WO2019230390A1 - スケジューリング装置および方法 - Google Patents

スケジューリング装置および方法 Download PDF

Info

Publication number
WO2019230390A1
WO2019230390A1 PCT/JP2019/019251 JP2019019251W WO2019230390A1 WO 2019230390 A1 WO2019230390 A1 WO 2019230390A1 JP 2019019251 W JP2019019251 W JP 2019019251W WO 2019230390 A1 WO2019230390 A1 WO 2019230390A1
Authority
WO
WIPO (PCT)
Prior art keywords
combination
evaluation
evaluation value
candidate
scheduling
Prior art date
Application number
PCT/JP2019/019251
Other languages
English (en)
French (fr)
Inventor
勇輝 有川
坂本 健
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Publication of WO2019230390A1 publication Critical patent/WO2019230390A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a scheduling technique for assigning radio resources possessed by a radio network by designating the operation content (transmission state) of each transmission point in the radio network.
  • LTE Long Term Evolution
  • CoMP Coordinatd Multi-point transmission / reception: a plurality of transmission points (TP: base station) cooperate with each other to transmit / receive signals to / from a user terminal (UE: user radio terminal): Inter-cell cooperative transmission / reception) is employed (see Non-Patent Document 1, etc.).
  • CoMP technology is one of the important technologies for improving frequency utilization efficiency and cell edge user throughput.
  • downlink communication transmission from TP to UE
  • the use efficiency of radio resources can be improved by simultaneously transmitting a plurality of transmission points to each UE using the same frequency band.
  • signals from other transmission points become interference of a desired reception signal.
  • CoMP has become an indispensable technology for improving the communication speed while suppressing such interference.
  • the scheduling device when performing such scheduling, designates a transmission state for each TP, that is, a UE serving as a transmission destination or a transmission stop for each TP, as a combination of the TP and the UE having the maximum evaluation value. Decide what information you want.
  • a combination pattern an evaluation value of a number of combinations of TPs and UEs is calculated, a process for searching for an optimal combination pattern having the best evaluation value is performed, and a process within a scheduling period (for example, a time of 1 millisecond) is performed. It is necessary to specify the optimum combination pattern in (b).
  • the present invention is intended to solve such a problem, and an object thereof is to provide a scheduling technique capable of reducing the time required for specifying the optimum combination pattern.
  • the scheduling apparatus is configured to connect a wireless network having N (N is an integer of 2 or more) transmission points between these transmission points and each user terminal.
  • a scheduling device that searches for an optimal combination pattern used when allocating radio resources for performing radio communication, and indicates candidates for combinations of the N transmission points and the user terminals based on input generation conditions
  • a combination generation unit that generates a combination pattern, and for each of the generated candidate combination patterns, an evaluation value for each of the combinations included in the candidate combination pattern is calculated based on a preset calculation formula, and a user of the combination Calculated from the signal power and interference power at the terminal, the sum of these evaluation values is used as the candidate combination pattern.
  • a combination evaluation unit that calculates the overall evaluation value an optimal combination holding unit that holds the candidate combination pattern having the highest overall evaluation value as the optimal combination pattern among the candidate combination patterns, and the combination evaluation unit,
  • the evaluation value related to the combination included in the candidate combination pattern is calculated in parallel (P is an integer of 1 or more not exceeding N) in parallel, and the evaluation value is calculated.
  • P is an integer of 1 or more not exceeding N
  • interference power from Q is an integer of 2 or more not exceeding M) transmission points is calculated in parallel. It is what I did.
  • one configuration example of the scheduling device according to the present invention is such that the combination evaluation unit determines the values of P and Q in accordance with hardware resources constituting the scheduling device.
  • one configuration example of the scheduling apparatus according to the present invention is such that the combination evaluation unit determines the values of P and Q according to the number of user terminals accommodated by the scheduling apparatus.
  • one example of the configuration of the scheduling device according to the present invention is such that the combination evaluation unit determines the values of P and Q according to the radio throughput performance required by the system using the scheduling device. is there.
  • the scheduling method provides a radio resource for performing radio communication between a transmission network and each user terminal for a wireless network having N (N is an integer of 2 or more) transmission points.
  • N is an integer of 2 or more
  • a scheduling method used in a scheduling device for searching for an optimal combination pattern used when allocating a combination wherein a combination generation unit determines a combination of the N transmission points and the user terminals based on an input generation condition.
  • a combination generation step for generating candidate combination patterns to be shown, and a combination evaluation unit for each of the generated candidate combination patterns, an evaluation value for each of the combinations included in the candidate combination pattern is set in advance.
  • P the overall evaluation value
  • Q Q does not exceed M among the M transmission points that can cause radio wave interference to the user terminal of the combination. It includes the step of calculating in parallel the interference power from (number of integers greater than or equal to 2) transmission points.
  • the present invention it is possible to shorten the time required to obtain the evaluation value for each combination as compared to the case where the interference power from each interference transmission point for the user terminal is continuously obtained one by one. As a result, it is possible to reduce the time required to specify the optimum combination pattern within the scheduling period. For this reason, even if the size of the wireless network is increased and the search space is expanded, sufficient processing time can be secured, and a better optimal combination pattern can be specified within a predetermined scheduling period. .
  • FIG. 1 is a block diagram showing the configuration of the scheduling apparatus.
  • FIG. 2 is a block diagram showing the configuration of the combination evaluation unit.
  • FIG. 3 is a block diagram showing the configuration of the individual combination evaluation unit.
  • FIG. 4 is a block diagram showing the configuration of the normalization unit.
  • FIG. 5 is a block diagram showing a configuration of the UE multiple unconsidered SNR estimation unit.
  • FIG. 6 is a block diagram showing the configuration of the SINR estimation unit.
  • FIG. 7 is a flowchart showing the scheduling process.
  • FIG. 8 is a flowchart showing the combination evaluation process.
  • FIG. 9 is a configuration example of an individual combination evaluation unit in a conventional scheduling apparatus.
  • FIG. 1 is a block diagram illustrating a configuration of a scheduling apparatus.
  • the scheduling apparatus 1 uses an optimal combination pattern used when assigning radio resources for radio communication between the transmission points TP and each user terminal UE to a radio network having a plurality of transmission points TP. It is an apparatus that searches from a plurality of candidate combination patterns that indicate combinations of these TPs and UEs (TP and TP transmission state: transmission stop or UE).
  • an evaluation value of a combination pattern that is a candidate for connection between the TP and the UE is calculated. This trial is repeated within the scheduling period, and the optimum combination pattern having the maximum evaluation value when the scheduling time elapses is set as a combination pattern that is actually used for transmission.
  • the scheduling time is a time that can be spent for processing for specifying a combination pattern of TP and UE, and is determined by the system. For example, in the case of LTE, the time is a minimum of 1 millisecond, and a combination pattern of TP and UE is specified at a period of 1 millisecond.
  • the scheduling device 1 includes a combination generation unit 10, a combination evaluation unit 20, and an optimum combination holding unit 30 as main functional units.
  • These functional units are realized by logic circuits such as PLD (Complex Programmable Logic Device) such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit).
  • the combination generation unit 10 has a function of generating a candidate combination pattern indicating a combination of each TP and each UE according to a predetermined search algorithm, with input of candidate UEIDs that can be connected for each TP (candidate combination pattern generation conditions) as an input. Have.
  • the combination generation unit 10 may stop generating the combination when a predetermined time has elapsed from the start of generation of the combination or when generation of the predetermined number of combinations is completed.
  • a generally known search algorithm is used as a combination generation method. For example, it is possible to apply a brute force method that generates all combinations comprehensively, or a generally known approximate solution of a combination optimization problem (for example, a hill-climbing method, a greedy method, etc.). Further, when generating a combination, it is generated including a combination in which each TP is in a transmission stop state.
  • the combination evaluation unit 20 has a function of calculating an overall evaluation value, which is a reference used for evaluating the candidate combination pattern, for the candidate combination pattern generated by the combination generation unit 10.
  • an overall evaluation value for example, a sum of wireless throughputs obtained when transmission is performed using the combination pattern of the TP and UE (wireless throughput of the entire system) or a wireless throughput value generally used in a wireless network system is predetermined. The sum of the values (Proportional Fairness, PF metric) divided by the average throughput value accumulated over the period is used.
  • the optimal combination holding unit 30 has a function of determining whether or not the overall evaluation value calculated by the combination evaluation unit 20 is the highest, and holding the combination pattern when the overall evaluation value is the highest. For example, the evaluation value of the new combination calculated by the combination evaluation unit 20 is compared with the evaluation value of the optimum combination that has been held so far, and when the evaluation value of the new combination is larger than the evaluation value of the optimum combination, The new combination and its evaluation value are held as the optimum combination and its evaluation value.
  • FIG. 2 is a block diagram illustrating a configuration of the combination evaluation unit.
  • FIG. 3 is a block diagram illustrating a configuration of the individual combination evaluation unit.
  • FIG. 4 is a block diagram illustrating a configuration of the normalization unit.
  • FIG. 5 is a block diagram illustrating a configuration of a UE multiple non-considered SNR estimation unit.
  • FIG. 6 is a block diagram showing the configuration of the SINR estimation unit.
  • the combination evaluation unit 20 receives the candidate combination pattern and the square value of the channel information indicating the radio state between the TP and the UE as input, and the evaluation value for each of the combinations of the TP and the UE included in the candidate combination pattern, Based on a preset formula, from the signal power related to the radio signal from the TP of the combination in the UE of the combination and the interference power related to the radio signal from the interference TP that can cause radio wave interference to the UE It has a function of calculating and calculating an overall evaluation value composed of the sum of these evaluation values for each candidate combination pattern.
