WO2019233277A1 - 空调器的送风控制方法与空调器 - Google Patents

空调器的送风控制方法与空调器 Download PDF

Info

Publication number
WO2019233277A1
WO2019233277A1 PCT/CN2019/087850 CN2019087850W WO2019233277A1 WO 2019233277 A1 WO2019233277 A1 WO 2019233277A1 CN 2019087850 W CN2019087850 W CN 2019087850W WO 2019233277 A1 WO2019233277 A1 WO 2019233277A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
air
vertical
air supply
swing
Prior art date
Application number
PCT/CN2019/087850
Other languages
English (en)
French (fr)
Inventor
刘鹏
耿宝寒
孙强
王金伟
杨万鹏
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019233277A1 publication Critical patent/WO2019233277A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air

Definitions

  • the present invention relates to the technical field of air conditioning, and in particular, to a method for controlling air supply of an air conditioner and an air conditioner.
  • Air conditioners can help people reach a temperature that they can adapt to when the ambient temperature is too high or too low.
  • An object of the present invention is to increase the diversity of air supply modes of an air conditioner.
  • a further object of the present invention is to prevent the air conditioner from directly blowing the user's air, and improve the user experience.
  • the present invention provides a method for controlling air supply of an air conditioner
  • the air conditioner includes: a casing, a front side panel of the casing is provided with an air outlet; a cross-flow fan is provided on the casing along the vertical direction of the casing; Internal; first vertical leaf assembly and second vertical leaf assembly provided at the air outlet, second vertical leaf assembly provided below the first vertical leaf assembly, first vertical leaf assembly and second vertical leaf assembly
  • the leaf component is used to adjust the lateral air outlet direction of the upper and lower areas of the air outlet respectively;
  • the yaw blade component is provided on the inner side of the first vertical blade component and the second vertical blade component, and is used to adjust the vertical direction of the air outlet
  • the direction of the wind, and the air supply control method of the air conditioner includes: detecting the real-time status of the air conditioner; judging whether the real-time status of the air conditioner meets a preset triggering condition for preventing direct blown air;
  • the yaw leaf assembly of the air conditioner is controlled to swing until its air outlet direction is upward and
  • detecting the real-time status of the air conditioner includes detecting the working mode of the air conditioner, the set temperature of the air conditioner, and the indoor temperature of the environment in which the air conditioner is located, where the working mode includes a cooling mode and a heating mode;
  • the triggering conditions of the direct blowing include: the working mode of the air conditioner is a cooling mode, and the absolute value of the difference between the set temperature of the air conditioner and the indoor temperature of the environment where the air conditioner is located is continuously less than or equal to the preset value within a preset period of time.
  • detecting the real-time status of the air conditioner includes: detecting a user-triggered operation obtained by an anti-straight blow button of the air conditioner; and the preset anti-straight-blow trigger condition includes: obtaining a first trigger operation by the user by the anti-straight-blow button.
  • the method further includes: obtaining the air supply direction of the air conditioner, wherein the air supply direction includes air supply to the left and right Wind and upward and downward air supply; determine whether the air supply direction of the air conditioner is to supply air to the left and right; and if so, control the second vertical swing leaf assembly to swing to the wind direction to the first direction toward the air conditioner.
  • the second vertical swing leaf component is controlled to swing to a position opposite to the position before the direct blow prevention function is turned on.
  • detecting the user-triggered operation acquired by the anti-direct blow button of the air conditioner includes: recording the number of trigger operations, and controlling the vertical leaf assembly to swing to the opposite position of its current position when the user triggers the second trigger operation;
  • the anti-straight blow function of the air conditioner is turned off, and the second vertical leaf component is controlled to be reset to the same position as that of the first vertical leaf component.
  • an air conditioner a casing, and a front side panel of the casing is provided with an air outlet; a cross-flow fan is disposed inside the casing along the vertical direction of the casing; and is disposed at the air outlet
  • the first vertical leaf assembly and the second vertical leaf assembly, the second vertical leaf assembly is disposed below the first vertical leaf assembly, and the first vertical leaf assembly and the second vertical leaf assembly are respectively used for adjustment Transverse wind direction of the area above and below the air outlet; yaw blade components, which are arranged inside the first vertical blade component and the second vertical blade component, for adjusting the vertical air outlet direction of the air outlet; and
  • the wind control device includes: a state detection module configured to detect the real-time state of the air conditioner; a judgment module configured to determine whether the real-time state of the air conditioner meets a preset anti-straight triggering condition; and an anti-straight module, configured to When the real-time condition of the air conditioner meets the preset triggering condition of anti-straight blow, the anti
  • the state detection module is further configured to detect an operating mode of the air conditioner, a set temperature of the air conditioner, and an indoor temperature of an environment in which the air conditioner is located, where the operating mode includes a cooling mode and a heating mode;
  • the blowing trigger condition includes: the working mode of the air conditioner is a cooling mode, and an absolute value of a difference between a set temperature of the air conditioner and an indoor temperature of an environment in which the air conditioner is located is continuously less than or equal to a preset value within a preset duration.
  • the state detection module is further configured to detect a user-triggered operation obtained by an anti-direct blow button of the air conditioner; and the preset anti-direct blow trigger condition includes: the anti-direct blow button obtains a user's first trigger operation.
  • the anti-straight blow module is further configured to: obtain the air supply direction of the air conditioner, wherein the air supply direction includes air supply to the left and right and up and down; determine whether the air supply direction of the air conditioner is to air supply to the left and right; and If yes, control the second vertical blade assembly to swing until the airflow direction is toward the first direction of the air conditioner; if not, control the second vertical blade assembly to swing to the opposite position before the direct blow prevention function is turned on.
  • the air supply control method of the air conditioner and the air conditioner of the present invention detect the real-time state of the air conditioner, and when the real-time state of the air conditioner meets a preset anti-straight trigger trigger condition, turn on the anti-straight function of the air conditioner to control the air conditioner.
  • the oscillating blade component of the device is swung until its air outlet direction is upward and at a preset angle with the horizontal direction.
  • the air conditioner has a first vertical leaf component and a second vertical leaf component, which can be controlled separately to realize that the air conditioner sends air to different directions at the same time, and improves the diversity of air supply methods of the air conditioner. Enabling the anti-direct blow function can meet the user's requirements for cold air, and avoid direct air blowing from the air conditioner to the user, thereby avoiding various discomfort caused by the direct air blowing from the air conditioner.
  • the air supply control method and the air conditioner of the air conditioner of the present invention after the steps of controlling the yaw blade assembly of the air conditioner to swing toward the air outlet direction upward and at a predetermined angle with the horizontal direction, the method further includes: obtaining the air conditioner The air supply direction of the air conditioner; determine whether the air supply direction of the air conditioner is to supply air to the left and right; and if so, control the second vertical swing leaf assembly to swing until the air outlet direction is the first direction of the air conditioner.
  • the air supply direction of the air conditioner is upward and downward, the second vertical swing leaf component is controlled to swing to a position opposite to the position before the anti-straight blow function is turned on.
  • the air supply direction of the second vertical swing leaf component is adjusted to further ensure that the air from the air conditioner will not directly blow the user, and improve the user experience.
  • detecting the real-time status of the air conditioner includes: detecting an operating mode of the air conditioner, a set temperature of the air conditioner, and an indoor temperature of an environment where the air conditioner is located, among which The modes include cooling mode and heating mode; and the preset triggering conditions for preventing direct blowing include: the working mode of the air conditioner is cooling mode, and within a preset time, the set temperature of the air conditioner and the indoor temperature of the environment where the air conditioner is located The absolute value of the difference is continuously less than or equal to a preset value.
  • detecting the real-time status of the air conditioner includes: detecting a user-triggered operation obtained by the direct blow prevention button of the air conditioner; and the preset anti-direct blow trigger condition includes: the direct blow prevention button obtaining the user's first trigger operation.
  • the air conditioner can be turned on in two ways: it can be automatically turned on according to the actual conditions of the room temperature; or it can be turned on after the user's first trigger operation is obtained. .
  • the anti-direct blow function can be realized in various situations, and it can solve the problems caused by direct blowing of air conditioners to users.
  • FIG. 1 is a schematic front view of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of an air conditioner according to an embodiment of the present invention.
  • FIG. 3 is an exploded view of an air conditioner according to an embodiment of the present invention.
  • FIG. 4 is a schematic front view of a yaw leaf assembly of an air conditioner according to an embodiment of the present invention.
  • FIG. 5 is a schematic side view of a yaw leaf assembly of an air conditioner according to an embodiment of the present invention.
  • FIG. 6 is a schematic front view of a first vertical leaf component and a second vertical leaf component of an air conditioner according to an embodiment of the present invention
  • FIG. 7 is a cross-sectional view of an air conditioner according to an embodiment of the present invention.
  • FIG. 8 is an enlarged structural view of an air duct wall of an air outlet duct of an air conditioner according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a ventilation control device for an air conditioner according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a method for controlling air supply of an air conditioner according to an embodiment of the present invention.
  • FIG. 11 is a detailed flowchart of a method for controlling air supply of an air conditioner according to an embodiment of the present invention.
  • FIG. 12 is a detailed flowchart of a method for controlling air supply of an air conditioner according to another embodiment of the present invention.
