WO2019233403A1 - 同步信息传输方法、发送端设备、接收端设备及存储介质 - Google Patents

同步信息传输方法、发送端设备、接收端设备及存储介质 Download PDF

Info

Publication number
WO2019233403A1
WO2019233403A1 PCT/CN2019/089959 CN2019089959W WO2019233403A1 WO 2019233403 A1 WO2019233403 A1 WO 2019233403A1 CN 2019089959 W CN2019089959 W CN 2019089959W WO 2019233403 A1 WO2019233403 A1 WO 2019233403A1
Authority
WO
WIPO (PCT)
Prior art keywords
phy link
phy
synchronization information
link
end device
Prior art date
Application number
PCT/CN2019/089959
Other languages
English (en)
French (fr)
Inventor
韩柳燕
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Priority to EP19815470.0A priority Critical patent/EP3806391A4/en
Publication of WO2019233403A1 publication Critical patent/WO2019233403A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • H04J3/0688Change of the master or reference, e.g. take-over or failure of the master
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/14Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0057Operations, administration and maintenance [OAM]
    • H04J2203/006Fault tolerance and recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used

Definitions

  • the present disclosure relates to the field of information transmission, and in particular, to a synchronous information transmission method, a transmitting-end device, a receiving-end device, and a storage medium.
  • Synchronization includes frequency synchronization and time synchronization.
  • FlexE Flexible Ethernet
  • FlexE is a lightweight enhancement based on Ethernet. It can achieve the decoupling of the Ethernet Media Access Control (MAC) layer rate from the Ethernet Physical Layer (PHY) rate.
  • MAC Media Access Control
  • PHY Physical Layer
  • FlexE In the basic architecture of FlexE, a FlexE group composed of multiple PHY links can be used to transmit synchronization information. However, there are no effective solutions for how to use FlexE group PHY links to effectively transmit synchronization information.
  • the embodiments of the present disclosure provide a synchronous information transmission method, a transmitting-end device, a receiving-end device, and a storage medium.
  • An embodiment of the present disclosure provides a synchronization information transmission method, which is applied to a sending-end device, and the method includes:
  • the synchronization information is switched to a second PHY link for transmission; the second PHY link is a FlexE group except the first PHY chain.
  • Other PHY links off-road; of which
  • the FlexE group exists between the transmitting device and the receiving device; the FlexE group includes at least two PHY links.
  • the method when the synchronization information is switched to a second PHY link for transmission, the method further includes:
  • a first identifier is set in the overhead corresponding to the second PHY link; the first identifier is used to indicate that the second PHY link has transmitted the synchronization information.
  • the method further includes:
  • the method further includes:
  • the detecting that the first PHY link for transmitting synchronization information fails includes:
  • a failure of the first PHY link is detected; or the first PHY link failure information sent by the receiving device is received.
  • the method further includes:
  • the synchronization information is restored to the first PHY link for transmission.
  • the method when the synchronization information is restored to the first PHY link for transmission, the method further includes:
  • a first identifier is set in the overhead corresponding to the first PHY link; the first identifier is used to indicate that the first PHY link has transmitted the synchronization information.
  • the method when the synchronization information is switched to a second PHY link for transmission, the method further includes:
  • a PHY link is selected from the FlexE group as the second PHY link.
  • the selecting a PHY link from the FlexE group as the second PHY link according to a link switching rule includes:
  • a corresponding PHY link is selected as the second PHY.
  • An embodiment of the present disclosure further provides a synchronization information transmission method, which is applied to a receiving end device, and the method includes:
  • the synchronization information received through the second PHY link is when the sending end device detects that the first PHY link for transmitting the synchronization information fails Sent;
  • the second PHY link is a PHY link other than the first PHY link in the FlexE group;
  • the FlexE group exists between the transmitting device and the receiving device; the FlexE group includes at least two PHY links.
  • the method further includes:
  • the method further includes:
  • the method when sending synchronization information, the method further includes:
  • a second identifier is set in the overhead of the corresponding PHY link; the second identifier is used to indicate that the corresponding PHY link passes the synchronization information.
  • the method further includes:
  • the synchronization information received through the first PHY link is sent when the sending-end device detects that the first PHY link returns to normal.
  • the method when receiving synchronization information sent by the sending-end device through a first PHY link, the method further includes:
  • the method further includes:
  • the FlexEco group port is tracked during a time period during which the failure of the first PHY link is detected until the synchronization information is switched to the transmission of the second PHY link.
  • the FlexE group port is preferentially tracked.
  • the priority tracking of the FlexE group port includes:
  • the FlexE group port is preferentially tracked
  • the FlexE group port can be preferentially tracked by setting a link priority.
  • the method further includes:
  • An embodiment of the present disclosure further provides a transmitting-end device, including:
  • a first communication interface configured to switch the synchronization information to a second PHY link for transmission under the control of the first processor when a failure of the first PHY link for transmitting synchronization information is detected;
  • the second PHY link is other PHY links in the FlexE group than the first PHY link;
  • the FlexE group exists between the transmitting device and the receiving device; the FlexE group includes at least two PHY links.
  • the first processor is configured to set a first identifier in an overhead corresponding to the second PHY link; the first identifier is used to indicate that the second PHY link passes the synchronization information.
  • the first communication interface is further configured to receive synchronization information sent by the receiving end device through a PHY link corresponding to the second PHY link.
  • the first processor is configured to analyze an overhead of the corresponding PHY link to obtain a second identifier; and use the second identifier to determine that the corresponding PHY link passes the synchronization. information.
  • the first communication interface is further configured to restore the synchronization information to the first PHY under the control of the first processor when it is detected that the first PHY link returns to normal. Link for transmission.
  • the first processor is further configured to set a first identifier in an overhead corresponding to the first PHY link; the first identifier is used to indicate that the first PHY link passed the Synchronization information.
  • the first processor is further configured to select a PHY link from the FlexE group as the second PHY link according to a link switching rule.
  • An embodiment of the present disclosure further provides a receiving end device, including:
  • a second communication interface configured to receive synchronization information sent by a sending end device through a second PHY link under the control of the second processor; the synchronization information received through the second PHY link is the sending end device Sent when it is detected that the first PHY link for transmitting the synchronization information fails; the second PHY link is a PHY link other than the first PHY link in the FlexE group; wherein,
  • the FlexE group exists between the transmitting device and the receiving device; the FlexE group includes at least two PHY links.
  • the second processor is configured to:
  • the second communication interface is further configured to send synchronization information to the sending end device through a PHY link corresponding to the second PHY link.
  • the second processor is further configured to set a second identifier in the overhead of the corresponding PHY link; the second identifier is used to indicate that the corresponding PHY link passes the synchronization information.
  • the second communication interface is further configured to receive synchronization information sent by the sending-end device through a first PHY link; and the synchronization information received through the first PHY link is detected by the sending-end device. Sent when the first PHY link returns to normal.
  • the second processor is further configured to analyze an overhead corresponding to the first PHY link to obtain a first identifier; and use the first identifier to determine that the first PHY link has passed all
  • the synchronization information sent by the sending device is described.
  • the second processor is further configured to track the FlexE group during a period from when the first PHY link failure is detected until the synchronization information is switched to the second PHY link transmission. port.
  • the second processor is configured to detect the failure of the first PHY link until the synchronization information is switched to the second PHY link transmission, and the sending device and the When the receiving device has links other than the FlexE group path, the FlexE group port is preferentially tracked.
  • the second communication interface is further configured to send the first PHY link failure information to the transmitting device when the first PHY link failure is detected.
  • An embodiment of the present disclosure further provides a transmitting-end device, including: a first processor and a first memory for storing a computer program capable of running on the processor,
  • An embodiment of the present disclosure further provides a receiving-end device including: a second processor and a second memory for storing a computer program capable of running on the processor,
  • An embodiment of the present disclosure also provides a storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of any of the methods on the sending end device side, or implements any of the methods of the receiving end device side. step.
  • the transmitting device, the receiving device, and the storage medium provided in the embodiments of the present disclosure detect that the first PHY link for transmitting the synchronization information fails, the transmitting device switches the synchronization information to the second PHY link for transmission; and the receiving end device receives synchronization information sent by the transmitting end device through the second PHY link; wherein the second PHY link is a FlexE group except the first PHY link Other PHY links; the FlexE group exists between the transmitting device and the receiving device; the FlexE group includes at least two PHY links.
  • the PHY link used to transmit synchronization information fails, The synchronization information is switched to other PHY link transmissions in the FlexE group.
  • the sending device and the receiving device can be kept in sync; at the same time, the switching process will not cause any problems other than the two nodes except the sending device and the receiving device.
  • the synchronization tracking relationship of other nodes changes, so as to minimize the impact on the synchronization network and the impact on the network.
  • FIG. 1 is a schematic diagram of a FlexE architecture according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a PHY link failure in a FlexE group provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a change in a synchronization tracking relationship caused by a failure of a FlexE group link according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for transmitting information on a transmitting device side according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a synchronization information transmission method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a synchronization information transmission device provided on a sending-end device according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a synchronization information transmission apparatus provided on a receiving end device according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a transmitting device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a receiving end device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a synchronization information transmission system according to an embodiment of the present disclosure.
  • Synchronization between devices includes time synchronization and frequency synchronization.
  • the network transmission time adopts the PTP protocol to meet the high-precision time requirements.
  • PTP time synchronization is performed using a delayed computer system.
  • the master and slave ports exchange PTP messages to calculate the path delay and time offset between the master and slave devices to achieve time synchronization between the master and slave devices.
  • Frequency synchronization can be achieved through frequency synchronization at the physical layer.
  • SSM synchronization status messages carrying frequency quality levels need to be transmitted.
  • FlexE mainly includes three parts: FlexEClient, FlexEGroup, and FlexEShim.
  • the FlexE group is composed of multiple Ethernet PHY channels, such as several 100GBASE-R PHYs.
  • FlexE Client customer signal
  • FlexE Group can contain several FlexE Clients.
  • synchronization information For each PHY channel (also referred to as a link) in the FlexE group, it must carry overhead (in English, it is called overhead (OH)). If the FlexE port needs to transmit synchronization information (including PTP packets or frequency SSM information), then the synchronization information is put into the overhead for transmission. For FlexE groups, synchronization information is transmitted in the overhead corresponding to one of the PHY links.
  • the transmitting device may transmit the first PHY link (the number of the PHY link in the FlexE group is 1) in the FlexE group.
  • the peer device After the peer device receives the information from the sending device, it will receive and process the synchronization message from the overhead corresponding to the first PHY link, and the synchronization message sent back by the opposite device will also be put into the first PHY link. Overhead.
  • the receiving device cannot receive the overhead of the PHY link. Then, when the synchronization information is transmitted using the above scheme, as shown in FIG. 2, if the PHY link (for example, the first PHY link) transmitting the synchronization information (the data marked as black in “OH” in FIG. 2) fails, the transmitting end If the device does not have a backup synchronization path, the receiving end device cannot receive the synchronization information, so it cannot send back the synchronization information, and then the synchronization fails, that is, the device (receiving end device) loses lock. In another case, if the receiving device is the master clock, the sending device needs to send a message back to the receiving device. Due to the link failure, the synchronization information cannot be sent back, resulting in synchronization failure, that is, the sending device will lose lock.
  • the synchronization information is switched in time to other PHY channels in the FlexE group for transmission.
  • the synchronization information when the failure of the first PHY link for transmitting synchronization information is detected, the synchronization information is switched to a second PHY link for transmission; the second PHY link is a FlexE group.
  • the sending-end device and the receiving-end device can be kept in sync; The process does not cause changes in the synchronization tracking relationship of other nodes except the two nodes of the sending-end device and the receiving-end device, thus reducing the impact on the synchronization network.
  • An embodiment of the present disclosure provides a method for transmitting synchronous information, which is applied to a transmitting device. As shown in FIG. 4, the method includes:
  • Step 401 It is detected that the first PHY link for transmitting synchronization information fails.
  • synchronization may include frequency synchronization and time synchronization; correspondingly, synchronization information is different according to different synchronization processes.
  • the failure of the first PHY link includes: a failure is detected by the transmitting end, or a failure is detected by the receiving end. Wherein, when the receiving end detects a failure, the receiving end needs to report the first PHY link failure information to the transmitting end device.
  • the specific implementation of this step may include:
  • the sending-end device detects that the first PHY link is faulty; or receives the first PHY link failure information sent by the receiving-end device.
  • the transmitting end when the transmitting end detects a failure, the receiving end device can also detect the failure; of course, the transmitting end device can notify the receiving end device of the failure through a PHY link between the transmitting end device and the receiving end device.
  • the sending end device may also notify the receiving end device of the failure through a link other than the Flex group between the sending end device and the receiving end device.
  • the first PHY link failure information sent by the receiving device can be on the same It is transmitted on a PHY link. This is because the direction of transmission to reception may be caused by the failure of the optical power of the transmitting device, etc., and there is no failure in the opposite direction.
  • the two directions are on the two PHY links respectively, and then the first PHY link failure information sent by the receiving device can be communicated with the first PHY. Links are matched on the opposite direction.
  • the receiving-end device may also transmit the first PHY link failure information to the transmitting-end device through a link other than the FlexE group between the transmitting-end device and the receiving-end device.
  • the fault may include: a fiber break, a failure of an optical module (laser is emitted and a signal is carried on the light), a circuit failure, a loss of a received message, and the like.
  • Step 402 Switch the synchronization information to a second PHY link for transmission.
