WO2019230110A1 - 電池制御装置、電池制御システム及び電池制御方法 - Google Patents

電池制御装置、電池制御システム及び電池制御方法 Download PDF

Info

Publication number
WO2019230110A1
WO2019230110A1 PCT/JP2019/009831 JP2019009831W WO2019230110A1 WO 2019230110 A1 WO2019230110 A1 WO 2019230110A1 JP 2019009831 W JP2019009831 W JP 2019009831W WO 2019230110 A1 WO2019230110 A1 WO 2019230110A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging rate
error
storage battery
soc
rate
Prior art date
Application number
PCT/JP2019/009831
Other languages
English (en)
French (fr)
Inventor
洋平 河原
耕平 本蔵
石川 勝美
健志 篠宮
智晃 高橋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP19810309.5A priority Critical patent/EP3806227A4/en
Publication of WO2019230110A1 publication Critical patent/WO2019230110A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00718Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to charge current gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to a battery control device, a battery control system, and a battery control method, and is particularly suitable for application to a control device that controls charging / discharging of a secondary battery mounted on a hybrid railway vehicle.
  • lithium ion secondary batteries nickel metal hydride batteries, lead batteries, electric double layer capacitors, and the like exist as rechargeable storage batteries, and a plurality of high-power-density battery cells such as lithium ion batteries are provided.
  • Secondary battery systems are widely used in industrial applications. In particular, in recent years, secondary battery systems with higher voltages and larger capacities have begun to spread as power storage systems for vehicles.
  • This secondary battery system is widely used in the field of railway vehicles in order to save energy.
  • a hybrid railway vehicle that combines a generator driven by a diesel engine and a secondary battery system to supply electric power to the motor, or an electric vehicle that absorbs the regenerative power when there is no regenerative load.
  • Railway train systems that run on the railway, and hybrid trains that have a secondary battery system and train lines that aim to eliminate overhead lines (run between stations using the secondary battery system as the power source and charging the secondary battery system at the station). Secondary battery system is used.
  • this type of secondary battery is generally configured by connecting a plurality of battery cells in series and parallel to form a storage battery module, and further connecting the storage battery modules in series and parallel. As battery cells, lithium ion batteries are frequently used.
  • the battery cell has specifications such as a usable temperature range, a usable voltage range, a charge rate range, and a maximum current that can be charged / discharged.
  • the use of battery cells that deviate from the range of use determined as these specifications significantly deteriorates the battery cells, and in the worst case, may cause the battery cells to fail.
  • the secondary battery system is equipped with a battery control device that detects the state of the battery cell, and to what extent the battery cell is charged by this battery control device, or how much charge can be discharged.
  • Battery cell charging rate also called the state of charge, hereinafter referred to as SOC (State of Charge)
  • SOH State of Health
  • the battery state is detected, such as charge / discharge current amount and power amount, and normal / abnormal identification information in the secondary battery system.
  • the SOC is an important parameter for managing energy entering and exiting the secondary battery system. If the SOC can be detected with high accuracy, the performance of the secondary battery system can be maximized, and as a result, the fuel efficiency of a hybrid railway vehicle equipped with the secondary battery system can be improved. For this reason, in a hybrid railway vehicle equipped with a secondary battery system, it is important to establish a method for detecting the SOC with high accuracy (hereinafter, a method for detecting the SOC is referred to as an SOC detection method).
  • Patent Document 1 the SOC by current integration is selected until a predetermined time elapses after the ignition switch is turned on and the estimation calculation starts. It is disclosed that an estimated SOC using an adaptive digital filter is selected after an error between a measured voltage value and an estimated voltage value has converged. By such a method, deterioration in estimation accuracy can be avoided, and the charge capacity of the secondary battery using the adaptive digital filter can be estimated.
  • the SOC detection error (hereinafter referred to as the SOC error) increases, switching to the SOC detection result by another SOC detection method allows the SOC to be detected. Deterioration of detection accuracy can be avoided.
  • factors that increase the SOC error include characteristics of the SOC detection method, battery cell characteristics, sensor accuracy, and calculation error that occurs according to environmental conditions. Considering these situations, if the state can be actively shifted in a direction in which the SOC detection accuracy can be easily secured, deterioration of the SOC accuracy can be reliably avoided.
  • the present invention has been made in view of the above points, and can reliably avoid deterioration of SOC detection accuracy and can control charge / discharge of a secondary battery with high reliability, a battery control system, and a battery control method. Is to try to propose.
  • a measurement unit that measures a predetermined physical quantity related to the state of the storage battery
  • a state detection unit that detects the state of the storage battery
  • the state detection unit is detected by the charge rate detection unit that detects the charge rate of the storage battery and the charge rate detection unit based on the physical quantity measured by the measurement unit and the characteristic information of the storage battery.
  • An error detection unit that detects an error in the charge rate, a charge rate control unit that controls the charge rate of the storage battery, and a load control unit that performs charge and discharge of the storage battery, and the error detection unit includes: Based on at least one information of a measurement result of the measurement unit, the characteristic information of the storage battery given in advance, and a calculation error generated according to a given environmental condition.
  • An error in the charging rate of the storage battery detected by the charging rate detection unit is detected in real time, the charging rate detection unit can detect the charging rate of the storage battery by a plurality of different charging rate detection methods, Based on the error of the charging rate detected by the error detection unit, the charging rate detection method for detecting the charging rate of the storage battery is replaced with another charging rate detection method as necessary so as to improve the error.
  • the charge rate control unit transmits a charge / discharge command instructing charging or discharging of the storage battery to a host control device according to a detection result of the error detection unit, and the load control unit And charging / discharging of the storage battery is executed in accordance with a control command given from the host controller.
  • a measurement unit that measures a predetermined physical quantity related to the state of the storage battery
  • a state detection unit that detects the state of the storage battery
  • the state detection unit A host controller that controls charging / discharging of the storage battery based on a detection result, and the state detection unit charges the storage battery based on the physical quantity measured by the measurement unit and characteristic information of the storage battery.
  • a charge rate detector that detects a rate; an error detector that detects an error in the charge rate detected by the charge rate detector; a charge rate controller that controls the charge rate of the storage battery; and A load control unit that performs charge and discharge, and the error detection unit responds to a measurement result of the measurement unit, the characteristic information of the storage battery given in advance, and a predetermined environmental condition. Based on at least one or more of the calculation errors that occur, the error in the charge rate of the storage battery detected by the charge rate detection unit is detected in real time, and the charge rate detection units are different from each other.
  • the charging rate of the storage battery can be detected by a plurality of charging rate detection methods, and the charging rate of the storage battery is detected so as to improve the error based on the error of the charging rate detected by the error detection unit.
  • the charge rate detection method is switched to another charge rate detection method as necessary, and the charge rate control unit instructs the charge or discharge of the storage battery according to the detection result of the error detection unit. Is transmitted to the host controller, and the load controller executes charge / discharge of the storage battery according to a control command given from the host controller based on the charge / discharge command.
  • the storage battery is mounted on a railway vehicle, and the host controller acquires the prediction result of the charging rate when reaching the next stop station, and the difference between the acquired prediction result of the charging rate and the target value
  • the control command for charging or discharging the amount of electricity that eliminates the problem is transmitted to the load control unit.
  • the battery control apparatus measures the predetermined
  • the said storage battery A state detection unit that detects the state of the storage battery, wherein the state detection unit can detect the charge rate of the storage battery by a plurality of different charge rate detection methods, and the physical quantity measured by the measurement unit and the storage battery Based on the characteristic information, a charging rate detection unit that detects a charging rate of the storage battery, an error detection unit that detects an error in the charging rate detected by the charging rate detection unit, and the charging rate of the storage battery
  • the charging rate detection unit detects the charging rate of the storage battery so as to improve the error based on the error of the charging rate detected by the error detection unit.
  • the battery control device, the battery control system, and the battery control method of the present invention it is possible to grasp in real time the characteristic information of the storage battery, the measurement error characteristic of the measurement unit, and the charging rate detection error caused by the surrounding environment. Therefore, it is possible to easily suppress the detection error of the charging rate, and it is possible to reliably reduce the detection error of the charging rate.
  • the present invention it is possible to realize a battery control apparatus and method that can reliably avoid deterioration in SOC detection accuracy and can control charge / discharge of a secondary battery with high reliability.
  • FIG. 4 is a block diagram illustrating a logical configuration example of a state detection unit in FIG. 3. It is a circuit diagram which shows the equivalent circuit of a battery cell.
  • A) And (B) is a characteristic curve figure which shows the relationship between OCV and SOC of a battery cell.
  • A) And (B) is a characteristic curve figure with which it uses for description of the relationship between OCV error and SOC error.
  • (A) And (B) is a characteristic curve figure with which it uses for description of the relationship between OCV error and SOC error. It is a flowchart which shows the process sequence of a SOC detection process. It is a characteristic curve figure with which it uses for description of the SOC detection method according to a SOC area
  • FIG. 1 shows an example of storage when a storage battery system is mounted on a railway vehicle 1.
  • the traveling direction (arrow a) is the longitudinal direction
  • the sleeper direction is the minor axis direction.
  • the storage battery is installed on the roof side of the railway vehicle 1 as shown in FIG. 1A or on the lower floor side of the railway vehicle 1 as shown in FIG. Is mounted in such a manner that the power storage device 2 containing the battery is disposed.
  • FIG. 1 illustrates the case where the overall controller 3 that controls the entire railway vehicle 1 is installed under the floor of the railway vehicle 1. However, even if the overall controller 3 is installed on the roof side of the railway vehicle 1. Alternatively, it may be mounted in the railway vehicle 1.
  • the power storage device 2 includes a battery module in which a plurality of single cells are configured as an assembled battery, or at least one battery unit in which a plurality of battery modules are combined in a single casing.
  • the housing of the power storage device 2 houses a control board, a sensor, and other electromechanical structural components.
  • FIG. 2 shows a configuration example of the electric system of the hybrid railway vehicle 10.
  • the hybrid railway vehicle 10 includes an engine 11, a generator 12 that is driven by the engine 11 and outputs AC power, a converter device 13 that converts AC power into DC power, and an inverter device 14 that converts DC power into AC power.
  • the main components are an induction motor 15 that drives a railway vehicle, a speed reducer (not shown) that decelerates the output of the induction motor 15 and transmits it to a wheel shaft (not shown), and a power storage device 16.
  • the power storage device 2 in FIG. 1 corresponds to the power storage device 16 in FIG.
  • a generator 12 directly connected to an engine 11 by a shaft generates three-phase AC power (three-phase AC power) of U, V, and W, and the generated three-phase AC power is converted into a converter device. 13 is output.
  • Converter device 13 converts the three-phase AC power into DC power and outputs the DC power to inverter device 14.
  • the inverter device 14 converts the DC power output from the converter device 13 into three-phase AC power having a variable voltage and a variable frequency, and supplies the converted power to the induction motor 15 as drive power.
  • the power storage device 16 is connected in parallel to the output side (DC side) of the converter device 13 and replenishes power when the railway vehicle is started, while also connected to the input side (DC side) of the inverter device 14 so that the railway vehicle Driving power for traveling is supplied to the induction motor 15.
  • the smoothing capacitor 21 is connected in parallel to the input side of the inverter device 14 and suppresses fluctuations in the input voltage to the inverter device 14.
  • the SIV (Static InVerter) 18 is a static inverter that generates electric power used in the railway vehicle.
  • the control unit 19 controls the converter device 13 based on the output current Is of the converter device 13 detected by the current detector 20A, the voltage across the smoothing capacitor 21 detected by the voltage detector 17, and the rotational frequency of the generator 12.
  • a PWM (Pulse Width Modulation) control signal for control is generated, and the generated PWM control signal is output to the converter device 13.
  • control unit 19 detects the U-phase, V-phase, and W-phase drive powers Iu, Iv, and Iw for the induction motor 15 output from the inverter device 14 and the voltages detected by the current detectors 20B, 20C, and 20D.
  • a PWM control signal for controlling the inverter device 14 is generated based on the voltage across the smoothing capacitor 21 detected by the detector 17 and the rotational frequency of the induction motor 15, and the generated PWM control signal is sent to the inverter device 14. Output.
