WO2019228248A1 - 车辆的配电系统和轨道车辆 - Google Patents

车辆的配电系统和轨道车辆 Download PDF

Info

Publication number
WO2019228248A1
WO2019228248A1 PCT/CN2019/088120 CN2019088120W WO2019228248A1 WO 2019228248 A1 WO2019228248 A1 WO 2019228248A1 CN 2019088120 W CN2019088120 W CN 2019088120W WO 2019228248 A1 WO2019228248 A1 WO 2019228248A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
power
distribution system
controllable switch
vehicle
Prior art date
Application number
PCT/CN2019/088120
Other languages
English (en)
French (fr)
Inventor
马栋茂
杨涛
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019228248A1 publication Critical patent/WO2019228248A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the field of charging technologies, and in particular, to a vehicle power distribution system and a rail vehicle.
  • the high-voltage control box includes a high-voltage battery module system, a precharge circuit, a low-voltage control interface, and a plurality of load circuit contactors, which are used to load a vehicle load (such as a motor controller, auxiliary power supply, electric air conditioner, Insulation detection, electric defroster, electric heater, etc.).
  • a vehicle load such as a motor controller, auxiliary power supply, electric air conditioner, Insulation detection, electric defroster, electric heater, etc.
  • the technology is equipped with a visual indicator light and an integrated pre-charge circuit, which can effectively prevent maintenance personnel from working on power. The troubleshooting is more intuitive, the search is more accurate and fast, and the high-voltage power-on is safer.
  • the first purpose of this application is to propose a vehicle power distribution system to ensure the safety and reliability of the load power-on, facilitate the troubleshooting of the load during the pre-charge power-on process, and improve the pre-charge power-on Operational efficiency.
  • a second object of the present application is to propose a rail vehicle.
  • an embodiment of the first aspect of the present application proposes a vehicle power distribution system, including: a power supply unit including a power battery; N load circuits, and the N load circuits are connected in parallel , One end of each load circuit is connected to the positive pole of the power supply unit, and the other end of each load circuit is connected to the negative pole of the power supply unit, the N load circuits include N loads, and each load circuit includes one load
  • the N loads are divided into a first-level load to an n-level load according to the function priority, wherein the function corresponding to the first-level load has the highest priority, N ⁇ n ⁇ 1, and n and N are both Integer; battery management unit, which is connected to the power supply unit and the N load circuits respectively, and the battery management unit is used to obtain the state parameters of the power battery in real time after receiving the power-on instruction And select a load to work according to the state parameter and load level, and obtain a power-on sequence according to the level of the selected load to work, and pass the selected work Con
  • the battery management unit after receiving the power-on instruction, obtains the state parameters of the power battery in real time, and selects the working load according to the state parameters and the load level, which can ensure that the load is powered on. Safety and reliability; and obtaining a power-on sequence according to the selected load level, and pre-charging and power-on the selected load through the load circuit corresponding to the selected load according to the power-on sequence, the power-on
  • the method is convenient for troubleshooting during the load pre-charge power-on process, and makes the pre-charge power-on operation more efficient.
  • an embodiment of the second aspect of the present application proposes a rail vehicle, including the power distribution system of the vehicle of the above embodiment.
  • the rail vehicle according to the embodiment of the present application adopts the step-by-step precharging and power-on method for the load circuit through the power distribution system of the above-mentioned embodiment, ensuring the safety and reliability of power-on, and improving the stability of power supply to a certain extent. It is easy to effectively handle the faults in the power distribution system.
  • FIG. 1 is a schematic structural diagram of a power distribution system in the related art
  • FIG. 2 is a schematic structural diagram of a power distribution system of a vehicle according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a load circuit according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a power distribution system of a vehicle according to a specific embodiment of the present application.
  • FIG. 5 is a schematic wiring diagram of a power distribution system of a vehicle according to an embodiment of the present application.
  • FIG. 6 is a control principle diagram of a time-delay contactor according to an embodiment of the present application.
  • FIG. 7 is a working flowchart of a vehicle power distribution system according to a specific embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a rail vehicle according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a power distribution system of a vehicle according to an embodiment of the present application.
  • the vehicle's power distribution system 100 includes a power supply unit 10, N load circuits 20, and a battery management unit 30.
  • the power supply unit 10 includes a power battery 11. N load circuits 20 are connected in parallel. One end of each load circuit 20 is connected to the positive electrode of the power supply unit 10, and the other end of the load circuit 20 is connected to the negative electrode of the power supply unit 10. Each load circuit 20 includes a load 21, N Each load 21 is divided into n load levels according to the function priority, that is, the first level load to the nth load. Among them, the first level load corresponds to the highest function priority, N ⁇ n ⁇ 1, and n and N are both Integer.
  • the battery management unit 30 is connected to the power supply unit 10 and the N load circuits 20, respectively.
  • the battery management unit 30 After receiving the power-on instruction, the battery management unit 30 obtains the state parameters of the power battery 11 in real time, selects the load 21 to work according to the state parameters and the load level, and obtains the power-on sequence according to the selected load 21 level, and The selected load 21 is pre-charged and powered on through the load circuit 20 corresponding to the selected load according to the power-on sequence. It should be noted that when the selected loads 21 belong to the same level, the power-on sequence of the loads of this level is randomly set.
  • the battery management unit 30 performs pre-charge and power-on processing on only one load 21 in a period of time, and pre-charges and power-on processing is preferentially performed on a load with a high function priority. Therefore, while ensuring the driving demand of the vehicle, the safety and reliability of the power-on of the load can be ensured, and the troubleshooting of the load during the pre-charge and power-on process is facilitated.
  • each load is controlled by a load circuit, which is convenient. It can manage the load and make the pre-charge power-on operation more efficient.
  • the vehicle can be a rail vehicle, such as a tram.
  • the above power-on instruction may be sent by TCMS (Train Control and Management System), or it may be sent by a vehicle control unit such as a CCU (Center Control Unit). .
  • the battery management unit 30 may be a BMS (Battery Management System, battery management system).
  • BMS Battery Management System, battery management system
  • the first-stage load is a load that is essential for the vehicle, such as a traction control system, a cooling unit, and a safety brake unit. Therefore, when the power of the power battery 11 is small, the normal operation of the first-stage load must be prioritized. ;
  • the second-level load can be a load that is not critical to driving, such as auxiliary power systems, air-conditioning systems, etc.
  • the third-level load such as on-board Service systems such as monitors and sound broadcasting systems. This type of load can be unloaded in the event of a power emergency. That is, when the battery level is low, the load can be sequentially discharged. For the power-off sequence, you can choose to unload the third-level load first, and ensure that the first-level load works normally.
  • the state parameters include the state-of-charge SOC of the power battery.