  • the second PHY link is another PHY link in the FlexE group except the first PHY link; wherein,
  • the FlexE group exists between the transmitting device and the receiving device; the FlexE group includes at least two PHY links.
  • the FlexE group is composed of multiple Ethernet PHY links, for example, it is composed of several 100GBASE-R PHYs.
  • the sending-end device may be a master (ie, master) device, and accordingly, the receiving-end device is a slave (ie, slave) device.
  • the sending-end device may also be a slave device, and accordingly, the receiving-end device is a master device.
  • an identifier may be set.
  • the method may further include:
  • a first identifier is set in the overhead corresponding to the second PHY link; the first identifier is used to indicate that the second PHY link has transmitted the synchronization information.
  • the transmitting device uses the second PHY link to transmit the synchronization information
  • the receiving device may also use the PHY link corresponding to the second PHY link to send to the transmitting device. Synchronization information.
  • the method may further include:
  • the sending-end device receives synchronization information sent by the receiving-end device through a PHY link corresponding to the second PHY link.
  • the sending end device can be notified in time by setting the identifier to which PHY link transmits the synchronization information of the receiving end device.
  • the method may further include:
  • a synchronization identifier is carried in the overhead to indicate that the PHY link has transmitted synchronization information.
  • the switched PHY link carries an identifier for transferring synchronization information, which is convenient for the receiving device to know which PHY link carries the synchronization information.
  • the transmitted synchronization message is also switched to the corresponding PHY link for transmission, and the transmitted PHY link to which the switching is transmitted carries an identifier for transmitting synchronization information.
  • a bit of the overhead can be used to identify whether the PHY link has transmitted synchronization information. For example, when the identification value is 1, it indicates that the PHY link has transmitted synchronization information. When the identification value is 0, , Indicating that the PHY link is not used to transfer synchronization information.
  • a FlexE group consists of four PHY links and starts to transmit synchronization information on the first PHY link (PHY link numbered 1).
  • the synchronization identifier is 1, and the synchronization identifier in the overhead of the second to fourth PHY links (PHY links numbered 2, 3, and 4 respectively) is 0.
  • the first PHY link fails, switch to the second PHY link to pass, then the synchronization flag in the second PHY link overhead is set to 1, and the third and fourth PHY links in the overhead The synchronization ID is 0.
  • the FlexE group sent by the receiving device to the sending end also has only the synchronization identifier in the first PHY link overhead as 1, and the second to fourth PHY links (numbered 2, 3, and 4 respectively).
  • the synchronization flag in the PHY link) overhead is zero.
  • the synchronization flag in the overhead of the second PHY link is set to 1, and the synchronization flag in the overhead of the third and fourth PHY links is 0.
  • the method may further include:
  • a PHY link is selected from the FlexE group as the second PHY link.
  • the link switching rule may be: switching in sequence according to the number sequence of the PHY link in the FlexE group, for example, the PHY link number 1 in the FlexE group transmits synchronization information, and when it detects that it fails, the switching Synchronization information is passed on the PHY link number 2.
  • the selecting a PHY link from the FlexE group as the second PHY link according to a link switching rule includes:
  • a corresponding PHY link is selected as the second PHY.
  • the link switching rule may also be: sequentially switching according to the link priority of the PHY link in the FlexE group.
  • the PHY link number 1 in the FlexE group transmits synchronization information.
  • it fails because the PHY link numbered 3 has a high priority, it is switched to the PHY link numbered 3 with a higher priority to transmit synchronization information.
  • the PHY link can be restored to the PHY link used to transmit the synchronization information.
  • the method may further include:
  • the synchronization information is restored to the first PHY link for transmission.
  • the first PHY link may be a PHY link that is used by the transmitting device and the receiving device by default to transmit synchronization information.
  • the sending-end device directly restores the synchronization information to the first PHY link for transmission.
  • the first PHY link may not be a PHY link used for transmitting synchronization information by default.
  • the sending-end device needs to let the receiving-end device know in time that the first PHY link has transmitted synchronization information.
  • the method may further include:
  • a first identifier is set in the overhead corresponding to the first PHY link; the first identifier is used to indicate that the first PHY link has transmitted the synchronization information.
  • an embodiment of the present disclosure further provides a synchronization information transmission method, which is applied to a receiving end device.
  • the method includes:
  • the synchronization information received through the second PHY link is sent when the sending-end device detects that the first PHY link used to transmit the synchronization information fails.
  • the second PHY link is a PHY link other than the first PHY link in the FlexE group
  • the FlexE group exists between the transmitting device and the receiving device; the FlexE group includes at least two PHY links.
  • the first PHY link failure information may be reported to the transmitting end device, so that the transmitting end device can know the first device in time.
  • the PHY link fails, thereby guaranteeing the synchronization process.
  • the method may further include:
  • an identifier may be set.
  • the method when receiving synchronization information sent by the sending-end device through a first PHY link, the method further includes:
  • the receiving end device may also use a PHY link corresponding to the second PHY link to send synchronization information to the transmitting end device.
  • the method may further include:
  • the sending end device can be notified in time by setting the identifier to which PHY link has transmitted the synchronization information of the receiving end device.
  • the method when sending synchronization information, may further include:
  • a second identifier is set in the overhead of the corresponding PHY link; the second identifier is used to indicate that the corresponding PHY link passes the synchronization information.
  • a PHY link in a FlexE group transmits synchronization information
  • an identifier is carried in the overhead to indicate that the PHY link has transmitted synchronization information.
  • the switched PHY link carries an identifier for transferring synchronization information, which is convenient for the receiving device to know which PHY link carries the synchronization information.
  • the receiving end device sends a synchronization message
  • the transmitted synchronization message is also switched to the corresponding PHY link for transmission, and the transmitted PHY link to which the switching is transmitted carries an identifier for transmitting synchronization information.
  • the receiving end device is tracking synchronization information from the flexE group port.
  • the receiving end device waits for the FlexE group to switch to Use other PHY links in the FlexE group to transmit synchronization information. During this period, the receiving end device does not switch to tracking other ports than the FlexE group port. In other words, during a period of time when the failure of the first PHY link is detected until the synchronization information is switched to the transmission of the second PHY link, the receiving end device may track the FlexE group port.
  • the receiving end device can preferentially track the FlexE group port.
  • the FlexE group port is preferentially tracked.
  • the FlexE group port can be preferentially tracked by setting a waiting delay time; or the FlexE group port can be preferentially tracked by setting a link priority.
  • a timer may be set, and the timer is started after the first PHY link fails, and an attempt is made to track all The FlexE group port is described. When the timer expires and the tracking fails, it attempts to track the ports of the other links.
  • the priority of the FlexE group path can be set higher than the priority of other links, so that when the first PHY link fails After that, while the receiving device waits for the FlexE group to switch to using the other PHY links in the FlexE group to transmit synchronization information, it preferentially attempts to track the FlexE group port.
  • the PHY link can be restored to the PHY link used to transmit the synchronization information.
  • the method may further include:
  • the synchronization information received through the first PHY link is sent when the sending-end device detects that the first PHY link returns to normal.
  • the first PHY link may be a PHY link that is used by the transmitting device and the receiving device by default to transmit synchronization information.
  • the sending-end device directly restores the synchronization information to the first PHY link for transmission.
  • the first PHY link may not be a PHY link used for transmitting synchronization information by default.
  • the sending-end device needs to let the receiving-end device know in time that the first PHY link has transmitted synchronization information.
  • the method when receiving synchronization information sent by the sending-end device through a first PHY link, the method may further include:
  • An embodiment of the present disclosure also provides a method for transmitting synchronous information. As shown in FIG. 5, the method includes:
  • Step 501 The transmitting device detects that the first PHY link used for transmitting synchronization information fails.
  • Step 502 the transmitting device switches the synchronization information to a second PHY link for transmission
  • Step 503 The receiving device receives synchronization information sent by the sending device through the second PHY link.
  • the second PHY link is another PHY link in the FlexE group except the first PHY link; wherein,
  • the FlexE group exists between the transmitting device and the receiving device; the FlexE group includes at least two PHY links.
  • the transmitting end device switches the synchronization information to the second PHY link for transmission; and the receiving end device passes Receiving, by the second PHY link, synchronization information sent by the sending-end device; wherein the second PHY link is a PHY link other than the first PHY link in the FlexE group; the sending end The FlexE group exists between the device and the receiving device.
  • the FlexE group includes at least two PHY links.
  • an identifier is set in the overhead corresponding to the PHY link to indicate which PHY link transmits the synchronization information. In this way, the receiving end can know in time which PHY link has transmitted the synchronization information. Ensures synchronization between the two devices.
  • the receiving device waits for the FlexE group to switch to use other PHY links in the FlexE group to transfer synchronization information. During this period, the receiving device does not switch to tracking other ports than the FlexE group port. While waiting for the FlexE group to switch to using the other PHY links in the FlexE group to transfer synchronization information, the receiving device does not switch to tracking other ports than the FlexE group port, that is, the receiving device can take priority Tracking FlexE group ports, this ensures that the switching process will not cause changes in the synchronization and tracking relationship of other nodes except the two devices, the sender device and the receiver device, which can minimize the impact on the synchronous network.
  • the embodiment of the present disclosure also provides a synchronous information transmission device, which is disposed on the sending end device. As shown in FIG. 6, the device includes:
  • a first switching unit 62 configured to switch the synchronization information to a second PHY link for transmission when the detection unit 61 detects that the first PHY link for transmitting synchronization information fails; and the second PHY The link is another PHY link in the FlexE group except the first PHY link;
  • the FlexE group exists between the transmitting device and the receiving device; the FlexE group includes at least two PHY links.
  • the failure of the first PHY link includes: a failure is detected by the transmitting end, or a failure is detected by the receiving end. Wherein, when the receiving end detects a failure, the receiving end needs to report the first PHY link failure information to the transmitting end device.
  • the detection unit 61 is configured to:
  • a failure of the first PHY link is detected; or the first PHY link failure information sent by the receiving device is received.
  • an identifier may be set.
  • the first switching unit 62 is further configured to set a first identifier in an overhead corresponding to the second PHY link; the first identifier is used to indicate the second PHY The link passes the synchronization information.
  • the transmitting device uses the second PHY link to transmit the synchronization information
  • the receiving device may also use the PHY link corresponding to the second PHY link to send to the transmitting device. Synchronization information.
  • the first switching unit 62 is further configured to receive synchronization information sent by the receiving end device through a PHY link corresponding to the second PHY link.
  • the sending end device can be notified in time by setting the identifier to which PHY link has transmitted the synchronization information of the receiving end device.
  • the first switching unit 62 is further configured to analyze the cost of the corresponding PHY link to obtain a second identifier; and use the second identifier to determine the corresponding PHY.
  • the link passes the synchronization information.
  • the first switching unit 62 is further configured to select a PHY link from the FlexE group as the second PHY link according to a link switching rule.
  • the link switching rule may be: switching in sequence according to the number sequence of the PHY link in the FlexE group, for example, the PHY link number 1 in the FlexE group transmits synchronization information, and when it detects that it fails, the switching Synchronization information is passed on the PHY link number 2.
  • the first switching unit 62 is specifically configured to:
  • a corresponding PHY link is selected as the second PHY.
  • the link switching rule may also be: sequentially switching according to the link priority of the PHY link in the FlexE group.
  • the PHY link number 1 in the FlexE group transmits synchronization information. When it fails, it switches to the PHY link with the higher priority number 2 to transmit synchronization information.
  • the PHY link can be restored to the PHY link used to transmit the synchronization information.
  • the first switching unit 62 is further configured to restore the synchronization information to the first when the detecting unit 61 detects that the first PHY link returns to normal. PHY link for transmission.
  • the first PHY link may be a PHY link that is used by the transmitting device and the receiving device by default to transmit synchronization information.
  • the first switching unit 62 directly restores the synchronization information to the first PHY link for transmission.
  • the first PHY link may not be a PHY link used for transmitting synchronization information by default.
  • the first switching unit 62 needs to let the receiving end device know in time that the first PHY link has transmitted synchronization information.
  • the first switching unit 62 is further configured to set a first identifier in an overhead corresponding to the first PHY link; the first identifier is used to indicate the first PHY The link passes the synchronization information.
  • the detection unit 61 and the first switching unit 62 may be implemented by a processor in a synchronous information transmission device in combination with a communication interface.
  • the embodiment of the present disclosure further provides a synchronous information transmission device, which is disposed on the transmitting end device. As shown in FIG.
  • a second switching unit 71 is configured to receive synchronization information sent by a sending end device through a second PHY link; the synchronization information received through the second PHY link is detected by the sending end device and used to transmit the synchronization information. Sent when the first PHY link fails; the second PHY link is a PHY link other than the first PHY link in the FlexE group; wherein,
  • the FlexE group exists between the transmitting device and the receiving device; the FlexE group includes at least two PHY links.
  • an identifier may be set.
  • the second switching unit 71 is further configured to:
  • the receiving end device may also use a PHY link corresponding to the second PHY link to send synchronization information to the transmitting end device.
  • the second switching unit 71 is further configured to send synchronization information to the sending end device through a PHY link corresponding to the second PHY link.
  • the sending end device can be notified in time by setting the identifier to which PHY link has transmitted the synchronization information of the receiving end device.
  • the second switching unit 71 is further configured to set a second identifier in the overhead of the corresponding PHY link; the second identifier is used to indicate the corresponding PHY chain The way passes the synchronization information.
  • the receiving end device is tracking synchronization information from the flexE group port.
  • the receiving end device waits for the FlexE group switching.
  • the synchronization information is transmitted to other PHY links in the FlexE group. During this period, the receiving device does not switch to tracking other ports than the FlexE group port.
  • the apparatus may further include a tracking unit 72 configured to detect the time when the first PHY link fails and the synchronization information is switched to the second PHY link transmission time.
  • the FlexE group port can be tracked.
  • the tracking unit 72 may preferentially track the FlexE group port.
