WO2019226769A1 - Flacon de plasma sans scellement et sa partie supérieure - Google Patents

Flacon de plasma sans scellement et sa partie supérieure Download PDF

Info

Publication number
WO2019226769A1
WO2019226769A1 PCT/US2019/033518 US2019033518W WO2019226769A1 WO 2019226769 A1 WO2019226769 A1 WO 2019226769A1 US 2019033518 W US2019033518 W US 2019033518W WO 2019226769 A1 WO2019226769 A1 WO 2019226769A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage container
plasma storage
container according
cannula
plasma
Prior art date
Application number
PCT/US2019/033518
Other languages
English (en)
Inventor
Christopher S. Mcdowell
Matthew J. Murphy
Original Assignee
Haemonetics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/161,482 external-priority patent/US11648179B2/en
Application filed by Haemonetics Corporation filed Critical Haemonetics Corporation
Priority to EP19807135.9A priority Critical patent/EP3796884B1/fr
Priority to CN201980041297.7A priority patent/CN112312876A/zh
Priority to EP24170321.4A priority patent/EP4374843A2/fr
Publication of WO2019226769A1 publication Critical patent/WO2019226769A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1412Containers with closing means, e.g. caps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1475Inlet or outlet ports
    • A61J1/1481Inlet or outlet ports with connection retaining means, e.g. thread or snap-fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1406Septums, pierceable membranes

