WO2019232878A1 - 一种半开式离心泵叶轮及其优化设计方法 - Google Patents

一种半开式离心泵叶轮及其优化设计方法 Download PDF

Info

Publication number
WO2019232878A1
WO2019232878A1 PCT/CN2018/094736 CN2018094736W WO2019232878A1 WO 2019232878 A1 WO2019232878 A1 WO 2019232878A1 CN 2018094736 W CN2018094736 W CN 2018094736W WO 2019232878 A1 WO2019232878 A1 WO 2019232878A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
blades
long
impeller
optimized
Prior art date
Application number
PCT/CN2018/094736
Other languages
English (en)
French (fr)
Inventor
刘厚林
罗凯凯
张子龙
王成斌
王勇
王凯
董亮
谈明高
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US16/669,276 priority Critical patent/US11525454B2/en
Publication of WO2019232878A1 publication Critical patent/WO2019232878A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/24Vanes
    • F04D29/242Geometry, shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/688Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2205Conventional flow pattern
    • F04D29/2216Shape, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2288Rotors specially for centrifugal pumps with special measures for comminuting, mixing or separating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade

Definitions

  • the invention relates to the field of centrifugal pump research, in particular to a semi-open centrifugal pump impeller and an optimized design method thereof.
  • the pump is mainly used to convert the mechanical energy of the prime mover into the energy of the fluid.
  • the pump There are many types of pumps, which have been widely used in various high-tech fields such as the national economy and space ships. According to statistics, the power consumption of the pump accounts for 18% of the total power generation. Therefore, improving the research and design level of centrifugal pumps has an important impact on the development of the national economy, energy conservation and environmental protection.
  • the semi-open centrifugal pump in addition to the efficiency, the dead center lift should be considered.
  • the present invention proposes a design method for increasing the middle and short splitter blades. Optimize the impeller inlet and outlet, blade thickness, and hub at the inlet to improve the efficiency of the semi-open centrifugal pump and increase the pump's dead center lift.
  • the difference between the present invention and the current related patent lies in the selection of the number and the geometric parameters of the shunt blades.
  • the optimization scope of the present invention is: two short and medium shunt blades are arranged between the long blades of the impeller, and the inlet and outlet angles of the impeller blades. Rounded at the exit positive blade surface, blade thickness, rounded at the hub of the impeller inlet, and the pitch of the impellers arranged.
  • the present invention provides a semi-open centrifugal pump impeller and an optimized design method thereof, which solve the low efficiency, large inlet loss, import cavitation, and front cover of the semi-open impeller centrifugal pump. Leakage, separation of the blade exit boundary layer, lower dead point lift, and high noise.
  • the present invention achieves the above technical objectives through the following technical means.
  • a method for optimizing the design of a semi-open centrifugal pump impeller The centrifugal pump impeller is provided with a number of optimized front impeller long blades of Z 1 and the blade placement angle at the exit of the positive blade surface of the optimized front impeller long blade is ⁇ Z1 , optimize the blade placement angle at the exit of the back surface of the front impeller long blade to ⁇ b1 , optimize the circumferential blade thickness of the front impeller long blade inlet to d j1 , and optimize the circumferential blade thickness of the front impeller long blade outlet d c1
  • the method includes the following steps: the number of optimized long blades is less than that of the optimized impeller long blades; any two of the optimized long blades are provided with shunt middle blades and shunt short blades arranged circumferentially at unequal intervals; The blades and shunt short blades have the same exit position, profile, and thickness as the optimized long blades.
  • the shunts and shunt short blades are different from the optimized long blades inlet position in the shunt; they are arranged sequentially in the circumferential direction in the direction of impeller rotation. The order is the optimized long blade, the shunt short blade, and the shunt middle blade.
  • the bone line of the long blade, the shunt blade and the short shunt blade after the optimization is the same as the bone line of the long blade before the optimization.
  • d 4 is the outer diameter of the impeller
  • d 1 is the optimized long blade inlet diameter
  • circumferential interval angle ⁇ 3 of the blades in the shunt and the circumferential interval angle ⁇ 1 of the short shunt blades in the shunt meet the following relationship:
  • a semi-open centrifugal pump impeller includes optimized long blades, short shunt blades and short shunt blades, and any two of the optimized long leaves are provided with shunt middle shunt blades and short shunt blades arranged at circumferentially unequal intervals;
  • the split blades and split short blades have the same exit position, profile, and thickness as the optimized long blades, and the split blades and split short blades have different inlet positions from the optimized long blades; in the direction of impeller rotation, The order in the circumferential direction is the optimized long blade, the shunt short blade, and the shunt middle blade.
  • the optimized design method of the semi-open centrifugal pump impeller according to the present invention by changing the number of original long blades and increasing the method of dividing the middle and short blades to improve the flow state in the flow channel and reduce the leakage loss of the front cover plate, Thereby, the lift and efficiency of the pump's dead center can be improved, and the cavitation performance can be improved.
