WO2024093636A1 - 显示方法和电子设备 - Google Patents

显示方法和电子设备 Download PDF

Info

Publication number
WO2024093636A1
WO2024093636A1 PCT/CN2023/124170 CN2023124170W WO2024093636A1 WO 2024093636 A1 WO2024093636 A1 WO 2024093636A1 CN 2023124170 W CN2023124170 W CN 2023124170W WO 2024093636 A1 WO2024093636 A1 WO 2024093636A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
communication module
transmission system
uplink
sending end
Prior art date
Application number
PCT/CN2023/124170
Other languages
English (en)
French (fr)
Inventor
施迅
韩高健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093636A1 publication Critical patent/WO2024093636A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/247Multipath using M:N active or standby paths

Definitions

  • the present application relates to the field of communications, and more specifically, to a method and device for message transmission.
  • messages are transmitted through dual links.
  • the secondary link can continue to transmit messages.
  • One implementation method is to deploy dual-transmit and selective-receive devices on both ends of the device, and rely on the dual-transmit and selective-receive devices to copy and deduplicate messages to ensure that one forwarding link works normally when the first failure occurs. Therefore, this implementation method increases the complexity of networking, increases the cost of network configuration, and is not conducive to system deployment.
  • the present application provides a message transmission method, device and system, which can ensure the forwarding of messages when a first fault occurs, achieve high-reliability transmission of messages, reduce the cost of network configuration, and facilitate rapid deployment of the system.
  • a message transmission method is provided, which is applied to a message transmission system, including a first communication module and a second communication module, wherein the first communication module is used to receive messages from a message sending end and forward them to the second communication module and a message receiving end device respectively, and the method includes: the second communication module determines that a first fault occurs in the message transmission system, and the first fault is a fault related to the first communication module; the second communication module obtains a first message from the message sending end; and the second communication module sends the first message to the message receiving end.
  • the first communication module is used for dual-transmission messages
  • the second communication module determines that the message transmission system has a first fault related to the first communication module, and the second communication module continues to forward the message to ensure the forwarding of the message during the first fault, thereby achieving high-reliability transmission of the message.
  • the end-to-end transmission process it avoids the need to deploy additional dual-transmission and selective reception equipment at both the transmitting and receiving ends, which can reduce the complexity of dual-transmission and selective reception networking, reduce the cost of line deployment and manual deployment, and reduce the dependence on equipment deployment and network configuration.
  • the first communication module and the second communication module are respectively two user plane function UPF devices, or the first communication module and the second communication module are respectively two internal communication modules in a UPF device.
  • the first communication module and the second communication module are linked together via Ethernet aggregation Eth-Trunk.
  • the reliability of the link between the first communication module and the second communication module can be improved, thereby improving the reliability of message transmission.
  • the second communication module determines that the first fault occurs in the message transmission system, including: the second communication module is also used to receive first indication information from a detection system, the first indication information is used to indicate that the first fault occurs in the message transmission system, and the detection system is used to detect whether the first fault occurs in the message transmission system.
  • the second communication module determines that the first fault occurs in the message transmission system, including: the second communication module starts a timer after receiving a message from the first communication module, and if the next message from the first communication module is not received within a first time period, it is determined that the first fault occurs in the first communication module.
  • the second communication module obtains the first message from the message sending end, including: the second communication module sends a first request message to the message sending end, and the first request message is used to request to receive a message; the second communication module receives the first message from the message sending end.
  • the first request information includes at least one of the following: a first uplink message, first routing information, and an address resolution protocol ARP message containing first address information; the first uplink message is the second communication module; The block receives an uplink message or constructs an uplink message, the first routing information is the routing information of the first terminal device, the first terminal device is the terminal device served by the message receiving end, and the first address information is used to indicate the address of the first terminal device.
  • the first message includes a first sequence number, and the first sequence number is used to indicate the order in which the messages are sent.
  • the first sequence number of the first message is greater than the sequence number of the second message
  • the second message is a message from the first communication module received by the second communication module before the first failure occurs in the message transmission system.
  • the method also includes: the second communication module sends a third message from the message sending end to the first communication module, the third message is a backup of the fourth message, and the fourth message is a message sent by the message sending end to the first communication module; the second communication module receives the fourth message from the first communication module.
  • the method also includes: the second communication module receives the fifth message sent from the first communication module and forwards it to the message receiving end, the fifth message is a backup of the sixth message, and the sixth message is a message sent by the message sending end to the first communication module.
  • a message transmission device which is located in a second communication module and is applied to a message transmission system.
  • the message transmission system includes a first communication module and a second communication module.
  • the first communication module is used to receive messages from a message sending end and forward them to the second communication module and a message receiving end device respectively.
  • the message transmission device includes: a judgment module, used to determine that a first fault occurs in the message transmission system, and the first fault is a fault related to the first communication module; a transceiver module, used to obtain a first message from the message sending end; the transceiver module is also used to send the first message to the message receiving end.
  • the first communication module is used for dual-transmission messages
  • the second communication module determines that the message transmission system has a first fault related to the first communication module, and the second communication module continues to forward the message to ensure the forwarding of the message during the first fault, thereby achieving high-reliability transmission of the message.
  • the end-to-end transmission process it avoids the need to deploy additional dual-transmission and selective reception equipment at both the transmitting and receiving ends, which can reduce the complexity of dual-transmission and selective reception networking, reduce the cost of line deployment and manual deployment, and reduce the dependence on equipment deployment and network configuration.
  • the first communication module and the second communication module are respectively two user plane function UPF devices, or the first communication module and the second communication module are respectively two internal communication modules in a UPF device.
  • the first communication module and the second communication module are linked together via Ethernet aggregation Eth-Trunk.
  • the reliability of the link between the first communication module and the second communication module can be improved, thereby improving the reliability of message transmission.
  • the determination of the first fault occurring in the message transmission system includes: the judgment module is also used to receive first indication information from a detection system, the first indication information is used to indicate that the first fault occurs in the first communication module, and the detection system is used to detect whether the first fault occurs in the first communication module.
  • determining that the first fault has occurred in the message transmission system includes: the judgment module starts a timer after receiving a message from the first communication module, and if the next message from the first communication module is not received within a first time period, it is determined that the first fault has occurred in the first communication module.
  • obtaining the first message from the message sending end includes: the transceiver module sends a first request message to the message sending end, and the first request message is used to request to receive a message; the transceiver module receives the first message from the message sending end.
  • the first request information includes at least one of the following: a first uplink message, first routing information, and an Address Resolution Protocol ARP message containing first address information;
  • the first uplink message is an uplink message received by the second communication module or a constructed uplink message,
  • the first routing information is routing information of a first terminal device, the first terminal device is a terminal device served by the message receiving end, and the first address information is used to indicate the address of the first terminal device.
  • the first message includes a first sequence number, and the first sequence number is used to indicate the order in which the messages are sent.
  • the first sequence number of the first message is greater than the sequence number of the second message
  • the second message is a message from the first communication module received by the second communication module before the first failure occurs in the message transmission system.
  • the transceiver module is also used to: send a third message from the message sending end to the first communication module, the third message is a backup of the fourth message, and the fourth message is a message sent by the message sending end to the first communication module; and receive the fourth message from the first communication module.
  • the transceiver module is also used to: receive the fifth message sent from the first communication module and forward it to the message receiving end, the fifth message is a backup of the sixth message, and the sixth message is a message sent by the message sending end to the first communication module.
  • a message transmission system comprising a first communication module and a second communication module, wherein the first communication module is used to receive messages from a message sending end and forward them to the second communication module and a message receiving end respectively, and the second communication module is used to obtain a first message from the message sending end after determining that a first fault occurs in the message transmission system, and the second communication module sends the first message to the message receiving end, the message sending end is a message sending device, the message receiving end is a message receiving device, and the first fault is a first fault related to the first communication module.
  • a system for message transmission comprising a first communication module and a second communication module, wherein the second communication module is used to receive a second uplink message from a message sending end and send the second uplink message to the first communication module, the first communication module is used to receive a first uplink message from the message sending end and send the first uplink message to the second communication module, receive a second uplink message from the second communication module, and when the first uplink message and the second uplink message are repeated, the first communication module sends one of the first uplink message and the second uplink message to a message receiving end, the message sending end is an uplink message sending device, and the message receiving end is an uplink message receiving device; or the first communication module is used to receive a first downlink message from a third device and send the first downlink message to a fourth device, the first communication module is also used to send a second downlink message to the second communication module, the second downlink message is a backup of the first downlink message, the second communication module is used to receive the
  • a communication device comprising: a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program stored in the memory, so that the device performs a method as in any one of the implementations in the first aspect.
  • a chip system comprising: a processor, configured to call and run a computer program from a memory, so that a communication device equipped with the chip system executes a communication method as in any one of the implementations in the first aspect.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is run on a computer, the computer is caused to execute a method as in any one of the implementations in the first aspect.
  • a computer program product comprising instructions for executing the method in any one of the implementations in the first aspect.
  • FIG1 is an interactive flow chart of a transmission system provided in an embodiment of the present application.
  • FIG2 is a flow chart of a message transmission method 200 provided in an embodiment of the present application.
  • FIG3 is a schematic flow chart of a message transmission method 300 provided in an embodiment of the present application.
  • FIG. 4 is a schematic flow chart of a message transmission method 400 provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a communication device 10 provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a communication device 20 provided in an embodiment of the present application.