  • the battery management unit 30 is configured to select the first-stage load to the i-stage load to work when the SOC is in the i-th preset interval. When the SOC is in the first preset interval, In this case, the first-level load to the n-th load are selected to work, where 1 ⁇ i ⁇ I ⁇ n, the SOC value corresponding to the i-th preset interval is smaller than the SOC value corresponding to the i + 1-th preset interval.
  • the SOC value corresponding to the first preset interval is set to 25% to 60%
  • the SOC value corresponding to the second preset interval is set to 60% to 100%.
  • the SOC of the power battery 11 is in the first preset interval.
  • the battery management unit 30 selects the first-stage load to work. If the SOC of the power battery 11 is in the second preset interval, the battery management unit 30 selects the first-stage load to the first. Work at level 3 load.
  • the SOC value corresponding to the second preset interval to 60% to 80%
  • the third preset interval is 80% to 100%.
  • the battery management unit 30 selects the first-stage load to work; if the SOC of the power battery 11 is in the second preset In the preset interval, the battery management unit 30 selects the first-stage load to the second-stage load to work. If the SOC of the power battery 11 is in the third preset interval, the battery management unit 30 selects the first-stage load to the third-stage load. working. It should be understood that if the SOC of the power battery 11 is less than the value of the SOC corresponding to the first preset interval, it means that the power of the power battery 11 is too small to provide the energy for vehicle operation. At this time, the battery management unit 30 The CCU sends a prompt signal to remind the power battery 11 to be charged in time.
  • the battery management unit 30 is further configured to select a load to be unloaded according to the status parameter and the level of the load that is currently in an operating state.
  • the load currently in the working state includes a first-stage load and a second-stage load. If the battery management unit 30 detects that the SOC of the power battery 11 is less than a certain value, it can selectively unload the second-stage load. When there are multiple second-level loads working at the same time, one or more of the loads can be selectively unloaded, and the selection method can be random.
  • each load circuit 20 includes: a first controllable switch SW1, a precharge resistor R, and a second controllable switch SW2.
  • One end of the first controllable switch SW1 is connected to one end of the power supply unit 10 and forms a first node a.
  • the other end of the first controllable switch SW1 is connected to one end of the load 21 and forms a second node b.
  • the first The control end of the controllable switch SW1 is connected to the battery management unit 30, wherein the other end of the load 21 is connected to the other end of the power supply unit 10; one end of the precharge resistor R is connected to the first node a; One end is connected to the other end of the pre-charging resistor R, the other end of the second controllable switch SW2 is connected to the second node b, and the control end of the second controllable switch SW2 is connected to the battery management unit 30. That is, a pre-charge circuit consisting of a first controllable switch SW1, a pre-charge resistor R, and a second controllable switch SW2 is provided for each load circuit 20, thereby improving the efficiency of power-on operation of the load. And facilitate the management of the load. In addition, each load circuit is provided with a precharge circuit. The precharge circuit can protect the load separately to ensure the power-on safety of the load.
  • the battery management unit 30 controls the first controllable switch SW1 to open and the second controllable switch SW2 to close when the load 21 is precharged and powered on, and the voltage across the load 21 and the terminal voltage of the power supply unit 10 are between When the difference between them is less than or equal to a preset threshold, the first controllable switch SW1 is controlled to be turned on and the second controllable switch SW2 is turned off.
  • the first controllable switch SW1 and the second controllable switch SW2 may both adopt contactors.
  • the preset threshold can be selected according to needs, and a certain value can be selected or a ratio of the voltage across the load 21 to a certain voltage across the power battery 11 can be selected.
  • the battery management unit 30 may control the second controllable switch SW2 to open after controlling the first controllable switch SW1 to close for a second preset time.
  • the second preset time can be calibrated as required.
  • the second preset time can be set to 1 second.
  • the battery management unit 30 is also in the third preset time after the second controllable switch SW2 is closed. If it is detected that the difference between the voltage across the load 21 and the terminal voltage of the power supply unit 10 is greater than a preset threshold, the control unit controls The second controllable switch SW2 is turned off, and it is judged that the pre-charging and power-on of the load 21 has failed. At this time, the battery management unit 30 may send a load 21 pre-charge power-on failure signal to the TCMS or CCU, so as to perform troubleshooting processing on the cause of the pre-charge power-on failure.
  • the third preset time can be calibrated as required.
  • the third preset time can be set to 3 seconds.
  • a load fuse 22 may be provided in each load circuit 20, and the load fuse 22 is connected in series with the corresponding load 21, as shown in FIG.
  • the load circuit where the traction control system is located includes the controllable switch KM1, the controllable switch KM2, the pre-charge resistor R1, and the fuse FU2;
  • the load circuit where the auxiliary power system is located includes the controllable switch KM3, the controllable switch KM4, and the The charging resistor R2 and the fuse FU3;
  • the load circuit where the vehicle service system is located includes a controllable switch KM5, a controllable switch KM6, a pre-charging resistor R3, and a fuse FU4.
  • the vehicle power distribution system 100 further includes N load control units corresponding to the N loads. Each load control unit is connected to the battery management unit 30. Each load control unit is used to detect the voltage across the corresponding load 21.
  • the battery management unit 30 after controlling the first controllable switch SW1 to close and the second switch to open SW2, the battery management unit 30 also receives the voltage across the load 21 fed back by the load control unit.
  • the difference between the terminal voltages of the power supply unit 10 is within a preset range, and the battery management unit 30 judges that the load 21 is successfully precharged and powered on. If the voltage across the load 21 and the terminal voltage of the power supply unit 10 are different If the value is not within the preset range, the battery management unit 30 controls the first controllable switch SW1 to be turned off, and judges that the load fails to be precharged and powered on. At this time, the battery management unit 30 may send a load 21 pre-charge power-on failure signal to the TCMS or CCU, so as to perform troubleshooting processing on the cause of the pre-charge power-on failure.
  • the preset range can be calibrated as required.
  • the power battery 11 is composed of M battery modules 111 connected in series, and the power supply unit 10 further includes M-1 contactors K0. Among them, one contactor K0 is connected in series between two adjacent battery modules 111, each contacting The control terminal of the controller K0 is connected to the battery management unit 30, M ⁇ 2, and M is an integer, and the value of M in FIG. 4 is 2. It should be understood that the contactor K0 is a DC contactor. Therefore, through the arrangement of the M-1 contactors described above, it is convenient to detect the failure of the battery module, such as detecting the failure of the battery module by detecting the voltage between the battery modules, and it is also convenient to divide the voltage of the power battery. .
  • the contactor K0 can be built in the power battery 11 and packaged together with the power battery 11 and only needs to lead out the control line (low-voltage control line); the contactor K0 can also be externally placed in the power battery distribution box and passed through the power distribution box. The connection cable from the electric box is connected.
