alkyl group may be linear, branched, or cyclic.
  • examples of the substituent that the alkyl group may have include a poly (alkyleneoxy) group and a polymerizable group. The definition of the polymerizable group is as described above.
  • the repeating unit derived from the compound represented by formula (40) contains a repeating unit derived from the compound represented by formula (40) and a repeating unit derived from the compound represented by formula (41), the repeating unit derived from the compound represented by formula (40)
  • the content of is preferably 10 to 90 mol%, more preferably 15 to 95 mol%, based on all repeating units contained in the leveling agent.
  • the repeating unit derived from the compound represented by formula (41) The content of is preferably 10 to 90 mol%, more preferably 5 to 85 mol%, based on all repeating units contained in the leveling agent.
  • leveling agent it replaces with the repeating unit derived from the compound represented by Formula (40) mentioned above, and the leveling agent containing the repeating unit derived from the compound represented by Formula (42) is also mentioned.
  • R 2 represents a hydrogen atom, a halogen atom, or a methyl group.
  • L 2 represents a divalent linking group.
  • n represents an integer of 1 to 18.
  • leveling agent examples include compounds exemplified in paragraphs 0046 to 0052 of JP-A-2004-331812 and compounds described in paragraphs 0038 to 0052 of JP-A-2008-257205.
  • the content of the leveling agent in the composition is preferably 10 to 80% by mass and more preferably 20 to 60% by mass with respect to the total mass of the liquid crystal compound.
  • a leveling agent may be used independently and may be used in combination of 2 or more type. When two or more leveling agents are used, the total amount thereof is preferably in the above range.
  • the composition may contain a polymerization initiator.
  • the kind in particular of polymerization initiator is not restrict
  • the polymerization initiator may be either a radical polymerization initiator or a cationic polymerization initiator.
  • the polymerization initiator is preferably at least one selected from the group consisting of an oxime ester compound and an acylphosphine compound in that the durability of the anisotropic light absorption layer is more excellent.
  • the content of the polymerization initiator is preferably 0.01 to 30 parts by mass with respect to 100 parts by mass in total of the dichroic substance and the liquid crystalline compound in the composition. 0.1 to 15 parts by mass is more preferable.
  • a polymerization initiator may be used independently and may be used in combination of 2 or more type. When two or more polymerization initiators are used, the total amount thereof is preferably in the above range.
  • the composition preferably contains a solvent from the viewpoint of workability.
  • the solvent include ketones, ethers, aliphatic hydrocarbons (for example, hexane), alicyclic hydrocarbons, aromatic hydrocarbons, halogenated carbons, esters, alcohols, cellosolves, Examples include cellosolve acetates, sulfoxides, amides, organic solvents of heterocyclic compounds, and water.
  • the content of the solvent is preferably 80 to 99% by mass and more preferably 83 to 97% by mass with respect to the total mass of the liquid crystal composition.
  • a solvent may be used independently and may be used in combination of 2 or more type. When two or more solvents are used, the total amount thereof is preferably in the above range.
  • the method for forming the anisotropic light-absorbing layer using the composition described above is not particularly limited, and a step of forming a coating film by applying the composition on a predetermined substrate (hereinafter also referred to as “coating film forming step”). ), A step of aligning liquid crystalline components contained in the coating film (hereinafter also referred to as “alignment step”), and a step of curing the coating film (hereinafter also referred to as “curing step”).
  • the method of including in order is mentioned.
  • a liquid crystalline component is a component including not only the liquid crystalline compound described above but also a dichroic material having liquid crystallinity when the above-described dichroic material has liquid crystallinity.
  • a coating-film formation process is a process of apply
  • the kind in particular of base material is not restrict
  • positioned on a transparent support body is mentioned.
  • the material for forming the transparent support include: polycarbonate-based polymer; polyethylene-terephthalate (PET), polyester-based polymer such as polyethylene naphthalate; acrylic-based polymer such as polymethyl methacrylate; polystyrene and acrylonitrile-styrene copolymer.
  • Styrene polymers such as polymers (AS resins); Polyolefin polymers such as polyethylene, polypropylene, and ethylene-propylene copolymers; Vinyl chloride polymers; Amide polymers such as nylon and aromatic polyamides; Polymers; sulfone polymers; polyether sulfone polymers; polyether ether ketone polymers; polyphenylene sulfide polymers; vinylidene chloride polymers; vinyl alcohol polymers Chromatography; vinyl butyral-based polymers; arylate polymers; polyoxymethylene polymers, epoxy-based polymers; and the like.
  • a thermoplastic norbornene resin is also preferable.
  • thermoplastic norbornene-based resin examples include ZEONEX and ZEONOR manufactured by Nippon Zeon Co., Ltd., and ARTON manufactured by JSR Corporation.
  • the cellulose polymer represented by the triacetyl cellulose (TAC) is also preferable.
  • the thickness of the transparent support is not particularly limited and is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and further preferably 10 to 80 ⁇ m.
  • “transparent” means that the visible light transmittance is 60% or more, preferably 80% or more, and more preferably 90% or more.
  • the alignment film generally contains a polymer as a main component.
  • the polymer used is preferably polyvinyl alcohol (PVA), polyimide, or a derivative thereof.
  • the alignment film is preferably a film that has been subjected to a known rubbing treatment. Further, as the alignment film, a photo-alignment film may be used.
  • the photo-alignment film can be produced by subjecting the photo-alignment compound to linearly polarized light or non-polarized light irradiation.
  • the photo-alignment compound is preferably a photosensitive compound having a photoreactive group that generates at least one of dimerization and isomerization by the action of light.
  • the photoreactive group is at least one derivative selected from the group consisting of cinnamic acid derivatives, coumarin derivatives, chalcone derivatives, maleimide derivatives, azobenzene compounds, polyimide compounds, stilbene compounds, and spiropyran compounds, or compounds. It is preferable to have a skeleton of The thickness of the alignment film is preferably 0.01 to 10 ⁇ m.
  • the laminate including the transparent support and the alignment film has been described as the base material.
  • the present invention is not particularly limited to this form, and for example, a transparent support having a rubbing treatment on the surface may be used. .
  • a coating method of the composition As a coating method of the composition, a roll coating method, a gravure printing method, a spin coating method, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, a spray method, and an ink jet method Is mentioned.
  • An alignment process is a process of aligning the liquid crystalline component contained in a coating film.
  • the alignment step may have a drying process. Components such as a solvent can be removed from the coating film by the drying treatment.
  • the drying treatment may be performed by a method of leaving the coating film for a predetermined time at room temperature (for example, natural drying), or by a method of heating and / or blowing.
  • the liquid crystalline component contained in the liquid crystalline composition may be aligned by the above-described coating film forming step or drying treatment.
  • the drying treatment is performed at a temperature equal to or higher than the transition temperature of the liquid crystalline component contained in the coating film to the liquid crystal phase, the heat treatment described later may not be performed.
  • the transition temperature of the liquid crystal component contained in the coating film to the liquid crystal phase is preferably 10 to 250 ° C., more preferably 25 to 190 ° C. from the viewpoint of production suitability and the like.
  • the alignment step preferably includes heat treatment. Thereby, the liquid crystalline component contained in the coating film can be aligned.
  • the heating temperature in the heat treatment is preferably 10 to 250 ° C., more preferably 25 to 190 ° C. from the viewpoint of production suitability and the like.
  • the heating time is preferably 1 to 300 seconds, more preferably 1 to 90 seconds.
  • the alignment step may have a cooling process performed after the heat treatment.
  • the cooling treatment is a treatment for cooling the heated coating film to about room temperature (20 to 25 ° C.). Thereby, the orientation of the liquid crystalline component contained in the coating film can be fixed.
  • the cooling means is not particularly limited and can be carried out by a known method.
  • the curing step is performed, for example, by heating and / or light irradiation (exposure). Among these, it is preferable that a hardening process is implemented by light irradiation. Examples of the light used for curing include infrared rays, visible light, and ultraviolet rays, and ultraviolet rays are preferable. In addition, you may irradiate an ultraviolet-ray, heating at the time of hardening, and you may irradiate an ultraviolet-ray through the filter which permeate
  • Exposure amount at the time of irradiating light is not particularly limited but is preferably 10 ⁇ 2000mJ / cm 2, in that the durability of the anisotropic light-absorbing layer is more excellent, more preferably 200 ⁇ 1000mJ / cm 2.
  • the heating temperature during exposure is preferably 25 to 140 ° C.
  • the exposure may be performed under a nitrogen atmosphere.
  • the manufacturing method of the first embodiment of the display device of the present invention is not particularly limited, and examples thereof include a method of laminating the above-described self-luminous display element and an anisotropic light absorption layer.
  • a bonding layer may be disposed between the self-luminous display element and the anisotropic light absorption layer, and the two may be bonded together.
  • the bonding layer can be bonded to the self-luminous display element and the anisotropic light absorption layer, those made of various known materials can be used.
  • a layer made of a pressure-sensitive adhesive (pressure-sensitive adhesive layer) or a layer made of a material having characteristics of both an adhesive and a pressure-sensitive adhesive may be used.
  • Specific examples of the bonding layer include an optical transparent adhesive, an optical transparent double-sided tape, and an ultraviolet curable resin.
  • the display device of the present invention may be configured by stacking the self-luminous display element and the anisotropic light absorption layer and holding them with a frame or a jig instead of being bonded with the bonding layer. .
  • the second embodiment of the display device of the present invention may include a member other than the display element and the anisotropic light absorption layer.
  • the bonding layer mentioned above, a base material, etc. are mentioned.
  • FIG. 3 is a schematic cross-sectional view of a second embodiment of the display device of the present invention.
  • the display device 10 ⁇ / b> B includes a self-luminous display element 12, an anisotropic light absorption layer 14, a ⁇ / 4 plate 16, and a polarizer 18.
  • the display device 10B includes the polarizer 18, the ⁇ / 4 plate 16, the anisotropic light absorption layer 14, and the self-luminous display element 12 in this order from the viewing side.
  • the display device 10B has the same configuration as the display device 10A described above except that it further includes a ⁇ / 4 plate 16 and a polarizer 18.
  • the ⁇ / 4 plate 16 and the polarizer 18 will be mainly described in detail.
  • the ⁇ / 4 plate is a plate having a ⁇ / 4 function, and specifically, a plate having a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light).
  • Specific examples of the ⁇ / 4 plate include the ⁇ / 4 plate described in US Patent Application Publication No. 2015/0277006.
  • the optically anisotropic layer formed using the stretched polymer film and a liquid crystalline compound is mentioned specifically , as an aspect in which the ⁇ / 4 plate has a multilayer structure, specifically, a broadband ⁇ / 4 plate formed by laminating a ⁇ / 4 plate and a ⁇ / 2 plate can be mentioned.
  • the Re (550) of the ⁇ / 4 plate is not particularly limited, but is preferably 110 to 160 nm, and more preferably 120 to 150 nm in terms of usefulness as a ⁇ / 4 plate.
  • the ⁇ / 4 plate preferably exhibits reverse wavelength dispersion.
  • a ⁇ / 4 plate exhibits reverse wavelength dispersion means that when the in-plane retardation (Re) value at a specific wavelength (visible light range) is measured, the Re value becomes equal or higher as the measurement wavelength increases.
  • the polarizer may be a member (linear polarizer) having a function of converting light into specific linearly polarized light, and an absorptive polarizer can be mainly used.
  • the absorbing polarizer include an iodine-based polarizer, a dichroic material-based polarizer using a dichroic material, and a polyene-based polarizer.
  • the iodine-based polarizer and the dichroic material-based polarizer include a coating-type polarizer and a stretchable polarizer, both of which can be applied, but by adsorbing iodine or a dichroic substance on polyvinyl alcohol and stretching it.
  • a prepared polarizer is preferred.
  • the relationship between the absorption axis of the polarizer and the slow axis of the ⁇ / 4 plate is not particularly limited, but from the point that the laminate of the polarizer and the ⁇ / 4 plate preferably acts as a circularly polarizing plate.
  • the angle formed between the axis and the slow axis of the ⁇ / 4 plate is preferably 45 ° ⁇ 10 °.
  • the second embodiment of the display device of the present invention further includes a ⁇ / 4 plate and a polarizer. These two members can function as a so-called circularly polarizing plate. That is, an antireflection function can be imparted to the display device by arranging a circularly polarizing plate including a ⁇ / 4 plate and a polarizer on the display element.
  • Examples of the manufacturing method of the second embodiment of the display device of the present invention include the method described in the first embodiment.
  • the second embodiment of the display device of the present invention may include members other than the self-luminous display element, the anisotropic light absorption layer, the ⁇ / 4 plate, and the polarizer.
  • the bonding layer mentioned above, a base material, etc. are mentioned.
  • FIG. 4 shows a schematic cross-sectional view of a third embodiment of the display device of the present invention.
  • the display device 10 ⁇ / b> C includes a self-luminous display element 12, a ⁇ / 4 plate 16, an anisotropic light absorption layer 14, and a polarizer 18.
  • the display device 10B includes the polarizer 18, the anisotropic light absorption layer 14, the ⁇ / 4 plate 16, and the self-luminous display element 12 in this order from the viewing side.
  • the display device 10 ⁇ / b> C has the same configuration as the display device 10 ⁇ / b> B except for the stacking order of the anisotropic light absorption layer 14 and the ⁇ / 4 plate 16.
  • the anisotropic light absorption layer 14 is disposed between the polarizer 18 and the ⁇ / 4 plate 16, and the function of the circularly polarizing plate achieved by the polarizer 18 and the ⁇ / 4 plate 16. Is given to the display device 10C.
  • the manufacturing method of the third embodiment of the display device of the present invention includes the method described in the first embodiment.
  • the third embodiment of the display device of the present invention may include a member other than the self-luminous display element, the anisotropic light absorption layer, the ⁇ / 4 plate, and the polarizer.
  • the bonding layer mentioned above, a base material, etc. are mentioned.
  • Example 1 (Formation of alignment film) A cellulose acetate film (manufactured by Fuji Film, Fujitac TG40) was passed through a dielectric heating roll having a temperature of 60 ° C., and the film surface temperature was raised to 40 ° C. Thereafter, an alkali solution having the composition shown below was applied to one side of the film at a coating amount of 14 ml / m 2 using a bar coater, heated to 110 ° C., and a steam far infrared heater manufactured by Noritake Company Limited. The resulting film was conveyed for 10 seconds. Next, 3 ml / m 2 of pure water was applied to the obtained film using a bar coater.
  • composition 1 for forming alignment film ⁇
  • Modified polyvinyl alcohol (compound represented by the following formula. In the formula, the numerical value given to the repeating unit represents the molar ratio of each repeating unit to all repeating units.)
  • composition A1 for anisotropic light absorption layer formation was apply
  • the coating film was dried at room temperature for 30 seconds, heated to 145 ° C. and held for 20 seconds, and the coating film was cooled to room temperature.
  • the orientation of the coating film cooled to room temperature was fixed by ultraviolet irradiation (exposure amount: 500 mJ / cm 2 , using an ultrahigh pressure mercury lamp) to produce a film 1 having an anisotropic light absorption layer.
  • the film thickness of the anisotropic light absorption layer was 1.5 ⁇ m.
  • composition A1 Liquid crystalline compound P-1 16.7 parts by mass Compound B1 16.7 parts by mass Compound E1 28.5 parts by mass Compound E2 28.5 parts by mass Polymerization initiator (BASF, Irgacure 819) 0.15 parts by mass Leveling agent L1 6.95 parts by mass Leveling agent L2 2.49 parts by mass Tetrahydrofuran 11012 parts by mass Cyclopentanone 1943 parts by mass ⁇ ⁇
  • Liquid crystalline compound P-1 (compound represented by the following formula. In the formula, the numerical value given to the repeating unit represents the molar ratio of each repeating unit to all repeating units.)
  • Leveling agent L1 (compound represented by the following formula. In the formula, the numerical value given to the repeating unit represents the molar ratio of each repeating unit to all repeating units.)
  • Leveling agent L2 (compound represented by the following formula. In the formula, the numerical value given to the repeating unit represents the molar ratio of each repeating unit to all repeating units.)
  • the anisotropic light absorption layer is in a crossed Nicol state where the polarization direction of the polarizing microscope and the vibration direction of the analyzer are orthogonal to each other.
  • Sensory evaluation was performed on the transmitted light intensity when installed between crossed Nicols and observed from the z-axis direction.
  • the transmitted light intensity was evaluated by rotating the azimuth angle of the anisotropic light absorbing layer by 360 ° with the z axis as the rotation axis.
  • Example 2 A film 2 having an anisotropic light-absorbing layer was prepared according to the same procedure as in Example 1 except that in the composition A1 for forming an anisotropic light-absorbing layer, the compound B1 was replaced with the following compound B2. The results of the vertical alignment evaluation are shown in Table 1.
  • Example 3 A film 3 having an anisotropic light absorption layer was produced in the same manner as in Example 1 except that the exposure amount was changed from 500 mJ / cm 2 to 100 mJ / cm 2 in forming the film having the anisotropic light absorption layer.
  • the results of the vertical alignment evaluation are shown in Table 1.
  • Example 4 In the anisotropic light-absorbing layer forming composition A1, a film 4 having an anisotropic light-absorbing layer was prepared in the same manner as in Example 1, except that Irgacure 907 (manufactured by BASF) was used as the photopolymerization initiator instead of Irgacure 819. Was made. The results of the vertical alignment evaluation are shown in Table 1.
  • Example 5 A film 5 having an anisotropic light-absorbing layer was produced in the same manner as in Example 1 except that in the composition A1 for forming an anisotropic light-absorbing layer, the compound B1 was replaced with the following compound B4. The results of the vertical alignment evaluation are shown in Table 1.
  • Example 6 A film 6 having an anisotropic light-absorbing layer was produced in the same manner as in Example 1, except that in the composition A1 for forming an anisotropic light-absorbing layer, the liquid crystal compound P-1 was replaced with the liquid crystal compound P-2. .
  • the results of the vertical alignment evaluation are shown in Table 1.
  • Liquid crystalline compound P-2 (compound represented by the following formula. In the formula, the numerical value given to the repeating unit represents the molar ratio of each repeating unit to all repeating units.)
  • composition A2 Liquid crystalline compound P-1 22.3 parts by mass Compound B1 11.1 parts by mass Compound E1 28.5 parts by mass Compound E2 28.5 parts by mass Polymerization initiator (BASF, Irgacure 819) 0.15 parts by mass Leveling agent L1 7.0 parts by weight leveling agent L2 2.5 parts by weight tetrahydrofuran 11012 parts by weight cyclopentanone 1943 parts by weight ⁇ ⁇
  • Example 3 A film 9 having an anisotropic light absorbing layer was produced according to the same procedure as in Example 1 except that the anisotropic light absorbing layer forming composition A3 was used instead of the anisotropic light absorbing layer forming composition A1. The results of the vertical alignment evaluation are shown in Table 1.
  • composition A3 Liquid crystalline compound P-1 38.8 parts by mass Compound B1 38.8 parts by mass Polymerization initiator (manufactured by BASF, Irgacure 819) 0.36 parts by mass Leveling agent L1 16.2 parts by mass Leveling agent L2 5.8 parts by mass Tetrahydrofuran 11012 parts by weight cyclopentanone 1943 parts by weight ⁇
  • composition A4 Liquid crystalline compound P-1 18.4 parts by weight Compound B1 18.4 parts by weight Compound E1 31.5 parts by weight Compound E2 31.5 parts by weight Polymerization initiator (BASF, Irgacure 819) 0.17 parts by weight tetrahydrofuran 11012 parts by weight Part cyclopentanone 1943 parts by mass ⁇
  • the anisotropy of absorbance was measured as follows. Using a spectrophotometer (UV-3150, manufactured by Shimadzu Corporation), the three-dimensional absorbance at the maximum absorption wavelength was measured in a wavelength range of 380 to 680 nm in a 2 nm step by the double beam method. The three-dimensional absorbance here is the highest absorbance value when the absorbance of the anisotropic light absorption layer at the maximum absorption wavelength is measured at all azimuth angles of 60 ° from the normal direction of the anisotropic light absorption layer.
  • the absorbance of the anisotropic light-absorbing layer at the maximum absorption wavelength is measured at all azimuth angles of 60 ° from the normal direction of the anisotropic light-absorbing layer with the azimuth angle indicating
  • the azimuth angle shown is the y-axis and the normal direction of the anisotropic light absorption layer is the z-axis
  • the absorbance (Ax, Ay, Az) in each direction with respect to incident parallel light was performed by rotating the sample with respect to the linearly polarized light as the measurement light.
  • Amax (60) Ax (60)
  • Amin (60) Ay (60)
  • a (0) Az.
  • Table 1 shows values of Amax (60), Amin (60), A (0), Amax (60) / Amax (0), and Amax (60) / Amin (60).
  • OLED display element having a microcavity structure As an OLED display element having a microcavity structure, an OLED display element is taken out from Galaxy Edge S8 + manufactured by Samsung, and films 1 to 10 having an anisotropic light absorption layer are bonded to the display surface via an adhesive, respectively. An OLED display device having an absorption layer was produced. The obtained OLED display device was set to the maximum luminance white display, and the front direction was evaluated by visual recognition. The results are shown in Table 1. A: Neutral white. B: About neutral white. C: Slightly colored. D: It is clearly colored. Moreover, when the obtained OLED display device is set to the maximum luminance white display and visually recognized at all azimuth angles at a polar angle of 60 °, the evaluation results at all azimuth angles with the worst evaluation are shown in Table 1.
  • the films 1 to 10 obtained were subjected to wet heat treatment for 500 hours under the conditions of 60 ° C. and 90% RH, and then Amax (60) / A (0) was measured. Rate of change from (0) ⁇ (
  • the “ ⁇ max (nm)” column represents the maximum absorption wavelength (nm) of the dichroic substance.
  • the column “Presence / absence of polymerizable group” is “A” when both the dichroic substance and the liquid crystalline compound have a polymerizable group, and the liquid crystalline compound has a polymerizable group, but the dichroic substance is polymerizable
  • the case where the group does not have a group is “B”, and the liquid crystal compound does not have a polymerizable group, but the case where the dichroic substance has a polymerizable group is “C”.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明は、正面方向から白表示を視認した際に色味が観察しづらく、かつ、斜め方向から白表示を視認した際にいずれの方位角においても色味が観察しづらい表示装置を提供する。本発明の表示装置は、視認側から、異方性光吸収層と、赤色光、緑色光、及び、青色光を少なくとも発光する自発光型表示素子と、を含む表示装置であって、自発光型表示素子が、マイクロキャビティ構造を有し、異方性光吸収層が、二色性物質及び液晶性化合物を含む組成物を用いて形成され、二色性物質の極大吸収波長が400~500nmであり、異方性光吸収層が、式(1)の要件、及び、式(2)の要件を満たす。 式(1) 1.50<Amax(60)/A(0) 式(2) 1.00≦Amax(60)/Amin(60)≦1.20