  • Business controller It stores instructions for performing logical operations, sequential control, timing, counting, and arithmetic operations internally, and controls various types of mechanical equipment or production processes through digital or analog input and output. For example, it receives business control messages from the remote control console of the business controller, and controls mechanical equipment (such as a robotic arm) or production processes according to the business messages.
  • the business controller can be a PLC, or it can be other devices with similar functions.
  • PLC is a digital computing and operating electronic system specially designed for use in industrial environments. It uses a programmable memory to store the instructions for the above operations internally.
  • Remote control console of business controller The remote control console of business controller sends business control message to the business controller through the network, and instructs the business controller to control the mechanical equipment or production process through the business control message. Correspondingly, the business controller reports the status to the remote control console of business controller through the network.
  • the remote control of business controller by the remote control console of business controller is realized.
  • the business controller is PLC
  • the remote control console of business controller is the remote control console of PLC.
  • CPE Customer premises equipment
  • Industrial switches are mainly used to achieve real-time Ethernet data transmission in complex industrial environments. Industrial switches use storage conversion switching to increase Ethernet communication speed, and have built-in intelligent alarm design to monitor network operation status, ensuring reliable and stable operation of Ethernet in harsh and dangerous industrial environments.
  • Control room switch used for information exchange between PLC remote control console and communication network.
  • Core network mainly used to provide user connection, user management and service bearing, and provide an interface to the external network as a bearer network.
  • the 5G core network includes control plane equipment and user plane equipment.
  • the control plane equipment includes access and mobility management function entity, session management function entity, network capability exposure entity, network data analysis entity, etc.
  • the user plane equipment can be, for example, a user plane function entity.
  • This application relates to a user plane function entity (UPF), which is responsible for user data forwarding, billing statistics, etc.
  • UPF user plane function entity
  • PROFINET It is a new generation of automation bus standard based on industrial Ethernet technology launched by PROFIBUS International (PI).
  • PROFINET provides a complete network solution for the field of automation communication, covering hot topics in the current automation field such as real-time Ethernet, motion control, distributed automation, first fault safety and network security.
  • PI PROFIBUS International
  • PROFINET provides a complete network solution for the field of automation communication, covering hot topics in the current automation field such as real-time Ethernet, motion control, distributed automation, first fault safety and network security.
  • existing fieldbus such as process fieldbus (PROFIBUS)
  • 5G has been integrated into thousands of industries, creating new value for them.
  • message transmission such as business messages
  • the messages to be transmitted will be copied and transmitted through dual links.
  • FIG1 is an interactive flow chart of a transmission system provided in an embodiment of the present application, wherein UPF1 and CPE1 constitute link A, and UPF2 and CPE2 constitute link B.
  • the uplink message is copied and forwarded by the dual-transmitter and receiver devices, and then connected to CPE1 and CPE2 respectively. Then CPE1 transmits the uplink message to UPF1 through air interface communication, and UPF1 transmits the uplink message to UPF2. CPE2 transmits the uplink message to UPF2 through air interface communication, and UPF2 transmits the uplink message to UPF1. Then UPF1 sends the uplink message to the switch to reach the remote control station.
  • the downlink message sent by the PLC remote control station is sent to UPF1 after passing through the switch.
  • UPF1 copies the downlink message and sends it to CPE1 and UPF2 respectively.
  • UPE2 forwards the downlink message to CPE2.
  • CPE1 and CPE2 process the downlink message through the dual-transmission and selective receiving device and then send it to PLC.
  • the dual-transmit selective receiving device can copy and forward the uplink message when transmitting the uplink message to realize the dual-transmit function, and deduplicate the downlink message from CPE1 and CPE2 when transmitting the downlink message to realize the selective sending function.
  • the dual-transmit selective receiving device can be an AR switch, an industrial switch or an industrial gateway.
  • UPF1 is called the master UPF
  • UPF2 is called the slave UPF or auxiliary UPF.
  • UPF1 receives uplink messages from UPF2 and CPE1, and sends them to the switch after deduplication, playing the role of selective transmission;
  • UPF1 copies the downlink messages from the switch and forwards them to UPF2 and CPE1 respectively, playing the role of dual transmission.
  • UPF1 and UPF2 can be automatically synchronized based on the service, and the static configuration data can be synchronized between UPF1 and UPF2 to maintain the consistency of the timer length of the dual-transmission and selective reception protocol.
  • the dual-transmission end When executing the dual-transmission function, the dual-transmission end maintains a sequence number counter and maintains the continuity of the sequence number of each message when adding a redundancy control tag (RCT) to the duplicate messages of paths A and B.
  • RCT redundancy control tag
  • the selective reception end When executing the selective reception function, the selective reception end normally sends the first normal sequence message and discards the subsequent duplicate messages; if there is a missing message, it is The first arriving messages are cached and sorted, and the messages with the same sequence number are sent in order after the messages with the same sequence number from other links arrive. Therefore, a buffer is needed to save the sequence numbers of received messages and messages that arrive out of order. Furthermore, after receiving the message from UPF1, UPF2 saves the sequence number and timestamp in the message to achieve automatic synchronization based on the service flow.
  • UPF1 will forward the route A message without RCT to the switch, and forward the route A message carrying RCT and arrival timestamp to UPF2; UPF1 records the route A message sequence number, and directly discards the subsequent route B message with the same sequence number, while UPF2 records the route A message sequence number and timestamp, and subsequently receives the route B message with the same sequence number, and still forwards it to UPF1 in normal scenarios.
  • the switch sends a message to UPF1, and UPF1 copies it into routes A and B.
  • UPF1 sends a message with RCT sequence number to UPF2 via route B, and UPF2 records the route B message sequence number.
  • the dual-transmit and selective-receive device Take the dual-transmit and selective-receive device as an industrial gateway as an example.
  • the first uplink packet is copied to A and B on the end-side industrial gateway.
  • the A/B information is carried in the RCT.
  • the UPF parses the RCT.
  • the UPF that receives the A-channel message is the master UPF, and the one that receives the B-channel is the slave UPF.
  • the first unknown unicast packet of the downlink is not sent in both directions, and each UPF sends it in the original way (flooding or discarding). Therefore, the first downlink packet does not need to distinguish between master and slave, and the subsequent downlink messages are processed according to the master/slave UPF determined by the uplink first packet.
  • the main UPF assumes the dual-transmit and selective reception function at one end, which can avoid the additional deployment of dual-transmit and selective reception equipment at both ends, reduce the cost of line deployment and manual allocation, and reduce the dependence on equipment deployment and network configuration.
  • Figure 2 is a flow chart of the message transmission method 200 provided in an embodiment of the present application, wherein the method 200 is used to achieve normal transmission of the message after the first fault occurs.
  • the second communication module determines that a first fault occurs in the message transmission system, wherein the second communication module and the first communication module belong to the same message transmission system, the first communication module can receive messages from the message sending end and forward them to the second communication module and the message receiving end respectively, and the first fault refers to a fault related to the first communication module.
  • the first communication module and the second communication module are two user plane function UPF devices, or the first communication module and the second communication module are two internal communication modules in a UPF device.
  • the first communication module is UPF1 in FIG. 1 above
  • the second communication module is UPF2 in FIG. 1 above.
  • the first communication module and the second communication module can also be bundled through Ethernet aggregation Eth-Trunk to enhance the reliability of the communication link between the first communication module and the second communication module.
  • the second communication module after receiving the message from the first communication module, saves the sequence number and timestamp carried in the message.
  • the second communication module can determine whether a first fault occurs in the message transmission system.
  • the first fault of the message transmission system in the embodiment of the present application includes: a first fault occurs in the first communication module, a first fault occurs in the link between the first communication module and the message sending end, a first fault occurs in the link between the first communication module and the second communication module, and a first fault occurs in the link between the first communication module and the message receiving end.
  • the second communication module receives first indication information from a detection system, where the first indication information is used to indicate that a first fault occurs in the message transmission system, and the detection system is used to detect whether a fault occurs in the message transmission system.
  • the detection system may detect whether a first failure occurs in each link in the message transmission system through a bidirectional forwarding detection (BFD) detection mechanism.
  • BFD bidirectional forwarding detection
  • BFD is a protocol for link fault detection. After BFD establishes a session with an adjacent system, it periodically sends BFD packets on the channel between them. If a system does not receive a BFD packet within the negotiated detection time, it is considered that a part of the bidirectional channel has failed. After the upper layer protocol detects the link failure through BFD, it can take timely measures to recover from the failure.
  • the second communication module starts a timer after receiving a message from the first communication module, and determines that a first fault occurs in the message transmission system if the next message from the first communication module is not received within a first time period.
  • the first time period is a pre-set time period. Specifically, the first time period is greater than the message cycle and less than the service tolerance time (survival time).
  • the message in the above scheme is a periodic message. Since the first communication module will forward the message from the message sending end to the second communication module when the message is transmitted normally, when the second communication module cannot receive the message of the next cycle within the first time period, it can be determined that the message transmission system has a first fault. In particular, if the first fault cause is a link failure between the first communication module and the message receiving end, then in one possible implementation, the first communication module actively stops forwarding messages to the second communication module after identifying the first fault, so that the second communication module determines that the message transmission system has a first fault; in another possible implementation, the first communication module stops forwarding messages to the second communication module. After the communication module identifies the first fault, it sends indication information to the second communication module, where the indication information is used to indicate that the first fault occurs in the message transmission system.
  • the fault detection results of multiple terminals and multiple service flows can be used for comprehensive judgment to prevent a single service flow from being easily affected by the randomness of the air interface.
  • the second communication module obtains a first message from a message sending end.
  • the second communication module directly obtains the first message.
  • the second communication module sends first request information to the message sending end, where the first request information is used to request receiving the message. Based on the first request information, the second communication module receives the first message from the message sending end.
  • the first request information includes at least one of the following: a first uplink message, first routing information, and an Address Resolution Protocol ARP message containing first address information, wherein the first uplink message is an uplink message received by the second communication module or a constructed uplink message, the first routing information is routing information of the first terminal device, the first terminal device is a terminal device served by the message receiving end, and the first address information is used to indicate the address of the first terminal device.
  • the first address information is the MAC address of the first terminal device; if the service is not a 5G LAN service, the first routing information is the IP routing of the first terminal device.
  • the second communication module sends a first message to a message receiving end.
  • the first message includes a first sequence number, which is used to indicate the order in which the messages are sent.
  • the first sequence number is a sequence number counter maintained when double-sending messages.
  • Path A refers to the link where the first communication module is located
  • path B refers to the link where the second communication module is located.
