WO2019227877A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2019227877A1
WO2019227877A1 PCT/CN2018/117168 CN2018117168W WO2019227877A1 WO 2019227877 A1 WO2019227877 A1 WO 2019227877A1 CN 2018117168 W CN2018117168 W CN 2018117168W WO 2019227877 A1 WO2019227877 A1 WO 2019227877A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
object side
image side
Prior art date
Application number
PCT/CN2018/117168
Other languages
English (en)
French (fr)
Inventor
游兴海
张凯元
黄林
赵烈烽
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019227877A1 publication Critical patent/WO2019227877A1/zh
Priority to US16/854,388 priority Critical patent/US11635588B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the present application relates to an optical imaging lens, particularly an optical imaging lens composed of six lenses.
  • the present application proposes an optical system with ultra-thin large aperture and good imaging quality, which is suitable for portable electronic products through reasonable distribution of optical power and optimization selection of high-order aspheric parameters.
  • the present application provides an optical imaging lens.
  • An aspect of the present application provides an optical imaging lens, which includes: a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens in this order from the object side to the image side, wherein the first lens The lens has a positive power and its object side is convex and the image side is concave; the second lens has a negative power and its object side is convex and the image side is concave; the third lens has power; the fourth lens It has optical power and its image side is concave; the fifth lens has optical power; the sixth lens has negative power and its object side is convex and the image side is concave; the effective focal length f of the optical imaging lens and the optical The entrance pupil diameter of the imaging lens satisfies f / EPD ⁇ 2.0, the effective focal length f of the optical imaging lens meets 3.8 ⁇ f * TAN (HFOV) ⁇ 5 between the effective focal length f of the optical imaging lens and half of the maximum field angle of the optical imaging lens, and The
  • the curvature radius R9 of the object side of the fifth lens and the curvature radius R10 of the image side of the fifth lens satisfy -3.5 ⁇ R9 / R10 ⁇ 0.6.
  • TTL / ImgH ⁇ 1.5 is satisfied between the distance TTL on the axis from the object side of the first lens to the imaging plane and half the ImgH of the diagonal of the effective pixel area on the imaging plane.
  • the effective focal length f1 of the first lens and the effective focal length f6 of the sixth lens satisfy -3.5 ⁇ f6 / f1 ⁇ -2.5.
  • the effective focal length f2 of the second lens and the effective focal length f of the optical imaging lens satisfy -4 ⁇ f2 / f ⁇ -2.5.
  • a curvature radius R1 of the object side of the first lens, a curvature radius R2 of the first lens image side, a curvature radius R3 of the second lens object side, and a curvature radius R4 of the second lens image side satisfy 0.2 ⁇ (R1 + R2) / (R3 + R4) ⁇ 0.5.
  • the effective focal length f of the optical imaging lens, the curvature radius R11 of the object side of the sixth lens, and the curvature radius R12 of the image side of the sixth lens satisfy 0.7 ⁇ f / (R11 + R12) ⁇ 1.3.
  • the center thickness CT4 of the fourth lens on the optical axis and the center thickness CT5 of the fifth lens on the optical axis satisfy 0.3 ⁇ CT4 / CT5 ⁇ 1.0.
  • the effective focal length f1 of the first lens and the effective focal length f of the optical imaging lens satisfy 0.7 ⁇ f1 / f ⁇ 1.
  • the air interval T23 on the optical axis of the second lens and the third lens and the center thickness CT3 of the third lens satisfy 0.5 ⁇ T23 / CT3 ⁇ 0.9.
  • the center thickness CT1 of the first lens, the center thickness CT2 of the second lens, and the center thickness CT6 of the sixth lens satisfy 2 ⁇ (CT1 + CT2 + CT6) / CT1 ⁇ 3.
  • the distance TTL on the axis from the object side of the first lens to the imaging plane and the sum of the center thicknesses of the first to sixth lenses on the optical axis ⁇ CT satisfy 0.5 ⁇ ⁇ CT / TTL ⁇ 0.7.
  • 0.5 ⁇ ET5 / CT5 ⁇ 0.8 is satisfied between the edge thickness ET5 of the fifth lens and the center thickness CT5 of the fifth lens on the optical axis.
  • the on-axis distance SAG41 between the intersection point of the fourth lens object side and the optical axis to the effective radius vertex of the fourth lens object side satisfies between ⁇ 4 and the center thickness CT4 of the fourth lens on the optical axis. 0.6 ⁇ SAG41 / CT4 ⁇ -0.2.
  • an air interval T56 on the optical axis of the fifth lens and the sixth lens and an air interval T45 on the optical axis of the fourth lens and the fifth lens satisfy T56 / T45 ⁇ 0.4.
  • the optical imaging lens according to the present application is applicable to portable electronic products, and has the characteristics of ultra-thin large aperture and good imaging quality.
  • FIG. 1 is a schematic structural diagram of an optical imaging lens according to Embodiment 1;
  • FIG. 6 is a schematic structural diagram of an optical imaging lens according to Embodiment 2.
  • FIG. 11 is a schematic structural diagram of an optical imaging lens according to Embodiment 3.
  • FIG. 16 is a schematic structural diagram of an optical imaging lens according to Embodiment 4.
  • FIG. 21 is a schematic structural diagram of an optical imaging lens according to Embodiment 5.
  • 26 is a schematic structural diagram of an optical imaging lens according to Embodiment 6;
  • FIG. 31 is a schematic structural diagram of an optical imaging lens according to Embodiment 7.
  • FIG. 36 is a schematic structural diagram of an optical imaging lens according to Embodiment 8.
  • FIG. 40 respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging lens of Example 8;
  • Example 41 is a schematic structural diagram of an optical imaging lens of Example 9.
  • the present application provides an optical imaging lens, which includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens in order from the object side to the image side.
  • the first lens has positive light. Power, and the object side is convex, and the image side is concave; the second lens has negative power, and the object side is convex, and the image side is concave; the third lens has optical power; the fourth lens has optical power Degrees, and its image side is concave; the fifth lens has optical power; the sixth lens has negative power, and its object side is convex, and its image side is concave.
  • the effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens satisfy f / EPD ⁇ 2.0; the effective focal length f of the optical imaging lens and the maximum field angle of the optical imaging lens Half of the HFOVs satisfy 3.8 ⁇ f * TAN (HFOV) ⁇ 5; and the curvature radius R8 of the image side of the fourth lens satisfies R8 ⁇ 500mm.
  • f / EPD ⁇ 1.91; and 3.87 ⁇ f * TAN (HFOV) ⁇ 3.92 are satisfied.
  • the effective focal length of the optical imaging lens half of the maximum field angle of the optical imaging lens, and the radius of curvature of the image side of the fourth lens, which can effectively compress the size of the optical imaging lens and the deflection angle of the light. It is small, and can effectively reduce the sensitivity of optical imaging lenses, achieve large aperture, ultra-thin characteristics, and is easy to injection process and has a high assembly yield.
  • the curvature radius R9 of the object side of the fifth lens and the curvature radius R10 of the image side of the fifth lens satisfy -3.5 ⁇ R9 / R10 ⁇ 0.6, specifically, -2.04 ⁇ R9 / R10 ⁇ 0.53.
  • the curvature radius of the image side of the fifth lens can be controlled, the imaging height of the light on the fifth lens can be adjusted, and then the aperture of the last surface can be controlled.
  • TTL / ImgH ⁇ 1.5 is satisfied between the distance TTL on the axis from the object side of the first lens to the imaging plane and half of the diagonal length of the effective pixel area on the imaging plane, ImgH ⁇ 1.5, specifically, TTL / ImgH ⁇ 1.36.
  • the effective focal length f1 of the first lens and the effective focal length f6 of the sixth lens satisfy -3.5 ⁇ f6 / f1 ⁇ -2.5, and specifically, -2.98 ⁇ f6 / f1 ⁇ -2.05.
  • the ratio of the effective focal lengths of the first lens and the sixth lens can be reasonably constrained, and the contribution of the field curvature of the two lenses can be controlled reasonably, so that the balance is in a reasonable state.
  • the effective focal length f2 of the second lens and the effective focal length f of the optical imaging lens satisfy -4 ⁇ f2 / f ⁇ -2.5, and more specifically, -3.52 ⁇ f2 / f ⁇ -2.05. .
  • the power of the second lens and the effective focal length of the optical imaging lens can be constrained, so that the spherical aberration contribution of the second lens can be controlled to a reasonable level, so that the on-axis field of view can obtain good imaging quality.
  • a curvature radius R1 of the object side of the first lens, a curvature radius R2 of the first lens image side, a curvature radius R3 of the second lens object side, and a curvature radius R4 of the second lens image side satisfy 0.2 ⁇ (R1 + R2) / (R3 + R4) ⁇ 0.5, and more specifically, 0.21 ⁇ (R1 + R2) / (R3 + R4) ⁇ 0.37 is satisfied.
  • the curvature radii of the object side and the image side of the first lens and the second lens can be controlled, so that the angle of incidence of the main ray of each field of view of the optical imaging lens on the image plane can be reasonably controlled, and Requirements for the angle of incidence of light.
  • the effective focal length f of the optical imaging lens, the curvature radius R11 of the object side of the sixth lens, and the curvature radius R12 of the image side of the sixth lens satisfy 0.7 ⁇ f / (R11 + R12) ⁇ 1.3, Specifically, 0.85 ⁇ f / (R11 + R12) ⁇ 1.1 is satisfied.
  • the curvature radii of the object side and the image side of the sixth lens can be controlled, so that the contribution rate of the fifth-order spherical aberration can be controlled to a certain extent, and the fifth-order spherical aberration of the sixth lens can be controlled within a reasonable range.
  • the center thickness CT4 of the fourth lens on the optical axis and the center thickness CT5 of the fifth lens on the optical axis satisfy 0.3 ⁇ CT4 / CT5 ⁇ 1.0, and specifically, 0.38 ⁇ CT4 / CT5 ⁇ 0.53.
  • the ratio of the center thickness of the fourth lens and the fifth lens can be controlled, so that the distortion contribution can be controlled within a reasonable range, so that the distortion of the final field of view is controlled below 2%, avoiding later Use software debugging.
  • the effective focal length f1 of the first lens and the effective focal length f of the optical imaging lens satisfy 0.7 ⁇ f1 / f ⁇ 1, specifically, 0.81 ⁇ f1 / f ⁇ 0.91.
  • the positive power of the first lens can be controlled within a reasonable interval, so that it not only bears the positive power required by the optical imaging lens, but also makes the contribution of the spherical aberration within a reasonably controllable range.
  • the subsequent optical lens can reasonably correct the negative spherical aberration of its contribution, so as to better ensure the image quality of the field of view on the system axis.
  • the ratio of the distance between the second lens and the third lens and the center thickness of the third lens can be constrained so that they are within a reasonable interval, thereby effectively ensuring the field curvature and distortion of the system, and making its off-axis field of view. With good imaging quality.
  • the center thickness CT1 of the first lens, the center thickness CT2 of the second lens, and the center thickness CT6 of the sixth lens satisfy 2 ⁇ (CT1 + CT2 + CT6) / CT1 ⁇ 3, specifically, , Satisfy 2.08 ⁇ (CT1 + CT2 + CT6) /CT1 ⁇ 2.35.