Definitions

  • PCT Application number PCT/US2017/032824 claims priority from United States Provisional Application No. 62/337,031, filed May 16, 2016, entitled“Sealer-Less Plasma Bottle and Top for Same,” assigned attorney docket number 1611/C68, and naming Christopher S. McDowell as inventor, the disclosure of which is incorporated herein, in its entirety by reference.
  • the present invention relates to blood component storage containers, and more particularly plasma storage containers.
  • Blood plasma is a straw-colored liquid component of whole blood, in which blood cells, such as red blood cells and white blood cells, and other components of the whole blood are normally suspended.
  • Whole blood is made up of about 55%, by volume, plasma.
  • Plasma plays important roles in a body’s circulatory system, including transporting blood cells, conducting heat and carrying waste products. Pure plasma contains clotting factors, which increase the rate at which blood clots, making it useful in surgery and in the treatment of hemophilia.
  • Banked whole blood is sometimes used to replace blood lost by patients during surgery or as a result of traumatic injuries. However, if banked whole blood that is compatible with the patient’s blood type is not available, plasma may sometimes be used to replace some of the lost blood.
  • Plasma additionally contains proteins that may be used to produce pharmaceuticals for immunodeficiency and other protein disorders. Furthermore, plasma may be frozen and stored for relatively long periods of time until it is needed.
  • apheresis is a medical technology in which the blood of a donor or patient is passed through an apparatus, such as a centrifuge, that separates out one particular constituent and returns the remainder to the donor or patient.
  • Plasmapheresis is a medical therapy that involves separating blood plasma from whole blood.
  • a typical plasma bottle includes two ports, one for introducing plasma into the bottle, and the other for venting air out of the bottle.
  • Each of the ports typically extends from a surface of the plasma bottle (e.g., the top of the plasma bottle) and may have tubing connected to it.
  • the tubing is cut off using radiofrequency sealing tongs, leaving short (typically about 1-1/2 inch long) sealed tubing stubs attached to the ports extending from the plasma bottle.
  • These stubs typically project from the bottle neck and may pose problems during transport and storage. For example, when the plasma is frozen, the plastic of the stubs and/or ports becomes brittle and may break, thereby violating the requirement to keep the plasma in a sealed container.
  • a top for a plasma storage container includes a top body that defines the structure of the top and seals an opening of the plasma storage container.
  • the top may also include a first opening and a vent opening extending through the top body.
  • a septum may be located at least partially within the first opening, and may include an aperture through it. The septum may allow a blunt cannula to pass through the aperture to access the interior of the plasma storage container.
  • the top may also include a hydrophobic membrane located on underside of the top body. The membrane covers the vent opening and may allow air to move through the vent opening during filling of the plasma storage container while preventing ingress of undesirable microorganisms.
  • the top may also include a skirt that extends downward from the underside of the top body around the first opening.
  • the septum may be located and secured (e.g., via a swage connection) within the skirt.
  • the septum may be overmolded with the skirt.
  • the skirt and/or the swage connection may apply a compressive retaining force on the aperture.
  • the aperture may be closed when the blunt cannula is not connected, and the first opening may be larger than the vent opening.
  • the septum may allow a sample collection container holder to pass through the aperture to access the interior of the plasma collection container.
  • the sample collection container holder may be a vacutainer holder.
  • the blunt cannula may be part of a tubing set connected to a blood processing device.
  • the top body may also include at least one flow channel on the underside of the top body.
  • the at least one flow channel may be in fluid communication with the vent opening to allow airflow in and out of the plasma storage container via the vent opening.
  • the surface area of the hydrophobic membrane may be larger than a cross-sectional area of the vent opening, and/or the hydrophobic membrane may be sealed and/or ultrasonically welded to an energy director on the underside of the top body.
  • the top may include a retaining element (e.g., a clip) located on a top surface of the top body. The retainer may hold the blunt cannula in place during filling of the plasma storage container.
  • a plasma storage container includes a container body that defines the structure of the plasma storage container and defines an interior.
  • the container includes a top configured to seal an opening of the plasma storage container.
  • the top may include a first opening and a vent opening extending through the container top.
  • a septum may be located at least partially within the first opening and may include a pre -pierced aperture therethrough. The septum/aperture allows a blunt cannula to pass through the aperture to access the interior of the plasma storage container.
  • the container also includes a hydrophobic membrane located on underside of the container top. The membrane covers the vent opening and allows air to pass through the vent opening during plasma collection.
  • the first opening may be larger than the vent opening.
  • the plasma storage container may include a skirt that extends from the underside of the container top around the first opening.
  • the septum may be located and secured within the skirt, for example, via a swage connection. Additionally or alternatively, the septum may be overmolded within the skirt.
  • the skirt and/or the swage connection may apply a radially inward force on the aperture that biases the aperture closed. The aperture may be closed when the blunt cannula is not connected.
  • the container top may include at least one flow channel on an underside of the container top.
  • the flow channel(s) may be in fluid communication with the vent opening to allow airflow in and out of the plasma storage container via the vent opening.
  • the surface area of the hydrophobic membrane may be larger than a cross-sectional area of the vent opening. Additionally or alternatively, the hydrophobic membrane may be ultrasonically welded to the underside of the container top and/or may be sealed to the underside of the container top.
  • the plasma storage container may include a retainer located on a top surface of the container top.
  • the retainer may hold the blunt cannula in place during filling of the plasma storage container, and/or may be a clip.
  • the septum may allow a sample collection container holder (e.g., a vacutainer holder) to pass through the aperture to access the interior of the plasma collection container.
  • the blunt cannula may be part of a tubing set connected to a blood processing device.
  • a top for a plasma storage container may include a top body that defines the structure of the top and seals an opening of the plasma storage container.
  • the top may also include a first opening and a vent opening extending through the top body.
  • a valve mechanism may be located at least partially within the top body. The valve mechanism may have an aperture therethrough that opens upon connection of a blunt cannula to the plasma storage container (e.g., thereby providing access the interior of the plasma storage container).
  • the top may also have a vent filter that allows air to vent through the vent opening during filling of the plasma storage container.
  • the valve mechanism may include a septum and the aperture may extend through the septum.
  • the aperture may allow the blunt cannula to at least partially enter the aperture after connection of the blunt cannula to the plasma storage container.
  • the top may include a skirt extending from the underside of the top body and around the first opening.
  • the septum may be located and secured within the skirt (e.g., via swage connection).
  • the skirt and/or the swage connection may apply a radially inward force on the septum to keep the septum secured within the skirt.
  • the valve mechanism may include a resilient member that has (1) a septum located nearer the top of the resilient member and (2) a valve wall that extends downward from the septum.
  • the aperture may extend through the septum, and the valve wall may form a valve interior.
  • the top may include a valve housing that extends from a top surface of the top.
  • the valve mechanism may at least partially be located within valve housing.
  • the valve housing may include an inlet portion.
  • the septum may be located at least partially within the inlet portion, and an inner surface of the inlet portion may include a luer taper.
  • a cap may be placed over at least a portion of the inlet portion, and the cap may provide a sterile barrier for the first opening prior to connection of the blunt cannula.