  • the first sequence number of the first message is greater than the sequence number of the second message, and the second message is a message from the first communication module received by the second communication module before the first failure of the message transmission system, thereby avoiding sending duplicate messages to the message receiving end.
  • the second communication module after receiving the message from the first communication module, saves the first sequence number and/or timestamp carried in the message.
  • the second communication module receives a message with a sequence number identical to the stored first sequence number, the message is directly discarded.
  • the second communication module when a first fault occurs in the message transmission system, the second communication module continues to forward messages to ensure forwarding of messages during the first fault, thereby achieving high-reliability transmission of messages.
  • the above scheme describes the message transmission method when the message transmission system in Figure 1 has a first fault. If the first fault is restored, UPF2 needs to synchronize the cache with UPF1, and then continue to transmit messages in the mode before the first fault of the message transmission system. If the first fault does not occur in the above message transmission system, when transmitting an uplink message, the second communication module sends a third message from the message sending end to the first communication module, and the second communication module receives a fourth message from the first communication module.
  • the third message is a backup of the fourth message
  • the fourth message is a message sent by the message sending end to the first communication module; when transmitting a downlink message, the second communication module receives a fifth message sent from the first communication module and forwards it to the message receiving end.
  • the fifth message is a backup of the sixth message
  • the sixth message is a message sent by the message sending end to the first communication module.
  • the cache synchronization in the above scheme can be a one-time full synchronization of the dual-send selective receiving cache or a periodic synchronization of the buffer data of UPF1 and UPF2.
  • Using a one-time full synchronization of the dual-send selective receiving cache can avoid exceeding the tolerance time.
  • UPF2 detects that the link between UPFs is interrupted for a long time, it periodically queries the third party to confirm the status of UPF1 until the link between UPFs is restored. If the status of UPF1 is normal, UPF2 will no longer forward the uplink message to the message receiving end. This method prevents the message receiving end from receiving identical duplicate messages, thereby improving performance and processing efficiency.
  • the message receiving end and the message sending end in the embodiment of the present application are functional descriptions.
  • the message sending end refers to the industrial gateway and the message receiving end refers to the switch; in the downlink process, the message sending end refers to the switch and the message receiving end refers to the industrial gateway.
  • the message receiving end and the message sending end transmit messages to the first communication module and the second communication module through the CPE.
  • the second communication module ensures the normal transmission of uplink messages and downlink messages after the first fault occurs in the message transmission system.
  • the link for transmitting messages through the first communication module is called path A
  • the link for transmitting messages through the second communication module is called path B.
  • FIG3 is a schematic flow chart of a message transmission method 300 provided in an embodiment of the present application, wherein the method 300 transmits an uplink message.
  • the B-path message is the message sent by the PLC to the industrial gateway, which is copied by the industrial gateway and sent to UPF2 through CPE2. arts.
  • step S302 determine whether the message transmission system has a first fault, if the first fault occurs, execute S303; if the first fault does not occur, execute S305.
  • how to determine whether the message transmission system has a first fault refers to step S201 in method 200 of the embodiment of the present application, which will not be repeated here.
  • UPF2 can make the above judgment based on at least one of the protocol header and content of the B-way message.
  • the protocol header of the B-way message may include a field of Ethernet message type, a field of protocol type, or a field of VLAN ID, etc.
  • the field of protocol type here may be a field for indicating the use of PROFINET; for another example, the VLAN ID here may correspond to different scenarios according to different IDs.
  • the field of Ethernet message type of the B-way message is 0x8892
  • the B-way message is a PLC service message
  • the field of Ethernet message type of the B-way message is not 0x8892
  • the B-way message is not a PLC service message.
  • the VLAN ID of the B-way message is 10
  • it can be determined that the B-way message is a PLC service message
  • the VLAN ID of the B-way message is 01
  • it can be determined that the B-way message is not a PLC service message.
  • the content of the B-channel message is a flipping or painting service of a robot arm, it can be determined that the B-channel message is a PLC service message; otherwise, it is not a PLC service message.
  • UPF2 can pre-configure configuration information corresponding to the PLC business message, which may include fields related to the protocol header and content of the business message.
  • UPF2 determines that the fields related to the protocol header and content of the B-path message correspond to the configuration information, it can be determined that the B-path message is a PLC business message.
  • S305 Send the B-path message to the switch.
  • UPF2 replaces UPF1 to send uplink messages to the switch, thereby avoiding service interruption and achieving high-reliability transmission of messages.
  • FIG4 is a schematic flow chart of a message transmission method 400 provided in an embodiment of the present application.
  • the method 400 transmits an uplink message.
  • step S401 determine whether the message transmission system has a first fault, if the first fault occurs, execute S402; if the first fault does not occur, execute S403. Specifically, how to determine whether the message transmission system has a first fault refers to step S201 in the method 200 of the embodiment of the present application, which will not be repeated here.
  • step S403 requesting the switch for a B-path message.
  • step S202 in the method 200 of the embodiment of the present application, which will not be described in detail here.
  • step S405 determine whether the B-channel message is a PLC message. For a specific determination method, see step S304 in method 300. If it is a PLC message, execute step S406; if it is not a PLC message, the process ends.
  • S406 send the B-path message to CPE2, CPE2 forwards the B-path message to the industrial gateway, and the industrial gateway forwards it to the PLC.
  • UPF2 when the first failure occurs in the message transmission system, UPF2 requests the downlink message and sends the downlink message instead of UPF1, so as to avoid service interruption and realize high-reliability transmission of the message.
  • FIG5 is a schematic diagram of a communication device 10 provided in an embodiment of the present application.
  • the device 10 may be the first communication module mentioned above, or may be a chip or a circuit, such as a chip or a circuit that may be provided in the first communication module.
  • the device 10 may include a processor 11 (i.e., an example of a processing unit) and a memory 12.
  • the memory 12 is used to store instructions
  • the processor 11 is used to execute the instructions stored in the memory 12, so that the device 20 implements the steps performed by the first communication module in the corresponding method in Figures 1-4.
  • the device 10 may also include an input port 13 (i.e., an example of a communication unit) and an output port 14 (i.e., another example of a communication unit).
  • the processor 11, the memory 12, the input port 13, and the output port 14 may communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 12 is used to store a computer program, and the processor 11 may be used to call and run the computer program from the memory 12 to control the input port 13 to receive a signal and the output port 14 to send a signal, thereby completing the first pass in the above method.
  • the memory 12 may be integrated into the processor 11 or may be separately provided from the processor 11.
  • the input port 13 is a receiver
  • the output port 14 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they may be collectively referred to as a transceiver.
  • the input port 13 is an input interface
  • the output port 14 is an output interface
  • the functions of the input port 13 and the output port 14 may be implemented by a transceiver circuit or a dedicated transceiver chip.
  • the processor 11 may be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • the program code that implements the functions of the processor 11, the input port 13, and the output port 14 is stored in the memory 12, and the general-purpose processor implements the functions of the processor 11, the input port 13, and the output port 14 by executing the code in the memory 12.
  • each module or unit in the communication device 10 listed above is only exemplary descriptions.
  • Each module or unit in the communication device 10 can be used to execute the various actions or processing procedures performed by the communication device in the above method 200.
  • its detailed description is omitted.
  • Figure 6 is a schematic diagram of a communication device 20 provided in an embodiment of the present application.
  • the device 20 can be the above-mentioned second communication module, or it can be a chip or circuit, such as a chip or circuit that can be arranged in the second communication module.
  • the device 20 may include a processor 21 (ie, an example of a processing unit) and a memory 22.
  • the memory 22 is used to store instructions, and the processor 21 is used to execute the instructions stored in the memory 22, so that the device 20 implements the steps performed by the second communication module in Figures 1-4.
  • the device 20 may also include an input port 23 (i.e., an example of a communication unit) and an output port 23 (i.e., another example of a processing unit). Still further, the processor 21, the memory 22, the input port 23 and the output port 24 may communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 22 is used to store a computer program, and the processor 21 may be used to call and run the computer program from the memory 22 to control the input port 23 to receive a signal and the output port 24 to send a signal, thereby completing the steps of the second communication module in the above-mentioned Figures 1-4.
  • the memory 22 may be integrated in the processor 21, or may be provided separately from the processor 21.
  • the input port 23 is a receiver
  • the output port 24 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they may be collectively referred to as a transceiver.
  • the input port 23 is an input interface
  • the output port 24 is an output interface
  • the device 20 may not include the memory 22, and the processor 21 may read instructions (programs or codes) in the memory outside the chip to implement the functions of the second communication module in the corresponding method as shown in Figures 1-4.
  • the functions of the input port 23 and the output port 24 may be implemented by a transceiver circuit or a dedicated transceiver chip.
  • the processor 21 may be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • the program code that implements the functions of the processor 21, the input port 23, and the output port 24 is stored in a memory, and the general-purpose processor implements the functions of the processor 21, the input port 23, and the output port 24 by executing the code in the memory.
  • each module or unit in the communication device 20 can be used to execute each action or processing process performed by the second communication module in Figures 1-4 above.
  • each module or unit in the communication device 20 can be used to execute each action or processing process performed by the second communication module in Figures 1-4 above.
  • its detailed description is omitted.
  • the present application also provides a communication device, including a processor, the processor is coupled to a memory, the memory is used to store computer programs or instructions and/or data, the processor is used to execute the computer programs or instructions stored in the memory, or read the data stored in the memory, so as to execute the method of any one of the implementation modes in the above method embodiments.
  • the processor is one or more.
  • the communication device includes a memory.
  • the memory is one or more.
  • the memory is integrated with the processor, or is separately arranged.
  • the present application also provides a computer-readable storage medium on which are stored computer instructions for implementing any one of the above-mentioned method embodiments.
  • the present application also provides a computer program product, comprising instructions, which, when executed by a computer, implement any one of the methods in the above-mentioned method embodiments.
  • processors in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in a target session management function, a target access and mobility management function, a source session management function, or a source access and mobility management function.
  • the processor and the storage medium can also be present as discrete components in the target session management function, the target access and mobility management function, the source session management function, or the source access and mobility management function.
  • the computer program product includes one or more computer programs or instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, a network device, a communication device or other programmable device.
  • the computer program or instruction can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program or instruction can be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium can be any available medium that a computer can access or a data storage device such as a server, data center, etc. that integrates one or more available media.
  • the available medium can be a magnetic medium, such as a floppy disk, a hard disk, or a tape; it can also be an optical medium, such as a digital video disc; it can also be a semiconductor medium, such as a solid-state hard disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请涉及通信领域,尤其涉及报文传输的方法和装置,该方案可以应用于通过双链路传输报文的通信系统中。在该方法中,第一通信模块和第二通信模块分别位于两条链路上,第一通信模块用于接收来自报文发送端的报文并分别转发给第二通信模块和报文接收端设备,当第二通信模块确定报文传输系统发生与第一通信模块相关的第一故障时,由第二通信模块向报文接收端发送报文。通过第一通信模块执行双发功能,降低了组网的复杂度,第一故障时由第二通信模块代替第一通信模块,提高了报文传输的可靠性。