Description

表示装置
 本発明は、表示装置に関する。
 近年、平面型の表示装置を構成する表示素子として、有機エレクトロルミネッセンス素子(有機EL素子)に代表される自発光型表示素子が注目を集めている。
 なかでも、特許文献1に示すように、マイクロキャビティ構造を有する自発光型表示素子は、輝度及び色純度が優れる。なお、マイクロキャビティ構造とは、有機材料の上下電極(即ち、アノード電極及びカソード電極)間の光路長を、取り出したい光のスペクトルのピーク波長に合致させることで、所定の波長の光のみを共振させ、他の波長の光を弱める構造である。
特開2003-109775号公報
 一方で、上述した表示装置においては、発光面に対する法線方向(以下、「正面方向」ともいう。)から視認した場合と、発光面に対して斜めの方向(即ち、法線方向から所定の角度だけ傾斜した方向。以下、「斜め方向」ともいう。)から視認した場合とで、色相が変化しないことが望まれている。
 しかしながら、マイクロキャビティ構造を有する自発光型表示素子においては、上記問題が顕著に表れる。特に、斜め方向から視認した際に、色味を帯びる場合が多かった。
 なお、表示装置においては、いずれの方位角から視認する際にも、色味を帯びることが抑制されるのが望まれている。
 本発明は、正面方向から白表示を視認した際に色味が観察しづらく、かつ、斜め方向から白表示を視認した際にいずれの方位角においても色味が観察しづらい表示装置を提供することを課題とする。
 上記課題に対して発明者らが鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。
(1) 視認側から、
 異方性光吸収層と、
 赤色光、緑色光、及び、青色光を少なくとも発光する自発光型表示素子と、を含む表示装置であって、
 自発光型表示素子が、マイクロキャビティ構造を有し、
 異方性光吸収層が、二色性物質及び液晶性化合物を含む組成物を用いて形成され、
 二色性物質の極大吸収波長が400~500nmであり、
 異方性光吸収層が、後述する式(1)の要件、及び、後述する式(2)の要件を満たす、表示装置。
(2) 二色性物質が重合性基を有する、(1)に記載の表示装置。
(3) 液晶性化合物が重合性基を有する、(1)又は(2)に記載の表示装置。
(4) 二色性物質が、エチレン性不飽和結合を含む重合性基、及び、芳香族環を有し、
 液晶性化合物が、エチレン性不飽和結合を含む重合性基、及び、芳香族環を有し、
 異方性光吸収層が、後述する式(3)の要件を満たす、(1)~(3)のいずれかに記載の表示装置。
(5) 組成物が重合開始剤をさらに含む、(1)~(4)のいずれかに記載の表示装置。
(6) 重合開始剤が、オキシムエステル化合物、及び、アシルホスフィン化合物からなる群から選択される少なくとも1種以上である、(5)に記載の表示装置。
(7) 自発光型表示素子よりも視認側に、偏光子、及び、λ/4板を含み、
 視認側から偏光子、λ/4板、及び、異方性光吸収層の順に配置されるか、又は、視認側から偏光子、異方性光吸収層、及び、λ/4板の順に配置される、(1)~(6)のいずれかに記載の表示装置。
 本発明によれば、正面方向から白表示を視認した際に色味が観察しづらく、かつ、斜め方向から白表示を視認した際にいずれの方位角においても色味が観察しづらい表示装置を提供できる。
本発明の表示装置の第1実施形態の模式的な断面図である。 極角及び方位角の定義を説明するための図である。 本発明の表示装置の第2実施形態の例を示す模式的な断面図である。 本発明の表示装置の第3実施形態の例を示す模式的な断面図である。
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。まず、本明細書で用いられる用語について説明する。
 本発明において、Re(λ)及びRth(λ)は、それぞれ波長λにおける面内のレタデーション及び厚み方向のレタデーションを表す。特に記載がないときは、波長λは、550nmとする。
 本発明において、Re(λ)及びRth(λ)はAxoScan OPMF-1(オプトサイエンス社製)において、波長λで測定した値である。AxoScanにて平均屈折率((nx+ny+nz)/3)と膜厚(d(μm))を入力することにより、
 遅相軸方向(°)
 Re(λ)=R0(λ)
 Rth(λ)=((nx+ny)/2-nz)×d
が算出される。
 なお、R0(λ)は、AxoScan OPMF-1で算出される数値として表示されるものであるが、Re(λ)を意味している。
 AxoScanにて用いられる平均屈折率は、アッベ屈折計(NAR-4T、アタゴ(株)製)を使用し、光源にナトリウムランプ(λ=589nm)を用いて測定する。また、波長依存性を測定する場合は、多波長アッベ屈折計DR-M2(アタゴ(株)製)にて、干渉フィルターとの組み合わせで測定できる。
 また、ポリマーハンドブック(JOHN WILEY&SONS,INC)、及び、各種光学フィルムのカタログの値を使用できる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)。
 本明細書において、角度(例えば「90°」等の角度)、及び、その関係(例えば「直交」、「平行」、及び「45°で交差」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、許容される誤差の範囲は、厳密な角度±10°の範囲内であること等を意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
 本明細書において、青色光は波長400~500nmの光を示し、緑色光は波長500nm超600nm以下の光を示し、赤色光は波長600nm超700nm以下の光を示す。
 本発明の表示装置の特徴点の一つとしては、後述する式(1)の要件及び式(2)の要件を満たす異方性光吸収層を用いる点が挙げられる。
 まず、マイクロキャビティ構造を有する自発光型表示素子では、発光面に対する法線方向(正面方向)において特に輝度及び色純度が向上する。一方で、正面方向と斜め方向とでは共振の条件が異なるため、斜め方向に出射される光が短波長側にシフトし、結果として、正面方向と斜め方向との間で色相の変化が発生する。そのため、例えば、赤色光、緑色光、及び、青色光を出射させることで白色光の照射を実現する自発光型表示素子では、正面方向において白色光が観察されるのに対して、斜め方向では青色側にシフトした光が観察される。
 それに対して、まず、異方性光吸収層は、青色光の範囲に極大吸収波長を有する二色性物質を含む。そして、異方性光吸収層は、式(1)の要件で表されるように、正面方向よりも斜め方向(極角60°方向)において、青色光(波長400~500nm)における吸光度が大きい。つまり、異方性光吸収層に対して、斜め方向に進行する青色光は、正面方向に進行する青色光よりも、より吸収される。上述したように、マイクロキャビティ構造を有する自発光型表示素子から出射される光のうち、斜め方向に出射される光は青色側にシフトするが、この光が異方性光吸収層に入射すると青色光が吸収され、結果として異方性光吸収層を通過する光は白色光となる。すなわち、観察者が本発明の表示装置を斜め方向から視認した際にも、観察者は白色光を観測できる。
 また、異方性光吸収層は、式(2)の要件で表されるように、斜め方向(極角60°方向)の全方位角において測定される吸光度の最小値に対する吸光度の最大値の比が小さい。つまり、異方性光吸収層においては、斜め方向の全方位角間における、吸光度の差が小さい。そのため、観察者が本発明の表示装置を斜め方向のいずれの方位角で観察した際にも、白色光を観測できる。
<<第1実施形態>>
 図1に、本発明の表示装置の第1実施形態の模式的な断面図を示す。
 図1に示すように、表示装置10Aは、自発光型表示素子12と、異方性光吸収層14とを含む。なお、図1において、観察者は白抜き矢印方向から観察する。従って、表示装置10Aは、視認側から、異方性光吸収層14と、自発光型表示素子12とをこの順で含む。
 以下、表示装置を構成する各部材について詳述する。
<自発光型表示素子>
 自発光型表示素子は、赤色光、緑色光、及び、青色光を少なくとも発光する表示素子である。自発光型表示素子としては、上記各色の光を発光できればその種類は特に制限されないが、有機エレクトロルミネッセンス素子(有機EL素子)が好ましい。有機EL素子は、トップエミッション型の有機EL素子でもよいし、ボトムエミッション型の有機EL素子でもよい。
 自発光型表示素子は、マイクロキャビティ構造を有する。マイクロキャビティ構造とは、上述したように、有機材料の上下電極間の光路長を、取り出したい光のスペクトルのピーク波長に合致させることで、所定の波長の光のみを共振させ、他の波長の光を弱める構造である。より具体的には、有機EL素子より発光される赤色光、緑色光、及び、青色光の各ピーク波長に、有機EL素子の上下の電極間の光路長を合わせることで、電極間において光を繰り返し反射させて、ピーク波長の光のみを共振させて強調するとともに、ピーク波長から外れた光を減衰させる効果(マイクロキャビティ効果)を生じる構造である。
 マイクロキャビティ構造とは、上記効果が得られる構造であればよく、公知の構造が採用される。
<異方性光吸収層>
 異方性光吸収層は、自発光型表示素子上に配置される層であり、式(1)の要件及び式(2)の要件を満たす層である。
 式(1)  1.50<Amax(60)/A(0)
 式(2)  1.00≦Amax(60)/Amin(60)≦1.20
 なお、本明細書においては、図2に示すような座標系を採用し、異方性光吸収層14の平面(主面。厚み方向に対して垂直な面)をxy平面とし、ベクトルv1とz軸の成す角θを極角と定義し、ベクトルv1のxy平面への投射とy軸とのなす角φを方位角と定義する。従って、後述するように、極角60°とは図2中のθが60°である角度を意味し、極角60°の全方位角とは図2中のθが60°である場合におけるφが0~360°の範囲を意味する。
 まず、Amax(60)は、異方性光吸収層の法線方向から極角60°の全方位角において、後述する二色性物質の極大吸収波長での異方性光吸収層の吸光度を測定した際に、最も吸光度の高い値を表す。
 Amin(60)は、異方性光吸収層の法線方向から極角60°の全方位角において、後述する二色性物質の極大吸収波長での異方性光吸収層の吸光度を測定した際に、最も吸光度の低い値を表す。
 A(0)は、異方性光吸収層の法線方向において、後述する二色性物質の極大吸収波長での異方性光吸収層の吸光度を測定した際の吸光度を表す。
 上記吸光度の測定方法として、分光光度計(島津製作所株式会社製 UV-3150)(方式:ダブルビーム法、波長範囲:2nmステップで380~680nm)を用いて、各波長における異方性光吸収層の法線方向および極角60°での全方位角での吸光度を測定し、極大吸収波長での吸光度を求める。
 異方性光吸収層は、白表示の表示装置を斜め方向から視認した際に色味がより観察しづらい点から、式(1-1)の要件を満たすことが好ましく、式(1-2)の要件を満たすことがより好ましい。
 式(1-1) 1.70<Amax(60)/A(0)
 式(1-2) 1.80<Amax(60)/A(0)
 なお、Amax(60)/A(0)の上限値は特に制限されないが、10000以下の場合が多く、100以下の場合がより多い。
 また、異方性光吸収層は、白表示の表示装置を斜め方向から視認した際にいずれの方位角においても色味がより観察しづらい点から、式(2-1)の要件を満たすことが好ましく、式(2-2)の要件を満たすことがより好ましい。
 式(2-1)  1.00≦Amax(60)/Amin(60)≦1.10
 式(2-2)  1.00≦Amax(60)/Amin(60)≦1.05
 異方性光吸収層は、白表示の表示装置を正面方向から視認した際に色味がより観察しづらい点から、式(5-1)の要件を満たすことが好ましく、式(5-2)の要件を満たすことがより好ましい。
 式(5-1)  0≦A(0)≦0.40
 式(5-2)  0≦A(0)≦0.30
 また、異方性光吸収層は、白表示の表示装置を斜め方向から視認した際に色味がより観察しづらい点から、式(6-1)の要件を満たすことが好ましく、式(6-2)の要件を満たすことがより好ましい。
 式(6-1)  0.25≦Amax(60)≦0.55
 式(6-2)  0.30≦Amax(60)≦0.50
 後述するように、異方性光吸収層は、二色性物質及び液晶性化合物を含む組成物を用いて形成される。
 二色性物質が、エチレン性不飽和結合を含む重合性基、及び、芳香族環を有し、液晶性化合物が、エチレン性不飽和結合を含む重合性基、及び、芳香族環を有する場合、異方性光吸収層が、式(3)の要件を満たすことが好ましい。
 式(3)   0.85<P1/P2≦1.00
 P1は、異方性光吸収層の厚み方向に対して垂直な2つの表面(2つの主面を意味し、言い換えれば、異方性光吸収層の厚み方向に対して直交する2つの表面)のうち一方の表面におけるP値及び他方の表面におけるP値のうち、小さい方のP値を表す。
 P2は、異方性光吸収層の厚み方向に対して垂直な2つの表面のうち一方の表面におけるP値及び他方の表面におけるP値のうち、大きい方のP値を表す。
 P値は、I(1)/I(2)で表される値であり、I(1)は赤外全反射吸収スペクトル測定によるエチレン性不飽和結合の面内変角振動由来のピーク強度を表し、I(2)は赤外全反射吸収スペクトル測定による芳香族環の不飽和結合の伸縮振動由来のピーク強度を表す。
 ただし、異方性光吸収層の厚み方向に対して垂直な2つの表面のうち一方の表面におけるP値及び他方の表面におけるP値が同じ値の場合、P1/P2は1.00とする。