  • the center thicknesses of the first, second, and sixth lenses can be constrained within a reasonable range, which can satisfy both the processing performance and the ultra-thin characteristics of the optical system.
  • the distance TTL on the axis from the object side of the first lens to the imaging plane and the sum of the center thicknesses of the first lens to the sixth lens on the optical axis ⁇ CT satisfy 0.5 ⁇ ⁇ 0.7, specifically, satisfies 0.55 ⁇ ⁇ CT / TTL ⁇ 0.58.
  • the lens can have good processing characteristics.
  • the on-axis distance SAG41 between the intersection of the fourth lens object side and the optical axis to the effective radius vertex of the fourth lens side and the center thickness CT4 of the fourth lens on the optical axis satisfy ⁇ 0.6 ⁇ SAG41 / CT4 ⁇ -0.2, specifically, -0.57 ⁇ SAG41 / CT4 ⁇ -0.28 is satisfied.
  • An optical lens that meets the requirements of the above formula can effectively reduce the incident angle of the main ray on the object side of the fourth lens, thereby improving the matching degree between the lens and the chip.
  • the air interval T56 on the optical axis of the fifth lens and the sixth lens and the air interval T45 on the optical axis of the fourth lens and the fifth lens satisfy T56 / T45 ⁇ 0.4, specifically , Satisfy T56 / T45 ⁇ 0.36.
  • the air interval on the optical axis of the fifth lens and the sixth lens and the air interval on the optical axis of the fourth lens and the fifth lens can be constrained, thereby effectively balancing the field curvature of the optical imaging lens and enabling optical imaging
  • the lens has reasonable field curvature.
  • FIG. 1 is a schematic structural view showing an optical imaging lens of Embodiment 1.
  • the optical imaging lens includes 6 lenses.
  • the six lenses are a first lens E1 having an object side S1 and an image side S2, a second lens E2 having an object side S3 and an image side S4, and a third lens E3 having an object side S5 and an image side S6.
  • the first to sixth lenses E1 to E6 are arranged in this order from the object side to the image side of the optical imaging lens.
  • the first lens E1 may have a positive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 thereof may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a positive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have a negative power, and an object side surface S11 thereof may be a convex surface, and an image side surface S12 may be a concave surface.
  • the optical imaging lens further includes a filter E7 having an object side surface S13 and an image side surface S14 for filtering infrared light.
  • a filter E7 having an object side surface S13 and an image side surface S14 for filtering infrared light.
  • light from an object sequentially passes through each of the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the first to sixth lenses E1 to E6 have respective effective focal lengths f1 to f6.
  • the first to sixth lenses E1 to E6 are sequentially arranged along the optical axis and collectively determine the total effective focal length f of the optical imaging lens.
  • the following table 1 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the total length TTL (mm) of the optical imaging lens, and the maximum field angle of the optical imaging lens.
  • Table 2 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and cone coefficient of each lens in the optical imaging lens in this embodiment, where the units of the radius of curvature and thickness are millimeters (mm).
  • each lens can be an aspheric lens, and each aspheric surface type x is defined by the following formula:
  • x is the distance vector from the vertex of the aspheric surface when the aspheric surface is at the height h along the optical axis;
  • k is the conic coefficient (given in Table 2);
  • Ai is the correction coefficient of the aspherical i-th order.
  • Table 3 below shows the higher-order term coefficients of each aspheric surface S1-S12 that can be used for each aspheric lens in this embodiment.
  • FIG. 2 shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that the focal points of light with different wavelengths deviate after passing through the optical system.
  • FIG. 3 shows an astigmatism curve of the optical imaging lens of Example 1, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 4 shows a distortion curve of the optical imaging lens of Embodiment 1, which represents the magnitude of distortion at different viewing angles.
  • FIG. 5 shows a magnification chromatic aberration curve of the optical imaging lens of Example 1, which represents deviations of different image heights on the imaging plane after light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 1 is applicable to portable electronic products, and has an ultra-thin large aperture and good imaging quality.
  • FIG. 6 is a schematic structural view showing an optical imaging lens of Example 2.
  • the optical imaging lens includes 6 lenses.
  • the six lenses are a first lens E1 having an object side S1 and an image side S2, a second lens E2 having an object side S3 and an image side S4, and a third lens E3 having an object side S5 and an image side S6.
  • the first to sixth lenses E1 to E6 are arranged in this order from the object side to the image side of the optical imaging lens.
  • the first lens E1 may have a positive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 thereof may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a positive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have a negative power, and an object side surface S11 thereof may be a convex surface, and an image side surface S12 may be a concave surface.
  • the following table 4 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and half of the maximum field angle of the optical imaging lens HFOV ( °).
  • Table 5 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and cone coefficient of each lens in the optical imaging lens in this embodiment, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 6 below shows the higher-order term coefficients of each aspheric surface S1-S12 that can be used for each aspheric lens in this embodiment.
  • each aspheric surface type can be defined by the formula (1) given in the first embodiment.
  • FIG. 7 shows an on-axis chromatic aberration curve of the optical imaging lens of Example 2, which indicates that the focal points of light with different wavelengths deviate after passing through the optical system.
  • FIG. 8 shows an astigmatism curve of the optical imaging lens of Example 2, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 9 shows a distortion curve of the optical imaging lens of Example 2, which represents the magnitude of distortion at different viewing angles.
  • FIG. 10 shows the magnification chromatic aberration curve of the optical imaging lens of Example 2, which represents the deviation of different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 2 is applicable to portable electronic products, and has an ultra-thin large aperture and good imaging quality.
  • FIG. 11 is a schematic structural view showing an optical imaging lens of Embodiment 3.
  • the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6 in this order from the object side to the image side.
  • the first lens E1 may have a positive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have a negative power, and the object side surface S7 thereof may be a concave surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a positive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have a negative power, and an object side surface S11 thereof may be a convex surface, and an image side surface S12 may be a concave surface.
  • Table 7 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and half of the maximum field angle of the optical imaging lens HFOV ( °).
  • Table 8 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and cone coefficient of each lens in the optical imaging lens in this embodiment, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 9 below shows the higher-order term coefficients of each aspheric surface S1-S12 that can be used for each aspheric lens in this embodiment, where each aspheric surface type can be expressed by the formula (1) given in the above embodiment 1. limited.
  • FIG. 12 shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 3, which indicates that the focal points of light with different wavelengths deviate after passing through the optical system.
  • FIG. 13 shows an astigmatism curve of the optical imaging lens of Example 3, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 14 shows a distortion curve of the optical imaging lens of Example 3, which represents the magnitude of distortion at different viewing angles.
  • FIG. 15 shows a magnification chromatic aberration curve of the optical imaging lens of Example 3, which represents deviations of different image heights on the imaging plane after light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 3 is applicable to portable electronic products, and has an ultra-thin large aperture and good imaging quality.
  • FIG. 16 is a schematic structural diagram showing an optical imaging lens of Example 4.
  • the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6 in this order from the object side to the image side.
  • the first lens E1 may have a positive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 thereof may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a positive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have a negative power, and an object side surface S11 thereof may be a convex surface, and an image side surface S12 may be a concave surface.
  • the following table 10 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and half the maximum field angle of the optical imaging lens HFOV °).
  • Table 11 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and cone coefficient of each lens in the optical imaging lens in this embodiment, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 12 below shows the higher-order term coefficients of each aspheric surface S1-S12 that can be used for each aspheric lens in this embodiment, where each aspheric surface type can be expressed by the formula (1) given in the above embodiment 1. limited.
  • FIG. 17 shows an on-axis chromatic aberration curve of the optical imaging lens of Example 4, which shows that the focal points of light with different wavelengths deviate after passing through the optical system.
  • FIG. 18 shows an astigmatism curve of the optical imaging lens of Example 4, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 19 shows the distortion curve of the optical imaging lens of Example 4, which represents the value of the distortion magnitude at different viewing angles.
  • FIG. 20 shows a magnification chromatic aberration curve of the optical imaging lens of Example 4, which represents deviations of different image heights on the imaging plane after light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 4 is applicable to portable electronic products, and has an ultra-thin large aperture and good imaging quality.
  • FIG. 21 is a schematic structural diagram showing an optical imaging lens of Example 5.
  • the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6 in this order from the object side to the image side.
  • the first lens E1 may have a positive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 thereof may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have a negative power, and an object side surface S11 thereof may be a convex surface, and an image side surface S12 may be a concave surface.
  • Table 13 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and half of the maximum field angle of the optical imaging lens HFOV ( °).
  • Table 14 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and cone coefficient of each lens in the optical imaging lens in this embodiment, where the units of the radius of curvature and thickness are millimeters (mm).
  • the following table 15 shows the higher-order term coefficients of each aspheric surface S1-S12 that can be used for each aspheric lens in this embodiment, where each aspherical surface type can be expressed by the formula (1) given in the above embodiment 1. limited.
  • FIG. 22 shows an on-axis chromatic aberration curve of the optical imaging lens of Example 5, which shows that the focal points of light having different wavelengths deviate after passing through the optical system.
  • FIG. 23 shows an astigmatism curve of the optical imaging lens of Example 5, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 24 shows a distortion curve of the optical imaging lens of Example 5, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 25 shows a magnification chromatic aberration curve of the optical imaging lens of Example 5, which represents deviations of different image heights on the imaging plane after light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 5 is applicable to portable electronic products, and has an ultra-thin large aperture and good imaging quality.
  • FIG. 26 is a schematic structural view showing an optical imaging lens of Example 6.
  • the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6 in this order from the object side to the image side.
  • the first lens E1 may have a positive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative power, and an object side surface S7 thereof may be a convex surface, and an image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a positive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have a negative power, and an object side surface S11 thereof may be a convex surface, and an image side surface S12 may be a concave surface.
  • the following table 16 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and half of the maximum field angle of the optical imaging lens HFOV °).
  • Table 17 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and cone coefficient of each lens in the optical imaging lens in this embodiment, where the units of the radius of curvature and thickness are both millimeters (mm).
  • Table 18 below shows the higher-order term coefficients of each aspheric surface S1-S12 that can be used for each aspheric lens in this embodiment, where each aspheric surface type can be represented by the formula (1) given in the above embodiment 1. limited.
  • FIG. 27 shows an on-axis chromatic aberration curve of the optical imaging lens of Example 6, which indicates that the focal points of light with different wavelengths deviate after passing through the optical system.
  • FIG. 28 shows an astigmatism curve of the optical imaging lens of Example 6, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 29 shows a distortion curve of the optical imaging lens of Embodiment 6, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 30 shows a magnification chromatic aberration curve of the optical imaging lens of Example 6, which represents deviations of different image heights on the imaging plane after light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 6 is applicable to portable electronic products, and has an ultra-thin large aperture and good imaging quality.
  • FIG. 31 is a schematic structural diagram showing an optical imaging lens of Example 7.
  • the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6 in this order from the object side to the image side.
  • the first lens E1 may have a positive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative power, and the object side surface S7 thereof may be a concave surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have a negative power, and an object side surface S11 thereof may be a convex surface, and an image side surface S12 may be a concave surface.
  • the following table 19 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and half of the maximum field angle of the optical imaging lens HFOV ( °).