Description

显示方法和电子设备
本申请要求于2022年10月31日提交中国国家知识产权局、申请号为202211351616.4、申请名称为“一种报文传输方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种报文传输的方法及装置。
背景技术
为了满足很多工业场景对报文传输的高可靠性的要求,会通过双链路传输报文。当主链路发生第一故障时,从链路可以继续进行报文传输,一种实现方式是在两端设备都部署双发选收设备,并依赖双发选收设备对报文进行复制和去重,确保第一故障时有一条转发链路正常工作。因此,该实现方式提高了组网的复杂度,增大了网络配置的成本,不利于系统的部署。
发明内容
本申请提供一种报文传输方法、装置和系统,能够确保第一故障时报文的转发,实现报文的高可靠性传输,降低了网络配置的成本,有利于系统的快速部署。
第一方面,提供了一种报文传输方法,应用于报文传输系统,包括第一通信模块和第二通信模块,所述第一通信模块用于接收来自报文发送端的报文并分别转发给所述第二通信模块和报文接收端设备,所述方法包括:所述第二通信模块确定所述报文传输系统发生第一故障,所述第一故障是与所述第一通信模块相关的故障;所述第二通信模块获取来自所述报文发送端的第一报文;所述第二通信模块向所述报文接收端发送所述第一报文。
基于上述方案,第一通信模块用于双发报文,第二通信模块确定报文传输系统发生与第一通信模块相关的第一故障,由第二通信模块继续转发报文,确保第一故障时报文的转发,实现报文的高可靠性传输。在端到端的传输过程中,避免了收发两端都额外部署双发选收设备,可以降低双发选收组网的复杂度,减少线路部署和人工调配的成本,也降低对设备部署和网络配置的依赖。
结合第一方面,在第一方面的某些实现方式中,所述第一通信模块和所述第二通信模块分别是两个用户面功能UPF设备,或者,所述第一通信模块和所述第二通信模块分别是一个UPF设备中的两个内部通信模块。
结合第一方面,在第一方面的某些实现方式中,所述第一通信模块和第二通信模块之间通过以太网聚合Eth-Trunk进行链路捆绑。
基于上述方案,可以提高第一通信模块和第二通信模块之间链路的可靠性,从而提高报文传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,所述第二通信模块确定所述报文传输系统发生第一故障包括:所述第二通信模块还用于接收来自检测系统的第一指示信息,所述第一指示信息用于指示所述报文传输系统发生所述第一故障,所述检测系统用于检测所述报文传输系统是否发生第一故障。
结合第一方面,在第一方面的某些实现方式中,所述第二通信模块确定所述报文传输系统发生第一故障包括:所述第二通信模块在接收到来自所述第一通信模块的报文后启动定时器,若在第一时间段内未收到下一个来自所述第一通信模块的报文,则确定所述第一通信模块发生所述第一故障。
结合第一方面,在第一方面的某些实现方式中,若所述第一通信模块和所述第二通信模块用于传输下行报文,则所述第二通信模块获取来自所述报文发送端的第一报文包括:所述第二通信模块向所述报文发送端发送第一请求信息,所述第一请求信息用于请求接收报文;所述第二通信模块接收来自所述报文发送端的所述第一报文。
结合第一方面,在第一方面的某些实现方式中,所述第一请求信息包括以下至少一项:第一上行报文、第一路由信息和包含第一地址信息的地址解析协议ARP报文;所述第一上行报文是所述第二通信模 块接收到的上行报文或构造的上行报文,所述第一路由信息是第一终端设备的路由信息,所述第一终端设备是所述报文接收端服务的终端设备,所述第一地址信息用于指示所述第一终端设备的地址。
结合第一方面,在第一方面的某些实现方式中,所述第一报文包括第一序号,所述第一序号用于表示报文发送顺序。
结合第一方面,在第一方面的某些实现方式中,所述第一报文的第一序号大于第二报文的序号,所述第二报文是所述报文传输系统发生所述第一故障前所述第二通信模块接收的来自所述第一通信模块的报文。
结合第一方面,在第一方面的某些实现方式中,若所述第一通信模块和所述第二通信模块用于传输上行报文,则在所述第二通信模块确定所述报文传输系统发生所述第一故障前,所述方法还包括:所述第二通信模块向所述第一通信模块发送来自所述报文发送端的第三报文,所述第三报文是第四报文的备份,所述第四报文是所述报文发送端发送给所述第一通信模块的报文;所述第二通信模块接收来自所述第一通信模块的所述第四报文。
结合第一方面,在第一方面的某些实现方式中,若所述第一通信模块和所述第二通信模块用于传输下行报文,则在所述第二通信模块确定所述报文传输系统发生所述第一故障前,所述方法还包括:所述第二通信模块接收来自所述第一通信模块发送的第五报文并转发给所述报文接收端,所述第五报文是第六报文的备份,所述第六报文是所述报文发送端发送给所述第一通信模块的报文。
第二方面,提供了一种报文传输装置,位于第二通信模块中,应用于报文传输系统,所述报文传输系统包括第一通信模块和第二通信模块,所述第一通信模块用于接收来自报文发送端的报文并分别转发给所述第二通信模块和报文接收端设备,所述报文传输装置包括:判断模块,用于确定所述报文传输系统发生第一故障,所述第一故障是与所述第一通信模块相关的故障;收发模块,用于获取来自所述报文发送端的第一报文;所述收发模块,还用于向所述报文接收端发送所述第一报文。
基于上述方案,第一通信模块用于双发报文,第二通信模块确定报文传输系统发生与第一通信模块相关的第一故障,由第二通信模块继续转发报文,确保第一故障时报文的转发,实现报文的高可靠性传输。在端到端的传输过程中,避免了收发两端都额外部署双发选收设备,可以降低双发选收组网的复杂度,减少线路部署和人工调配的成本,也降低对设备部署和网络配置的依赖。
结合第二方面,在第二方面的某些实现方式中,所述第一通信模块和所述第二通信模块分别是两个用户面功能UPF设备,或者,所述第一通信模块和所述第二通信模块分别是一个UPF设备中的两个内部通信模块。
结合第二方面,在第二方面的某些实现方式中,所述第一通信模块和第二通信模块之间通过以太网聚合Eth-Trunk进行链路捆绑。
基于上述方案,可以提高第一通信模块和第二通信模块之间链路的可靠性,从而提高报文传输的可靠性。
结合第二方面,在第二方面的某些实现方式中,所述确定所述报文传输系统发生第一故障包括:所述判断模块还用于接收来自检测系统的第一指示信息,所述第一指示信息用于指示所述第一通信模块发生所述第一故障,所述检测系统用于检测所述第一通信模块是否发生第一故障。
结合第二方面,在第二方面的某些实现方式中,所述确定所述报文传输系统发生第一故障包括:所述判断模块在接收到来自所述第一通信模块的报文后启动定时器,若在第一时间段内未收到下一个来自所述第一通信模块的报文,则确定所述第一通信模块发生所述第一故障。
结合第二方面,在第二方面的某些实现方式中,若所述第一通信模块和所述第二通信模块用于传输下行报文,则所述获取来自所述报文发送端的第一报文包括:所述收发模块向所述报文发送端发送第一请求信息,所述第一请求信息用于请求接收报文;所述收发模块接收来自所述报文发送端的所述第一报文。
结合第二方面,在第二方面的某些实现方式中,所述第一请求信息包括以下至少一项:第一上行报文、第一路由信息和包含第一地址信息的地址解析协议ARP报文;所述第一上行报文是所述第二通信模块接收到的上行报文或构造的上行报文,所述第一路由信息是第一终端设备的路由信息,所述第一终端设备是所述报文接收端服务的终端设备,所述第一地址信息用于指示所述第一终端设备的地址。
结合第二方面,在第二方面的某些实现方式中,所述第一报文包括第一序号,所述第一序号用于表示报文发送顺序。
结合第二方面,在第二方面的某些实现方式中,所述第一报文的第一序号大于第二报文的序号,所述第二报文是所述报文传输系统发生所述第一故障前所述第二通信模块接收的来自所述第一通信模块的报文。
结合第二方面,在第二方面的某些实现方式中,若所述第一通信模块和所述第二通信模块用于传输上行报文,则在所述第二通信模块确定所述报文传输系统发生所述第一故障前,所述收发模块还用于:向所述第一通信模块发送来自所述报文发送端的第三报文,所述第三报文是第四报文的备份,所述第四报文是所述报文发送端发送给所述第一通信模块的报文;接收来自所述第一通信模块的所述第四报文。
结合第二方面,在第二方面的某些实现方式中,若所述第一通信模块和所述第二通信模块用于传输下行报文,则在所述第二通信模块确定所述报文传输系统发生所述第一故障前,所述收发模块还用于:接收来自所述第一通信模块发送的第五报文并转发给所述报文接收端,所述第五报文是第六报文的备份,所述第六报文是所述报文发送端发送给所述第一通信模块的报文。
第三方面,提供了一种报文传输系统,包括第一通信模块和第二通信模块,所述第一通信模块用于接收来自报文发送端的报文并分别转发给所述第二通信模块和报文接收端,所述第二通信模块用于确定所述报文传输系统发生第一故障后向获取来自所述报文发送端的第一报文,所述第二通信模块向所述报文接收端发送所述第一报文,所述报文发送端是报文发送设备,所述报文接收端是报文接收设备,所述第一故障是与所述第一通信模块相关的第一故障。
第四方面,提供了一种报文传输的系统,包括第一通信模块和第二通信模块,所述第二通信模块用于接收来自报文发送端的第二上行报文并向所述第一通信模块发送所述第二上行报文,所述第一通信模块用于接收来自所述报文发送端的第一上行报文并向所述第二通信模块发送所述第一上行报文,接收来自第二通信模块的第二上行报文,当所述第一上行报文和所述第二上行报文重复时,所述第一通信模块向报文接收端发送所述第一上行报文和所述第二上行报文中的一个,所述报文发送端是上行报文发送设备,所述报文接收端是上行报文接收设备;或者所述第一通信模块用于接收来自第三设备的第一下行报文并向第四设备发送所述第一下行报文,所述第一通信模块还用于向所述第二通信模块发送第二下行报文,所述第二下行报文是所述第一下行报文的备份,所述第二通信模块用于接收来自所述第一通信模块的所述第二下行报文并向所述第四设备发送所述第二下行报文,所述第三设备是下行报文发送设备,所述第四设备是下行报文接收设备。
第五方面,提供了一种通信装置,包括:处理器和存储器;该存储器,用于存储计算机程序;处理器,用于执行存储器中存储的计算机程序,以使得该装置执行如第一方面中的任意一种实现方式中的方法。
第六方面,提供了一种芯片系统,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统地通信设备执行如第一方面中的任意一种实现方式中的通信方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行如第一方面中的任意一种实现方式中的方法。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括用于执行如第一方面中的任意一种实现方式中的方法的指令。
附图说明
图1是本申请实施例提供的传输系统的交互流程图。
图2是本申请实施例提供的报文传输方法200的流程示意图。
图3是本申请实施例提供的报文传输方法300的示意性流程。
图4是本申请实施例提供的报文传输方法400的示意性流程。
图5本申请实施例提供的通信装置10的示意图。
图6本申请实施例提供的通信装置20的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为了便于理解本申请提供的方案,下面对于本申请涉及的一些技术用于进行介绍。