 上記P値は、赤外全反射吸収スペクトル測定において、芳香族環の不飽和結合の伸縮振動由来のピーク強度に対する、エチレン性不飽和結合の面内変角振動由来のピーク強度の比を表す。二色性物質及び液晶性化合物の硬化において、芳香族環の不飽和結合は反応しないが、エチレン性不飽和結合は消失する。従って、反応しない芳香族環の不飽和結合のピーク強度を相対基準としたP値を求めることによって、異方性光吸収層の一方の表面における重合度を算出できる。
 P1/P2が上記式(3)の範囲内であれば、異方性光吸収層の2つの表面の両方において、重合が良好に進行していることを示し、異方性光吸収層の耐久性により優れる。
 P1及びP2のそれぞれの範囲は、異方性光吸収層の耐久性により優れる点で、0.3以下が好ましく、0.2以下がより好ましい。下限は、0が挙げられる。
 異方性光吸収層は、厚み方向に吸収軸を有することが好ましい。ここで厚み方向に吸収軸を有するとは、面内方向の吸光度よりも、厚み方向の吸光度が大きいことを意味する。
 また、異方性光吸収層の吸収軸は、厚み方向と略平行であることが好ましい。言い換えれば、異方性光吸収層の吸収軸は、異方性光吸収層の表面(主面)に対して、垂直配向していることが好ましい。
 ここで、「略平行」とは、吸収軸と、厚み方向とのなす角度が0~10°であることを意味する。
 なお、異方性光吸収層が厚み方向に吸収軸を有するためには、二色性物質を垂直配向させる方法が挙げられる。言い換えれば、二色性物質の長軸方向を異方性光吸収層の厚み方向に略平行となるように、二色性物質を配向させる方法が挙げられる。略平行の定義は、上述した通りである。
 異方性光吸収層は、二色性物質及び液晶性化合物を含む組成物を用いて形成される。
 以下、組成物に含まれる成分について詳述する。
(二色性物質)
 二色性物質とは、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する物質をいう。
 なお、二色性物質は、その分子形状から、棒状の二色性物質と、円盤状の二色性物質とが挙げられ、棒状の二色性物質が好ましい。
 二色性物質の極大吸収波長は、400~500nmである。なかでも、本発明の効果がより優れる点で、二色性物質の極大吸収波長は、440~480nmが好ましい。
 二色性物質の極大吸収波長の測定方法としては、二色性物質を含むクロロホルム溶液(濃度:10mg/L)および二色性物質を含まないリファレンスを用意して、分光光度計(島津製作所株式会社製 UV-3150)(方式:ダブルビーム法、波長範囲:2nmステップで380~680nm)を用いて、二色性物質の吸収スペクトルを測定して、二色性物質の極性吸収波長を求める。
 二色性物質としては、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素、及び、アントラキノン色素が挙げられ、アゾ色素が好ましい。アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素、及び、スチルベンアゾ色素が挙げられ、ビスアゾ色素、又は、トリスアゾ色素が好ましい。また、特開2018-53167号公報に記載の化合物も好ましい。
 二色性物質は、重合性基を有することが好ましい。二色性物質が重合性基を有することで、二色性物質の使用量が多い場合でも、異方性光吸収層の架橋度が低下せず、薄くても高い選択波長吸収性を示しつつ、耐久性に優れた異方性光吸収層を形成できる。
 重合性基としては、ビニル基、ビニルオキシ基、スチリル基、p-(2-フェニルエテニル)フェニル基、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、及び、メタクリロイルオキシ基等のエチレン性不飽和結合を有する重合性基、エポキシ基、並びに、オキセタニル基が挙げられる。
 二色性物質は、芳香族環を有することが好ましい。芳香族環としては、芳香族炭化水素環及び芳香族複素環が挙げられ、中でも、芳香族炭化水素環が好ましく、ベンゼン環がより好ましい。
 アゾ色素としては、式(10)で表される化合物が好ましい。
 式(10)   A(-N=N-A-N=N-A
 式(10)中、A及びAは、それぞれ独立に、置換基を有していてもよいフェニル基、置換基を有していてもよいナフチル基、又は、置換基を有していてもよい1価の複素環基を表す。Aは、置換基を有していてもよい1,4-フェニレン基、置換基を有していてもよいナフタレン-1,4-ジイル基、又は、置換基を有していてもよい2価の複素環基を表す。pは1~4の整数を表す。pが2以上の整数である場合、複数のAは互いに同一でも異なっていてもよい。
 1価の複素環基としては、キノリン、チアゾール、ベンゾチアゾール、チエノチアゾール、イミダゾール、ベンゾイミダゾール、オキサゾール、及び、ベンゾオキサゾール等の複素環化合物から1個の水素原子を除いた基が挙げられる。
 2価の複素環基としては、上記複素環化合物から2個の水素原子を除いた基が挙げられる。
 A及びAにおけるフェニル基、ナフチル基、及び、1価の複素環基、並びに、Aにおける1,4-フェニレン基、ナフタレン-1,4-ジイル基、及び、2価の複素環基が任意に有する置換基としては、メチル基、エチル基、及び、ブチル基等の炭素数1~4のアルキル基;メトキシ基、エトキシ基、及び、ブトキシ基等の炭素数1~4のアルコキシ基;トリフルオロメチル基等の炭素数1~4のフッ化アルキル基;シアノ基;ニトロ基;水酸基;塩素原子、及び、フッ素原子等のハロゲン原子;アミノ基、ジエチルアミノ基、及び、ピロリジノ基等の置換又は無置換アミノ基(置換アミノ基とは、炭素数1~6のアルキル基を1つ若しくは2つ有するアミノ基、又は、2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NHである。)が挙げられる。
 なお、炭素数1~6のアルキル基としては、メチル基、エチル基、及び、ヘキシル基が挙げられる。炭素数2~8のアルカンジイル基としては、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、及び、オクタン-1,8-ジイル基が挙げられる。
 また、A及びAにおけるフェニル基、ナフチル基、及び、1価の複素環基が有する置換基として、重合性基を含む置換基が好ましい。
 重合性基を含む置換基としては、式(11)で表される基が好ましい。
 式(11)  P-Sp-(L-A-L-*
 Pは、重合性基を表す。重合性基の定義は、上述した通りである。
 Spは、炭素数2~16のアルキレン基を表し、上記アルキレン基において隣接しない-CH-は-CO-、又は、-O-に置換されていてもよい。
 L及びLは、それぞれ独立に、単結合、-O-、-OCO-、-COO-、又は、-OCOO-を表す。
 Aは、置換基を有していてもよい、1,4-フェニレン基、1,3-フェニレン基、1,4-ナフチレン基、又は、1,5-ナフチレン基を表す。
 nは0~3の整数である。
 二色性物質の具体例としては、以下が例示される。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 組成物中における二色性物質の含有量は、組成物中の後述する液晶性化合物100質量部に対して、70~130質量部が好ましく、80~120質量部がより好ましい。
 二色性物質は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。二色性物質が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
(液晶性化合物)
 液晶性化合物は、重合性基を有することが好ましい。つまり、組成物は、重合性液晶性化合物を含むことが好ましい。重合性基の定義は、二色性物質の欄で説明した通りである。
 液晶性化合物は、芳香族環を有することが好ましい。芳香族環としては、芳香族炭化水素環及び芳香族複素環が挙げられ、中でも、芳香族炭化水素環が好ましく、ベンゼン環がより好ましい。
 重合性液晶性化合物としては、重合性基を有する低分子液晶性化合物、及び、重合性基を有する高分子液晶性化合物が挙げられる。
 ここで、「低分子液晶性化合物」とは、化学構造中に繰り返し単位を有さない液晶性化合物を意味する。また、「高分子液晶性化合物」とは、化学構造中に繰り返し単位を有する液晶性化合物を意味する。
 低分子液晶性化合物としては、例えば、特開2013-228706号公報に記載される化合物が挙げられる。
 高分子液晶性化合物としては、例えば、特開2011-237513号公報に記載されるサーモトロピック液晶性高分子、及び、特開2015-107492号公報に記載される側鎖型液晶性化合物が挙げられる。
 低分子液晶性化合物としては、分子形状から、棒状液晶性化合物、及び、円盤状液晶性化合物に大別でき、二色性色素が棒状の形状を有する場合は、配向秩序度を高める点から、低分子液晶性化合物として棒状液晶性化合物が好ましい。
 棒状液晶性化合物としては、式(20)で表される化合物が好ましい。
 式(20)  U-V-W-X-Y-X-Y-X-W-V-U
 式(20)中、X、X、及び、Xは、それぞれ独立に、置換基を有していてもよい1,4-フェニレン基、又は、置換基を有していてもよいシクロヘキサン-1,4-ジイル基を表す。ただし、X、X、及び、Xのうち少なくとも1つは、置換基を有していてもよい1,4-フェニレン基である。シクロへキサン-1,4-ジイル基を構成する-CH-は、-O-、-S-、又は、-NR-に置き換わっていてもよい。Rは、炭素数1~6のアルキル基、又は、フェニル基を表す。
 Y及びYは、それぞれ独立に、-CHCH-、-CHO-、-COO-、-OCOO-、単結合、-N=N-、-CR=CR-、-C≡C-、又は、-CR=N-を表す。R及びRは、それぞれ独立に、水素原子又は炭素数1~4のアルキル基を表す。
 Uは、水素原子、又は、重合性基を表す。重合性基の定義は、上述した通りである。
 Uは、重合性基を表す。重合性基の定義は、上述した通りである。
 W及びWは、それぞれ独立に、単結合、-O-、-S-、-COO-、又は、-OCOO-を表す。
 V及びVは、それぞれ独立に、置換基を有していてもよい炭素数1~20のアルカンジイル基を表し、アルカンジイル基を構成する-CH-は、-O-、-S-、又は、-NH-に置き換わっていてもよい。
 X、X及びXのうち少なくとも1つは、置換基を有していてもよい1,4-フェニレン基であることが好ましい。置換基を有していてもよい1,4-フェニレン基は、無置換であることが好ましい。
 置換基を有していてもよいシクロへキサン-1,4-ジイル基は、置換基を有していてもよいトランス-シクロへキサン-1,4-ジイル基であることが好ましく、置換基を有していてもよいトランス-シクロへキサン-1,4-ジイル基は無置換であることが好ましい。
 置換基を有していてもよい1,4-フェニレン基、又は、置換基を有していてもよいシクロへキサン-1,4-ジイル基が任意に有する置換基としては、メチル基、エチル基、及び、ブチル基等の炭素数1~4のアルキル基、塩素原子、及び、フッ素原子等のハロゲン原子、並びに、シアノ基が挙げられる。
 Yとしては、-CHCH-、-COO-、又は、単結合が好ましく、Yとしては、-CHCH-、又は、-CHO-が好ましい。
 Uとしては、重合性基が好ましい。
 U及びUとしては、重合性基が好ましく、光重合性基がより好ましい。光重合性基を有する重合性液晶性化合物は、より低温条件下で重合できる。
 V及びVで表されるアルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、デカン-1,10-ジイル基、テトラデカン-1,14-ジイル基、及び、イコサン-1,20-ジイル基が挙げられる。
 V及びVとしては、炭素数2~12のアルカンジイル基が好ましく、炭素数6~12のアルカンジイル基がより好ましい。
 置換基を有していてもよい炭素数1~20のアルカンジイル基が任意に有する置換基としては、シアノ基、並びに、塩素原子、及び、フッ素原子等のハロゲン原子が挙げられる。
 アルカンジイル基は、無置換であることが好ましく、無置換かつ直鎖状のアルカンジイル基であることがより好ましい。
 W及びWとしては、それぞれ独立に、単結合、又は、-O-が好ましい。
 式(20)で表される化合物の具体例としては、特開2016-027387号公報の段落0053~0056に記載の式(1-1)~式(1-23)で表される化合物が挙げられる。
 式(20)で表される化合物は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、2種以上の重合性液晶性化合物を組み合わせる場合には、少なくとも1種が式(20)で表される化合物であることが好ましく、2種以上が式(20)で表される化合物であることがより好ましい。
 2種の重合性液晶性化合物を組み合わせる場合の混合比としては、1:99~50:50が好ましく、5:95~50:50がより好ましく、10:90~50:50がさらに好ましい。
 式(20)で表される化合物は、例えば、Lub  et  al.  Recl.Trav.Chim.Pays-Bas,115,  321-328(1996)及び特許第4719156号等に記載の公知方法で製造できる。
 高分子液晶性化合物は、主鎖型液晶性化合物と側鎖型液晶性化合物とに大別でき、主鎖型液晶性化合物とは、高分子主鎖中に液晶性を示す構造を有する化合物であり、側鎖型液晶性化合物とは高分子側鎖部分に液晶性を示す構造を有する化合物である。得られる異方性光吸収層の配向秩序度が高く、組成物を調製する際に溶媒への溶解性に優れる点で、側鎖型液晶性化合物が好ましい。