  • This embodiment first provides an air conditioner, which can realize the air conditioner to send air to different directions at the same time, and increase the variety of air supply methods of the air conditioner. Enabling the anti-direct blow function can meet the user's requirements for cold air, and avoid direct air blowing from the air conditioner to the user, thereby avoiding various discomfort caused by the direct air blowing from the air conditioner.
  • 1 is a schematic front view of an air conditioner according to an embodiment of the present invention
  • FIG. 2 is a schematic side view of an air conditioner according to an embodiment of the present invention
  • FIG. 3 is an exploded view of the air conditioner according to an embodiment of the present invention.
  • the air conditioner of this embodiment may be a vertical air conditioner, which may include: a housing 100, a cross-flow fan 200, a volute 600, and an indoor unit heat exchanger (not shown in the figure). ), A yaw leaf assembly 500, a first vertical leaf assembly 300, and a second vertical leaf assembly 400.
  • the housing 100 further includes a top plate, a bottom plate, a back plate 114, a left trim plate 111, and a right trim plate 112.
  • An air inlet (not shown) of the indoor unit of the air conditioner may be disposed on the back plate 114 of the casing 100.
  • the air outlet 113 of the indoor unit of the air conditioner is opened on the front side of the casing 100. In this embodiment, a gap is formed between the left decorative panel 111 and the right decorative panel 112, and the air outlet 113 is opened along the vertical of the indoor unit. To extend.
  • the cross-flow fan 200 is disposed inside the casing 100, and its rotation axis extends along the vertical direction of the indoor unit, and the extension length is the same as that of the air outlet 113 to ensure that the entire area of the air outlet 113 can output wind.
  • the first vertical leaf assembly 300 and the second vertical leaf assembly 400 are disposed at the air outlet 113, the second vertical leaf assembly 400 is disposed below the first vertical leaf assembly 300, and the first vertical leaf assembly 300 and the first The two vertical swing leaf assemblies 400 are respectively used to adjust the lateral air outlet direction of the area above and below the air outlet 113.
  • the vertical extending lengths of the first vertical leaf component 300 and the second vertical leaf component 400 are equal.
  • the yaw leaf assembly 500 is disposed on the inner side of the first vertical leaf assembly 300 and the second vertical leaf assembly 400 and is used to adjust the vertical wind direction of the air outlet 113.
  • FIG. 4 is a schematic front view of a yaw leaf assembly 500 of an air conditioner according to an embodiment of the present invention
  • FIG. 5 is a schematic side view of a yaw leaf assembly 500 of an air conditioner according to an embodiment of the present invention.
  • the yaw blade assembly 500 includes: a vertical link 510, a plurality of yaw blades 520, and a first motor 530.
  • the vertical link 510 extends vertically along the indoor unit of the air conditioner; a plurality of yawing leaves 520 are arranged at vertical intervals along the indoor unit of the air conditioner, and the root of each of the yawing leaves 520 has a rotating shaft connected to the vertical link 510.
  • the output end of the first motor 530 is connected to one end of the vertical link 510 and is used to drive the vertical link 510 to move up and down to drive a plurality of yawing leaves 520 to swing.
  • the root of each yaw blade 520 has a fixed rotating shaft 521 and a connecting rod rotating shaft 522.
  • the fixed rotating shaft 521 is connected to the air duct wall 701 of the air outlet duct 700 of the indoor unit, and does not move.
  • the yaw blade 520 can rotate around the fixed rotating shaft 521.
  • the connecting rod rotating shaft 522 is disposed near the fixed rotating shaft 521.
  • the connecting rod rotating shaft 522 is used to connect the vertical link 510 and can move with the vertical link 510.
  • the yaw leaf 520 is driven to rotate about its fixed rotation axis 521 by the link rotation axis 522.
  • the yaw leaf 520 will tilt downward, so that the direction of the air outlet of the air outlet 113 is downward.
  • the yaw leaf 520 will tilt upward, causing The wind direction of the tuyere 113 is upward.
  • FIG. 6 is a schematic front view of a first vertical leaf assembly 300 and a second vertical leaf assembly 400 of an air conditioner according to an embodiment of the present invention.
  • the first vertical blade 320 assembly 300 includes: a first air outlet frame 310, a plurality of first vertical blades 320 and a second motor 330.
  • the first air outlet frame 310 is a rectangular frame located on the plane of the air outlet 113 and is used to connect a plurality of first vertical swing leaves 320.
  • a rotating shaft for connecting the second motor 330 is provided at the top center of the first air outlet frame 310.
  • a plurality of first vertical swing leaves 320 are arranged along the horizontal direction of the indoor unit of the air conditioner in a space defined by the first air outlet frame 310.
  • each first vertical swing blade 320 are connected to the first air outlet frame 310.
  • the output end of the second motor 330 is connected to the rotating shaft on the top of the first air outlet frame 310, and is used to drive the first air outlet frame 310 to rotate about a vertical line (that is, the line on which the shaft is located) to drive a plurality of first vertical pendulums.
  • Leaf 320 movement When the first air outlet frame 310 is in the initial position (that is, when the first air outlet frame 310 does not rotate at any angle), each first vertical swing leaf 320 is perpendicular to the plane where the air outlet 113 is located, and the air outlet 113 is positive at this time. Forward air.
  • the angles of the multiple first vertical swing leaves 320 change accordingly. For example, when the first air outlet frame 310 rotates to the left, the multiple first vertical swing leaves 320 and The included angle of the plane on which the air outlet 113 is located changes, and at this time, the air outlet 113 sends air to the left. When the first air outlet frame 310 rotates to the right, the air outlet 113 sends air to the right.
  • the second vertical swing leaf assembly 400 includes a second air outlet frame 410, a plurality of second vertical swing leaves 420, and a third motor 430.
  • a plurality of second vertical swing leaves 420 are arranged in a space defined by the second air outlet frame 410 along the horizontal direction of the indoor unit of the air conditioner, and two ends of each second vertical swing blade 420 are connected to the second air outlet frame 410.
  • the third motor 430 has an output end connected to the second air outlet frame 410, and is used to drive the second air outlet frame 410 to rotate about a vertical straight line to drive a plurality of second vertical swing leaves 420 to move.
  • the structure of the second vertical swing leaf 420 component 400 is similar to that of the first vertical swing leaf 320 component 300, and details are not described herein again.
  • the third motor 430 is disposed below the second air outlet frame 410, and the bottom center of the second air outlet frame 410 is provided with a rotating shaft for connecting the third motor 430.
  • the first vertical leaf 320 and the second vertical leaf 420 can swing within an angle range of 34 ° from left to right, so that the indoor unit can wind to the left or right.
  • the first air outlet frame 310 and the second air outlet frame 410 are connected through a rotating shaft. That is, the first air outlet frame 310 and the second air outlet frame 410 can be relatively rotated.
  • This arrangement makes the structure of the two vertical blade components more compact, improves the space utilization rate at the indoor unit air outlet 113, and also improves the rotational stability of the two vertical blade components.
  • FIG. 7 is a cross-sectional view of an air conditioner according to an embodiment of the present invention.
  • the air conditioner indoor unit further includes a volute 600 and an air outlet duct 700.
  • the volute 600 is disposed inside the casing 100 and is located outside the cross-flow fan 200 and is used to guide the airflow running direction of the cross-flow fan 200.
  • the volute 600 has an inlet and an outlet.
  • the inlet of the volute 600 faces the air inlet of the casing 100, and the outlet of the volute 600 faces the air outlet 113 of the casing 100.
  • the air outlet duct 700 is connected to the outlet of the volute 600 and the air outlet 113 of the casing 100.
  • the air outlet duct 700 is provided inside the air duct wall 701 near the air outlet 113 with a flange 710 extending vertically along the indoor unit of the air conditioner.
  • FIG. 8 is an enlarged view of a structure of an air duct wall 701 of an air outlet duct 700 of an air conditioner according to an embodiment of the present invention.
  • the above-mentioned flange 710 is jointly formed by a first curved surface 711 and a second mutual surface that are raised inside the air duct wall 701.
  • the curvature radius R1 of the curved surface inside the air duct wall 701, the curvature radius R2 of the first curved surface 711, and the curvature radius R3 of the second curved surface 712 satisfy the following constraint conditions: 95mm ⁇ R1 ⁇ 105mm; 2mm ⁇ R2 ⁇ 4mm; 18mm ⁇ R3 ⁇ 22mm.
  • R1, R2, and R3 satisfy the following relationship: 4 ⁇ (R2 + R3) ⁇ R1.
  • the inventor has repeatedly found that when the speed of the cross-flow fan 200 is in the range of 600 r / min to 1000 r / min and the shape of the flange 710 meets the above conditions, a Kangda effect can be produced.
  • the Coanda Effect also known as the Coanda Effect or Coanda Effect, refers to the tendency of a fluid (water flow or air flow) to change from leaving the original flow direction to flow with the surface of a protruding object.
  • a fluid water flow or air flow
  • the flange 710 at the air outlet 113 can change the flow direction of the airflow, that is, the airflow flows along the flange 710, and does not directly blow on the air conditioning trim, which effectively avoids the air conditioning trim. Problems with condensation.
  • FIG. 9 is a schematic block diagram of a ventilation control device 800 of an air conditioner according to an embodiment of the present invention.
  • the air supply control device 800 of the air conditioner in this embodiment includes a state detection module 801, a determination module 802, and a direct blowout prevention module 803.
  • the state detection module 801 may be configured to detect a real-time state of the air conditioner.
  • the determination module 802 may be configured to determine whether the real-time state of the air conditioner meets a preset triggering condition for preventing direct blowing.
  • the anti-straight blow module 803 may be configured to turn on the anti-straight blow function of the air conditioner when the real-time state of the air conditioner meets a preset anti-straight blow trigger condition, and control the swing leaf assembly 500 of the air conditioner to swing upwards At a preset angle with the horizontal direction.
  • the state detection module 801 may be further configured to detect an operating mode of the air conditioner, a set temperature of the air conditioner, and an indoor temperature of an environment in which the air conditioner is located, where the working mode includes a cooling mode and a heating mode.
  • the preset triggering conditions for direct blow prevention include: the working mode of the air conditioner is cooling mode, and the absolute value of the difference between the set temperature of the air conditioner and the indoor temperature of the environment in which the air conditioner is located is less than or equal to the preset value and is continuously preset. duration. Both the preset value and the preset duration can be set in advance according to actual conditions. For example, the preset value can be set to 1 ° C, and the preset duration can be set to 1 minute. It should be noted that the specific values of the preset value and the preset duration are merely examples, and are not a limitation on the present invention.