  • control unit 19 controls charging / discharging of the storage battery in the power storage device 16 based on the state of the power storage device 16 notified from the power storage device 16 as described later.
  • the power storage device 16 detects its own state based on the total current, the total voltage, the temperature of the device itself, and the environmental temperature, and notifies the control unit 19 of the detection result.
  • Control unit 19 determines the state of power storage device 16 based on the notified detection result, and outputs a charge / discharge control signal for controlling charge / discharge of power storage device 16 to an external device according to the determination result.
  • FIG. 3 shows a general configuration example of the power storage device 16 shown in FIG.
  • the power storage device 16 includes a battery unit 33 in which a plurality of modules in which a storage battery 32 composed of a plurality of battery modules (assembled batteries) 30 and a current detection device 31 are connected in series are connected in parallel.
  • the total voltage of the battery unit 33 is detected by the voltage detection device 34 and the detection result is notified to the state detection unit 35.
  • the state detection unit 35 is based on the total voltage of the battery unit 33 notified from the voltage detection device 34, the current value detected by each current detection device 31, and the temperature of the battery unit 33 measured by the thermometer 36.
  • the state of the battery unit 33 such as the charging rate (SOC), deterioration state (SOH), chargeable / dischargeable current amount and power amount (allowable current amount / power amount), and abnormal state (overvoltage, overcurrent), etc. It detects and notifies the detection result to the host control unit 37 (corresponding to the control unit 19 in FIG. 2) as battery state information.
  • the load control unit 38 performs charge / discharge of the battery unit 33 based on the charge / discharge control command given from the host control unit 37 in accordance with the battery state information.
  • FIG. 4 shows a logical configuration of the state detection unit 35 relating to detection of the charging rate (SOC) of the battery unit 33.
  • the SOC detection unit 40 is a functional unit having a function of detecting the SOC in real time by inputting the total current, the total voltage, and the temperature of the power storage device 16 of the storage battery 32.
  • the error detection unit 41 has a function of calculating in real time an error (SOC error) included in the SOC detected by the SOC detection unit 40 based on the SOC detection input and the output from the SOC detection unit 40. It is a functional part.
  • the SOC control unit 42 is a functional unit having a function of transmitting a charge / discharge command to the upper control unit 37 in FIG. 3 (the control unit 19 in FIG. 2) based on the SOC error calculated by the error detection unit 41.
  • the SOC detection method used in the SOC detection process executed by the SOC detection unit 40 will be described.
  • an SOC detection method a method based on voltage reference (hereinafter referred to as a first SOC detection method) and a method based on current integration (hereinafter referred to as a second SOC detection method). These two are widely known.
  • the correspondence between the voltage of the battery cell and the SOC is measured in advance and stored as voltage-SOC conversion information. Based on the voltage-SOC conversion information, the SOC of the battery cell is calculated from the voltage of the battery cell. This is a method for obtaining in real time. According to the first SOC detection method, since the relationship between the voltage and the SOC differs according to the characteristics of the battery cell from which the voltage is acquired, there is a difference in the conversion accuracy when obtaining the SOC from the voltage of the battery cell.
  • the second SOC detection method is a method for obtaining the SOC by measuring and integrating the current value entering and exiting the battery cell. According to the second SOC detection method, since the measurement error included in the current measurement value is also integrated, there is a problem that the SOC error increases with time.
  • each of the first and second SOC detection methods has unique characteristics (problems). Therefore, the first and second SOC detection methods are selected according to conditions such as battery cell characteristics, sensor performance, and the surrounding environment. It is necessary to ensure the accuracy of the detected SOC by appropriately switching between the second SOC detection methods.
  • the first SOC detection method SOC detection method based on voltage reference
  • the second SOC detection method SOC detection method based on current integration
  • FIG. 5 shows an equivalent circuit of a battery cell built in the battery module (assembled battery) 30 (FIG. 3).
  • 50 represents an electromotive force, that is, an open circuit voltage (OCV)
  • 51 represents an internal resistance (R)
  • 52 represents a polarization resistance component
  • 53 represents a capacitance component.
  • the voltage characteristics of the battery cell can be represented by a series connection of a parallel connection pair of a polarization resistance component 52 and a capacitance component 53, and an internal resistance 51 and an electromotive force 50.
  • the battery cell terminal voltage CCV is expressed by the equation (1), where Vp is a polarization voltage corresponding to the voltage of the parallel connection pair of the polarization resistance component 52 and the capacitance component 53. Is done.
  • the OCV is used for the calculation of the SOC, but it is impossible to directly measure the OCV when the battery cell is charged / discharged. Therefore, the OCV is calculated by subtracting IR drop I ⁇ R and Vp from CCV as shown in equation (2).
  • CCV can be acquired as a total voltage detected by the voltage detection device 34
  • I can be acquired as a current value detected by the current detection device 31 (FIG. 3)
  • R can be acquired as a storage area 35A ( FIG. 3) is obtained from the battery cell characteristic parameters (characteristic information)
  • Vp is obtained from the current value detected by the current detection device 31 and the battery cell characteristic parameters described above.
  • OCV can be calculated. If the characteristic parameters of the battery cell are extracted and stored according to the battery state such as the SOC and temperature of the battery cell, the OCV can be calculated with high accuracy.
  • the SOC is obtained based on the obtained OCV.
  • the relationship between OCV and SOC is used.
  • the OCV and the SOC have a predetermined relationship depending on the characteristics of the material constituting the battery cell.
  • FIGS. 6A and 6B show OCV and SOC in battery cells of different types (FIG. 6A is type 1 (“Type1”) and FIG. 6B is type 2 (“Type2”)). Shows the relationship.
  • the difference in the materials that make up the battery cell affects the relationship between the OCV and the SOC.
  • the OCV is calculated by the formula (2), and the SOC of the battery cell is detected from the relationship between the OCV and the SOC extracted in advance. it can.
  • the SOC obtained from this OCV is denoted as “SOCv”.
  • OCV error which will be referred to as ⁇ OCV as appropriate
  • FIG. 7 shows an SOC error that occurs when an OCV error is given (hereinafter, this is referred to as an SOC error and is appropriately expressed as ⁇ SOC).
  • SOC error As compared with Type 1, it can be confirmed that in Type 2 where the voltage is slightly flat, the SOC error increases even if the same OCV error is given.
  • SOCv SOCv
  • the SOC error increases depending on the relationship between the OCV and the SOC.
  • the second SOC detection method for detecting the SOC by current integration can avoid the occurrence of the SOC error depending on the calculation method.
  • Equation (3) shows a calculation formula for SOC when the second SOC detection method is used as the SOC detection method.
  • SOCi represents the SOC calculated by the second SOC detection method
  • SOCvinit represents the SOCv based on the OCV obtained by the equation (2) of the first SOC detection method. Once SOCvinit can be detected, this value is fixed thereafter. As the storage battery 32 is charged / discharged, the SOC changes in real time. The SOC change is expressed by a calculation that integrates the current value.
  • Qmax indicates the full charge capacity of power storage device 16 (FIG. 3).
  • each of the first SOC detection method (SOC detection method based on voltage reference) and the second SOC detection method (SOC detection method based on current integration) has a characteristic of SOC error, and this SOC error is improved. For this purpose, it is necessary to avoid a condition in which an SOC error occurs when the SOC is detected using the first SOC detection method or the second SOC detection method.
  • the SOC detection accuracy may be lowered.
  • FIGS. 8A and 8B whether the SOC of the type 2 battery cell is high (FIG. 8A) or low (FIG. 8B).
  • the SOC detection accuracy varies greatly.
  • the total voltage detected by the voltage detector 34 (FIG. 3), the current value detected by the current detector 31 (FIG. 3), etc. are accurate under a predetermined temperature condition, and as the temperature deviates from the predetermined condition, The measurement accuracy of voltage and current may deteriorate. That is, since the SOC detection accuracy greatly varies depending on these various factors, it is desirable to provide means for detecting the current SOC error in real time in consideration of the above-described situation in order to avoid the SOC error correctly.
  • the error detection unit 41 (FIG. 4) of the state detection unit 35 (FIG. 3) of the present embodiment is equipped with a function for detecting the SOC error in real time.
  • the error detection unit 41 first calculates the OCV by the equation (2) using the measured value, the battery cell characteristic information, and the like.
  • the included OCV error ( ⁇ OCV) is obtained by the following equation (4).
  • ⁇ V is a voltage measurement error
  • ⁇ I is a current measurement error
  • ⁇ R is an internal resistance acquisition error
  • ⁇ Vp is a polarization voltage calculation error.
  • the measurement error such as ⁇ V and ⁇ I may be set to a representative value that does not change under any circumstances, but in the present embodiment, it is affected by the ambient temperature where the voltage detection device 34 and the current detection device 31 are placed.
  • information in the form of a map showing the relationship between the ambient temperature and the measurement error according to the measurement value is given to the state detection unit 35 in advance, and the state detection unit 35 stores this information in the storage area 35A (FIG. 3). Assume that it is stored and held. By expressing such a relationship in a map format, it is possible to calculate ⁇ OCV more precisely.
  • the error detection unit 41 calculates the SOC error that occurs when the SOCv is acquired using the equation (5).
  • the error direction is given by plus and minus and the averaging process is performed.
  • the error may be obtained in the plus and minus directions and the larger one may be adopted.
  • the SOCv error ( ⁇ SOCv) can be calculated in real time.
  • the error detection unit 41 converts the SOC error shown in FIG. 8 according to the SOC change of the storage battery 32 and the SOC error considering the instantaneous SOC error during charging / discharging into the SOC detection unit 40 (FIG. 4) and the SOC.
  • the control unit 42 (FIG. 4) can be notified.
  • FIG. 9 shows the flow of SOC detection processing (hereinafter referred to as SOC detection processing) of the power storage device 16 executed by the state detection unit 35.
  • the SOC detection unit 35 In the state detection unit 35, the SOC detection unit periodically starts detecting SOC (SOCv) by the first SOC detection method (S1). At this time, the error detection unit 41 detects the SOCv error (hereinafter, referred to as SOCv) in real time. This is called an SOCv error, and is appropriately expressed as ⁇ SOCv), and the calculated SOCv error is notified to the SOC detection unit 40. Note that the SOCv error calculated at this time is small at high SOC and large at low SOC, as described with reference to FIGS. 8A and 8B.
  • the SOC detection unit 40 monitors the SOCv error notified from the error detection unit 41 (S2), and the SOCv error exceeds a preset threshold value for the SOCv error (hereinafter referred to as the SOCv error threshold value). (S2; NO), the SOC detection method is switched to the second SOC detection method (SOC detection method based on current integration) (S3). By doing so, it is possible to detect a disadvantageous situation in the first SOC detection method in real time and switch to a method that can be avoided.
  • the SOCv error threshold is set at the boundary between the SOCv error range in which the OCV characteristic with respect to the change in the SOC is flat and the SOCv error range in which the SOCV error is non-flat in the relationship between the OCV and SOC of the storage battery 32. .
  • an error occurring in the SOC (SOCi) at this time (hereinafter referred to as an SOCi error).
  • SOCi error an error occurring in the SOC at this time
  • ⁇ SOCi the calculated SOCi error
  • ⁇ SOCinit is an OCV-based SOC error before the SOC detection method is switched to the second SOC detection method
  • ⁇ I is a current measurement error by the current detection device 31 (FIG. 3).
  • Qmax is the full charge capacity of the power storage device 16 (FIG. 3), and an error may occur with this parameter due to the influence of deterioration or the like, but it is omitted here for the sake of simplicity.
  • the SOC detection method When the SOC detection method is switched to the second SOC detection method at a timing when the SOCv error ( ⁇ SOCv) is large, the SOCv error becomes ⁇ SOCvinit, and the SOC error expected in the subsequent SOCi increases. Therefore, in order to suppress the SOC error as much as possible, it is preferable to switch the SOC detection method to the second SOC detection method under a condition where the SOCv error is small, such as a condition where the charge / discharge current is small.
  • the error detection unit 41 calculates the SOCv error in parallel with the monitoring of the SOCi error, and monitors the calculated SOCv error (see S4).
  • step S3 the error detection unit 41 switches the SOC detection method in the SOC detection unit 40 to the second SOC detection method, and when the SOCv error becomes less than the above-described SOCv error threshold (S4; YES). Then, the SOC detection unit 40 is instructed to return the SOC detection method to the first SOC detection method (S1). Thereby, the SOC detection method in the SOC detection unit 40 is switched to the first SOC detection method, and the expansion of the SOCi error is stopped.
  • the SOCv error does not become less than the SOCv error threshold even after the SOC detection method in the SOC detection unit 40 is switched to the second SOC detection method in step S3 (S4; NO), the SOCi error is the SOCi error. (S5; YES), the second SOC detection method continues to be applied as it is as the SOC detection method in the SOC detection unit 40.
  • the SOCv error does not become less than the SOCv error threshold, for example, if the voltage stays flat in a region where a large SOC error is generated as in the low SOC of FIG. 8B, the SOCi error continues to expand. Therefore, the SOCi error eventually reaches the SOCi error threshold. Therefore, when the error detection unit 41 detects that the SOCi error has reached the SOCi threshold value (S5; NO), the error detection unit 41 indicates the result (including the SOC value detected at that time) as the SOC control unit 42 (FIG. 4). ).