  • the M-1 contactors K0 are always open, and the battery management unit 30 controls the M-1 contactors K0 to be closed after receiving the power-on instruction. That is, when the contactor K0 is turned off, the positive and negative electrodes of the power battery 11 are disconnected, so there is no need to worry about accidental electric shock.
  • the battery management unit 30 controls the M-1 contactors K0 to be closed for the first preset time, if it detects that the power supply unit 10 has a voltage output, it performs a pre-charge process on the selected load 21.
  • the first preset time can be calibrated as required.
  • the first preset time can be set to 3 seconds.
  • the power distribution system 100 may further include a negative fuse FU1 and a leakage sensor 40.
  • one end of the negative fuse FU1 is connected to the negative of the power supply unit 10, and the other end of the negative fuse FU1 is connected to the other end of each load circuit 20, that is, the negative fuse FU1 is connected in series to the negative bus L- of the power supply unit 10 It can be blown when the current flowing through the negative bus L- reaches a certain value, so as to disconnect the power supply connection between the power supply unit 10 and the load circuit 20 to avoid device damage caused by the overcurrent; the leakage sensor 40 is connected to the negative fuse FU1.
  • the power distribution system 100 further includes a maintenance switch QS.
  • One end of the maintenance switch QS is connected to the positive pole of the power supply unit 10, and the other end of the maintenance switch QS is connected to one end of each load circuit 20, that is, maintenance.
  • the switch QS is connected in series to the positive bus L + of the power supply unit 10, wherein the maintenance switch QS is normally closed. Therefore, the power supply (ie, the power supply unit 10) can be easily disconnected during maintenance, and safety during maintenance can be ensured.
  • the load of the power distribution system 100 includes a traction inverter (a first-stage load), a DC-DC converter (a second-stage load), and other loads (such as lighting, meters, and the like).
  • a traction inverter a first-stage load
  • DC-DC converter a second-stage load
  • other loads such as lighting, meters, and the like.
  • the BMS controls the positive contactor K1 in Figure 4 to pull in, and then detects the power after a delay of 3s. Whether the battery 11 has an output voltage.
  • the time relay KT coil is energized and starts timing. When the timing reaches the first preset time such as 3s (that is, the time relay KT in FIG.
  • the time relay KT is closed, and the coil of the contactor K0 is energized, so that M-1 contactors K0 are closed, thereby completing the 3s delay described above.
  • the BMS can detect the voltage value U0 at the end of the power battery 11 and the voltage at the load end (U1, U2, U3). If the power battery 11 has a voltage output, it means that the contactor K0 is normally closed.
  • the precharging process of the traction inverter is performed. As shown in Figures 5 and 7, when the DC-DC converter is not started, the vehicle's 24V battery is used for low-voltage power supply.
  • the BMS controls the pre-charge contactor KM1. During the pre-charge process, the BMS continues to send traction inverse The voltage value U1 of the transformer terminal changes. If the difference between the voltage U0 of U1 and the power battery 11 terminal reaches a preset threshold within 3s, the BMS controls the pull-in contactor KM2. In order to avoid pre-charge current shunting, you can disconnect the pre-charge contactor KM1 for a period of time (about 1 s) after controlling the pull-in contactor KM2 to ensure stable connection of the system.
  • the TCU Traffic Control Unit feedbacks the voltage across the traction inverter to the BMS. If the difference between this voltage and the terminal voltage of the power battery 11 detected by the BMS is within a preset range, then The traction inverter is successfully precharged and powered on. If the difference between this voltage and the terminal voltage of the power battery 11 detected by the BMS is not within the preset range, it indicates that the traction inverter failed to be precharged and powered on. At this time, the BMS control KM1 is disconnected, and sends a message of “traction precharge failed to power on” to TCMS, and then it can also send a message of “power on failed” to TCMS.
  • the BMS controls the KM2 to be disconnected, and sends a "traction precharge failed to power on” message to TCMS, and You can also send a "power-on failure” message to TCMS.
  • the DC-DC converter is pre-charged and powered up, and the same steps are followed until the pre-charged power-up is completed, and the BMS can send a power-on completion message to the TCMS.
  • the cause of the failure can be locked quickly according to the type of failure.
  • the cause of the failure may be: 1) The RC time constant (time constant of the transition reaction) is too large
  • the value of the capacitor C is fixed, so the possible cause of the failure is that the resistance of the precharge resistor is too large, which causes the precharge time to be too long, the voltage at the capacitor terminal rises slowly, and the current value decreases slowly, resulting in The average power of the resistor is large, resulting in unnecessary losses and waste of time; 2) Insulation failure, load 21 has a short circuit due to failure or load 21 is a small resistive load, such as capacitor breakdown, etc., which will cause the voltage to always be Can not go up, at this time the voltage at the end
  • the vehicle power distribution system in the embodiment of the present application adopts a step-by-step pre-charging and power-on method for the load circuit, ensuring the safety and reliability of power-on, and improving the stability of power supply to a certain extent, and Facilitate effective handling of faults in the power distribution system.
  • the negative pole of the power supply unit is equipped with a negative fuse and a leakage sensor. When the current flowing through the negative bus is too large, the negative fuse is blown to prevent the overcurrent from damaging components and loads in the load circuit, and when power is distributed. When the system has a leakage, the leakage sensor will send the leakage information to the vehicle's vehicle control unit so that the vehicle control unit can deal with it in a timely manner.
  • FIG. 8 is a schematic structural diagram of a rail vehicle according to an embodiment of the present application.
  • the rail vehicle 1000 includes the power distribution system 100 of the vehicle of the above embodiment.
  • the rail vehicle 1000 may be a tram, such as a rail train, an air bus, or the like.
  • the rail vehicle according to the embodiment of the present application adopts the step-by-step precharging and power-on method for the load circuit through the power distribution system of the above-mentioned embodiment, ensuring the safety and reliability of power-on, and improving the stability of power supply to a certain extent. It is easy to effectively handle the faults in the power distribution system.
  • the negative pole of the power supply unit is equipped with a negative fuse and a leakage sensor. When a leakage occurs in the power distribution system, the leakage sensor will send the leakage information to the vehicle control unit, so that the vehicle control unit can deal with it in a timely manner.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, the meaning of "plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
  • the terms “installation,” “connected,” “connected,” and “fixed” should be understood broadly unless otherwise specified and limited, for example, they may be fixed connections or removable connections Or integrated; it can be mechanical or electrical; it can be directly connected or indirectly connected through an intermediate medium; it can be the internal connection of two elements or the interaction between two elements, unless otherwise specified The limit.
  • the specific meanings of the above terms in this application can be understood according to specific situations.
  • the first feature "on” or “down” of the second feature may be the first and second features in direct contact, or the first and second features indirectly through an intermediate medium. contact.
  • the first feature is “above”, “above”, and “above” the second feature.
  • the first feature is directly above or obliquely above the second feature, or it only indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature.
  • the first feature may be directly below or obliquely below the second feature, or it may simply indicate that the first feature is less horizontal than the second feature.