  • the combination evaluation unit 20 has a function of calculating the evaluation value related to the combination of TP and UE by P (P is an integer of 1 or more not exceeding N) in parallel when calculating the overall evaluation value.
  • P is an integer of 1 or more not exceeding N
  • the channel information is the attenuation amount and phase rotation amount received when the radio signal passes through the radio channel, and the scheduling device 1 uses the estimated value.
  • the combination evaluation unit 20 includes TP calculated by P individual combination evaluation units 21 # 1 to #P and arbitrary individual combination evaluation units 21 # 1 to #P as main circuit units. And an addition circuit 22 for obtaining the sum of evaluation values of # 1 to #N.
  • the individual combination evaluation unit 21 # 1 is assigned to the evaluation value calculation of TP # 1.
  • the individual combination evaluation unit 21 # i performs normalization on a value obtained by squaring the input channel information, and other TPs excluding TP # N and TP # N.
  • Matrix multiplication circuits 21B # 1 to #Q that perform matrix multiplication, UE multiplexing unconsidered SNR estimator 21C, matrix multiplication circuits 21B # 1 to #Q that calculate the sum of output values, and UE multiplexing unconsidered
  • the SINR estimation unit 21E that estimates SINR from the output value of the SNR estimation unit 21C, the output value of the adder circuit 21D, and the number of UEs included in the combination, and the output value of the SINR estimation unit 21E are wirelessly transmitted using the combination
  • the instantaneous throughput conversion unit 21F that converts the wireless throughput value obtained in this case into a value obtained by dividing the instantaneous throughput by the average rate of the UE. And it includes a calculation unit 21G.
  • the matrix multiplication is processed in parallel using Q matrix multiplication circuits 21B, so that Q matrix multiplication output values can be obtained simultaneously.
  • Q M
  • the matrix multiplication circuit 21B # 1 is assigned to matrix multiplication of the interference TP # 1.
  • matrix multiplication circuit 21B # 1 performs matrix multiplication of interferences TP # 1 and # 2.
  • the normalization unit 21A includes an adder circuit 23 and multipliers 24 # 1 to #Q.
  • the adder circuit 23 calculates the sum of the square values of the Q channel information, and the multipliers 24 # 1 to #Q respectively calculate the square values of the corresponding channel information and the sum obtained by the adder circuit 23. Is multiplied by Q to output Q channel normalized channel information.
  • the UE multiple unconsidered SNR estimation unit 21C includes a multiplier 25 and a multiplier 26 as shown in FIG.
  • the multiplier 25 obtains the product of the Q normalized channel information from the normalization unit 21A and the transmission power value that is the external setting parameter, and the multiplier 26 calculates the product obtained by the multiplier 25 and the external power.
  • the UE multiple unconsidered SNR estimate is output.
  • the SINR estimation unit 21E includes an inverse number circuit 27, a divider 28, and a multiplier 29 as shown in FIG.
  • the reciprocal circuit 27 obtains the reciprocal of the addition result of the adder circuit 21D
  • the divider 28 divides the obtained reciprocal number by the number of UEs included in the combination
  • the multiplier 29 considers the quotient and UE multiplexing not considered.
  • the SINR estimated value is output by calculating the product of the UE multiple unconsidered SNR estimated value obtained by the SNR estimating unit 21C.
  • SINR Signal-to-Interference plus Noise power Ratio
  • SINR is a value indicating the ratio of signal power to interference power (sum of interference power and noise power) in the UE.
  • P and Q are each an integer of 1 or more that does not exceed the number of TPs (N) targeted by the scheduling apparatus 1, and an integer of 2 or more that does not exceed the number of interference TPs that can cause radio wave interference to each TP (M) .
  • N the number of TPs
  • M the number of interference TPs that can cause radio wave interference to each TP
  • the method for determining the parameters P and Q will be described for the case where the scheduling apparatus 1 is implemented by an FPGA device.
  • the amount of hardware resources that can be used by an FPGA device is limited, and is uniquely determined depending on the FPGA device used for implementation. Therefore, P and Q are determined within a range that fits in the hardware resource amount of the FPGA device.
  • P and Q are determined to be the largest value within the range of the hardware resource amount of the FPGA.
  • the optimal parallel numbers P and Q are determined for the parameter according to hardware resources such as an FPGA device.
  • the values of P and Q are determined by paying attention to the amount of FPGA resources.
  • the determination method is not necessarily limited to this.
  • P and Q may be determined according to the number of UEs accommodated by the scheduling apparatus 1 under the precondition that the amount of hardware resources of the FPGA is within the range.
  • the time required to obtain the optimum combination becomes clear. Therefore, P and Q are determined on the condition that the time is satisfied.
  • the time required to obtain the optimum combination is, for example, according to the calculation method described in Non-Patent Document 4, the number of computations required to obtain the optimum combination is (number of TPs) ⁇ (connected to each TP. The number of possible UEs) ⁇ (coefficient depending on the proposed method of the document), and the number of calculations is processed within the scheduling period.
  • the number of TPs is 32
  • the number of UEs that can be connected to each TP 8
  • the coefficient is 3
  • P and Q may be determined according to radio throughput performance required by the system using the scheduling device 1 under the precondition that the amount of hardware resources of the FPGA is within P and Q.
  • Non-Patent Document 4 shows the relationship between the wireless throughput performance and the number of calculations necessary to obtain the performance, and the number of calculations is processed within the scheduling period.
  • FIG. 9 is a configuration example of an individual combination evaluation unit in a conventional scheduling device.
  • the difference between the scheduling apparatus 1 of the present invention and the conventional scheduling apparatus is that the conventional individual combination evaluation unit 50 continuously obtains the influence of each interference TP on the UE one by one. Is that the influence of M interference TPs on the UE is calculated in parallel using two or more matrix multiplication circuits 21B. Also, by scheduling the values of P and Q, it is possible to generate a scheduling device according to the hardware resources of the FPGA, the number of TPs and the number of UEs targeted by the scheduling device 1.
  • FIG. 7 is a flowchart showing the scheduling process.
  • FIG. 8 is a flowchart showing the combination evaluation process.
  • the combination generation unit 10 generates combination candidates according to a predetermined search algorithm (step 100).
  • the combination generation method uses a generally known search algorithm. For example, it is possible to apply a brute force method that generates all combinations comprehensively, or a generally known approximate solution of a combination optimization problem (for example, a hill-climbing method, a greedy method, etc.). Further, when generating a combination, it is generated including a combination in which each TP is in a transmission stop state. Note that the combination generation unit 10 may stop generating the combination when a predetermined time has elapsed from the start of generation of the combination, or when generation of the predetermined number of combinations is finished.
  • the combination evaluation unit 20 receives the candidate combination pattern generated by the combination generation unit 10 as an input, and combines the TP and the UE based on a predetermined calculation formula for each of the N TPs targeted by the scheduling device 1.
  • the evaluation value for P is calculated in parallel for P (P is an integer of 1 or more which does not exceed N) in parallel, and the sum (overall evaluation value) of the evaluation values for every N TPs is calculated (step 101).
  • the standard used for evaluating the combination that is, the value to be calculated by the combination evaluating unit 20, is the sum of the wireless throughput of each TP, that is, the wireless throughput of the entire system, and the TP and UE generally used in the wireless network system.
  • a value (Proportional Fairness, PF metric) obtained by dividing a throughput value obtained when transmission is performed by a combination of the above by an average throughput value accumulated for a predetermined period may be used.
  • the combination evaluation unit 20 gives radio interference to the wireless transmission between each TP and the UE that tries to connect to the TP. Taking into account the degree of radio wave interference of M TPs (interfering TPs), that is, interference power, the wireless throughput between the TP and the UE attempting to connect to the TP is calculated.
  • M TPs interfering TPs
  • the normalization unit 21A first normalizes the value obtained by squaring the channel information between each TP and the UE (step 110). ).
  • the matrix multiplication circuit 21B a matrix composed of standardized channel information between TP # N and each UE and a matrix composed of standardized channel information between the UE and other TPs excluding TP # N (Step 111).
  • the addition circuit 21D adds the matrix multiplication results (step 112).
  • the UE multiple unconsidered SNR estimation unit 21C calculates a product of the normalized channel information and the transmission power value that is the external setting parameter, and further calculates the product of the product and the noise variance that is the external setting parameter. As a result, the SNR estimated value not considering UE multiplexing is output (step 113).
  • the SINR estimation unit 21E obtains the reciprocal of the output value of the addition circuit 21D, further divides the value by the number of UEs included in the combination, and outputs the quotient and the UE multiple unconsidered SNR estimation unit 21C.
  • the product with the value is obtained (step 114).
  • the instantaneous throughput conversion unit 21F converts the output value of the SINR estimation unit 21E into an instantaneous throughput (step 115). In the conversion from SINR to instantaneous throughput, the instantaneous throughput paired with the SINR value is converted in a table conversion format.
  • the instantaneous throughput is divided by the average rate of the UE, and the quotient is set as the PF metric value of the UE (step 116). Thereafter, it is confirmed whether the PF calculation of all TPs has been completed (step 117). If not completed (step 117: NO), the process returns to step 110, and if completed (step 117: YES), The combination evaluation process is terminated.
  • the optimum combination holding unit 30 determines the size based on the evaluation value calculated by the combination evaluation unit 20 (step 102). .
  • the evaluation value is larger than the evaluation value of the combination held so far and is the maximum value so far (step 102: YES)
  • the combination and evaluation value to be held are updated (step 103). Step 102: NO), not updated.
  • the optimum combination holding unit 30 determines whether or not to end the scheduling process (step 104). If it is determined not to end the scheduling process (step 104: NO), the process returns to step 100. On the other hand, when it is determined that the scheduling process is to be ended (step 104: YES), the optimum combination holding unit 30 outputs the held optimum combination pattern (step 105) and ends the series of scheduling processes.
  • the combination evaluation unit 20 calculates the overall evaluation value of the candidate combination pattern
  • the evaluation value regarding the combination of N TPs and each UE is set to P (P does not exceed N).
  • P does not exceed N
  • Q does not exceed M
  • the interference power from the above (integer) interference TPs is calculated in parallel.
  • SYMBOLS 1 DESCRIPTION OF SYMBOLS 1 ... Scheduling apparatus, 10 ... Combination production