  • the SOC control unit 42 issues a charge / discharge command to charge or discharge the SOC of the storage battery 32 (FIG. 3) until the SOCv error included in the SOCv satisfies a predetermined value. It transmits to the high-order control part 37 (control part 19 of FIG. 2) of FIG. 3 (S6).
  • the “region where the SOCv error satisfies a predetermined value” is, for example, a diagram in which the OCV characteristic with respect to a change in SOC deviates from a flat SOC region (region indicated as “SOCi” in the drawing) as shown in FIG. It is an SOC region indicated as “SOCv”, in other words, a region in which the voltage changes well with respect to the change in SOC.
  • the charge / discharge command transmitted from the SOC control unit 42 to the higher-order control unit 37 (control unit 19 in FIG. 2) in FIG. 3 is immediately when the SOCi error reaches the SOCi error threshold due to the increase in the SOCi error. If the method of charging or discharging the storage battery 32 to a region where the SOCv error satisfies a predetermined value can be adopted, the SOC of the storage battery 32 quickly changes and reaches a region where the SOCv error is reduced, and the SOC detection method is the second method. Switching from the SOC detection method to the first SOC detection method prevents further expansion of the SOC error.
  • the error detection unit 41 determines that the SOCv error is less than the SOCv error threshold range. And whether the SOCi error is larger than the SOCv error are sequentially determined (S4, S10). If the SOCv error is larger than the SOCv error threshold value but the SOCi error obtained by the currently applied second SOC detection method is larger than the SOCv error (S10; YES), error detection is performed.
  • the SOC control unit 42 controls the host control unit 37 (the control unit in FIG. 2). 19) A charge / discharge command is transmitted (S6).
  • the first SOC detection method with a relatively small error is detected by the SOC detection until the process of charging / discharging the storage battery 32 to the region where the SOCv error is reduced in response to the charge / discharge command is completed. It can be applied as an SOC detection method used by the unit 40.
  • processing contents are not switched based on the SOC error, but the processing contents are switched based on the SOC value based on the result of checking the relationship between the SOC and the SOC error in advance. Also good.
  • the error detection unit 41 determines the SOC within the flat characteristic range of the battery voltage based on the SOC detection result in step S1.
  • the SOC detection method in the SOC detection unit 40 is switched to the second SOC detection method (S3).
  • the error detection unit 41 checks whether or not the SOC detection within the flat characteristic range of the battery voltage is continued (S21), the SOC detection is continuing, and the error is estimated in advance.
  • the SOC control unit 42 transmits a charge / discharge command to the host control unit 37 (the control unit 19 in FIG. 2). (S6).
  • S6 the SOC detection can be performed with a small amount of processing. Regardless of which of FIG. 9, FIG. 11 and FIG. 12, the SOC error considering the battery voltage characteristics is reduced.
  • the storage battery 32 (FIG. 3) is charged to a region where SOCv satisfies a predetermined value.
  • the generator 12 (FIG. 2) can be used as the charging means. Specifically, the generator 12 is operated while the hybrid railway vehicle 10 is traveling or stopped, and the SOC of the storage battery 32 is changed to a region where the SOCv satisfies a predetermined value. Further, when it is desired to change the SOC to a region where the SOCv satisfies a predetermined value by discharging the storage battery 32, the electric energy stored in the storage battery 32 is consumed using the induction motor 15 or SIV18.
  • FIG. 13A shows prediction information on the change in SOC from the vehicle position to the stop station ST (hereinafter referred to as SOC change prediction information), and FIG. 13B shows the change in SOC until the stop station ST.
  • SOC change prediction information shows prediction information on the change in SOC from the vehicle position to the stop station ST.
  • the SOC of the storage battery 32 rises due to the regenerative brake, and the vehicle stops. If the SOC can be increased by charging by the regenerative brake up to the SOC region where the SOCv error becomes less than the SOCv error threshold, charging of the storage battery 32 using the above-described generator 12 (FIG. 2) becomes unnecessary. In order to determine whether or not charging using the generator 12 is necessary, the SOC change prediction information from each vehicle position “position A” to “position C” to the stop station ST shown in FIG. .
  • the error detection unit 41 detects that the SOCi error is equal to or greater than the SOCi error threshold at the position A in FIG. 13 (A)
  • this is sent to the SOC control unit 42 (FIG. 4).
  • the SOC control unit 42 stores the storage battery up to the SOC target value (hereinafter referred to as the SOC target value) set in the SOC region in which the SOCv error included in the SOCv is less than the SOCv error threshold.
  • a charge / discharge command for instructing to charge or discharge 32 is transmitted to the host control unit 37 (control unit 19 in FIG. 2).
  • the SOC change prediction information of FIG. 13A it can be grasped that the SOC change amount at the time of the position A is + 20% when arriving at the next stop station ST.
  • the SOC when arriving at the next stop station can be predicted to be 60%.
  • the SOC target value is 70%, 10% is insufficient, and this 10% supplementary charging is required.
  • the necessity of supplementary charging and the amount of necessary supplementary charging power are judged, and if supplementary charging is completed before arriving at the station ST, the supplementary charging is performed after arriving at the station ST. There is no need to execute this, and a noise prevention effect in the station ST can be obtained.
  • the SOCi error is greater than or equal to the SOCi error threshold at position B
  • the estimated SOC value at the stop station of + 10% is obtained at position C, and the difference from the SOC target value is obtained. Can prevent the generation of noise in the stop station ST by completing supplementary charging while traveling.
  • the storage battery has many uphills, the power consumption of the electrical components is large, and the vehicle travels with the discharge power from the storage battery 32 as a control.
  • the SOC may decrease at the stop station ST.
  • the estimated SOC value is estimated from the current SOC and the decrease amount of the SOC.
  • the electric energy stored in the storage battery 32 is consumed using the induction motor 15 (FIG. 2) or SIV18 (FIG. 2) during driving
  • the SOC value reaches the SOC target value, and further expansion of the SOC error can be prevented.
  • a plurality of SOC target values can be set in advance.
  • the closest SOC target value among the SOC target values is selected. Then, it is preferable to perform charging or discharging.
  • charge / discharge control process A flow of a series of processes (hereinafter referred to as charge / discharge control process) is shown.
  • the host control unit 37 When receiving the charge / discharge command, the host control unit 37 starts the charge / discharge control process, and first predicts the SOC at the time when the hybrid railway vehicle 10 arrives at the next stop station ST (S30). Hereinafter, the SOC predicted at this time is referred to as an SOC predicted value. The host controller 37 calculates this SOC prediction value based on the current SOC and the SOC change prediction information until the next stop station ST expected from the vehicle position of the hybrid railway vehicle 10 is reached.
  • the upper control unit 37 selects the SOC target value closest to the SOC predicted value as the final SOC target value (S31), and the SOC predicted value and step S31.
  • the difference (hereinafter referred to as the SOC difference) with the SOC target value selected in (5) is calculated (S32).
  • the upper control unit 37 determines whether or not the value of the SOC difference calculated in step S32 is negative (S33).
  • step S33 to obtain a positive result in the determination in step S33 means that the SOC that is predicted to reach when the vehicle is stopped is not sufficiently high.
  • the host control unit 37 should perform the operation of charging the storage battery 32 with the amount of electric power for eliminating the SOC difference (charging operation of the storage battery 32 to compensate for the insufficient SOC) while the hybrid railway vehicle 10 is traveling. Then, a control command corresponding to this is transmitted to the load control unit 38 (FIG. 3) (S34). And the high-order control part 37 complete
  • step S33 obtaining a negative result in the determination in step S33 means that the SOC predicted value is excessively higher than the SOC target value.
  • the host controller 37 causes the storage battery 32 to discharge the amount of electric power for eliminating the SOC difference (discharge operation of the storage battery 32 for reducing the SOC) while the hybrid railway vehicle 10 is traveling.
  • the control command according to this is transmitted to the load control part 38 (FIG. 3) (S35).
  • the charge / discharge of the storage battery 32 for reducing the SOC error can be completed before the hybrid railway vehicle 10 is stopped.
  • the SOC error (SOCi error) at the time of using the second SOC detection method for detecting the SOC is calculated by the SOC, and the SOC detection in the SOC detection unit 40 based on the calculated SOC error (SOCv error and SOCi error) The method is switched between the first SOC detection method and the second SOC detection method.
  • the SOC error caused by the battery cell characteristic information, the error characteristics of the sensor used, the surrounding environment, etc. can be grasped in real time, the SOC error can be easily suppressed. As a result, the SOC error can be surely reduced. As a result, it is possible to reliably avoid the deterioration of the SOC detection accuracy, and to control charging / discharging of the secondary battery with high reliability.
  • the SOC detection method is changed to the first and second SOC detection methods in the SOC detection unit 40 (FIG. 4) of the state detection unit 35 (FIG. 3).
  • the case where the SOC is detected while switching has been described.
  • a case will be described in which a third SOC detection method in which two SOCs of SOCv and SOCi are combined by a weighting coefficient is employed as the SOC detection method executed by the SOC detection unit 40.
  • the SOC detection unit 40 (FIG. 4) additionally performs the calculations of the following expressions (7) and (8).
  • SOCc represents the result of the SOC obtained by combining the SOCs of SOCv and SOCi by the weighting coefficient
  • SOCc_Z represents the result of the combination of the SOC one time before
  • W represents a coefficient (weighting coefficient) for weighting both SOC values.
  • W For the weighting coefficient W, an SOC error that can occur in each SOC is obtained in advance, and a value optimized so as to minimize the SOC error is applied as the weighting coefficient W, and this value is previously stored in the storage area 35A of the state detection unit 35. (FIG. 3) may be stored.
  • the weighting coefficient W can be determined by obtaining an error that can occur in each SOC in real time. Also, weighting based on one or more of these information, such as characteristics information such as the temperature, SOC, and internal resistance of the power storage device 16, the usage state of the power storage device 16 typified by an incoming and outgoing current value, and the abnormal state of sensors The coefficient W may be determined. Further, it is also possible to select two or more pieces of information such as temperature information, SOC, internal resistance, and the like of the power storage device 16 and current values that enter and exit, and determine the weighting coefficient W by combining these pieces of information. Thus, by combining SOCv and SOCi, another SOC (SOCc) with higher accuracy than SOCv can be calculated.
  • SOCc another SOC
  • the SOC detection method used by the SOC detection unit 40 of the state detection unit 35 is switched between the first SOC detection method and the second SOC detection method. Then, this SOC detection method is switched between the second SOC detection method and the third SOC detection method. Specifically, when the SOCc error (hereinafter referred to as “SOCc error” and appropriately expressed as ⁇ SOCc) is calculated by the following equations (9) and (10), the calculated SOCc error exceeds a threshold value.
  • the SOC detection unit 40 of the state detection unit 35 switches the SOC detection method from the third SOC detection method to the second SOC detection method. As a specific process for switching the SOC detection method, if the weighting coefficient W in the equation (8) is forcibly changed from the current value to zero, a process using the second SOC detection method can be applied as a result.
  • ⁇ Ioffset represents an error accumulated by integration calculation
  • ⁇ SOcc_Z represents an SOC error one hour before.
  • the calculation result of the SOCc error is handled as ⁇ SOCc_Z in the equation (9) in the next calculation step.
  • the present invention is not limited to this. Instead, after the actual value of the change in the SOC can be acquired by daily operation, the upper control unit 37 may appropriately update the SOC change prediction information based on the actual value. By doing in this way, highly accurate SOC change prediction information can be constructed. In this case, the old SOC change prediction information may be overwritten as new SOC change prediction information after reducing the dispersion of the actual values by, for example, averaging a plurality of actual values.
  • the present invention is not limited to this, and the speed information while the vehicle is running is detected.
  • the kinetic energy is calculated from the detection result of the vehicle and the mass information of the vehicle, the amount of electric power that can be recovered from the kinetic energy by regenerative braking is calculated, the amount of change in the SOC of the storage battery 32 when the calculated amount of electric power is recovered, Based on the calculated SOC change amount and the SOC of the storage battery 32 at the time when the operation of stopping the hybrid railway vehicle 10 is started, the prediction result of the SOC at the next stop station ST may be calculated.
  • the power storage device 16 is charged by another means and adjusted to a desired value by charging with the regenerative brake.
  • the charging operation of the storage battery 32 in the stop station can be avoided.
  • the method for obtaining the SOCc error ( ⁇ SOCc) in real time has been described.
  • the SOC detection method may be shifted from the third SOC detection method to the second SOC detection method when the SOCc reaches a predetermined value.
  • the present invention is not limited to this, and a storage battery system in a hybrid electric vehicle or an electric vehicle.
  • the present invention can be widely applied to a storage battery system for an industrial mobile body.
  • the present invention can be widely applied to various systems using storage batteries.
  • SYMBOLS 10 Hybrid railway vehicle, 11 ... Engine, 12 ... Generator, 13 ... Converter device, 14 ... Inverter device, 15 ... Induction motor, 16 ... Power storage device, 18 ... SIV, 19 ... Control unit, 20A to 20D ... current detector, 30 ... battery module, 31 ... current detection device, 32 ... storage battery, 33 ... battery unit, 34 ... voltage detection device, 35 ... state detection unit, 36... Thermometer, 37... Upper control unit, 38... Load control unit, 40... SOC detection unit, 41.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