  • the state detection module 801 is further configured to: detect a user-triggered operation obtained by the direct blow prevention button of the air conditioner.
  • the preset triggering conditions for preventing direct blow include: the direct blow preventing button obtains the user's first trigger operation.
  • the anti-direct blowing module 803 may also be configured to: obtain the air supply direction of the air conditioner, wherein the air supply direction includes air supply to the left and right and up and down; determine whether the air supply direction of the air conditioner is to air supply to the left and right; and if so, The second vertical leaf assembly 400 is controlled to swing to the left side of the air conditioner in the direction of airflow. If not, the second vertical leaf assembly 400 is controlled to swing to the opposite position before the direct blow prevention function is turned on.
  • FIG. 10 is a schematic diagram of a method for controlling air supply of an air conditioner according to an embodiment of the present invention.
  • the air supply control method of the air conditioner sequentially performs the following steps:
  • Step S1002 detecting the real-time status of the air conditioner
  • step S1004 it is determined whether the real-time state of the air conditioner satisfies a preset triggering condition for preventing direct blow. If yes, step S1006 is performed, and if no, return to step S1002;
  • step S1006 the anti-straight blow function of the air conditioner is turned on, and the yaw leaf assembly 500 of the air conditioner is controlled to swing until its air outlet direction is upward and at a preset angle with the horizontal direction.
  • the preset angle in step S1006 can be set according to actual conditions.
  • the preset angle can be set to 60 °.
  • the direct blowing prevention function of the air conditioner is turned on.
  • the air conditioner has a first vertical leaf component 300 and a second vertical leaf component 400, which can be controlled separately to realize the air conditioner to supply air in different directions at the same time, thereby increasing the variety of air supply methods of the air conditioner. Enabling the anti-direct blow function can meet the user's requirements for cold air, and avoid direct air blowing from the air conditioner to the user, thereby avoiding various discomfort caused by the direct air blowing from the air conditioner.
  • FIG. 11 is a detailed flowchart of a method for controlling air supply of an air conditioner according to an embodiment of the present invention.
  • the air supply control method of the air conditioner in this embodiment may automatically enable a direct blow prevention function according to the actual situation of the indoor temperature.
  • the air supply control method of the air conditioner in this embodiment includes the following steps:
  • Step S1102 detecting the working mode of the air conditioner, the set temperature T1 of the air conditioner, and the indoor temperature T2 of the environment in which the air conditioner is located;
  • step S1104 it is determined whether the working mode of the air conditioner is a cooling mode, and TT1-T2 ⁇ T for a preset duration. If yes, go to step S1106, and if not, go back to step S1102;
  • step S1106 the anti-straight blow function of the air conditioner is turned on, and the yaw leaf assembly 500 of the air conditioner is controlled to swing until the direction of the air outlet thereof is upward and at a preset angle with the horizontal direction;
  • Step S1110 it is determined whether the air supply direction of the air conditioner is left and right air supply, if yes, step S1112 is performed, and if no, step S1114 is performed;
  • Step S1112 controlling the second vertical leaf assembly 400 to swing to the air outlet direction toward the left side of the air conditioner
  • step S1114 the second vertical swing leaf assembly 400 is controlled to swing to a position opposite to the position before the direct blow prevention function is turned on;
  • step S1118 it is determined whether TT1-T2 ⁇ > t and the preset duration is continued. If yes, go to step S1120; if not, go back to step S1116;
  • step S1120 the anti-straightening function of the air conditioner is turned off, and the second vertical swing leaf assembly 400 is controlled to be reset to the same position as the wind direction of the first vertical swing leaf assembly 300.
  • the working mode of the air conditioner in step S1102 includes a cooling mode and a heating mode, and in the case of NO in step S1104, the working mode of the air conditioner is a heating mode.
  • the working mode of the air conditioner may further include: a purification mode, a humidification mode, etc., as long as the air conditioner is not in the cooling mode, it is a case of no.
  • T is a preset value.
  • ⁇ T1-T2 ⁇ T and the preset duration is continued, it indicates that the indoor temperature is very close to the set temperature, and the user's demand for cold air has been basically met.
  • the direct blow prevention function can be turned on to Protect users from interference.
  • Both the preset value and the preset duration can be set in advance according to the actual situation. For example, the preset value can be set to 1 ° C, and the preset duration can be set to 1 minute. It should be noted that the specific values of the preset value and the preset duration are merely examples, and are not a limitation on the present invention.
  • ⁇ T1-T2 ⁇ T and continue to preset the duration indicating that the absolute value of the difference between T1 and T2 is always less than or equal to T within the preset duration.
  • the air supply direction of the air conditioner includes air supply to the left and right, and air supply upward and downward. Therefore, if it is not, the air supply direction of the air conditioner is air supply upward and downward.
  • the second vertical leaf assembly 400 is controlled to swing to the air outlet direction toward the left side of the air conditioner (that is, toward a first direction). This is because of the air duct design considerations of the air conditioner itself. When the vertical leaf assembly 400 is swung until the air outlet direction is toward the left side (first direction) of the air conditioner, the air volume is the largest, which improves the cooling effect of the air conditioner and the user experience.
  • t is also a preset value, which can be the same as or different from the preset value T, and can be specifically set according to the actual situation.
  • ⁇ T1-T2 ⁇ > t and continue to preset the duration indicating that within the preset duration, the absolute value of the difference between T1 and T2 is always greater than t.
  • FIG. 12 is a detailed flowchart of a method for controlling air supply of an air conditioner according to another embodiment of the present invention.
  • the air supply control method of the air conditioner in this embodiment may enable the direct blow prevention function of the air conditioner after the direct blow prevention button acquires the user's first trigger operation.
  • the air supply control method of the air conditioner in this embodiment includes the following steps:
  • Step S1202 Detect a user-triggered operation obtained by the direct blow prevention button of the air conditioner
  • step S1204 it is determined whether the direct blow-prevention button has obtained the user's first trigger operation. If so, step S1206 is performed; if not, return to step S1202;
  • Step S1206 enabling the anti-direct blow function of the air conditioner
  • step S1208 it is determined whether the direct blow-prevention button has obtained the user's second trigger operation. If so, step S1210 is performed, and if not, return to step S1206;
  • Step S1210 Control the second vertical swing leaf assembly 400 to swing to a position opposite to the position before the direct blow prevention function is turned on;
  • step S1212 it is determined whether the direct blow-prevention button has obtained the third trigger operation of the user. If yes, execute step S1214; if not, return to execute step S1210;
  • step S1214 the anti-straightening function of the air conditioner is turned off, and the second vertical swing leaf assembly 400 is controlled to be reset to the same position as the wind direction of the first vertical swing leaf assembly 300.
  • step S1202 after detecting the user-triggered operation obtained by the direct blow-prevention button of the air conditioner, the number of times of the triggered operation can also be recorded, so that the air supply of the air conditioner can be controlled differently according to different times of the triggered operation.
  • the anti-straight blow function is manually turned on through the anti-straight blow button, the automatic anti-straight blow function is automatically disabled; when the anti-straight blow function is automatically turned on, the anti-straight blow function is automatically turned on after exiting the auto anti-straight blow function through the manual operation of the anti-straight blow button. Does not work unless rebooted.
  • the left and right air supply buttons of the air conditioner are only used to send air to the first vertical leaf assembly 300. Adjust the wind direction.
  • the wind speed gear of the air conditioner is set to: strong wind, stroke and low wind
  • the wind speed gear cannot be adjusted by the wind speed button of the air conditioner.
  • the user can exit the direct blow prevention function by pressing the up and down air supply buttons to improve convenience and save users time and energy. All of the above-mentioned keys may be provided on the air conditioner housing 100, or may be keys on a remote controller.
  • the air supply control method of the air conditioner of this embodiment detects the real-time state of the air conditioner, and when the real-time state of the air conditioner meets a preset triggering condition for preventing direct blow, turns on the direct blow prevention function of the air conditioner to control the air conditioner.
  • the yaw leaf assembly 500 swings until its wind direction is upward and at a preset angle with the horizontal direction.
  • the air conditioner has a first vertical leaf component 300 and a second vertical leaf component 400, which can be controlled separately to realize the air conditioner to supply air in different directions at the same time, thereby increasing the variety of air supply methods of the air conditioner. Enabling the anti-direct blow function can meet the user's requirements for cold air, and avoid direct air blowing from the air conditioner to the user, thereby avoiding various discomfort caused by the direct air blowing from the air conditioner.
  • the air supply control method of the air conditioner in this embodiment after the steps of controlling the yaw blade assembly 500 of the air conditioner to swing toward the air outlet direction upward and at a predetermined angle with the horizontal direction, further comprising: The direction of air supply; determine whether the air supply direction of the air conditioner is to supply air to the left and right; and if so, control the second vertical swing leaf assembly 400 to swing to the air outlet direction toward the left side of the air conditioner.
  • the second vertical swing leaf assembly 400 is controlled to swing to a position opposite to the position before the direct blow prevention function is turned on.
  • the air supply direction of the second vertical swing leaf assembly 400 is adjusted according to the specific air supply condition of the air conditioner, so as to further ensure that the air from the air conditioner does not directly blow the user, and improve the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明提供了一种空调器的送风控制方法与空调器。其中空调器的送风控制方法包括:检测空调器的实时状态;判断空调器的实时状态是否满足预设的防直吹触发条件;以及若是,开启空调器的防直吹功能,控制空调器的横摆叶组件摆动至其出风方向向上并与水平方向呈预设角度。本发明的方案,可以实现空调器同时向不同方向送风,提高空调器送风方式的多样性。开启防直吹功能可以在满足用户对冷风需求的基础上,避免空调器直吹用户送风,进而避免用户因空调器直吹送风而产生的多种不适症状。