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

最適組合せパターンの特定に要する時間を短縮する。 組合せ評価部20が、候補組合せパターンの全体評価値を計算する際、N個のTPと各UEとの組合せに関する評価値をP(PはNを超えない1以上の整数)個分だけ並列的に計算し、評価値を計算する際、当該組合せのUEに対して電波干渉を与えうるM個の干渉TPのうち、Q(QはMを超えない2以上の整数)個分の干渉TPからの干渉電力を並列的に計算する。

Description

スケジューリング装置および方法
 本発明は、無線ネットワーク内の各送信ポイントの動作内容(送信状態)を指定することにより、無線ネットワークが有する無線リソースの割り当てを行うためのスケジューリング技術に関する。
 スマートフォンの普及に伴って、通信速度の向上や利用帯域の増大など、無線ネットワークに対する社会的要請が大きくなっている。このような状況を背景として、LTE(Long Term Evolution)と呼ばれる移動通信方式の無線インタフェース仕様を適用した無線ネットワークシステムが普及しつつある。このLTEでは、無線アクセス技術の1つとして、複数の送信ポイント(TP:基地局)が協調してユーザ端末(UE:ユーザ無線端末)と信号を送受信するCoMP(Coordinated Multi-point transmission/reception:セル間協調送受信)が採用されている(非特許文献1など参照)。
 CoMP技術は、周波数利用効率やセル端ユーザスループットを向上させる重要な技術の1つである。例えば、下り方向の通信(TPからUEへの送信)において、同時に複数の送信ポイントが同一周波数帯を用いて、各UEに送信することで無線リソースの利用効率を高めることができる。しかし、各送信ポイントが異なるUEに対して送信した場合、複数の送信ポイントから信号を受信可能なUEにとっては、他の送信ポイントからの信号が所望の受信信号の干渉となって、かえってスループットの低下を招く恐れがある。したがって、このような干渉を抑制しつつ通信速度を向上させるためにCoMPは必要不可欠な技術となっている。
 また、無線ネットワークにCoMPを適用するにあたって、システムスループットの最大化を目的とすると、受信状態のよいユーザへのリソース割り当てが優先されることでユーザ間の公平性に問題が生じるため、各UEのこれまでの平均レートを考慮したスケジューリングが望ましいとされている(非特許文献2など参照)。
 さらに、LTEを発展させた次世代移動通信方式の研究開発が行われており、CoMPを拡張した概念として協調無線リソース制御方式が提案されている。(非特許文献3など参照)。このように制御方式が複雑化するため、その処理を高速化するために専用回路によるハードウェア処理を行うスケジューラ構成が提案されている(非特許文献4など参照)。
田岡他,「LTE-AdvancedにおけるMIMOおよびセル間協調送受信技術」,NTT DOCOMO テクニカル・ジャーナル,Vol. 18,No. 2,pp.22-30,2010年7月,https://www.nttdocomo.co.jp/binary/pdf/corporate/technology/rd/technical_journal/bn/vol18_2/vol18_2_022jp.pdf T. Girici,C. Zhu,J. R. Agre,and A. Ephremides,"Proportional Fair Scheduling Algorithm in OFDMA-Based Wireless Systems with QoS Constraints",Journal of Communications and Networks,Vol.12,No.1,pp.30-42,February 2010 小林他,「5G 超高密度分散アンテナシステムにおける大容量化技術のアルゴリズム検討~協調MU-MIMO における低演算量UE 選択方式~」,2017年電子情報通信学会総合大会,B-5-23,2017年 Y. Arikawa,K. Kawai,H. Uzawa,and S. Shigematsu,"Practical resource scheduling in massive-cell deployment for 5G mobile communications systems",International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) ,Nusa Dua,pp. 456-461,November 2015
 無線ネットワークシステムにおいて、このようなスケジューリングを行う場合、スケジューリング装置は、評価値が最大となるTPとUEの組合せとして、TP毎の送信状態、すなわちTP毎に送信先となるUEあるいは送信停止を指定する情報を決定する。このような組合せパターンを決定するために、多数のTPとUEの組合せの評価値を計算し、評価値が最良の最適組合せパターンを探索する処理を行い、スケジューリング周期内(例えば1ミリ秒の時間内)に最適組合せパターンを特定する必要がある。
 最適組合せパターンを特定する確実な方法は、可能性のある全ての組合せパターンの各々について評価値を計算し評価値が最大となる組合せを見つけ出す、つまり総当りで探索を行うことである。しかし、無線ネットワークの規模(含まれるTP数やUE数)が大きくなると、探索空間(可能性のある組合せ数)が膨大になる。このため、従来の無線ネットワークシステムのスケジューリング装置では、無線ネットワークの規模が大きくなると、最適組合せパターンを特定するまでの時間が長くなり、スケジューリング周期以内でより良い最適組合せパターンを特定することができない、という問題があった。
 本発明はこのような課題を解決するためのものであり、最適組合せパターンの特定に要する時間を短縮できるスケジューリング技術を提供することを目的としている。
 このような目的を達成するために、本発明にかかるスケジューリング装置は、N(Nは2以上の整数)個の送信ポイントを有する無線ネットワークに対して、これら送信ポイントと各ユーザ端末との間で無線通信を行うための無線リソースを割り当てる際に用いる最適組合せパターンを探索するスケジューリング装置であって、入力された生成条件に基づいて前記N個の送信ポイントと前記各ユーザ端末との組合せを示す候補組合せパターンを生成する組合せ生成部と、生成された前記候補組合せパターンごとに、当該候補組合せパターンに含まれる前記組合せのそれぞれに関する評価値を、予め設定されている計算式に基づいて当該組合せのユーザ端末における信号電力と干渉電力から計算し、これら評価値の和を当該候補組合せパターンの全体評価値として計算する組合せ評価部と、前記候補組合せパターンのうち、前記全体評価値が最も高い候補組合せパターンを前記最適組合せパターンとして保持する最適組合せ保持部と、前記組合せ評価部は、前記全体評価値を計算する際、前記候補組合せパターンに含まれる前記組合せに関する評価値をP(PはNを超えない1以上の整数)個分だけ並列的に計算し、前記評価値を計算する際、前記組合せのユーザ端末に対して電波干渉を与えうるM個の送信ポイントのうち、Q(QはMを超えない2以上の整数)個分の送信ポイントからの干渉電力を並列的に計算するようにしたものである。