計測部により計測された物理量及び蓄電池の特性情報に基づいて蓄電池の充電率を検知する充電率検知部と、充電率の検知誤差を検知する誤差検知部と、蓄電池の充電率を制御する充電率制御部とを設け、誤差検知部が、充電率検知部により検知された蓄電池の充電率の誤差をリアルタイムに検知し、充電率検知部が、誤差検知部により検知された充電率の誤差に基づいて、当該誤差を改善するように、蓄電池の充電率を検知する充電率検知方法を必要に応じて他の充電率検知方法に切り替え、充電率制御部が、誤差検知部の検知結果に応じて、蓄電池の充電又は放電を指示する充放電指令を上位制御装置に送信するようにした。

Description

電池制御装置、電池制御システム及び電池制御方法
 本発明は電池制御装置、電池制御システム及び電池制御方法に関し、特にハイブリッド鉄道車両に搭載された二次電池の充放電を制御する制御装置に適用して好適なものである。
 現在、地球環境問題が大きくクローズアップされてきており、地球温暖化を防止するために、あらゆる場面で炭酸ガスの排出削減が求められている。こうした背景から、炭酸ガスの大きな排出源の一つであるガソリンエンジンを使用した自動車については、ハイブリッド電気自動車や電気自動車などへの代替が進んでいる。
 一方、近年では、充放電可能な蓄電池として、リチウムイオン二次電池、ニッケル水素電池、鉛電池、電気二重層キャパシタなどが存在し、リチウムイオン電池などの高出力密度の電池セルを複数個備える二次電池システムが産業用途に広く用いられている。特に近年では、車両用の蓄電システムとして、高電圧化及び大容量化された二次電池システムが普及し始めている。
 この二次電池システムは、鉄道車両の分野においても、省エネルギー化を図るため広く利用されている。例えば、ディーゼルエンジンで駆動される発電機と二次電池システムとを組み合わせてモータに電力を供給するハイブリッド鉄道車両や、電気車に搭載し回生負荷が無いときにその回生電力を二次電池に吸収する鉄道電車システム、さらに架線レス化を目的した電車線と二次電池システムのハイブリッド電車(駅間は二次電池システムを電源として走行し駅で二次電池システムへの充電を行う)などにおいて二次電池システムが利用されている。
 動力用電源に代表される大型の二次電池は、高出力及び大容量であることが要求される。このため、この種の二次電池は、複数の電池セルを直並列に接続して蓄電池モジュールを形成し、さらに蓄電池モジュールを直並列に接続して構成するのが一般的である。電池セルとしては、リチウムイオン電池が多用されている。
 電池セルには、動作を保証する使用可能温度範囲、使用可能電圧範囲、充電率範囲及び充放電可能な最大電流などが、それぞれ仕様として決まっている。これら仕様として決められた使用範囲を逸脱して電池セルを使用することは、電池セルを著しく劣化させ、最悪の場合は電池セルを故障させる原因にもなる。
 そこで、二次電池システムには、電池セルの状態を検知する電池制御装置が搭載されており、この電池制御装置によって、電池セルがどの程度まで充電されているか、あるいはどの程度放電可能な電荷量が残っているかといった電池セルの充電率(充電状態とも言われるものであり、以下、これをSOC(State of Charge)と呼ぶ)や、電池セルの劣化状態(SOH:State of Health)、最大に充放電可能な電流量及び電力量、並びに、二次電池システム内の正常/異常の識別情報などの電池状態を検知している。
 電池制御装置により検知する電池状態の中で、特に、SOCは、二次電池システムに出入りするエネルギーを管理するための重要なパラメータである。SOCを高精度に検知することができれば、二次電池システムの性能を最大限に発揮でき、結果として、二次電池システムを搭載するハイブリッド鉄道車両などの燃費性能を向上させることができる。このため、二次電池システムを搭載するハイブリッド鉄道車両などでは、高精度にSOCを検知する方法(以下、SOCを検知する方法のことをSOC検知方法と呼ぶ)の確立が重要となっている。
 このような要求を満たすべく、特許文献1には、イグニッションスイッチがオンされて推定演算が始まってから予め定められた時間が経過するまでは電流積算によるSOCを選択し、その後、二次電池の電圧の計測値と推定電圧値との誤差が収束した後に適応デジタルフィルタを用いた推定SOCを選択することが開示されている。このような方法により、推定精度の悪化を回避でき、適応デジタルフィルタを用いた二次電池の充電容量を推定することが可能となる。
特開2006-105821号公報
 ところで、特許文献1に開示された発明によれば、SOCの検知誤差(以下、これをSOC誤差と呼ぶ)が拡大する場合は別のSOC検知方法によるSOCの検知結果に切替えることで、SOCの検知精度の悪化を回避することができる。ここで、SOC誤差が拡大する要因としては、SOC検知方法の特徴、電池セルの特性、センサ精度及び環境条件に応じて発生する演算誤差などがある。これら状況を考慮して、SOC検知精度が確保し易い方向へとアクティブに状態を移行できれば、SOC精度の悪化を確実に回避できる。
 本発明は以上の点を考慮してなされたもので、SOC検知精度の悪化を確実に回避でき、信頼性高く二次電池の充放電を制御し得る電池制御装置、電池制御システム及び電池制御方法を提案しようとするものである。
 かかる課題を解決するため本発明においては、蓄電池の充放電を制御する電池制御装置において、前記蓄電池の状態に関する所定の物理量を計測する計測部と、前記蓄電池の状態を検知する状態検知部とを有し、前記状態検知部は、前記計測部により計測された前記物理量及び前記蓄電池の特性情報に基づいて、前記蓄電池の充電率を検知する充電率検知部と、前記充電率検知部により検知された前記充電率の誤差を検知する誤差検知部と、前記蓄電池の前記充電率を制御する充電率制御部と、前記蓄電池の充放電を実行する負荷制御部とを備え、前記誤差検知部は、前記計測部の計測結果と、予め与えられた前記蓄電池の前記特性情報と、予め与えられた環境条件に応じて発生する演算誤差とのうちの少なくとも1以上の情報に基づいて、前記充電率検知部により検知された前記蓄電池の前記充電率の誤差をリアルタイムに検知し、前記充電率検知部は、それぞれ異なる複数の充電率検知方法により前記蓄電池の前記充電率を検知でき、前記誤差検知部により検知された前記充電率の誤差に基づいて、当該誤差を改善するように、前記蓄電池の前記充電率を検知する充電率検知方法を必要に応じて他の前記充電率検知方法を切り替え、前記充電率制御部は、前記誤差検知部の検知結果に応じて、前記蓄電池の充電又は放電を指示する充放電指令を上位制御装置に送信し、前記負荷制御部は、前記充放電指令に基づいて前記上位制御装置から与えられる制御指令に応じて、前記蓄電池の充放電を実行するようにした。
 また本発明においては、蓄電池の充放電を制御する電池制御システムにおいて、前記蓄電池の状態に関する所定の物理量を計測する計測部と、前記蓄電池の状態を検知する状態検知部と、前記状態検知部の検知結果に基づいて前記蓄電池の充放電を制御する上位制御装置とを有し、前記状態検知部は、前記計測部により計測された前記物理量及び前記蓄電池の特性情報に基づいて、前記蓄電池の充電率を検知する充電率検知部と、前記充電率検知部により検知された前記充電率の誤差を検知する誤差検知部と、前記蓄電池の前記充電率を制御する充電率制御部と、前記蓄電池の充放電を実行する負荷制御部とを備え、前記誤差検知部は、前記計測部の計測結果と、予め与えられた前記蓄電池の前記特性情報と、予め与えられた環境条件に応じて発生する演算誤差とのうちの少なくとも1以上の情報に基づいて、前記充電率検知部により検知された前記蓄電池の前記充電率の誤差をリアルタイムに検知し、前記充電率検知部は、それぞれ異なる複数の充電率検知方法により前記蓄電池の前記充電率を検知でき、前記誤差検知部により検知された前記充電率の誤差に基づいて、当該誤差を改善するように、前記蓄電池の前記充電率を検知する充電率検知方法を必要に応じて他の前記充電率検知方法を切り替え、前記充電率制御部は、前記誤差検知部の検知結果に応じて、前記蓄電池の充電又は放電を指示する充放電指令を前記上位制御装置に送信し、前記負荷制御部は、前記充放電指令に基づいて前記上位制御装置から与えられる制御指令に応じて、前記蓄電池の充放電を実行し、前記蓄電池は、鉄道車両に搭載され、前記上位制御装置は、次の停車駅に到達する際の前記充電率の予測結果を取得し、取得した前記充電率の予測結果と、前記目標値との差を解消する電気量を充電又は放電するための前記制御指令を前記負荷制御部に送信するようにした。
 さらに本発明においては、蓄電池の充放電を制御する電池制御装置において実行される電池制御方法であって、前記電池制御装置は、前記蓄電池の状態に関する所定の物理量を計測する計測部と、前記蓄電池の状態を検知する状態検知部とを有し、前記状態検知部は、それぞれ異なる複数の充電率検知方法により前記蓄電池の充電率を検知でき、前記計測部により計測された前記物理量及び前記蓄電池の前記特性情報に基づいて、前記蓄電池の充電率を検知する充電率検知部と、前記充電率検知部により検知された前記充電率の誤差を検知する誤差検知部と、前記蓄電池の前記充電率を制御する充電率制御部と、前記蓄電池の充放電を実行する負荷制御部とを有し、前記誤差検知部が、前記計測部の計測結果と、予め与えられた前記蓄電池の前記特性情報と、予め与えられた環境条件に応じて発生する演算誤差とのうちの少なくとも1以上の情報に基づいて、前記充電率検知部により検知された前記蓄電池の前記充電率の誤差をリアルタイムに検知する第1のステップと、前記充電率検知部が、前記誤差検知部により検知された前記充電率の誤差に基づいて、当該誤差を改善するように、前記蓄電池の前記充電率を検知する充電率検知方法を必要に応じて他の前記充電率検知方法を切り替える第2のステップと、前記充電率制御部が、前記誤差検知部の検知結果に応じて、前記蓄電池の充電又は放電を指示する充放電指令を上位制御装置に送信する第3のステップと、前記負荷制御部が、前記充放電指令に基づいて前記上位制御装置から与えられる制御指令に応じて、前記蓄電池の充放電を実行する第4のステップとを備えるようにした。
 本発明の電池制御装置、電池制御システム及び電池制御方法によれば、蓄電池の特性情報や、計測部の計測誤差特性、周囲環境などによって生じる充電率の検知誤差をリアルタイムに把握することができるため、充電率の検知誤差の抑制を容易に行うことができ、これによりかかる充電率の検知誤差を確実に低減することできる。
 本発明によれば、SOC検知精度の悪化を確実に回避でき、信頼性高く二次電池の充放電を制御し得る電池制御装置及び方法を実現できる。
鉄道車両に蓄電池システムを搭載する場合の収納例を示す略線図である。 本発明を適用したハイブリッド鉄道車両の電気系統の構成例を示すブロック図である。 図2の蓄電装置の構成例を示すブロック図である。 図3の状態検知部の論理構成例を示すブロック図である。 電池セルの等価回路を示す回路図である。 (A)及び(B)は、電池セルのOCV及びSOCの関係を示す特性曲線図である。 (A)及び(B)は、OCV誤差及びSOC誤差の関係の説明に供する特性曲線図である。 (A)及び(B)は、OCV誤差及びSOC誤差の関係の説明に供する特性曲線図である。 SOC検知処理の処理手順を示すフローチャートである。 SOC領域に応じたSOC検知方法の説明に供する特性曲線図である。 SOC検知処理の他の実施の形態の説明に供するフローチャートである。 SOC検知処理の他の実施の形態の説明に供するフローチャートである。 (A)はSOC変化量の予測方法の説明に供する概略図、(B)はSOC変化量の予測方法の説明に供する特性曲線図である。 充放電制御処理の処理手順を示すフローチャートである。
 以下図面について、本発明の一実施の形態を詳述する。
(1)第1の実施の形態
(1-1)システム構成
 図1は、鉄道車両1に蓄電池システムを搭載する場合の収納例を示す。なお、鉄道車両1では、進行方向(矢印a)が長手方向、枕木方向が短軸方向となる。鉄道車両1に蓄電池を搭載する場合、蓄電池システムのサイズが大きいため、図1(A)のように鉄道車両1の屋根側や、図1(B)のように鉄道車両1の床下側に蓄電池を収納した蓄電装置2を配置するようにして搭載する。
 ただし、蓄電装置2を専用車両内(図示なし)に搭載する場合もある。また図1では、鉄道車両1全体の制御を司る統括制御器3を鉄道車両1の床下に設置した場合について例示しているが、統括制御器3を鉄道車両1の屋根側に設置しても良く、また鉄道車両1内に搭載するようにしてもよい。
 蓄電装置2は、複数の単電池を組電池として構成した電池モジュール、又は、当該電池モジュールを複数組み合わせた少なくとも1つ以上の電池ユニットが1つの筺体に収納されて構成される。蓄電装置2の筐体には、電池ユニットの他に、制御基板やセンサ、その他の電気的機械的構造部品も収納される。
 図2は、ハイブリッド鉄道車両10の電気系の構成例を示す。ハイブリッド鉄道車両10は、エンジン11と、エンジン11によって駆動され交流電力を出力する発電機12と、交流電力を直流電力に変換するコンバータ装置13と、直流電力を交流電力に変換するインバータ装置14と、鉄道車両を駆動する誘導電動機15と、誘導電動機15の出力を減速して輪軸(図示なし)に伝達する減速機(図示なし)と、蓄電装置16とを主な構成要素とする。図1の蓄電装置2は、この図2の蓄電装置16に対応する。
 このハイブリッド鉄道車両10において、エンジン11に軸で直結された発電機12は、U、V及びWの3相の交流電力(3相交流電力)を発生し、発生した3相交流電力をコンバータ装置13に出力する。コンバータ装置13は、この3相交流電力を直流電力に変換してインバータ装置14に出力する。またインバータ装置14は、コンバータ装置13から出力された直流電力を、可変電圧及び可変周波数の3相交流電力に変換して駆動電力として誘導電動機15に供給する。
 蓄電装置16は、コンバータ装置13の出力側(直流側)に並列に接続され、鉄道車両の起動時に電力を補給する一方、インバータ装置14の入力側(直流側)にも接続されて鉄道車両が走行する際の駆動電力を誘導電動機15に供給する。平滑コンデンサ21は、インバータ装置14の入力側に並列に接続され、インバータ装置14への入力電圧の変動を抑制する。SIV(Static InVerter)18は、鉄道車両内で使用する電力を発生させる静止型インバータである。
 制御部19は、電流検出器20Aが検出したコンバータ装置13の出力電流Isと、電圧検出器17が検出した平滑コンデンサ21の両端電圧と、発電機12の回転周波数とに基づいてコンバータ装置13を制御するためのPWM(Pulse Width Modulation)制御信号を生成し、生成したPWM制御信号をコンバータ装置13に出力する。
 また制御部19は、電流検出器20B、20C及び20Dにより検出された、インバータ装置14から出力される誘導電動機15に対するU相、V相及びW相の各駆動電力Iu,Iv及びIwと、電圧検出器17により検出された平滑コンデンサ21の両端電圧と、誘導電動機15の回転周波数とに基づいてインバータ装置14を制御するためのPWM制御信号を生成し、生成したPWM制御信号をインバータ装置14に出力する。
 さらに制御部19は、後述のように蓄電装置16から通知される当該蓄電装置16の状態に基づいて、蓄電装置16内の蓄電池の充放電を制御する。実際上、蓄電装置16は、自装置内部の総電流、総電圧、自装置の温度及び環境温度に基づいて自己の状態を検知し、検知結果を制御部19に通知する。そして制御部19は、通知された検知結果に基づいて蓄電装置16の状態を判断し、判断結果に従って蓄電装置16の充放電を制御するための充放電制御信号を外部の装置に出力する。
 図3は、図2に示す蓄電装置16の一般的な構成例を示す。蓄電装置16は、複数の電池モジュール(組電池)30からなる蓄電池32と電流検出装置31とを直列に接続したモジュールが並列に複数接続された電池部33を備える。この電池部33の総電圧は電圧検出装置34により検出され、検出結果が状態検知部35に通知される。