Description

空调器的送风控制方法与空调器 技术领域
本发明涉及空调技术领域,特别是涉及一种空调器的送风控制方法与空调器。
背景技术
随着社会发展以及人们的生活水平不断提高,空调器已经成为人们日常生活中不可或缺的电气设备之一。空调器可以在环境温度过高或过低时,帮助人们达到一个能够适应的温度。
但是大部分用户认为目前的空调器出风太硬太冷,还有一部分用户认为空调器制冷慢、风太弱、不够凉。也就是说,目前的空调器无法充分满足用户的需求。此外,空调器的送风问题对人们的日常生活具有很大的影响,使得用户易得空调病。具体地,在空调器直吹或长时间吹向用户后,用户易出现感冒、发烧、腿疼、关节疼等症状,严重影响用户的身体健康和使用体验。
发明内容
本发明的一个目的是提高空调器送风方式的多样性。
本发明一个进一步的目的是避免空调器直吹用户送风,提升用户的使用体验。
特别地,本发明提供了一种空调器的送风控制方法,其中空调器包括:壳体,壳体的前侧面板开设有出风口;贯流风机,沿壳体的竖向设置于壳体内部;设置于出风口处的第一竖摆叶组件和第二竖摆叶组件,第二竖摆叶组件设置于第一竖摆叶组件的下方,第一竖摆叶组件和第二竖摆叶组件分别用于调节出风口上方区域和下方区域的横向出风方向;横摆叶组件,设置于第一竖摆叶组件和第二竖摆叶组件的内侧,用于调节出风口的竖向出风方向,且空调器的送风控制方法包括:检测空调器的实时状态;判断空调器的实时状态是否满足预设的防直吹触发条件;以及若是,开启空调器的防直吹功能,控制空调器的横摆叶组件摆动至其出风方向向上并与水平方向呈预设角度。
可选地,检测空调器的实时状态包括:检测空调器的工作模式、空调器的设定温度与空调器所在环境的室内温度,其中工作模式包括制冷模式和制 热模式;且预设的防直吹触发条件包括:空调器的工作模式为制冷模式,且在预设时长内,空调器的设定温度与空调器所在环境的室内温度之差的绝对值持续小于等于预设值。
可选地,检测空调器的实时状态包括:检测空调器的防直吹按键获取的用户触发操作;且预设的防直吹触发条件包括:防直吹按键获取用户的第一次触发操作。
可选地,在控制空调器的横摆叶组件摆动至其出风方向向上并与水平方向呈预设角度的步骤之后还包括:获取空调器的送风方向,其中送风方向包括向左右送风和向上下送风;判断空调器的送风方向是否为向左右送风;以及若是,控制第二竖摆叶组件摆动至出风方向为朝向空调器的第一方向。
可选地,在空调器的送风方向为向上下送风时,控制第二竖摆叶组件摆动至开启防直吹功能之前其所在位置的相反位置。
可选地,检测空调器的防直吹按键获取的用户触发操作包括:记录触发操作的次数,并在获取用户第二次触发操作时,控制竖摆叶组件摆动至其目前位置的相反位置;在获取用户第三次触发操作时,关闭空调器的防直吹功能,控制第二竖摆叶组件复位至与第一竖摆叶组件出风方向相同的位置。
可选地,在空调器的防直吹功能开启时,通过空调器的左右送风按键仅对第一竖摆叶组件的送风方向进行调节。
根据本发明的另一个方面,还提供了一种空调器,壳体,壳体的前侧面板开设有出风口;贯流风机,沿壳体的竖向设置于壳体内部;设置于出风口处的第一竖摆叶组件和第二竖摆叶组件,第二竖摆叶组件设置于第一竖摆叶组件的下方,第一竖摆叶组件和第二竖摆叶组件分别用于调节出风口上方区域和下方区域的横向出风方向;横摆叶组件,设置于第一竖摆叶组件和第二竖摆叶组件的内侧,用于调节出风口的竖向出风方向;以及送风控制装置,包括:状态检测模块,配置成检测空调器的实时状态;判断模块,配置成判断空调器的实时状态是否满足预设的防直吹触发条件;以及防直吹模块,配置成在空调器的实时状态满足预设的防直吹触发条件时,开启空调器的防直吹功能,控制空调器的横摆叶组件摆动至其出风方向向上并与水平方向呈预设角度。
可选地,状态检测模块还配置成:检测空调器的工作模式、空调器的设定温度与空调器所在环境的室内温度,其中工作模式包括制冷模式和制热模 式;且预设的防直吹触发条件包括:空调器的工作模式为制冷模式,且在预设时长内,空调器的设定温度与空调器所在环境的室内温度之差的绝对值持续小于等于预设值。
可选地,状态检测模块还配置成:检测空调器的防直吹按键获取的用户触发操作;且预设的防直吹触发条件包括:防直吹按键获取用户的第一次触发操作。
可选地,防直吹模块还配置成:获取空调器的送风方向,其中送风方向包括向左右送风和向上下送风;判断空调器的送风方向是否为向左右送风;以及若是,控制第二竖摆叶组件摆动至出风方向为朝向空调器的第一方向,若否,控制第二竖摆叶组件摆动至开启防直吹功能之前其所在位置的相反位置。
本发明的空调器的送风控制方法与空调器,通过检测空调器的实时状态,在空调器的实时状态满足预设的防直吹触发条件时,开启空调器的防直吹功能,控制空调器的横摆叶组件摆动至其出风方向向上并与水平方向呈预设角度。空调器具有第一竖摆叶组件和第二竖摆叶组件,可以分别进行控制,以实现空调器同时向不同方向送风,提高空调器送风方式的多样性。开启防直吹功能可以在满足用户对冷风需求的基础上,避免空调器直吹用户送风,进而避免用户因空调器直吹送风而产生的多种不适症状。
进一步地,本发明的空调器的送风控制方法与空调器,在控制空调器的横摆叶组件摆动至其出风方向向上并与水平方向呈预设角度的步骤之后还包括:获取空调器的送风方向;判断空调器的送风方向是否为向左右送风;以及若是,控制第二竖摆叶组件摆动至出风方向朝向为空调器的第一方向。在空调器的送风方向为向上下送风时,控制第二竖摆叶组件摆动至开启防直吹功能之前其所处位置的相反位置。根据空调器的具体送风情况调节第二竖摆叶组件的送风方向,进一步保证空调器的出风不会直吹用户,提升用户的使用体验。
更进一步地,本发明的空调器的送风控制方法与空调器,检测空调器的实时状态包括:检测空调器的工作模式、空调器的设定温度与空调器所在环境的室内温度,其中工作模式包括制冷模式和制热模式;且预设的防直吹触发条件包括:空调器的工作模式为制冷模式,且在预设时长内,空调器的设定温度与空调器所在环境的室内温度之差的绝对值持续小于等于预设值。或 者检测空调器的实时状态包括:检测空调器的防直吹按键获取的用户触发操作;且预设的防直吹触发条件包括:防直吹按键获取用户的第一次触发操作。空调器可以通过两种方式开启防直吹功能:根据室内温度的实际情况可以自动开启防直吹功能;或者在防直吹按键获取用户的第一次触发操作后开启空调器的防直吹功能。保障防直吹功能在各种情境下均能够实现,解决空调器直吹送风给用户带来的困扰。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的空调器的正面示意图;
图2是根据本发明一个实施例的空调器的侧面示意图;
图3是根据本发明一个实施例的空调器的结构分解图;
图4是根据本发明一个实施例的空调器的横摆叶组件的正面示意图;
图5是根据本发明一个实施例的空调器的横摆叶组件的侧面示意图;
图6是根据本发明一个实施例的空调器的第一竖摆叶组件和第二竖摆叶组件的正面示意图;
图7是根据本发明一个实施例的空调器的横截面剖视图;
图8是根据本发明一个实施例的空调器的出风风道的风道壁的结构放大图;
图9是根据本发明一个实施例的空调器的送风控制装置的示意框图;
图10是根据本发明一个实施例的空调器的送风控制方法的示意图;
图11是根据本发明一个实施例的空调器的送风控制方法的详细流程图;以及
图12是根据本发明另一个实施例的空调器的送风控制方法的详细流程图。
具体实施方式
本实施例首先提供了一种空调器,可以实现空调器同时向不同方向送 风,提高空调器送风方式的多样性。开启防直吹功能可以在满足用户对冷风需求的基础上,避免空调器直吹用户送风,进而避免用户因空调器直吹送风而产生的多种不适症状。图1是根据本发明一个实施例的空调器的正面示意图;图2是根据本发明一个实施例的空调器的侧面示意图;图3是根据本发明一个实施例的空调器的结构分解图。