  • the valve housing may also include a second portion that is located below the inlet portion.
  • the second portion may have an inner diameter that is greater than an inner diameter of the inlet portion. Additionally or alternatively, the second portion may have an inner diameter that expands along a length of the second portion. Connection of the blunt cannula to the plasma storage container may cause the septum to move from the inlet portion of the valve housing to the second portion (e.g., to allow the aperture to open).
  • the valve housing may include a locking mechanism that locks the blunt cannula to the valve housing.
  • the locking mechanism may include luer threads.
  • the blunt cannula may have a skirt and threads within the skirt. The skirt threads may engage the luer threads on the valve housing.
  • the first opening may be larger than the vent opening.
  • the vent filter may include a hydrophobic membrane that is located on the underside of the top body and covers the vent opening.
  • the top body may include at least one flow channel on the underside of the top body.
  • the flow channel(s) may be in fluid communication with the vent opening to allow airflow in and out of the plasma storage container via the vent opening.
  • a surface area of the hydrophobic membrane may be larger than a cross-sectional area of the vent opening, and the hydrophobic membrane may be sealed to the underside of the top body.
  • the vent filter may include a plug filter.
  • the plug filter may be a self-sealing filter that seals the vent opening upon exposure of the plug filter to liquid.
  • the top may include a vent skirt extending from the top body (e.g., from the underside of the top body) and around the vent opening. The plug filter may be located and secured within the vent skirt.
  • the top may include at least one splash guard extending from the vent skirt. The splash guard may prevent liquid from contacting the plug filter during filling of the plasma storage container.
  • the top may include a removable sterile barrier seal that covers the first opening prior to connection of the blunt cannula.
  • the top may include a retainer (e.g., a clip) that holds the blunt cannula in place during filling of the plasma storage container.
  • the blunt cannula may be part of a tubing set connected to a blood processing device.
  • the tubing set may include a connector configured to connect to a blood component separation device and a cap secured to the connector via a tether.
  • the blunt cannula may be secured to the tether prior to use.
  • the cannula may include a grasping element configured to allow a user to grasp the cannula during use.
  • the top may also include at least one stiffening rib located on an underside of the top.
  • a top for a plasma storage container includes a top body that defines the structure of the top and seals an opening of the plasma storage container.
  • the top also has an inlet opening extending through the top body and a valve mechanism located at least partially within the inlet opening.
  • the valve mechanism has an aperture that is configured to open upon connection of a cannula to the plasma storage container (e.g., to provide access to the interior of the plasma storage container).
  • a locking mechanism locks the cannula to the top, and the top may have a vent opening extending through the top body.
  • a vent filter allows air to vent through the vent opening during filling of the plasma storage container.
  • the valve mechanism may include and/or be a septum and the top may have a skirt extending from the underside of the top body and around the first opening.
  • the septum may be located and secured within the skirt (e.g., via a swage connection).
  • the skirt and/or the swage connection may apply a radially inward force on the septum to keep the septum secured within the skirt.
  • the aperture may be closed when the blunt cannula is not connected and may allow the cannula to at least partially enter the aperture after connection of the cannula to the plasma storage container.
  • the locking mechanism may include a locking protrusion extending from the top body and into the inlet opening.
  • the locking protrusion may snap into a recess within the cannula during connection of the cannula.
  • the cannula may include a cannula protrusion that extends from a surface of the cannula, and the locking protrusion may snap over the cannula protrusion into the recess during connection of the cannula. At least one surface of the locking protrusion may be angled to allow the locking protrusion to snap over the cannula protrusion.
  • the top may include a cannula support structure that extends from a top surface of the top and defines a channel configured to support the cannula when connected to the plasma storage container.
  • the cannula support structure may include a camming surface, and rotation of the cannula may cause the cannula to slide up the camming surface. This, in turn, causes the locking protrusion to snap out of the recess and disconnects the cannula from the plasma storage container.
  • the top may have a cap that connects to the inlet opening.
  • the cap may have a lower portion that extends into the inlet opening when connected to the plasma storage container, and a mating portion that mates with at least a portion of the channel of the cannula support structure.
  • the cannula may have a grasping element that allows a user to grasp the cannula during use and/or the grasping element may include a clamp.
  • the cannula may be part of a tubing set connected to a blood processing device.
  • the tubing set may include a connector configured to connect to a blood component separation device and a cap secured to the connector via a tether.
  • the cannula may be secured to the tether prior to use.
  • the inlet opening may be larger than the vent opening and/or the vent opening may include a hydrophobic membrane that is located on an underside of the top body and covers the vent opening.
  • the top body may have at least one flow channel on the underside of the top body.
  • the flow channel may be in fluid communication with the vent opening to allow airflow in and out of the plasma storage container via the vent opening.
  • the surface area of the hydrophobic membrane may be larger than a cross-sectional area of the vent opening and/or the hydrophobic membrane may be sealed to the underside of the top body.
  • the vent filter may include a plug filter.
  • the plug filter may be a self-sealing filter configured to seal the vent opening upon exposure of the plug filter to liquid.
  • the top may include a vent skirt extending from the top body (e.g., from the underside) around the vent opening.
  • the plug filter may be located and secured within the vent skirt.
  • the top may also have at least one splash guard that extends from the vent skirt. The splash guard may prevent liquid from contacting the plug filter during filling of the plasma storage container.
  • the top may have a retainer (e.g., a clip) that holds the blunt cannula in place during filling of the plasma storage container.
  • the valve mechanism may also allow a sample collection container holder (e.g., a vacutainer holder) to pass through the aperture to access the interior of the plasma collection container.
  • the top may have at least one stiffening rib located on an underside of the top.
  • the valve mechanism may include a resilient member with (1) a septum located nearer the top of the resilient member and (2) a valve wall that extends downward from the septum.
  • the aperture may extend through the septum, and the valve wall may form a valve interior.
  • the top may have a valve housing that extends from a top surface of the top.
  • the valve mechanism may be located, at least partially, within the valve housing.
  • the valve housing may have an inlet portion and the septum may be located at least partially within the inlet portion.
  • the inner surface of the inlet portion may have a luer taper.
  • the valve housing may also include a second portion located below the inlet portion.
  • the second portion may have an inner diameter that is greater than an inner diameter of the inlet portion and/or the second portion may have an inner diameter that expands along a length of the second portion.
  • Connection of the blunt cannula to the plasma storage container may cause the septum to move from the inlet portion of the valve housing to the second portion to allow the aperture to open.
  • the locking mechanism may be on the valve housing.
  • the locking mechanism may include luer threads.
  • the blunt cannula may have a skirt and threads within the skirt. The threads may engage the luer threads on the valve housing.
  • a plasma storage container has (1) a container body that defines the structure of the plasma storage container and an interior, and (2) a container top that seals an opening of the plasma storage container.
  • the container may also have an inlet opening extending through the top body and a valve mechanism located at least partially within the inlet opening.
  • the valve mechanism may have an aperture that opens upon connection of a cannula to the plasma storage container (e.g., to provide access to the interior of the plasma storage container).