  • the tracking unit 72 preferentially tracks the FlexE group port.
  • the FlexE group port can be preferentially tracked by setting a waiting delay time; or the FlexE group port can be preferentially tracked by setting a link priority.
  • the PHY link can be restored to the PHY link used to transmit the synchronization information.
  • the second switching unit 71 is further configured to receive synchronization information sent by the sending-end device through a first PHY link; the synchronization information received through the first PHY link is Sent by the sending end device when detecting that the first PHY link returns to normal.
  • the first PHY link may be a PHY link that is used by the transmitting device and the receiving device by default to transmit synchronization information.
  • the sending-end device directly restores the synchronization information to the first PHY link for transmission.
  • the first PHY link may not be a PHY link used for transmitting synchronization information by default.
  • the sending-end device needs to let the receiving-end device know in time that the first PHY link has transmitted synchronization information.
  • the second switching unit 71 is further configured to parse the overhead corresponding to the first PHY link when receiving synchronization information sent by the sending-end device, and obtain a first identifier; and And using the first identifier to determine that the first PHY link passes synchronization information sent by the sending-end device.
  • the first PHY link failure information may be reported to the transmitting end device, so that the transmitting end device can know the first device in time.
  • the PHY link fails, thereby guaranteeing the synchronization process.
  • the apparatus may further include: a sending unit, configured to receive synchronization information sent by the sending-end device through a first PHY link; and the synchronization information received through the first PHY link is Sent by the sending end device when detecting that the first PHY link returns to normal.
  • a sending unit configured to receive synchronization information sent by the sending-end device through a first PHY link
  • the synchronization information received through the first PHY link is Sent by the sending end device when detecting that the first PHY link returns to normal.
  • the second switching unit 71, the tracking unit 72, and the sending unit may be implemented by a processor in a synchronous information transmission device in combination with a communication interface.
  • the synchronization information transmission device provided in the foregoing embodiment only uses the division of the foregoing program modules as an example for description when performing synchronization information transmission. In practical applications, the above processing may be allocated by different program modules as required. Finished, that is, the internal structure of the device is divided into different program modules to complete all or part of the processing described above.
  • the synchronization information transmission device and the synchronization information transmission method embodiments provided by the foregoing embodiments belong to the same concept. For specific implementation processes, refer to the method embodiments, and details are not described herein again.
  • the embodiment of the present disclosure also provides a sending-end device.
  • the sending-end device 80 includes:
  • the first communication interface 81 is capable of performing information interaction with a receiving end device
  • the first processor 82 is connected to the first communication interface 81 to implement information interaction with the receiving end device, and is configured to execute the method provided by one or more technical solutions on the sending end device side when the computer program is run.
  • the computer program is stored on the first memory 83.
  • the first communication interface 81 is configured to switch the synchronization information to the second PHY chain under the control of the first processor 82 when a failure of the first PHY link for transmitting synchronization information is detected.
  • the second PHY link is a PHY link other than the first PHY link in the FlexE group; wherein,
  • the FlexE group exists between the transmitting device and the receiving device; the FlexE group includes at least two PHY links.
  • the failure of the first PHY link includes: a failure is detected by the transmitting end, or a failure is detected by the receiving end. Wherein, when the receiving end detects a failure, the receiving end needs to report the first PHY link failure information to the transmitting end device.
  • the first processor 82 is configured to:
  • a failure of the first PHY link is detected; or the first PHY link failure information sent by the receiving device is received through the first communication interface 81.
  • an identifier may be set.
  • the first processor 82 is configured to set a first identifier in an overhead corresponding to the second PHY link; the first identifier is used to indicate the second PHY chain The way passes the synchronization information.
  • the transmitting device uses the second PHY link to transmit the synchronization information
  • the receiving device may also use the PHY link corresponding to the second PHY link to send to the transmitting device. Synchronization information.
  • the first communication interface 81 is further configured to receive synchronization information sent by the receiving end device through a PHY link corresponding to the second PHY link.
  • the sending end device can be notified in time by setting the identifier to which PHY link has transmitted the synchronization information of the receiving end device.
  • the first processor 82 is configured to analyze the cost of the corresponding PHY link to obtain a second identifier; and use the second identifier to determine the corresponding PHY chain The way passes the synchronization information.
  • the first processor 82 is further configured to select a PHY link from the FlexE group as the second PHY link according to a link switching rule.
  • the link switching rule may be: switching in sequence according to the number sequence of the PHY link in the FlexE group, for example, the PHY link number 1 in the FlexE group transmits synchronization information, and when it detects that it fails, the switching Synchronization information is passed on the PHY link number 2.
  • the first processor 82 is specifically configured to:
  • a corresponding PHY link is selected as the second PHY.
  • the link switching rule may also be: sequentially switching according to the link priority of the PHY link in the FlexE group.
  • the PHY link number 1 in the FlexE group transmits synchronization information. When it fails, it switches to the PHY link with the higher priority number 2 to transmit synchronization information.
  • the PHY link can be restored to the PHY link used to transmit the synchronization information.
  • the first communication interface 81 is further configured to, when it is detected that the first PHY link returns to normal, control the synchronization information under the control of the first processor 82 Resume to the first PHY link for transmission.
  • the first PHY link may be a PHY link that is used by the transmitting device and the receiving device by default to transmit synchronization information.
  • the first switching unit 62 directly restores the synchronization information to the first PHY link for transmission.
  • the first PHY link may not be a PHY link used for transmitting synchronization information by default.
  • the sending-end device needs to let the receiving-end device know in time that the first PHY link has transmitted synchronization information.
  • the first processor 82 is further configured to set a first identifier in an overhead corresponding to the first PHY link; the first identifier is used to indicate the first PHY The link passes the synchronization information.
  • bus system 84 is used to implement connection and communication between these components.
  • the bus system 84 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are marked as the bus system 84 in FIG. 8.
  • the first memory 83 in the embodiment of the present disclosure is used to store various types of data to support the operation of the transmitting-end device 80. Examples of such data include: any computer program used to operate on the transmitting device 80.
  • the method disclosed in the foregoing embodiment of the present disclosure may be applied to the first processor 82 or implemented by the first processor 82.
  • the first processor 82 may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the above method may be completed by using an integrated logic circuit of hardware or instructions in a form of software in the first processor 82.
  • the first processor 82 may be a general-purpose processor, a digital signal processor (DSP), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • DSP digital signal processor
  • the first processor 82 may implement or execute various methods, steps, and logic block diagrams disclosed in the embodiments of the present disclosure.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly implemented by a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium.
  • the storage medium is located in a first memory 83.
  • the first processor 82 reads information in the first memory 83 and completes the steps of the foregoing method in combination with hardware.
  • the transmitting device 80 may be implemented by one or more Application Specific Integrated Circuits (ASICs), DSPs, Programmable Logic Devices (PLDs), and complex programmable logic devices (PLDs).
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal processors
  • PLDs Programmable Logic Devices
  • PLDs complex programmable logic devices
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • general-purpose processor controller
  • controller microcontroller
  • MCU microcontroller Unit
  • MCU microprocessor
  • Microprocessor microprocessor
  • the receiving end device 90 includes:
  • the second communication interface 91 is capable of performing information interaction with the sending end device
  • the second processor 92 is connected to the second communication interface 91 to implement information interaction with the sending-end device, and is used to execute the method provided by one or more technical solutions on the receiving-end device side when the computer program runs.
  • the computer program is stored on the second memory 93.
  • the second communication interface 91 is configured to receive synchronization information sent by the sending end device through a second PHY link under the control of the second processor 92; the synchronization information received through the second PHY link is Sent by the sending end device when the first PHY link used to transmit the synchronization information fails; the second PHY link is a PHY link other than the first PHY link in the FlexE group ;among them,
  • the FlexE group exists between the transmitting device and the receiving device; the FlexE group includes at least two PHY links.
  • an identifier may be set.
  • the second processor 92 is configured to:
  • the receiving-end device 90 may also use a PHY link corresponding to the second PHY link to send synchronization information to the transmitting-end device.
  • the second communication interface 91 is further configured to send synchronization information to the sending end device through a PHY link corresponding to the second PHY link.
  • the sending end device can be notified in time by setting the identifier to which PHY link has transmitted the synchronization information of the receiving end device.
  • the second processor 92 is further configured to set a second identifier in the overhead of the corresponding PHY link; the second identifier is used to indicate that the corresponding PHY link passes the synchronization information.
  • the receiving end device is tracking synchronization information from the flexE group port.
  • the receiving end device waits for the FlexE group to switch to Use other PHY links in the FlexE group to transmit synchronization information. During this period, the receiving end device does not switch to tracking other ports than the FlexE group port.
  • the second processor 92 is further configured to track the first PHY link failure to the time when the synchronization information is switched to the second PHY link transmission. FlexE group port.
  • the second processor 92 may preferentially track the FlexE group port.
  • the second processor 92 preferentially tracks the FlexE group port.
  • the FlexE group port can be preferentially tracked by setting a waiting delay time; or the FlexE group port can be preferentially tracked by setting a link priority.
  • the PHY link can be restored to the PHY link used to transmit the synchronization information.
  • the second communication interface 91 is further configured to receive synchronization information sent by the sending end device through a first PHY link; the synchronization information received through the first PHY link is Sent by the sending end device when detecting that the first PHY link returns to normal.
  • the first PHY link may be a PHY link that is used by the transmitting device and the receiving device by default to transmit synchronization information.
  • the sending-end device directly restores the synchronization information to the first PHY link for transmission.
  • the first PHY link may not be a PHY link used for transmitting synchronization information by default.
  • the sending-end device needs to let the receiving-end device know in time that the first PHY link has transmitted synchronization information.
  • the second processor 92 is further configured to analyze the overhead corresponding to the first PHY link to obtain a first identifier; and use the first identifier to determine the first identifier.
  • the PHY link passes the synchronization information sent by the sending-end device.
  • the first PHY link failure information may be reported to the transmitting end device, so that the transmitting end device can know the first device in time.
  • the PHY link fails, thereby guaranteeing the synchronization process.
  • the second communication interface 91 is further configured to send the first PHY link failure information to the transmitting device when the first PHY link failure is detected.
  • bus system 94 is used to implement connection and communication between these components.
  • the bus system 94 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are marked as the bus system 94 in FIG. 9.
  • the second memory 93 in the embodiment of the present disclosure is used to store various types of data to support the operation of the receiving-end device 90. Examples of such data include: any computer program for operation on the receiving end device 90.
  • the method disclosed in the foregoing embodiment of the present disclosure may be applied to the second processor 92, or implemented by the second processor 92.
  • the second processor 92 may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the above method may be completed by using an integrated logic circuit of hardware in the second processor 92 or an instruction in the form of software.
  • the above-mentioned second processor 92 may be a general-purpose processor, a DSP, or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the second processor 92 may implement or execute various methods, steps, and logic block diagrams disclosed in the embodiments of the present disclosure.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly implemented by a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium.
  • the storage medium is located in a second memory 93.
  • the second processor 92 reads information in the second memory 93 and completes the steps of the foregoing method in combination with its hardware.
  • the receiving end device 90 may be implemented by one or more ASICs, DSPs, PLDs, CPLDs, FPGAs, general-purpose processors, controllers, MCUs, Microprocessors, or other electronic components for performing the foregoing methods.
  • the memories (the first memory 83 and the second memory 93) of the embodiment of the present disclosure may be volatile memory or non-volatile memory, and may also include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), and an erasable programmable read-only memory (PROM) , EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Magnetic Random Access Memory (FROM), Random Access Memory (FRAM), Flash Memory (Flash Memory), Magnetic Surface Memory , Compact disc, or read-only memory (CD-ROM); magnetic surface storage can be disk storage or magnetic tape storage.
  • ROM read-only memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • EPROM Electrically Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • FROM Magnetic Random Access Memory
  • FRAM Random
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Random Access Memory
  • SLDRAM synchronous link dynamic random access memory
  • direct memory bus random access memory Direct Rambus Random Access Memory, DRRAM
  • the memories described in embodiments of the present disclosure are intended to include, but are not limited to, these and any other suitable types of memory.
  • the embodiment of the present disclosure also provides a synchronous information transmission system. As shown in FIG. 10, the system includes:
  • the sending end device 101 is configured to switch the synchronization information to a second PHY link for transmission when it detects that the first PHY link for transmitting synchronization information fails;
  • the receiving-end device 102 is configured to receive synchronization information sent by the sending-end device 101 through the second PHY link.
  • the second PHY link is another PHY link in the FlexE group except the first PHY link; wherein,
  • the FlexE group exists between the transmitting device 101 and the receiving device 102; the FlexE group includes at least two PHY links.
  • an embodiment of the present disclosure further provides a storage medium, that is, a computer storage medium, specifically a computer-readable storage medium, for example, including a first memory 103 storing a computer program.
  • the first processor 82 of 80 executes to complete the steps described in the foregoing device method on the sending end.
  • it includes a second memory 93 storing a computer program, and the computer program may be executed by the second processor 92 of the receiving-end device 90 to complete the steps of the foregoing receiving-end-device-side method.
  • the computer-readable storage medium may be a memory such as RAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种同步信息传输方法、发送端设备、接收端设备及存储介质。其中,方法包括:发送端设备当检测到用于传输同步信息的第一物理层PHY链路失效时,将同步信息倒换至第二PHY链路进行传输;第二PHY链路为灵活以太网组中除第一PHY链路外的其它PHY链路;其中,发送端设备与接收端设备之间存在灵活以太网组;灵活以太网组包含至少两条PHY链路。