  • Table 20 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and cone coefficient of each lens in the optical imaging lens in this embodiment, where the units of the radius of curvature and thickness are millimeters (mm).
  • the following table 21 shows the higher-order term coefficients of each aspheric surface S1-S12 that can be used for each aspheric lens in this embodiment, where each aspheric surface type can be expressed by the formula (1) given in the above embodiment 1. limited.
  • FIG. 32 shows an on-axis chromatic aberration curve of the optical imaging lens of Example 7, which indicates that the focal points of light with different wavelengths deviate after passing through the optical system.
  • FIG. 33 shows an astigmatism curve of the optical imaging lens of Example 7, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 34 shows a distortion curve of the optical imaging lens of Example 7, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 35 shows the magnification chromatic aberration curve of the optical imaging lens of Example 7, which represents the deviation of different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 7 is applicable to portable electronic products, and has an ultra-thin large aperture and good imaging quality.
  • FIG. 36 is a schematic structural diagram showing an optical imaging lens of Example 8.
  • the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6 in this order from the object side to the image side.
  • the first lens E1 may have a positive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 thereof may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have a negative power, and an object side surface S11 thereof may be a convex surface, and an image side surface S12 may be a concave surface.
  • the following table 22 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and half the maximum field angle of the optical imaging lens HFOV °).
  • Table 23 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and cone coefficient of each lens in the optical imaging lens in this embodiment, where the units of the radius of curvature and thickness are millimeters (mm).
  • the following table 24 shows the higher-order term coefficients of each aspheric surface S1-S12 that can be used for each aspheric lens in this embodiment, where each aspheric surface type can be expressed by the formula (1) given in the first embodiment limited.
  • FIG. 37 shows an on-axis chromatic aberration curve of the optical imaging lens of Example 8, which indicates that the focal points of light with different wavelengths deviate after passing through the optical system.
  • FIG. 38 shows an astigmatism curve of the optical imaging lens of Example 8, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 39 shows a distortion curve of the optical imaging lens of Example 8, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 40 shows a magnification chromatic aberration curve of the optical imaging lens of Example 8, which represents the deviation of different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 8 is applicable to portable electronic products, and has an ultra-thin large aperture and good imaging quality.
  • FIG. 41 is a schematic structural view showing an optical imaging lens of Example 9.
  • the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6 in this order from the object side to the image side.
  • the first lens E1 may have a positive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative power, and the object side surface S7 thereof may be a concave surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative power, and the object side surface S9 thereof may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative power, and an object side surface S11 thereof may be a convex surface, and an image side surface S12 may be a concave surface.
  • the following table 25 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and half of the maximum field angle of the optical imaging lens, °).
  • Table 26 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and cone coefficient of each lens in the optical imaging lens in this embodiment, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 27 below shows the higher-order coefficients of each aspheric surface S1-S12 that can be used for each aspheric lens in this embodiment, where each aspheric surface type can be expressed by the formula (1) given in the above embodiment 1. limited.
  • FIG. 42 shows an on-axis chromatic aberration curve of the optical imaging lens of Example 9, which indicates that the focal points of light with different wavelengths deviate after passing through the optical system.
  • FIG. 43 shows the astigmatism curve of the optical imaging lens of Example 9, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 44 shows a distortion curve of the optical imaging lens of Example 9, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 45 shows a magnification chromatic aberration curve of the optical imaging lens of Example 9, which represents deviations of different image heights on the imaging plane after light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 9 is applicable to portable electronic products, and has an ultra-thin large aperture and good imaging quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,从物侧至像侧依次包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)以及第六透镜(E6),其中,第一透镜(E1)具有正光焦度,且其物侧面(S1)为凸面,像侧面(S2)为凹面;第二透镜(E2)具有负光焦度,且其物侧面(S3)为凸面,像侧面(S4)为凹面;第三透镜(E3)具有光焦度;第四透镜(E4)具有光焦度,且其像侧面(S8)为凹面;第五透镜(E5)具有光焦度;第六透镜(E6)具有负光焦度,且其物侧面为(S11)凸面,像侧面(S12)为凹面;光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD<2.0,光学成像镜头的有效焦距f与光学成像镜头的最大视场角的一半HFOV之间满足3.8<f*TAN(HFOV)<5,以及第四透镜(E4)像侧面(S8)的曲率半径R8满足R8≥500mm。光学成像镜头可适用于便携式电子产品,具有超薄大孔径和良好成像质量的特性。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2018年6月1日提交于中国国家知识产权局的、专利申请号为201810555994.1的中国专利申请的优先权和权益,上述中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,特别是由六片镜片组成的光学成像镜头。
背景技术
近年来,随着社会经济的发展和科学技术的进步,手机、平板电脑等便携式电子产品的厚度不断减薄,同时人们对便携式电子产品的成像质量要求越来越高。另一方面,随着电耦合器件CCD及互补式金属氧化物半导体CMOS图像传感器的性能提高及尺寸减小,对应的成像镜头也需满足高成像品质的要求。由此发展出了大光圈、高像素等规格的成像镜头,来满足光线不足(如阴雨天、黄昏等)情况下的清晰成像效果,同时满足镜头的小型化。
本申请通过对光焦度的合理分配和对高阶非球面参数的优化选择,提出了一种可适用于便携式电子产品,具有超薄大孔径和良好成像质量的光学系统。
发明内容
为了解决现有技术中的至少一个问题,本申请提供了一种光学成像镜头。
本申请的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜,其中,第一透镜具有正光焦度,且其物侧面为凸面,像侧面为凹面;第二透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面;第三透镜具有光焦 度;第四透镜具有光焦度,且其像侧面为凹面;第五透镜具有光焦度;第六透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面;光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD<2.0,光学成像镜头的有效焦距f与光学成像镜头的最大视场角的一半HFOV之间满足3.8<f*TAN(HFOV)<5,以及第四透镜像侧面的曲率半径R8满足R8≥500mm。
根据本申请的一个实施方式,第五透镜物侧面的曲率半径R9与第五透镜像侧面的曲率半径R10之间满足-3.5<R9/R10<0.6。
根据本申请的一个实施方式,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH<1.5。
根据本申请的一个实施方式,第一透镜的有效焦距f1与第六透镜的有效焦距f6之间满足-3.5<f6/f1<-2.5。
根据本申请的一个实施方式,第二透镜的有效焦距f2与光学成像镜头的有效焦距f之间满足-4<f2/f<-2.5。
根据本申请的一个实施方式,第一透镜物侧面的曲率半径R1、第一透镜像侧面的曲率半径R2、第二透镜物侧面的曲率半径R3以及第二透镜像侧面的曲率半径R4之间满足0.2≤(R1+R2)/(R3+R4)<0.5。
根据本申请的一个实施方式,光学成像镜头的有效焦距f、第六透镜物侧面的曲率半径R11以及第六透镜像侧面的曲率半径R12之间满足0.7<f/(R11+R12)<1.3。
根据本申请的一个实施方式,第四透镜在光轴上的中心厚度CT4与第五透镜在光轴上的中心厚度CT5之间满足0.3≤CT4/CT5<1.0。
根据本申请的一个实施方式,第一透镜的有效焦距f1与光学成像镜头的有效焦距f之间满足0.7<f1/f<1。
根据本申请的一个实施方式,第二透镜和第三透镜在光轴上的空气间隔T23与第三透镜的中心厚度CT3之间满足0.5≤T23/CT3<0.9。