 状態検知部35は、電圧検出装置34から通知された電池部33の総電圧と、各電流検出装置31がそれぞれ検出した電流値と、温度計36により計測された電池部33の温度とに基づいて、電池部33の充電率(SOC)、劣化状態(SOH)、充放電可能な電流量及び電力量(許容電流量・電力量)、並びに、異常状態(過電圧、過電流)などの状態を検知し、検知結果を電池状態情報として上位制御部37(図2の制御部19に相当)に通知する。負荷制御部38は、かかる電池状態情報に応じて上位制御部37から与えられる充放電制御指令に基づいて電池部33の充放電を実施する。
(1-2)状態検知部におけるSOC検知方法
 図4は、電池部33の充電率(SOC)の検知に関する状態検知部35の論理構成を示す。SOC検知部40は、蓄電池32の総電流、総電圧、蓄電装置16の温度を入力してリアルタイムにSOCを検知する機能を有する機能部である。また誤差検知部41は、SOC検知用の入力とSOC検知部40からの出力とに基づいて、SOC検知部40により検知されたSOCに含まれる誤差(SOC誤差)をリアルタイムに算出する機能を有する機能部である。さらにSOC制御部42は、誤差検知部41により算出されたSOC誤差に基づいて充放電指令を図3の上位制御部37(図2の制御部19)に送信する機能を有する機能部である。
 ここで、SOC検知部40において実行されるSOCの検知処理において利用されるSOCの検知方法(以下、これをSOC検知方法と呼ぶ)について説明する。従来、SOC検知方法としては、電圧基準により検知する方法(以下、これを第1のSOC検知方法と呼ぶ)と、電流積算により検知する方法(以下、これを第2のSOC検知方法と呼ぶ)の2つが広く知られている。
 第1のSOC検知方法は、電池セルの電圧とSOCとの対応関係を予め計測して電圧-SOC変換情報として記憶しておき、この電圧-SOC変換情報に基づいて、電池セルの電圧からSOCをリアルタイムに求める方法である。この第1のSOC検知方法によると、電圧を取得した電池セルの特性に応じて電圧及びSOC間の関係が異なるため、電池セルの電圧からSOCを得る際の変換精度にも差が生じる。
 また第2のSOC検知方法は、電池セルに出入りした電流値を測定して積分することによりSOCを求める方法である。この第2のSOC検知方法によると、電流測定値に含まれる測定誤差も積分されるため、時間の経過と共にSOC誤差が拡大するという問題がある。
 このように、これら第1及び第2のSOC検知方法は、それぞれ固有の特徴(問題)を有するため、電池セルの特性やセンサ性能及び周囲環境などの条件に応じてSOC検知方法を第1及び第2のSOC検知方法間で適宜切替えるなどして、検知するSOCの精度を確保する必要がある。
 以下、第1のSOC検知方法(電圧基準によるSOC検知方法)と、第2のSOC検知方法(電流積算によるSOC検知方法)とについて、より詳しく説明する。まず、第1のSOC検知方法について説明する。
 図5は、電池モジュール(組電池)30(図3)に内蔵される電池セルの等価回路を示す。図5において、50は起電力すなわち開回路電圧(OCV)、51は内部抵抗(R)、52は分極抵抗成分、53はキャパシタンス成分をそれぞれ表す。
 この図5に示すように、電池セルの電圧特性は、分極抵抗成分52及びキャパシタンス成分53の並列接続対と、内部抵抗51及び起電力50との直列接続で表すことができる。この電池セルに電流値Iを印加した場合、電池セルの端子間電圧CCVは、分極抵抗成分52及びキャパシタンス成分53の並列接続対の電圧に相当する分極電圧をVpとして、(1)式で表される。
Figure JPOXMLDOC01-appb-M000001
 OCVは、SOCの演算に用いられるが、電池セルが充放電されている状況では、OCVを直接測定することが不可能である。このため、(2)式のようにCCVからIRドロップのI×Rと、Vpとを差し引くことにより、OCVを算出する。
Figure JPOXMLDOC01-appb-M000002
 (2)式において、CCVは電圧検出装置34が検出した総電圧、Iは電流検出装置31(図3)が検出した電流値としてそれぞれ取得でき、Rは状態検知部35が備える記憶領域35A(図3)に格納された電池セルの特性パラメータ(特性情報)から求められ、Vpは電流検出装置31で検出した電流値と、上述した電池セルの特性パラメータとから求められるため、これらを利用してOCVを算出することができる。なお、電池セルの特性パラメータは、電池セルのSOCや温度など、電池状態に応じて抽出して記憶させておくとOCVを高精度に算出することが可能となる。
 次に、求めたOCVに基づいてSOCを求める。SOCを求めるには、OCVとSOCとの関係を使用する。電池セルを構成する材料の特性によって、OCVとSOCとは所定の関係を持つ。図6(A)及び(B)に、それぞれ異なるタイプ(図6(A)はタイプ1(「Type1」)、図6(B)はタイプ2(「Type2」))の電池セルにおけるOCVとSOCとの関係を示す。電池セルを構成する材料の違いが、OCV及びSOCの関係に影響を与えるが、どちらの場合も(2)式によりOCVを算出し、予め抽出したOCV及びSOCの関係から電池セルのSOCを検知できる。以下においては、このOCVから得られたSOCを「SOCv」と表記する。
 OCVは上述のように求めることができるが、電圧検出装置34(図3)の測定性能に応じて生じる電圧測定誤差や、電流検出装置31(図3)の測定性能に応じて生じる電流測定誤差、及び、RやVpの誤差などにより、OCVの計算結果にも誤差が発生する。OCVからSOCを求める方法では、このOCVの誤差(以下、これをOCV誤差と呼び、適宜、これをΔOCVと表記する)が発生した場合の影響については、タイプ1とタイプ2とで異なる。
 図7に、OCV誤差を与えた場合に発生するSOCの誤差(以下、これをSOC誤差と呼び、適宜ΔSOCと表記する)を示す。タイプ1と比較して、電圧が若干平坦となるタイプ2では、同じOCV誤差を与えてもSOC誤差が大きくなることが確認できる。このように、OCVを基準としてSOC(SOCv)を求める第1のSOC検知方法の場合、電池セルの材料構成により決定されるOCVとSOCとの関係が、SOCの検知精度を確保するために重要となる。
 以上のように、第1のSOC検知方法では、OCVとSOCとの関係によってはSOC誤差(ΔSOC)が大きくなる。これに対して、電流積算によりSOCを検知する第2のSOC検知方法は、演算の仕方によってSOC誤差の発生を回避することが可能である。
 (3)式は、SOC検知方法として第2のSOC検知方法を用いた場合のSOCの計算式を示す。(3)式において、SOCiは第2のSOC検知方法により算出されるSOCを表し、SOCvinitは第1のSOC検知方法の(2)式で得られたOCVに基づくSOCvを表す。一度、SOCvinitを検知できた場合、これ以降はこの値は固定値とする。蓄電池32を充放電するに従い、SOCはリアルタイムに変化していくが、そのSOC変化については電流値を積分する計算で表現する。なお(3)式において、Qmaxは蓄電装置16(図3)の満充電容量を示す。
Figure JPOXMLDOC01-appb-M000003
 この(3)式に示す第2のSOC検知方法によるSOC(SOCi)の計算では、SOCvinitを検知するタイミングだけ、蓄電池32のSOCを調整することで電圧が平坦な条件を回避できれば、図6(B)に示すタイプ2で生じるSOC誤差の発生も回避できる。ただし、第2のSOC検知方法では、電流値を積分していくために電流の測定誤差も積分してしまい、時間の経過に伴ってそのSOCの検知誤差(SOC誤差)が拡大するという課題がある。このため所定時間積分した場合は何らかの方法でSOC誤差をリセットするなどの対策が必要である。
 このように第1のSOC検知方法(電圧基準によるSOC検知方法)と、第2のSOC検知方法(電流積算によるSOC検知方法)とのそれぞれにSOC誤差の特徴があり、このSOC誤差を改善するためには、これら第1のSOC検知方法や第2のSOC検知方法を利用してSOCを検知する際に、SOC誤差が発生する条件を回避する必要がある。
 ここで、第1のSOC検知方法では、図7(B)に示すタイプ2の特性を持つ電池セルを対象とした場合、SOCの検知精度が低下する可能性がある。しかしながら、図8(A)及び(B)に示すように、タイプ2の電池セルでも、SOCが高い位置にあるのか(図8(A))、低い位置にあるのか(図8(B))によって、SOCの検知精度は大きく変化する。また、電圧検出装置34(図3)で検出した総電圧や電流検出装置31(図3)で検出した電流値などは、所定の温度条件では精度が良く、温度が所定条件から乖離するにつれて、電圧と電流の測定精度が悪化する場合がある。すなわち、SOCの検知精度はこれら様々な要因によって大きく変化するため、SOC誤差を正しく回避するためには、上述した状況を考慮してリアルタイムに現在のSOC誤差を検知する手段を備えることが望ましい。
 以上のことを踏まえ、本実施の形態の状態検知部35(図3)の誤差検知部41(図4)には、SOC誤差をリアルタイムに検知する機能が搭載されている。実際上、誤差検知部41は、第1のSOC検知方法によりSOCを求める場合、最初に、測定値や電池セルの特性情報等を用いて(2)式によりOCVを演算するため、その演算に含まれるOCV誤差(ΔOCV)を以下の(4)式で求める。
Figure JPOXMLDOC01-appb-M000004
 なお(4)式において、ΔVは電圧の測定誤差、ΔIは電流の測定誤差、ΔRは内部抵抗の取得誤差、ΔVpは分極電圧の演算誤差である。ΔVやΔIなどの測定誤差は、如何なる状況でも変化しない代表値を設定しても良いが、本実施の形態においては、電圧検出装置34や電流検出装置31がおかれた周囲温度に影響を受けることに注目し、周囲温度と測定値に応じた測定誤差の関係をマップ形式にした情報を予め状態検知部35に与えておき、状態検知部35がこの情報を記憶領域35A(図3)に格納して保持しているものとする。かかる関係をマップ形式で表現することにより、より精密なΔOCVの計算が可能となる。
 次に、誤差検知部41は、SOCvの取得時に生じるSOC誤差を(5)式により計算する。なお、(5)式では誤差の方向をプラス及びマイナスで与えて平均化処理をしているが、プラス方向及びマイナス方向でそれぞれ誤差を求め、大きい方を採用するようにしてもよい。
Figure JPOXMLDOC01-appb-M000005
 このような(4)式及び(5)式を用いた計算方法を用いることによって、リアルタイムにSOCvの誤差(ΔSOCv)を計算することができる。これにより誤差検知部41は、蓄電池32のSOC変化に応じた図8に示すSOC誤差や、充放電中に伴う瞬時的なSOC誤差も考慮したSOC誤差をSOC検知部40(図4)やSOC制御部42(図4)に通知することができる。
(1-3)状態検知部におけるSOC検知処理の流れ
 図9は、状態検知部35で実行される蓄電装置16のSOCの検知処理(以下、これをSOC検知処理と呼ぶ)の流れを示す。
 状態検知部35では、SOC検知部が定期的に第1のSOC検知方法によるSOC(SOCv)の検知を開始するが(S1)、このとき誤差検知部41が、リアルタイムでSOCvの誤差(以下、これをSOCv誤差と呼び、適宜、ΔSOCvと表記する)を算出し、算出したSOCv誤差をSOC検知部40に通知する。なお、このとき算出されるSOCv誤差は、図8(A)及び(B)を用いて説明したように、高SOCでは小さく、低SOCでは大きくなる。
 SOC検知部40は、誤差検知部41から通知されるSOCv誤差を監視し(S2)、このSOCv誤差がSOCv誤差について予め設定された閾値(以下、これをSOCv誤差閾値と呼ぶ)を超過した場合に(S2;NO)、SOC検知方法を第2のSOC検知方法(電流積算によるSOC検知方法)に切り替える(S3)。こうすることで、第1のSOC検知方法で不利となる状況をリアルタイムに検知し、回避可能な方式に切替えることが可能となる。なお、かかるSOCv誤差閾値は、蓄電池32のOCV及びSOCの関係において、SOCの変化に対するOCVの特性が平坦となるSOCv誤差の範囲と、非平坦となるSOCv誤差の範囲との境界に設定される。
 また誤差検知部41は、SOC検知部40におけるSOC検知方法が第2のSOC検知方法に切替えられたことを検知すると、このときSOC(SOCi)に発生する誤差(以下、これをSOCi誤差と呼び、適宜、ΔSOCiと表記する)を次式
Figure JPOXMLDOC01-appb-M000006
により算出し、算出したSOCi誤差を監視する(S5参照)。
 なお(6)式において、ΔSOCvinitはSOC検知方法が第2のSOC検知方法に切り替えられる前のOCV基準のSOC誤差であり、ΔIは電流検出装置31(図3)による電流の測定誤差である。またQmaxは蓄電装置16(図3)の満充電容量であり、このパラメータに関しても劣化の影響などにより誤差は発生し得るが、説明の簡略化のためここでは省略している。
 またSOCv誤差(ΔSOCv)が大きいタイミングでSOCの検知方法を第2のSOC検知方法に切り替えた場合、そのSOCv誤差がΔSOCvinitとなり、以降のSOCiに見込まれるSOC誤差が大きくなる。そこで、SOC誤差を少しでも抑制するために、充放電電流が小さい条件など、SOCv誤差が小さくなる条件でSOC検知方法を第2のSOC検知方法に切り替えるのが好ましい。
 一方、(6)式を用いてSOCi誤差(ΔSOCi)を計算する場合、(3)式について上述したように、電流値Iを積分するために電流検出装置31における電流の測定誤差も積分され、時間の経過と共にSOCi誤差は拡大していく。そこで誤差検知部41は、SOCi誤差の監視と並行してSOCv誤差を算出し、算出したSOCv誤差を監視する(S4参照)。
 そして誤差検知部41は、ステップS3でSOC検知部40におけるSOC検知方法を第2のSOC検知方法に切り替えた後、SOCv誤差が上述のSOCv誤差閾値未満となった場合には(S4;YES)、SOC検知方法を第1のSOC検知方法に戻すようSOC検知部40に指示を与える(S1)。これによりSOC検知部40におけるSOC検知方法が第1のSOC検知方法に切り替えられ、SOCi誤差の拡大が停止する。
 これに対して、ステップS3でSOC検知部40におけるSOC検知方法を第2のSOC検知方法に切り替えた後もSOCv誤差がSOCv誤差閾値未満とならないものの(S4;NO)、SOCi誤差が当該SOCi誤差について設定された閾値(以下、これをSOCi誤差閾値と呼ぶ)未満の場合には(S5;YES)、SOC検知部40におけるSOC検知方法としてそのまま第2のSOC検知方法が適用され続ける。
 なお、SOCv誤差がSOCv誤差閾値未満とならない場合、例えば、図8(B)の低SOCのように電圧が平坦で大きなSOC誤差が発生する領域に滞在し続ける場合は、SOCi誤差が拡大し続けるため、SOCi誤差がいずれSOCi誤差閾値に到達する。そこで誤差検知部41は、SOCi誤差がこのSOCi閾値に到達したことを検出した場合には(S5;NO)、その結果(そのとき検出したSOCの値を含む)をSOC制御部42(図4)に通知する。
 SOC制御部42は、このとき受信した結果を元に、SOCvに含まれるSOCv誤差が所定値を満足する領域まで、蓄電池32(図3)のSOCを充電又は放電すべき旨の充放電指令を図3の上位制御部37(図2の制御部19)に送信する(S6)。なお「SOCv誤差が所定値を満足する領域」とは、例えば、図10に示すように、SOCの変化に対するOCV特性が平坦なSOC領域(図中「SOCi」と記した領域)から外れた図中の「SOCv」と記したSOC領域であり、換言すればSOCの変化に対して電圧が良く変化する領域である。
 ここで、SOC制御部42が図3の上位制御部37(図2の制御部19)に送信する充放電指令は、SOCi誤差の拡大により当該SOCi誤差がSOCi誤差閾値に到達した場合は、直ちに、SOCv誤差が所定値を満足する領域まで蓄電池32を充電又は放電する方法を採用できれば、速やかに蓄電池32のSOCが変化し、SOCv誤差が低減する領域に到達し、SOC検知方法が第2のSOC検知方法から第1のSOC検知方法へと切り替えられ、SOC誤差の更なる拡大が防止される。