  • the semi-open centrifugal pump impeller optimization design method according to the present invention optimizes the chamfer at the impeller inlet hub.
  • the boundary layer separation will occur, forming a vortex, and the pressure is low.
  • inlet cavitation will occur, which will cause loss and block the flow path.
  • the present invention optimizes the chamfer at the inlet hub of the impeller to form a transition surface, and the loss is small when the liquid flows through it. Much more, the cavitation phenomenon has also been greatly improved, which has greatly reduced the impact loss of the inlet and the resistance of the flow channel.
  • the semi-open centrifugal pump impeller optimization design method of the present invention optimizes the thickness of the impeller inlet and outlet blades, reduces the thickness of the blade at the inlet, increases the thickness of the blade at the outlet, and rounds the positive blade surface at the outlet of the impeller. Optimization, effectively increasing the cross-sectional area of the water at the blade inlet, reducing the pressure difference between the front and back blade surfaces at the outlet, and reducing swirl and cavitation at the outlet of the impeller.
  • the semi-open centrifugal pump impeller optimization design method compares the performance of the semi-open centrifugal centrifugal pump before and after optimization. It can be clearly seen that after the hydraulic optimization of the impeller, the pump efficiency is obtained. The lift has been improved, and the lift has also been improved to a certain extent. In particular, the lift at the pump shut-off point has been significantly improved. By optimizing the impeller blades, the present invention improves the maximum lift by 13.2% and the maximum flow rate by 14.3%. The highest efficiency is increased by 3.8% than the original, and the hydraulic performance of the semi-open impeller centrifugal pump is optimized.
  • FIG. 1 is a vertical projection view of an impeller shaft before the embodiment of the present invention is not optimized.
  • FIG. 2 is an axial vertical projection view and an enlarged positive blade surface at the exit of the impeller according to the embodiment of the present invention after optimization.
  • Fig. 3 is an optimized axial projection view of the impeller according to the embodiment of the present invention and an enlarged view of the hub at the inlet.
  • FIG. 4 is a performance comparison chart before and after optimization according to an embodiment of the present invention.
  • the optimized object is the impeller of the A1 type semi-open impeller centrifugal pump, with a rated speed of 2900 rpm
  • the circumferential blade thickness d j1 of the blade inlet is 6.5 mm
  • the blade inlet 35mm.
  • the specific optimization is as follows: the number of optimized long blades 2 is less than the optimized front impeller long blades 11; any two of the optimized long blades 2 are arranged with circumferentially unevenly spaced shunts
  • the middle blade 3 and the shunt short blade 4 have the same exit position, profile and thickness as the optimized long blade 2 and the shunt short blade 4 and the optimized long blade 2 have the same exit position, profile and thickness.
  • the optimized long blades 2 have different inlet positions; in the direction of impeller rotation, they are arranged in the circumferential direction in the order of the optimized long blades 2, shunt short blades 4, and the shunt middle blades 3.
  • the bone line 1 of the long blade 2 after optimization, the blade 3 during splitting, and the short blade 4 after splitting is the same as the bone line 1 of the long blade 11 before optimization.
  • the number of blades in the blade splitter 3 Z 3, the number of splitter blades short blade and the long blade 4 Z 4 Z 2 2 is equal to the number of blades;
  • d 4 is the outer diameter of the impeller
  • d 1 is the inlet diameter of the optimized long blade 2
  • the number of blades after the optimization of Z 2 is 2 ;
  • Figure 4 is a performance comparison chart of the centrifugal pump before and after optimization in this example. It can be clearly seen that after the impeller of the original scheme is optimized, the pump efficiency has been improved and the lift has also been improved to a certain extent, especially the pump. The dead-head lift has been significantly improved. By optimizing the impeller blades, the present invention improves the maximum lift by 13.2%, the maximum flow rate by 14.3%, and the maximum efficiency by 3.8%. The semi-open impeller centrifugation is realized. Optimized hydraulic performance of the pump.
  • a semi-open centrifugal pump impeller includes optimized long blades 2, shunt short blades 4 and shunt middle blades 3, and any two of the optimized long blades 2 are provided with shunt middle blades 3 arranged at uneven intervals in the circumferential direction.
  • shunt short blades 4; the leaves 3 and shunt short blades 4 in the shunt have the same exit position, profile and thickness as the long blades 2 after optimization, and the leaves 3 and shunt short blades 4 in the shunt are after the optimization
  • the inlet positions of the long blades 2 are different; in the direction of the impeller rotation, the arranging order in the circumferential direction is the optimized long blades 2, the shunt short blades 4, and the shunt middle blades 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种半开式离心泵叶轮的优化设计方法,包括如下步骤:优化后长叶片(2)的数量少于优化前叶轮长叶片(11);任意二个优化后长叶片(2)之间设置周向不等间距排列的分流中叶片(3)和分流短叶片(4);分流中叶片(3)和分流短叶片(4)与优化后长叶片(2)出口位置、型线和厚度相同,分流中叶片(3)和分流短叶片(4)与优化后长叶片(2)进口位置不同;在叶轮转动方向上周向依次排列顺序为优化后长叶片(2)、分流短叶片(4)和分流中叶片(3)。通过上述优化方法可以解决半开式叶轮离心泵上存在的效率低,进口损失大,进口汽蚀,前盖板泄漏,叶片出口边界层分离、关死点扬程较低,噪声大等问题。此外还包括一种半开式离心泵叶轮。