根据本申请的一个实施方式,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2以及第六透镜的中心厚度CT6之间满足2<(CT1+CT2+CT6)/CT1<3。
根据本申请的一个实施方式,第一透镜物侧面至成像面的轴上距离TTL与第一透镜至第六透镜在光轴上的中心厚度之和∑CT之间满足0.5≤∑CT/TTL<0.7。
根据本申请的一个实施方式,第五透镜的边缘厚度ET5与第五透镜在光轴上的中心厚度CT5之间满足0.5≤ET5/CT5<0.8。
根据本申请的一个实施方式,第四透镜物侧面和光轴的交点至第四透镜物侧面的有效半径顶点之间的轴上距离SAG41与第四透镜在光轴上的中心厚度CT4之间满足-0.6≤SAG41/CT4≤-0.2。
根据本申请的一个实施方式,第五透镜和第六透镜在光轴上的空气间隔T56与第四透镜和第五透镜在光轴上的空气间隔T45之间满足T56/T45≤0.4。
根据本申请的光学成像镜头可适用于便携式电子产品,具有超薄大孔径和良好成像质量的特性。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其它特征、目的和优点将变得更加明显。在附图中:
图1示出了实施例1的光学成像镜头的结构示意图;
图2至图5分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图6示出了实施例2的光学成像镜头的结构示意图;
图7至图10分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图11示出了实施例3的光学成像镜头的结构示意图;
图12至图15分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图16示出了实施例4的光学成像镜头的结构示意图;
图17至图20分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图21示出了实施例5的光学成像镜头的结构示意图;
图22至图25分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图26示出了实施例6的光学成像镜头的结构示意图;
图27至图30分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图31示出了实施例7的光学成像镜头的结构示意图;
图32至图35分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图36示出了实施例8的光学成像镜头的结构示意图;
图37至图40分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图41示出了实施例9的光学成像镜头的结构示意图;以及
图42至图45分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。
应理解的是,在本申请中,当元件或层被描述为在另一元件或层“上”、“连接至”或“联接至”另一元件或层时,其可直接在另一元件或层上、直接连接至或联接至另一元件或层,或者可存在介于中间的元件或层。当元件称为“直接位于”另一元件或层“上”、“直接连接至”或“直接联接至”另一元件或层时,不存在介于中间的元件或层。在说明书全文中,相同的标号指代相同的元件。如本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应理解的是,虽然用语第1、第2或第一、第二等在本文中可以用来描述各种元件、部件、区域、层和/或段,但是这些元件、部件、区域、层和/ 或段不应被这些用语限制。这些用语仅用于将一个元件、部件、区域、层或段与另一个元件、部件、区域、层或段区分开。因此,在不背离本申请的教导的情况下,下文中讨论的第一元件、部件、区域、层或段可被称作第二元件、部件、区域、层或段。
本文中使用的用辞仅用于描述具体实施方式的目的,并不旨在限制本申请。如在本文中使用的,除非上下文中明确地另有指示,否则没有限定单复数形式的特征也意在包括复数形式的特征。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组。如在本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。诸如“...中的至少一个”的表述当出现在元件的列表之后时,修饰整个元件列表,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请提供了一种光学成像镜头,从物侧至像侧依次包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜,其中,第一透镜具有正光焦度,且其物侧面为凸面,像侧面为凹面;第二透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面;第三透镜具有光焦度;第四透镜具有光焦度,且其像侧面为凹面;第五透镜具有光焦度;第六透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面。
在本申请的实施例中,光学成像镜头的有效焦距f与光学成像镜头的入 瞳直径EPD之间满足f/EPD<2.0;光学成像镜头的有效焦距f与光学成像镜头的最大视场角的一半HFOV之间满足3.8<f*TAN(HFOV)<5;以及第四透镜像侧面的曲率半径R8满足R8≥500mm。具体地,满足f/EPD≤1.91;以及3.87≤f*TAN(HFOV)≤3.92。通过满足上述关系,能够合理地分配光学成像镜头的有效焦距、光学成像镜头的最大视场角的一半以及第四透镜像侧面的曲率半径,可有效地压缩光学成像镜头的尺寸,光线偏折角度小,并且可有效地降低光学成像镜头的敏感性,实现大孔径、超薄特性,以及易于注塑加工并具有较高的组立良率。
在本申请的实施例中,第五透镜物侧面的曲率半径R9与第五透镜像侧面的曲率半径R10之间满足-3.5<R9/R10<0.6,具体地,满足-2.04≤R9/R10≤0.53。通过满足上述关系,能够控制第五透镜像侧面的曲率半径,调控光线在第五透镜的成像高度,进而控制最后一面的口径。
在本申请的实施例中,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH<1.5,具体地,满足TTL/ImgH≤1.36。通过满足上述关系,能够约束第一透镜物侧面至成像面的轴上距离和成像面上有效像素区域对角线长的一半的比例,同时实现光学成像镜头的超薄化和高像素特性。
在本申请的实施例中,第一透镜的有效焦距f1与第六透镜的有效焦距f6之间满足-3.5<f6/f1<-2.5,具体地,满足-2.98≤f6/f1≤-2.05。通过满足上述关系,能够合理约束第一透镜和第六透镜的有效焦距的比值,从而合理控制两个透镜的场曲的贡献量,使得其平衡在合理的状态。
在本申请的实施例中,第二透镜的有效焦距f2与光学成像镜头的有效焦距f之间满足-4<f2/f<-2.5,更具体地,满足-3.52≤f2/f≤-2.05。通过满足上述关系,能够约束第二透镜的光焦度和光学成像镜头的有效焦距,从而将第二透镜的球差贡献量控制在合理的水平内,使得轴上视场获得良好的成像质量。
在本申请的实施例中,第一透镜物侧面的曲率半径R1、第一透镜像侧面的曲率半径R2、第二透镜物侧面的曲率半径R3以及第二透镜像侧面的曲率半径R4之间满足0.2≤(R1+R2)/(R3+R4)<0.5,更具体地,满足0.21≤(R1+R2)/(R3+R4)≤0.37。通过满足上述关系,能够控制第一透镜和第二透 镜物侧面及像侧面的曲率半径,从而合理控制光学成像镜头各个视场的主光线在像面的入射角,满足在光学系统设计中对主光线入射角度的要求。
在本申请的实施例中,光学成像镜头的有效焦距f、第六透镜物侧面的曲率半径R11以及第六透镜像侧面的曲率半径R12之间满足0.7<f/(R11+R12)<1.3,具体地,满足0.85≤f/(R11+R12)≤1.1。通过满足上述关系,能够控制第六透镜物侧面和像侧面的曲率半径,从而在一定程度上控制其五阶球差的贡献率,使第六透镜的五阶球差控制在合理的范围内。
在本申请的实施例中,第四透镜在光轴上的中心厚度CT4与第五透镜在光轴上的中心厚度CT5之间满足0.3≤CT4/CT5<1.0,具体地,满足0.38≤CT4/CT5≤0.53。通过满足上述关系,能够控制第四透镜和第五透镜中心厚度的比例,从而将其畸变贡献量控制在合理的范围内,使得最后各视场的畸变量被控制在2%之下,避免后期使用软件调试。
在本申请的实施例中,第一透镜的有效焦距f1与光学成像镜头的有效焦距f之间满足0.7<f1/f<1,具体地,满足0.81≤f1/f≤0.91。通过满足上述关系,能够将第一透镜的正光焦度控制在合理的区间内,使其既承担了光学成像镜头所需要的正光焦度,也使得其贡献的球差在合理可控的范围内,保证后面的光学透镜能合理的矫正其贡献的负球差,从而较好地保证系统轴上视场的像质。
在本申请的实施例中,第二透镜和第三透镜在光轴上的空气间隔T23与第三透镜的中心厚度CT3之间满足0.5≤T23/CT3<0.9,具体地,满足0.55≤T23/CT3≤0.85。通过满足上述关系,能够约束第二透镜和第三透镜间距和第三透镜中心厚度的比值,使得其在合理的区间范围内,从而有效保证系统的场曲和畸变量,使得其轴外视场具有良好的成像质量。
在本申请的实施例中,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2以及第六透镜的中心厚度CT6之间满足2<(CT1+CT2+CT6)/CT1<3,具体地,满足2.08≤(CT1+CT2+CT6)/CT1≤2.35。通过满足上述关系,能够将第一、第二和第六透镜的中心厚度约束在合理的范围内,既可满足加工性能,又可保证光学系统的超薄特性。
在本申请的实施例中,第一透镜物侧面至成像面的轴上距离TTL与第一透镜至第六透镜在光轴上的中心厚度之和∑CT之间满足0.5≤∑ CT/TTL<0.7,具体地,满足0.55≤∑CT/TTL≤0.58。通过满足上述关系,即控制第一透镜至第六透镜在光轴上的中心厚度之和的范围,能够合理控制其平衡后剩余畸变的范围,使光学成像镜头具有良好的畸变表现。
在本申请的实施例中,第五透镜的边缘厚度ET5与第五透镜在光轴上的中心厚度CT5之间满足0.5≤ET5/CT5<0.8,具体地,满足0.52≤ET5/CT5≤0.76。通过上式约束第五透镜边缘厚度与第五透镜在光轴上的中心厚度比值的范围,能够确保镜片具有良好的加工特性。
在本申请的实施例中,第四透镜物侧面和光轴的交点至第四透镜物侧面的有效半径顶点之间的轴上距离SAG41与第四透镜在光轴上的中心厚度CT4之间满足-0.6≤SAG41/CT4≤-0.2,具体地,满足-0.57≤SAG41/CT4≤-0.28。满足上式要求的光学镜片可以有效减小第四透镜物侧面上主光线的入射角,从而提高镜头与芯片的匹配度。
在本申请的实施例中,第五透镜和第六透镜在光轴上的空气间隔T56与第四透镜和第五透镜在光轴上的空气间隔T45之间满足T56/T45≤0.4,具体地,满足T56/T45≤0.36。通过满足上述关系,能够约束第五透镜和第六透镜在光轴上的空气间隔及第四透镜和第五透镜在光轴上的空气间隔,从而有效平衡光学成像镜头的场曲,使光学成像镜头具有合理的场曲。
以下结合具体实施例进一步描述本申请。
实施例1
首先参照图1至图5描述根据本申请实施例1的光学成像镜头。
图1为示出了实施例1的光学成像镜头的结构示意图。如图1所示,光学成像镜头包括6片透镜。这6片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5以及具有物侧面S11和像侧面S12的第六透镜E6。第一透镜E1至第六透镜E6从光学成像镜头的物侧到像侧依次设置。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
该光学成像镜头还包括用于滤除红外光的具有物侧面S13和像侧面S14的滤光片E7。在该实施例中,来自物体的光依次穿过各表面S1至S14并最终成像在成像表面S15上。
在该实施例中,第一透镜E1至第六透镜E6分别具有各自的有效焦距f1至f6。第一透镜E1至第六透镜E6沿着光轴依次排列并共同决定了光学成像镜头的总有效焦距f。下表1示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL(mm)以及光学成像镜头最大视场角的一半HFOV(°)。
f1(mm) 4.02 f(mm) 4.61
f2(mm) -13.49 TTL(mm) 5.30
f3(mm) 200.00 HFOV(°) 40.1
f4(mm) 37.25
f5(mm) 60.58
f6(mm) -8.24
表1
表2示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117168-appb-000001
表2
在本实施例中,各透镜均可采用非球面透镜,各非球面面型x由以下公式限定:
Figure PCTCN2018117168-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表2中已给出);Ai是非球面第i-th阶的修正系数。
下表3示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.2297E-03 3.1168E-02 -9.6676E-02 1.8335E-01 -2.0947E-01 1.4101E-01 -5.2575E-02 9.0400E-03 -5.4036E-04
S2 -3.2159E-02 4.6612E-03 -8.2453E-02 2.9075E-01 -5.7862E-01 7.0512E-01 -5.1864E-01 2.1035E-01 -3.6072E-02
S3 -5.1597E-02 5.9104E-02 -2.2228E-01 9.0445E-01 -1.9947E+00 2.6262E+00 -2.0573E+00 8.8559E-01 -1.6083E-01
S4 -1.6125E-02 8.3187E-02 -2.2424E-01 8.0182E-01 -1.5797E+00 1.8614E+00 -1.2318E+00 3.8025E-01 -1.6699E-02
S5 -4.4936E-02 -1.8022E-02 7.7700E-02 -6.7044E-01 2.1361E+00 -3.8400E+00 4.0361E+00 -2.3268E+00 5.7336E-01
S6 -4.7860E-02 -1.7929E-02 1.9760E-01 -9.0594E-01 1.9839E+00 -2.6132E+00 2.0719E+00 -9.1612E-01 1.7500E-01
S7 -1.0141E-01 -4.6538E-02 2.7557E-01 -6.5332E-01 9.8528E-01 -9.4390E-01 5.4532E-01 -1.7521E-01 2.3620E-02
S8 -5.9675E-02 -1.4969E-01 4.3466E-01 -6.8029E-01 6.8619E-01 -4.2021E-01 1.4820E-01 -2.7450E-02 2.0391E-03
S9 6.3373E-02 -1.1170E-01 1.4644E-02 7.3567E-02 -8.5461E-02 4.6657E-02 -1.3943E-02 2.1856E-03 -1.4044E-04
S10 1.2512E-01 -1.6595E-01 1.0651E-01 -4.5970E-02 1.3428E-02 -2.5893E-03 3.1540E-04 -2.2086E-05 6.8195E-07
S11 -9.8712E-02 -9.1777E-03 1.4565E-02 -4.1604E-03 6.2442E-04 -5.5446E-05 2.8632E-06 -7.5314E-08 6.5322E-10
S12 -1.8050E-01 9.0197E-02 -4.1517E-02 1.3172E-02 -2.6922E-03 3.4767E-04 -2.7367E-05 1.1980E-06 -2.2363E-08
表3
图2示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图3示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图5示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图2至图5可以看出,根据实施例1的光学成像镜头可适用于便携式电子产品,且具有超薄大孔径和良好的成像质量。