  • the container/top also has (1) a locking mechanism, (2) a vent opening extending through the top body, and (3) a vent filter.
  • the locking mechanism may lock the cannula to the top.
  • the vent filter allows air to vent through the vent opening during filling of the plasma storage container.
  • Fig. 1 schematically shows a perspective view of a plasma storage container, in accordance with embodiments of the present invention.
  • Fig. 2 schematically shows a top perspective view of a top, without a septum and hydrophobic membrane installed, for the plasma storage container shown in Figure 1, in accordance with embodiments of the present invention.
  • FIG. 3 schematically shows a bottom perspective view of a top, without a septum and hydrophobic membrane installed, for the plasma storage container shown in Figure 1, in accordance with embodiments of the present invention.
  • FIG. 4 schematically shows a top perspective view of a top, with a septum and hydrophobic membrane installed, for the plasma storage container shown in Figure 1, in accordance with embodiments of the present invention.
  • FIG. 5 schematically shows a bottom perspective view of a top, with a septum and hydrophobic membrane installed, for the plasma storage container shown in Figure 1, in accordance with embodiments of the present invention.
  • FIG. 6 schematically shows a top perspective view of a top, with a blunt cannula inserted into the septum, for the plasma storage container shown in Figure 1, in accordance with embodiments of the present invention.
  • FIG. 7 schematically shows an exemplary blunt cannula for use with the plasma collection container of Figure 1, in accordance with embodiments of the present invention.
  • FIG. 8 schematically shows an exemplary tubing set containing the blunt cannula of Figure 7, in accordance with embodiments of the present invention.
  • FIG. 9 schematically shows an exemplary cap for the tubing set shown in Figure 8 with the blunt cannula inserted, in accordance with embodiments of the present invention.
  • FIGs. 10A and 10B schematically show an alternative cap for the tubing set shown in Figure 8, in accordance with additional embodiments of the present invention.
  • FIGs. 11A to 11C schematically show an alternative top for the plasma storage container, in accordance with further embodiments of the present invention.
  • FIGs. 12A to 12E schematically show an additional alternative top for the plasma storage container, in accordance with further embodiments of the present invention.
  • FIGs. 13A to 13C schematically show a further alternative top for the plasma storage container, in accordance with further embodiments of the present invention.
  • Fig. 14 schematically shows the bottom of the alternative top shown in Figures 13A-13C, in accordance with additional embodiments of the present invention.
  • Fig. 15 schematically shows a cross-sectional view of the alternative top shown in Figures 13A-13C, in accordance with additional embodiments of the present invention.
  • FIG. 16 schematically shows a plasma container with the top shown in Figures 13A-C and a cannula about to be inserted into the inlet, in accordance with some
  • FIGs. 17A to 17B schematically show cross-sectional views of a cannula connected to the top shown in Figures 13A-C, in accordance with further embodiments of the present invention.
  • FIG. 18 schematically shows a cannula connected to the top shown in Figures 13A-C, in accordance with further embodiments of the present invention.
  • FIG. 19 schematically shows a cannula being disconnected from the top shown in Figures 13A-C, in accordance with additional embodiments of the present invention.
  • Fig. 20 schematically shows a sterile barrier located on a top, in accordance with some embodiments of the present invention.
  • FIG. 21 schematically shows an alternative sterile barrier, in accordance with additional embodiments of the present invention.
  • FIGs. 22 to 24 schematically show an additional alternative sterile barrier, in accordance with additional embodiments of the present invention.
  • Fig. 1 is a perspective view of a blood plasma container 100, according to an embodiment of the present invention.
  • the plasma container 100 may have a body portion 110 and a top 120 that closes an opening 130 (e.g., an open end in the body portion 110 at the proximal end 140 of the plasma container 100).
  • an opening 130 e.g., an open end in the body portion 110 at the proximal end 140 of the plasma container 100.
  • plasma may be collected within the plasma container 100 and sampled through the top 120.
  • the body portion 110 defines an interior volume 150 (e.g., an interior) in which the collected plasma can be stored.
  • the top 120 includes a vent hole 160 through which air may pass bidirectionally during plasma collection 100, and an inlet hole 170 through which the plasma may be transferred into the plasma container 100.
  • the size of the vent hole 160 and the inlet hole 170 may vary depending on the application, but, in some embodiments, the inlet hole 170 may be substantially larger the vent hole 160.
  • the top 120 may include a retainer 180 extending from a top surface 122 of the top. As discussed in greater detail below, the retainer 180 may be used to secure a blunt cannula (which, in turn, is used to transfer plasma into the container 100) to the top 120 of the plasma container 100 while plasma is being collected within the container 100.
  • the retainer 180 may be any number of components capable of securing the blunt cannula (e.g., a standard male luer).
  • the retainer 180 may be clip with two proximally extending protrusions 182A/B that define a space 184 between them in which the cannula may reside.
  • the user may push the cannula into the retainer/clip 180 until it snaps/clicks into the space 184.
  • the protrusions 182A/B may include inward projections 183A/B that extend over the cannula when it is located within the space 184.
  • the top 120 may include a skirt 190 that extends distally from the top 120 (e.g., downward from the top 120) and around the inlet opening 170.
  • the top 120 may include a valve mechanism.
  • the top may include a septum 200 located and secured within the skirt 190. As best shown in Figures 4 and 5, the septum 200 may have an aperture 210 extending through the body of the septum 200.
  • the aperture 210 may be normally closed (e.g., closed when in its natural state and not subject to any external pressures) and/or the aperture 210 may be held closed by a radially compressive force applied to the septum 200 by the skirt 190.
  • the septum 200 may be swaged into the skirt 190.
  • a portion of the skirt 190 e.g., the bottom of the skirt
  • the outer diameter of the septum 200 may be larger than the inner diameter of the skirt 190 and the septum 200 may be press-fit into the skirt 190. This press-fit will create the radially inward force that keeps the aperture 210 closed.
  • the aperture 210 is shown as a slit within Figures 4 and 5, other aperture configurations may be used.
  • the aperture 210 may consist of two slits formed into a cross shape.
  • the aperture 210 can have more than two slits in the shape of a star or asterisk.
  • the aperture 210 e.g., the one or more slits
  • the aperture 210 may be formed, for example, using traditional cutting means (e.g., razor blade, knife, etc.), piercing with a needle, or ultrasonic cutting methods.
  • the aperture 210 could also be formed in-mold during or after the injection molding process.
  • the top may include a vent filter.
  • the top 120 may include a hydrophobic membrane 230 located under the vent hole 160 such that the hydrophobic membrane 230 may provide a sterile barrier for the vent hole 160.
  • the hydrophobic membrane 230 will allow air to pass through the membrane 230 and the vent hole 160 to prevent atmospheric pressure differentials from building up in the container 100.
  • the top may also include a number of channels 220 within the surface under the hydrophobic membrane 230. The channels 220 can extend to the edge of the vent hole 160 and allow air pass through the membrane 230, for example, even if the membrane 230 is pushed against the underside 124 of the top 120 (e.g., during high-air-flow-rate periods).
  • the hydrophobic membrane 230 may be ultrasonically welded to the top 120 (or otherwise sealed to the top 120) to prevent air from leaking past the hydrophobic membrane 230.
  • the top 120 may include an energy director 222 for use during the ultrasonic welding process to ensure that the hydrophobic membrane 230 is properly sealed and secured to the underside 124 of the top 120.
  • the membrane 230 may be secured to the top 120 via other joining methods including, but not limited to, adhesives, hot melt glue, and laser welding.
  • the hydrophobic membrane 230 may be sized such that it is substantially larger than the vent opening/hole 160. Additionally, to further maximize the use of membrane material, the hydrophobic membrane 230 may be square.
  • the top 120 and container body 110 may be formed as two separate pieces and then secured together via ultrasonically welded together.