Description

一种半开式离心泵叶轮及其优化设计方法 技术领域
本发明涉及离心泵研究领域,具体涉及一种半开式离心泵叶轮及其优化设计方法。
背景技术
泵作为一种通用机械,主要用于把原动机的机械能转换为流体的能量,其种类繁多,在国民经济各部门以及航天船舶等高科技领域都得到了广泛的应用。据统计,泵的耗电量占总发电量的18%,因此,提高离心泵的研究和设计水平,对国民经济发展、节约能源和环境保护有重要的影响。对于半开式离心泵而言,除了效率外还要考虑关死点扬程,本发明提出一种增加中、短分流叶片的设计方法,在叶轮外径和轴面截面不变的情况下,通过优化叶轮进出口、叶片厚度以及进口处轮毂等来提高半开式离心泵的效率,提高泵的关死点扬程。
经检索,与本发明相关的专利申请有:《一种离心泵分流叶片叶轮》,公开号:CN204419687U中就用到分流叶片的发明,此设计方法采用了长、短叶片间隔布置;《低比转数离心泵叶轮短叶片的偏置》,公开号:CN2072611中就用到分流叶片的发明,此设计方法将短叶片偏置在长叶片中。
本发明与现相关专利的有不同之处在于对分流叶片的数量和几何参数的选择上,本发明优化范围:叶轮长叶片间设置分流中短2种分流叶片,叶轮叶片进、出口安放角,出口正叶面处倒圆,叶片厚度,叶轮进口处轮毂处倒圆,叶轮排列间距。通过本优化方法可以使原有半开式叶轮离心泵性能有所提升,并提高效率和关死点扬程,改善汽蚀性能。
发明内容
针对现有技术中存在不足,本发明提供了一种半开式离心泵叶轮及其优化设计方法,解决半开式叶轮离心泵上存在的效率低,进口损失大,进口汽蚀,前盖板泄漏,叶片出口边界层分离、关死点扬程较低,噪声大等问题。
本发明是通过以下技术手段实现上述技术目的的。
一种半开式离心泵叶轮的优化设计方法,所述离心泵叶轮上设有数量为Z 1的优化前叶轮长叶片,设优化前叶轮长叶片的正叶面的出口处的叶片安放角为α Z1,优化前叶轮长叶片背叶面的出口处的叶片安放角为α b1,优化前叶轮长叶片进口的周向叶片厚度为d j1,优化前叶轮长叶片出口的周向叶片厚度d c1,包括如下步骤:优化后长叶片的数量少于优化前叶轮长叶片;任意二个所述优化后长叶片之间设置周向不等间距排列的分流中叶片和分流短叶片;所 述分流中叶片和分流短叶片与所述优化后长叶片出口位置、型线和厚度相同,所述分流中叶片和分流短叶片与所述优化后长叶片进口位置不同;在叶轮转动方向上周向依次排列顺序为所述优化后长叶片、分流短叶片和所述分流中叶片。
进一步,所述优化后长叶片、分流中叶片和分流短叶片的骨线与优化前长叶片的骨线相同。
进一步,所述优化后长叶片正叶面的出口处的叶片安放角α Z2=K 2α Z1,式中:K 2是修正系数,K 2=1~1.2;所述优化后长叶片背叶面的出口处的叶片安放角α b2=K 3α b1,式中:K 3是修正系数,K 3=0.8~1。
所述优化后长叶片进口的周向叶片厚度d j2=K 4d j1,式中:K 4是修正系数,K 4=0.5~0.8;
所述优化后长叶片出口的周向叶片厚度d c2=K 5d c1,式中:K 5是修正系数,K 5=1.2~2。
进一步,所述优化后长叶片叶片数Z 2=K 1Z 1,计算后取整;式中:K 1是修正系数,K 1=0.4~0.6;所述分流中叶片叶片数Z 3、分流短叶片叶片数Z 4和长叶片叶片数Z 2相等;
所述分流中叶片进口直径
Figure PCTCN2018094736-appb-000001
所述分流短叶片进口直径
Figure PCTCN2018094736-appb-000002
式中:d 4为叶轮外径;
d 1为所述优化后长叶片进口直径;
所述分流中叶片进口处倾角β 2、分流短叶片进口处倾角β 3和所述优化后长叶片进口处倾角β 1要符合以下关系:β 1=β 2=β 3
进一步,所述分流中叶片周向间隔角度θ 3和分流短叶片周向间隔角度θ 1符合以下关系:
Figure PCTCN2018094736-appb-000003