Description

同步信息传输方法、发送端设备、接收端设备及存储介质
相关申请的交叉引用
本申请主张在2018年6月6日在中国提交的中国专利申请号No.201810573024.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及信息传输领域,尤其涉及一种同步信息传输方法、发送端设备、接收端设备及存储介质。
背景技术
移动通信系统、金融、电力等系统的业务均要求节点之间的同步。同步包括频率同步和时间同步。
针对5G时代带宽传送需求,在相关技术中的以太网技术基础上,提出了灵活以太网(Flex Ethernet,FlexE)技术。FlexE是基于以太网的轻量级增强,它可以实现以太媒体接入控制(Medium Access Control,MAC)层速率与以太物理层(PHY)速率的解耦。
在FlexE的基本架构中,可以采用由多个PHY链路组成的FlexE组(group)来传输同步信息。然而,如何利用FlexE group的PHY链路有效传输同步信息,相关技术尚无有效解决方案。
发明内容
为解决相关技术中存在的技术问题,本公开实施例提供一种同步信息传输方法、发送端设备、接收端设备及存储介质。
本公开实施例的技术方案是这样实现的:
本公开实施例提供了一种同步信息传输方法,应用于发送端设备,所述方法包括:
当检测到用于传输同步信息的第一PHY链路失效时,将所述同步信息倒换至第二PHY链路进行传输;所述第二PHY链路为FlexE group中除所述第 一PHY链路外的其它PHY链路;其中,
所述发送端设备与接收端设备之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路。
上述方案中,将所述同步信息倒换至第二PHY链路进行传输时,所述方法还包括:
在所述第二PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第二PHY链路传递了所述同步信息。
上述方案中,所述方法还包括:
通过所述第二PHY链路对应的PHY链路接收所述接收端设备发送的同步信息。
上述方案中,所述方法还包括:
解析所述对应的PHY链路的开销,获得第二标识;
利用所述第二标识,确定所述对应的PHY链路传递了所述同步信息。
上述方案中,所述检测到用于传输同步信息的第一PHY链路失效,包括:
检测到所述第一PHY链路故障;或者接收到所述接收端设备发送的所述第一PHY链路失效信息。
上述方案中,所述方法还包括:
当检测到所述第一PHY链路恢复正常时,将所述同步信息恢复至所述第一PHY链路进行传输。
上述方案中,将所述同步信息恢复至所述第一PHY链路进行传输时,所述方法还包括:
在所述第一PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第一PHY链路传递了所述同步信息。
上述方案中,所述将所述同步信息倒换至第二PHY链路进行传输时,所述方法还包括:
依据链路倒换规则,从所述FlexE group中选择PHY链路作为所述第二PHY链路。
上述方案中,所述依据链路倒换规则,从所述FlexE group中选择PHY链路作为所述第二PHY链路,包括:
按照PHY链路在所述FlexE group的编号顺序,选择相应的PHY链路作为所述第二PHY。
本公开实施例还提供了一种同步信息传输方法,应用于接收端设备,所述方法包括:
通过第二PHY链路接收发送端设备发送的同步信息;通过所述第二PHY链路接收的同步信息是所述发送端设备检测到用于传输所述同步信息的第一PHY链路失效时发送的;所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路;其中,
所述发送端设备与接收端设备之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路。
上述方案中,所述方法还包括:
解析所述第二PHY链路对应的开销,得到第一标识;
利用所述第一标识,确定所述第二PHY链路传递了所述同步信息。
上述方案中,所述方法还包括:
通过所述第二PHY链路对应的PHY链路向所述发送端设备发送同步信息。
上述方案中,发送同步信息时,所述方法还包括:
在所述对应的PHY链路的开销中设置第二标识;所述第二标识用于指示所述对应的PHY链路传递了所述同步信息。
上述方案中,所述方法还包括:
通过第一PHY链路接收所述发送端设备发送的同步信息;通过所述第一PHY链路接收的同步信息是所述发送端设备检测到所述第一PHY链路恢复正常时发送的。
上述方案中,通过第一PHY链路接收所述发送端设备发送的同步信息时,所述方法还包括:
解析所述第一PHY链路对应的开销,得到第一标识;
利用所述第一标识,确定所述第一PHY链路传递了所述发送端设备发送的同步信息。
上述方案中,所述方法还包括:
在检测到所述第一PHY链路失效至所述同步信息倒换至所述第二PHY链路传输的时间段内,跟踪所述FlexE group端口。
上述方案中,在检测到所述第一PHY链路失效至所述同步信息倒换至所述第二PHY链路传输的时间段,且所述发送端设备与接收端设备存在除所述FlexE group路径外的其它链路时,优先跟踪所述FlexE group端口。
上述方案中,所述优先跟踪所述FlexE group端口,包括:
通过设置等待延时时长实现优先跟踪所述FlexE group端口;
或者,通过设置链路优先级实现优先跟踪所述FlexE group端口。
上述方案中,所述方法还包括:
当检测到所述第一PHY链路故障时,向所述发送端设备发送所述第一PHY链路失效信息。
本公开实施例还提供了一种发送端设备,包括:
第一处理器;
第一通信接口,用于当检测到用于传输同步信息的第一PHY链路失效时,在所述第一处理器的控制下将所述同步信息倒换至第二PHY链路进行传输;所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路;其中,
所述发送端设备与接收端设备之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路。
上述方案中,所述第一处理器,用于在所述第二PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第二PHY链路传递了所述同步信息。
上述方案中,所述第一通信接口,还用于通过所述第二PHY链路对应的PHY链路接收所述接收端设备发送的同步信息。
上述方案中,所述第一处理器,用于解析所述对应的PHY链路的开销,获得第二标识;并利用所述第二标识,确定所述对应的PHY链路传递了所述同步信息。
上述方案中,所述第一通信接口,还用于当检测到所述第一PHY链路恢复正常时,在所述第一处理器的控制下将所述同步信息恢复至所述第一PHY 链路进行传输。
上述方案中,所述第一处理器,还用于在所述第一PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第一PHY链路传递了所述同步信息。
上述方案中,所述第一处理器,还用于依据链路倒换规则,从所述FlexE group中选择PHY链路作为所述第二PHY链路。
本公开实施例又提供了一种接收端设备,包括:
第二处理器;
第二通信接口,用于在所述第二处理器的控制下通过第二PHY链路接收发送端设备发送的同步信息;通过所述第二PHY链路接收的同步信息是所述发送端设备检测到用于传输所述同步信息的第一PHY链路失效时发送的;所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路;其中,
所述发送端设备与接收端设备之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路。
上述方案中,所述第二处理器,用于:
解析所述第二PHY链路对应的开销,得到第一标识;
利用所述第一标识,确定所述第二PHY链路传递了所述同步信息。
上述方案中,所述第二通信接口,还用于通过所述第二PHY链路对应的PHY链路向所述发送端设备发送同步信息。
上述方案中,所述第二处理器,还用于在所述对应的PHY链路的开销中设置第二标识;所述第二标识用于指示所述对应的PHY链路传递了所述同步信息。
上述方案中,所述第二通信接口,还用于通过第一PHY链路接收所述发送端设备发送的同步信息;通过所述第一PHY链路接收的同步信息是所述发送端设备检测到所述第一PHY链路恢复正常时发送的。
上述方案中,所述第二处理器,还用于解析所述第一PHY链路对应的开销,得到第一标识;并利用所述第一标识,确定所述第一PHY链路传递了所述发送端设备发送的同步信息。
上述方案中,所述第二处理器,还用于在检测到所述第一PHY链路失效至所述同步信息倒换至所述第二PHY链路传输的时间段内,跟踪所述FlexE group端口。
上述方案中,所述第二处理器,用于在检测到所述第一PHY链路失效至所述同步信息倒换至所述第二PHY链路传输的时间段,且所述发送端设备与接收端设备存在除所述FlexE group路径外的其它链路时,优先跟踪所述FlexE group端口。
上述方案中,所述第二通信接口,还用于当检测到所述第一PHY链路故障时,向所述发送端设备发送所述第一PHY链路失效信息。
本公开实施例还提供了一种发送端设备,包括:第一处理器和用于存储能够在处理器上运行的计算机程序的第一存储器,
其中,所述第一处理器用于运行所述计算机程序时,执行上述发送端设备侧任一方法的步骤。
本公开实施例又提供了一种接收端设备包括:第二处理器和用于存储能够在处理器上运行的计算机程序的第二存储器,
其中,所述第二处理器用于运行所述计算机程序时,执行上述接收端设备任一方法的步骤。
本公开实施例还提供了一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述发送端设备侧任一方法的步骤,或者实现接收端设备侧任一方法的步骤。
本公开实施例提供的同步信息传输方法、发送端设备、接收端设备及存储介质,检测到用于传输同步信息的第一PHY链路失效时,发送端设备将所述同步信息倒换至第二PHY链路进行传输;而接收端设备通过所述第二PHY链路接收所述发送端设备发送的同步信息;其中,所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路;所述发送端设备与接收端设备之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路,当用于传递同步信息的PHY链路失效时,由于将同步信息倒换至该FlexE group中的其它PHY链路传输,因此,能够保持发送端设备和接收端设备同步;同时,由于倒换过程不会引起除发送端设备和接收端设备这两个节点之 外的其它节点的同步跟踪关系发生变化,如此,最大限度地减少对同步网络的影响,降低对网络的影响。
附图说明
图1为本公开实施例提供的FlexE架构示意图;
图2为本公开实施例提供的FlexE group中一个PHY链路失效示意图;
图3为本公开实施例提供的FlexE group链路失效引起的同步跟踪关系变化示意图;
图4为本公开实施例提供的发送端设备侧同步信息传输的方法流程示意图;
图5为本公开实施例提供的同步信息传输的方法流程示意图;
图6为本公开实施例提供的设置在发送端设备上的同步信息传输装置结构示意图;
图7为本公开实施例提供的设置在接收端设备上的同步信息传输装置结构示意图;
图8为本公开实施例提供的发送端设备结构示意图;
图9为本公开实施例提供的接收端设备结构示意图;
图10为本公开实施例提供的同步信息传输系统结构示意图。
具体实施方式
下面结合附图及实施例对本公开再作进一步详细的描述。
需要说明的是,本文中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在描述本公开实施例前,先了解一下同步信息和FlexE的基本架构。
设备间的同步包括时间同步和频率同步。其中,网络传输时间采用PTP协议可满足高精度时间要求。PTP时间同步采用延时计算机制进行,主设备和从设备端口通过交互PTP报文,计算出主从设备之间的路径延迟和时间偏移,实现主从设备之间的时间同步。
频率同步可以通过物理层频率同步实现,设备端口之间除了在物理层传 递频率信号,还需要传递携带频率质量等级的SSM同步状态消息。
如图1所示,FlexE主要包括FlexE Client、FlexEGroup和Flex垫层(FlexEShim)三部分。其中,FlexE group是由多个以太PHY通道组成,例如若干100GBASE-R PHY组成。FlexE Client(客户信号)是需要传输的数据流,每个FlexE group里面可以包含若干FlexE Client。
对于FlexE group里每个PHY通道(也可以称为链路),都要携带开销(英文表述为overhead(OH))。如果FlexE端口需要传递同步信息(包括PTP报文或者频率SSM信息),那么同步信息会放入开销中进行传递。对于FlexE group,同步信息会放入其中一个PHY链路对应的开销中进行传送。
具体地,发送端设备可以将FlexE group中第一个PHY链路(PHY链路在FlexE group中的编号为1)中进行传送。对端设备收到发送端设备的信息后,会从第一个PHY链路对应的开销中接收同步报文并处理,对端设备回送的同步报文也会放入第一个PHY链路对应的开销中进行传送。
另一方面,当FlexE group中某一个PHY链路失效,接收端设备无法收到该PHY链路的开销。那么当采用上述方案传递同步信息时,如图2所示,如果传递同步信息(图2中“OH”中标成黑色的数据)的PHY链路(例如第一个PHY链路)失效,发送端设备没有备用同步路径,则会导致接收端设备无法收到同步信息,也就无法回送同步信息,进而导致同步失败,即该设备(接收端设备)失锁。另一种情况是,如果接收端设备是主时钟,发送端设备要回送报文给接收端设备,由于链路失效的问题则无法回送同步信息,进而导致同步失败,即发送端设备将会失锁。
对于上述问题,如果发送端设备和接收端设备之间除了FlexE group链路外,还有其他路径连接时,即该发送端设备有备用同步路径,则这两端设备有可能会倒换到其它路径进行同步,但是通常倒换其它路径会引起除了这两个节点之外的其它节点同步跟踪关系也发生变化,在网络切换过程中影响到多个节点的同步性能,即倒换至其它路径时通常会引起网络其它节点的倒换,如图3所示。
因此,当FlexE group中用于传递同步信息的PHY链路失效时,仍然可以保持同步,并尽可能减小对同步网络的影响,是有效传输同步信息的基础。
基于此,在本公开的各种实施例中,在FlexE group某一个PHY链路失效时,同步信息及时倒换到该FlexE group中其它PHY通道进行传输。
本公开实施例提供的方案,当检测到用于传输同步信息的第一PHY链路失效时,将所述同步信息倒换至第二PHY链路进行传输;所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路,由于将同步信息倒换至该FlexE group中的其它PHY链路传输,因此,能够保持发送端设备和接收端设备同步;同时,由于倒换过程不会引起除发送端设备和接收端设备这两个节点之外的其它节点的同步跟踪关系发生变化,如此,减少对同步网络的影响。
本公开实施例提供一种同步信息传输的方法,应用于发送端设备,如图4所示,该方法包括:
步骤401:检测到用于传输同步信息的第一PHY链路失效;
这里,同步可以包括频率同步和时间同步;相应地,根据不同的同步过程,同步信息也有所不同。
实际应用时,所述第一PHY链路失效的情况包括:发送端检测到故障,或者接收端检测到故障。其中,当接收端检测到故障,接收端需要将所述第一PHY链路失效信息报给发送端设备。
基于此,在一实施例中,本步骤的具体实现可以包括:
所述发送端设备检测到所述第一PHY链路故障;或者接收到所述接收端设备发送的所述第一PHY链路失效信息。
这里,当发送端检测到故障时,接收端设备也可以检测到故障;当然,所述发送端设备可以通过发送端设备和接收端设备之间的PHY链路将故障告知所述接收端设备。实际应用时,发送端设备也可以通过发送端设备与接收端设备之间的除Flex E group之外的其它链路将故障告知所述接收端设备。
实际应用时,如果发送端设备和接收端设备之间是双向PHY链路,则两个方向在同一个PHY链路上,那么所述接收端设备发送的第一PHY链路失效信息可以在同一条PHY链路上传递,这是因为:发送到接收这一方向有可能是由于发送端设备的光功率不够等原因造成故障,而反方向并没有故障。
如果发送端设备和接收端设备之间是单向PHY链路,则两个方向分别在 两个PHY链路上,那么接收端设备发送的第一PHY链路失效信息则可以在与第一PHY链路匹配的反方向链路上传递。
当然,所述接收端设备也可以通过发送端设备与接收端设备之间的除FlexE group之外的其它链路传送第一PHY链路失效信息至所述发送端设备。
所述故障可以包括:光纤断纤、光模块(发出激光,而信号承载在光上)故障、电路故障、接收报文丢失等。
步骤402:将所述同步信息倒换至第二PHY链路进行传输。
这里,所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路;其中,
所述发送端设备与接收端设备之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路。
也就是说,所述FlexE group由多个以太PHY链路组成,比如,由若干100GBASE-R PHY组成。
实际应用时,所述发送端设备可以是主(即master)设备,相应地,所述接收端设备为从(即slave)设备。当然,所述发送端设备也可以是从设备,相应地,所述接收端设备为主设备。
为了使所述接收端设备能够及时获知是哪个PHY链路传递了所述同步信息,可以设置标识。
基于此,在一实施例中,将所述同步信息倒换至第二PHY链路进行传输时,该方法还可以包括:
在所述第二PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第二PHY链路传递了所述同步信息。