 重合性の側鎖型液晶性化合物としては、(メタ)アクリル系樹脂が好ましく、式(21)で表される繰り返し単位を有する化合物がより好ましい。
式(21):
Figure JPOXMLDOC01-appb-C000003
 Spは、炭素数2~16のアルキレン基、又は、ポリアルキレンオキシ基を表し、上記アルキレン基において隣接しない-CH-は、-O-に置換されていてもよい。
 上記ポリアルキレンオキシ基中のアルキレンの炭素数は、1~4が好ましく、2~3がより好ましい。
 Spとしては、炭素数2~10のアルキレン基、又は、ポリアルキレンオキシ基が好ましく、ポリアルキレンオキシ基がより好ましい。Spがポリアルキレンオキシ基である場合、二色性物質の配向性がより向上し、本発明の効果がより優れる。
 Spは、単結合、又は、炭素数1~8のアルキレン基を表し、上記アルキレン基において隣接しない-CH-は、-O-に置換されていてもよい。
 L及びLは、それぞれ独立に、単結合、-O-、-OCO-、-COO-、又は、-OCOO-を表し、単結合、-O-、-OCO-、又は、-COO-が好ましく、単結合、又は、-O-がより好ましい。
 L~Lは、それぞれ独立に、単結合、-OCO-、又は、-COO-を表し、単結合、又は、-COO-が好ましい。
 L~Lの少なくとも一つは、-OCO-、又は、-COO-であることが好ましい。
 A~Aは、それぞれ独立に、置換基を有していてもよい芳香族基、又は、置換基を有していてもよい環状脂肪族基を表す。A~Aの少なくとも一つは、置換基を有していてもよい芳香族基であることが好ましい。
 芳香族基としては、炭素数6~20の芳香族基が好ましく、炭素数6~14の芳香族基がより好ましく、炭素数6~10の芳香族基がさらに好ましい。芳香族基としては、1,4-フェニレン基、1,3-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、及び、アントラセニレン基が挙げられる。
 環状脂肪族基としては、炭素数3~10の環状脂肪族基が好ましく、炭素数4~8の環状脂肪族基がより好ましく、炭素数5~6の環状脂肪族基がさらに好ましい。環状脂肪族基としては、シクロペンチレン基、及び、シクロヘキシレン基が挙げられる。
 芳香族基、及び、状脂肪族基は、置換基を有していてもよい。置換基としては、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、ニトロソ基、カルボキシ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルスルファニル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、及び、炭素数2~12のN,N-ジアルキルスルファモイル基が挙げられる。
 上記置換基は、さらに上記置換基を有していてもよい。
 Rは、重合性基を表す。重合性基の定義は上述した通りである。
 重合性基としては、光重合させるのに適したラジカル重合性基、又は、カチオン重合性基が好ましく、取り扱い及び製造が容易な点から、アクリロイル基、メタクロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、又は、オキセタニル基が好ましい。
 Xは水素原子又はメチル基を表し、水素原子が好ましい。
 nは0又は1を表す。
 式(21)で表される繰り返し単位の具体例を以下に示す。以下で例示する繰り返し単位以外にも、特開2015-197492号公報に例示される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 式(21)で表される繰り返し単位を有する化合物は、既知の合成反応を組み合わせて合成できる。即ち、様々な文献(例えば、Methoden derOrganischen Chemie(Houben-Weyl編)、Some specific methods (Thieme-Verlag, Stuttgart著)、実験化学講座及び新実験化学講座)に記載の方法を参照して合成できる。また、合成方法としては、米国特許4683327号、同4983479号、同5622648号、同5770107号、国際特許(WO)95/022586号、同97/000600号、同98/047979号、及び、英国特許2297549号の各明細書の記載も参照できる。
 式(21)で表される繰り返し単位を有する化合物は、複数種の式(21)で表される繰り返し単位で構成されたコポリマーであってもよく、また、式(21)で表される繰り返し単位以外の繰り返し単位を含んだコポリマーでもよい。
 こうした繰り返し単位の具体例としては、以下が挙げられる。以下で例示する繰り返し単位以外にも、特開2015-197492号公報に例示される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 組成物中における液晶性化合物の含有量は、組成物中の全固形分に対して、10~20質量%が好ましく、12~18質量%がより好ましい。
 液晶性化合物は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。液晶性化合物が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
 なお、固形分とは、組成物中の溶媒を除いた成分を意味する。上記成分の性状が液状であっても、固形分として計算する。
 組成物は、二色性物質及び液晶性化合物以外の成分を含んでいてもよい。
 組成物は、垂直配向剤を含むことが好ましい。組成物が垂直配向剤を含むと、二色性物質及び液晶性化合物の配向をより垂直にでき、配向秩序度をより高くできる。
 垂直配向剤としては、ボロン酸化合物、及び、オニウム塩が挙げられる。
 ボロン酸化合物としては、式(30)で表される化合物が好ましい。
 式(30)
Figure JPOXMLDOC01-appb-C000008
 式(30)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の脂肪族炭化水素基、置換若しくは無置換のアリール基、又は、置換若しくは無置換のヘテロ環基を表す。
 Rは、(メタ)アクリル基を含む置換基を表す。
 ボロン酸化合物の具体例としては、特開2008-225281号公報の段落0023~0032に記載の一般式(I)で表されるボロン酸化合物が挙げられる。
 ボロン酸化合物としては、以下に例示する化合物も好ましい。
Figure JPOXMLDOC01-appb-C000009
 オニウム塩としては、式(31)で表される化合物が好ましい。
 式(31)
Figure JPOXMLDOC01-appb-C000010
 式(31)中、環Aは、含窒素複素環からなる第4級アンモニウムイオンを表す。Xは、アニオンを表す。Lは、2価の連結基を表す。Lは、単結合、又は、2価の連結基を表す。Yは、5又は6員環を部分構造として有する2価の連結基を表す。Zは、2~20のアルキレン基を部分構造として有する2価の連結基を表す。P及びPは、それぞれ独立に、重合性エチレン性不飽和結合を有する一価の置換基を表す。
 オニウム塩の具体例としては、特開2012-208397号公報の段落0052~0058号公報に記載のオニウム塩、特開2008-026730号公報の段落0024~0055に記載のオニウム塩、及び、特開2002-037777号公報に記載のオニウム塩が挙げられる。
 組成物中の垂直配向剤の含有量は、液晶性化合物全質量に対して、0.1~400質量%が好ましく、0.5~350質量%がより好ましい。
 垂直配向剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。垂直配向剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
 組成物は、レベリング剤を含むことが好ましい。組成物がレベリング剤を含むと、異方性光吸収層の表面にかかる乾燥風による面状の荒れを抑制し、二色性物質がより均一に配向する。
 レベリング剤は特に制限されず、フッ素原子を含むレベリング剤(フッ素系レベリング剤)、又は、ケイ素原子を含むレベリング剤(ケイ素系レベリング剤)が好ましく、フッ素系レベリング剤がより好ましい。
 フッ素系レベリング剤としては、脂肪酸の一部がフルオロアルキル基で置換された多価カルボン酸の脂肪酸エステル類、及び、フルオロ置換基を有するポリアクリレート類が挙げられる。特に、二色性物質及び液晶性化合物として棒状化合物を用いる場合、二色性物質及び液晶性化合物の垂直配向を促進する点から、式(40)で表される化合物由来の繰り返し単位を含むレベリング剤が好ましい。
式(40)
Figure JPOXMLDOC01-appb-C000011
 Rは、水素原子、ハロゲン原子、又は、メチル基を表す。
 Lは、2価の連結基を表す。Lとしては、炭素数2~16のアルキレン基が好ましく、上記アルキレン基において隣接しない任意の-CH-は、-O-、-COO-、-CO-、又は、-CONH-に置換されていてもよい。
 nは、1~18の整数を表す。
 式(40)で表される化合物由来の繰り返し単位を有するレベリング剤は、さらに他の繰り返し単位を含んでいてもよい。
 他の繰り返し単位としては、式(41)で表される化合物由来の繰り返し単位が挙げられる。
式(41)
Figure JPOXMLDOC01-appb-C000012
 R11は、水素原子、ハロゲン原子、又は、メチル基を表す。
 Xは、酸素原子、硫黄原子、又は、-N(R13)-を表す。R13は、水素原子、又は、炭素数1~8のアルキル基を表す。
 R12は、水素原子、置換基を有してもよいアルキル基、又は、置換基を有していてもよい芳香族基を表す。上記アルキル基の炭素数は、1~20が好ましい。上記アルキル基は、直鎖状、分岐鎖状、及び、環状のいずれであってもよい。
 また、上記アルキル基の有していてもよい置換基としては、ポリ(アルキレンオキシ)基、及び、重合性基が挙げられる。重合性基の定義は、上述した通りである。
 レベリング剤が、式(40)で表される化合物由来の繰り返し単位、及び、式(41)で表される化合物由来の繰り返し単位を含む場合、式(40)で表される化合物由来の繰り返し単位の含有量は、レベリング剤が含む全繰り返し単位に対して、10~90モル%が好ましく、15~95モル%がより好ましい。
 レベリング剤が、式(40)で表される化合物由来の繰り返し単位、及び、式(41)で表される化合物由来の繰り返し単位を含む場合、式(41)で表される化合物由来の繰り返し単位の含有量は、レベリング剤が含む全繰り返し単位に対して、10~90モル%が好ましく、5~85モル%がより好ましい。
 また、レベリング剤としては、上述した式(40)で表される化合物由来の繰り返し単位に代えて、式(42)で表される化合物由来の繰り返し単位を含むレベリング剤も挙げられる。
式(42)
Figure JPOXMLDOC01-appb-C000013
 Rは、水素原子、ハロゲン原子、又は、メチル基を表す。
 Lは、2価の連結基を表す。
 nは、1~18の整数を表す。
 レベリング剤の具体例としては、特開2004-331812号公報の段落0046~0052に例示される化合物、及び、特開2008-257205号公報の段落0038~0052に記載の化合物が挙げられる。
 組成物中のレベリング剤の含有量は、液晶性化合物全質量に対して、10~80質量%が好ましく、20~60質量%がより好ましい。
 レベリング剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。レベリング剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
 組成物は、重合開始剤を含んでいてもよい。
 重合開始剤の種類は特に制限されず、光重合開始剤、及び、熱重合開始剤が挙げられ、光重合開始剤が好ましい。なお、重合開始剤は、ラジカル重合開始剤、及び、カチオン重合開始剤のいずれであってもよい。
 重合開始剤としては、異方性光吸収層の耐久性がより優れる点で、オキシムエステル化合物、及び、アシルホスフィン化合物からなる群から選択される少なくとも1種以上であることが好ましい。
 組成物が重合開始剤を含む場合、重合開始剤の含有量は、組成物中の上記二色性物質と上記液晶性化合物との合計100質量部に対し、0.01~30質量部が好ましく、0.1~15質量部がより好ましい。
 重合開始剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。重合開始剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
 組成物は、作業性の点から、溶媒を含むことが好ましい。
 溶媒としては、例えば、ケトン類、エーテル類、脂肪族炭化水素類(例えば、ヘキサン)、脂環式炭化水素類、芳香族炭化水素類、ハロゲン化炭素類、エステル類、アルコール類、セロソルブ類、セロソルブアセテート類、スルホキシド類、アミド類、及び、ヘテロ環化合物の有機溶媒、並びに、水が挙げられる。
 組成物が溶媒を含む場合、溶媒の含有量は、液晶性組成物の全質量に対して、80~99質量%が好ましく、83~97質量%がより好ましい。
 溶媒は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。溶媒が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