Figure PCTCN2018094736-appb-000004
式中:
Z 2所述优化后长叶片叶片数;
α Z2所述优化后长叶片正叶面的出口处的叶片安放角;
α b2所述优化后长叶片背叶面的出口处的叶片安放角。
进一步,对叶轮进口处轮毂位置进行倒圆角处理,其倒圆半径R 1和轮毂内径d、叶轮进口处轮毂直径d 5要符合以下关系:R 1=K 6(d 5-d);式中:K 6是修正系数,K 6=0.05~0.25。
进一步,对叶轮叶片出口正叶面位置进行倒圆角处理,其倒圆半径R 2和叶轮叶片出口的周向叶片厚度d c2要符合以下关系:R 2=K 7d c2;式中:K 7是修正系数,K 7=0.2~0.4。
一种半开式离心泵叶轮,包括优化后长叶片、分流短叶片和分流中叶片,任意二个所述优化后长叶片之间设置周向不等间距排列的分流中叶片和分流短叶片;所述分流中叶片和分流短叶片与所述优化后长叶片出口位置、型线和厚度相同,所述分流中叶片和分流短叶片与所述优化后长叶片进口位置不同;在叶轮转动方向上周向依次排列顺序为所述优化后长叶片、分流短叶片和所述分流中叶片。
本发明的有益效果在于:
1.本发明所述的半开式离心泵叶轮的优化设计方法,通过改变原有长叶片数量,并增加分流中、短叶片的方法来改善流道内的流动状态,降低前盖板泄漏损失,从而提高泵的关死点扬程和效率,改善汽蚀性能。
2.本发明所述的半开式离心泵叶轮的优化设计方法,对叶轮进口轮毂处进行倒角优化,当液体通过叶轮进口边轮毂处的时候会产生边界层分离,形成漩涡,压力较低时还会发生进口汽蚀,进而产生损耗并阻塞流道,为了减轻这一情况,所以本发明将叶轮进口轮毂处进行倒角优化,形成一个过渡面,液体流经此处时损耗就要小得多,汽蚀现象也得到很大改善,很好的降低了进口冲击损失和流道阻力。
3.本发明所述的半开式离心泵叶轮的优化设计方法,对叶轮进、出口叶片厚度进行优化,减薄进口处叶片厚度,增加出口处叶片厚度,叶轮出口处正叶面进行倒圆优化,有效增加叶片进口处过水断面面积,并降低出口处正背叶面压力差,减少叶轮出口处回旋和汽蚀。
4.本发明所述的半开式离心泵叶轮的优化设计方法,将优化前和优化后的半开式叶轮离心泵的性能对比,可以清楚的看到经过叶轮水利优化后,使得泵效率得到了的提高,扬程也有了一定的提高,尤其是泵关死点扬程有了显著提高,本发明通过对叶轮叶片的优化,最大扬程比原来提高了13.2%,最大流量比原来提高了14.3%,最高效率比原来提高了3.8%,实现半开式叶轮离心泵的水力性能优化。
附图说明
图1是本发明未优化前的实施例叶轮轴垂面投影图。
图2是本发明实施例的叶轮经过优化后的轴垂面投影图及出口处正叶面放大图。
图3是本发明实施例的叶轮经过优化后的轴面投影图及进口处轮毂放大图。
图4是本发明实施例的优化前后的性能对比图。
图中:
1-骨线;2-优化后长叶片;3-分流中叶片;4-分流短叶片;8-出口处;9-正叶面;10-背叶面;11-优化前叶轮长叶片。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
如图1所示,优化对象为A1型号的半开式叶轮离心泵的叶轮,其额定转速为2900转/min,优化前叶轮长叶片11相关参数如下:叶片数Z 1=6,叶轮外径d 4=200mm,叶片进口直径d 1=85.2mm,叶片进口处倾角β 1=130°,叶片2正叶面9的出口处8的叶片安放角α Z1和背叶面10的出口处8的叶片安放角α b1相等且α z1=α b1=29°,叶片进口的周向叶片厚度d j1=6.5mm,叶片出口的周向叶片厚度d c1=14.6mm,轮毂内径d=23mm,叶轮进口处轮毂直径d 5=35mm。