相应地,所述发送端设备采用所述第二PHY链路传输所述同步信息时,所述接收端设备也可以采用所述第二PHY链路对应的PHY链路向所述发送端设备发送同步信息。
基于此,在一实施例中,该方法还可以包括:
所述发送端设备通过所述第二PHY链路对应的PHY链路接收所述接收端设备发送的同步信息。
其中,实际应用时,可以通过设置标识的方式使所述发送端设备及时获 知哪个PHY链路传递了所述接收端设备的同步信息。
基于此,在一实施例中,该方法还可以包括:
解析所述对应的PHY链路的开销,获得第二标识;
利用所述第二标识,确定所述对应的PHY链路传递了所述同步信息。
也就是说,FlexE group中的一条PHY链路传递同步信息时,在开销中携带同步标识,用于指示这条PHY链路传递了同步信息。当检测到其中一条PHY链路失效并倒换至其他PHY链路传递同步信息时,倒换至的这条PHY链路携带传递同步信息的标识,便于接收端设备获知哪条PHY链路携带同步信息。相应地,接收端设备在发送同步报文时,将发送的同步报文也倒换至对应的PHY链路中传递,倒换至的发送的这条PHY链路携带传递同步信息的标识。
实际应用时,可以将开销的某个比特用于标识这条PHY链路是否传递了同步信息,比如,该标识值为1时,说明该PHY链路传递了同步信息,该标识值为0时,说明该PHY链路不用于传递同步信息。
举个例子来说,假设FlexE group由四路PHY链路组成,开始在第一条PHY链路(编号为1的PHY链路)传递同步信息,这时只有第一条PHY链路开销中的同步标识为1,第二至第四条PHY链路(编号分别为2、3、4的PHY链路)开销中的同步标识为0。当第一条PHY链路失效时,倒换至第二路PHY链路传递,则第二条PHY链路开销中的同步标识设为1,第三条和第四条PHY链路的开销中的同步标识为0。
相应地,接收端设备发送到发送端的FlexE group,也是开始时只有第一条PHY链路开销中的同步标识为1,第二至第四条PHY链路(编号分别为2、3、4的PHY链路)开销中的同步标识为0。出现故障后,第二条PHY链路开销中的同步标识设为1,第三条和第四条PHY链路的开销中的同步标识为0。
在一实施例中,所述将所述同步信息倒换至第二PHY链路进行传输时,该方法还可以包括:
依据链路倒换规则,从所述FlexE group中选择PHY链路作为所述第二PHY链路。
这里,所述链路倒换规则,可以是:按照PHY链路在FlexE group的编号顺序依次来倒换,比如,FlexE group中编号为1的PHY链路传递同步信息,当检测到其失效时,倒换至编号为2的PHY链路上传递同步信息。
基于此,在一实施例中,所述依据链路倒换规则,从所述FlexE group中选择PHY链路作为所述第二PHY链路,包括:
按照PHY链路在所述FlexE group的编号顺序,选择相应的PHY链路作为所述第二PHY。
实际应用时,所述链路倒换规则还可以是:按照PHY链路在FlexE group的链路优先级依次来倒换,比如,FlexE group中编号为1的PHY链路传递同步信息,当检测到其失效时,由于编号为3的PHY链路具有高优先级,因此倒换至优先级高的编号为3的PHY链路上传递同步信息。
实际应用时,当检测到原先传递同步信息的失效的PHY链路恢复正常时,可以恢复至该条PHY链路为用于传递同步信息的PHY链路。
基于此,在一实施例中,该方法还可以包括:
当检测到所述第一PHY链路恢复正常时,将所述同步信息恢复至所述第一PHY链路进行传输。
这里,实际应用时,所述第一PHY链路可以是发送端设备与接收端设备默认用于传递同步信息的PHY链路。
那么,在这种情况下,当所述第一PHY链路恢复正常时,所述发送端设备直接将所述同步信息恢复至所述第一PHY链路进行传输。
当然,所述第一PHY链路也可以不是默认用于传递同步信息的PHY链路。
那么,在这种情况下,所述发送端设备需要让接收端设备及时获知所述第一PHY链路传递了同步信息。
基于此,在一实施例中,将所述同步信息恢复至所述第一PHY链路进行传输时,该方法还可以包括:
在所述第一PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第一PHY链路传递了所述同步信息。
相应地,本公开实施例还提供了一种同步信息传输方法,应用于接收端 设备,该方法包括:
通过第二PHY链路接收发送端设备发送的同步信息。
这里,通过所述第二PHY链路接收的同步信息是所述发送端设备检测到用于传输所述同步信息的第一PHY链路失效时发送的。
当然,如前所述,所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路;其中,
所述发送端设备与接收端设备之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路。
实际应用时,当所述接收端设备检测到所述第一PHY故障时,可以将所述第一PHY链路失效信息报给发送端设备,以便所述发送端设备能够及时获知所述第一PHY链路失效,进而保证同步过程。
基于此,在一实施例中,该方法还可以包括:
当检测到所述第一PHY链路故障时,向所述发送端设备发送所述第一PHY链路失效信息。
为了使所述接收端设备能够及时获知是哪个PHY链路传递了所述同步信息,可以设置标识。
基于此,在一实施例中,通过第一PHY链路接收所述发送端设备发送的同步信息时,该方法还包括:
解析所述第二PHY链路对应的开销,得到第一标识;
利用所述第一标识,确定所述第二PHY链路传递了所述同步信息。
相应地,所述接收端设备也可以采用所述第二PHY链路对应的PHY链路向所述发送端设备发送同步信息。
基于此,在一实施例中,该方法还可以包括:
通过所述第二PHY链路对应的PHY链路向所述发送端设备发送同步信息。
其中,实际应用时,可以通过设置标识的方式使所述发送端设备及时获知哪个PHY链路传递了所述接收端设备的同步信息。
基于此,在一实施例中,发送同步信息时,该方法还可以包括:
在所述对应的PHY链路的开销中设置第二标识;所述第二标识用于指示 所述对应的PHY链路传递了所述同步信息。
也就是说,FlexE group中的一条PHY链路传递同步信息时,在开销中携带标识,用于指示这条PHY链路传递了同步信息。当检测到其中一条PHY链路失效并倒换至其他PHY链路传递同步信息时,倒换至的这条PHY链路携带传递同步信息的标识,便于接收端设备获知哪条PHY链路携带同步信息。相应地,接收端设备在发送同步报文时,将发送的同步报文也倒换至对应的PHY链路中传递,倒换至的发送的这条PHY链路携带传递同步信息的标识。
实际应用时,所述接收端设备正在跟踪来自flexE group端口的同步信息的过程中,当检测到FlexE group中用于传递同步信息的PHY链路失效时,所述接收端设备等待FlexE group倒换至使用该FlexE group中的其他PHY链路传递同步信息,在此期间,所述接收端设备不倒换至跟踪该FlexE group端口以外的其他端口。换句话说,在检测到所述第一PHY链路失效至所述同步信息倒换至所述第二PHY链路传输的时间段内,所述接收端设备可以跟踪所述FlexE group端口。
也就是说,在此期间,所述接收端设备可以优先跟踪FlexE group端口。
具体地,在检测到所述第一PHY链路失效至所述同步信息倒换至所述第二PHY链路传输的时间段,且所述发送端设备与接收端设备存在除所述FlexE group路径外的其它链路时,优先跟踪所述FlexE group端口。
其中,在一实施例中,可以通过设置等待延时时长实现优先跟踪所述FlexE group端口;也可以通过设置链路优先级实现优先跟踪所述FlexE group端口。
这里,对于通过设置等待延时时长实现优先跟踪所述FlexE group端口的过程,实际应用时,可以设置定时器,所述第一PHY链路失效后启动定时器,在定时器时长内尝试跟踪所述FlexE group端口,当定时器超时后且跟踪失败时则尝试跟踪所述其它链路的端口。
对于通过设置链路优先级实现优先跟踪所述FlexE group端口的过程,实际应用时,可以设置所述FlexE group路径的优先级高于其它链路的优先级,这样,当第一PHY链路失效后,所述接收端设备等待FlexE group倒换至使用该FlexE group中的其他PHY链路传递同步信息的期间,优先尝试跟踪所 述FlexE group端口。
实际应用时,当检测到原先传递同步信息的失效的PHY链路恢复正常时,可以恢复至该条PHY链路为用于传递同步信息的PHY链路。
基于此,在一实施例中,该方法还可以包括:
通过第一PHY链路接收所述发送端设备发送的同步信息;通过所述第一PHY链路接收的同步信息是所述发送端设备检测到所述第一PHY链路恢复正常时发送的。
这里,实际应用时,所述第一PHY链路可以是发送端设备与接收端设备默认用于传递同步信息的PHY链路。
那么,在这种情况下,当所述第一PHY链路恢复正常时,所述发送端设备直接将所述同步信息恢复至所述第一PHY链路进行传输。
当然,所述第一PHY链路也可以不是默认用于传递同步信息的PHY链路。
那么,在这种情况下,所述发送端设备需要让接收端设备及时获知所述第一PHY链路传递了同步信息。
基于此,在一实施例中,通过第一PHY链路接收所述发送端设备发送的同步信息时,该方法还可以包括:
解析所述第一PHY链路对应的开销,得到第一标识;
利用所述第一标识,确定所述第一PHY链路传递了所述发送端设备发送的同步信息。
本公开实施例还提供了一种同步信息传输的方法,如图5所示,该方法包括:
步骤501:发送端设备检测到用于传输同步信息的第一PHY链路失效;
步骤502:所述发送端设备将所述同步信息倒换至第二PHY链路进行传输;
步骤503:接收端设备通过所述第二PHY链路接收所述发送端设备发送的同步信息。
其中,所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路;其中,
所述发送端设备与接收端设备之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路。
需要说明的是:发送端设备和接收端设备的具体处理过程已在上文详述,这里不再赘述。
本公开实施例提供的同步信息传输方法,检测到用于传输同步信息的第一PHY链路失效时,发送端设备将所述同步信息倒换至第二PHY链路进行传输;而接收端设备通过所述第二PHY链路接收所述发送端设备发送的同步信息;其中,所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路;所述发送端设备与接收端设备之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路,当用于传递同步信息的PHY链路失效时,由于将同步信息倒换至该FlexE group中的其它PHY链路传输,因此,能够保持发送端设备和接收端设备同步;同时,由于倒换过程不会引起除发送端设备和接收端设备这两个节点之外的其它节点的同步跟踪关系发生变化,如此,最大限度地减少对同步网络的影响,降低对网络的影响。
另外,传输同步信息时,在PHY链路对应的开销中设置标识,用于指示哪条PHY链路传递了同步信息,如此,能够让接收端及时获知哪条PHY链路传递了同步信息,进一步保障了两个设备之间的同步。
除此以外,所述接收端设备等待FlexE group倒换至使用该FlexE group中的其他PHY链路传递同步信息,在此期间,所述接收端设备不倒换至跟踪该FlexE group端口以外的其他端口,由于在等待FlexE group倒换至使用该FlexE group中的其他PHY链路传递同步信息的期间,接收端设备不倒换至跟踪该FlexE group端口以外的其他端口,也就是说,所述接收端设备可以优先跟踪FlexE group端口,如此,保证了倒换过程不会引起除发送端设备和接收端设备这两个节点之外的其它节点的同步跟踪关系发生变化,进而能够最大限度地减少对同步网络的影响。
为实现本公开实施例发送端设备侧的方法,本公开实施例还提供了一种同步信息传输装置,设置在发送端设备,如图6所示,该装置包括:
检测单元61;
第一倒换单元62,用于当所述检测单元61检测到用于传输同步信息的 第一PHY链路失效时,将所述同步信息倒换至第二PHY链路进行传输;所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路;其中,
所述发送端设备与接收端设备之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路。
实际应用时,所述第一PHY链路失效的情况包括:发送端检测到故障,或者接收端检测到故障。其中,当接收端检测到故障,接收端需要将所述第一PHY链路失效信息报给发送端设备。
基于此,在一实施例中,所述检测单元61,用于:
检测到所述第一PHY链路故障;或者接收到所述接收端设备发送的所述第一PHY链路失效信息。
为了使所述接收端设备能够及时获知是哪个PHY链路传递了所述同步信息,可以设置标识。
基于此,在一实施例中,所述第一倒换单元62,还用于在所述第二PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第二PHY链路传递了所述同步信息。
相应地,所述发送端设备采用所述第二PHY链路传输所述同步信息时,所述接收端设备也可以采用所述第二PHY链路对应的PHY链路向所述发送端设备发送同步信息。
基于此,在一实施例中,所述第一倒换单元62,还用于通过所述第二PHY链路对应的PHY链路接收所述接收端设备发送的同步信息。
其中,实际应用时,可以通过设置标识的方式使所述发送端设备及时获知哪个PHY链路传递了所述接收端设备的同步信息。
基于此,在一实施例中,所述第一倒换单元62,还用于解析所述对应的PHY链路的开销,获得第二标识;并利用所述第二标识,确定所述对应的PHY链路传递了所述同步信息。
在一实施例中,所述第一倒换单元62,还用于依据链路倒换规则,从所述FlexE group中选择PHY链路作为所述第二PHY链路。
这里,所述链路倒换规则,可以是:按照PHY链路在FlexE group的编 号顺序依次来倒换,比如,FlexE group中编号为1的PHY链路传递同步信息,当检测到其失效时,倒换至编号为2的PHY链路上传递同步信息。
基于此,在一实施例中,所述第一倒换单元62,具体用于:
按照PHY链路在所述FlexE group的编号顺序,选择相应的PHY链路作为所述第二PHY。
实际应用时,所述链路倒换规则还可以是:按照PHY链路在FlexE group的链路优先级依次来倒换,比如,FlexE group中编号为1的PHY链路传递同步信息,当检测到其失效时,倒换至优先级高的编号为2的PHY链路上传递同步信息。
实际应用时,当检测到原先传递同步信息的失效的PHY链路恢复正常时,可以恢复至该条PHY链路为用于传递同步信息的PHY链路。
基于此,在一实施例中,所述第一倒换单元62,还用于当所述检测单元61检测到所述第一PHY链路恢复正常时,将所述同步信息恢复至所述第一PHY链路进行传输。
这里,实际应用时,所述第一PHY链路可以是发送端设备与接收端设备默认用于传递同步信息的PHY链路。
那么,在这种情况下,当所述第一PHY链路恢复正常时,所述第一倒换单元62直接将所述同步信息恢复至所述第一PHY链路进行传输。
当然,所述第一PHY链路也可以不是默认用于传递同步信息的PHY链路。
那么,在这种情况下,所述第一倒换单元62需要让接收端设备及时获知所述第一PHY链路传递了同步信息。
基于此,在一实施例中,所述第一倒换单元62,还用于在所述第一PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第一PHY链路传递了所述同步信息。
实际应用时,所述检测单元61及第一倒换单元62可由同步信息传输装置中的处理器结合通信接口实现。
为了实现本公开实施例接收端设备侧的方法,本公开实施例还提供了一种同步信息传输装置,设置在发送端设备,如图7所示,该装置包括:
第二倒换单元71,用于通过第二PHY链路接收发送端设备发送的同步信息;通过所述第二PHY链路接收的同步信息是所述发送端设备检测到用于传输所述同步信息的第一PHY链路失效时发送的;所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路;其中,
所述发送端设备与接收端设备之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路。
为了使所述接收端设备能够及时获知是哪个PHY链路传递了所述同步信息,可以设置标识。
基于此,在一实施例中,所述第二倒换单元71,还用于:
解析所述第二PHY链路对应的开销,得到第一标识;
利用所述第一标识,确定所述第二PHY链路传递了所述同步信息。
相应地,所述接收端设备也可以采用所述第二PHY链路对应的PHY链路向所述发送端设备发送同步信息。
基于此,在一实施例中,所述第二倒换单元71,还用于通过所述第二PHY链路对应的PHY链路向所述发送端设备发送同步信息。
其中,实际应用时,可以通过设置标识的方式使所述发送端设备及时获知哪个PHY链路传递了所述接收端设备的同步信息。
基于此,在一实施例中,所述第二倒换单元71,还用于在所述对应的PHY链路的开销中设置第二标识;所述第二标识用于指示所述对应的PHY链路传递了所述同步信息。
实际应用时,所述接收端设备正在跟踪来自flexE group端口的同步信息的过程中,当检测到FlexE group中检用于传递同步信息的PHY链路失效时,所述接收端设备等待FlexE group倒换至使用该FlexE group中的其他PHY链路传递同步信息,在此期间,所述接收端设备不倒换至跟踪该FlexE group端口以外的其他端口。换句话说,如图7所示,该装置还可以包括:跟踪单元72,用于在检测到所述第一PHY链路失效至所述同步信息倒换至所述第二PHY链路传输的时间段内,可以跟踪所述FlexE group端口。
也就是说,在此期间,所述跟踪单元72可以优先跟踪FlexE group端口。