如图1至图3所示,本实施例的空调器可以为立式空调器,其可以包括:壳体100、贯流风机200、蜗壳600、室内机换热器(图中未示出)、横摆叶组件500、第一竖摆叶组件300和第二竖摆叶组件400。壳体100进一步包括:顶板、底板、背板114、左饰板111和右饰板112。空调器室内机的进风口(图中未示出)可以设置于壳体100的背板114上。空调器室内机的出风口113开设在壳体100的前侧面上,在本实施例中,左饰板111和右饰板112之间间隙形成出风口113,开出风口113沿室内机的竖向延伸。
贯流风机200设置于壳体100内部,其转轴沿室内机的竖向延伸,且延伸长度与出风口113的延伸长度相同,以确保出风口113整体区域均能够出风。
第一竖摆叶组件300和第二竖摆叶组件400设置于出风口113处,第二竖摆叶组件400设置于第一竖摆叶组件300的下方,第一竖摆叶组件300和第二竖摆叶组件400分别用于调节出风口113上方区域和下方区域的横向出风方向。在本实施例中,第一竖摆叶组件300和第二竖摆叶组件400在竖向上的延伸长度相等。
横摆叶组件500设置于第一竖摆叶组件300和第二竖摆叶组件400的内侧,用于调节出风口113的竖向出风方向。
图4是根据本发明一个实施例的空调器的横摆叶组件500的正面示意图,图5是根据本发明一个实施例的空调器的横摆叶组件500的侧面示意图。如图4、5所示,横摆叶组件500包括:竖连杆510、多片横摆叶520和第一电机530。竖连杆510沿空调器室内机竖向延伸设置;多片横摆叶520沿空调器室内机竖向间隔排列设置,且每片横摆叶520的根部具有连接竖连杆510的转轴。第一电机530输出端连接竖连杆510的一端,用于驱动竖连杆510上下运动,以带动多片横摆叶520摆动。在本实施例中,每片横摆叶520的根部具有一个固定转轴521和一个连杆转轴522,固定转轴521连接室内机的出风风道700的风道壁701,不会发生移动,每片横摆叶520能够绕该 固定转轴521转动。连杆转轴522靠近固定转轴521设置,连杆转轴522用于连接竖连杆510,并能够随竖连杆510移动。第一电机530带动竖连杆510上下运动的过程中,通过连杆转轴522带动横摆叶520绕其固定转轴521转动。当竖连杆510向上运动时,横摆叶520将向下倾斜,使出风口113的出风方向向下;当竖连杆510向下运动时,横摆叶520将向上翘起,使出风口113的出风方向向上。
图6是根据本发明一个实施例的空调器的第一竖摆叶组件300和第二竖摆叶组件400的正面示意图。如图6所示,第一竖摆叶320组件300包括:第一出风框310、多片第一竖摆叶320和第二电机330。第一出风框310为位于出风口113平面的矩形框架,用于连接多片第一竖摆叶320。第一出风框310的顶部中央设置有用于连接第二电机330的转轴。多片第一竖摆叶320沿空调器室内机横向间隔排列设置于第一出风框310限定出的区域内,每片第一竖摆叶320的两端连接第一出风框310。第二电机330的输出端连接第一出风框310顶部的转轴,用于驱动第一出风框310绕竖向的一条直线(即上述转轴所在直线)转动,以带动多片第一竖摆叶320运动。在第一出风框310位于初始位置时(即第一出风框310未发生任何角度转动时),每片第一竖摆叶320垂直于出风口113所在平面,此时出风口113向正前方送风。在第一出风框310转动的时候,多片第一竖摆叶320的角度随之发生改变,例如:第一出风框310向左转动的时候,多片第一竖摆叶320与出风口113所在平面的夹角发生改变,此时出风口113向左侧送风。第一出风框310向右转动的时候,出风口113向右侧送风。
第二竖摆叶组件400包括:第二出风框410、多片第二竖摆叶420和第三电机430。多片第二竖摆叶420沿空调器室内机横向间隔排列设置于第二出风框410限定出的区域内,每片第二竖摆叶420的两端连接第二出风框410。第三电机430,其输出端连接第二出风框410,用于驱动第二出风框410绕竖向的一条直线转动,以带动多片第二竖摆叶420运动。第二竖摆叶420组件400的结构与第一竖摆叶320组件300的结构类似,这里不再进行赘述。不同的是,第三电机430设置于第二出风框410的下方,第二出风框410的底部中央设置有用于连接第三电机430的转轴。在本实施例中,第一竖摆叶320和第二竖摆叶420能够在左右34°的角度范围内摆动,以实现室内机向左出风或向右出风。
在本实施例中,优选地,第一出风框310和第二出风框410之间通过转轴连接。也就是说,第一出风框310和第二出风框410能够相对转动。这样设置,使得两个竖摆叶组件结构更加紧凑,提高了室内机出风口113处的空间利用率,同时还提高了两个竖摆叶组件的转动稳定性。
图7是根据本发明一个实施例的空调器的横截面剖视图。如图7所示,上述空调器室内机还包括:蜗壳600和出风风道700。蜗壳600设置于壳体100内部,位于贯流风机200的外侧,用于引导贯流风机200的气流运行方向。上述蜗壳600具有一个进口和一个出口,蜗壳600进口朝向壳体100的进风口,蜗壳600的出口朝向壳体100的出风口113。出风风道700连接蜗壳600的出口以及壳体100的出风口113,出风风道700靠近出风口113的风道壁701内侧设置有沿空调器室内机竖向延伸的凸缘710。
图8是根据本发明一个实施例的空调器的出风风道700的风道壁701的结构放大图。如图8所示,上述凸缘710由风道壁701内侧隆起的第一弧形面711和第二互相面共同形成。在本实施例中,风道壁701内侧的弧面曲率半径R1、第一弧形面711的曲率半径R2和第二弧形面712的曲率半径R3满足如下约束条件:95mm<R1<105mm;2mm<R2<4mm;18mm<R3<22mm。并且R1、R2和R3满足如下关系:4×(R2+R3)<R1。
经发明人多次试验发现,贯流风机200转速在600r/min~1000r/min范围内,且凸缘710形状满足上述条件时,可产生康达效应。康达效应(Coanda Effect)亦称附壁作用或柯恩达效应,是指流体(水流或气流)由离开本来的流动方向,改为随着凸出的物体表面流动的倾向。当流体与它流过的物体表面之间存在表面摩擦时(也可以说是流体粘性),只要曲率不大,流体会顺着物体表面流动。因此,出风口113处的凸缘710能够使得出风气流的流向发生改变,也就是使出风气流沿着凸缘710流动,不直接吹在空调饰板上,有效避免了空调饰板上出现凝露的问题。
图9是根据本发明一个实施例的空调器的送风控制装置800的示意框图。如图9所示,本实施例的空调器的送风控制装置800包括:状态检测模块801、判断模块802、以及防直吹模块803。
其中,状态检测模块801可以配置成检测空调器的实时状态。判断模块802可以配置成判断空调器的实时状态是否满足预设的防直吹触发条件。防直吹模块803可以配置成在空调器的实时状态满足预设的防直吹触发条件 时,开启空调器的防直吹功能,控制空调器的横摆叶组件500摆动至其出风方向向上并与水平方向呈预设角度。
在一种具体的实施例中,状态检测模块801还可以配置成:检测空调器的工作模式、空调器的设定温度与空调器所在环境的室内温度,其中工作模式包括制冷模式和制热模式。此时预设的防直吹触发条件包括:空调器的工作模式为制冷模式,且空调器的设定温度与空调器所在环境的室内温度之差的绝对值小于等于预设值并持续预设时长。预设值和预设时长均可以根据实际情况预先设置,例如,预设值可以设置为1℃,预设时长可以设置为1分钟。需要说明的是,上述预设值和预设时长的具体数值仅为例举,而并非对本发明的限定。
在另一种具体的实施例中,状态检测模块801还配置成:检测空调器的防直吹按键获取的用户触发操作。此时预设的防直吹触发条件包括:防直吹按键获取用户的第一次触发操作。