Abstract

一种车辆的配电系统,包括:供电单元(10),供电单元包括动力电池(11);N个负载回路(20),N个负载回路(20)之间并联连接,且与供电单元(10)并联,每个负载回路(20)包括一个负载(21),N个负载(21)根据功能优先级分为第1级负载~第n级负载;分别与供电单元(10)和N个负载回路(20)相连的电池管理单元(30),用于在接收到上电指令后,实时获取动力电池的状态参数,并根据状态参数和负载等级选择进行工作的负载,以及根据所选择的负载的等级获取上电次序,并通过所选择的负载对应的负载回路(20)按照该上电次序对所选择的负载进行预充上电处理。还公开了包括该配电系统的车辆。该配电系统对负载回路采用分步预充上电的方式,确保了上电的安全性和可靠性,在一定程度上提高了供电的稳定性,且便于对配电系统出现的故障进行有效处理。

Description

车辆的配电系统和轨道车辆
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2018年5月28日提交的、发明名称为“车辆的配电系统和轨道车辆”的、中国专利申请号“201810523483.1”的优先权。
技术领域
本申请涉及充电技术领域,尤其涉及一种车辆的配电系统和一种轨道车辆。
背景技术
相关技术中,公开了一种可用于车辆配电的高压控制盒。如图1所示,该高压控制盒包括高压电池模组系统、预充回路、低压控制接口以及多个负载回路接触器,其用于给车辆负载(如电机控制器、辅助电源、电空调、绝缘检测、电除霜器和电加热器等)供电。该技术设置了可目测的指示灯与集成了预充电路,可以有效的防止维修人员带电作业,故障排查更直观,查找更加准确快速,高压上电更加安全。
然而,上述技术中,所有负载共用一个预充回路,且在接收到上电指令时,对该指令对应的所有负载均进行上电操作,由此使得负载的上电效率较低,且不一定能够保证上述指令对应的所有负载的安全可靠上电;同时,在预充电过程中,若负载端出现短路、过载等故障时,控制台不能判断是哪路负载出现问题,增加了故障排查时间和困难。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的第一个目的在于提出一种车辆的配电系统,以保证负载上电的安全性和可靠性,方便负载预充上电过程中故障的排查处理,提高预充上电操作的效率。
本申请的第二个目的在于提出一种轨道车辆。
为达到上述目的,本申请第一方面实施例提出了一种车辆的配电系统,包括:供电单元,所述供电单元包括动力电池;N个负载回路,所述N个负载回路之间并联连接,每个负载回路的一端与所述供电单元的正极相连,每个负载回路的另一端与所述供电单元的负极相连,所述N个负载回路包括N个负载,每个负载回路包括一个负载,所述N个负载根据功能优先级分为第1级负载~第n级负载,其中,所述第1级负载对应的功能的优先级最高,N≥n≥1,且n、N均为整数;电池管理单元,所述电池管理单元分别与所述供电单元和所述N个负载回路相连,所述电池管理单元用于在接收到上电指令后,实时获取所述动 力电池的状态参数,并根据所述状态参数和负载等级选择进行工作的负载,以及根据所选择进行工作的负载的等级获取上电次序,并通过所选择进行工作的负载对应的负载回路按照所述上电次序对所选择进行工作的负载进行预充上电处理。
根据本申请实施例的车辆的配电系统,电池管理单元在接收到上电指令后,实时获取动力电池的状态参数,并根据状态参数和负载等级选择进行工作的负载,能够保证负载上电的安全性和可靠性;以及根据所选择的负载的等级获取上电次序,并通过所选择的负载对应的负载回路按照所述上电次序对所选择的负载进行预充上电处理,该上电方式便于负载预充上电过程中故障的排查处理,且使得预充上电操作更加高效。
为达到上述目的,本申请第二方面实施例提出了一种轨道车辆,包括上述实施例的车辆的配电系统。
本申请实施例的轨道车辆,通过上述实施例的配电系统,对负载回路采用分步预充上电的方式,确保了上电的安全性和可靠性,在一定程度上提高了供电的稳定性,且便于对配电系统出现的故障进行有效处理。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是相关技术中的配电系统的结构示意图;
图2是根据本申请一个实施例的车辆的配电系统的结构示意图;
图3是根据本申请一个实施例的负载回路的结构示意图;
图4是根据本申请一个具体实施例的车辆的配电系统的结构示意图;
图5是根据本申请一个实施例的车辆的配电系统的接线示意图;
图6是根据本申请一个实施例的延时接触器的控制原理图;
图7是根据本申请一个具体实施例的车辆的配电系统的工作流程图;
图8是根据本申请实施例的轨道车辆的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的车辆的配电系统和轨道车辆。
图2是根据本申请一个实施例的车辆的配电系统的结构示意图。
如图2所示,该车辆的配电系统100包括供电单元10、N个负载回路20和电池管理单元30。
其中,供电单元10包括动力电池11。N个负载回路20之间并联连接,每个负载回路20的一端与供电单元10的正极相连,负载回路20的另一端与供电单元10的负极相连,每个负载回路20包括一个负载21,N个负载21根据功能优先级分为n个负载等级,即第1级负载~第n级负载,其中,第1级负载对应的功能优先级最高,N≥n≥1,且n、N均为整数。电池管理单元30分别与供电单元10和N个负载回路20相连。
电池管理单元30在接收到上电指令后,实时获取动力电池11的状态参数,并根据状态参数和负载等级选择进行工作的负载21,以及根据所选择的负载21的等级获取上电次序,并通过所选择的负载对应的负载回路20按照该上电次序对所选择的负载21进行预充上电处理。需要说明的是,当所选择的负载21属于同一等级时,则随机设定该等级负载的上电次序。
也就是说,电池管理单元30在一个时间段内只对一个负载21进行预充上电处理,且优先对功能优先级高的负载进行预充上电处理。由此,能够在保证车辆行车需求的同时,保证了负载上电的安全性和可靠性,且便于负载预充上电过程中故障的排查处理,此外每个负载采用一个负载回路进行控制,方便了对负载的管理,且使得预充上电操作更加高效。