 上述した組成物を用いた異方性光吸収層の形成方法は特に制限されず、所定の基材上に上記組成物を塗布して塗膜を形成する工程(以下、「塗膜形成工程」ともいう。)と、塗膜に含まれる液晶性成分を配向させる工程(以下、「配向工程」ともいう。)と、塗膜に硬化処理を施す工程(以下、「硬化工程」ともいう。)をこの順に含む方法が挙げられる。
 なお、液晶性成分とは、上述した液晶性化合物だけでなく、上述した二色性物質が液晶性を有している場合は、液晶性を有する二色性物質も含む成分である。
 以下、上記各工程について詳述する。
 塗膜形成工程は、所定の基材上に組成物を塗布して塗膜を形成する工程である。
 基材の種類は特に制限されず、透明支持体、及び、透明支持体上に配置された配向膜を有する積層体が挙げられる。
 透明支持体を形成する材料としては、例えば、ポリカーボネート系ポリマー;ポリエチレンテレフタレート(PET)、及び、ポリエチレンナフタレート等のポリエステル系ポリマー;ポリメチルメタクリレート等のアクリル系ポリマー;ポリスチレン、及び、アクリロニトリル-スチレン共重合体(AS樹脂)等のスチレン系ポリマー;ポリエチレン、ポリプロピレン、及び、エチレン-プロピレン共重合体等のポリオレフィン系ポリマー;塩化ビニル系ポリマー;ナイロン、及び、芳香族ポリアミド等のアミド系ポリマー;イミド系ポリマー;スルホン系ポリマー;ポリエーテルスルホン系ポリマー;ポリエーテルエーテルケトン系ポリマー;ポリフェニレンスルフィド系ポリマー;塩化ビニリデン系ポリマー;ビニルアルコール系ポリマー;ビニルブチラール系ポリマー;アリレート系ポリマー;ポリオキシメチレン系ポリマー;エポキシ系ポリマー;等が挙げられる。
 また、透明支持体を形成する材料としては、熱可塑性ノルボルネン系樹脂も好ましい。熱可塑性ノルボルネン系樹脂としては、日本ゼオン(株)製のゼオネックス及びゼオノア、並びに、JSR(株)製のアートンが挙げられる。
 また、透明支持体を形成する材料としては、トリアセチルセルロース(TAC)に代表される、セルロース系ポリマーも好ましい。
 透明支持体の厚みは特に制限されず、100μm以下が好ましく、80μm以下がより好ましく、10~80μmがさらに好ましい。
 なお、本明細書において、「透明」とは、可視光の透過率が60%以上であることを示し、80%以上が好ましく、90%以上がより好ましい。
 配向膜は、一般的には、ポリマーを主成分とする。配向膜用ポリマーとしては、多数の文献に記載があり、多数の市販品を入手することができる。利用されるポリマーは、ポリビニルアルコール(PVA)、ポリイミド、又は、その誘導体が好ましい。
 なお、配向膜としては、公知のラビング処理が施された膜が好ましい。
 また、配向膜としては、光配向膜を用いてもよい。光配向膜は、光配向化合物に対して直線偏光又は非偏光照射を施すことにより製造できる。光配向化合物としては、光の作用により二量化及び異性化の少なくとも一方が生じる光反応性基を有する感光性化合物が好ましい。また、光反応性基が、桂皮酸誘導体、クマリン誘導体、カルコン誘導体、マレイミド誘導体、アゾベンゼン化合物、ポリイミド化合物、スチルベン化合物、及び、スピロピラン化合物からなる群から選択される少なくとも1種の誘導体、又は、化合物の骨格を有することが好ましい。
 配向膜の厚みは、0.01~10μmが好ましい。
 なお、上記では、基材として、透明支持体及び配向膜を含む積層体について述べたが、特にこの形態に制限されず、例えば、表面にラビング処理が施された透明支持体を用いてもよい。
 組成物の塗布方法としては、ロールコーティング法、グラビア印刷法、スピンコート法、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スプレー法、及び、インクジェット法が挙げられる。
 配向工程は、塗膜に含まれる液晶性成分を配向させる工程である。
 配向工程は、乾燥処理を有していてもよい。乾燥処理によって、溶媒等の成分を塗膜から除去できる。乾燥処理は、塗膜を室温下において所定時間放置する方法(例えば、自然乾燥)によって行われてもよいし、加熱及び/又は送風する方法によって行われてもよい。
 ここで、液晶性組成物に含まれる液晶性成分は、上述した塗膜形成工程又は乾燥処理によって、配向する場合がある。
 乾燥処理が塗膜に含まれる液晶性成分の液晶相への転移温度以上の温度により行われる場合には、後述する加熱処理は実施しなくてもよい。
 塗膜に含まれる液晶性成分の液晶相への転移温度は、製造適性等の点から、10~250℃が好ましく、25~190℃がより好ましい。
 配向工程は、加熱処理を有することが好ましい。これにより、塗膜に含まれる液晶性成分を配向させることができる。
 加熱処理の際の加熱温度は、製造適性等の点から、10~250℃が好ましく、25~190℃がより好ましい。また、加熱時間は、1~300秒間が好ましく、1~90秒間がより好ましい。
 配向工程は、加熱処理後に実施される冷却処理を有していてもよい。冷却処理は、加熱後の塗膜を室温(20~25℃)程度まで冷却する処理である。これにより、塗膜に含まれる液晶性成分の配向を固定できる。冷却手段としては、特に制限されず、公知の方法により実施できる。
 硬化工程は、例えば、加熱及び/又は光照射(露光)によって実施される。このなかでも、硬化工程は光照射によって実施されることが好ましい。
 硬化に用いる光は、赤外線、可視光、及び、紫外線が挙げられ、紫外線が好ましい。なお、硬化時に加熱しながら紫外線を照射してもよいし、特定の波長のみを透過するフィルターを介して紫外線を照射してもよい。
 光照射を行う際の露光量は特に制限されないが、10~2000mJ/cmが好ましく、異方性光吸収層の耐久性がより優れる点で、200~1000mJ/cmがより好ましい。
 露光が加熱しながら行われる場合、露光時の加熱温度は、25~140℃が好ましい。
 また、露光は、窒素雰囲気下で行われてもよい。
 本発明の表示装置の第1実施形態の製造方法は特に制限されず、上述した自発光型表示素子と異方性光吸収層とを積層する方法が挙げられる。
 両者を積層する際には、自発光型表示素子と異方性光吸収層との間に貼合層を配置して、両者を貼り合わせてもよい。
 貼合層は、自発光型表示素子と異方性光吸収層と貼り合わせられる物であれば、公知の各種の材料からなるものが利用可能である。例えば、貼り合わせる際には流動性を有し、その後、固体になる、接着剤からなる層(接着剤層)でも、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない、粘着剤からなる層(粘着剤層)でも、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。貼合層の具体例としては、光学透明接着剤、光学透明両面テープ、及び、紫外線硬化型樹脂が挙げられる。
 なお、貼合層で貼り合わせるのではなく、自発光型表示素子と異方性光吸収層とを積層して、枠体又は治具等で保持して、本発明の表示装置を構成してもよい。
 本発明の表示装置の第2実施形態は、表示素子、及び、異方性光吸収層以外の部材を含んでいてもよい。例えば、上述した、貼合層、及び、基材等が挙げられる。
<<第2実施形態>>
 図3に、本発明の表示装置の第2実施形態の模式的な断面図を示す。
 図3に示すように、表示装置10Bは、自発光型表示素子12と、異方性光吸収層14、λ/4板16と、偏光子18とを含む。なお、図3において、観察者は偏光子18側から観察する。従って、表示装置10Bは、視認側から、偏光子18と、λ/4板16と、異方性光吸収層14と、自発光型表示素子12とをこの順で含む。
 表示装置10Bは、λ/4板16及び偏光子18をさらに含む点以外は、上述した表示装置10Aと同様の構成を有する。
 以下では、主に、λ/4板16及び偏光子18について詳述する。
<λ/4板>
 λ/4板とは、λ/4機能を有する板であり、具体的には、ある特定の波長の直線偏光を円偏光に(又は円偏光を直線偏光に)変換する機能を有する板である。
 λ/4板の具体例としては、例えば、米国特許出願公開2015/0277006号等に記載のλ/4板が挙げられる。
 なお、λ/4板が単層構造である態様としては、具体的には、延伸ポリマーフィルム、及び、液晶性化合物を用いて形成された光学異方性層が挙げられる。
 また、λ/4板が複層構造である態様としては、具体的には、λ/4板とλ/2板とを積層してなる広帯域λ/4板が挙げられる。
 λ/4板のRe(550)は特に制限されないが、λ/4板として有用である点で、110~160nmが好ましく、120~150nmがより好ましい。
 λ/4板は、逆波長分散性を示すのが好ましい。λ/4板が逆波長分散性を示すとは、特定波長(可視光範囲)における面内のレタデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等又は高くなるものをいう。
<偏光子>
 偏光子は、光を特定の直線偏光に変換する機能を有する部材(直線偏光子)であればよく、主に、吸収型偏光子を利用できる。
 吸収型偏光子としては、ヨウ素系偏光子、二色性物質を利用したニ色性物質系偏光子、及び、ポリエン系偏光子が挙げられる。ヨウ素系偏光子及びニ色性物質系偏光子には、塗布型偏光子と延伸型偏光子とがあり、いずれも適用できるが、ポリビニルアルコールにヨウ素又は二色性物質を吸着させ、延伸して作製される偏光子が好ましい。
 偏光子の吸収軸とλ/4板の遅相軸との関係は特に制限されないが、偏光子とλ/4板との積層物が円偏光板として好適に作用する点から、偏光子の吸収軸とλ/4板の遅相軸とのなす角は、45°±10°が好ましい。
 本発明の表示装置の第2実施形態においては、λ/4板及び偏光子をさらに含む。この2つの部材は、いわゆる円偏光板として機能できる。つまり、λ/4板及び偏光子を含む円偏光板を表示素子上に配置することにより、表示装置に反射防止機能を付与できる。
 本発明の表示装置の第2実施形態の製造方法は、上述した第1実施形態で説明した方法が挙げられる。
 また、本発明の表示装置の第2実施形態は、自発光型表示素子、異方性光吸収層、λ/4板、及び、偏光子以外の部材を含んでいてもよい。例えば、上述した、貼合層、及び、基材等が挙げられる。
<<第3実施形態>>
 図4に、本発明の表示装置の第3実施形態の模式的な断面図を示す。
 図4に示すように、表示装置10Cは、自発光型表示素子12と、λ/4板16と、異方性光吸収層14、偏光子18とを含む。なお、図4において、観察者は偏光子18側から観察する。従って、表示装置10Bは、視認側から、偏光子18と、異方性光吸収層14と、λ/4板16と、自発光型表示素子12とをこの順で含む。
 表示装置10Cは、異方性光吸収層14及びλ/4板16の積層順以外は、表示装置10Bと同じ構成を有する。
 表示装置10Cにおいては、異方性光吸収層14が、偏光子18とλ/4板16との間に配置されるが、偏光子18とλ/4板16とで達成される円偏光板の機能は表示装置10Cに付与される。
 本発明の表示装置の第3実施形態の製造方法は、上述した第1実施形態で説明した方法が挙げられる。
 また、本発明の表示装置の第3実施形態は、自発光型表示素子、異方性光吸収層、λ/4板、及び、偏光子以外の部材を含んでいてもよい。例えば、上述した、貼合層、及び、基材等が挙げられる。
 以下に、実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量及びその割合、並びに、操作等は本発明の趣旨から逸脱しない限り適宜変更できる。従って、本発明の範囲は以下の具体例に制限されない。
<実施例1>
(配向膜の形成)
 セルロースアセテートフィルム(富士フイルム製、フジタックTG40)を温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した。その後、フィルムの片面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/mで塗布し、110℃に加熱し、(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、得られたフィルムを10秒間搬送した。次に、得られたフィルムに対して、バーコーターを用いて純水を3ml/m塗布した。次に、得られたフィルムに対して、ファウンテンコーターによる水洗とエアナイフによる水切りとを3回繰り返した後に、フィルムを70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアセテートフィルムを作製した。
─────────────────────────────────
アルカリ溶液
─────────────────────────────────
水酸化カリウム                    4.7質量部
水                         15.8質量部
イソプロパノール                  63.7質量部
界面活性剤(C1429O(CHCHO)20H)    1.0質量部
プロピレングリコール                14.8質量部
─────────────────────────────────
 アルカリ鹸化処理したセルロースアセテートフィルム上に、下記の配向膜形成用組成物1を#12のバーを用いて塗布し、得られたフィルムを110℃にて2分間乾燥し、配向膜1を形成した。
─────────────────────────────────
配向膜形成用組成物1
─────────────────────────────────
下記変性ポリビニルアルコール            2.00質量部
水                        74.08質量部
メタノール                    23.76質量部