防直吹模块803还可以配置成:获取空调器的送风方向,其中送风方向包括向左右送风和向上下送风;判断空调器的送风方向是否为向左右送风;以及若是,控制第二竖摆叶组件400摆动至出风方向为朝向空调器的左侧,若否,控制第二竖摆叶组件400摆动至开启防直吹功能之前其所在位置的相反位置。
本实施例还提供了一种空调器的送风控制方法,适用于上述任一实施例的空调器。图10是根据本发明一个实施例的空调器的送风控制方法的示意图。该空调器的送风控制方法依次执行以下步骤:
步骤S1002,检测空调器的实时状态;
步骤S1004,判断空调器的实时状态是否满足预设的防直吹触发条件,若是,执行步骤S1006,若否,返回执行步骤S1002;
步骤S1006,开启空调器的防直吹功能,控制空调器的横摆叶组件500摆动至其出风方向向上并与水平方向呈预设角度。
步骤S1006中的预设角度可以根据实际情况进行设置,例如在一种具体的实施例中,该预设角度可以设置为60°。本实施例的空调器的送风控制方法,在空调器的实时状态满足预设的防直吹触发条件时,开启空调器的防直吹功能。空调器具有第一竖摆叶组件300和第二竖摆叶组件400,可以分别进行控制,以实现空调器同时向不同方向送风,提高空调器送风方式的多样 性。开启防直吹功能可以在满足用户对冷风需求的基础上,避免空调器直吹用户送风,进而避免用户因空调器直吹送风而产生的多种不适症状。
图11是根据本发明一个实施例的空调器的送风控制方法的详细流程图。本实施例的空调器的送风控制方法可以根据室内温度的实际情况可以自动开启防直吹功能。如图11所示,本实施例的空调器的送风控制方法包括以下步骤:
步骤S1102,检测空调器的工作模式、空调器的设定温度T1和空调器所在环境的室内温度T2;
步骤S1104,判断空调器的工作模式是否为制冷模式,且∣T1-T2∣≤T并持续预设时长,若是,执行步骤S1106,若否,返回执行步骤S1102;
步骤S1106,开启空调器的防直吹功能,控制空调器的横摆叶组件500摆动至其出风方向向上并与水平方向呈预设角度;
步骤S1108,获取空调器的送风方向;
步骤S1110,判断空调器的送风方向是否为左右送风,若是,执行步骤S1112,若否,执行步骤S1114;
步骤S1112,控制第二竖摆叶组件400摆动至出风方向为朝向空调器的左侧;
步骤S1114,控制第二竖摆叶组件400摆动至开启防直吹功能之前所在位置的相反位置;
步骤S1116,检测空调器的设定温度T1和空调器所在环境的室内温度T2;
步骤S1118,判断是否∣T1-T2∣>t并持续预设时长,若是,执行步骤S1120,若否,返回执行步骤S1116;
步骤S1120,关闭空调器的防直吹功能,控制第二竖摆叶组件400复位至与第一竖摆叶组件300出风方向相同的位置。
步骤S1102中空调器的工作模式包括制冷模式和制热模式,且步骤S1104中否的情况下即空调器的工作模式为制热模式。在其他一些实施例中,空调器的工作模式还可以包括:净化模式、加湿模式等,则空调器只要不是制冷模式,均为否的情况。
步骤S1104中T为预设值,在∣T1-T2∣≤T并持续预设时长时,说明室内温度与设定温度非常接近,用户对冷风的需求已经基本满足,可以开启防 直吹功能以避免用户受到干扰。其中预设值和预设时长均可以根据实际情况预先设置,例如,预设值可以设置为1℃,预设时长可以设置为1分钟。需要说明的是,上述预设值和预设时长的具体数值仅为例举,而并非对本发明的限定。∣T1-T2∣≤T并持续预设时长,说明在该预设时长内,T1与T2之差的绝对值始终小于等于T。
步骤S1110中空调器的送风方向包括向左右送风和向上下送风,因而否的情况为空调器的送风方向是向上下送风。步骤S1112中控制第二竖摆叶组件400摆动至出风方向为朝向空调器的左侧(也即是,朝向一个第一方向),是出于空调器自身的风道设计考虑,当第二竖摆叶组件400摆动至出风方向为朝向空调器的左侧(第一方向)时,风量最大,提升空调器的制冷效果及用户使用体验。
此外,在开启空调器的防直吹功能,对空调器的送风进行相应调节之后,若步骤S1118中∣T1-T2∣>t并持续预设时长,可以自动退出防直吹功能,执行步骤S1120。其中t也为预设值,可以与预设值T相同或不同,具体可以根据实际情况进行设置。∣T1-T2∣>t并持续预设时长,说明在该预设时长内,T1与T2之差的绝对值始终大于t。
图12是根据本发明另一个实施例的空调器的送风控制方法的详细流程图。本实施例的空调器的送风控制方法可以在防直吹按键获取用户的第一次触发操作后开启空调器的防直吹功能。如图12所示,本实施例的空调器的送风控制方法包括以下步骤:
步骤S1202,检测空调器的防直吹按键获取的用户触发操作;
步骤S1204,判断防直吹按键是否获取用户的第一次触发操作,若是,执行步骤S1206,若否,返回执行步骤S1202;
步骤S1206,开启空调器的防直吹功能;
步骤S1208,判断防直吹按键是否获取用户的第二次触发操作,若是,执行步骤S1210,若否,返回执行步骤S1206;
步骤S1210,控制第二竖摆叶组件400摆动至开启防直吹功能之前所在位置的相反位置;
步骤S1212,判断防直吹按键是否获取用户的第三次触发操作,若是,执行步骤S1214,若否,返回执行步骤S1210;
步骤S1214,关闭空调器的防直吹功能,控制第二竖摆叶组件400复位 至与第一竖摆叶组件300出风方向相同的位置。
步骤S1202中检测空调器的防直吹按键获取的用户触发操作之后还可以记录触发操作的次数,以便于后续根据不同的触发操作次数对空调器的送风进行不同的控制。通过防直吹按键手动开启防直吹功能时,自动开启防直吹功能无效;自动开启防直吹功能时,通过防直吹按键手动操作退出自动防直吹功能后,自动开启防直吹功能无效,除非重新开机。
需要说明的是,上述任一实施例的空调器的送风控制方法中,在空调器的防直吹功能开启时,通过空调器的左右送风按键仅对第一竖摆叶组件300的送风方向进行调节。在一种具体的实施例中,若空调器的风速档位设置有:强风、中风和低风,则空调器的防直吹功能开启时,通过空调器的风速按键不可以将风速档位调节为强风,以保障防直吹功能的顺利实现。此外,在一种优选的实施例中,用户可以通过上下送风按键退出防直吹功能,提高便捷程度,节省用户的时间和精力。上述所有按键均可以设置于空调器壳体100上,也可以为遥控器上的按键。
本实施例的空调器的送风控制方法,通过检测空调器的实时状态,在空调器的实时状态满足预设的防直吹触发条件时,开启空调器的防直吹功能,控制空调器的横摆叶组件500摆动至其出风方向向上并与水平方向呈预设角度。空调器具有第一竖摆叶组件300和第二竖摆叶组件400,可以分别进行控制,以实现空调器同时向不同方向送风,提高空调器送风方式的多样性。开启防直吹功能可以在满足用户对冷风需求的基础上,避免空调器直吹用户送风,进而避免用户因空调器直吹送风而产生的多种不适症状。
进一步地,本实施例的空调器的送风控制方法,在控制空调器的横摆叶组件500摆动至其出风方向向上并与水平方向呈预设角度的步骤之后还包括:获取空调器的送风方向;判断空调器的送风方向是否为向左右送风;以及若是,控制第二竖摆叶组件400摆动至出风方向为朝向空调器的左侧。在空调器的送风方向为向上下送风时,控制第二竖摆叶组件400摆动至开启防直吹功能之前其所在位置的相反位置。根据空调器的具体送风情况调节第二竖摆叶组件400的送风方向,进一步保证空调器的出风不会直吹用户,提升用户的使用体验。
本领域技术人员应理解,在没有特别说明的情况下,本发明实施例中所称的“上”、“下”、“左”、“右”、“前”、“后”等用于表示方位或位置关系的用 语是以空调器室内机的实际使用状态为基准而言的,这些用语仅是为了便于描述和理解本发明的技术方案,而不是指示或暗示所指的装置或部件必须具有特定的方位,因此不能理解为对本发明的限制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (11)