实施例2
以下参照图6至图10描述根据本申请实施例2的光学成像镜头。
图6为示出了实施例2的光学成像镜头的结构示意图。如图6所示,光学成像镜头包括6片透镜。这6片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5以及具有物侧面S11和像侧面S12的第六透镜E6。第一透镜E1至第六透镜E6从光学成像镜头的物侧到像侧依次设置。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凸面,像侧面S10 可为凹面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
下表4示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及光学成像镜头最大视场角的一半HFOV(°)。
f1(mm) 3.92 f(mm) 4.65
f2(mm) -12.55 TTL(mm) 5.30
f3(mm) -1000.00 HFOV(°) 39.8
f4(mm) 32.78
f5(mm) 68.85
f6(mm) -8.53
表4
表5示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117168-appb-000003
表5
下表6示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 8 A10 A12 A14 A16 A18 A20
S1 -1.1719E-03 1.1665E-02 -3.6435E-02 6.8719E-02 -7.3038E-02 4.0152E-02 -8.1965E-03 -1.4001E-03 4.3007E-04
S2 -3.5348E-02 8.2635E-03 -7.4041E-02 2.5126E-01 -4.9108E-01 5.8650E-01 -4.2283E-01 1.6820E-01 -2.8296E-02
S3 -5.2828E-02 7.5454E-02 -2.3794E-01 8.4626E-01 -1.7519E+00 2.2052E+00 -1.6653E+00 6.9527E-01 -1.2290E-01
S4 -1.2961E-02 4.6725E-02 9.7096E-02 -6.0115E-01 2.0126E+00 -3.8036E+00 4.1709E+00 -2.4770E+00 6.2695E-01
S5 -4.2843E-02 -8.0115E-02 3.9833E-01 -1.6830E+00 4.1460E+00 -6.4022E+00 6.0384E+00 -3.1834E+00 7.2269E-01
S6 -3.7852E-02 -1.0070E-01 4.5628E-01 -1.3805E+00 2.4612E+00 -2.8026E+00 1.9726E+00 -7.7903E-01 1.3344E-01
S7 -9.0837E-02 -1.0491E-01 3.3548E-01 -5.0114E-01 3.6536E-01 -1.3858E-02 -2.0420E-01 1.5076E-01 -3.6033E-02
S8 -6.5753E-02 -1.0927E-01 2.5063E-01 -2.8639E-01 2.0554E-01 -7.9554E-02 1.0681E-02 1.8548E-03 -5.2506E-04
S9 5.7100E-02 -1.3119E-01 7.8880E-02 -1.3363E-02 -2.4156E-02 2.3149E-02 -9.3448E-03 1.8354E-03 -1.4228E-04
S10 1.0596E-01 -1.4137E-01 9.2608E-02 -4.2747E-02 1.3658E-02 -2.8841E-03 3.7993E-04 -2.8167E-05 8.9675E-07
S11 -1.1883E-01 1.0795E-02 6.8045E-03 -2.9002E-03 6.2685E-04 -8.6768E-05 7.5497E-06 -3.7043E-07 7.7448E-09
S12 -1.8440E-01 9.1226E-02 -4.2533E-02 1.3972E-02 -2.9862E-03 4.0436E-04 -3.3369E-05 1.5307E-06 -2.9943E-08
表6
图7示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图9示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图7至图10可以看出,根据实施例2的光学成像镜头可适用于便携式电子产品,且具有超薄大孔径和良好的成像质量。
实施例3
以下参照图11至图15描述根据本申请实施例3的光学成像镜头。
图11为示出了实施例3的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凸面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凹面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
下表7示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及光学成像镜头最大视场角的一半HFOV(°)。
f1(mm) 3.95 f(mm) 4.52
f2(mm) -15.91 TTL(mm) 5.27
f3(mm) 54.11 HFOV(°) 40.6
f4(mm) -132.07
f5(mm) 36.58
f6(mm) -8.21
表7
表8示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117168-appb-000004
Figure PCTCN2018117168-appb-000005
表8
下表9示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -5.3141E-03 3.5750E-02 -1.0141E-01 1.6983E-01 -1.5802E-01 6.7570E-02 1.9332E-03 -1.1805E-02 2.6811E-03
S2 -3.3751E-02 1.7731E-02 -1.3556E-01 4.4615E-01 -8.5901E-01 1.0174E+00 -7.3170E-01 2.9219E-01 -4.9571E-02
S3 -5.6172E-02 8.2455E-02 -3.0313E-01 1.1473E+00 -2.4451E+00 3.1333E+00 -2.4035E+00 1.0197E+00 -1.8355E-01
S4 -1.3287E-02 2.5433E-02 1.8836E-01 -8.2043E-01 2.3820E+00 -4.2212E+00 4.4757E+00 -2.6193E+00 6.6326E-01
S5 -2.4711E-02 -2.0953E-01 1.2854E+00 -5.3371E+00 1.3286E+01 -2.0521E+01 1.9246E+01 -1.0054E+01 2.2518E+00
S6 -9.9644E-03 -2.6318E-01 1.1059E+00 -3.1512E+00 5.5931E+00 -6.3996E+00 4.5922E+00 -1.8797E+00 3.3581E-01
S7 -6.0578E-02 -2.5827E-01 7.9275E-01 -1.4228E+00 1.6525E+00 -1.2773E+00 6.5097E-01 -2.0115E-01 2.7587E-02
S8 -3.5338E-02 -2.7598E-01 7.0382E-01 -1.0275E+00 9.6144E-01 -5.5043E-01 1.8247E-01 -3.1635E-02 2.1575E-03
S9 5.7623E-02 -8.6378E-02 -3.6228E-02 1.3345E-01 -1.2872E-01 6.5985E-02 -1.9138E-02 2.9545E-03 -1.8849E-04
S10 9.5539E-02 -1.1721E-01 6.1520E-02 -1.9687E-02 3.4752E-03 -1.7947E-04 -4.3103E-05 7.6903E-06 -3.7238E-07
S11 -1.2002E-01 1.1617E-02 4.9595E-03 -1.7599E-03 2.8856E-04 -3.0372E-05 2.1448E-06 -9.2635E-08 1.8182E-09
S12 -1.6993E-01 7.5095E-02 -3.0506E-02 8.6818E-03 -1.6089E-03 1.8945E-04 -1.3626E-05 5.4588E-07 -9.3549E-09
表9
图12示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图13示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图15示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图12至图15可以看出,根据实施例3的光学成像镜头可适用于便携式电子产品,且具有超薄大孔径和良好的成像质量。
实施例4
以下参照图16至图20描述根据本申请实施例4的光学成像镜头。
图16为示出了实施例4的光学成像镜头的结构示意图。光学成像镜头 由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
下表10示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及光学成像镜头最大视场角的一半HFOV(°)。
f1(mm) 3.95 f(mm) 4.57
f2(mm) -15.41 TTL(mm) 5.30
f3(mm) 67.34 HFOV(°) 40.3
f4(mm) 411.00
f5(mm) 51.35
f6(mm) -8.19
表10
下表11示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117168-appb-000006
Figure PCTCN2018117168-appb-000007
表11
下表12示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -5.0263E-03 3.3461E-02 -9.2938E-02 1.5159E-01 -1.3381E-01 4.7352E-02 1.2293E-02 -1.4791E-02 3.0526E-03
S2 -3.3674E-02 1.4209E-02 -1.1702E-01 3.9637E-01 -7.7646E-01 9.3089E-01 -6.7594E-01 2.7200E-01 -4.6432E-02
S3 -5.6826E-02 8.3535E-02 -3.0650E-01 1.1589E+00 -2.4714E+00 3.1697E+00 -2.4325E+00 1.0320E+00 -1.8565E-01
S4 -1.4124E-02 2.9423E-02 1.6995E-01 -7.6358E-01 2.2707E+00 -4.0835E+00 4.3731E+00 -2.5768E+00 6.5583E-01
S5 -1.3417E-02 -2.8739E-01 1.6391E+00 -6.3480E+00 1.5143E+01 -2.2712E+01 2.0859E+01 -1.0729E+01 2.3734E+00
S6 -4.0249E-03 -2.9192E-01 1.1564E+00 -3.1936E+00 5.5829E+00 -6.3542E+00 4.5722E+00 -1.8847E+00 3.3902E-01
S7 -6.0643E-02 -2.2429E-01 6.3448E-01 -1.0568E+00 1.1147E+00 -7.7629E-01 3.7421E-01 -1.1991E-01 1.7903E-02
S8 -2.8299E-02 -2.7118E-01 6.8257E-01 -1.0022E+00 9.4651E-01 -5.4737E-01 1.8376E-01 -3.2467E-02 2.2893E-03
S9 6.2862E-02 -9.0847E-02 -2.8835E-02 1.2275E-01 -1.1924E-01 6.0964E-02 -1.7567E-02 2.6873E-03 -1.6958E-04
S10 9.6394E-02 -1.1471E-01 5.7029E-02 -1.6371E-02 2.0080E-03 2.2758E-04 -1.1156E-04 1.4024E-05 -6.1845E-07
S11 -1.1902E-01 1.3040E-02 3.4704E-03 -1.2490E-03 2.0285E-04 -2.3005E-05 1.8799E-06 -9.4568E-08 2.0933E-09
S12 -1.6814E-01 7.4130E-02 -2.9544E-02 8.2045E-03 -1.4843E-03 1.7071E-04 -1.1992E-05 4.6915E-07 -7.8553E-09
表12
图17示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图18示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图19示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图20示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图17至图 20可以看出,根据实施例4的光学成像镜头可适用于便携式电子产品,且具有超薄大孔径和良好的成像质量。
实施例5
以下参照图21至图25描述根据本申请实施例5的光学成像镜头。
图21为示出了实施例5的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凹面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
下表13示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及光学成像镜头最大视场角的一半HFOV(°)。
f1(mm) 3.95 f(mm) 4.59
f2(mm) -14.40 TTL(mm) 5.30
f3(mm) -1000.00 HFOV(°) 40.1
f4(mm) 45.00
f5(mm) -361.56
f6(mm) -11.75
表13
下表14示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117168-appb-000008
表14
下表15示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.6613E-03 3.1574E-02 -9.2693E-02 1.6245E-01 -1.6158E-01 8.0483E-02 -9.2126E-03 -7.4910E-03 2.0411E-03
S2 -3.4566E-02 2.1400E-02 -1.4821E-01 4.8888E-01 -9.5007E-01 1.1248E+00 -8.0038E-01 3.1420E-01 -5.2251E-02
S3 -5.5682E-02 8.4510E-02 -2.9224E-01 1.0961E+00 -2.3828E+00 3.1181E+00 -2.4276E+00 1.0386E+00 -1.8748E-01
S4 -1.5452E-02 4.0582E-02 1.1906E-01 -5.4519E-01 1.6290E+00 -2.9662E+00 3.2390E+00 -1.9458E+00 5.0575E-01