  • the top 120 may include a distally extending wall 126 that extends over the top of the container body 110 when the top 120 is placed on the body 110 (e.g., over the proximal end 140 of the body 110).
  • the top 120 may include an energy director 128 to aid in the ultrasonic welding process (e.g., to secure the top 120 to the body 110).
  • the user may connect the plasma container 100 to a blood processing device via the blunt cannula 240 (Fig. 7) and a tubing set 300 (Fig. 8) on which the blunt cannula 240 may be located.
  • the user may connect the blood processing device connector 310 at one end of the tubing set 300 to the blood processing device (not shown), and the blunt cannula 240 on the other end of the tubing set 300 to the plasma container 100.
  • the user may insert the outlet portion 242 of the cannula 240 into the septum 200 and through the aperture 220.
  • the cannula 240 will allow the cannula 240 to access the interior volume 150 of the container 100 and create fluid communication between the interior volume 150 and the tubing set 300 (e.g., and the outlet of the blood processing device). The user may then snap the body 244 of the cannula 240 into the retainer 180 to hold the cannula 240 in place on the top 120 (Fig. 6).
  • the plasma may flow through the tubing set 300 and into the interior volume 150 of the container 100 via the blunt cannula 240.
  • air will exit the container 100 through the hydrophobic membrane 230 and the vent hole/opening 160. This, in turn, will prevent pressure from building up within the container 100.
  • air may also enter the container 100 through hydrophobic/sterilizing membrane 230 and the vent hole/opening 160. This, in turn, will prevent vacuum from building up within the container 100.
  • the tubing set 300 may include a cap 320 that can be used for both the blood processing device connector 310 and the outlet portion 242 of the cannula 240 (Figure 9).
  • the cap 320 may have an open end 322 that may be placed over the blood processing device connector 310 when not in use.
  • the top 324 of the cap 320 may have an opening 326 in which the outlet portion 242 of the cannula 240 may be inserted.
  • the cap 320 may be tethered to the blood component device connector 310.
  • the user may insert a sample collection container holder (e.g., a vacutainer holder) into the septum 200/aperture 210 to access the volume of plasma within the container 100.
  • a sample collection container holder e.g., a vacutainer holder
  • the user may then turn the container 100 upside down and connect a vacutainer to the holder to begin collecting a sample of plasma within the vacutainer. It should be noted that collecting the plasma sample in this manner provides the most representative sample of the plasma in the container 100 possible and minimizes/eliminates any loss of plasma, where residual plasma might otherwise be lost in sampling means that involve sampling through tubing external to the top 120.
  • the outlet portion 242 of the cannula 240 need not be located within the cap 320 prior to use and may be located elsewhere.
  • the tether 330 that secures the cap 320 to the blood processing device connector 310 may include a cup 332 in which the outlet portion 242 of the cannula 240 may be inserted prior to use.
  • the outlet portion 242 of the cannula 240 may remain covered even after the user has disconnected the cap 320 and connected the blood processing device connector 310 to the blood processing device.
  • outlet portion 242 of the cannula 240 may be reinserted into the cup 332 even if the connector 310 is still connected to the blood processing device.
  • the cannula 240 may also include a grasping element 246 (e.g., a fin or similar structure) that extends from the body 244 of the cannula 240.
  • the grasping element may be used to hold and manipulate the cannula 240 during removal of the cannula 240 from the cap 320 or cup 332 within the tether and during connection of the cannula 240 to the plasma container 100.
  • the grasping element 246 may be sized to allow the user to grasp (e.g., using their thumb and forefinger) the cannula 240.
  • vent filter 410 may utilize a plug type filter 410.
  • the top 120 may have a vent skirt 420 that extends from (e.g., extends downward from) the underside 124 of the top 120 and in which the plug filter 410 is located.
  • the plug filter 410 may be secured within vent skirt 420 in any number of ways including, but not limited to press-fit or swaged.
  • the plug filter 410 can be any number filter types that allows air to vent through the vent hole 160 and provides a sterile barrier.
  • the plug filter 410 can be a hydrophobic filter like the membrane 230 discussed above and/or the plug filter 410 can be a PorexTM plug filter.
  • the plug filter 410 may be a self-sealing filter (also sold by PorexTM) that swells upon contact with a liquid to seal the vent hole 160 and prevent the liquid within the plasma container 100 from leaking out of the vent hole 160. For example, once the plasma collection process is complete, and the user turns the container 100 upside to collect a sample (discussed above), the plasma will contact plug filter 410 causing it to self seal and preventing the plasma from leaking out of the vent hole 160.
  • the top 120 may have one or more splash guards 430 that protect the plug filter 410 from any splashing or foaming within the plasma container 100 during filling.
  • the splash guards 430 may extend downward from the bottom of the vent skirt 420.
  • One or more of the splash guards e.g., the one closet to the inlet 170
  • Figures 11A-11C show two splash guards 430, other embodiments may have only a single splash guard 430 or more than two splash guards 430.
  • the underside 124 of the top 120 can have a number of structures that help stiffen the top 120.
  • the top 120 may include stiffening ribs 440 on the underside 124 of the top 120.
  • the ribs 440 may be asymmetric and irregular to help prevent nodal vibrations with resonance in the top 120 during the ultrasonic weld process (e.g., to secure the top 120 to the plasma container 100).
  • FIGS 12A-12E show a top 120 for a plasma storage container 100 with an alternative valve mechanism, for example, a needleless valve.
  • the top 120 in addition to the skirt 190 that extends from the underside 124 of the top 120, the top 120 can include a valve housing 510 that extends upward from the top surface 122 of the top 120.
  • the valve housing 510 may form an interior 512 in which the valve mechanism may be located and may have an inlet portion 514 with an internal geometry that complies with a standard luer taper (e.g., the internal diameter of the inlet portion 514 may be tapered to comply with luer standards).
  • the inlet 170 may be located at the proximal end of the inlet portion 514 such that upon connection of the cannula 240, a portion of the cannula 240 will enter the inlet portion 514 of the valve housing 510.
  • the valve housing 510 may include a second/distal portion 516 that has a larger inner diameter than that of the inlet portion 514. It is important to note that the larger inner diameter may expand gradually like that shown in Figures 12A to 12E or the increase in diameter may happen in a single step (e.g., the diameter does not gradually expand from the inner diameter of the inlet portion 514 to the inner diameter of the second/distal portion 516). As discussed in greater detail below, the increased diameter portion 516 helps the aperture 210 within the valve mechanism open during operation.
  • the valve member may be an elastomeric element 520 that include a proximal portion 522 (e.g., a septum) and a valve wall 524 that extends distally from the proximal portion 522 within the inlet housing 510.
  • the valve wall 524 forms a valve interior 526, and the valve member 520 also has a distal end 521 that preferably is open (e.g., to allow fluid flow though the valve member 520 and into the plasma container 100).
  • valve member 520 may include a flange 527 that extends radially outward from the distal portion 521 of the valve member 520 and contacts a shelf portion 192 of the skirt 190.
  • the valve member/elastomeric element 520 may be secured within the top 120 via a swage connection (or similar connection).
  • valve member/elastomeric member 520 within the inlet housing 510 and help position the proximal portion 522 at the inlet 170, the valve member/elastomeric member 520 have a shoulder 523 that contacts an inner surface of the inlet housing 510 (e.g., the angled/gradually expending diameter of the second/distal portion 516) when the valve mechanism is in the closed mode (e.g., when the cannula 240 is not connected).
  • the user may insert the cannula 240, which may also have a luer taper on the outlet portion 242, into the inlet 170.
  • the valve member 520 which normally closes/seals the inlet 170, moves/deforms distally within the inlet housing 510.
  • the aperture 210 will open (e.g., when the proximal portion 522 enters the larger inner diameter portion of the inlet housing 510) to create fluid communication between the cannula 240 and the valve interior 526 (and interior of the plasma container 110).