如图2和图3所示,具体优化如下:优化后长叶片2的数量少于优化前叶轮长叶片11;任意二个所述优化后长叶片2之间设置周向不等间距排列的分流中叶片3和分流短叶片4;所述分流中叶片3和分流短叶片4与所述优化后长叶片2出口位置、型线和厚度相同,所述分流中叶片3和分流短叶片4与所述优化后长叶片2进口位置不同;在叶轮转动方向上周向依次排列顺序为所述优化后长叶片2、分流短叶片4和所述分流中叶片3。所述优化后长叶片2、分流中叶片3和分流短叶片4的骨线1与优化前长叶片11的骨线1相同。
所述优化后长叶片2正叶面9的出口处8的叶片安放角α Z2=K 2α Z1,式中:K 2是修正系数,K 2=1~1.2;即α Z2=33°,K 2取1.15;
所述优化后长叶片2背叶面10的出口处8的叶片安放角α b2=K 3α b1,式中:K 3是修正系数,K 3=0.8~1,即α b2=26,K 3取0.9;
所述优化后长叶片2进口的周向叶片厚度d j2=K 4d j1,式中:K 4是修正系数, K 4=0.5~0.8;即d j2=3.9,K 4取0.6;
所述优化后长叶片2出口的周向叶片厚度d c2=K 5d c1,式中:K 5是修正系数,K 5=1.2~2;即d c2=26.3,K 5取1.8;
所述优化后长叶片2叶片数Z 2=K 1Z 1,计算后取整;式中:K 1是修正系数,K 1=0.4~0.6;即Z 2=3,K 1取0.5;
所述分流中叶片3叶片数Z 3、分流短叶片4叶片数Z 4和长叶片2叶片数Z 2相等;
所述分流中叶片3进口直径
Figure PCTCN2018094736-appb-000005
所述分流短叶片4进口直径
Figure PCTCN2018094736-appb-000006
式中:d 4为叶轮外径;
d 1为所述优化后长叶片2进口直径;
所述分流中叶片3进口处倾角β 2、分流短叶片4进口处倾角β 3和所述优化后长叶片2进口处倾角β 1要符合以下关系:β 1=β 2=β 3=130°。
所述优化后长叶片2周向间隔角度θ 3和叶轮叶片数Z 2要符合以下关系:
Figure PCTCN2018094736-appb-000007
所述分流中叶片3周向间隔角度θ 2和分流短叶片4周向间隔角度θ 1符合以下关系:
Figure PCTCN2018094736-appb-000008
Figure PCTCN2018094736-appb-000009
式中:
Z 2所述优化后长叶片2叶片数;
α Z2所述优化后长叶片2正叶面9的出口处8的叶片安放角;
α b2所述优化后长叶片2背叶面10的出口处8的叶片安放角。
对叶轮进口处轮毂位置A进行倒圆角处理,其倒圆半径R 1和轮毂内径d、叶轮进口处轮 毂直径d 5要符合以下关系:R 1=K 6(d 5-d);式中:K 6是修正系数,K 6=0.05~0.25。即R 1=K 6(d 5-d)=1.2,K 6取0.1;
对叶轮叶片出口正叶面位置B进行倒圆角处理,其倒圆半径R 2和叶轮叶片出口的周向叶片厚度d c2要符合以下关系:R 2=K 7d c2;式中:K 7是修正系数,K 7=0.2~0.4,即R 2=K 7d c2=7.9,K 7取0.3。
附图4为该实例中离心泵优化前和优化后的性能对比图,可以清楚的看到原方案的叶轮经过优化后,泵效率得到了的提高,扬程也有了一定的提高,尤其是泵关死点扬程有了显著提高,本发明通过对叶轮叶片的优化,最大扬程比原来提高了13.2%,最大流量比原来提高了14.3%,最高效率比原来提高了3.8%,实现半开式叶轮离心泵的水力性能优化。
一种半开式离心泵叶轮,包括优化后长叶片2、分流短叶片4和分流中叶片3,任意二个所述优化后长叶片2之间设置周向不等间距排列的分流中叶片3和分流短叶片4;所述分流中叶片3和分流短叶片4与所述优化后长叶片2出口位置、型线和厚度相同,所述分流中叶片3和分流短叶片4与所述优化后长叶片2进口位置不同;在叶轮转动方向上周向依次排列顺序为所述优化后长叶片2、分流短叶片4和所述分流中叶片3。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (9)