1、业务控制器:在内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,通过数字式或模拟式的输入输出来控制各种类型的机械设备或生产过程。例如,接收来自业务控制器的远控台的业务控制报文,并根据该业务报文控制机械设备(例如机械臂)或生产过程。例如,业务控制器可以是PLC,或者也可以是其他具备类似功能的设备。其中,PLC为一种专门为在工业环境下应用而设计的数字运算操作电子系统。它采用一种可编程的存储器,在内部存储上述操作的指令。
2、业务控制器的远控台:业务控制器的远控台通过网络向业务控制器的发送业务控制报文,通过该业务控制报文指示该业务控制器对机械设备或生成过程进行控制。相应地,业务控制器通过网络向业务控制器的远控台进行状态上报。从而,实现业务控制器的远控台对业务控制器的远程控制。例如,业务控制器为PLC,业务控制器的远控台为PLC的远控台。
3、用户驻地设备(customer premises equipment,CPE):一种接收移动信号(如5G信号)并通过有线端口(例如以太网接口或通用串行总线端口等)转发出去的移动信号接入设备。
4、工业交换机:工业交换机主要用于在复杂的工业环境中的实现实时以太网数据传输。工业交换机采用存储转换交换方式,同时提高以太网通信速度,并且内置智能报警设计监控网络运行状况,使得在恶劣危险的工业环境中保证以太网可靠稳定的运行。
5、控制室交换机:用于PLC远控台与通信网络之间的信息交互。
6、核心网:主要用于提供用户连接、对用户的管理以及对业务完成承载,作为承载网络提供到外部网络的接口。以5G核心网为例,其包括控制面设备和用户面设备。其中,控制面设备包括接入和移动性管理功能实体、会话管理功能实体、网络能力开放实体、网络数据分析实体等。用户面设备例如可以是用户面功能实体。本申请涉及用户面功能实体(user plane function,UPF),负责用户的数据转发、计费统计等。
7、PROFINET:是由PROFIBUS国际组织(PROFIBUS International,PI)推出的新一代基于工业以太网技术的自动化总线标准。PROFINET为自动化通信领域提供了一个完整的网络解决方案,囊括了诸如实时以太网、运动控制、分布式自动化、第一故障安全以及网络安全等当前自动化领域的热点话题,并且,作为跨供应商的技术,可以完全兼容工业以太网和现有的现场总线(如过程现场总线(process field bus,PROFIBUS))技术,保护现有投资。
目前,5G已经融入千行百业,为千行百业创造新价值。为了满足很多5G ToB的场景对报文(例如业务报文)传输的高可靠性的要求,会对需要传输的报文进行复制后通过双链路传输。
图1是本申请实施例提供的传输系统的交互流程图,其中,UPF1和CPE1构成A链路,UPF2和CPE2构成B链路。
如图1中的(a)所示,PLC向PLC远控台发送上行报文时,上行报文经双发选收设备复制转发后,分别接入CPE1和CPE2,随后CPE1通过空口通信将上行报文传输到UPF1,并且UPF1将上行报文传输到UPF2,CPE2通过空口通信将上行报文传输到UPF2,并且UPF2将上行报文传输到UPF1,随后由UPF1将上行报文发送给交换机,到达远控台。
如图1中的(b)所示,PLC远控台发送的下行报文经交换机后发送给UPF1,UPF1将下行报文复制后,分别发送给CPE1和UPF2,UPE2将下行报文转发给CPE2,CPE1和CPE2将下行报文经双发选收设备处理后发送给PLC。
其中,双发选收设备可以在传输上行报文时对上行报文进行复制转发实现双发功能,在传输下行报文时对来自CPE1和CPE2的下行报文进行去重处理,实现选发功能,示例性地,双发选收设备可以是AR交换机、工业交换机或工业网关。
上述方案中,UPF1被称为主UPF,UPF2被称为从UPF或辅UPF。在传输上行报文时,UPF1接收来自UPF2和CPE1的上行报文,经过去重操作后发送给交换机,起到选发的作用;在传输下行报文时,UPF1对来自交换机的下行报文进行复制,并分别转发给UPF2和CPE1,起到双发的作用。
在本申请实施例中,UPF1和UPF2可以基于业务进行自动同步,UPF1、UPF2之间同步静态配置数据,保持双发选收协议定时器时长的一致性。在执行双发功能时,双发端维持一个序号counter,并在给A、B两路的复制报文添加冗余控制标签(redundancy control tag,RCT)时保持每一路报文序号的连续性。在执行选收功能时,选收端正常发送先到的正常顺序报文并丢弃后续重复报文;若出现缺失报文,则对 先到的报文进行缓存排序,等其他链路相同序号的报文到达后按照顺序发送报文,因此需要使用缓冲区保存已收到报文的序号、乱序到达的报文。进一步地,UPF2在接收到来自UPF1的报文后,保存该报文中的序号和时间戳,用于实现基于业务流的自动同步。
具体地,上行传输场景下,如果A路先到达UPF1,则UPF1将去掉RCT的A路报文转发给交换机,将携带有RCT和到达时间戳的A路报文转发给UPF2;UPF1记录A路报文序号,后续收到B路该序号的报文直接丢弃,UPF2记录A路报文序号和时间戳,后续收到B路该序号报文,在正常场景下仍然给UPF1转发。上行传输场景下,交换机发送报文到UPF1,UPF1复制为A、B两路,UPF1通过B路向UPF2发送带RCT序号的报文,UPF2记录B路报文序号。
两个UPF在正常情况下1主1从协同工作,因此UPF1、UPF2都需要在设备启动后,初始化各自的主/从角色。以双发选收设备为工业网关为例,具体地,上行首包在端侧工业网关复制为A路、B路,A/B路信息在RCT中携带,UPF解析RCT,收到A路报文的UPF为主UPF,收到B路为从UPF;下行首包未知单播报文不双发,各UPF按原方式发送(泛洪或丢弃),因此下行首包不需要区分主/从,下行后续报文根据上行首包确定的主/从UPF处理。
基于上述方案,在端到端的报文传输过程中,主UPF承担了一端的双发选收功能,可以避免在两端都额外布置双发选收设备,减少了线路部署和人工调配的成本,也降低了对设备部署和网络配置的依赖。
上述方案描述的是未发生第一故障时报文传输的流程,图2是本申请实施例提供的报文传输方法200的流程示意图,其中,方法200用于在发生第一故障后,实现报文的正常传输。
S201,第二通信模块确定报文传输系统发生第一故障,其中,第二通信模块与第一通信模块属于同一报文传输系统,第一通信模块可以接收来自报文发送端的报文并分别转发给第二通信模块和报文接收端,第一故障指的是与第一通信模块相关的故障。
在一种可能的实现方式中,第一通信模块和第二通信模块分别是两个用户面功能UPF设备,或者,第一通信模块和第二通信模块分别是一个UPF设备中的两个内部通信模块,示例性地,第一通信模块是上述图1中的UPF1,第二通信模块是上述图1中的UPF2。
其中,第一通信模块和第二通信模块之间存在通信链路,该通信链路用于两个通信模块之间相互转发业务报文。第一通信模块和第二通信模块还可以通过以太网聚合Eth-Trunk进行链路捆绑,从而增强第一通信模块和第二通信模块之间通信链路的可靠性。
在一种可能的实现方式中,第二通信模块接收来自第一通信模块的报文后,保存该报文中携带的序号和时间戳。
本申请实施例中,第二通信模块可以确定报文传输系统是否发生第一故障,本申请实施例中报文传输系统的第一故障包括:第一通信模块发生第一故障、第一通信模块与报文发送端之间的链路发生第一故障、第一通信模块与第二通信模块之间的链路发生第一故障和第一通信模块与报文接收端之间的链路发生第一故障。
在一种可能的实现方式中,第二通信模块接收来自检测系统的第一指示信息,第一指示信息用于指示报文传输系统发生第一故障,检测系统用于检测报文传输系统是否发生故障。
示例性地,检测系统可以通过双向转发检测(bidirectional forwarding detection,BFD)检测机制检测报文传输系统中各个链路是否发生第一故障。
BFD是一种用于链路故障检测的协议。BFD与相邻系统建立会话后,在它们之间的通道上周期性地发送BFD包,如果某个系统在协商的检测时间内没有接收到BFD包,则认为这条双向通道的某个部分出了故障。上层协议通过BFD感知到链路故障后可以及时采取措施,进行故障恢复。
在一种可能的实现方式中,第二通信模块在接收到来自第一通信模块的报文后启动定时器,若在第一时间段内未收到下一个来自第一通信模块的报文,则确定报文传输系统发生第一故障。
其中,第一时间段是预先设定的时间段,具体地,第一时间段大于报文的周期,小于业务容忍时间(survival time)。
上述方案中的报文是周期性报文,由于正常传输报文时,第一通信模块会在接收到来自报文发送端的报文后转发给第二通信模块,因此当第二通信模块无法在第一时间段内接收下一个周期的报文时,可以判定报文传输系统发生了第一故障。特别地,若第一故障原因是第一通信模块与报文接收端之间的链路发生故障,则在一种可能的实现方式中,第一通信模块识别出第一故障后主动停止向第二通信模块转发报文,从而使得第二通信模块确定报文传输系统发生第一故障;在另一种可能的实现方式中,第一通 信模块识别出第一故障后向第二通信模块发送指示信息,该指示信息用于指示报文传输系统发生第一故障。
进一步地,可以通过检测乒乓切换,检测到之后利用多个终端、多个业务流的故障检测结果,综合判断,避免单业务流易受空口随机性的影响。
S202,第二通信模块获取来自报文发送端的第一报文。
对于上行传输报文,由于报文发送端会向第二通信模块发送上行传输报文,因此第二通信模块直接获取第一报文。
对于下行传输报文,第二通信模块向报文发送端发送第一请求信息,第一请求信息用于请求接收报文,基于第一请求信息,第二通信模块接收来自报文发送端的第一报文。
在一种可能的实现方式中,第一请求信息包括以下至少一项:第一上行报文、第一路由信息和包含第一地址信息的地址解析协议ARP报文,其中,第一上行报文是第二通信模块接收到的上行报文或构造的上行报文,第一路由信息是第一终端设备的路由信息,第一终端设备是所述报文接收端服务的终端设备,第一地址信息用于指示第一终端设备的地址。
示例性地,若业务是5G LAN业务,则第一地址信息是第一终端设备的MAC地址,若业务不是5G LAN业务,则第一路由信息是第一终端设备的IP路由。
S203,第二通信模块向报文接收端发送第一报文。
第一报文包括第一序号,第一序号用于表示报文发送顺序,示例性地,第一序号是双发报文时维持的序号counter,在给A、B两路的复制报文添加RCT时保持每一路报文序号的连续性,A路指的是第一通信模块所在的链路,B路是指的是第二通信模块所在的链路。
第一报文的第一序号大于第二报文的序号,第二报文是报文传输系统第一故障前第二通信模块接收的来自第一通信模块的报文,从而避免向报文接收端发送重复报文。
在一种可能的实现方式中,第二通信模块接收到来自第一通信模块的报文后,保存该报文中携带的第一序号和/或时间戳。
具体地,在发生第一故障后,若第二通信模块收到序号与已保存的第一序号相同的报文,则直接丢弃。
本申请实施例中,在报文传输系统发生第一故障时,由第二通信模块继续转发报文,确保第一故障时报文的转发,实现报文的高可靠性传输。
应理解,上述方案描述的是图1中报文传输系统出现第一故障时的报文传输方法,若第一故障恢复,则UPF2需要和UPF1进行缓存同步,然后按报文传输系统第一故障前的模式继续传输报文。若上述报文传输系统未发生第一故障,则在传输上行报文时,第二通信模块向第一通信模块发送来自报文发送端的第三报文,第二通信模块接收来自第一通信模块的第四报文,第三报文是第四报文的备份,第四报文是报文发送端发送给第一通信模块的报文;在传输下行报文时,第二通信模块接收来自第一通信模块发送的第五报文并转发给报文接收端,第五报文是第六报文的备份,第六报文是报文发送端发送给第一通信模块的报文。