 また、本発明にかかる上記スケジューリング装置の一構成例は、前記組合せ評価部が、当該スケジューリング装置を構成するハードウェアのリソースに合わせて前記PおよびQの値を決定するようにしたものである。
 また、本発明にかかる上記スケジューリング装置の一構成例は、前記組合せ評価部が、当該スケジューリング装置が収容するユーザ端末数に応じて前記PおよびQの値を決定するようにしたものである。
 また、本発明にかかる上記スケジューリング装置の一構成例は、前記組合せ評価部が、当該スケジューリング装置を用いるシステムが要求する無線スループット性能に応じて前記PおよびQの値を決定するようにしたものである。
 また、本発明にかかるスケジューリング方法は、N(Nは2以上の整数)個の送信ポイントを有する無線ネットワークに対して、これら送信ポイントと各ユーザ端末との間で無線通信を行うための無線リソースを割り当てる際に用いる最適組合せパターンを探索するスケジューリング装置で用いられるスケジューリング方法であって、組合せ生成部が、入力された生成条件に基づいて前記N個の送信ポイントと前記各ユーザ端末との組合せを示す候補組合せパターンを生成する組合せ生成ステップと、組合せ評価部が、生成された前記候補組合せパターンごとに、当該候補組合せパターンに含まれる前記組合せのそれぞれに関する評価値を、予め設定されている計算式に基づいて当該組合せのユーザ端末における信号電力と干渉電力から計算し、これら評価値の和を当該候補組合せパターンの全体評価値として計算する組合せ評価ステップと、最適組合せ保持部が、前記候補組合せパターンのうち、前記全体評価値が最も高い候補組合せパターンを前記最適組合せパターンとして保持する最適組合せ保持ステップとを備え、前記組合せ評価ステップは、前記全体評価値を計算する際、前記候補組合せパターンに含まれる前記組合せに関する評価値をP(PはNを超えない1以上の整数)個分だけ並列的に計算し、前記評価値を計算する際、前記組合せのユーザ端末に対して電波干渉を与えうるM個の送信ポイントのうち、Q(QはMを超えない2以上の整数)個分の送信ポイントからの干渉電力を並列的に計算するステップを含むものである。
 本発明によれば、ユーザ端末に対する各干渉送信ポイントからの干渉電力を1つずつ連続して求める場合と比較して、各組合せに関する評価値を求めるまでの時間を短縮することが可能となる。これにより、スケジューリング周期内において最適組合せパターンの特定に要する時間を短縮することが可能となる。このため、無線ネットワークの規模が大きくなって探索空間が拡大しても、十分な処理時間を確保することができ、決められたスケジューリング周期内でより良い最適組合せパターンを特定することが可能となる。
図1はスケジューリング装置の構成を示すブロック図である。 図2は組合せ評価部の構成を示すブロック図である。 図3は個別組合せ評価部の構成を示すブロック図である。 図4は規格化部の構成を示すブロック図である。 図5はUE多重未考慮SNR推定部の構成を示すブロック図である。 図6はSINR推定部の構成を示すブロック図である。 図7はスケジューリング処理を示すフローチャートである。 図8は組合せ評価処理を示すフローチャートである。 図9は従来のスケジューリング装置における個別組合せ評価部の構成例である。
 次に、本発明の一実施の形態について図面を参照して説明する。
[スケジューリング装置]
 まず、図1を参照して、本実施の形態にかかるスケジューリング装置1について説明する。図1は、スケジューリング装置の構成を示すブロック図である。
 このスケジューリング装置1は、複数の送信ポイントTPを有する無線ネットワークに対して、これら送信ポイントTPと各ユーザ端末UEとの間で無線通信を行うための無線リソースを割り当てる際に用いる最適組合せパターンを、これらTPとUE(TPとTPの送信状態:送信停止またはUE)の組合せを示す複数の候補組合せパターンのうちから探索する装置である。
 各TPのデータの送信先となるUEを決めるために、TPとUEの接続の候補となる組合せパターンの評価値を計算する。この試行をスケジューリング周期内繰り返し、スケジューリング時間が経過した時点で評価値が最大である最適組合せパターンを実際に送信に用いる組合せパターンとする。なお、スケジューリング時間とは、TPとUEの組合せパターンを特定するための処理に費やすことができる時間であり、システムにより定められる。例えば、LTEの場合、当該時間は最小1ミリ秒であり、1ミリ秒周期でTPとUEの組合せパターンを特定する。
 図1に示すように、スケジューリング装置1は、主な機能部として、組合せ生成部10、組合せ評価部20、および最適組合せ保持部30を備えている。これら機能部は、例えばFPGA(Field Programmable Gate Array)などのPLD(Complex Programmable Logic Device)やASIC(Application Specific Integrated Circuit)などのロジック回路により実現される。
 組合せ生成部10は、TPごとの接続可能な候補UEID(候補組合せパターンの生成条件)を入力として、所定の探索アルゴリズムにしたがって各TPと各UEとの組合せを示す候補組合せパターンを生成する機能を有している。組合せ生成部10は、組合せの生成を開始した時点から所定の時間が経過した時点、または、所定の組合せ数の生成を終了した時点、で組合せの生成を止めることもある。また、組合せの生成方法は、一般に知られる探索アルゴリズムを用いる。例えば、全ての組合せを網羅的に生成する総当り法や、一般に知られる組合せ最適化問題の近似解法(例えば、山登り法、貪欲法など)を適用することができる。また、組合せを生成する際は、各TPが送信停止状態となる組合せも含めて生成する。
 組合せ評価部20は、組合せ生成部10が生成した候補組合せパターンについて、候補組合せパターンの評価に用いる基準である全体評価値を計算する機能を有している。全体評価値としては、例えば、当該TPとUEの組合せパターンで送信を行う場合に得られる無線スループットの和(システム全体の無線スループット)や、無線ネットワークシステムにおいて一般に用いられている無線スループット値を所定の期間積算した平均スループット値で除した値(Proportional Fairness、PFメトリック)の和を用いる。
 最適組合せ保持部30は、組合せ評価部20が計算した全体評価値が最も高いか否かを判定し、全体評価値が最も高い場合に当該組合せパターンを保持する機能を有している。例えば、組合せ評価部20が計算した新たな組合せの評価値を、これまで保持していた最適組合せの評価値と比較し、新たな組合せの評価値が最適組合せの評価値よりも大きい場合は、新たな組合せおよびその評価値を、最適組合せおよびその評価値として保持する機能を有している。
[組合せ評価部]
 次に、図2~図6を参照して、本実施の形態にかかる組合せ評価部20の詳細について説明する。図2は、組合せ評価部の構成を示すブロック図である。図3は、個別組合せ評価部の構成を示すブロック図である。図4は、規格化部の構成を示すブロック図である。図5は、UE多重未考慮SNR推定部の構成を示すブロック図である。図6は、SINR推定部の構成を示すブロック図である。