  1. 一种半开式离心泵叶轮的优化设计方法,所述离心泵叶轮上设有数量为Z 1的优化前叶轮长叶片(11),设优化前叶轮长叶片(11)的正叶面(9)的出口处(8)的叶片安放角为α Z1,优化前叶轮长叶片(11)背叶面(10)的出口处(8)的叶片安放角为α b1,优化前叶轮长叶片(11)进口的周向叶片厚度为d j1,优化前叶轮长叶片(11)出口的周向叶片厚度d c1,其特征在于,包括如下步骤:
    优化后长叶片(2)的数量少于优化前叶轮长叶片(11);
    任意二个所述优化后长叶片(2)之间设置周向不等间距排列的分流中叶片(3)和分流短叶片(4);所述分流中叶片(3)和分流短叶片(4)与所述优化后长叶片(2)出口位置、型线和厚度相同,所述分流中叶片(3)和分流短叶片(4)与所述优化后长叶片(2)进口位置不同;在叶轮转动方向上周向依次排列顺序为所述优化后长叶片(2)、分流短叶片(4)和所述分流中叶片(3)。
  2. 根据权利要求1所述的半开式离心泵叶轮的优化设计方法,其特征在于,所述优化后长叶片(2)、分流中叶片(3)和分流短叶片(4)的骨线(1)与优化前长叶片(11)的骨线(1)相同。
  3. 根据权利要求1所述的半开式离心泵叶轮的优化设计方法,其特征在于,所述优化后长叶片(2)正叶面(9)的出口处(8)的叶片安放角α Z2=K 2α Z1,式中:K 2是修正系数,K 2=1~1.2;
    所述优化后长叶片(2)背叶面(10)的出口处(8)的叶片安放角α b2=K 3α b1,式中:K 3是修正系数,K 3=0.8~1。
  4. 根据权利要求1所述的半开式离心泵叶轮的优化设计方法,其特征在于,所述优化后长叶片(2)进口的周向叶片厚度d j2=K 4d j1,式中:K 4是修正系数,K 4=0.5~0.8;
    所述优化后长叶片(2)出口的周向叶片厚度d c2=K 5d c1,式中:K 5是修正系数,K 5=1.2~2。
  5. 根据权利要求1所述的半开式离心泵叶轮的优化设计方法,其特征在于,所述优化后长叶片(2)叶片数Z 2=K 1Z 1,计算后取整;式中:K 1是修正系数,K 1=0.4~0.6;所述分流中叶片(3)叶片数Z 3、分流短叶片(4)叶片数Z 4和长叶片(2)叶片数Z 2相等;
    所述分流中叶片(3)进口直径
    Figure PCTCN2018094736-appb-100001
    所述分流短叶片(4)进口直径
    Figure PCTCN2018094736-appb-100002
    式中:d 4为叶轮外径;
    d 1为所述优化后长叶片(2)进口直径;
    所述分流中叶片(3)进口处倾角β 2、分流短叶片(4)进口处倾角β 3和所述优化后长叶片(2)进口处倾角β 1要符合以下关系:β 1=β 2=β 3
  6. 根据权利要求1所述的半开式离心泵叶轮的优化设计方法,其特征在于,所述分流中叶片(3)周向间隔角度θ 2和分流短叶片(4)周向间隔角度θ 1符合以下关系:
    Figure PCTCN2018094736-appb-100003
    Figure PCTCN2018094736-appb-100004
    式中:
    Z 2所述优化后长叶片(2)叶片数;
    α Z2所述优化后长叶片(2)正叶面(9)的出口处(8)的叶片安放角;
    α b2所述优化后长叶片(2)背叶面(10)的出口处(8)的叶片安放角。
  7. 根据权利要求1所述的半开式离心泵叶轮的优化设计方法,其特征在于,对叶轮进口处轮毂位置进行倒圆角处理,其倒圆半径R 1和轮毂内径d、叶轮进口处轮毂直径d 5要符合以下关系:R 1=K 6(d 5-d);式中:K 6是修正系数,K 6=0.05~0.25。
  8. 根据权利要求1所述的半开式离心泵叶轮的优化设计方法,其特征在于,对叶轮叶片出口正叶面位置进行倒圆角处理,其倒圆半径R 2和叶轮叶片出口的周向叶片厚度d c2要符合以下关系:R 2=K 7d c2;式中:K 7是修正系数,K 7=0.2~0.4。
  9. 一种根据权利要求1-8任一项所述的半开式离心泵叶轮的优化设计方法制得的半开式离心泵叶轮,其特征在于,包括优化后长叶片(2)、分流短叶片(4)和分流中叶片(3),任意二个所述优化后长叶片(2)之间设置周向不等间距排列的分流中叶片(3)和分流短叶片(4);所述分流中叶片(3)和分流短叶片(4)与所述优化后长叶片(2)出口位置、型线和 厚度相同,所述分流中叶片(3)和分流短叶片(4)与所述优化后长叶片(2)进口位置不同;在叶轮转动方向上周向依次排列顺序为所述优化后长叶片(2)、分流短叶片(4)和所述分流中叶片(3)。
PCT/CN2018/094736 2018-06-06 2018-07-06 一种半开式离心泵叶轮及其优化设计方法 WO2019232878A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/669,276 US11525454B2 (en) 2018-06-06 2019-10-30 Semi-open centrifugal pump impeller and its optimization design