 なお図9では、上述のようにSOC検知方法を第2のSOC検知方法に切り替えた後(S3)、SOCv誤差が大きい状況が継続し、かつSOCi誤差も大きい場合に(S5;NO)、充放電指令を図3の上位制御部37(図2の制御部19)に送信することとしているが(S6)、図9との対応部分に同一符号を付した図11の手順に従って、状態検知部35(図3)がSOC検知を行うようにしてもよい。
 具体的には、SOC検知部40(図4)におけるSOC検知方法を第2のSOC検知方法に切り替えた後(S3)、誤差検知部41(図4)が、SOCv誤差がSOCv誤差閾値範囲未満であるか否か、及び、SOCi誤差がSOCv誤差よりも大きいか否かを順次判定する(S4,S10)。そしてSOCv誤差がSOCv誤差閾値よりも大きい状態が継続しているものの、現在適用中の第2のSOC検知方法により得られるSOCi誤差がSOCv誤差よりも大きい場合には(S10;YES)、誤差検知部41が、SOC検知方法をSOC誤差が小さい第1のSOC検知方法に戻すようSOC検知部40に指示を与えた後に(S11)、SOC制御部42が上位制御部37(図2の制御部19)に充放電指令を送信する(S6)。このようにすることにより、充放電指令を受けてSOCv誤差が低減する領域にまで蓄電池32を充放電する処理が完了するまでの間、比較的誤差の少ない第1のSOC検知方法を、SOC検知部40が利用するSOC検知方法として適用させることができる。
 またSOC誤差によって処理内容を切替えるのではなく、事前のSOCとSOC誤差との関連性を確認した結果に基づいて、SOCの値からSOC誤差の発生状況を推測して処理内容を切替えるようにしてもよい。
 具体的には、図9との対応部分に同一符号を付した図12に示すように、誤差検知部41が、ステップS1におけるSOCの検知結果に基づき、電池電圧の平坦特性範囲内でのSOC検知であることを認識した場合に(S20;YES)、SOC検知部40におけるSOC検知方法を第2のSOC検知方法に切り替える(S3)。そして、誤差検知部41は、電池電圧の平坦特性範囲内でのSOC検知が継続しているか否かをチェックし(S21)、当該SOC検知が継続中であり、かつ、事前に誤差を試算して設定したSOCiの演算が適用されてからの許容時間も超過している場合に(S22;NO)、SOC制御部42が上位制御部37(図2の制御部19)に充放電指令を送信する(S6)。これにより、SOC誤差を推定するための演算処理が不要となり、少ない処理量でSOC検知を行うことができる。図9、図11及び図12の何れを採用しても、電池電圧の特性を考慮したSOC誤差は低減する。
(1-4)ハイブリッド車両における蓄電池への効果的な充放電方法
 ここで、図2に示すハイブリッド鉄道車両10において、蓄電池32(図3)を充電してSOCvが所定値を満足する領域へとSOCを変化させたい場合、充電手段として発電機12(図2)を用いることができる。具体的には、ハイブリッド鉄道車両10が走行中又は停止中に、発電機12を動作させ、SOCvが所定値を満足する領域へと蓄電池32のSOCを変化させる。また、蓄電池32を放電させることでSOCvが所定値を満足する領域へとSOCを変化させたい場合、誘導電動機15又はSIV18を用いて蓄電池32に蓄えた電気エネルギーを消費させる。
 ここで、ハイブリッド鉄道車両10の走行位置情報を用いて効率良く蓄電池32の充放電制御を行う方法について、図13を参照して説明する。図13(A)は、車両位置から停車駅STまでのSOCの変化の予測情報(以下、これをSOC変化予測情報と呼ぶ)を示し、図13(B)は、停車駅STまでのSOC変化の一例を示す。
 ハイブリッド鉄道車両10では、停車駅STに到着する際、回生ブレーキによって、蓄電池32のSOCが上昇して車両が停止する。SOCv誤差がSOCv誤差閾値未満となるSOC領域まで、この回生ブレーキによる充電でSOCを上昇できれば、上述した発電機12(図2)を用いた蓄電池32の充電は不要になる。その発電機12を用いた充電の要否を判断するために、図13(A)に示す「位置A」~「位置C」の各車両位置から停車駅STまでのSOC変化予測情報を活用する。
 具体的に、誤差検知部41(図4)は、図13(A)の位置Aにおいて、SOCi誤差がSOCi誤差閾値以上となったことを検知すると、これをSOC制御部42(図4)に通知する。またSOC制御部42は、かかる通知に基づいて、SOCvに含まれるSOCv誤差がSOCv誤差閾値未満となるSOC領域内に設定されたSOCの目標値(以下、これをSOC目標値と呼ぶ)まで蓄電池32を充電又は放電を指示すべき旨の充放電指令を上位制御部37(図2の制御部19)に送信する。
 ここで、図13(A)のSOC変化予測情報を用いれば、位置Aの時点において、次の停車駅STに到着する際のSOC変化量は+20%であると把握できる。現在のSOCが40%の場合、次の停車駅に到着した際のSOCは60%と予測できる。ここで、SOC目標値が70%とすると、10%分が不足となり、この10%分の補充電が必要となる。
 そこで、位置Aの時点で補充電の要否や必要な補充電の電力量を判断し、停車駅STに到着する前に補充電を済ませておけば、停車駅STに到着してから補充電を実行する必要はなく、停車駅ST内での騒音防止効果を得ることができる。同様に、位置BでSOCi誤差がSOCi誤差閾値以上となったことが検知された場合は+10%、位置Cでは+5%の停車駅でのSOC予測値を入手し、SOC目標値との差分については走行中に補充電を済ませることで停車駅ST内での騒音の発生を防止することができる。
 以上は停車駅STまでにSOCが上昇する場合の例であるが、上り坂が多い、電装品の消費電力が大きい、車両の制御として蓄電池32からの放電電力で走行する時間が長いなど、蓄電池32の放電量が大きくなる条件では、これとは逆にSOCが停車駅STで減少する場合もあり、このときは現在のSOCとSOCの減少量とから、SOC予測値を試算する。そしてSOC目標値が低いSOC領域側にも存在する場合は、走行中に誘導電動機15(図2)又はSIV18(図2)を用いて、蓄電池32に蓄えた電気エネルギーを消費させる。これにより、停車駅STに到着した際に、SOCの値がSOC目標値に到達し、SOC誤差の更なる拡大を防止することができる。
 なお上述のようにSOC目標値を、予め複数設定することができる。この場合、図13(A)の車両位置から停車駅STにかけてのSOC変化予測情報に基づき停車駅STでのSOC予測値を入手した後、SOC目標値のうちの最も近いSOC目標値を選択して、充電又は放電を実行すると良い。
 図14は、このようにSOC目標値を複数設定した場合において、状態検知部35(図3)からの充放電指令を受信した図3の上位制御部37(図2の制御部19)により実行される一連の処理(以下、これを充放電制御処理と呼ぶ)の流れを示す。
 上位制御部37は、かかる充放電指令を受信すると、この充放電制御処理を開始し、まず、ハイブリッド鉄道車両10が次の停車駅STに到着した時点のSOCを予測する(S30)。以下、このとき予測されたSOCをSOC予測値と呼ぶ。上位制御部37は、このSOC予測値を、現在のSOCと、ハイブリッド鉄道車両10の車両位置とから見込まれる次の停車駅STに到達するまでのSOC変化予測情報とに基づいて算出する。
 続いて、上位制御部37は、SOC目標値が複数存在する場合には、SOC予測値に最も近いSOC目標値を最終的なSOCの目標値として選択し(S31)、SOC予測値とステップS31で選択したSOC目標値との差分(以下、これをSOC差と呼ぶ)を計算する(S32)。そして、上位制御部37は、この後、ステップS32で算出したSOC差の値が負であるか否かを判断する(S33)。
 ここで、ステップS33の判断で肯定結果を得ることは、停車時に到達が予測されるSOCが十分な高さでないことを意味する。かくして、このとき上位制御部37は、SOC差を解消する電力量を蓄電池32に充電させる作業(不足したSOCを補うための蓄電池32の充電作業)をハイブリッド鉄道車両10の走行中に実行させるべく、これに応じた制御指令を負荷制御部38(図3)に送信する(S34)。そして上位制御部37は、この後、この充放電制御処理を終了する。
 これに対して、ステップS33の判断で否定結果を得ることは、SOC目標値に対してSOC予測値が過剰に高くなる状況にあることを意味する。かくして、このとき上位制御部37は、SOC差を解消する電力量を蓄電池32に放電させる作業(SOCを低下させるための蓄電池32の放電作業)をハイブリッド鉄道車両10の走行中に実行させるべく、これに応じた制御指令を負荷制御部38(図3)に送信する(S35)。そして上位制御部37は、この後、この充放電制御処理を終了する。
 このような充放電制御処理により、SOC誤差を低減するための蓄電池32の充放電をハイブリッド鉄道車両10の停止前に完了させることができる。
(1-5)本実施の形態の効果
 以上のように、本実施の形態では、電圧基準によりSOCを検知する第1のSOC検知方法を利用する際のSOC誤差(SOCv誤差)と、電流積算によりSOCを検知する第2のSOC検知方法を利用する際のSOC誤差(SOCi誤差)とを算出し、算出したこれらのSOC誤差(SOCv誤差及びSOCi誤差)に基づいてSOC検知部40におけるSOC検知方法を第1のSOC検知方法と第2のSOC検知方法とで切り替える。
 この際、本実施の形態においては、電池セルの特性情報や、用いたセンサの誤差特性、周囲環境などによって生じるSOC誤差をリアルタイムに把握することができるため、SOC誤差の抑制を容易に行うことができ、これによりかかるSOC誤差を確実に低減することができる。この結果、SOC検知精度の悪化を確実に回避でき、信頼性高く二次電池の充放電を制御することができる。
(2)第2の実施の形態
 第1の実施の形態では、状態検知部35(図3)のSOC検知部40(図4)において、SOC検知方法を第1及び第2のSOC検知方法に切り替えながらSOCを検知する場合について述べた。これに対して本実施の形態では、かかるSOC検知部40が実行するSOC検知方法として、SOCv及びSOCiの2つのSOCを重み係数によって組合せる第3のSOC検知方法を採用する場合について説明する。
 上述した(2)式と、図6について上述したOCV及びSOCの関係を用いることで、SOCvを算出することが可能である。SOCv及びSOCiの2つのSOCを組合せる場合は、SOC検知部40(図4)が以下の(7)式及び(8)式の演算を追加で実行する。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 ここで、(7)式及び(8)式において、SOCcはSOCvとSOCiの2つのSOCを重付け係数によって組合せたSOCの結果を表し、SOCc_Zは一時刻前のSOCを組合せた結果を表し、Wは両SOC値の重み付けを行う係数(重付け係数)をそれぞれ表す。重付け係数Wは、それぞれのSOCに発生し得るSOC誤差を予め求め、最もSOC誤差が小さくなるよう最適化した値を重付け係数Wとして適用し、これを予め状態検知部35の記憶領域35A(図3)に格納しておけばよい。
 なお、重付け係数Wは、リアルタイムにそれぞれのSOCに発生し得る誤差を求めて決定することも可能である。また、蓄電装置16の温度やSOC、内部抵抗等の特性情報、出入りする電流値に代表される蓄電装置16の使用状態、センサ類の異常状態など、これら1つ以上の情報に基づいて重付け係数Wを決定してもよい。さらに蓄電装置16の温度やSOC、内部抵抗等の特性情報、及び、出入りする電流値のうちの2つ以上の情報を選択し、これら情報を組合せて重付け係数Wを決定しても良い。このように、SOCvとSOCiとを組合せることによって、SOCvよりも高精度な別のSOC(SOCc)を算出することができる。
 そして第1の実施の形態では、状態検知部35のSOC検知部40が利用するSOC検知方法を第1のSOC検知方法と第2のSOC検知方法とで切り替えるようにしたが、本実施の形態では、かかるSOC検知方法を第2のSOC検知方法と第3のSOC検知方法とで切り替える。具体的には、以下の(9)(10)式によってSOCcの誤差(以下、これをSOCc誤差と呼び、適宜、ΔSOCcと表記する)を算出し、算出したSOCc誤差が閾値を超えた場合に状態検知部35のSOC検知部40が、SOC検知方法を第3のSOC検知方法から第2のSOC検知方法に切り替える。SOC検知方法を切替える具体的処理として、(8)式の重付け係数Wを強制的に現在値からゼロに変化させれば、結果として第2のSOC検知方法を採用する処理を適用できる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 ここで、(9)式において、ΔIoffsetは積分計算で累積していく誤差、ΔSOCc_Zは一時刻前のSOC誤差をそれぞれ表す。なお、SOCc誤差の算出結果は、次の演算ステップの際に、(9)式のΔSOCc_Zとして扱われる。
 以上の本実施の形態によれば、第1の実施の形態と同様の効果を得ることができることに加えて、SOCvよりも高精度なSOC(SOCc)を算出することができるという効果をも得ることができる。
(3)他の実施の形態
 なお上述の第1の実施の形態においては、図13について上述したSOC変化予測情報を固定値として記憶するようにした場合について述べたが、本発明はこれに限らず、日々の運行によりかかるSOCの変化の実績値を取得できた後に、当該実績値に基づいてSOC変化予測情報を上位制御部37が適宜更新するようにしてもよい。このようにすることによって、高精度なSOC変化予測情報を構築することができる。この場合は、複数の実績値を平均化するなどして、実績値のばらつきを低減させてから新たなSOC変化予測情報として古いSOC変化予測情報に上書きすればよい。
 また上述の第1の実施の形態においては、SOC変化予測情報を値として記憶するようにした場合について述べたが、本発明はこれに限らず、車両走行中の速度情報を検知し、速度情報の検知結果と車両の質量情報とから運動エネルギーを算出し、回生ブレーキによって運動エネルギーから回収できる電力量を算出し、算出した電力量を回収した場合の蓄電池32のSOCの変化量を算出し、算出したSOCの変化量と、ハイブリッド鉄道車両10を停止させる動作を開始した時点の蓄電池32のSOCとに基づいて、次の停車駅STにおけるSOCの予測結果を算出するようにしてもよい。この場合は、停車駅前の回生ブレーキをかけ始めた際にSOC変化予測値が計算できるため、回生ブレーキによる充電と共に、別手段で蓄電装置16を充電してSOCを所望の値に調整することで、停車駅内での蓄電池32の充電作業を回避できる。
 さらに上述の第2の実施の形態においては、リアルタイムにSOCc誤差(ΔSOCc)を求める方法について述べたが、事前にSOCc誤差を求めておき、SOCcとSOCc誤差との関係が事前に把握できた場合は、SOCcが所定の値になった場合に、SOC検知法を第3のSOC検知方法から第2のSOC検知方法に移行させるようにしてもよい。SOC検知方法を切替える具体的処理として、(8)式の重付け係数Wを強制的に現在値からゼロに変化させれば、結果として第2のSOC検知方法を採用する処理を適用できる。
 さらに上述の第1及び第2の実施の形態においては、本発明をハイブリッド鉄道車両に適用するようにした場合について述べたが、本発明はこれに限らず、ハイブリッド電気自動車や電気自動車における蓄電池システム、産業用の移動体向け蓄電池システムなどに広く適用することができる。
 なお、本発明は、上述した実施例に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の実施態様も、本発明の範囲内に含まれる。
 本発明は、蓄電池を利用する種々のシステムに広く適用することができる。
 10……ハイブリッド鉄道車両、11……エンジン、12……発電機、13……コンバータ装置、14……インバータ装置、15……誘導電動機、16……蓄電装置、18……SIV、19……制御部、20A~20D……電流検出器、30……電池モジュール、31……電流検出装置、32……蓄電池、33……電池部、34……電圧検出装置、35……状態検知部、36……温度計、37……上位制御部、38……負荷制御部、40……SOC検知部、41……誤差検知部、42……SOC制御部。