上述方案中的缓存同步可以是一次性全量同步双发选收缓存或周期性同步UPF1和UPF2的缓冲区数据,使用一次性全量同步双发选收缓存可以避免超过容忍时间。
本申请实施例中,若UPF2检测到UPF之间链路长时间中断,则周期性查询第三方,确认UPF1的状态,直到UPF间链路恢复结束,如果UPF1状态正常,则UPF2不再继续转发上行报文到报文接收端。通过该方法避免报文接收端接收到完全相同的重复报文,提高性能和处理效率。
需要说明的是,本申请实施例中报文接收端和报文发送端是功能性的描述,示例性地,在上行过程中,报文发送端指的是工业网关,报文接收端指的是交换机;在下行过程中,报文发送端指的是交换机,报文接收端指的是工业网关。此外,报文接收端和报文发送端通过CPE与第一通信模块和第二通信模块传输报文。
下面结合图3和图4,以第一通信模块为UPF1,第二通信模块为UPF2为例,分别介绍第二通信模块在报文传输系统发生第一故障后如何保证正常传输上行报文和下行报文,为便于描述,将通过第一通信模块传输报文的链路称为A路,将通过第二通信模块传输报文的链路称为B路。
图3是本申请实施例提供的报文传输的方法300的示意性流程,该方法300传输的是上行报文。
S301,接收B路报文,B路报文是PLC发送给工业网关、工业网关复制后通过CPE2发送给UPF2的报 文。
S302,判断报文传输系统是否发生第一故障,若发生第一故障,则执行S303;若未发生第一故障,则执行S305。具体地,如何判断报文传输系统是否发生第一故障参见本申请实施例方法200中的步骤S201,在此不做赘述。
S303,接收来自UPF1的A路报文并向UPF1转发B路报文。
S304,判断B路报文是否为PLC报文,若是,则执行S305;若不是,则结束。
示例性地,UPF2可以根据B路报文的协议包头和内容中的至少一个进行上述判断。例如,B路报文的协议包头可以包括以太网报文类型的字段、协议类型的字段或VLAN ID的字段等。例如,这里的协议类型的字段可以是用于指示使用PROFINET的字段;再例如,这里的VLAN ID根据ID的不同可以对应于不同的场景。比如,当B路报文的以太网报文类型的字段为0x8892时,可以确定B路报文为PLC业务报文,当B路报文的以太网报文类型的字段不是0x8892时,可以确定B路报文不是PLC业务报文。再比如,当B路报文的VLAN ID为10时,可以确定B路报文为PLC业务报文,当B路报文的VLAN ID为01时,可以确定B路报文不是PLC业务报文。又比如,当B路报文的内容为机械臂的翻转或喷漆业务时,可以确定B路报文为PLC业务报文,否则,则不是PLC业务报文。
示例性地,UPF2可以预配置与PLC业务报文对应的配置信息,该配置信息中可以包括与业务报文的协议包头和内容相关的字段,当UPF2确定B路报文的协议包头和内容相关的字段与配置信息对应时,可以确定B路报文为PLC业务报文。
S305,向交换机发送B路报文。
上述方案,通过UPF2在报文传输系统发生第一故障时,代替UPF1向交换机发送上行报文,避免造成业务中断,实现报文的高可靠性传输。
图4是本申请实施例提供的报文传输方法400的示意性流程,该方法400传输的是上行报文。
S401,判断报文传输系统是否发生第一故障,若发生第一故障,则执行S402;若未发生第一故障,则执行S403。具体地,如何判断报文传输系统是否发生第一故障参见本申请实施例方法200中的步骤S201,在此不做赘述。
S402,接收来自UPF1的B路报文,B路报文是UPF1将PLC远控台通过交换机发送的下行报文复制得到的。
S403,向交换机请求B路报文,具体地请求方式参见本申请实施例方法200中的步骤S202,在此不做赘述。
S404,接收来自交换机的B路报文。
S405,判断B路报文是否为PLC报文,具体判断方法参见方法300中步骤S304。若是PLC报文,则执行步骤S406;若不是PLC报文,则流程结束。
S406,向CPE2发送B路报文,CPE2将B路转发给工业网关,工业网关转发给PLC。
上述方案,通过UPF2在报文传输系统发生第一故障时请求下行报文并代替UPF1向发送下行报文,避免造成业务中断,实现报文的高可靠性传输。
上文结合图1至图4,详细描述了本申请提供的方法,下面将结合图5至图6,详细描述本申请的装置实施例。可以理解的是,为了实现上述实施例中功能,图5或图6中的装置包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图5是本申请实施例提供的通信装置10的示意图,如图5所示,该装置10可以为上述第一通信模块,也可以为芯片或电路,比如可设置于第一通信模块的芯片或电路。
该装置10可以包括处理器11(即,处理单元的一例)和存储器12。该存储器12用于存储指令,该处理器11用于执行该存储器12存储的指令,以使该装置20实现如图1-4中对应的方法中第一通信模块执行的步骤。
进一步的,该装置10还可以包括输入口13(即,通信单元的一例)和输出口14(即,通信单元的另一例)。进一步的,该处理器11、存储器12、输入口13和输出口14可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器12用于存储计算机程序,该处理器11可以用于从该存储器12中调用并运行该计算计程序,以控制输入口13接收信号,控制输出口14发送信号,完成上述方法中第一通 信模块的步骤。该存储器12可以集成在处理器11中,也可以与处理器11分开设置。
可选地,若该装置10为通信设备,该输入口13为接收器,该输出口14为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置10为芯片或电路,该输入口13为输入接口,该输出口14为输出接口。
作为一种实现方式,输入口13和输出口14的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器11可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的第一通信模块。即将实现处理器11、输入口13和输出口14功能的程序代码存储在存储器12中,通用处理器通过执行存储器12中的代码来实现处理器11、输入口13和输出口14的功能。
其中,以上列举的通信装置10中各模块或单元的功能和动作仅为示例性说明,通信装置10中各模块或单元可以用于执行上述方法200中通信设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置10所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,图6是本申请实施例提供的通信装置20的示意图,如图6所示,该装置20可以为上述第二通信模块,也可以为芯片或电路,如可设置于第二通信模块内的芯片或电路。
该装置20可以包括处理器21(即,处理单元的一例)和存储器22。该存储器22用于存储指令,该处理器21用于执行该存储器22存储的指令,以使该装置20实现前述如图1-4中第二通信模块执行的步骤。
进一步的,该装置20还可以包括输入口23(即,通信单元的一例)和输出口23(即,处理单元的另一例)。再进一步的,该处理器21、存储器22、输入口23和输出口24可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器22用于存储计算机程序,该处理器21可以用于从该存储器22中调用并运行该计算计程序,以控制输入口23接收信号,控制输出口24发送信号,完成上述图1-4中第二通信模块的步骤。该存储器22可以集成在处理器21中,也可以与处理器21分开设置。
可选地,若该装置20为第二通信模块,该输入口23为接收器,该输出口24为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置20为芯片或电路,该输入口23为输入接口,该输出口24为输出接口。
可选的,若该装置20为芯片或电路,所述装置20也可以不包括存储器22,所述处理器21可以读取该芯片外部的存储器中的指令(程序或代码)以实现前述如图1-4中对应的方法中第二通信模块的功能。
作为一种实现方式,输入口23和输出口24的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器21可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的第二通信模块。即将实现处理器21、输入口23和输出口24功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器21、输入口23和输出口24的功能。
其中,通信装置20中各模块或单元可以用于执行上述图1-4中第二通信模块所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置20所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
本申请还提供一种通信装置,包括处理器,该处理器与存储器耦合,存储器用于存储计算机程序或指令和/或数据,处理器用于执行存储器存储的计算机程序或指令,或读取存储器存储的数据,以执行上文各方法实施例中任意一种实现方式的方法。可选地,处理器为一个或多个。可选地,该通信装置包括存储器。可选地,存储器为一个或多个。可选地,该存储器与该处理器集成在一起,或者分离设置。
本申请还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中任意一种实现方式的方法的计算机指令。
本申请还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中任意一种实现方式的方法。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于目标会话管理功能、目标接入和移动管理功能、源会话管理功能、或源接入和移动管理功能中。当然,处理器和存储介质也可以作为分立组件存在于目标会话管理功能、目标接入和移动管理功能、源会话管理功能、或源接入和移动管理功能中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行该计算机程序或指令时,全部或部分地执行本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、网络设备、通信设备或者其它可编程装置。该计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,那么不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
除非另有说明,本申请实施例所使用的所有技术和科学术语与本申请的技术领域的技术人员通常理解的含义相同。本申请中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请的范围。应理解,上述为举例说明,上文的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将申请实施例限制于所示例的具体数值或具体场景。本领域技术人员根据上文所给出的例子,显然可以进行各种等价的修改或变化,这样的修改和变化也落入本申请实施例的范围内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (28)