S5 -4.4173E-02 -9.0054E-02 5.3359E-01 -2.2941E+00 5.6898E+00 -8.7595E+00 8.2175E+00 -4.3226E+00 9.8458E-01
S6 -6.0281E-02 6.0943E-02 -1.4465E-01 2.4954E-02 3.6283E-01 -8.0504E-01 8.1323E-01 -4.1790E-01 9.0098E-02
S7 -9.9294E-02 -6.2648E-02 2.1062E-01 -2.2809E-01 -4.7032E-03 3.2048E-01 -3.8784E-01 1.9740E-01 -3.8623E-02
S8 -5.4611E-02 -1.7773E-01 4.6958E-01 -7.0940E-01 7.1353E-01 -4.4067E-01 1.5696E-01 -2.9325E-02 2.1942E-03
S9 8.5548E-02 -1.2193E-01 -1.0925E-02 1.3136E-01 -1.4811E-01 8.5623E-02 -2.7695E-02 4.7320E-03 -3.3204E-04
S10 1.0493E-01 -1.2620E-01 6.8740E-02 -2.4858E-02 5.8188E-03 -7.7594E-04 3.9190E-05 2.0423E-06 -2.2620E-07
S11 -1.3171E-01 1.9733E-02 2.9705E-03 -1.5340E-03 2.6767E-04 -2.6616E-05 1.5908E-06 -5.2663E-08 7.2246E-10
S12 -1.6627E-01 7.8757E-02 -3.4375E-02 1.0635E-02 -2.1603E-03 2.7905E-04 -2.1960E-05 9.5808E-07 -1.7761E-08
表15
图22示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波 长的光线经由光学系统后的会聚焦点偏离。图23示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图25示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图22至图25可以看出,根据实施例5的光学成像镜头可适用于便携式电子产品,且具有超薄大孔径和良好的成像质量。
实施例6
以下参照图26至图30描述根据本申请实施例6的光学成像镜头。
图26为示出了实施例6的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
下表16示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及光学成像镜头最大视场角的一半HFOV(°)。
f1(mm) 3.93 f(mm) 4.58
f2(mm) -15.82 TTL(mm) 5.30
f3(mm) -1000.00 HFOV(°) 40.2
f4(mm) -1000.00
f5(mm) 45.59
f6(mm) -10.67
表16
下表17示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117168-appb-000009
表17
下表18示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.8390E-03 4.4165E-02 -1.3180E-01 2.3539E-01 -2.4437E-01 1.3693E-01 -3.0898E-02 -3.5311E-03 1.8341E-03
S2 -3.5325E-02 3.2959E-02 -2.1053E-01 6.7321E-01 -1.2742E+00 1.4737E+00 -1.0261E+00 3.9461E-01 -6.4310E-02
S3 -5.6147E-02 9.0454E-02 -3.2716E-01 1.2115E+00 -2.5930E+00 3.3472E+00 -2.5770E+00 1.0920E+00 -1.9531E-01
S4 -1.2140E-02 7.2404E-03 3.2214E-01 -1.3103E+00 3.4634E+00 -5.7319E+00 5.7832E+00 -3.2537E+00 7.9428E-01
S5 -2.7573E-02 -2.6586E-01 1.4565E+00 -5.3383E+00 1.2010E+01 -1.7025E+01 1.4812E+01 -7.2410E+00 1.5306E+00
S6 -6.9801E-02 9.3246E-02 -3.3473E-01 6.1622E-01 -7.9009E-01 5.9858E-01 -2.1586E-01 1.6446E-03 1.6544E-02
S7 -1.0333E-01 1.1898E-02 -6.3224E-02 4.5826E-01 -1.0856E+00 1.3304E+00 -9.2492E-01 3.4572E-01 -5.4563E-02
S8 -5.8911E-02 -1.5748E-01 4.1682E-01 -5.8810E-01 5.5243E-01 -3.2494E-01 1.1232E-01 -2.0748E-02 1.5731E-03
S9 6.9212E-02 -1.2918E-01 2.4705E-02 7.5373E-02 -9.4579E-02 5.4841E-02 -1.7415E-02 2.8988E-03 -1.9738E-04
S10 1.0572E-01 -1.3292E-01 7.1676E-02 -2.3914E-02 4.6845E-03 -3.8620E-04 -2.7858E-05 7.9572E-06 -4.4033E-07
S11 -1.2164E-01 1.3091E-02 4.9207E-03 -1.9515E-03 3.5461E-04 -4.1242E-05 3.1422E-06 -1.4150E-07 2.8139E-09
S12 -1.6407E-01 7.4089E-02 -3.1472E-02 9.5882E-03 -1.9407E-03 2.5255E-04 -2.0195E-05 9.0125E-07 -1.7186E-08
表18
图27示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图28示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图29示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图30示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图27至图30可以看出,根据实施例6的光学成像镜头可适用于便携式电子产品,且具有超薄大孔径和良好的成像质量。
实施例7
以下参照图31至图35描述根据本申请实施例7的光学成像镜头。
图31为示出了实施例7的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凹面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
下表19示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及光学成像镜头最大视场角的一半HFOV(°)。
f1(mm) 4.14 f(mm) 4.55
f2(mm) -11.87 TTL(mm) 5.30
f3(mm) 19.06 HFOV(°) 40.4
f4(mm) -215.66
f5(mm) -800.32
f6(mm) -11.68
表19
下表20示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117168-appb-000010
表20
下表21示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -3.2438E-03 2.0826E-02 -6.0114E-02 1.0464E-01 -1.0345E-01 5.1445E-02 -6.8960E-03 -3.7349E-03 9.6387E-04
S2 -3.2742E-02 1.0523E-02 -8.2761E-02 2.8686E-01 -6.0252E-01 7.6472E-01 -5.7763E-01 2.3899E-01 -4.1704E-02
S3 -5.9275E-02 8.9399E-02 -2.9255E-01 1.0810E+00 -2.3905E+00 3.1836E+00 -2.5134E+00 1.0865E+00 -1.9798E-01
S4 -2.7625E-02 9.8160E-02 -2.0094E-01 7.2330E-01 -1.5809E+00 2.1449E+00 -1.7432E+00 7.7581E-01 -1.3509E-01
S5 -5.7000E-02 8.4159E-02 -3.8156E-01 8.2282E-01 -9.6236E-01 2.7441E-01 6.4922E-01 -7.6219E-01 2.6517E-01
S6 -2.6777E-02 -8.4994E-02 3.6619E-01 -1.1126E+00 2.0290E+00 -2.3853E+00 1.7631E+00 -7.5215E-01 1.4266E-01
S7 -4.7187E-02 -3.3570E-01 9.2045E-01 -1.6384E+00 2.0013E+00 -1.6669E+00 9.1263E-01 -2.9969E-01 4.4476E-02
S8 1.1199E-02 -4.3097E-01 8.6773E-01 -1.0860E+00 8.8402E-01 -4.4361E-01 1.3006E-01 -2.0120E-02 1.2315E-03
S9 1.4871E-01 -2.9537E-01 2.9854E-01 -2.3436E-01 1.3185E-01 -4.8713E-02 1.1017E-02 -1.3712E-03 7.1562E-05
S10 9.8026E-02 -1.1275E-01 6.2612E-02 -2.7175E-02 9.3224E-03 -2.2754E-03 3.5547E-04 -3.1419E-05 1.1901E-06
S11 -1.8431E-01 7.6164E-02 -3.5450E-02 1.3599E-02 -3.2768E-03 4.7982E-04 -4.1985E-05 2.0330E-06 -4.2145E-08
S12 -2.0570E-01 1.0965E-01 -5.1901E-02 1.7209E-02 -3.7629E-03 5.2739E-04 -4.5314E-05 2.1662E-06 -4.4048E-08
表21
图32示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图33示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图34示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图35示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图31至图35可以看出,根据实施例7的光学成像镜头可适用于便携式电子产品,且具有超薄大孔径和良好的成像质量。
实施例8
以下参照图36至图40描述根据本申请实施例8的光学成像镜头。
图36为示出了实施例8的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可 为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凹面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
下表22示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及光学成像镜头最大视场角的一半HFOV(°)。
f1(mm) 3.97 f(mm) 4.90
f2(mm) -10.07 TTL(mm) 5.30
f3(mm) 23.17 HFOV(°) 38.4
f4(mm) 6907.61
f5(mm) -799.96
f6(mm) -8.28
表22
下表23示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117168-appb-000011
Figure PCTCN2018117168-appb-000012
表23
下表24示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.2309E-03 -1.6943E-02 7.1951E-02 -1.8458E-01 2.9568E-01 -2.9503E-01 1.7613E-01 -5.7378E-02 7.6668E-03
S2 -3.3377E-02 1.5683E-02 -9.1109E-02 2.6516E-01 -4.9601E-01 5.8082E-01 -4.1119E-01 1.6059E-01 -2.6535E-02
S3 -5.5499E-02 5.0121E-02 -5.5728E-02 2.4456E-01 -6.4020E-01 9.5468E-01 -8.1056E-01 3.6844E-01 -6.9415E-02
S4 -2.9240E-02 1.1883E-01 -2.7628E-01 8.3712E-01 -1.5677E+00 1.7855E+00 -1.1168E+00 2.9715E-01 9.0688E-03
S5 -4.8712E-02 -3.0931E-02 1.5783E-01 -6.7750E-01 1.6167E+00 -2.4737E+00 2.3945E+00 -1.3555E+00 3.4652E-01
S6 -4.2411E-02 -8.3271E-03 5.4335E-02 -3.5478E-01 9.0995E-01 -1.3935E+00 1.2723E+00 -6.4375E-01 1.4007E-01
S7 -3.4651E-02 -5.5043E-01 2.0625E+00 -4.9801E+00 7.7460E+00 -7.7174E+00 4.7711E+00 -1.6721E+00 2.5344E-01
S8 -6.7913E-03 -3.7852E-01 8.5278E-01 -1.2047E+00 1.0860E+00 -5.9650E-01 1.9216E-01 -3.3276E-02 2.3751E-03
S9 1.3945E-01 -2.9658E-01 3.4347E-01 -3.0239E-01 1.7611E-01 -6.3712E-02 1.3727E-02 -1.6093E-03 7.8838E-05
S10 6.1062E-02 -8.5415E-02 6.3914E-02 -4.4658E-02 2.1502E-02 -6.3226E-03 1.0945E-03 -1.0330E-04 4.1243E-06
S11 -2.6708E-01 1.4398E-01 -6.7888E-02 2.3894E-02 -5.4365E-03 7.7328E-04 -6.6889E-05 3.2432E-06 -6.8172E-08
S12 -2.7445E-01 1.7571E-01 -9.4854E-02 3.5030E-02 -8.3561E-03 1.2573E-03 -1.1480E-04 5.7968E-06 -1.2408E-07
表24
图37示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图38示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图39示出了实施例8的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图40示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图36至图40可以看出,根据实施例8的光学成像镜头可适用于便携式电子产品,且具有超薄大孔径和良好的成像质量。