具体地,在检测到所述第一PHY链路失效至所述同步信息倒换至所述第 二PHY链路传输的时间段,且所述发送端设备与接收端设备存在除所述FlexE group路径外的其它链路时,所述跟踪单元72优先跟踪所述FlexE group端口。
其中,在一实施例中,可以通过设置等待延时时长实现优先跟踪所述FlexE group端口;也可以通过设置链路优先级实现优先跟踪所述FlexE group端口。
实际应用时,当检测到原先传递同步信息的失效的PHY链路恢复正常时,可以恢复至该条PHY链路为用于传递同步信息的PHY链路。
基于此,在一实施例中,所述第二倒换单元71,还用于通过第一PHY链路接收所述发送端设备发送的同步信息;通过所述第一PHY链路接收的同步信息是所述发送端设备检测到所述第一PHY链路恢复正常时发送的。
这里,实际应用时,所述第一PHY链路可以是发送端设备与接收端设备默认用于传递同步信息的PHY链路。
那么,在这种情况下,当所述第一PHY链路恢复正常时,所述发送端设备直接将所述同步信息恢复至所述第一PHY链路进行传输。
当然,所述第一PHY链路也可以不是默认用于传递同步信息的PHY链路。
那么,在这种情况下,所述发送端设备需要让接收端设备及时获知所述第一PHY链路传递了同步信息。
基于此,在一实施例中,所述第二倒换单元71,还用于接收所述发送端设备发送的同步信息时,解析所述第一PHY链路对应的开销,得到第一标识;并利用所述第一标识,确定所述第一PHY链路传递了所述发送端设备发送的同步信息。
实际应用时,当所述接收端设备检测到所述第一PHY故障时,可以将所述第一PHY链路失效信息报给发送端设备,以便所述发送端设备能够及时获知所述第一PHY链路失效,进而保证同步过程。
基于此,在一实施例中,该装置还可以包括:发送单元,用于通过第一PHY链路接收所述发送端设备发送的同步信息;通过所述第一PHY链路接收的同步信息是所述发送端设备检测到所述第一PHY链路恢复正常时发送 的。
实际应用时,所述第二倒换单元71、跟踪单元72及发送单元可由同步信息传输装置中的处理器结合通信接口实现。
需要说明的是:上述实施例提供的同步信息传输装置在进行同步信息传输时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的同步信息传输装置与同步信息传输方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
基于上述程序模块的硬件实现,且为了实现本公开实施例的方法,本公开实施例还提供了一种发送端设备,如图8所示,该发送端设备80包括:
第一通信接口81,能够与接收端设备进行信息交互;
第一处理器82,与所述第一通信接口81连接,以实现与接收端设备进行信息交互,用于运行计算机程序时,执行上述发送端设备侧一个或多个技术方案提供的方法。而所述计算机程序存储在第一存储器83上。
具体地,第一通信接口81,用于当检测到用于传输同步信息的第一PHY链路失效时,在所述第一处理器82的控制下将所述同步信息倒换至第二PHY链路进行传输;所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路;其中,
所述发送端设备与接收端设备之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路。
实际应用时,所述第一PHY链路失效的情况包括:发送端检测到故障,或者接收端检测到故障。其中,当接收端检测到故障,接收端需要将所述第一PHY链路失效信息报给发送端设备。
基于此,在一实施例中,所述第一处理器82,用于:
检测到所述第一PHY链路故障;或者通过所述第一通信接口81接收到所述接收端设备发送的所述第一PHY链路失效信息。
为了使所述接收端设备能够及时获知是哪个PHY链路传递了所述同步信息,可以设置标识。
基于此,在一实施例中,所述第一处理器82,用于在所述第二PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第二PHY链路传递了所述同步信息。
相应地,所述发送端设备采用所述第二PHY链路传输所述同步信息时,所述接收端设备也可以采用所述第二PHY链路对应的PHY链路向所述发送端设备发送同步信息。
基于此,在一实施例中,所述第一通信接口81,还用于通过所述第二PHY链路对应的PHY链路接收所述接收端设备发送的同步信息。
其中,实际应用时,可以通过设置标识的方式使所述发送端设备及时获知哪个PHY链路传递了所述接收端设备的同步信息。
基于此,在一实施例中,所述第一处理器82,用于解析所述对应的PHY链路的开销,获得第二标识;并利用所述第二标识,确定所述对应的PHY链路传递了所述同步信息。
在一实施例中,所述第一处理器82,还用于依据链路倒换规则,从所述FlexE group中选择PHY链路作为所述第二PHY链路。
这里,所述链路倒换规则,可以是:按照PHY链路在FlexE group的编号顺序依次来倒换,比如,FlexE group中编号为1的PHY链路传递同步信息,当检测到其失效时,倒换至编号为2的PHY链路上传递同步信息。
基于此,在一实施例中,所述第一处理器82,具体用于:
按照PHY链路在所述FlexE group的编号顺序,选择相应的PHY链路作为所述第二PHY。
实际应用时,所述链路倒换规则还可以是:按照PHY链路在FlexE group的链路优先级依次来倒换,比如,FlexE group中编号为1的PHY链路传递同步信息,当检测到其失效时,倒换至优先级高的编号为2的PHY链路上传递同步信息。
实际应用时,当检测到原先传递同步信息的失效的PHY链路恢复正常时,可以恢复至该条PHY链路为用于传递同步信息的PHY链路。
基于此,在一实施例中,所述第一通信接口81,还用于当检测到所述第一PHY链路恢复正常时,在所述第一处理器82的控制下将所述同步信息恢 复至所述第一PHY链路进行传输。
这里,实际应用时,所述第一PHY链路可以是发送端设备与接收端设备默认用于传递同步信息的PHY链路。
那么,在这种情况下,当所述第一PHY链路恢复正常时,所述第一倒换单元62直接将所述同步信息恢复至所述第一PHY链路进行传输。
当然,所述第一PHY链路也可以不是默认用于传递同步信息的PHY链路。
那么,在这种情况下,所述发送端设备需要让接收端设备及时获知所述第一PHY链路传递了同步信息。
基于此,在一实施例中,所述第一处理器82,还用于在所述第一PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第一PHY链路传递了所述同步信息。
需要说明的是:所述第一处理器82的具体处理过程详见方法实施例,这里不再赘述。
当然,实际应用时,所述发送端设备80中的各个组件通过总线系统84耦合在一起。可理解,总线系统84用于实现这些组件之间的连接通信。总线系统84除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图8中将各种总线都标为总线系统84。
本公开实施例中的第一存储器83用于存储各种类型的数据以支持发送端设备80的操作。这些数据的示例包括:用于在发送端设备80上操作的任何计算机程序。
上述本公开实施例揭示的方法可以应用于所述第一处理器82中,或者由所述第一处理器82实现。所述第一处理器82可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过所述第一处理器82中的硬件的集成逻辑电路或者软件形式的指令完成。上述的所述第一处理器82可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。所述第一处理器82可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本 公开实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于第一存储器83,所述第一处理器82读取第一存储器83中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,发送端设备80可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,ASIC)、DSP、可编程逻辑器件(Programmable Logic Device,PLD)、复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器(Micro Controller Unit,MCU)、微处理器(Microprocessor)、或者其他电子元件实现,用于执行前述方法。
基于上述程序模块的硬件实现,且为了实现本公开实施例接收端设备的方法,本公开实施例提供了一种接收端设备,如图9所示,该接收端设备90包括:
第二通信接口91,能够与发送端设备进行信息交互;
第二处理器92,与所述第二通信接口91连接,以实现与发送端设备进行信息交互,用于运行计算机程序时,执行上述接收端设备侧一个或多个技术方案提供的方法。而所述计算机程序存储在所述第二存储器93上。
具体地,第二通信接口91,用于在所述第二处理器92的控制下通过第二PHY链路接收发送端设备发送的同步信息;通过所述第二PHY链路接收的同步信息是所述发送端设备检测到用于传输所述同步信息的第一PHY链路失效时发送的;所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路;其中,
所述发送端设备与接收端设备之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路。
为了使所述接收端设备能够及时获知是哪个PHY链路传递了所述同步信息,可以设置标识。
基于此,在一实施例中,所述第二处理器92,用于:
解析所述第二PHY链路对应的开销,得到第一标识;
利用所述第一标识,确定所述第二PHY链路传递了所述同步信息。
相应地,所述接收端设备90也可以采用所述第二PHY链路对应的PHY链路向所述发送端设备发送同步信息。
基于此,在一实施例中,所述第二通信接口91,还用于通过所述第二PHY链路对应的PHY链路向所述发送端设备发送同步信息。
其中,实际应用时,可以通过设置标识的方式使所述发送端设备及时获知哪个PHY链路传递了所述接收端设备的同步信息。
所述第二处理器92,还用于在所述对应的PHY链路的开销中设置第二标识;所述第二标识用于指示所述对应的PHY链路传递了所述同步信息。
实际应用时,所述接收端设备正在跟踪来自flexE group端口的同步信息的过程中,当检测到FlexE group中用于传递同步信息的PHY链路失效时,所述接收端设备等待FlexE group倒换至使用该FlexE group中的其他PHY链路传递同步信息,在此期间,所述接收端设备不倒换至跟踪该FlexE group端口以外的其他端口。换句话说,所述第二处理器92,还用于在检测到所述第一PHY链路失效至所述同步信息倒换至所述第二PHY链路传输的时间段内,可以跟踪所述FlexE group端口。
也就是说,在此期间,所述第二处理器92可以优先跟踪FlexE group端口。
具体地,在检测到所述第一PHY链路失效至所述同步信息倒换至所述第二PHY链路传输的时间段,且所述发送端设备与接收端设备存在除所述FlexE group路径外的其它链路时,所述第二处理器92优先跟踪所述FlexE group端口。
其中,在一实施例中,可以通过设置等待延时时长实现优先跟踪所述FlexE group端口;也可以通过设置链路优先级实现优先跟踪所述FlexE group端口。
实际应用时,当检测到原先传递同步信息的失效的PHY链路恢复正常时,可以恢复至该条PHY链路为用于传递同步信息的PHY链路。
基于此,在一实施例中,所述第二通信接口91,还用于通过第一PHY链路接收所述发送端设备发送的同步信息;通过所述第一PHY链路接收的同 步信息是所述发送端设备检测到所述第一PHY链路恢复正常时发送的。
这里,实际应用时,所述第一PHY链路可以是发送端设备与接收端设备默认用于传递同步信息的PHY链路。
那么,在这种情况下,当所述第一PHY链路恢复正常时,所述发送端设备直接将所述同步信息恢复至所述第一PHY链路进行传输。
当然,所述第一PHY链路也可以不是默认用于传递同步信息的PHY链路。
那么,在这种情况下,所述发送端设备需要让接收端设备及时获知所述第一PHY链路传递了同步信息。
基于此,在一实施例中,所述第二处理器92,还用于解析所述第一PHY链路对应的开销,得到第一标识;并利用所述第一标识,确定所述第一PHY链路传递了所述发送端设备发送的同步信息。
实际应用时,当所述接收端设备检测到所述第一PHY故障时,可以将所述第一PHY链路失效信息报给发送端设备,以便所述发送端设备能够及时获知所述第一PHY链路失效,进而保证同步过程。
基于此,在一实施例中,所述第二通信接口91,还用于当检测到所述第一PHY链路故障时,向所述发送端设备发送所述第一PHY链路失效信息。
需要说明的是:所述第二处理器92的具体处理过程详见方法实施例,这里不再赘述。
当然,实际应用时,接收端设备90中的各个组件通过总线系统94耦合在一起。可理解,总线系统94用于实现这些组件之间的连接通信。总线系统94除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图9中将各种总线都标为总线系统94。
本公开实施例中的第二存储器93用于存储各种类型的数据以支持接收端设备90的操作。这些数据的示例包括:用于在接收端设备90上操作的任何计算机程序。
上述本公开实施例揭示的方法可以应用于所述第二处理器92中,或者由所述第二处理器92实现。所述第二处理器92可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过所述第二处 理器92中的硬件的集成逻辑电路或者软件形式的指令完成。上述的所述第二处理器92可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。所述第二处理器92可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于第二存储器93,所述第二处理器92读取第二存储器93中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,接收端设备90可以被一个或多个ASIC、DSP、PLD、CPLD、FPGA、通用处理器、控制器、MCU、Microprocessor、或其他电子元件实现,用于执行前述方法。
可以理解,本公开实施例的存储器(第一存储器83和第二存储器93)可以是易失性存储器或者非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read Only Memory,ROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性随机存取存储器(ferromagnetic random access memory,FRAM)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(Compact Disc Read-Only Memory,CD-ROM);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static Random Access Memory,SRAM)、同步静态随机存取存储器(Synchronous Static Random Access Memory,SSRAM)、动态随机存取存储器(Dynamic Random Access Memory,DRAM)、同步动态随机存取存储器(Synchronous Dynamic Random Access Memory,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate Synchronous Dynamic Random Access Memory,DDRSDRAM)、增 强型同步动态随机存取存储器(Enhanced Synchronous Dynamic Random Access Memory,ESDRAM)、同步连接动态随机存取存储器(SyncLink Dynamic Random Access Memory,SLDRAM)、直接内存总线随机存取存储器(Direct Rambus Random Access Memory,DRRAM)。本公开实施例描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
为实现本公开实施例的方法,本公开实施例还提供了一种同步信息传输系统,如图10所示,该系统包括:
发送端设备101,用于检测到用于传输同步信息的第一PHY链路失效时,将所述同步信息倒换至第二PHY链路进行传输;
接收端设备102,用于通过所述第二PHY链路接收所述发送端设备101发送的同步信息。
其中,所述第二PHY链路为FlexE group中除所述第一PHY链路外的其它PHY链路;其中,
所述发送端设备101与接收端设备102之间存在所述FlexE group;所述FlexE group包含至少两条PHY链路。
需要说明的是:发送端设备101和接收端设备102的具体处理过程已在上文详述,这里不再赘述。
在示例性实施例中,本公开实施例还提供了一种存储介质,即计算机存储介质,具体为计算机可读存储介质,例如包括存储计算机程序的第一存储器103,上述计算机程序可由发送端设备80的第一处理器82执行,以完成前述发送端设备侧方法所述步骤。再比如包括存储计算机程序的第二存储器93,上述计算机程序可由接收端设备90的第二处理器92执行,以完成前述接收端设备侧方法所述步骤。计算机可读存储介质可以是RAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器。
需要说明的是:本公开实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本公开的可选实施例而已,并非用于限定本公开的保护范围。