  • the elastomeric properties of the valve member 520 cause the valve member 520 to begin to move proximally within the inlet housing 510 and return to its at-rest position with the inlet portion 514. This, in turn, causes the aperture 210 to close.
  • the cannula 240 (e.g., the outlet portion 242 of the cannula 240) does not enter (or only partially enters) the aperture 210. Rather, as shown in Figure 12E, the outlet portion 242 of the cannula 240 may be sized such that it is relatively large as compared to the size of the aperture 210. In such embodiments, the outlet portion 242 of the cannula 240 will merely contact the top surface of the proximal portion 522 of the valve member and will not enter the aperture 210.
  • some embodiments may have a retainer/clip 180 that secures the cannula 240 to the plasma container 100 and keeps the cannula 240 from accidentally disconnecting from the inlet 170 during use.
  • the outside surface of the inlet housing 510 may also have inlet threads 515 (e.g., luer lock threads) for connecting the cannula 240 and locking the cannula 240 in place.
  • the cannula 240 may include a skirt 241 with internal threads 243 (e.g., on an internal surface of the skirt 241) ( Figure 12E) that engage with the threads 515 on the inlet housing 510.
  • the inlet threads 510 and the threads 243 within the cannula skirt 241 may comply with ANSI/ISO standards (e.g., they are able to receive/connect to medical instruments complying with ANSI/ISO standards).
  • connections such as a BNC connection.
  • connections may include radial protrusions (on the inlet housing 510 or the cannula 240) that mate with a ramped surface (e.g., on the inlet housing 510 or cannula).
  • Figures 13A-13C show a top for a plasma storage container with a different mechanism to connect the cannula 240 to the inlet 170 of the top 120.
  • the top shown in Figures 13A-13C may include a septum 200 (e.g., a valve mechanism) that is located and secured within a skirt 190 extending from the underside of the top 120.
  • the septum 200 may be swaged within the skirt 190 and may have an aperture 210 (e.g., a normally closed aperture) that extends through it to allow the cannula 240 to access the interior of the container 100 upon connection.
  • the aperture 210 may be one or more slits that extend through the septum 200 or, as shown in Figure 14, may be a pre-pierced hole that opens under elastic deformation when the cannula 240 is connected.
  • the top 120 may have cannula support structure 710 that extends from the top surface 122 of the top 120 and around the inlet 170.
  • the cannula support structure 710 may be cup/u-shaped such that the wall 712 of the structure 710 slopes downward to create a channel 714 within support structure 710.
  • the cannula 240 may reside within the channel 714 after connection to inlet 170 and the cannula support structure 710 (e.g., the top surface 716 of the structure) may act as a camming surface to help the user disconnect the cannula 240 from the top 120.
  • the top 120 may have an inwardly projecting protrusion 720 (e.g., an inlet protrusion) that extends from the inner surface of the inlet 170 (Fig. 15).
  • the protrusion 720 may interact with a protrusion 810 on the cannula 240 (Fig. 16) to secure the cannula 240 in place.
  • the protrusion 810 on the cannula 240 will contact the inlet protrusion 720.
  • the cannula protrusion 810 will snap over the inlet protrusion 720 such that the inlet protrusion 720 resides within a recess 820 on the cannula 240 (Fig.
  • the cannula 240 is fully connected as shown in Figure 18 and the aperture 210 within the septum 200 is open to allow fluid (e.g., plasma to be collected within the container 100). Additionally, because of the interaction between the cannula protrusion 810 and the inlet protrusion 720, the cannula 240 may not be inadvertently disconnected from container 100 (e.g., by accidental bumping, etc.).
  • Figures 15 and 17A/B show the inlet protrusion 720 as extending around the entire circumference of the inlet opening 170, in other embodiments, the protrusion 720 may only extend around a portion of the inlet opening 170. Additionally or alternatively, some embodiments may include more than one inlet protrusion 720 (e.g. two or more) that are spaced about the diameter of the inlet opening 170. Similarly the cannula protrusion 810 and recess 820 may not extend around the entire circumference of the cannula 240.
  • the protrusion 810 and recess 820 may only extend around a portion of the circumference and/or there may be more than one protrusion 810 and recess 820 that are spaced about the circumference of the cannula 240.
  • the cannula protrusion 810 and/or the inlet protrusion 720 may have features that reduce the force required to connect the cannula 240 and snap the inlet protrusion 720 over the cannula protrusion 810 and into the recess 820.
  • the surface 722 of the inlet protrusion 720 that contacts the cannula protrusion 810 and/or the surface 812 of the cannula protrusion 810 that contacts the inlet protrusion 720 may be angled to allow the protrusions to more easily pass over one another.
  • the top surface 716 of the cannula support structure 710 may act as a camming surface that helps to disconnect the cannula 240 after fluid collection is complete.
  • the user may grab the cannula 240 (e.g., via the body 240 and/or the grasping element 246) and turn the cannula 240 (e.g., clockwise or counter-clockwise) (Fig. 19).
  • the cannula 240 will begin to slide up the top surface 716 of the support structure 710, causing the inlet protrusion 720 to snap over the cannula protrusion 810 to disconnect the cannula 240 from the inlet 170.
  • the user/technician may need to occlude the various tubing/tubes within the collection system (e.g. the tube within the tubing set 300 or other tubing used during collection).
  • some embodiments may incorporate an additional clamp within the set.
  • the grasping element 246 may be formed with a tubing clamp 248.
  • the technician may slide the tube into the tubing clamp 248 which will, in turn, deform and close the tube to prevent fluid from flowing through the tube.
  • some embodiments may include a sterile barrier that may be placed over the inlet 170.
  • the top 120 may include a sterile barrier 610 (e.g., a removable label) that may be secured to the top surface 122.
  • the sterile barrier 610 may be secured to the top in any number of ways including, but not limited to, adhesive, welding, and bonding.
  • the sterile barrier 610 may include a pull tab 612 that the user may grab and pull to peel the barrier 610 off of the inlet 170.
  • the top 120 may alternatively include a removable cap/cover 620 (Figure 21) located over the valve housing 510 (e.g., over the inlet portion 514).
  • the inside of the cap/cover 620 may include threads (not shown) that screw onto the threads on the inlet portion 514.
  • the cap 900 may have a lower portion 910 that extends into the inlet 170 when connected to the plasma container 100 to close the inlet and maintain the sterility (see Figs. 22-24).
  • the lower portion 910 that extends into the inlet 170 may have a protrusion that interacts with the inlet protrusion 720 in a manner similar to the cannula protrusion and/or the lower portion 910 may be sized such that it is press-fit into the inlet 170.
  • the cap 900 may include a mating portion 930 that rests within/mates with the channel 714 within support structure 710.
  • the user may grab and turn the cap 900 to cause the mating portion 930 to slide up the top surface 716 (e.g., the camming surface) of the support structure 710, causing the cap 900 to disconnect from the inlet 170.
  • the user may simply grab the cap 900 and pull the cap 900 out of the inlet 170.
  • the top of the cap 900 may have a flange 920 that extends from the cap 900.
  • some embodiments may eliminate only a single port (e.g., the container may retain one port).
  • some embodiments may utilize the inlet hole 170 and valve member/septum 200 but retain the vent port (e.g., a vent port extending from the plasma container and having a section of tubing connected to it).
  • some embodiments may utilize the vent hole 160 and hydrophobic membrane 230 (or plug filter 410) but retain the port to introduce plasma into the bottle (e.g., an inlet port extending from the plasma container and having a section of tubing extending from it).
  • embodiments of the present invention provide numerous advantages over prior art plasma storage containers. For example, because embodiments of the present invention eliminate one or more of the plastic stubs and ports mentioned above, some embodiments of the present invention are able to reduce and/or eliminate the risk of breaking and comprising product sterility. Furthermore, various embodiments of the present invention are able to eliminate the need for heat/RF sealing equipment and processes for sealing tubing prior to transportation and storage. Additionally, because embodiments of the present invention allow for sample collection directly via the septum 200 (e.g., as opposed to drawing plasma into a section of tubing first like in many prior art systems), the present invention is able to collect a highly representative sample of the plasma with little/no loss.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • External Artificial Organs (AREA)