实施例9
以下参照图41至图45描述根据本申请实施例9的光学成像镜头。
图41为示出了实施例9的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为 凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
下表25示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及光学成像镜头最大视场角的一半HFOV(°)。
f1(mm) 3.96 f(mm) 4.90
f2(mm) -10.38 TTL(mm) 5.33
f3(mm) 24.11 HFOV(°) 38.6
f4(mm) -281.59
f5(mm) -2779.24
f6(mm) -8.49
表25
下表26示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117168-appb-000013
Figure PCTCN2018117168-appb-000014
表26
下表27示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.2748E-03 -1.7378E-02 7.5126E-02 -1.9107E-01 3.0098E-01 -2.9438E-01 1.7222E-01 -5.4929E-02 7.1684E-03
S2 -3.2845E-02 1.3802E-02 -9.4375E-02 2.8391E-01 -5.2545E-01 6.0520E-01 -4.2217E-01 1.6279E-01 -2.6593E-02
S3 -5.4105E-02 4.7681E-02 -7.2269E-02 3.1815E-01 -7.7120E-01 1.0839E+00 -8.8517E-01 3.9171E-01 -7.2351E-02
S4 -2.3937E-02 8.5681E-02 -1.0079E-01 1.6999E-01 9.6151E-02 -8.1711E-01 1.3434E+00 -9.8929E-01 2.9465E-01
S5 -4.9375E-02 -8.2225E-03 2.7759E-02 -3.0181E-01 1.0177E+00 -1.9694E+00 2.2459E+00 -1.4134E+00 3.8201E-01
S6 -3.4744E-02 -8.1843E-02 3.9403E-01 -1.3324E+00 2.6817E+00 -3.4080E+00 2.6646E+00 -1.1752E+00 2.2515E-01
S7 -2.3015E-02 -5.7182E-01 1.9680E+00 -4.4389E+00 6.5405E+00 -6.2333E+00 3.7074E+00 -1.2536E+00 1.8334E-01
S8 7.0218E-04 -3.8887E-01 8.4163E-01 -1.1448E+00 1.0033E+00 -5.4036E-01 1.7158E-01 -2.9383E-02 2.0789E-03
S9 1.3615E-01 -2.8454E-01 3.2571E-01 -2.8242E-01 1.6274E-01 -5.8427E-02 1.2492E-02 -1.4513E-03 7.0363E-05
S10 6.0902E-02 -9.5616E-02 8.1990E-02 -5.9242E-02 2.8290E-02 -8.2537E-03 1.4272E-03 -1.3527E-04 5.4422E-06
S11 -2.6895E-01 1.4718E-01 -7.1647E-02 2.5933E-02 -6.0115E-03 8.6407E-04 -7.4951E-05 3.6157E-06 -7.4998E-08
S12 -2.6931E-01 1.6946E-01 -8.9013E-02 3.1964E-02 -7.4146E-03 1.0856E-03 -9.6525E-05 4.7503E-06 -9.9168E-08
表27
图42示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图43示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图44示出了实施例9的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图45示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图41至图45可以看出,根据实施例9的光学成像镜头可适用于便携式电子产品,且具有超薄大孔径和良好的成像质量。
概括地说,在上述实施例1至9中,各条件式满足下面表28的条件。
条件式/实施例 1 2 3 4 5 6 7 8 9
f/EPD 1.83 1.84 1.79 1.81 1.82 1.82 1.81 1.91 1.91
R9/R10 0.53 0.53 0.53 0.53 -0.12 0.53 -1.05 -2.04 0.53
f*TAN(HFOV) 3.88 3.88 3.87 3.87 3.87 3.87 3.87 3.89 3.92
f6/f1 -2.05 -2.17 -2.08 -2.07 -2.98 -2.72 -2.82 -2.09 -2.14
TTL/ImgH 1.35 1.35 1.34 1.35 1.35 1.35 1.35 1.36 1.35
f2/f -2.93 -2.70 -3.52 -3.38 -3.13 -3.45 -2.61 -2.05 -2.12
(R1+R2)/(R3+R4) 0.27 0.26 0.21 0.24 0.26 0.24 0.37 0.34 0.32
f/(R11+R12) 0.89 0.89 0.86 0.85 0.92 0.90 1.06 1.10 1.10
CT4/CT5 0.43 0.43 0.38 0.41 0.46 0.53 0.38 0.49 0.48
f1/f 0.87 0.84 0.87 0.87 0.86 0.86 0.91 0.81 0.81
T23/CT3 0.73 0.79 0.81 0.81 0.79 0.85 0.55 0.60 0.62
(CT1+CT2+CT6)/CT1 2.23 2.14 2.23 2.26 2.35 2.29 2.28 2.08 2.09
∑CT/TTL 0.58 0.57 0.58 0.58 0.58 0.58 0.58 0.55 0.55
ET5/CT5 0.74 0.76 0.70 0.69 0.73 0.72 0.71 0.54 0.52
SAG41/CT4 -0.28 -0.30 -0.35 -0.33 -0.33 -0.36 -0.44 -0.54 -0.57
T56/T45 0.25 0.22 0.34 0.30 0.13 0.28 0.29 0.36 0.34
表28
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (45)

  1. 一种光学成像镜头,从物侧至像侧依次包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜,
    其特征在于,
    第一透镜具有正光焦度,且其物侧面为凸面,像侧面为凹面;
    第二透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面;
    第三透镜具有光焦度;
    第四透镜具有光焦度,且其像侧面为凹面;
    第五透镜具有光焦度;
    第六透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面;
    光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD<2.0,
    光学成像镜头的有效焦距f与光学成像镜头的最大视场角的一半HFOV之间满足3.8<f*TAN(HFOV)<5,以及
    第四透镜像侧面的曲率半径R8满足R8≥500mm。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH<1.5。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,第一透镜的有效焦距f1与第六透镜的有效焦距f6之间满足-3.5<f6/f1<-2.5。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,第二透镜的有效焦距f2与光学成像镜头的有效焦距f之间满足-4<f2/f<-2.5。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,第一透镜物侧面的曲率半径R1、第一透镜像侧面的曲率半径R2、第二透镜物侧面的曲率 半径R3以及第二透镜像侧面的曲率半径R4之间满足0.2≤(R1+R2)/(R3+R4)<0.5。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f、第六透镜物侧面的曲率半径R11以及第六透镜像侧面的曲率半径R12之间满足0.7<f/(R11+R12)<1.3。
  7. 根据权利要求1至6中任一项所述的光学成像镜头,其特征在于,第四透镜在光轴上的中心厚度CT4与第五透镜在光轴上的中心厚度CT5之间满足0.3≤CT4/CT5<1.0。
  8. 根据权利要求1至6中任一项所述的光学成像镜头,其特征在于,第二透镜和第三透镜在光轴上的空气间隔T23与第三透镜的中心厚度CT3之间满足0.5≤T23/CT3<0.9。
  9. 根据权利要求1至6中任一项所述的光学成像镜头,其特征在于,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2以及第六透镜的中心厚度CT6之间满足2<(CT1+CT2+CT6)/CT1<3。
  10. 根据权利要求1至6中任一项所述的光学成像镜头,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与第一透镜至第六透镜在光轴上的中心厚度之和∑CT之间满足0.5≤∑CT/TTL<0.7。
  11. 根据权利要求1至6中任一项所述的光学成像镜头,其特征在于,第五透镜的边缘厚度ET5与第五透镜在光轴上的中心厚度CT5之间满足0.5≤ET5/CT5<0.8。
  12. 根据权利要求1至6中任一项所述的光学成像镜头,其特征在于,第四透镜物侧面和光轴的交点至第四透镜物侧面的有效半径顶点之间的轴 上距离SAG41与第四透镜在光轴上的中心厚度CT4之间满足-0.6≤SAG41/CT4≤-0.2。
  13. 根据权利要求1至6中任一项所述的光学成像镜头,其特征在于,第五透镜和第六透镜在光轴上的空气间隔T56与第四透镜和第五透镜在光轴上的空气间隔T45之间满足T56/T45≤0.4。
  14. 根据权利要求1所述的光学成像镜头,其特征在于,第五透镜物侧面的曲率半径R9与第五透镜像侧面的曲率半径R10之间满足-3.5<R9/R10<0.6。
  15. 根据权利要求1所述的光学成像镜头,其特征在于,第一透镜的有效焦距f1与光学成像镜头的有效焦距f之间满足0.7<f1/f<1。
  16. 一种光学成像镜头,从物侧至像侧依次包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜,
    其特征在于,
    第一透镜具有正光焦度,且其物侧面为凸面,像侧面为凹面;
    第二透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面;
    第三透镜具有光焦度;
    第四透镜具有光焦度,且其像侧面为凹面;
    第五透镜具有光焦度;
    第六透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面;
    第五透镜物侧面的曲率半径R9与第五透镜像侧面的曲率半径R10之间满足-3.5<R9/R10<0.6。
  17. 根据权利要求16所述的光学成像镜头,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH<1.5。
  18. 根据权利要求16所述的光学成像镜头,其特征在于,第一透镜的有效焦距f1与第六透镜的有效焦距f6之间满足-3.5<f6/f1<-2.5。
  19. 根据权利要求16所述的光学成像镜头,其特征在于,第二透镜的有效焦距f2与光学成像镜头的有效焦距f之间满足-4<f2/f<-2.5。
  20. 根据权利要求16所述的光学成像镜头,其特征在于,第一透镜物侧面的曲率半径R1、第一透镜像侧面的曲率半径R2、第二透镜物侧面的曲率半径R3以及第二透镜像侧面的曲率半径R4之间满足0.2≤(R1+R2)/(R3+R4)<0.5。
  21. 根据权利要求16所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f、第六透镜物侧面的曲率半径R11以及第六透镜像侧面的曲率半径R12之间满足0.7<f/(R11+R12)<1.3。
  22. 根据权利要求16至21中任一项所述的光学成像镜头,其特征在于,第四透镜在光轴上的中心厚度CT4与第五透镜在光轴上的中心厚度CT5之间满足0.3≤CT4/CT5<1.0。
  23. 根据权利要求16至21中任一项所述的光学成像镜头,其特征在于,第二透镜和第三透镜在光轴上的空气间隔T23与第三透镜的中心厚度CT3之间满足0.5≤T23/CT3<0.9。
  24. 根据权利要求16至21中任一项所述的光学成像镜头,其特征在于,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2以及第六透镜的中心厚度CT6之间满足2<(CT1+CT2+CT6)/CT1<3。
  25. 根据权利要求16至21中任一项所述的光学成像镜头,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与第一透镜至第六透镜在光轴上的中心厚度之和∑CT之间满足0.5≤∑CT/TTL<0.7。
  26. 根据权利要求16至21中任一项所述的光学成像镜头,其特征在于,第五透镜的边缘厚度ET5与第五透镜在光轴上的中心厚度CT5之间满足0.5≤ET5/CT5<0.8。
  27. 根据权利要求16至21中任一项所述的光学成像镜头,其特征在于,第四透镜物侧面和光轴的交点至第四透镜物侧面的有效半径顶点之间的轴上距离SAG41与第四透镜在光轴上的中心厚度CT4之间满足-0.6≤SAG41/CT4≤-0.2。
  28. 根据权利要求16至21中任一项所述的光学成像镜头,其特征在于,第五透镜和第六透镜在光轴上的空气间隔T56与第四透镜和第五透镜在光轴上的空气间隔T45之间满足T56/T45≤0.4。
  29. 根据权利要求17所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD<2.0,
    光学成像镜头的有效焦距f与光学成像镜头的最大视场角的一半HFOV之间满足3.8<f*TAN(HFOV)<5,以及
    第四透镜像侧面的曲率半径R8满足R8≥500mm。
  30. 根据权利要求16所述的光学成像镜头,其特征在于,第一透镜的有效焦距f1与光学成像镜头的有效焦距f之间满足0.7<f1/f<1。
  31. 一种光学成像镜头,从物侧至像侧依次包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜,
    其特征在于,
    第一透镜具有正光焦度,且其物侧面为凸面,像侧面为凹面;
    第二透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面;
    第三透镜具有光焦度;
    第四透镜具有光焦度,且其像侧面为凹面;
    第五透镜具有光焦度;
    第六透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面;
    第一透镜的有效焦距f1与光学成像镜头的有效焦距f之间满足0.7<f1/f<1。
  32. 根据权利要求31所述的光学成像镜头,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH<1.5。