 組合せ評価部20は、候補組合せパターンおよびTPとUEとの間の無線状態を示すチャネル情報の2乗値を入力として、候補組合せパターンに含まれるTPとUEとの組合せのそれぞれに関する評価値を、予め設定されている計算式に基づいて、当該組合せのUEにおける、当該組合せのTPからの無線信号に関する信号電力と、UEに対して電波干渉を与えうる干渉TPからの無線信号に関する干渉電力とから計算し、これら評価値の和からなる全体評価値を、候補組合せパターンごとに計算する機能を有している。
 また、組合せ評価部20は、全体評価値を計算する際、TPとUEとの組合せに関する評価値を、P(PはNを超えない1以上の整数)個分だけ並列的に計算する機能を有している。なお、チャネル情報とは、無線信号が無線チャネルを経由した際に受けた減衰量および位相回転量であり、スケジューリング装置1はその推定値を用いる。
 図2に示すように、組合せ評価部20は、主な回路部として、P個の個別組合せ評価部21#1~#Pと、任意の個別組合せ評価部21#1~#Pで計算したTP#1~#Nの評価値の和を求める加算回路22とを備えている。TPとUEとの組合せの評価値をP個の個別組合せ評価部21#1~#Pを用いて並列処理することで、各組合せの評価値を1つずつ連続して求める場合と比較して、各組合せの評価値の和を求めるまでに要する時間を短縮可能である。例えば、PがNと等しい場合(P=N)、個別組合せ評価部21#1をTP#1の評価値計算に割り当てる。PがNより少ない場合(P≦N:例えば、P=8、N=32)、個別組合せ評価部21#1でTP#1~#4の評価値計算を行う。
 個別組合せ評価部21#i(i=1~Pの整数)は、TPとUEとの組合せの評価値を計算する際、当該組合せのUEに対して電波干渉を与えうるM個の干渉TPのうち、Q(QはMを超えない2以上の整数)個分の干渉TPからの干渉電力を並列的に計算する機能を有している。
 図3に示すように、個別組合せ評価部21#iは、入力されるチャネル情報を2乗した値に対して規格化を行う規格化部21A、TP#NとTP#Nを除くその他のTPとの行列乗算を行う行列乗算回路21B#1~#Qと、UE多重未考慮SNR推定部21C、行列乗算回路21B#1~#Qの出力値の和を求める加算回路21D、UE多重未考慮SNR推定部21Cの出力値と加算回路21Dの出力値と当該組合せに含まれるUE数とからSINRを推定するSINR推定部21E、SINR推定部21Eの出力値を当該組合せにて無線送信を実行した場合に得られる無線スループットの値に変換する瞬時スループット変換部21F、瞬時スループットを当該UEの平均レートで除した値である当該UEのPFメトリック値を求めるPF計算部21Gを備えている。
 行列乗算をQ個の行列乗算回路21Bを用いて並列処理することで、Q個分の行列乗算の出力値が同時に求まる。これにより、当該UEに対する各干渉TPの影響を1つずつ連続して求める場合と比較して、当該TPと当該UEとの組合せに関する評価値を求めるまでの時間を短縮可能である。例えば、QがMと等しい場合(Q=M)、行列乗算回路21B#1を干渉TP#1の行列乗算に割り当てる。QがMより少ない場合(Q≦M:例えば、Q=8、M=16)、行列乗算回路21B#1で干渉TP#1および#2の行列乗算を行う。
 規格化部21Aは、図4に示すように、加算回路23と乗算器24#1~#Qとを備えている。加算回路23は、Q個分のチャネル情報の2乗値の和を計算し、乗算器24#1~#Qは、それぞれ対応するチャネル情報の2乗値と加算回路23で得られた和とを乗算することにより、Q個分の規格化チャネル情報を出力する。
 UE多重未考慮SNR推定部21Cは、図5に示すように、乗算器25と乗算器26とを備えている。乗算器25は、規格化部21AからのQ個分の規格化チャネル情報と、外部設定パラメータである送信電力値との積を求め、乗算器26は、乗算器25で得られた積と外部設定パラメータである雑音分散との積を計算することにより、UE多重未考慮SNR推定値を出力する。
 SINR推定部21Eは、図6に示すように、逆数化回路27、除算器28、および乗算器29を備えている。逆数化回路27は、加算回路21Dの加算結果の逆数を求め、除算器28は、得られた逆数を当該組合せに含まれるUE数で除算し、乗算器29は、その商とUE多重未考慮SNR推定部21Cで得られたUE多重未考慮SNR推定値との積を計算することにより、SINR推定値を出力する。SINR(Signal-to-Interference plus Noise power Ratio)とは、UEにおける干渉電力(干渉電力および雑音電力の和)に対する信号電力の比率を示す値である。
[パラメータP、Qの決定方法]
 次に、組合せ評価部20で用いられる並列数P,Qの決定方法について説明する。
 P、Qは、それぞれ、スケジューリング装置1が対象とするTP数(N)を超えない1以上の整数、各TPに対して電波干渉を与えうる干渉TP数(M)を超えない2以上の整数、である。ここでは、スケジューリング装置1をFPGAデバイスにて実装する場合について、上記パラメータP、Qの決定方法について説明する。
 一般にFPGAデバイスの使用可能なハードウェアリソース量には限りがあり、実装に用いるFPGAデバイスに依存して一意に定まる。そのため、FPGAデバイスのハードウェアリソース量に収まる範囲でP、Qを決定する。FPGAデバイスが十分なハードウェアリソースを有する場合、P、Qはそれぞれ最大値であるP=N、Q=Mと定める。一方、FPGAデバイスが十分なハードウェアリソースを有さない場合、P、QはFPGAのハードウェアリソース量に収まる範囲で最も大きい値を定める。このように、当該パラメータをFPGAデバイス等のハードウェアリソースに応じて、最適な並列数P、Qを定める。
 なお、上記はFPGAリソース量に着目してP、Qの値を定めたが、その決め方は必ずしもこれに限らない。例えば、P、QはFPGAのハードウェアリソース量に収まる前提条件下で、PおよびQの値を当該スケジューリング装置1が収容するUE数に応じて定めることもある。一般に、収容UE数とTP数が定まると、最適な組合せを求めるまでに必要な時間が明らかになる。そのため、当該時間を満たすことを制約として、P、Qを決める。
 なお、最適な組合せを求めるまでに必要な時間は、例えば、非特許文献4に記載の計算方法によると、最適な組合せを求めるまでに必要な計算回数が(TP数)×(各TPに接続可能なUE数)×(当該文献の提案手法に依存する係数)で求められ、スケジューリング周期内で、計算回数を処理することになる。TP数が32、各TPに接続可能なUE数が8、係数が3の場合、計算回数は、32×8×3=768であるため、スケジューリン周期が1ミリ秒のとき、1ミリ秒あたり768回の計算を行うことが可能であることがスケジューリング装置1の制約と考えることができる。
 また、P、QはFPGAのハードウェアリソース量に収まる前提条件下で、PおよびQの値を、当該スケジューリング装置1を用いるシステムが要求する無線スループット性能に応じて定めることもある。例えば、非特許文献4によると、無線スループット性能と当該性能を得るために必要な計算回数の関係が示されており、スケジューリング周期内で、計算回数を処理することになる。