Abstract

La présente invention concerne une partie supérieure pour un récipient de stockage de plasma qui comprend un corps supérieur qui définit la structure de la partie supérieure et scelle une ouverture du récipient de stockage de plasma. La partie supérieure comprend en outre une première ouverture et une ouverture d'aération s'étendant à travers le corps supérieur. Un mécanisme de soupape est situé au moins partiellement à l'intérieur du corps supérieur et comprend une ouverture à travers celui-ci. L'ouverture s'ouvre lors de la connexion d'une canule émoussée pour fournir un accès à l'intérieur du récipient de stockage de plasma. La partie supérieure comprend également un filtre d'aération. Le filtre d'aération permet à l'air de s'échapper à travers l'ouverture d'aération pendant la collecte de plasma.
PCT/US2019/033518 2018-05-22 2019-05-22 Flacon de plasma sans scellement et sa partie supérieure WO2019226769A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19807135.9A EP3796884B1 (fr) 2018-05-22 2019-05-22 Flacon de plasma sans scellement et sa partie supérieure
CN201980041297.7A CN112312876A (zh) 2018-05-22 2019-05-22 无密封件血浆瓶及其顶盖
EP24170321.4A EP4374843A2 (fr) 2018-05-22 2019-05-22 Bouteille de plasma sans dispositif de scellement et son couvercle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862674913P 2018-05-22 2018-05-22
US62/674,913 2018-05-22
US16/161,482 US11648179B2 (en) 2016-05-16 2018-10-16 Sealer-less plasma bottle and top for same
US16/161,482 2018-10-16