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810587225.X 2018-06-06
CN201810587225.XA CN108916109B (zh) 2018-06-06 2018-06-06 一种半开式离心泵叶轮及其优化设计方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/669,276 Continuation US11525454B2 (en) 2018-06-06 2019-10-30 Semi-open centrifugal pump impeller and its optimization design

Publications (1)

Publication Number Publication Date
WO2019232878A1 true WO2019232878A1 (zh) 2019-12-12

Family

ID=64419044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094736 WO2019232878A1 (zh) 2018-06-06 2018-07-06 一种半开式离心泵叶轮及其优化设计方法

Country Status (3)

Country Link
US (1) US11525454B2 (zh)
CN (1) CN108916109B (zh)
WO (1) WO2019232878A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114526260A (zh) * 2022-01-24 2022-05-24 江苏泰丰泵业有限公司 一种高过流特性叶轮的稀疏叶片设计方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111188793B (zh) * 2020-01-17 2020-11-24 湘潭大学 一种离心压气机叶轮分流叶片周向角设计方法及叶轮
KR20210098012A (ko) * 2020-01-31 2021-08-10 엘지전자 주식회사 펌프
CN113250978B (zh) * 2020-02-11 2024-05-07 宏碁股份有限公司 散热风扇
USD940760S1 (en) * 2020-04-04 2022-01-11 Colina Mixing pump impeller
USD958842S1 (en) * 2020-04-04 2022-07-26 Colina Mixing pump impeller vane assembly
CN112069619B (zh) * 2020-09-07 2021-10-19 西安交通大学 一种铅冷快堆核主泵的水力性能优化设计方法
CN112460032A (zh) * 2020-12-10 2021-03-09 江西睿锋环保有限公司 一种用于铜镍锌废料预处理工艺的输送装置
CN114607613A (zh) * 2022-02-11 2022-06-10 江苏大学 一种减少磨损的多级半开式离心泵
CN115076156B (zh) * 2022-07-29 2024-03-05 江苏大学 一种全流量高效高速离心泵

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1528964A1 (ru) * 1988-04-05 1989-12-15 А. Ю. Синенко и В. С. Смирнов Рабочее колесо центробежной турбомашины
CN2426027Y (zh) * 1999-03-13 2001-04-04 格伦德福什联合股份有限公司 径向结构式离心泵叶轮
CN203892243U (zh) * 2014-04-04 2014-10-22 上海第一水泵厂有限公司 用于水煤浆泵的叶轮
CN204152837U (zh) * 2014-10-15 2015-02-11 黄晓东 低比转速高效离心水泵
CN207278564U (zh) * 2017-10-19 2018-04-27 江苏国泉泵业制造有限公司 一种非等距叶片固液两相排污泵叶轮