 図9は、従来のスケジューリング装置における個別組合せ評価部の構成例である。本発明のスケジューリング装置1と、従来のスケジューリング装置との違いは、従来の個別組合せ評価部50は、当該UEに対する各干渉TPの影響を1つずつ連続して求めているのに対し、本発明は、当該UEに対するM個の干渉TPの影響を2以上の行列乗算回路21Bを用いて並列計算する点である。また、P、Qの値をパラメータ化することにより、FPGAのハードウェアリソースや当該スケジューリング装置1が対象とするTP数やUE数に応じたスケジューリング装置を生成可能とした。
[本実施の形態の動作]
 次に、図7~8を参照して、本実施の形態にかかるスケジューリング装置1の動作について説明する。図7は、スケジューリング処理を示すフローチャートである。図8は、組合せ評価処理を示すフローチャートである。
[組合せ生成部]
 まず、組合せ生成部10は、所定の探索アルゴリズムにしたがって組合せの候補を生成する(ステップ100)。組合せの生成方法は、一般に知られる探索アルゴリズムを用いる。例えば、全ての組合せを網羅的に生成する総当り法や、一般に知られる組合せ最適化問題の近似解法(例えば、山登り法、貪欲法など)を適用することができる。また、組合せを生成する際は、各TPが送信停止状態となる組合せも含めて生成する。なお、組合せ生成部10は、組合せの生成を開始した時点から所定の時間が経過した時点、または、所定の組合せ数の生成を終了した時点、で組合せの生成を止めることもある。
[組合せ評価部]
 次に、組合せ評価部20は、組合せ生成部10で生成された候補組合せパターンを入力として、スケジューリング装置1が対象とするN個のTPごとに所定の計算式に基づいて、TPとUEの組合せに関する評価値をP(PはNを超えない1以上の整数)個分だけ並列で計算して、N個のTPごとの評価値の和(全体評価値)を計算する(ステップ101)。組合せの評価に用いる基準、つまり、組合せ評価部20が計算すべき値としては、各TPの無線スループットの和、つまりシステム全体の無線スループットや、無線ネットワークシステムにおいて一般に用いられる、当該のTPとUEの組合せで送信を行う場合に得られるスループット値を、所定の期間積算した平均スループット値で除した値(Proportional Fairness、PFメトリック)を用いることもある。
 各TPと当該TPへの接続を試行するUEについて評価値を計算するために、組合せ評価部20は、各TPから当該TPへの接続を試行するUEとの無線送信に対して電波干渉を与えうるM個のTP(干渉TP)の電波干渉の度合い、すなわち干渉電力を考慮に入れて、当該TPと当該TPへの接続を試行するUEとの間の無線スループットを計算する。
 図7のステップ101における計算は、図8に示すように、まず、規格化部21Aにおいて、各TPと当該UEとの間のチャネル情報を2乗した値に対して規格化を行う(ステップ110)。次に、行列乗算回路21Bにおいて、TP#Nと各UEとの間の規格化チャネル情報からなる行列と、当該UEとTP#Nを除くその他のTPとの間の規格化チャネル情報からなる行列との行列乗算を行う(ステップ111)。次に、加算回路21Dにおいて、行列乗算の結果を加算する(ステップ112)。次に、UE多重未考慮SNR推定部21Cにおいて、規格化チャネル情報と、外部設定パラメータである送信電力値との積を求め、さらに、その積と外部設定パラメータである雑音分散との積を計算することにより、UE多重未考慮SNR推定値を出力する(ステップ113)。
 次に、SINR推定部21Eにおいて、加算回路21Dの出力値の逆数を求め、さらにその値を当該組合せに含まれるUE数にて除算を行い、その商とUE多重未考慮SNR推定部21Cの出力値との積を求める(ステップ114)。次に、瞬時スループット変換部21Fにおいて、SINR推定部21Eの出力値を瞬時スループットに変換する(ステップ115)。SINRから瞬時スループットへの変換は、SINRの値と対になる瞬時スループットとをテーブル変換形式にて変換する。
 次に、PF計算部21Gにおいて、瞬時スループットを当該UEの平均レートにて除算して、その商を当該UEのPFメトリック値とする(ステップ116)。
 この後、全TPのPF計算が完了したか確認し(ステップ117)、未完了の場合には(ステップ117:NO)、ステップ110へ戻り、完了の場合には(ステップ117:YES)、一連の組合せ評価処理を終了する。
[最適組合せ保持部]
 このようにして、図7のステップ101により、組合せの評価値を計算した後、最適組合せ保持部30は、組合せ評価部20が計算した評価値を基準に、その大小判定を行う(ステップ102)。ここで、これまで保持していた組合せの評価値よりも大きく、これまでの最大値である場合(ステップ102:YES)、保持する組合せと評価値を更新し(ステップ103)、小さい場合は(ステップ102:NO)、更新しない。
 この後、最適組合せ保持部30は、スケジューリングの処理を終了するか否かを判定する(ステップ104)。スケジューリング処理を終了しないと判定した場合(ステップ104:NO)、ステップ100へ戻る。
 一方、スケジューリング処理を終了すると判定した場合(ステップ104:YES)、最適組合せ保持部30は、保持している最適組合せパターンを出力し(ステップ105)、一連のスケジューリング処理を終了する。
[本実施の形態の効果]
 このように、本実施の形態は、組合せ評価部20が、候補組合せパターンの全体評価値を計算する際、N個のTPと各UEとの組合せに関する評価値をP(PはNを超えない1以上の整数)個分だけ並列的に計算し、評価値を計算する際、当該組合せのUEに対して電波干渉を与えうるM個の干渉TPのうち、Q(QはMを超えない2以上の整数)個分の干渉TPからの干渉電力を並列的に計算するようにしたものである。
 これにより、UEに対する各干渉TPの影響を1つずつ連続して求める場合と比較して、各組合せに関する評価値を求めるまでの時間を短縮することが可能となる。例えば、非特許文献4に記載の基本構成(P=N=32、Q=1)を踏襲すると、1通りの組合せについて評価値を求める処理時間は、2.8マイクロ秒程度(見積り値)であるのに対し、本発明(P=N=32、Q=8)では、1.4マイクロ秒程度(設計実績値)に短縮できる。
 これにより、最適組合せパターンの特定に要する時間を短縮することが可能となる。このため、無線ネットワークの規模が大きくなって探索空間が拡大しても、十分な処理時間を確保することができ、決められたスケジューリング周期内でより良い最適組合せパターンを特定することが可能となる。
[実施の形態の拡張]
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。また、各実施形態については、矛盾しない範囲で任意に組合せて実施することができる。
 1…スケジューリング装置、10…組合せ生成部、20…組合せ評価部、21…個別組合せ評価部、21A…規格化部、21B…行列乗算回路、21C…UE多重未考慮SNR推定部、21D…加算回路、21E…SINR推定部、21F…瞬時スループット変換部、21G…PF計算部、22,23…加算回路、24,25,26,29…乗算器、27…逆数化回路、28…除算器、30…最適組合せ保持部。