Publications (1)

Publication Number Publication Date
WO2019226769A1 true WO2019226769A1 (fr) 2019-11-28

Family

ID=68617066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/033518 WO2019226769A1 (fr) 2018-05-22 2019-05-22 Flacon de plasma sans scellement et sa partie supérieure

Country Status (3)

Country Link
EP (2) EP3796884B1 (fr)
CN (1) CN112312876A (fr)
WO (1) WO2019226769A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2447691A (en) * 1947-02-17 1948-08-24 Baxter Don Inc Device for packaging and dispensing intravenous solutions
US4508236A (en) * 1982-09-13 1985-04-02 Baxter Travenol Laboratories, Inc. Container and associated cap assembly for plasma collection and the like
US6168037B1 (en) * 1995-09-27 2001-01-02 Becton Dickinson France, S.A. Resealable vial with connector assembly having a membrane and pusher
US6221041B1 (en) * 1997-11-26 2001-04-24 Eurospital S.P.A. Fluid transfer device connecting a medicinal vessel and an IV bag in closed system
US6261266B1 (en) * 1988-01-25 2001-07-17 Baxter International Inc. Pre-slit injection site and tapered cannula
US6391014B1 (en) * 1996-12-20 2002-05-21 David G. Silverman Strong diaphragm/safe needle/converting device combinations and their individual components
US20040199126A1 (en) * 2001-12-07 2004-10-07 Harding Weston F Needleless luer access connector
US20140324011A1 (en) 2011-11-22 2014-10-30 Deutsche Gesellschaft fur Humanplasma mbH Blood plasma collecting flask
WO2017200992A1 (fr) 2016-05-16 2017-11-23 Haemonetics Corporation Flacon de plasma sans scellement et sa partie supérieure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6568843B2 (ja) * 2013-04-15 2019-08-28 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 体液サンプリングデバイス、並びに体液サンプリングおよび採取アセンブリ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2447691A (en) * 1947-02-17 1948-08-24 Baxter Don Inc Device for packaging and dispensing intravenous solutions
US4508236A (en) * 1982-09-13 1985-04-02 Baxter Travenol Laboratories, Inc. Container and associated cap assembly for plasma collection and the like
US6261266B1 (en) * 1988-01-25 2001-07-17 Baxter International Inc. Pre-slit injection site and tapered cannula
US6168037B1 (en) * 1995-09-27 2001-01-02 Becton Dickinson France, S.A. Resealable vial with connector assembly having a membrane and pusher
US6391014B1 (en) * 1996-12-20 2002-05-21 David G. Silverman Strong diaphragm/safe needle/converting device combinations and their individual components
US6221041B1 (en) * 1997-11-26 2001-04-24 Eurospital S.P.A. Fluid transfer device connecting a medicinal vessel and an IV bag in closed system
US20040199126A1 (en) * 2001-12-07 2004-10-07 Harding Weston F Needleless luer access connector
US20140324011A1 (en) 2011-11-22 2014-10-30 Deutsche Gesellschaft fur Humanplasma mbH Blood plasma collecting flask
WO2017200992A1 (fr) 2016-05-16 2017-11-23 Haemonetics Corporation Flacon de plasma sans scellement et sa partie supérieure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3796884A4

Also Published As

Publication number Publication date
CN112312876A (zh) 2021-02-02
EP3796884A1 (fr) 2021-03-31
EP3796884A4 (fr) 2022-03-09
EP3796884B1 (fr) 2024-04-17
EP4374843A2 (fr) 2024-05-29

Similar Documents

Publication Publication Date Title
US11559464B2 (en) Sealer-less plasma bottle and top for same
US11648179B2 (en) Sealer-less plasma bottle and top for same
JP4288742B2 (ja) 反復使用万能栓
US5971181A (en) Multiple use universal stopper
US7479131B2 (en) Biological fluid sampling apparatus, assembly and method
US4568345A (en) Container and associated cap assembly for plasma collection and the like
US20040009542A1 (en) Apparatus and method for detecting bacteria in blood products
US20080132876A1 (en) Connector System for Sterile Connection
MX2011002902A (es) Conector que tiene una membrana para conectar una jeringa a un contenedor o entubado.
JP5802220B2 (ja) 医療用液体を収容する容器用のクロージャーキャップ、及び容器
JP2002177386A (ja) 回収スパイク
JP2001513683A (ja) 脆性シール及び流体移動デバイス用コネクタを有する容器クロージャー
US4508236A (en) Container and associated cap assembly for plasma collection and the like
US20050107765A1 (en) Sterile sampling methods and apparatus
JP2001017539A (ja) 採血用器具
US20030176813A1 (en) Biological fluid sampling apparatus
EP3796884B1 (fr) Flacon de plasma sans scellement et sa partie supérieure
EP1487369B1 (fr) Appareil de prelevement de fluide biologique
JPH11235329A (ja) 真空検体採取管および真空検体採取方法
KR20190067161A (ko) 액체를 담는 의료 패키지용 커넥터
WO1993020772A1 (fr) Recipient de fluide et constituant de raccordement
WO2019055194A2 (fr) Dispositifs et systèmes dotés d'un mécanisme de déplacement externe de mise en contact sans contaminant de récipients pharmaceutiques et de dispositifs d'administration pharmaceutique
AU2021200386A1 (en) Improved sterile sampling methods and apparatus
JPH10211274A (ja) 採血用器具および採血用器具を用いた血液処理方法
WO2021245449A1 (fr) Kit cylindrique de capuchon à double tête destiné à la production de prp à partir de sang collecté ayant la capacité de concentrer les éléments séparés

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019272750

Country of ref document: AU

Date of ref document: 20190522

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019807135

Country of ref document: EP

Effective date: 20201222