光重合開始剤(イルガキュア2959、BASF社製) 0.06質量部
─────────────────────────────────
 変性ポリビニルアルコール(下記式で表される化合物。式中、繰り返し単位に付された数値は、全繰り返し単位に対する、各繰り返し単位のモル比率を表す。)
Figure JPOXMLDOC01-appb-C000014
(異方性光吸収層の形成)
 得られた配向膜1上に、バーコーターを用いて異方性光吸収層形成用組成物A1を塗布し、塗膜を形成した。塗膜を室温にて30秒間乾燥させた後、145℃まで加熱して20秒間保持し、塗膜を室温になるまで冷却した。次に、室温まで冷却した塗膜を紫外線照射(露光量:500mJ/cm、超高圧水銀ランプ使用)によって配向を固定化し、異方性光吸収層を有するフィルム1を製造した。異方性光吸収層の膜厚は、1.5μmであった。
――――――――――――――――――――――――――――――
異方性光吸収層形成用組成物A1
――――――――――――――――――――――――――――――
液晶性化合物P-1              16.7質量部
化合物B1                  16.7質量部
化合物E1                  28.5質量部
化合物E2                  28.5質量部
重合開始剤(BASF製、イルガキュア819) 0.15質量部
レベリング剤L1               6.95質量部
レベリング剤L2               2.49質量部
テトラヒドロフラン             11012質量部
シクロペンタノン               1943質量部
――――――――――――――――――――――――――――――
 液晶性化合物P-1(下記式で表される化合物。式中、繰り返し単位に付された数値は、全繰り返し単位に対する、各繰り返し単位のモル比率を表す。)
Figure JPOXMLDOC01-appb-C000015
 化合物B1(下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000016
 化合物E1(下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000017
 化合物E2(下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000018
 レベリング剤L1(下記式で表される化合物。式中、繰り返し単位に付された数値は、全繰り返し単位に対する、各繰り返し単位のモル比率を表す。)
Figure JPOXMLDOC01-appb-C000019
 レベリング剤L2(下記式で表される化合物。式中、繰り返し単位に付された数値は、全繰り返し単位に対する、各繰り返し単位のモル比率を表す。)
Figure JPOXMLDOC01-appb-C000020
(垂直配向性評価)
 得られた異方性光吸収層の膜厚方向をz軸としたときに、偏光顕微鏡のポラライザの振動方向とアナライザの振動方向とが直交したクロスニコル(直交ニコル)の状態において、異方性光吸収層をクロスニコルの間に設置してz軸方向から観察した際の透過光強度を官能評価した。
 透過光強度は、z軸を回転軸として異方性光吸収層の方位角を360°回転させて評価した。光漏れがある場合、その方位軸に屈折率異方性があることを表し、光漏れがなければ、異方性光吸収層を構成している液晶性部位の配向が均一に垂直配向していることを表している。結果を表1に示す。
 A: 全方位において透過光が全く観察できない(良好な垂直配向)
 B: わずかに透過光が観察される方位がある(わずかに傾いた垂直配向)
 C: 全方位でわずかに透過光が観察される(配向のわずかな乱れ)
 D: 全方位で明らかな透過光が観察される。(配向の大きな乱れ)
<実施例2>
 異方性光吸収層形成用組成物A1において、化合物B1を下記化合物B2に代えた以外は、実施例1と同様の手順に従って、異方性光吸収層を有するフィルム2を作製した。垂直配向性評価の結果を表1に示す。
 化合物B2(下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000021
<実施例3>
 異方性光吸収層を有するフィルムの形成に際し、露光量を500mJ/cmから100mJ/cmとした以外は、実施例1と同様の手順に従って、異方性光吸収層を有するフィルム3を作製した。垂直配向性評価の結果を表1に示す。
<実施例4>
 異方性光吸収層形成用組成物A1において、光重合開始剤としてイルガキュア819の代わりにイルガキュア907(BASF製)を用いた以外は、実施例1と同様の手順に従って、異方性光吸収層を有するフィルム4を作製した。垂直配向性評価の結果を表1に示す。
<実施例5>
 異方性光吸収層形成用組成物A1において、化合物B1を下記化合物B4に代えた以外は、実施例1と同様の手順に従って、異方性光吸収層を有するフィルム5を作製した。垂直配向性評価の結果を表1に示す。
 化合物B4(下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000022
<実施例6>
 異方性光吸収層形成用組成物A1において、液晶性化合物P-1を液晶性化合物P-2に代えた以外は、実施例1と同様の手順に従って、異方性光吸収層を有するフィルム6を作製した。垂直配向性評価の結果を表1に示す。
 液晶性化合物P-2(下記式で表される化合物。式中、繰り返し単位に付された数値は、全繰り返し単位に対する、各繰り返し単位のモル比率を表す。)
Figure JPOXMLDOC01-appb-C000023
<比較例1>
 異方性光吸収層形成用組成物A1において、化合物B1を下記化合物B3に代えた以外は、実施例1と同様の手順に従って、異方性光吸収層を有するフィルム7を作製した。垂直配向性評価の結果を表1に示す。
 化合物B3(下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000024
<比較例2>
 異方性光吸収層形成用組成物A1に代えて異方性光吸収層形成用組成物A2を用いた以外は、実施例1と同様の手順に従って、異方性光吸収層を有するフィルム8を作製した。垂直配向性評価の結果を表1に示す。
――――――――――――――――――――――――――――――
異方性光吸収層形成用組成物A2
――――――――――――――――――――――――――――――
液晶性化合物P-1              22.3質量部
化合物B1                  11.1質量部
化合物E1                  28.5質量部
化合物E2                  28.5質量部
重合開始剤(BASF製、イルガキュア819) 0.15質量部
レベリング剤L1                7.0質量部
レベリング剤L2                2.5質量部
テトラヒドロフラン             11012質量部
シクロペンタノン               1943質量部
――――――――――――――――――――――――――――――
<比較例3>
 異方性光吸収層形成用組成物A1に代えて異方性光吸収層形成用組成物A3を用いた以外は、実施例1と同様の手順に従って、異方性光吸収層を有するフィルム9を作製した。垂直配向性評価の結果を表1に示す。
――――――――――――――――――――――――――――――
異方性光吸収層形成用組成物A3
――――――――――――――――――――――――――――――
液晶性化合物P-1              38.8質量部
化合物B1                  38.8質量部
重合開始剤(BASF製、イルガキュア819) 0.36質量部
レベリング剤L1               16.2質量部
レベリング剤L2                5.8質量部
テトラヒドロフラン             11012質量部
シクロペンタノン               1943質量部
――――――――――――――――――――――――――――――
<比較例4>
 異方性光吸収層形成用組成物A1に代えて異方性光吸収層形成用組成物A4を用いた以外は、実施例1と同様の手順に従って、異方性光吸収層を有するフィルム10を作製した。垂直配向性評価の結果を表1に示す。
――――――――――――――――――――――――――――――
異方性光吸収層形成用組成物A4
――――――――――――――――――――――――――――――
液晶性化合物P-1              18.4質量部
化合物B1                  18.4質量部
化合物E1                  31.5質量部
化合物E2                  31.5質量部
重合開始剤(BASF製、イルガキュア819) 0.17質量部
テトラヒドロフラン             11012質量部
シクロペンタノン               1943質量部
――――――――――――――――――――――――――――――
<評価>
(吸光度の異方性の測定)
 作製した異方性光吸収層を有するフィルム1~10について、以下のようにして吸光度の異方性を測定した。
 分光光度計(島津製作所株式会社製 UV-3150)を用いて、ダブルビーム法により2nmステップにて380~680nmの波長範囲で、極大吸収波長での3次元吸光度を測定した。ここでの3次元吸光度とは、異方性光吸収層の法線方向から極角60°の全方位角において、極大吸収波長での異方性光吸収層の吸光度を測定した際に、最も吸光度の高い値を示す方位角をx軸、異方性光吸収層の法線方向から極角60°の全方位角において、極大吸収波長での異方性光吸収層の吸光度を測定した際に、最も吸光度の低い値を示す方位角をy軸、異方性光吸収層の法線方向をz軸としたとき、入射する平行光に対する各々の方向の吸光度(Ax、Ay、Az)である。具体的には、測定光である直線偏光に対して、サンプルを回転させることで測定を行った。ここでAmax(60)=Ax(60)であり、Amin(60)=Ay(60)であり、A(0)=Azである。Amax(60)、Amin(60)、A(0)、Amax(60)/Amax(0)、および、Amax(60)/Amin(60)の値を表1に示す。
(重合性エチレン性不飽和結合量の定量)
 異方性光吸収層を有するフィルム1~10における厚さ方向に対して垂直な2つの表面のうち、異方性光吸収層の配向膜側とは反対側の表面に粘接着剤層を貼合した後、粘接着剤層を介して異方性光吸収層を仮支持体フィルムに貼り合せて、セルロースアセテートフィルムを剥離して、積層体サンプルR1~10を作製した。
 得られた積層体サンプルR1~10、及び、転写前の異方性光吸収層1~10に対して、Nicolet6700(サーモフィッシャーサイエンティフィック社製)にて赤外全反射吸収スペクトルの測定を行い、得られた測定結果(エチレン性不飽和結合の面内変角振動(1408cm-1)由来のピーク強度I(1)と、芳香族環の不飽和結合の伸縮振動(1504cm-1)由来のピーク強度I(2)の値)から、P1(配向膜とは反対側の表面の値)およびP2(配向膜と接していた側の面)を算出し、その比を求めた。結果を表1に示す。
(OLED(Organic Light Emitting Diode)パネルへの実装)
 マイクロキャビティ構造を有するOLED表示素子として、Samsung製Galaxy Edge S8+からOLED表示素子を取り出し、その表示面に粘着剤を介して異方性光吸収層を有するフィルム1~10をそれぞれ貼合して、異方性光吸収層を有するOLED表示装置を作製した。得られたOLED表示装置を最大輝度白表示とし、正面方向を視認により評価した。結果を表1に示す。
 A: ニュートラルな白である。
 B: およそニュートラルな白である。
 C: わずかに色味を帯びている。
 D: 明確に色味を帯びている。
 また、得られたOLED表示装置を最大輝度白表示とし、極角60°での全方位角にて視認した際に、最も評価が悪かった全方位角での評価結果を表1に示す。
(耐久性評価)
 60℃、90%RHの条件下にて、得られたフィルム1~10を500時間湿熱処理した後、Amax(60)/A(0)を測定し、湿熱処理前のAmax(60)/A(0)からの変化率{(|湿熱処理前のAmax(60)/A(0)-湿熱処理後のAmax(60)/A(0))|/湿熱処理前のAmax(60)/A(0)×100}を求めた。
 A: 変化率が20%未満である。
 B: 変化率が20%以上40%未満である。
 C: 変化率が40%以上である。
 表1中、「λmax(nm)」欄は、二色性物質の極大吸収波長(nm)を表す。
 「重合性基の有無」欄は、二色性物質及び液晶性化合物の両方が重合性基を有する場合を「A」、液晶性化合物は重合性基を有するが、二色性物質は重合性基を有さない場合を「B」、液晶性化合物は重合性基を有さないが、二色性物質が重合性基を有する場合を「C」とする。
Figure JPOXMLDOC01-appb-T000025
 表1に示すように、本発明の表示装置においては、所定の効果が確認された。
 特に、実施例1~4と5~6との比較より、二色性物質及び液晶性化合物の両方が重合性基を有する場合、耐久性により優れていた。
 また、実施例1と4との比較より、重合開始剤として、オキシムエステル化合物を用いた場合、耐久性により優れていた。
 10A,10B,10C  表示装置
 12  自発光型表示素子
 14  異方性光吸収層
 16  λ/4板
 18  偏光子