Claims (5)

  1.  N(Nは2以上の整数)個の送信ポイントを有する無線ネットワークに対して、これら送信ポイントと各ユーザ端末との間で無線通信を行うための無線リソースを割り当てる際に用いる最適組合せパターンを探索するスケジューリング装置であって、
     入力された生成条件に基づいて前記N個の送信ポイントと前記各ユーザ端末との組合せを示す候補組合せパターンを生成する組合せ生成部と、
     生成された前記候補組合せパターンごとに、当該候補組合せパターンに含まれる前記組合せのそれぞれに関する評価値を、予め設定されている計算式に基づいて当該組合せのユーザ端末における信号電力と干渉電力から計算し、これら評価値の和を当該候補組合せパターンの全体評価値として計算する組合せ評価部と、
     前記候補組合せパターンのうち、前記全体評価値が最も高い候補組合せパターンを前記最適組合せパターンとして保持する最適組合せ保持部と、
     前記組合せ評価部は、前記全体評価値を計算する際、前記候補組合せパターンに含まれる前記組合せに関する評価値をP(PはNを超えない1以上の整数)個分だけ並列的に計算し、前記評価値を計算する際、前記組合せのユーザ端末に対して電波干渉を与えうるM個の送信ポイントのうち、Q(QはMを超えない2以上の整数)個分の送信ポイントからの干渉電力を並列的に計算する
     ことを特徴とするスケジューリング装置。
  2.  請求項1に記載のスケジューリング装置において、
     前記組合せ評価部は、当該スケジューリング装置を構成するハードウェアのリソースに合わせて前記PおよびQの値を決定することを特徴とするスケジューリング装置。
  3.  請求項1に記載のスケジューリング装置において、
     前記組合せ評価部は、当該スケジューリング装置が収容するユーザ端末数に応じて前記PおよびQの値を決定することを特徴とするスケジューリング装置。
  4.  請求項1に記載のスケジューリング装置において、
     前記組合せ評価部は、当該スケジューリング装置を用いるシステムが要求する無線スループット性能に応じて前記PおよびQの値を決定することを特徴とするスケジューリング装置。
  5.  N(Nは2以上の整数)個の送信ポイントを有する無線ネットワークに対して、これら送信ポイントと各ユーザ端末との間で無線通信を行うための無線リソースを割り当てる際に用いる最適組合せパターンを探索するスケジューリング装置で用いられるスケジューリング方法であって、
     組合せ生成部が、入力された生成条件に基づいて前記N個の送信ポイントと前記各ユーザ端末との組合せを示す候補組合せパターンを生成する組合せ生成ステップと、
     組合せ評価部が、生成された前記候補組合せパターンごとに、当該候補組合せパターンに含まれる前記組合せのそれぞれに関する評価値を、予め設定されている計算式に基づいて当該組合せのユーザ端末における信号電力と干渉電力から計算し、これら評価値の和を当該候補組合せパターンの全体評価値として計算する組合せ評価ステップと、
     最適組合せ保持部が、前記候補組合せパターンのうち、前記全体評価値が最も高い候補組合せパターンを前記最適組合せパターンとして保持する最適組合せ保持ステップとを備え、
     前記組合せ評価ステップは、前記全体評価値を計算する際、前記候補組合せパターンに含まれる前記組合せに関する評価値をP(PはNを超えない1以上の整数)個分だけ並列的に計算し、前記評価値を計算する際、前記組合せのユーザ端末に対して電波干渉を与えうるM個の送信ポイントのうち、Q(QはMを超えない2以上の整数)個分の送信ポイントからの干渉電力を並列的に計算するステップを含む
     ことを特徴とするスケジューリング方法。
PCT/JP2019/019251 2018-06-01 2019-05-15 スケジューリング装置および方法 WO2019230390A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-105891 2018-06-01
JP2018105891A JP2019212999A (ja) 2018-06-01 2018-06-01 スケジューリング装置および方法