  33. 根据权利要求31所述的光学成像镜头,其特征在于,第一透镜的有效焦距f1与第六透镜的有效焦距f6之间满足-3.5<f6/f1<-2.5。
  34. 根据权利要求31所述的光学成像镜头,其特征在于,第二透镜的有效焦距f2与光学成像镜头的有效焦距f之间满足-4<f2/f<-2.5。
  35. 根据权利要求31所述的光学成像镜头,其特征在于,第一透镜物侧面的曲率半径R1、第一透镜像侧面的曲率半径R2、第二透镜物侧面的曲率半径R3以及第二透镜像侧面的曲率半径R4之间满足0.2≤(R1+R2)/(R3+R4)<0.5。
  36. 根据权利要求31所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f、第六透镜物侧面的曲率半径R11以及第六透镜像侧面的曲率半径R12之间满足0.7<f/(R11+R12)<1.3。
  37. 根据权利要求31至36中任一项所述的光学成像镜头,其特征在于,第四透镜在光轴上的中心厚度CT4与第五透镜在光轴上的中心厚度CT5之间满足0.3≤CT4/CT5<1.0。
  38. 根据权利要求31至36中任一项所述的光学成像镜头,其特征在于,第二透镜和第三透镜在光轴上的空气间隔T23与第三透镜的中心厚度CT3之间满足0.5≤T23/CT3<0.9。
  39. 根据权利要求31至36中任一项所述的光学成像镜头,其特征在于,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2以及第六透镜的中心厚度CT6之间满足2<(CT1+CT2+CT6)/CT1<3。
  40. 根据权利要求31至36中任一项所述的光学成像镜头,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与第一透镜至第六透镜在光轴上的中心厚度之和∑CT之间满足0.5≤∑CT/TTL<0.7。
  41. 根据权利要求31至36中任一项所述的光学成像镜头,其特征在于,第五透镜的边缘厚度ET5与第五透镜在光轴上的中心厚度CT5之间满足0.5≤ET5/CT5<0.8。
  42. 根据权利要求31至36中任一项所述的光学成像镜头,其特征在于,第四透镜物侧面和光轴的交点至第四透镜物侧面的有效半径顶点之间的轴上距离SAG41与第四透镜在光轴上的中心厚度CT4之间满足-0.6≤SAG41/CT4≤-0.2。
  43. 根据权利要求31至36中任一项所述的光学成像镜头,其特征在于,第五透镜和第六透镜在光轴上的空气间隔T56与第四透镜和第五透镜在光轴上的空气间隔T45之间满足T56/T45≤0.4。
  44. 根据权利要求32所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD<2.0,
    光学成像镜头的有效焦距f与光学成像镜头的最大视场角的一半HFOV之间满足3.8<f*TAN(HFOV)<5,以及
    第四透镜像侧面的曲率半径R8满足R8≥500mm。
  45. 根据权利要求32所述的光学成像镜头,其特征在于,第五透镜物侧面的曲率半径R9与第五透镜像侧面的曲率半径R10之间满足-3.5<R9/R10<0.6。
PCT/CN2018/117168 2018-06-01 2018-11-23 光学成像镜头 WO2019227877A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/854,388 US11635588B2 (en) 2018-06-01 2020-04-21 Optical imaging lens assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810555994.1 2018-06-01
CN201810555994.1A CN108681034B (zh) 2018-06-01 2018-06-01 光学成像镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/854,388 Continuation US11635588B2 (en) 2018-06-01 2020-04-21 Optical imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2019227877A1 true WO2019227877A1 (zh) 2019-12-05

Family

ID=63809379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117168 WO2019227877A1 (zh) 2018-06-01 2018-11-23 光学成像镜头

Country Status (3)

Country Link
US (1) US11635588B2 (zh)
CN (3) CN113820825B (zh)
WO (1) WO2019227877A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200640A (zh) * 2020-09-18 2022-03-18 三星电机株式会社 光学成像系统
CN114563865A (zh) * 2022-04-29 2022-05-31 江西联益光学有限公司 光学镜头及成像设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820825B (zh) 2018-06-01 2022-08-02 浙江舜宇光学有限公司 光学成像镜头
JP6556927B1 (ja) * 2018-08-14 2019-08-07 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
US11921260B2 (en) * 2018-10-11 2024-03-05 Sintai Optical (Shenzhen) Co., Ltd. Lens assembly including six lenses of +−+++−, +−+−+−, or ++−++−; or seven lenses of+−++−+−, or +−+++−− refractive powers
CN111221108B (zh) * 2018-12-26 2022-02-11 浙江舜宇光学有限公司 光学成像镜头
KR20200127484A (ko) * 2019-05-02 2020-11-11 삼성전기주식회사 촬상 광학계
CN111190270B (zh) * 2020-04-13 2020-07-14 江西联益光学有限公司 光学镜头及成像设备
CN112731624B (zh) * 2021-01-04 2022-09-09 浙江舜宇光学有限公司 一种光学成像镜头
CN113625434B (zh) * 2021-09-18 2023-10-13 浙江舜宇光学有限公司 光学成像镜头
CN116184642B (zh) * 2022-11-09 2023-09-12 江西联创电子有限公司 光学镜头
CN115963625B (zh) * 2023-03-13 2023-06-16 江西联益光学有限公司 光学成像镜头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150138425A1 (en) * 2013-11-21 2015-05-21 Samsung Electronics Co., Ltd. Imaging lens system and electronic apparatus employing the same
CN105807391A (zh) * 2016-01-04 2016-07-27 玉晶光电(厦门)有限公司 光学镜片组
CN106646833A (zh) * 2017-02-23 2017-05-10 浙江舜宇光学有限公司 摄像镜头
CN107092082A (zh) * 2017-07-04 2017-08-25 浙江舜宇光学有限公司 光学成像镜头
CN107783261A (zh) * 2017-12-12 2018-03-09 浙江舜宇光学有限公司 光学成像镜头
CN107966794A (zh) * 2017-12-29 2018-04-27 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108681034A (zh) * 2018-06-01 2018-10-19 浙江舜宇光学有限公司 光学成像镜头
CN208421380U (zh) * 2018-06-01 2019-01-22 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145792B1 (ko) 2010-03-29 2012-05-16 에스케이하이닉스 주식회사 내부전압 생성회로
TWI447470B (zh) 2012-02-15 2014-08-01 Largan Precision Co Ltd 光學鏡頭
KR101989157B1 (ko) * 2012-12-31 2019-09-30 삼성전자주식회사 촬상 렌즈 및 이를 포함한 촬상 장치
JP6175903B2 (ja) * 2013-05-28 2017-08-09 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
KR101504034B1 (ko) * 2013-10-18 2015-03-18 삼성전기주식회사 렌즈 모듈
TWI536039B (zh) * 2014-07-07 2016-06-01 先進光電科技股份有限公司 光學成像系統
CN105242374B (zh) * 2014-07-11 2018-01-12 佳能企业股份有限公司 光学镜头
JP2016085390A (ja) * 2014-10-28 2016-05-19 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
JP2016090777A (ja) 2014-11-04 2016-05-23 Hoya株式会社 撮像光学系
JP2016114633A (ja) 2014-12-11 2016-06-23 ソニー株式会社 撮像レンズおよび撮像装置
CN104570284B (zh) * 2015-01-07 2017-05-31 浙江舜宇光学有限公司 摄像镜头
CN109669257B (zh) * 2015-09-30 2021-06-04 大立光电股份有限公司 成像用光学系统、取像装置及电子装置
CN205353448U (zh) * 2015-12-31 2016-06-29 浙江舜宇光学有限公司 摄像镜头
TWI597521B (zh) 2016-02-05 2017-09-01 先進光電科技股份有限公司 光學成像系統
TWI571653B (zh) * 2016-02-26 2017-02-21 大立光電股份有限公司 光學影像鏡片組、取像裝置及電子裝置
TWI612324B (zh) 2016-08-09 2018-01-21 大立光電股份有限公司 影像透鏡組、取像裝置及電子裝置
CN106338815B (zh) 2016-10-28 2019-03-15 浙江舜宇光学有限公司 摄像镜头及装配有该摄像镜头的摄像装置
CN106772931B (zh) * 2016-11-02 2019-05-03 玉晶光电(厦门)有限公司 光学镜片组
TWI613483B (zh) * 2017-07-26 2018-02-01 大立光電股份有限公司 影像透鏡系統組、取像裝置及電子裝置
CN113311570B (zh) * 2017-09-07 2022-11-11 浙江舜宇光学有限公司 光学成像镜头
CN207164346U9 (zh) * 2017-09-07 2022-01-07 浙江舜宇光学有限公司 光学成像镜头
JP6640163B2 (ja) * 2017-09-29 2020-02-05 カンタツ株式会社 撮像レンズ
CN107843977B (zh) * 2017-12-14 2020-04-17 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150138425A1 (en) * 2013-11-21 2015-05-21 Samsung Electronics Co., Ltd. Imaging lens system and electronic apparatus employing the same
CN105807391A (zh) * 2016-01-04 2016-07-27 玉晶光电(厦门)有限公司 光学镜片组
CN106646833A (zh) * 2017-02-23 2017-05-10 浙江舜宇光学有限公司 摄像镜头
CN107092082A (zh) * 2017-07-04 2017-08-25 浙江舜宇光学有限公司 光学成像镜头
CN107783261A (zh) * 2017-12-12 2018-03-09 浙江舜宇光学有限公司 光学成像镜头
CN107966794A (zh) * 2017-12-29 2018-04-27 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108681034A (zh) * 2018-06-01 2018-10-19 浙江舜宇光学有限公司 光学成像镜头
CN208421380U (zh) * 2018-06-01 2019-01-22 浙江舜宇光学有限公司 光学成像镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200640A (zh) * 2020-09-18 2022-03-18 三星电机株式会社 光学成像系统
CN114563865A (zh) * 2022-04-29 2022-05-31 江西联益光学有限公司 光学镜头及成像设备

Also Published As

Publication number Publication date
CN108681034A (zh) 2018-10-19
CN113820825B (zh) 2022-08-02
US11635588B2 (en) 2023-04-25
CN113325553B (zh) 2022-06-07
CN113820825A (zh) 2021-12-21
CN113325553A (zh) 2021-08-31
US20200249442A1 (en) 2020-08-06
CN108681034B (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
WO2019227877A1 (zh) 光学成像镜头
WO2020001066A1 (zh) 摄像镜头
WO2019210738A1 (zh) 光学成像镜头
WO2019105139A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2020019794A1 (zh) 光学成像镜头
WO2019228064A1 (zh) 成像镜头
WO2020010878A1 (zh) 光学成像系统
WO2019223263A1 (zh) 摄像镜头
CN109782418B (zh) 光学成像镜头
WO2020119171A1 (zh) 光学成像镜头
WO2019210739A1 (zh) 光学成像镜头
WO2018153012A1 (zh) 摄像镜头
WO2020134129A1 (zh) 光学成像系统
WO2020001119A1 (zh) 摄像镜头
WO2019114524A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2020019796A1 (zh) 光学成像系统
WO2019052144A1 (zh) 光学成像镜头
WO2019233142A1 (zh) 光学成像镜头
WO2019052220A1 (zh) 光学成像镜头
WO2020164247A1 (zh) 光学成像系统
WO2020029613A1 (zh) 光学成像镜头
WO2020007068A1 (zh) 光学成像系统
WO2019233143A1 (zh) 光学成像镜片组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920877

Country of ref document: EP

Kind code of ref document: A1