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2072611U (zh) 1990-07-20 1991-03-06 江苏工学院 低比转数离心泵叶轮短叶片的偏置
CN2204344Y (zh) * 1993-08-02 1995-08-02 成都杜同水轮机研究所 一种离心泵叶轮
JPH09209984A (ja) * 1996-02-02 1997-08-12 Japan Servo Co Ltd 循環式ポンプの羽根車
CN200999754Y (zh) * 2006-12-30 2008-01-02 上海东方泵业(集团)有限公司 具有改进的进口工作面的叶片
CN101598138A (zh) * 2009-07-07 2009-12-09 西安交通大学 二次分流叶片式离心叶轮
CN201963599U (zh) * 2011-02-28 2011-09-07 上海日用-友捷汽车电气有限公司 冷却风扇的低噪声风叶
CN103291653B (zh) * 2013-06-24 2015-07-29 江苏大学 一种低比转数叶轮及其叶片设计方法
CN204419687U (zh) 2015-01-06 2015-06-24 浙江理工大学 一种离心泵分流叶片叶轮
US10851665B2 (en) * 2018-02-13 2020-12-01 Corey B. Kuhns Angular velocity stepping and methods of use in turbomachinery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1528964A1 (ru) * 1988-04-05 1989-12-15 А. Ю. Синенко и В. С. Смирнов Рабочее колесо центробежной турбомашины
CN2426027Y (zh) * 1999-03-13 2001-04-04 格伦德福什联合股份有限公司 径向结构式离心泵叶轮
CN203892243U (zh) * 2014-04-04 2014-10-22 上海第一水泵厂有限公司 用于水煤浆泵的叶轮
CN204152837U (zh) * 2014-10-15 2015-02-11 黄晓东 低比转速高效离心水泵
CN207278564U (zh) * 2017-10-19 2018-04-27 江苏国泉泵业制造有限公司 一种非等距叶片固液两相排污泵叶轮

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114526260A (zh) * 2022-01-24 2022-05-24 江苏泰丰泵业有限公司 一种高过流特性叶轮的稀疏叶片设计方法
CN114526260B (zh) * 2022-01-24 2023-08-18 江苏泰丰泵业有限公司 一种高过流特性叶轮的稀疏叶片设计方法

Also Published As

Publication number Publication date
CN108916109A (zh) 2018-11-30
US11525454B2 (en) 2022-12-13
CN108916109B (zh) 2020-03-31
US20200088208A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2019232878A1 (zh) 一种半开式离心泵叶轮及其优化设计方法
CN107882771B (zh) 一种射流式自吸离心泵的优化设计方法
CN203892243U (zh) 用于水煤浆泵的叶轮
CN115559932B (zh) 一种带分流叶片的盖板延伸式低噪声泵叶轮
WO2023077648A1 (zh) 一种灯泡贯流泵导叶自适应设计方法及灯泡贯流泵导叶
CN104314860A (zh) 一种低比速离心泵叶轮
CN112648230B (zh) 一种高效抗汽蚀离心泵叶轮
CN105822589A (zh) 一种工作效率高的离心泵叶轮
CN202597231U (zh) 一种轻便泵用叶轮
CN105715581A (zh) 一种离心泵圆柱形叶片的设计方法
CN101603540B (zh) 低温升节能全扬程潜水电泵
CN203051222U (zh) 分体式双蜗壳结构
CN102797697A (zh) 一种轻便泵用叶轮
CN2821239Y (zh) 双吸离心泵的改进型叶轮
CN101813092A (zh) 一种多级离心泵多叶轮组合水力设计方法
CN108443218B (zh) 一种具有二次分流叶片的泵叶轮
CN104481918A (zh) 一种带吸力面副叶片的混流叶轮
CN208749652U (zh) 防颗粒杂质沉积的离心泵
CN110094357B (zh) 一种离心泵用叶轮及离心泵及家用电器
CN102261336B (zh) 两级悬臂离心泵
CN208578778U (zh) 一种空间导叶
CN113719469B (zh) 一种短排距泥泵叶轮叶片设计方法
CN202597227U (zh) 一种新型泵用叶轮
CN103953578A (zh) 用于水煤浆泵的叶轮
CN204755391U (zh) 一种纸浆泵叶轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921991

Country of ref document: EP

Kind code of ref document: A1