Claims (14)

  1.  蓄電池の充放電を制御する電池制御装置において、
     前記蓄電池の状態に関する所定の物理量を計測する計測部と、
     前記蓄電池の状態を検知する状態検知部と
     を有し、
     前記状態検知部は、
     前記計測部により計測された前記物理量及び前記蓄電池の特性情報に基づいて、前記蓄電池の充電率を検知する充電率検知部と、
     前記充電率検知部により検知された前記充電率の誤差を検知する誤差検知部と、
     前記蓄電池の前記充電率を制御する充電率制御部と、
     前記蓄電池の充放電を実行する負荷制御部と
     を備え、
     前記誤差検知部は、
     前記計測部の計測結果と、前記蓄電池の前記特性情報と、環境条件に応じて発生する演算誤差とのうちの少なくとも1以上の情報に基づいて、前記充電率検知部により検知された前記蓄電池の前記充電率の誤差をリアルタイムに検知し、又は、予め前記蓄電率に応じた誤差を求めておき、予め確認した前記充電率と前記充電率の誤差との関連性に基づいて、前記充電率検知部の結果に応じて前記充電率の誤差を推測し、
     前記充電率検知部は、
     それぞれ異なる複数の充電率検知方法により前記蓄電池の前記充電率を検知でき、前記誤差検知部により検知又は推測された前記充電率の誤差に基づいて、当該誤差を改善するように、前記蓄電池の前記充電率を検知する充電率検知方法を必要に応じて他の前記充電率検知方法を切り替え、
     前記充電率制御部は、
     前記誤差検知部の検知又は推測結果に応じて、前記蓄電池の充電又は放電を指示する充放電指令を上位制御装置に送信し、
     前記負荷制御部は、
     前記充放電指令に基づいて前記上位制御装置から与えられる制御指令に応じて、前記蓄電池の充放電を実行する
     ことを特徴とする電池制御装置。
  2.  前記充電率検知部は、
     前記蓄電池の電圧を基準に前記充電率を検知する前記充電率検知方法と、前記蓄電池に出入りする電流を積算することにより前記充電率を検知する前記充電率検知方法と、異なる2以上の前記充電率検知方法を組み合わせる前記充電率検知方法とのうちの2以上の前記充電率検知方法により前記蓄電池の前記充電率を検知でき、
     前記誤差検知部により検知又は推測された前記充電率の前記誤差に基づいて、利用する前記充電率検知方法を切り替える
     ことを特徴とする請求項1に記載の電池制御装置。
  3.  前記充電率検知部は、
     前記誤差検知部により検知された前記充電率の前記誤差が予め設定された閾値以上となった場合、又は、前記充電率の変化に対する前記蓄電池の開回路電圧の特性が平坦となる範囲内か否かで前記充電率検知方法を切り替える
     ことを特徴とする請求項1に記載の電池制御装置。
  4.  前記閾値は、
     前記蓄電池の前記開回路電圧及び前記充電率の関係において、前記充電率の変化に対する電圧特性が平坦となる範囲と、当該電圧特性が非平坦となる範囲との境界に設定された
     ことを特徴とする請求項3に記載の電池制御装置。
  5.  前記充電率検知部は、
     前記充電率の変化に対する前記電圧特性が平坦となる前記充電率の範囲では、前記蓄電池に出入りする電流を積算することにより前記充電率を検知する前記充電率検知方法により当該充電率を検知し、当該電圧特性が非平坦となる前記充電率の範囲では、前記蓄電池の電圧を基準に前記充電率を検知する前記充電率検知方法又は異なる2以上の前記充電率検知方法を組み合わせる前記充電率検知方法により当該充電率を検知するように、前記充電率検知方法を切り替える
     ことを特徴とする請求項4に記載の電池制御装置。
  6.  前記充電率制御部は、
     前記誤差検知部により検知された前記充電率の前記誤差が予め設定された閾値を超過した場合に、当該充電率を予め設定された目標値まで調整するための前記充放電指令を前記上位制御装置に送信する
     ことを特徴とする請求項1に記載の電池制御装置。
  7.  前記目標値は、
     前記蓄電池の開回路電圧及び前記充電率の関係において、前記充電率の変化に対する電圧特性が非平坦となる前記充電率の範囲内に設定された
     ことを特徴とする請求項6に記載の電池制御装置。
  8.  前記目標値が2以上設定され、2以上の前記目標値のうち、前記充電率の前記誤差が前記所定値以上となった時点における前記蓄電池の充電状態に最も近い1つが、最終的な前記目標値として選択される
     ことを特徴とする請求項6に記載の電池制御装置。
  9.  前記蓄電池は、鉄道車両に搭載され、
     前記負荷制御部は、
     前記上位制御装置から与えられる前記制御指令に応じて、前記鉄道車両の発電機、誘導電動機、SIVの少なくとも1つを動作させるようにして前記蓄電池の充放電を実行する
     ことを特徴とする請求項1に記載の電池制御装置。
  10.  蓄電池の充放電を制御する電池制御システムにおいて、
     前記蓄電池の状態に関する所定の物理量を計測する計測部と、
     前記蓄電池の状態を検知する状態検知部と、
     前記状態検知部の検知結果に基づいて前記蓄電池の充放電を制御する上位制御装置と
     を有し、
     前記状態検知部は、
     前記計測部により計測された前記物理量及び前記蓄電池の特性情報に基づいて、前記蓄電池の充電率を検知する充電率検知部と、
     前記充電率検知部により検知された前記充電率の誤差を検知又は推測する誤差検知部と、
     前記蓄電池の前記充電率を制御する充電率制御部と、
     前記蓄電池の充放電を実行する負荷制御部と
     を備え、
     前記誤差検知部は、
     前記計測部の計測結果と、前記蓄電池の前記特性情報と、環境条件に応じて発生する演算誤差とのうちの少なくとも1以上の情報に基づいて、前記充電率検知部により検知された前記蓄電池の前記充電率の誤差をリアルタイムに検知し、又は、予め前記蓄電率に応じた誤差を求めておき、予め確認した前記充電率と前記充電率の誤差との関連性に基づいて、前記充電率検知部の結果に応じて前記充電率の誤差を推測し、
     前記充電率検知部は、
     それぞれ異なる複数の充電率検知方法により前記蓄電池の前記充電率を検知でき、前記誤差検知部により検知又は推測された前記充電率の誤差に基づいて、当該誤差を改善するように、前記蓄電池の前記充電率を検知する充電率検知方法を必要に応じて他の前記充電率検知方法を切り替え、
     前記充電率制御部は、
     前記誤差検知部の検知又は推測結果に応じて、前記蓄電池の充電又は放電を指示する充放電指令を前記上位制御装置に送信し、
     前記負荷制御部は、
     前記充放電指令に基づいて前記上位制御装置から与えられる制御指令に応じて、前記蓄電池の充放電を実行し、
     前記蓄電池は、鉄道車両に搭載され、
     前記上位制御装置は、
     次の停車駅に到達する際の前記充電率の予測結果を取得し、
     取得した前記充電率の予測結果と、前記目標値との差を解消する電気量を充電又は放電するための前記制御指令を前記負荷制御部に送信する
     ことを特徴とする電池制御システム。
  11.  前記上位制御装置には、
     前記鉄道車両の車両位置に応じた次の前記停車駅に到着する際の前記充電率の変化量でなる充電率変化量が予め与えられ、
     前記上位制御装置は、
     前記充電率の前記誤差の検知結果が所定の閾値以上となった時点の前記蓄電池の現在の前記充電率と、当該鉄道車両の車両位置とから見込まれる前記充電率変化量に基づいて、次の前記停車駅における前記充電率の予測結果を算出する
     ことを特徴とする請求項10に記載の電池制御システム。
  12.  前記上位制御装置は、
     前記車両位置に応じた次の前記停車駅に到着するまでの前記充電率変化量を、当該充電率変化量の実績に基づいて適宜更新する
     ことを特徴とする請求項11に記載の電池制御システム。
  13.  前記上位制御装置は、
     前記鉄道車両の速度を取得し、取得した前記速度と、前記鉄道車両の質量とに基づいて運動エネルギーを算出し、算出した運動エネルギーを電気エネルギーとして回収した場合の前記充電率の変化量を算出し、算出した前記充電率の変化量と、前記鉄道車両を停止させる動作を開始した時点の前記蓄電池の前記充電率とに基づいて、次の前記停車駅における前記充電率の予測結果を取得する
     ことを特徴とする請求項10に記載の電池制御システム。
  14.  蓄電池の充放電を制御する電池制御装置において実行される電池制御方法であって、
     前記電池制御装置は、
     前記蓄電池の状態に関する所定の物理量を計測する計測部と、
     前記蓄電池の状態を検知する状態検知部と
     を有し、
     前記状態検知部は、
     それぞれ異なる複数の充電率検知方法により前記蓄電池の充電率を検知でき、前記計測部により計測された前記物理量及び前記蓄電池の前記特性情報に基づいて、前記蓄電池の充電率を検知する充電率検知部と、
     前記充電率検知部により検知された前記充電率の誤差を検知する誤差検知部と、
     前記蓄電池の前記充電率を制御する充電率制御部と、
     前記蓄電池の充放電を実行する負荷制御部と
     を有し、
     前記誤差検知部が、前記計測部の計測結果と、前記蓄電池の前記特性情報と、環境条件に応じて発生する演算誤差とのうちの少なくとも1以上の情報に基づいて、前記充電率検知部により検知された前記蓄電池の前記充電率の誤差をリアルタイムに検知し、又は、予め前記蓄電率に応じた誤差を求めておき、予め確認した前記充電率と前記充電率の誤差との関連性に基づいて、前記充電率検知部の結果に応じて前記充電率の誤差を推測する第1のステップと、
     前記充電率検知部が、前記誤差検知部により検知又は推測された前記充電率の誤差に基づいて、当該誤差を改善するように、前記蓄電池の前記充電率を検知する充電率検知方法を必要に応じて他の前記充電率検知方法を切り替える第2のステップと、
     前記充電率制御部が、前記誤差検知部の検知又は推測結果に応じて、前記蓄電池の充電又は放電を指示する充放電指令を上位制御装置に送信する第3のステップと、
     前記負荷制御部が、前記充放電指令に基づいて前記上位制御装置から与えられる制御指令に応じて、前記蓄電池の充放電を実行する第4のステップと
     を備える
     ことを特徴とする電池制御方法。
PCT/JP2019/009831 2018-05-29 2019-03-11 電池制御装置、電池制御システム及び電池制御方法 WO2019230110A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19810309.5A EP3806227A4 (en) 2018-05-29 2019-03-11 BATTERY CONTROL DEVICE, BATTERY CONTROL SYSTEM, AND BATTERY CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-102320 2018-05-29
JP2018102320A JP7250439B2 (ja) 2018-05-29 2018-05-29 電池制御装置、電池制御システム及び電池制御方法