  1. 一种空调器的送风控制方法,其中所述空调器包括:壳体,所述壳体的前侧面板开设有出风口;贯流风机,沿所述壳体的竖向设置于所述壳体内部;设置于出风口处的第一竖摆叶组件和第二竖摆叶组件,所述第二竖摆叶组件设置于所述第一竖摆叶组件的下方,所述第一竖摆叶组件和第二竖摆叶组件分别用于调节所述出风口上方区域和下方区域的横向出风方向;横摆叶组件,设置于所述第一竖摆叶组件和第二竖摆叶组件的内侧,用于调节所述出风口的竖向出风方向,且所述空调器的送风控制方法包括:
    检测所述空调器的实时状态;
    判断所述空调器的实时状态是否满足预设的防直吹触发条件;以及
    若是,开启所述空调器的防直吹功能,控制所述空调器的横摆叶组件摆动至其出风方向向上并与水平方向呈预设角度。
  2. 根据权利要求1所述的空调器的送风控制方法,其中,
    检测所述空调器的实时状态包括:检测所述空调器的工作模式、所述空调器的设定温度与所述空调器所在环境的室内温度,其中所述工作模式包括制冷模式和制热模式;且
    所述预设的防直吹触发条件包括:所述空调器的工作模式为制冷模式,且在预设时长内,所述空调器的设定温度与所述空调器所在环境的室内温度之差的绝对值持续小于等于预设值。
  3. 根据权利要求1所述的空调器的送风控制方法,其中,
    检测所述空调器的实时状态包括:检测所述空调器的防直吹按键获取的用户触发操作;且
    所述预设的防直吹触发条件包括:所述防直吹按键获取用户的第一次触发操作。
  4. 根据权利要求1所述的空调器的送风控制方法,其中在控制所述空调器的横摆叶组件摆动至其出风方向向上并与水平方向呈预设角度的步骤之后还包括:
    获取所述空调器的送风方向,其中所述送风方向包括向左右送风和向上下送风;
    判断所述空调器的送风方向是否为向左右送风;以及
    若是,控制所述第二竖摆叶组件摆动至出风方向为朝向所述空调器的第 一方向。
  5. 根据权利要求4所述的空调器的送风控制方法,其中,
    在所述空调器的送风方向为向上下送风时,控制所述第二竖摆叶组件摆动至开启防直吹功能之前其所在位置的相反位置。
  6. 根据权利要求3所述的空调器的送风控制方法,其中检测所述空调器的防直吹按键获取的用户触发操作包括:
    记录所述触发操作的次数,并在获取用户第二次所述触发操作时,控制所述竖摆叶组件摆动至其目前位置的相反位置;
    在获取用户第三次所述触发操作时,关闭所述空调器的防直吹功能,控制所述第二竖摆叶组件复位至与所述第一竖摆叶组件出风方向相同的位置。
  7. 根据权利要求1至6中任一项所述的空调器的送风控制方法,其中,
    在所述空调器的防直吹功能开启时,通过所述空调器的左右送风按键仅对所述第一竖摆叶组件的送风方向进行调节。
  8. 一种空调器,包括:
    壳体,所述壳体的前侧面板开设有出风口;
    贯流风机,沿所述壳体的竖向设置于所述壳体内部;
    设置于出风口处的第一竖摆叶组件和第二竖摆叶组件,所述第二竖摆叶组件设置于所述第一竖摆叶组件的下方,所述第一竖摆叶组件和第二竖摆叶组件分别用于调节所述出风口上方区域和下方区域的横向出风方向;
    横摆叶组件,设置于所述第一竖摆叶组件和第二竖摆叶组件的内侧,用于调节所述出风口的竖向出风方向;以及
    送风控制装置,包括:状态检测模块,配置成检测所述空调器的实时状态;判断模块,配置成判断所述空调器的实时状态是否满足预设的防直吹触发条件;以及防直吹模块,配置成在所述空调器的实时状态满足预设的防直吹触发条件时,开启所述空调器的防直吹功能,控制所述空调器的横摆叶组件摆动至其出风方向向上并与水平方向呈预设角度。
  9. 根据权利要求8所述的空调器,其中,
    所述状态检测模块还配置成:检测所述空调器的工作模式、所述空调器的设定温度与所述空调器所在环境的室内温度,其中所述工作模式包括制冷模式和制热模式;且
    所述预设的防直吹触发条件包括:所述空调器的工作模式为制冷模式, 且在预设时长内,所述空调器的设定温度与所述空调器所在环境的室内温度之差的绝对值持续小于等于预设值。
  10. 根据权利要求8所述的空调器,其中,
    所述状态检测模块还配置成:检测所述空调器的防直吹按键获取的用户触发操作;且
    所述预设的防直吹触发条件包括:所述防直吹按键获取用户的第一次触发操作。
  11. 根据权利要求8所述的空调器,其中所述防直吹模块还配置成:
    获取所述空调器的送风方向,其中所述送风方向包括向左右送风和向上下送风;
    判断所述空调器的送风方向是否为向左右送风;以及
    若是,控制所述第二竖摆叶组件摆动至出风方向为朝向所述空调器的第一方向,
    若否,控制所述第二竖摆叶组件摆动至开启防直吹功能之前其所处位置的相反位置。
PCT/CN2019/087850 2018-06-04 2019-05-21 空调器的送风控制方法与空调器 WO2019233277A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810564756.7 2018-06-04
CN201810564756.7A CN110553360A (zh) 2018-06-04 2018-06-04 空调器的送风控制方法与空调器