车辆可以是轨道车辆,如有轨电车。其中,上述上电指令可以是由TCMS(Train Control and Management System,列车控制和管理系统)发送的,也可以是由车辆上的整车控制单元如CCU(Center Control Unit,中央控制单元)发送的。
在该实施例中,电池管理单元30可以是BMS(Battery Management System,电池管理系统)。
其中,n的取值可以是3。其中,第1级负载为对于车辆行驶至关重要的负载,例如牵引控制系统、冷却单元、安全制动单元等,因此在动力电池11的电量较小时,要优先保证第1级负载的正常工作;第2级负载可以为对于行车不是至关重要的负载,例如辅助电源系统、空调系统等,在动力电池的电量较小时,可以对该类负载进行选择性卸载;第3级负载,例如车载显示器、声音播报系统等服务性系统,该类负载可在电量紧急情况下进行卸载。即在电池电量较小时,可以依次对负载退电。对退电顺序,可选择优先卸载第3级负载,而优先保证第1级负载正常工作。
状态参数包括动力电池的荷电状态SOC,其中,电池管理单元30用于在SOC处于第i预设区间时,选择第1级负载~第i级负载进行工作,在SOC处于第I预设区间时,选择第1级负载~第n级负载进行工作,其中,1≤i<I≤n,第i预设区间对应的SOC取值小于第i+1预设区间对应的SOC取值。
例如,当n=3,I=2时,设定第1预设区间对应的SOC取值为25%~60%、第2预设区间对应的SOC的取值为60%~100%,如果动力电池11的SOC在第1预设区间,电池管理单元30则选择第1级负载进行工作,如果动力电池11的SOC在第2预设区间,电池管理单元30则选择第1级负载~第3级负载进行工作。当n=3,I=3时,设定第1预设区间对应的SOC取值为25%~60%、第2预设区间对应的SOC的取值为60%~80%,第3预设区间对应的SOC的取值为80%~100%,如果动力电池11的SOC在第1预设区间,电池管理单元30则选择第1级负载进行工作;如果动力电池11的SOC在第2预设区间,电池管理单元30则选择第1级负载~第2级负载进行工作,如果动力电池11的SOC在第3预设区间,电池管理单元30则选择第1级负载~第3级负载进行工作。应当理解,如果动力电池11的SOC小于第1预设区间对应的SOC取值,则说明动力电池11的电量过小,不足以提供车辆运行的能量,此时,电池管理单元30可向TCMS或CCU发送提示信号,以提醒及时对动力电池11进行充电。
电池管理单元30还用于根据状态参数和当前处于工作状态的负载的等级选择进行卸载的负载。例如,当前处于工作状态的负载有第1级负载和第2级负载,电池管理单元30如果检测到动力电池11的SOC小于一定值,则可选择性的对第2级负载进行卸载,即言,当同时有多个第2级负载工作时,可选择性卸载其中一个或多个负载,选择方式可随机。
如图3所示,每个负载回路20包括:第一可控开关SW1、预充电阻R和第二可控开关SW2。其中,第一可控开关SW1的一端与供电单元10的一端相连,并形成第一节点a,第一可控开关SW1的另一端与负载21的一端相连,并形成第二节点b,第一可控开关SW1的控制端与电池管理单元30相连,其中,负载21的另一端与供电单元10的另一端相连;预充电阻R的一端与第一节点a相连;第二可控开关SW2的一端与预充电阻R的另一端相连,第二可控开关SW2的另一端与第二节点b相连,第二可控开关SW2的控制端与电池管理单元30相连。即言,针对每个负载回路20均设置一个由第一可控开关SW1、预充电阻R和第二可控开关SW2组成的预充回路,由此,可以提高对负载进行上电操作效率,且方便对负载的管理。并且,每个负载回路均设置预充回路,预充回路可以分别对负载进行保护,保证负载的上电安全。
电池管理单元30在对负载21进行预充上电处理时,控制第一可控开关SW1断开、第二可控开关SW2闭合,并在该负载21两端的电压与供电单元10的端电压之间的差值小于等于预设阈值时,控制第一可控开关SW1闭合、第二可控开关SW2断开。其中,第一可控开关SW1和第二可控开关SW2可均采用接触器。其中,预设阈值可根据需要来选择,可以选择某一数值也可以选择负载21两端电压达到动力电池11端电压一定的比值。
为避免预充电电流分流,电池管理单元30可在控制第一可控开关SW1闭合第二预设时间后,控制第二可控开关SW2断开。其中,第二预设时间可根据需要进行标定,例如,第 二预设时间可取值为1秒。
电池管理单元30还在第二可控开关SW2闭合后的第三预设时间内,如果检测到负载21两端的电压与供电单元10的端电压之间的差值均大于预设阈值,则控制第二可控开关SW2断开,并判断对该负载21预充上电失败。此时,电池管理单元30可向TCMS或CCU发送负载21预充上电失败信号,以便对预充上电失败原因进行排查处理。
其中,第三预设时间可根据需要进行标定,例如,第三预设时间可取值为3秒。
为保证负载回路20的安全性,可在每个负载回路20中设置一个负载熔断器22,负载熔断器22与对应的负载21串联连接,如图3所示。
如图4所示,牵引控制系统所在负载回路包括可控开关KM1、可控开关KM2、预充电阻R1、熔断器FU2;辅助电源系统所在负载回路包括可控开关KM3、可控开关KM4、预充电阻R2、熔断器FU3;车载服务类系统所在负载回路包括可控开关KM5、可控开关KM6、预充电阻R3、熔断器FU4。
车辆的配电系统100还包括与N个负载对应的N个负载控制单元,每个负载控制单元均与电池管理单元30相连,每个负载控制单元用于检测对应负载21两端的电压。
在该实施例中,电池管理单元30在控制第一可控开关SW1闭合、第二开关断开SW2后,还接收负载控制单元反馈的负载21两端的电压,其中,如果负载21两端的电压与供电单元10的端电压之间的差值在预设范围内,电池管理单元30则判断对该负载21预充上电成功,如果负载21两端的电压与供电单元10的端电压之间的差值不在预设范围内,电池管理单元30则控制第一可控开关SW1断开,并判断对该负载预充上电失败。此时,电池管理单元30可向TCMS或CCU发送负载21预充上电失败信号,以便对预充上电失败原因进行排查处理。
其中,预设范围可根据需要进行标定。
