WO2019225708A1 - 表示装置用配線基板および表示装置、ならびに配線基板とその作製方法 - Google Patents

表示装置用配線基板および表示装置、ならびに配線基板とその作製方法 Download PDF

Info

Publication number
WO2019225708A1
WO2019225708A1 PCT/JP2019/020510 JP2019020510W WO2019225708A1 WO 2019225708 A1 WO2019225708 A1 WO 2019225708A1 JP 2019020510 W JP2019020510 W JP 2019020510W WO 2019225708 A1 WO2019225708 A1 WO 2019225708A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
substrate
display device
conductive film
columnar structure
Prior art date
Application number
PCT/JP2019/020510
Other languages
English (en)
French (fr)
Inventor
敦子 千吉良
俵屋 誠治
宏 馬渡
宏樹 古庄
恵大 笹生
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2020520375A priority Critical patent/JPWO2019225708A1/ja
Publication of WO2019225708A1 publication Critical patent/WO2019225708A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/40Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character is selected from a number of characters arranged one beside the other, e.g. on a common carrier plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present disclosure relates to a display device wiring substrate and a display device, a wiring substrate for connecting, for example, a plurality of wiring substrates, and a method for manufacturing the wiring substrate.
  • a display device using a semiconductor element having a light emitting function such as a light emitting diode element, as a pixel
  • a semiconductor element having a light emitting function such as a light emitting diode element
  • a pixel has high visibility due to self-coloring, easily realizes high brightness and high contrast, and is an all-solid-state display. It has advantages such as high performance, fast response speed and large viewing angle, and is expected to be applied to various applications.
  • the light emitting diode may be referred to as an LED.
  • LED display device for example, a configuration in which a plurality of LED elements are arranged in a matrix on a wiring board is known (see Patent Document 1).
  • an IC is used as a drive element that enables light emission control of each LED element.
  • it is required to increase the pixel density as the definition becomes higher.
  • the number of driving elements when the number of LED elements is increased in order to increase the pixel density, the number of driving elements also increases, and thus there is a problem that the cost increases.
  • the thin film transistor may be referred to as a TFT.
  • a glass epoxy substrate is widely used as a support substrate constituting the wiring substrate.
  • the glass epoxy substrate has low heat resistance, there is a problem that the glass epoxy substrate cannot withstand the heating process when forming the TFT on the support substrate.
  • a wiring board having a through electrode is often used.
  • the thermal expansion coefficients of the support substrate and the through electrode constituting the wiring substrate are different, a crack occurs in the support substrate due to a heating process when forming the TFT on the support substrate having the through electrode, or connection failure occurs.
  • a through-hole can be formed in the support substrate to form a through-electrode.
  • the heat or chemical solution at the time of forming the through-hole or through-holes can be formed.
  • the TFT is damaged by the plating process in forming the electrode and does not operate normally.
  • a through electrode having a hollow portion a so-called conformal via
  • a TFT when a TFT is formed on a support substrate having a through electrode, a support substrate having a through hole is used, so the TFT is formed. Difficult to do.
  • the LED element and the TFT are formed on the support substrate, there is a problem that the manufacturing cost increases.
  • the present disclosure is an invention made in view of the above problems, and a main object of the present disclosure is to provide a display device wiring board and a display device suitable for a display device using a semiconductor element having a light emitting function as a pixel.
  • the present disclosure provides a first base material, a semiconductor element mounted on one surface side of the first base material, having a light emitting function, and electrically connected to the semiconductor element, A first member having wiring for electrically connecting the front and back surfaces of the first base material, and a second base material disposed opposite to the surface of the first base material opposite to the surface on the semiconductor element side, And a second member that is disposed on the first substrate side surface side of the second substrate, has a function of driving the semiconductor element, and has a drive element electrically connected to the wiring.
  • a wiring board for a display device is provided.
  • the first member having the semiconductor element having the light emitting function and the second member having the driving element are separate, and the semiconductor element and the driving element having the light emitting function are provided on the front and back sides of the first substrate. They are electrically connected by wiring that is electrically connected. For this reason, it is possible to eliminate the problem in forming the drive element on the support substrate having the through electrode as described above and the problem in forming the through hole and the through electrode in the support substrate having the drive element. Further, since the first member having a semiconductor element having a light emitting function and the second member having a driving element are separately manufactured, an inexpensive wiring board for a display device can be obtained. Therefore, the display device wiring substrate of the present disclosure is suitable for a display device using a semiconductor element having a light emitting function as a pixel.
  • the display device wiring board of the present disclosure includes a connecting member that is disposed between the first member and the second member, has anisotropic conductivity, and electrically connects the wiring and the driving element. Is preferred.
  • a connection member having anisotropic conductivity electrical connection between a semiconductor element having a light emitting function and a driving element can be easily performed.
  • electrical connection between the semiconductor element having a light emitting function and the driving element and adhesion of the first member and the second member can be performed simultaneously.
  • electrical connection can be performed without causing a short circuit.
  • the driving element is preferably a thin film transistor. This is because an inexpensive wiring board for a display device can be obtained.
  • the first base material has a through hole
  • the wiring is a through wiring arranged in the through hole. This is because the mounting density of a semiconductor element having a light emitting function can be increased, so that the pixel density can be increased and high definition can be achieved.
  • the first base material is smaller than the second base material. Since the first base material is smaller than the second base material, a lead-out wiring or the like for connection with an external circuit can be arranged on the surface side of the second base material on the driving element side in the second member. Because.