Publications (1)

Publication Number Publication Date
WO2019233277A1 true WO2019233277A1 (zh) 2019-12-12

Family

ID=68736028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087850 WO2019233277A1 (zh) 2018-06-04 2019-05-21 空调器的送风控制方法与空调器

Country Status (2)

Country Link
CN (1) CN110553360A (zh)
WO (1) WO2019233277A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110779089B (zh) * 2018-07-12 2021-11-12 青岛海尔空调器有限总公司 空调器的送风控制方法与空调器
CN111023520A (zh) * 2019-12-31 2020-04-17 广州华凌制冷设备有限公司 运行方法、装置、空调器和计算机可读存储介质
CN111023522A (zh) * 2019-12-31 2020-04-17 广州华凌制冷设备有限公司 运行方法、装置、空调器和计算机可读存储介质
CN111023516A (zh) * 2019-12-31 2020-04-17 广州华凌制冷设备有限公司 运行方法、装置、空调器和计算机可读存储介质
CN113819632A (zh) * 2021-08-17 2021-12-21 青岛海尔空调器有限总公司 空调防直吹的控制方法、控制装置及控制系统
CN114543310A (zh) * 2022-01-29 2022-05-27 青岛海尔空调器有限总公司 用于空调器的控制方法、控制装置、空调器和存储介质
CN114623572A (zh) * 2022-02-09 2022-06-14 青岛海尔空调器有限总公司 用于空调器的控制方法、控制装置、空调器和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106594868A (zh) * 2016-11-23 2017-04-26 珠海格力电器股份有限公司 空调器
CN107461810A (zh) * 2017-07-31 2017-12-12 广东美的制冷设备有限公司 空调柜机及其控制方法
CN108105862A (zh) * 2017-12-12 2018-06-01 广东美的制冷设备有限公司 空调柜机及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202126051U (zh) * 2010-12-03 2012-01-25 苏州三星电子有限公司 一种具有出风温度显示及根据出风温度自动调整出风方向的空调
CN104729001B (zh) * 2013-12-23 2019-12-13 珠海格力电器股份有限公司 一种空调控制方法、装置及系统
CN106247568A (zh) * 2016-09-19 2016-12-21 广东美的制冷设备有限公司 一种空调器风避人控制方法及空调器
CN107255307B (zh) * 2017-05-24 2020-02-04 青岛海尔空调器有限总公司 空调
CN207196636U (zh) * 2017-07-11 2018-04-06 青岛海尔空调器有限总公司 立式空调室内机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106594868A (zh) * 2016-11-23 2017-04-26 珠海格力电器股份有限公司 空调器
CN107461810A (zh) * 2017-07-31 2017-12-12 广东美的制冷设备有限公司 空调柜机及其控制方法
CN108105862A (zh) * 2017-12-12 2018-06-01 广东美的制冷设备有限公司 空调柜机及其控制方法

Also Published As

Publication number Publication date
CN110553360A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2019233277A1 (zh) 空调器的送风控制方法与空调器
JP6618625B2 (ja) 空気調和機
JP5250011B2 (ja) 空気調和機
JP5112031B2 (ja) 空気調和機
JP6065184B2 (ja) 空気調和機
WO2019024825A1 (zh) 壁挂式空调室内机及其控制方法
WO2017041728A1 (zh) 立式空调器及其使用方法
JP2007120898A (ja) 空気調和機
CN110762614B (zh) 立式空调器室内机
JP6808999B2 (ja) 空気調和機
JP6781395B2 (ja) 空気調和機
CN111780241A (zh) 一种双出风口的空调器
JP6128925B2 (ja) 空気調和機の室内機
JP2993436B2 (ja) 空気調和機の吹出口構造
JP2007120895A (ja) 空気調和機
JP2018146197A (ja) 空気調和機
CN110779088A (zh) 空调器的送风控制方法与空调器
WO2013035236A1 (ja) 空気調和機
CN110779089B (zh) 空调器的送风控制方法与空调器
CN111780245B (zh) 一种双出风口的空调器
CN114857756A (zh) 一种具有安全模式的定风量阀及使用方法
WO2021082141A1 (zh) 天花机的面板组件及具有其的天花机
JP2003056896A (ja) 空調機用風向調節装置
JPH08178344A (ja) 空気調和装置
JPS5866744A (ja) 空調機の吹き出し口

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814681

Country of ref document: EP

Kind code of ref document: A1