动力电池11由M个串联连接的电池模组111组成,供电单元10还包括M-1个接触器K0,其中,两个相邻的电池模组111之间串联一个接触器K0,每个接触器K0的控制端均与电池管理单元30相连,M≥2,且M为整数,图4中M的取值为2。应当理解,接触器K0为直流接触器。由此,通过上述M-1个接触器的设置可便于检测电池模组的故障,如,通过检测电池模组之间电压来检测电池模组的故障,同时还可便于对动力电池进行分压。
其中,接触器K0可内置于动力电池11,并与动力电池11一起封装,只需引出控制线(低压控制线)即可;接触器K0也可外置于动力电池配电箱,并通过配电箱引出的连接线连接。
在该实施例中,M-1个接触器K0常开,电池管理单元30在接收到上电指令后,控制M-1个接触器K0闭合。即言,在接触器K0断开时,动力电池11的正负极之间断路,不用 担心造成意外触电事故。
电池管理单元30在控制M-1个接触器K0闭合后的第一预设时间内,如果检测到供电单元10有电压输出,则对所选择的负载21进行预充上电处理。
其中,第一预设时间可根据需要进行标定,例如,第一预设时间可取值为3秒。
如图4、图5所示,配电系统100还可包括负极熔断器FU1和漏电传感器40。
其中,负极熔断器FU1的一端与供电单元10的负极相连,负极熔断器FU1的另一端与每个负载回路20的另一端相连,即负极熔断器FU1串联在供电单元10的负极母线L-中,其可在流过负极母线L-的电流达到一定值时熔断,以断开供电单元10与负载回路20的供电连接,避免过流造成的器件损坏;漏电传感器40连接在负极熔断器FU1的另一端和地之间,用于检测配电系统100是否发生漏电,并在配电系统100发生漏电时生成漏电信息,以及将漏电信息发送至车辆的整车控制单元,以便整车控制单元根据漏电信息进行相应处理。
如图4、图5所示,配电系统100还包括维修开关QS,维修开关QS的一端与供电单元10的正极相连,维修开关QS的另一端与每个负载回路20的一端相连,即维修开关QS串联在供电单元10的正极母线L+中,其中,维修开关QS常闭。由此,可便于在检修时断开供电电源(即供电单元10),保证维修时的安全性。
下面结合图5-图7描述本申请实施例的配电系统100的工作原理:
如图5所示,配电系统100的负载包括:牵引逆变器(第1级负载)、DC-DC变换器(第2级负载)、其他负载(如照明、仪表等)。需要说明的是,参见图5,该其他负载直接连接在电池正负极之间,其并不属于本发明所述的分级的负载范畴。
如图7所示,对于有轨列车而言,当BMS接收到TCMS发出的上电报文(即SB1闭合)时,BMS控制图4中的正极接触器K1吸合,进而延时3s后检测动力电池11是否有输出电压。其中,如图6所示,在正极接触器K1吸合后,时间继电器KT线圈得电,开始计时,当计时时间达到第一预设时间如3s(即图6中的时间继电器KT延时3s)时,时间继电器KT吸合,接触器K0的线圈得电,使得M-1个接触器K0吸合,由此完成上述3s延时。此时,BMS可检测动力电池11端电压值U0与负载端电压(U1、U2、U3),若动力电池11有电压输出,则说明接触器K0已正常吸合。
接下来进行正式上电流程:
首先进行牵引逆变器的预充电流程。如图5、图7所示,在DC-DC变换器未启动工作的情况下,由车载24V蓄电池进行低压供电,BMS控制吸合预充接触器KM1,预充过程中,BMS持续发送牵引逆变器端电压值U1变化,若3s内U1与动力电池11端电压U0差值达到预设阈值,BMS则控制吸合牵引接触器KM2。为了避免造成预充电电流分流,可以在控制吸合牵 引接触器KM2后一段时间(1s左右)再断开预充接触器KM1,以保证系统稳定连接。进一步地,TCU(Traction control unit,牵引控制单元)向BMS反馈牵引逆变器两端的电压,如果该电压与BMS检测的动力电池11的端电压之间的差值在预设范围内,则说明牵引逆变器预充上电成功,如果该电压与BMS检测的动力电池11的端电压之间的差值不在预设范围内,则说明牵引逆变器预充上电失败,此时BMS控制KM1断开,并发送“牵引预充上电失败”信息至TCMS,进而还可发送“上电失败”信息至TCMS。另外,在预充过程中,如果在3s内U1与动力电池11端电压U0差值未达到预设阈值,BMS则控制KM2断开,并发送“牵引预充上电失败”信息至TCMS,进而还可发送“上电失败”信息至TCMS。
然后对DC-DC变换器进行预充上电处理,同样按照上述步骤进行,直至预充上电结束,BMS可向TCMS发送上电完成信息。
需要说明的是,在对负载21进行预充上电时,因为每次都是只对一个负载21进行操作,所以当出现不正常现象时,可以根据故障类型很快锁定故障原因。例如,在进行牵引逆变器预充上电处理时,如果充电时间比计划预充时间要长,充电速度很慢,故障原因可以是:1)RC时间常数(过渡反应的时间常数)过大,对于负载电路20来说,电容C的值是固定的,所以故障可能原因就是预充电阻的阻值过大,导致预充时间过长,电容端电压上升缓慢,电流值下降缓慢,从而导致电阻的平均功率较大,产生不必要的损耗和时间上的浪费;2)绝缘故障,负载21因故障有短路或负载21为较小阻性负载,如电容被击穿等,会导致电压始终上不去,此时负载21端电压始终加在预充电阻R上,负载回路20电流过大,热功率增大,烧毁预充电阻R。由此,能较快明确故障类型及原因,以便立刻切断相应预充接触器(即第二可控开关SW2),待故障修复后再行预充上电。
综上,本申请实施例的车辆的配电系统,对负载回路采用分步预充上电的方式,确保了上电的安全性和可靠性,在一定程度上提高了供电的稳定性,且便于对配电系统出现的故障进行有效处理。另外,供电单元负极装有负极熔断器和漏电传感器,当流过负极母线的电流过大时,负极熔断器熔断,以避免过流对负载回路中的各器件和负载造成损坏,以及当配电系统出现漏电时,漏电传感器会将漏电信息发送给车辆的整车控制单元,以便整车控制单元及时进行相应处理。
图8是根据本申请一个实施例的轨道车辆的结构示意图。
如图8所示,该轨道车辆1000包括上述实施例的车辆的配电系统100。
轨道车辆1000可以是有轨电车,如有轨列车、空中巴士等。
本申请实施例的轨道车辆,通过上述实施例的配电系统,对负载回路采用分步预充上电的方式,确保了上电的安全性和可靠性,在一定程度上提高了供电的稳定性,且便于对配电系统出现的故障进行有效处理。另外,供电单元负极装有负极熔断器和漏电传感器, 当配电系统出现漏电时,漏电传感器会将漏电信息发送给整车控制单元,以便整车控制单元及时进行相应处理。