Publications (1)

Publication Number Publication Date
WO2019230110A1 true WO2019230110A1 (ja) 2019-12-05

Family

ID=68698746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009831 WO2019230110A1 (ja) 2018-05-29 2019-03-11 電池制御装置、電池制御システム及び電池制御方法

Country Status (3)

Country Link
EP (1) EP3806227A4 (ja)
JP (1) JP7250439B2 (ja)
WO (1) WO2019230110A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113442726A (zh) * 2021-06-29 2021-09-28 重庆长安新能源汽车科技有限公司 一种电池包过热预警方法、装置及车辆
DE102021202562A1 (de) 2021-03-16 2022-09-22 Siemens Mobility GmbH Steuereinrichtung für ein Fahrzeug und Verfahren zu deren Betrieb
CN115333131A (zh) * 2022-08-25 2022-11-11 国网吉林省电力有限公司电力科学研究院 自适应源荷供需平衡的电动汽车充放电管理策略
CN115498295A (zh) * 2022-09-23 2022-12-20 深圳市正浩创新科技股份有限公司 荷电状态检测方法、装置、储能设备以及介质
CN118061816A (zh) * 2024-04-24 2024-05-24 中科军源(南京)智能技术有限公司 预装式移动超级充电站

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7316970B2 (ja) * 2020-03-30 2023-07-28 古河電気工業株式会社 バッテリの充電率を推定する方法、装置、プログラムおよび記録媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105821A (ja) 2004-10-06 2006-04-20 Toyota Motor Corp 二次電池の充電容量推定装置およびその方法
JP2010283922A (ja) * 2009-06-02 2010-12-16 Toyota Motor Corp 車両の制御装置
JP2011215151A (ja) * 2005-12-27 2011-10-27 Toyota Motor Corp 二次電池の充電状態推定装置および充電状態推定方法
WO2017221899A1 (ja) * 2016-06-22 2017-12-28 株式会社豊田自動織機 蓄電装置及び蓄電装置の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105821A (ja) 2004-10-06 2006-04-20 Toyota Motor Corp 二次電池の充電容量推定装置およびその方法
JP2011215151A (ja) * 2005-12-27 2011-10-27 Toyota Motor Corp 二次電池の充電状態推定装置および充電状態推定方法
JP2010283922A (ja) * 2009-06-02 2010-12-16 Toyota Motor Corp 車両の制御装置
WO2017221899A1 (ja) * 2016-06-22 2017-12-28 株式会社豊田自動織機 蓄電装置及び蓄電装置の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806227A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021202562A1 (de) 2021-03-16 2022-09-22 Siemens Mobility GmbH Steuereinrichtung für ein Fahrzeug und Verfahren zu deren Betrieb
EP4063183A1 (de) * 2021-03-16 2022-09-28 Siemens Mobility GmbH Steuereinrichtung für ein fahrzeug und verfahren zu deren betrieb
DE102021202562B4 (de) 2021-03-16 2023-07-13 Siemens Mobility GmbH Steuereinrichtung für ein Fahrzeug und Verfahren zum Steuern des Ausgangsstroms einer Brennstoffzelle
CN113442726A (zh) * 2021-06-29 2021-09-28 重庆长安新能源汽车科技有限公司 一种电池包过热预警方法、装置及车辆
CN113442726B (zh) * 2021-06-29 2022-05-31 重庆长安新能源汽车科技有限公司 一种电池包过热预警方法、装置及车辆
CN115333131A (zh) * 2022-08-25 2022-11-11 国网吉林省电力有限公司电力科学研究院 自适应源荷供需平衡的电动汽车充放电管理策略
CN115498295A (zh) * 2022-09-23 2022-12-20 深圳市正浩创新科技股份有限公司 荷电状态检测方法、装置、储能设备以及介质
CN118061816A (zh) * 2024-04-24 2024-05-24 中科军源(南京)智能技术有限公司 预装式移动超级充电站

Also Published As

Publication number Publication date
JP2019207795A (ja) 2019-12-05
EP3806227A4 (en) 2022-03-23
JP7250439B2 (ja) 2023-04-03
EP3806227A1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
WO2019230110A1 (ja) 電池制御装置、電池制御システム及び電池制御方法
US8947023B2 (en) Battery control device and motor drive system
US20210055355A1 (en) Method for monitoring the status of a plurality of battery cells in a battery pack
JP6445190B2 (ja) 電池制御装置
JP4884945B2 (ja) 充電状態予測プログラム、架線レス交通システム及びその充電方法
JP4864383B2 (ja) 蓄電デバイスの劣化状態推定装置
JP5753764B2 (ja) 電池システム監視装置およびこれを備えた蓄電装置
JP5621818B2 (ja) 蓄電システムおよび均等化方法
EP2717415A1 (en) Electricity storage system
JP6412847B2 (ja) 蓄電装置及び制御方法
KR101610906B1 (ko) 커패시터를 이용한 절연 저항 추정 장치 및 그 방법
JP4531113B2 (ja) 電力変換装置
KR101619328B1 (ko) 절연 저항 측정 장치 및 그 방법
US9548615B2 (en) Shovel and control method of shovel
JP2016530863A (ja) エネルギー貯蔵システムのバランス調整を行うための方法及び装置
KR101856068B1 (ko) 배터리 팩 전압을 이용한 절연 저항 측정 장치 및 방법
CN113016099B (zh) 电池控制装置
KR20110077387A (ko) 고전압 배터리시스템의 퓨즈 단선 감지회로 및 방법
KR102099414B1 (ko) 센싱 집적회로를 이용한 절연 저항 측정 장치 및 방법
JP5862478B2 (ja) 蓄電システムおよび制御方法
US11967851B2 (en) Electrified powertrain with method for determining battery limits based on cell factors
JP2018170904A (ja) 電池制御装置
JP2006020401A (ja) ハイブリッド車のバッテリ管理システム
JP2019174118A (ja) 電池劣化判定装置
KR20210112444A (ko) 전력 릴레이 어셈블리, 이를 포함하는 차량 및 전력 릴레이 어셈블리의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019810309

Country of ref document: EP

Effective date: 20210111