Claims (7)

  1.  視認側から、
     異方性光吸収層と、
     赤色光、緑色光、及び、青色光を少なくとも発光する自発光型表示素子と、を含む表示装置であって、
     前記自発光型表示素子が、マイクロキャビティ構造を有し、
     前記異方性光吸収層が、二色性物質及び液晶性化合物を含む組成物を用いて形成され、
     前記二色性物質の極大吸収波長が400~500nmであり、
     前記異方性光吸収層が、式(1)の要件、及び、式(2)の要件を満たす、表示装置。
     式(1)  1.50<Amax(60)/A(0)
     式(2)  1.00≦Amax(60)/Amin(60)≦1.20
     前記Amax(60)は、前記異方性光吸収層の法線方向から極角60°の全方位角において、前記極大吸収波長での前記異方性光吸収層の吸光度を測定した際に、最も吸光度の高い値を表す。
     前記Amin(60)は、前記異方性光吸収層の法線方向から極角60°の全方位角において、前記極大吸収波長での前記異方性光吸収層の吸光度を測定した際に、最も吸光度の低い値を表す。
     前記A(0)は、前記異方性光吸収層の法線方向において、前記極大吸収波長での前記異方性光吸収層の吸光度を測定した際の吸光度を表す。
  2.  前記二色性物質が重合性基を有する、請求項1に記載の表示装置。
  3.  前記液晶性化合物が重合性基を有する、請求項1又は2に記載の表示装置。
  4.  前記二色性物質が、エチレン性不飽和結合を含む重合性基、及び、芳香族環を有し、
     前記液晶性化合物が、エチレン性不飽和結合を含む重合性基、及び、芳香族環を有し、
     前記異方性光吸収層が、式(3)の要件を満たす、請求項1~3のいずれか1項に記載の表示装置。
     式(3)   0.85<P1/P2≦1.00
     前記P1は、前記異方性光吸収層の厚み方向に対して垂直な2つの表面のうち一方の表面におけるP値及び他方の表面におけるP値のうち、小さい方のP値を表す。
     前記P2は、前記異方性光吸収層の厚み方向に対して垂直な2つの表面のうち一方の表面におけるP値及び他方の表面におけるP値のうち、大きい方のP値を表す。
     前記P値は、I(1)/I(2)で表される値であり、前記I(1)は赤外全反射吸収スペクトル測定による前記エチレン性不飽和結合の面内変角振動由来のピーク強度を表し、前記I(2)は赤外全反射吸収スペクトル測定による前記芳香族環の不飽和結合の伸縮振動由来のピーク強度を表す。
     ただし、前記異方性光吸収層の厚み方向に対して垂直な2つの表面のうち一方の表面におけるP値及び他方の面におけるP値が同じ値の場合、P1/P2は1.00とする。
  5.  前記組成物が重合開始剤をさらに含む、請求項1~4のいずれか1項に記載の表示装置。
  6.  前記重合開始剤が、オキシムエステル化合物、及び、アシルホスフィン化合物からなる群から選択される少なくとも1種以上である、請求項5に記載の表示装置。
  7.  前記自発光型表示素子よりも視認側に、偏光子、及び、λ/4板を含み、
     視認側から前記偏光子、前記λ/4板、及び、前記異方性光吸収層の順に配置されるか、又は、視認側から前記偏光子、前記異方性光吸収層、及び、前記λ/4板の順に配置される、請求項1~6のいずれか1項に記載の表示装置。
PCT/JP2019/021557 2018-06-04 2019-05-30 表示装置 WO2019235355A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020523668A JP7013577B2 (ja) 2018-06-04 2019-05-30 表示装置
US17/110,379 US20210088825A1 (en) 2018-06-04 2020-12-03 Display device
US18/117,946 US20230205011A1 (en) 2018-06-04 2023-03-06 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018107095 2018-06-04
JP2018-107095 2018-06-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/110,379 Continuation US20210088825A1 (en) 2018-06-04 2020-12-03 Display device