需要说明的是,在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种车辆的配电系统,其特征在于,包括:
    供电单元,所述供电单元包括动力电池;
    N个负载回路,所述N个负载回路之间并联连接,每个负载回路的一端与所述供电单元的正极相连,每个负载回路的另一端与所述供电单元的负极相连,所述N个负载回路包括N个负载,每个负载回路包括一个负载,所述N个负载根据功能优先级分为第1级负载~第n级负载,其中,所述第1级负载对应的功能优先级最高,N≥n≥1,且n、N均为整数;
    电池管理单元,所述电池管理单元分别与所述供电单元和所述N个负载回路相连,所述电池管理单元用于在接收到上电指令后,实时获取所述动力电池的状态参数,并根据所述状态参数和负载等级选择进行工作的负载,以及根据所选择进行工作的负载的等级获取上电次序,并通过所选择进行工作的负载对应的负载回路按照所述上电次序对所选择进行工作的负载进行预充上电处理。
  2. 如权利要求1所述的车辆的配电系统,其特征在于,所述电池管理单元还用于根据所述状态参数和当前处于工作状态的负载的等级选择进行卸载的负载。
  3. 如权利要求1或2所述的车辆的配电系统,其特征在于,所述状态参数包括所述动力电池的荷电状态SOC,其中,所述电池管理单元用于在所述SOC处于第i预设区间时,选择第1级负载~第i级负载进行工作,在所述SOC处于第I预设区间时,选择第1级负载~第n级负载进行工作,其中,1≤i<I≤n,第i预设区间对应的SOC取值小于第i+1预设区间对应的SOC取值。
  4. 如权利要求1-3中任一所述的车辆的配电系统,其特征在于,所述动力电池包括M个串联连接的电池模组,所述供电单元还包括M-1个接触器,其中,两个相邻的电池模组之间串联一个接触器,每个所述接触器的控制端均与所述电池管理单元相连,M≥2,且M为整数;
    其中,M-1个所述接触器常开,所述电池管理单元在接收到所述上电指令后,控制M-1个所述接触器闭合。
  5. 如权利要求3或4所述的车辆的配电系统,其特征在于,所述电池管理单元在控制M-1个所述接触器闭合后的第一预设时间内,如果检测到所述供电单元有电压输出,则对所选择的负载进行预充上电处理。
  6. 如权利要求1-5中任一所述的车辆的配电系统,其特征在于,还包括:
    负极熔断器,所述负极熔断器的一端与所述供电单元的负极相连,所述负极熔断器的另一端与每个所述负载回路的另一端相连;
    漏电传感器,所述漏电传感器连接在所述负极熔断器的另一端和地之间,用于检测配电系统是否发生漏电,并在所述配电系统发生漏电时生成漏电信息,以及将所述漏电信息发送至车辆的整车控制单元,以便所述整车控制单元根据所述漏电信息进行相应处理。
  7. 如权利要求1-6中任一所述的车辆的配电系统,其特征在于,还包括:
    维修开关,所述维修开关的一端与所述供电单元的正极相连,所述维修开关的另一端与每个所述负载回路的一端相连,其中,所述维修开关常闭。
  8. 如权利要求1-7中任一所述的车辆的配电系统,其特征在于,每个所述负载回路包括:
    第一可控开关,所述第一可控开关的一端与所述供电单元的一端相连,并形成第一节点,所述第一可控开关的另一端与负载的一端相连,并形成第二节点,所述第一可控开关的控制端与所述电池管理单元相连,其中,所述负载的另一端与所述供电单元的另一端相连;
    预充电阻,所述预充电阻的一端与所述第一节点相连;
    第二可控开关,所述第二可控开关的一端与所述预充电阻的另一端相连,所述第二可控开关的另一端与所述第二节点相连,所述第二可控开关的控制端与所述电池管理单元相连;
    其中,所述电池管理单元在对负载进行预充上电处理时,控制所述第一可控开关断开、所述第二可控开关闭合,并在该负载两端的电压与所述供电单元的端电压之间的差值小于等于预设阈值时,控制所述第一可控开关闭合、所述第二可控开关断开。
  9. 如权利要求8所述的车辆的配电系统,其特征在于,所述电池管理单元在控制所述第一可控开关闭合第二预设时间后,控制所述第二可控开关断开。
  10. 如权利要求8或9所述的车辆的配电系统,其特征在于,所述电池管理单元在所述第二可控开关闭合后的第三预设时间内,如果检测到负载两端的电压与所述供电单元的端电压之间的差值均大于所述预设阈值,则控制所述第二可控开关断开,并判断对该负载预充上电失败。
  11. 如权利要求8-10中任一所述的车辆的配电系统,其特征在于,每个所述负载回路还包括一个负载熔断器,所述负载熔断器与对应的负载串联连接。
  12. 如权利要求8-11中任一所述的车辆的配电系统,其特征在于,还包括:
    与N个所述负载对应的N个负载控制单元,每个所述负载控制单元均与所述电池管理单元相连,每个所述负载控制单元用于检测对应负载两端的电压;
    其中,所述电池管理单元在控制所述第一可控开关闭合、所述第二开关断开后,还接收负载控制单元反馈的负载两端的电压,其中,如果所述负载两端的电压与所述供电单元 的端电压之间的差值在预设范围内,所述电池管理单元则判断对该负载预充上电成功,如果所述负载两端的电压与所述供电单元的端电压之间的差值不在所述预设范围内,所述电池管理单元则控制所述第一可控开关断开,并判断对该负载预充上电失败。
  13. 如权利要求8-12中任一项所述的车辆的配电系统,其特征在于,所述第一可控开关和所述第二可控开关均采用接触器。
  14. 一种轨道车辆,其特征在于,包括如权利要求1-13中任一项所述的车辆的配电系统。
PCT/CN2019/088120 2018-05-28 2019-05-23 车辆的配电系统和轨道车辆 WO2019228248A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810523483.1 2018-05-28
CN201810523483.1A CN110539640B (zh) 2018-05-28 2018-05-28 车辆的配电系统和轨道车辆