Claims (38)

  1. 一种同步信息传输方法,应用于发送端设备,所述方法包括:
    当检测到用于传输同步信息的第一物理层PHY链路失效时,将所述同步信息倒换至第二PHY链路进行传输;所述第二PHY链路为灵活以太网组中除所述第一PHY链路外的其它PHY链路;其中,
    所述发送端设备与接收端设备之间存在所述灵活以太网组;所述灵活以太网组包含至少两条PHY链路。
  2. 根据权利要求1所述的方法,将所述同步信息倒换至第二PHY链路进行传输时,所述方法还包括:
    在所述第二PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第二PHY链路传递了所述同步信息。
  3. 根据权利要求1所述的方法,还包括:
    通过所述第二PHY链路对应的PHY链路接收所述接收端设备发送的同步信息。
  4. 根据权利要求3所述的方法,还包括:
    解析所述对应的PHY链路的开销,获得第二标识;
    利用所述第二标识,确定所述对应的PHY链路传递了所述同步信息。
  5. 根据权利要求1所述的方法,其中,所述检测到用于传输同步信息的第一PHY链路失效,包括:
    检测到所述第一PHY链路故障;或者接收到所述接收端设备发送的所述第一PHY链路失效信息。
  6. 根据权利要求1所述的方法,还包括:
    当检测到所述第一PHY链路恢复正常时,将所述同步信息恢复至所述第一PHY链路进行传输。
  7. 根据权利要求6所述的方法,将所述同步信息恢复至所述第一PHY链路进行传输时,所述方法还包括:
    在所述第一PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第一PHY链路传递了所述同步信息。
  8. 根据权利要求1所述的方法,所述将所述同步信息倒换至第二PHY链路进行传输时,所述方法还包括:
    依据链路倒换规则,从所述灵活以太网组中选择PHY链路作为所述第二PHY链路。
  9. 根据权利要求8所述的方法,其中,所述依据链路倒换规则,从所述灵活以太网组中选择PHY链路作为所述第二PHY链路,包括:
    按照PHY链路在所述灵活以太网组的编号顺序,选择相应的PHY链路作为所述第二PHY。
  10. 一种同步信息传输方法,应用于接收端设备,所述方法包括:
    通过第二PHY链路接收发送端设备发送的同步信息;通过所述第二PHY链路接收的同步信息是所述发送端设备检测到用于传输所述同步信息的第一PHY链路失效时发送的;所述第二PHY链路为灵活以太网组中除所述第一PHY链路外的其它PHY链路;其中,
    所述发送端设备与接收端设备之间存在所述灵活以太网组;所述灵活以太网组包含至少两条PHY链路。
  11. 根据权利要求8所述的方法,还包括:
    解析所述第二PHY链路对应的开销,得到第一标识;
    利用所述第一标识,确定所述第二PHY链路传递了所述同步信息。
  12. 根据权利要求8所述的方法,还包括:
    通过所述第二PHY链路对应的PHY链路向所述发送端设备发送同步信息。
  13. 根据权利要求12所述的方法,发送同步信息时,所述方法还包括:
    在所述对应的PHY链路的开销中设置第二标识;所述第二标识用于指示所述对应的PHY链路传递了所述同步信息。
  14. 根据权利要求9所述的方法,还包括:
    通过第一PHY链路接收所述发送端设备发送的同步信息;通过所述第一PHY链路接收的同步信息是所述发送端设备检测到所述第一PHY链路恢复正常时发送的。
  15. 根据权利要求14所述的方法,通过第一PHY链路接收所述发送端 设备发送的同步信息时,所述方法还包括:
    解析所述第一PHY链路对应的开销,得到第一标识;
    利用所述第一标识,确定所述第一PHY链路传递了所述发送端设备发送的同步信息。
  16. 根据权利要求10所述的方法,还包括:
    在检测到所述第一PHY链路失效至所述同步信息倒换至所述第二PHY链路传输的时间段内,跟踪所述灵活以太网组端口。
  17. 根据权利要求10所述的方法,其中,在检测到所述第一PHY链路失效至所述同步信息倒换至所述第二PHY链路传输的时间段,且所述发送端设备与接收端设备存在除所述灵活以太网组路径外的其它链路时,优先跟踪所述灵活以太网组端口。
  18. 根据权利要求17所述的方法,其中,所述优先跟踪所述灵活以太网组端口,包括:
    通过设置等待延时时长实现优先跟踪所述灵活以太网组端口;
    或者,通过设置链路优先级实现优先跟踪所述灵活以太网组端口。
  19. 根据权利要求10所述的方法,还包括:
    当检测到所述第一PHY链路故障时,向所述发送端设备发送所述第一PHY链路失效信息。
  20. 一种发送端设备,包括:
    第一处理器;
    第一通信接口,用于当检测到用于传输同步信息的第一PHY链路失效时,在所述第一处理器的控制下将所述同步信息倒换至第二PHY链路进行传输;所述第二PHY链路为灵活以太网组中除所述第一PHY链路外的其它PHY链路;其中,
    所述发送端设备与接收端设备之间存在所述灵活以太网组;所述灵活以太网组包含至少两条PHY链路。
  21. 根据权利要求20所述的设备,其中,所述第一处理器,用于在所述第二PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第二PHY链路传递了所述同步信息。
  22. 根据权利要求20所述的设备,其中,所述第一通信接口,还用于通过所述第二PHY链路对应的PHY链路接收所述接收端设备发送的同步信息。
  23. 根据权利要求22所述的设备,其中,所述第一处理器,用于解析所述对应的PHY链路的开销,获得第二标识;并利用所述第二标识,确定所述对应的PHY链路传递了所述同步信息。
  24. 根据权利要求20所述的设备,其中,所述第一通信接口,还用于当检测到所述第一PHY链路恢复正常时,在所述第一处理器的控制下将所述同步信息恢复至所述第一PHY链路进行传输。
  25. 根据权利要求24所述的设备,其中,所述第一处理器,还用于在所述第一PHY链路对应的开销中设置第一标识;所述第一标识用于指示所述第一PHY链路传递了所述同步信息。
  26. 根据权利要求20所述的设备,其中,所述第一处理器,还用于依据链路倒换规则,从所述灵活以太网组中选择PHY链路作为所述第二PHY链路。
  27. 一种接收端设备,包括:
    第二处理器;
    第二通信接口,用于在所述第二处理器的控制下通过第二PHY链路接收发送端设备发送的同步信息;通过所述第二PHY链路接收的同步信息是所述发送端设备检测到用于传输所述同步信息的第一PHY链路失效时发送的;所述第二PHY链路为灵活以太网组中除所述第一PHY链路外的其它PHY链路;其中,
    所述发送端设备与接收端设备之间存在所述灵活以太网组;所述灵活以太网组包含至少两条PHY链路。
  28. 根据权利要求27所述的设备,其中,所述第二处理器,用于:
    解析所述第二PHY链路对应的开销,得到第一标识;
    利用所述第一标识,确定所述第二PHY链路传递了所述同步信息。
  29. 根据权利要求27所述的设备,其中,所述第二通信接口,还用于通过所述第二PHY链路对应的PHY链路向所述发送端设备发送同步信息。
  30. 根据权利要求29所述的设备,其中,所述第二处理器,还用于在所 述对应的PHY链路的开销中设置第二标识;所述第二标识用于指示所述对应的PHY链路传递了所述同步信息。
  31. 根据权利要求27所述的设备,其中,所述第二通信接口,还用于通过第一PHY链路接收所述发送端设备发送的同步信息;通过所述第一PHY链路接收的同步信息是所述发送端设备检测到所述第一PHY链路恢复正常时发送的。
  32. 根据权利要求31所述的设备,其中,所述第二处理器,还用于解析所述第一PHY链路对应的开销,得到第一标识;并利用所述第一标识,确定所述第一PHY链路传递了所述发送端设备发送的同步信息。
  33. 根据权利要求27所述的设备,其中,所述第二处理器,还用于在检测到所述第一PHY链路失效至所述同步信息倒换至所述第二PHY链路传输的时间段内,跟踪所述灵活以太网组端口。
  34. 根据权利要求27所述的设备,其中,所述第二处理器,用于在检测到所述第一PHY链路失效至所述同步信息倒换至所述第二PHY链路传输的时间段,且所述发送端设备与接收端设备存在除所述灵活以太网组路径外的其它链路时,优先跟踪所述灵活以太网组端口。
  35. 根据权利要求27所述的设备,其中,所述第二通信接口,还用于当检测到所述第一PHY链路故障时,向所述发送端设备发送所述第一PHY链路失效信息。
  36. 一种发送端设备,包括:第一处理器和用于存储能够在处理器上运行的计算机程序的第一存储器,
    其中,所述第一处理器用于运行所述计算机程序时,执行权利要求1至9任一项所述方法的步骤。
  37. 一种接收端设备,包括:第二处理器和用于存储能够在处理器上运行的计算机程序的第二存储器,
    其中,所述第二处理器用于运行所述计算机程序时,执行权利要求10至19任一项所述方法的步骤。
  38. 一种存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至9任一项所述方法的步骤,或者实现权利要 求10至19任一项所述方法的步骤。
PCT/CN2019/089959 2018-06-06 2019-06-04 同步信息传输方法、发送端设备、接收端设备及存储介质 WO2019233403A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19815470.0A EP3806391A4 (en) 2018-06-06 2019-06-04 SYNCHRONIZATION INFORMATION TRANSMITTING METHOD, TRANSMITTING TERMINAL, RECEIVING TERMINAL AND STORAGE MEDIA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810573024.4A CN110572228B (zh) 2018-06-06 2018-06-06 同步信息传输方法、装置、相关设备及存储介质
CN201810573024.4 2018-06-06