  1. 一种报文传输方法,应用于报文传输系统,包括第一通信模块和第二通信模块,其特征在于,所述第一通信模块用于接收来自报文发送端的报文并分别转发给所述第二通信模块和报文接收端设备,所述方法包括:
    所述第二通信模块确定所述报文传输系统发生第一故障,所述第一故障是与所述第一通信模块相关的故障;
    所述第二通信模块获取来自所述报文发送端的第一报文;
    所述第二通信模块向所述报文接收端发送所述第一报文。
  2. 根据权利要求1所述的方法,其特征在于,所述第一通信模块和所述第二通信模块分别是两个用户面功能UPF设备,或者,所述第一通信模块和所述第二通信模块分别是一个UPF设备中的两个内部通信模块。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一通信模块和第二通信模块之间通过以太网聚合Eth-Trunk进行链路捆绑。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第二通信模块确定所述报文传输系统发生第一故障包括:
    所述第二通信模块接收来自检测系统的第一指示信息,所述第一指示信息用于指示所述报文传输系统发生所述第一故障,所述检测系统用于检测所述报文传输系统是否发生所述第一故障。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第二通信模块确定所述报文传输系统发生第一故障包括:
    所述第二通信模块在接收到来自所述第一通信模块的报文后启动定时器,若在第一时间段内未收到下一个来自所述第一通信模块的报文,则确定所述报文传输系统发生所述第一故障。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,若所述第一通信模块和所述第二通信模块用于传输下行报文,则所述第二通信模块获取来自所述报文发送端的第一报文包括:
    所述第二通信模块向所述报文发送端发送第一请求信息,所述第一请求信息用于请求接收报文;
    所述第二通信模块接收来自所述报文发送端的所述第一报文。
  7. 根据权利要求6所述的方法,其特征在于,所述第一请求信息包括以下至少一项:
    第一上行报文、第一路由信息和包含第一地址信息的地址解析协议ARP报文;
    所述第一上行报文是所述第二通信模块已经接收到的上行报文或构造的上行报文,
    所述第一路由信息是第一终端设备的路由信息,所述第一终端设备是所述报文接收端服务的终端设备,
    所述第一地址信息用于指示所述第一终端设备的地址。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一报文包括第一序号,所述第一序号用于表示报文发送顺序。
  9. 根据权利要求8所述的方法,其特征在于,所述第一报文的所述第一序号大于第二报文的所述第一序号,所述第二报文是所述报文传输系统发生所述第一故障前所述第二通信模块最后接收的来自所述第一通信模块的报文。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,若所述第一通信模块和所述第二通信模块用于传输上行报文,则在所述第二通信模块确定所述报文传输系统发生第一故障前,所述方法还包括:
    所述第二通信模块向所述第一通信模块发送来自所述报文发送端的第三报文,所述第三报文是第四报文的备份,所述第四报文是所述报文发送端发送给所述第一通信模块的报文;
    所述第二通信模块接收来自所述第一通信模块的所述第四报文。
  11. 根据权利要求1至9中任一项所述的方法,其特征在于,若所述第一通信模块和所述第二通信模块用于传输下行报文,则在所述第二通信模块确定所述报文传输系统发生第一故障前,所述方法还包括:
    所述第二通信模块接收来自所述第一通信模块发送的第五报文并转发给所述报文接收端,所述第五 报文是第六报文的备份,所述第六报文是所述报文发送端发送给所述第一通信模块的报文。
  12. 一种报文传输装置,位于第二通信模块中,应用于报文传输系统,所述报文传输系统包括第一通信模块和第二通信模块,其特征在于,所述第一通信模块用于接收来自报文发送端的报文并分别转发给所述第二通信模块和报文接收端设备,所述报文传输装置包括:
    判断模块,用于确定所述报文传输系统发生第一故障,所述第一故障是与所述第一通信模块相关的故障;
    收发模块,用于获取来自所述报文发送端的第一报文;
    所述收发模块,还用于向所述报文接收端发送所述第一报文。
  13. 根据权利要求12所述的装置,其特征在于,所述第一通信模块和所述第二通信模块分别是两个用户面功能UPF设备,或者,所述第一通信模块和所述第二通信模块分别是一个UPF设备中的两个内部通信模块。
  14. 根据权利要求12或13所述的装置,其特征在于,所述第一通信模块和第二通信模块之间通过以太网聚合Eth-Trunk进行链路捆绑。
  15. 根据权利要求12至14中任一项所述的装置,其特征在于,所述确定所述报文传输系统发生第一故障包括:
    所述判断模块接收来自检测系统的第一指示信息,所述第一指示信息用于指示所述报文传输系统发生所述第一故障,所述检测系统用于检测所述报文传输系统是否发生所述第一故障。
  16. 根据权利要求12至15中任一项所述的装置,其特征在于,所述确定所述报文传输系统发生第一故障包括:
    所述判断模块在所述第二通信模块接收到来自所述第一通信模块的报文后启动定时器,若在第一时间段内未收到下一个来自所述第一通信模块的报文,则确定所述报文传输系统发生所述第一故障。
  17. 根据权利要求12至16中任一项所述的装置,其特征在于,若所述第一通信模块和所述第二通信模块用于传输下行报文,则所述获取来自所述报文发送端的第一报文包括:
    所述收发模块向所述报文发送端发送第一请求信息,所述第一请求信息用于请求接收报文;
    所述收发模块接收来自所述报文发送端的所述第一报文。
  18. 根据权利要求17所述的装置,其特征在于,所述第一请求信息包括以下至少一项:
    第一上行报文、第一路由信息和包含第一地址信息的地址解析协议ARP报文;
    所述第一上行报文是所述第二通信模块接收到的上行报文或构造的上行报文,
    所述第一路由信息是第一终端设备的路由信息,所述第一终端设备是所述报文接收端服务的终端设备,
    所述第一地址信息用于指示所述第一终端设备的地址。
  19. 根据权利要求12至18中任一项所述的装置,其特征在于,所述第一报文包括第一序号,所述第一序号用于表示报文发送顺序。
  20. 根据权利要求19所述的装置,其特征在于,所述第一报文的所述第一序号大于第二报文的所述第一序号,所述第二报文是所述报文传输系统发生所述第一故障前所述第二通信模块最后接收的来自所述第一通信模块的报文。
  21. 根据权利要求12至20中任一项所述的装置,其特征在于,若所述第一通信模块和所述第二通信模块用于传输上行报文,则在所述第二通信模块确定所述报文传输系统发生所述第一故障前,所述收发模块还用于:
    向所述第一通信模块发送来自所述报文发送端的第三报文,所述第三报文是第四报文的备份,所述第四报文是所述报文发送端发送给所述第一通信模块的报文;
    接收来自所述第一通信模块的所述第四报文。
  22. 根据权利要求12至20中任一项所述的装置,其特征在于,若所述第一通信模块和所述第二通信模块用于传输下行报文,则在所述第二通信模块确定所述报文传输系统发生所述第一故障前,所述收发模块还用于:
    接收来自所述第一通信模块发送的第五报文并发送给所述报文接收端,所述第五报文是第六报文的备份,所述第六报文是所述报文发送端发送给所述第一通信模块的报文。
  23. 一种报文传输的系统,其特征在于,包括第一通信模块和第二通信模块,所述第一通信模块用 于接收来自报文发送端的报文并分别转发给所述第二通信模块和报文接收端,所述第二通信模块用于确定所述报文传输系统发生第一故障后向获取来自所述报文发送端的第一报文,所述第二通信模块向所述报文接收端发送所述第一报文,所述报文发送端是报文发送设备,所述报文接收端是报文接收设备,所述第一故障是与所述第一通信模块相关的第一故障。
  24. 一种报文传输的系统,其特征在于,包括第一通信模块和第二通信模块,所述第二通信模块用于接收来自报文发送端的第二上行报文并向所述第一通信模块发送所述第二上行报文,所述第一通信模块用于接收来自所述报文发送端的第一上行报文并向所述第二通信模块发送所述第一上行报文,接收来自第二通信模块的第二上行报文,当所述第一上行报文和所述第二上行报文重复时,所述第一通信模块向报文接收端发送所述第一上行报文和所述第二上行报文中的一个,所述报文发送端是上行报文发送设备,所述报文接收端是上行报文接收设备;或者
    所述第一通信模块用于接收来自第三设备的第一下行报文并向第四设备发送所述第一下行报文,所述第一通信模块还用于向所述第二通信模块发送第二下行报文,所述第二下行报文是所述第一下行报文的备份,所述第二通信模块用于接收来自所述第一通信模块的所述第二下行报文并向所述第四设备发送所述第二下行报文,所述第三设备是下行报文发送设备,所述第四设备是下行报文接收设备。
  25. 一种通信装置,其特征在于,包括:
    处理器和存储器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行存储器中存储的计算机程序,以使得所述装置执行如权利要求1至11中任一项所述的方法。
  26. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统地通信设备执行如权利要求1至11中任一项所述的通信方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至11中任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被处理器运行时,使得如权利要求1至11中任一项所述的方法被实现。
PCT/CN2023/124170 2022-10-31 2023-10-12 显示方法和电子设备 WO2024093636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211351616.4A CN117955813A (zh) 2022-10-31 2022-10-31 一种报文传输方法、装置和系统
CN202211351616.4 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024093636A1 true WO2024093636A1 (zh) 2024-05-10