Publications (1)

Publication Number Publication Date
WO2019228248A1 true WO2019228248A1 (zh) 2019-12-05

Family

ID=68696822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088120 WO2019228248A1 (zh) 2018-05-28 2019-05-23 车辆的配电系统和轨道车辆

Country Status (2)

Country Link
CN (1) CN110539640B (zh)
WO (1) WO2019228248A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110979093A (zh) * 2019-12-06 2020-04-10 湖北三江航天万山特种车辆有限公司 一种自动导引电动模块车的电气系统
CN111645565A (zh) * 2020-06-11 2020-09-11 大运汽车股份有限公司 一种新型电池包高压控制方法
CN111775706A (zh) * 2020-06-16 2020-10-16 威睿电动汽车技术(宁波)有限公司 一种动力电池低压手动维护开关控制系统及车辆
CN112092629A (zh) * 2020-09-18 2020-12-18 广州小鹏汽车科技有限公司 高压配电盒、电池系统和高压配电盒的控制方法
CN112486528A (zh) * 2020-11-09 2021-03-12 浙江吉利控股集团有限公司 一种车辆空中下载ota升级方法
CN112937307A (zh) * 2021-04-08 2021-06-11 南京市欣旺达新能源有限公司 一种电池包断路单元及其电动汽车
CN113047370A (zh) * 2021-04-30 2021-06-29 三一重机有限公司 作业机械电控系统、方法、装置及作业机械
CN113815418A (zh) * 2020-06-18 2021-12-21 马勒国际有限公司 控制单元和电加热装置
CN114083986A (zh) * 2020-08-03 2022-02-25 陕西重型汽车有限公司 一种可单独控制上装供电的汽车高压控制器及其控制方法
CN114475254A (zh) * 2022-02-22 2022-05-13 中国第一汽车股份有限公司 电动汽车预充电控制方法、装置、存储介质及电子装置
CN114976506A (zh) * 2022-05-19 2022-08-30 盐城国投中科新能源科技有限公司 一种启动锂电池系统并联装置及其使用方法
CN115782592A (zh) * 2023-01-05 2023-03-14 上海鑫悉科技有限公司 一体式高压控制器件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112644285A (zh) * 2020-11-09 2021-04-13 湖南中车智行科技有限公司 一种智轨高压供电控制系统及其方法
CN117394506B (zh) * 2023-12-12 2024-04-12 宁德时代新能源科技股份有限公司 电池管理方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275400A (ja) * 2000-03-29 2001-10-05 Auto Network Gijutsu Kenkyusho:Kk 車両を利用した電力供給システム
CN102689599A (zh) * 2011-03-23 2012-09-26 欧姆龙汽车电子株式会社 电源控制装置及方法、以及电力管理系统
CN104512269A (zh) * 2013-09-27 2015-04-15 通用汽车环球科技运作有限责任公司 分布式交通工具电池高电压总线系统和方法
US20160118902A1 (en) * 2014-10-28 2016-04-28 National Cheng Kung University Electric power supply system cooperated by a battery and a super capacitor
CN107614311A (zh) * 2015-05-22 2018-01-19 株式会社电装 电力控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9694684B2 (en) * 2014-12-03 2017-07-04 Honda Motor Co., Ltd. Priority based power management system and method for an electric vehicle
CN107290615B (zh) * 2016-03-31 2019-07-26 比亚迪股份有限公司 一种电动汽车负载的漏电检测方法
US10328772B2 (en) * 2016-09-21 2019-06-25 Ford Global Technologies, Llc System and methods for extracting water from an electric air conditioning system for water injection
CN107240917B (zh) * 2017-05-16 2020-02-07 沃太能源南通有限公司 一种离网家用负载智能管理系统的管理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275400A (ja) * 2000-03-29 2001-10-05 Auto Network Gijutsu Kenkyusho:Kk 車両を利用した電力供給システム
CN102689599A (zh) * 2011-03-23 2012-09-26 欧姆龙汽车电子株式会社 电源控制装置及方法、以及电力管理系统
CN104512269A (zh) * 2013-09-27 2015-04-15 通用汽车环球科技运作有限责任公司 分布式交通工具电池高电压总线系统和方法
US20160118902A1 (en) * 2014-10-28 2016-04-28 National Cheng Kung University Electric power supply system cooperated by a battery and a super capacitor
CN107614311A (zh) * 2015-05-22 2018-01-19 株式会社电装 电力控制系统

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110979093B (zh) * 2019-12-06 2022-12-06 湖北三江航天万山特种车辆有限公司 一种自动导引电动模块车的电气系统
CN110979093A (zh) * 2019-12-06 2020-04-10 湖北三江航天万山特种车辆有限公司 一种自动导引电动模块车的电气系统
CN111645565A (zh) * 2020-06-11 2020-09-11 大运汽车股份有限公司 一种新型电池包高压控制方法
CN111775706A (zh) * 2020-06-16 2020-10-16 威睿电动汽车技术(宁波)有限公司 一种动力电池低压手动维护开关控制系统及车辆
CN113815418A (zh) * 2020-06-18 2021-12-21 马勒国际有限公司 控制单元和电加热装置
CN114083986A (zh) * 2020-08-03 2022-02-25 陕西重型汽车有限公司 一种可单独控制上装供电的汽车高压控制器及其控制方法
CN114083986B (zh) * 2020-08-03 2023-12-29 陕西重型汽车有限公司 一种可单独控制上装供电的汽车高压控制器及其控制方法
CN112092629A (zh) * 2020-09-18 2020-12-18 广州小鹏汽车科技有限公司 高压配电盒、电池系统和高压配电盒的控制方法
CN112486528A (zh) * 2020-11-09 2021-03-12 浙江吉利控股集团有限公司 一种车辆空中下载ota升级方法
CN112486528B (zh) * 2020-11-09 2022-08-02 浙江吉利控股集团有限公司 一种车辆空中下载ota升级方法
CN112937307A (zh) * 2021-04-08 2021-06-11 南京市欣旺达新能源有限公司 一种电池包断路单元及其电动汽车
CN113047370A (zh) * 2021-04-30 2021-06-29 三一重机有限公司 作业机械电控系统、方法、装置及作业机械
CN113047370B (zh) * 2021-04-30 2023-02-03 三一重机有限公司 作业机械电控系统、方法、装置及作业机械
CN114475254A (zh) * 2022-02-22 2022-05-13 中国第一汽车股份有限公司 电动汽车预充电控制方法、装置、存储介质及电子装置
CN114475254B (zh) * 2022-02-22 2023-11-14 中国第一汽车股份有限公司 电动汽车预充电控制方法、装置、存储介质及电子装置
CN114976506A (zh) * 2022-05-19 2022-08-30 盐城国投中科新能源科技有限公司 一种启动锂电池系统并联装置及其使用方法
CN115782592A (zh) * 2023-01-05 2023-03-14 上海鑫悉科技有限公司 一体式高压控制器件

Also Published As

Publication number Publication date
CN110539640A (zh) 2019-12-06
CN110539640B (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2019228248A1 (zh) 车辆的配电系统和轨道车辆
CN107662499B (zh) 纯电动汽车整车故障下电控制方法及系统
CN104253469B (zh) 二次电池组充放电管理系统
US8655535B2 (en) Electric vehicle and method for controlling same
CN104071018B (zh) 一种列车供电电路、列车及供电控制方法
US10549643B2 (en) Controlled pre-charge circuit arrangement
US20150061376A1 (en) Pre-Charge Quick Key Cycling Protection
US20060224360A1 (en) Fault diagnosing apparatus for vehicle and fault diagnosing method for vehicle
CN107696864A (zh) 利用主接触器线圈对负载预充电
JP2010213500A (ja) 電力制御装置および方法、並びにプログラム
JP2010193595A (ja) 電力制御装置および方法、並びに、プログラム
CN107132776A (zh) 多高电压总线系统中的故障检测
KR101551086B1 (ko) 연료전지 비상전원 공급시스템
WO2022166364A1 (zh) 配电系统、配电系统的控制方法及新能源汽车
CN110667433B (zh) 一种车辆集成控制器预充保护方法及装置
CN110581572A (zh) 一种能量吸收装置及地铁再生制动能量混合能吸设备
WO2020001265A1 (zh) 车辆的对外充电方法和装置
US20230208327A1 (en) Electric vehicle control system, control method, and computer-readable storage medium
CN116142015A (zh) 一种动力电池充电系统及其低温充电控制策略
CN206653947U (zh) 一种电动汽车动力电池系统
CN105529798A (zh) 充电机系统储能设备的控制方法
WO2015068596A1 (ja) 充電装置、車両、車両充電システム、充電方法、及びプログラム
CN105946585B (zh) 一种车辆电源管理系统及电动车辆
CN214874327U (zh) 高压电气系统和车辆
KR20140085932A (ko) 전기 차량의 시동 시간 단축 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810855

Country of ref document: EP

Kind code of ref document: A1