Publications (1)

Publication Number Publication Date
WO2019235355A1 true WO2019235355A1 (ja) 2019-12-12

Family

ID=68769292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021557 WO2019235355A1 (ja) 2018-06-04 2019-05-30 表示装置

Country Status (3)

Country Link
US (2) US20210088825A1 (ja)
JP (1) JP7013577B2 (ja)
WO (1) WO2019235355A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177308A1 (ja) * 2020-03-05 2021-09-10 富士フイルム株式会社 視角制御システムおよび画像表示装置
WO2022044240A1 (ja) * 2020-08-28 2022-03-03 シャープ株式会社 発光素子および表示装置
WO2022138465A1 (ja) * 2020-12-25 2022-06-30 富士フイルム株式会社 光吸収異方性膜、光学フィルムおよび液晶表示装置
WO2022158517A1 (ja) * 2021-01-21 2022-07-28 富士フイルム株式会社 光学フィルムおよびエレクトロルミネッセンス表示装置
WO2022234789A1 (ja) * 2021-05-07 2022-11-10 富士フイルム株式会社 偏光板及び有機el表示装置
US11768324B2 (en) 2019-12-26 2023-09-26 Fujifilm Corporation Light absorption anisotropic layer, laminate, optical film, image display device, and backlight module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165664A (ja) * 2010-02-12 2011-08-25 Samsung Mobile Display Co Ltd 有機発光ディスプレイ装置
US20130001600A1 (en) * 2011-06-29 2013-01-03 Jae-Ik Lim Organic light-emitting display apparatus
JP2015197492A (ja) * 2014-03-31 2015-11-09 富士フイルム株式会社 光学異方性膜とその製造方法、積層体とその製造方法、偏光板、液晶表示装置及び有機el表示装置
JP2015207377A (ja) * 2014-04-17 2015-11-19 日東電工株式会社 有機エレクトロルミネセンス表示装置
JP2016216637A (ja) * 2015-05-22 2016-12-22 富士フイルム株式会社 着色組成物、光吸収異方性膜、積層体、偏光板、画像表示装置及び化合物
JP2018053167A (ja) * 2016-09-30 2018-04-05 富士フイルム株式会社 二色性色素化合物、着色組成物、光吸収異方性膜、積層体および画像表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038598A (ja) * 2013-07-18 2015-02-26 富士フイルム株式会社 位相差フィルム、偏光板および液晶表示装置
JP6718657B2 (ja) * 2015-02-27 2020-07-08 住友化学株式会社 組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165664A (ja) * 2010-02-12 2011-08-25 Samsung Mobile Display Co Ltd 有機発光ディスプレイ装置
US20130001600A1 (en) * 2011-06-29 2013-01-03 Jae-Ik Lim Organic light-emitting display apparatus
JP2015197492A (ja) * 2014-03-31 2015-11-09 富士フイルム株式会社 光学異方性膜とその製造方法、積層体とその製造方法、偏光板、液晶表示装置及び有機el表示装置
JP2015207377A (ja) * 2014-04-17 2015-11-19 日東電工株式会社 有機エレクトロルミネセンス表示装置
JP2016216637A (ja) * 2015-05-22 2016-12-22 富士フイルム株式会社 着色組成物、光吸収異方性膜、積層体、偏光板、画像表示装置及び化合物
JP2018053167A (ja) * 2016-09-30 2018-04-05 富士フイルム株式会社 二色性色素化合物、着色組成物、光吸収異方性膜、積層体および画像表示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11768324B2 (en) 2019-12-26 2023-09-26 Fujifilm Corporation Light absorption anisotropic layer, laminate, optical film, image display device, and backlight module
WO2021177308A1 (ja) * 2020-03-05 2021-09-10 富士フイルム株式会社 視角制御システムおよび画像表示装置
JP7377947B2 (ja) 2020-03-05 2023-11-10 富士フイルム株式会社 視角制御システムおよび画像表示装置
WO2022044240A1 (ja) * 2020-08-28 2022-03-03 シャープ株式会社 発光素子および表示装置
WO2022138465A1 (ja) * 2020-12-25 2022-06-30 富士フイルム株式会社 光吸収異方性膜、光学フィルムおよび液晶表示装置
WO2022158517A1 (ja) * 2021-01-21 2022-07-28 富士フイルム株式会社 光学フィルムおよびエレクトロルミネッセンス表示装置
WO2022234789A1 (ja) * 2021-05-07 2022-11-10 富士フイルム株式会社 偏光板及び有機el表示装置

Also Published As

Publication number Publication date
US20230205011A1 (en) 2023-06-29
JPWO2019235355A1 (ja) 2021-07-29
US20210088825A1 (en) 2021-03-25
JP7013577B2 (ja) 2022-01-31

Similar Documents

Publication Publication Date Title
WO2019235355A1 (ja) 表示装置
KR102458585B1 (ko) 원편광판 및 표시 장치
KR102417155B1 (ko) 광흡수 이방성막, 3차원 광흡수 이방성막 및 그 제조 방법
TWI641877B (zh) Elliptical polarizer
KR102443875B1 (ko) 위상차 필름, 위상차 필름의 제조 방법, 적층체, 조성물, 편광판 및 액정 표시 장치
TWI712636B (zh) 液晶硬化膜、含有液晶硬化膜的光學膜及顯示裝置
JP5723077B1 (ja) 位相差板、楕円偏光板およびそれを用いた表示装置
TWI732772B (zh) 積層體、含有該積層體之圓偏光板,及具備該積層體之顯示裝置
KR20190027826A (ko) 타원 편광판
CN113302528B (zh) 圆偏光板及使用其的有机el显示装置
JP2017058659A (ja) 光学フィルム、その製造方法および表示装置
WO2020044750A1 (ja) 円偏光板及びそれを用いた画像表示装置
CN107193072A (zh) 椭圆偏振板
JP2016139566A (ja) 有機エレクトロルミネッセンス表示装置
JP2024031796A (ja) 積層体及び有機el表示装置
KR20230024257A (ko) 편광판 및 그 제조 방법
CN111487703A (zh) 有机el显示器用层叠体及其使用的圆偏光板
JP7355955B1 (ja) 光学積層体
JP7016412B2 (ja) 光学積層体の製造方法、表示装置の製造方法
WO2024038667A1 (ja) 光学積層体及びその製造方法
US20230204838A1 (en) Optical film, circularly polarizing plate, and organic electroluminescent display device
JP2017037151A (ja) 積層体の製造方法
US20220384739A1 (en) Optically anisotropic film and laminate including the same
KR20230038789A (ko) 광학 필름, 원편광판, 유기 일렉트로 루미네선스 표시 장치
JP2024018583A (ja) 光学積層体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523668

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814329

Country of ref document: EP

Kind code of ref document: A1