Publications (1)

Publication Number Publication Date
WO2019233403A1 true WO2019233403A1 (zh) 2019-12-12

Family

ID=68770027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089959 WO2019233403A1 (zh) 2018-06-06 2019-06-04 同步信息传输方法、发送端设备、接收端设备及存储介质

Country Status (3)

Country Link
EP (1) EP3806391A4 (zh)
CN (1) CN110572228B (zh)
WO (1) WO2019233403A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113382430A (zh) * 2020-02-25 2021-09-10 中国电信股份有限公司 网络切片的数据传输方法、装置以及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113098645A (zh) * 2019-12-23 2021-07-09 中兴通讯股份有限公司 同步信息的配置方法、装置、网络设备和存储介质
CN112929119B (zh) * 2021-02-04 2021-10-01 烽火通信科技股份有限公司 分布式系统链路切换方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197656A (zh) * 2006-12-07 2008-06-11 杭州华三通信技术有限公司 基于以太网时分化的时钟同步传递方法和装置及保护方法
CN106612220A (zh) * 2015-10-27 2017-05-03 中兴通讯股份有限公司 灵活以太网的通道管理方法和装置
CN107800528A (zh) * 2016-08-31 2018-03-13 中兴通讯股份有限公司 一种传输同步信息的方法、装置和系统
WO2018099161A1 (zh) * 2016-12-02 2018-06-07 华为技术有限公司 保护倒换方法、网络设备及系统
CN108243120A (zh) * 2016-12-26 2018-07-03 北京华为数字技术有限公司 基于灵活以太网的业务流传输方法、装置和通信系统
WO2019000241A1 (zh) * 2017-06-27 2019-01-03 华为技术有限公司 保护倒换方法、设备及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10135760B2 (en) * 2015-06-30 2018-11-20 Ciena Corporation Flexible Ethernet chip-to-chip inteface systems and methods
EP3306839A1 (en) * 2016-10-06 2018-04-11 Alcatel Lucent Flexible ethernet client mapping procedure
CN107395425A (zh) * 2017-07-31 2017-11-24 烽火通信科技股份有限公司 一种灵活以太网1+1保护倒换实现方法
CN108092924B (zh) * 2017-12-25 2020-06-09 烽火通信科技股份有限公司 基于FlexE业务的信元交换方法及系统
EP3923511A4 (en) * 2019-03-11 2022-02-16 Huawei Technologies Co., Ltd. CLOCK SYNCHRONIZATION MESSAGE INTERACTION METHOD AND APPARATUS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197656A (zh) * 2006-12-07 2008-06-11 杭州华三通信技术有限公司 基于以太网时分化的时钟同步传递方法和装置及保护方法
CN106612220A (zh) * 2015-10-27 2017-05-03 中兴通讯股份有限公司 灵活以太网的通道管理方法和装置
CN107800528A (zh) * 2016-08-31 2018-03-13 中兴通讯股份有限公司 一种传输同步信息的方法、装置和系统
WO2018099161A1 (zh) * 2016-12-02 2018-06-07 华为技术有限公司 保护倒换方法、网络设备及系统
CN108243120A (zh) * 2016-12-26 2018-07-03 北京华为数字技术有限公司 基于灵活以太网的业务流传输方法、装置和通信系统
WO2019000241A1 (zh) * 2017-06-27 2019-01-03 华为技术有限公司 保护倒换方法、设备及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806391A4 *
ZHAN, ZHIGUO ET AL.: "Transport Network Based on FlexE Technology", TELECOMMUNICATIONS INFORMATION, no. 1, 10 January 2018 (2018-01-10), pages 1 - 17, XP009525035, ISSN: 1006-1339 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113382430A (zh) * 2020-02-25 2021-09-10 中国电信股份有限公司 网络切片的数据传输方法、装置以及存储介质
CN113382430B (zh) * 2020-02-25 2022-11-01 中国电信股份有限公司 网络切片的数据传输方法、装置以及存储介质

Also Published As

Publication number Publication date
EP3806391A4 (en) 2022-03-23
CN110572228A (zh) 2019-12-13
CN110572228B (zh) 2021-04-06
EP3806391A1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
WO2019233403A1 (zh) 同步信息传输方法、发送端设备、接收端设备及存储介质
JP5073812B2 (ja) 分散型イーサネットシステムおよび該システムに基づいて障害を検出する方法
EP2774337B1 (en) Real-time distributed network slave device, real-time distributed network and method therefor
CN108156023B (zh) 一种基于冗余机制的时间敏感性网络分析系统及方法
US9485045B2 (en) Communication control equipment
WO2018113425A1 (zh) 一种检测时延的方法、装置及系统
CN113852529B (zh) 轨旁设备数据通信用背板总线系统及其数据传输方法
US20220360537A1 (en) SYSTEMS AND METHODS ENABLING TSN/DetNet REPLICATION FUNCTION FALLBACK
WO2017008641A1 (zh) 冗余端口的切换方法及装置
WO2022040847A1 (zh) 通信数据处理方法及装置
WO2020129219A1 (ja) ネットワーク装置、ネットワークシステム、ネットワーク方法、およびネットワークプログラム
WO2021046565A2 (en) Pce controlled network reliability
CN113852514A (zh) 服务不中断的数据处理系统、处理设备切换方法、连接设备
WO2019174424A1 (zh) 链路容量调整方法及装置、系统、控制器、网络节点
JP2019110410A (ja) ネットワーク機器
JP7475568B2 (ja) デバイストランスレータ、通信システム、通信方法、および通信プログラム
WO2017016464A1 (zh) 一种层邻接发现的处理方法及装置
JP7451721B2 (ja) クロックポート属性回復方法、デバイス、およびシステム
WO2024093636A1 (zh) 显示方法和电子设备
EP3741059B1 (en) Automatic clock phase synchronization in otn multi-chassis system with fail over mechanism
US11996932B2 (en) Active-active TDM PW with asymmetry control
KR20190002906A (ko) PTP(precision time protocol) 시스템에서의 시간 동기 장애 복구 방법 및 그 장치
US20230198647A1 (en) Active-active tdm pw with asymmetry control
CN116865898A (zh) 基于多时钟域的时钟冗余系统和时钟冗余的实现方法
JPS63263938A (ja) 信号同期方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019815470

Country of ref document: EP

Effective date: 20210111