Publications (1)

Publication Number Publication Date
WO2019230390A1 true WO2019230390A1 (ja) 2019-12-05

Family

ID=68698799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019251 WO2019230390A1 (ja) 2018-06-01 2019-05-15 スケジューリング装置および方法

Country Status (2)

Country Link
JP (1) JP2019212999A (ja)
WO (1) WO2019230390A1 (ja)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ARIKAWA YUKI: "Hardware acceleratot for radio-resource scheduling in ultra-high dense distributed antenna systems", IEICE TECHNICAL REPORT, vol. 117, no. 103, 14 June 2017 (2017-06-14), pages 49 - 54 *
ARIKAWA, YUKI ET AL.: "Hardware Accelerator for Coordinated Radio-Resource Scheduling in 5G Ultra-High-densityDistributed Antenna Systems", 27TH INTERNATIONAL TELECOMMUNICATION NETWORKS AND APPLICATIONS CONFERENCE (ITNAC), 18 December 2017 (2017-12-18), pages 1 - 6, XP055661882 *
ARIKAWA, YUKI ET AL.: "User throughput analysis of coordinated radio-resource scheduler with hardware accelerator for 5G mobile systems", IEICE COMMUNICATIONS EXPRESS, vol. 7, no. 6, 14 March 2018 (2018-03-14), pages 183 - 188, XP055661886 *

Also Published As

Publication number Publication date
JP2019212999A (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
US9071997B2 (en) Methods and systems for adaptive channel estimation/prediction filter design
TWI390883B (zh) 於正交分頻多重接取式網路中支援空間分割多重接取傳輸之方法與裝置
JP5501470B2 (ja) ユーザ装置を選択する方法、アップリンクスケジューラ、基地局及びコンピュータプログラム
RU2506720C1 (ru) Устройство и способ управления мощностью в восходящем канале
JP6663256B2 (ja) 無線通信システム及び管理装置
EP2668813A1 (en) Method for operating a wireless network, a wireless network and a device
JP6262604B2 (ja) スケジューリング装置および方法
WO2017108075A1 (en) Method and apparatus for enhancing user selection in a mu-mimo system
Srikamu et al. Fairness index analysis of NOMA over OMA system for B5G applications
JP6096952B1 (ja) スケジューリング装置および方法
JP6586736B2 (ja) 制御装置、協調パターン選択方法、及び無線通信システム
WO2019230390A1 (ja) スケジューリング装置および方法
JP6285380B2 (ja) スケジューリング装置および方法
CN109787666B (zh) 一种频域调度方法、装置及设备
Cheng et al. Two-Tier NOMA-Based wireless powered communication networks
JP6619295B2 (ja) スケジューリング装置
JP6809981B2 (ja) スケジューリング装置および方法ならびにプログラム
WO2019230391A1 (ja) スケジューリング装置および方法
CN108702230B (zh) 无线通信装置和发送流数决定方法
KR101568191B1 (ko) 누적분포함수를 기반으로 사용자 스케줄링하는 무선 이동통신 시스템 및 그 방법
Choi et al. An improved throughput estimation method and dynamic user association in multi-cell networks
Leinonen et al. Capacity analysis of downlink MIMO-OFDMA resource allocation with limited feedback
CN112311484B (zh) 用于信道测量的方法和装置
JP2020501457A (ja) 基地局装置、無線通信システム、方法及びプログラム
JP6196187B2 (ja) スケジューリング装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810012

Country of ref document: EP

Kind code of ref document: A1