Family

ID=90802309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124170 WO2024093636A1 (zh) 2022-10-31 2023-10-12 显示方法和电子设备

Country Status (2)

Country Link
CN (1) CN117955813A (zh)
WO (1) WO2024093636A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193177A (ja) * 2008-02-12 2009-08-27 Kddi Corp 端末に生じた障害に対する遠隔障害対応方法及びシステム
CN110875880A (zh) * 2018-08-29 2020-03-10 北京华为数字技术有限公司 一种数据传输方法、相关设备、系统及计算机存储介质
CN112187643A (zh) * 2017-11-28 2021-01-05 华为技术有限公司 报文转发的方法、控制面网关和用户面网关
CN114697999A (zh) * 2020-12-28 2022-07-01 华为技术有限公司 一种冗余路径创建方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193177A (ja) * 2008-02-12 2009-08-27 Kddi Corp 端末に生じた障害に対する遠隔障害対応方法及びシステム
CN112187643A (zh) * 2017-11-28 2021-01-05 华为技术有限公司 报文转发的方法、控制面网关和用户面网关
CN110875880A (zh) * 2018-08-29 2020-03-10 北京华为数字技术有限公司 一种数据传输方法、相关设备、系统及计算机存储介质
CN114697999A (zh) * 2020-12-28 2022-07-01 华为技术有限公司 一种冗余路径创建方法、装置及系统

Also Published As

Publication number Publication date
CN117955813A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
CN102904818B (zh) 一种arp信息表项更新方法及装置
US5848227A (en) Method of providing fault tolerance and switch-over distribution in a bridge/router
CN108156023B (zh) 一种基于冗余机制的时间敏感性网络分析系统及方法
JP5801175B2 (ja) パケット通信装置および方法
CN106936661B (zh) 一种网络监测方法、装置及系统
CN107508640B (zh) 基于光纤通道技术的双环冗余自愈光纤网络构建方法
CN108206753B (zh) 一种检测时延的方法、装置及系统
WO2008131624A1 (fr) Système ethernet réparti et son utilisation pour détection de dysfonctionnement
US10484199B2 (en) Redundantly operable industrial communication system, method for operating the communication system, and radio transceiver station
US20140050078A1 (en) Communication interruption time reduction method in a packet communication network
US20090006650A1 (en) Communication device, communication method, communication interface, and program product
US11792099B2 (en) Troubleshooting method, device, and readable storage medium
US20190116086A1 (en) Radio Communication System for an Industrial Automation System, Method for Operating said Radio Communication System, and Radio Transceiver Station
US20200044964A1 (en) Defect detection in ip/mpls network tunnels
US9294342B2 (en) Network node apparatus system, apparatus, and method
JP2001186171A (ja) データパケット転送網とデータパケット転送方法
CN105281929B (zh) 一种服务网口状态检测和容错的装置及其方法
WO2024093636A1 (zh) 显示方法和电子设备
WO2024103582A1 (zh) 获取链路节点数据的方法和系统
US11026119B2 (en) Radio communication system for an industrial automation system and method for operating the radio communication system
JP2009225285A (ja) イーサネットの伝送方法、伝送装置およびシステム
JP5698854B2 (ja) 通信方法及びスイッチングハブ装置
KR101442567B1 (ko) 링 네트워크 토폴로지에서 프레임기반 라우팅을 이용한 프레임 무손실 통신 방법
Zhang et al. A service protection mechanism impelemented on P4 by packet replication
JP4430031B2 (ja) ネットワーク中継方法、ネットワーク要素およびネットワーク中継システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884568

Country of ref document: EP

Kind code of ref document: A1