  • a plurality of the first members are arranged with respect to one second member. This is because, in the case of increasing the mounting density of semiconductor elements having a light emitting function, if there is a defect in the semiconductor element having a light emitting function, the loss can be reduced by using a plurality of first members. .
  • the present disclosure provides a display device having the above-described wiring board for a display device.
  • the display device wiring board is provided, an inexpensive display device can be provided.
  • the display device wiring boards are arranged. This is because the display device can be enlarged.
  • the display device wiring board of the present disclosure is suitable for a display device using a semiconductor element having a light emitting function as a pixel.
  • 1A and 1B are a schematic top view and bottom view of a display device according to one embodiment.
  • 1A and 1B are a schematic top view and bottom view of a display device according to one embodiment.
  • the present disclosure includes an aspect related to a display device wiring board and a display device, and an aspect related to a wiring substrate and a manufacturing method thereof. Each will be described below.
  • the wiring board for display device of the present disclosure is mounted on one surface side of the first base material, the first base material, and has a light emitting function, and is electrically connected to the semiconductor element.
  • the wiring that electrically connects the front and back of the first base material may be referred to as the first wiring.
  • the wiring disposed on the surface side of the first base material on the side of the semiconductor element having the light emitting function is referred to as second wiring, and the surface on the side of the semiconductor element having the light emitting function of the first base material is The wiring arranged on the opposite surface side may be referred to as a third wiring.
  • the wiring arranged on the surface side of the second substrate on the driving element side may be referred to as a fourth wiring.
  • FIGS. 1 to 3 are schematic cross-sectional views each showing an example of a wiring board for a display device according to the present disclosure.
  • a display device wiring board 1 of the present disclosure is mounted on one surface side of a first base material 11, a first base material 11, a semiconductor element 12 having a light emitting function, and
  • the first member 10 having the first wiring 13 electrically connected to the semiconductor element 12 and electrically connecting the front and back of the first base material 11 is opposite to the surface of the first base material 11 on the semiconductor element 12 side.
  • the first base material 11 may have a through hole 11h, and the first wiring 13 may be a through wiring arranged in the through hole 11h.
  • the first wiring 13 may be disposed on the side surface of the first base material 11.
  • the first wiring 13 may be a through wiring that fills the through hole 11h, as shown in FIG. 1, a so-called filled via, and as shown in FIG. A through-wiring line disposed only on the side wall of the through-hole 11h, a so-called conformal via may be used.
  • the display device wiring substrate 1 of the present disclosure is disposed between the first member 10 and the second member 20 and electrically connects the first wiring 13 and the drive element 22.
  • a connection member 31 can be provided.
  • the connecting member 31 is a connecting member having anisotropic conductivity.
  • the semiconductor element 12 can have, for example, a red semiconductor element 12R, a green semiconductor element 12G, and a blue semiconductor element 12B, as shown in FIGS.
  • the first member 10 is disposed on one surface side of the first base material 11 and has a second wiring 14 that electrically connects the semiconductor element 12 and the first wiring 13.
  • the first substrate 11 has a third wiring 15 that is disposed on a surface opposite to the surface on the semiconductor element 12 side and electrically connects the first wiring 13 and the connection member 31. You may do it.
  • the second member 20 is disposed on the surface side of the second base member 21 on the drive element 22 side, and electrically connects the drive element 22 and the connection member 31. You may have.
  • the display device wiring board 1 of the present disclosure includes a resin film 32 disposed between the first member 10 and the second member 20 and disposed on a portion other than the connection member 31. You may have.
  • the first member having the semiconductor element having the light emitting function and the second member having the driving element are separate, and the semiconductor element and the driving element having the light emitting function are provided on the front and back sides of the first substrate. They are electrically connected by wiring that is electrically connected. For this reason, it is possible to eliminate the problem in forming the drive element on the support substrate having the through electrode as described above and the problem in forming the through hole and the through electrode in the support substrate having the drive element. Further, since the first member having a semiconductor element having a light emitting function and the second member having a driving element are separately manufactured, an inexpensive wiring board for a display device can be obtained.
  • the display device wiring substrate of the present disclosure is suitable for a display device using a semiconductor element having a light emitting function as a pixel.
  • First member The first member in the present disclosure is mounted on one surface side of the first base material, the first base material, and has a light emitting function, and is electrically connected to the semiconductor element. And a first wiring that electrically connects the front and back of the first base material.
  • the semiconductor element having a light emitting function in the present disclosure is a member that is mounted on one surface side of the first base material and has a light emitting function.
  • the semiconductor element is not particularly limited as long as it is a semiconductor element having a light emitting function, but is preferably an LED element.
  • the LED element in the present disclosure usually has three color LED elements, a red LED element, a green LED element, and a blue LED element.
  • the individual LED elements may be arranged at equal intervals.
  • the three-color LED elements may be integrated on one chip. In this case, in the first member, the individual chips are usually arranged at equal intervals.
  • the above three color LED elements are usually used as one light emitting unit.
  • the individual LED elements are arranged at equal intervals, three color LED elements are used as one light emitting unit.
  • three color LED elements are integrated on one chip, one chip is used as one light emitting unit.
  • the light emitting unit refers to a region that can function as a pixel in the wiring board for a display device of the present disclosure.
  • the LED element is preferably micro-sized, and may have a size of 10 ⁇ m square to 100 ⁇ m square, for example, and may have a size of 50 ⁇ m square to 100 ⁇ m square.
  • the pitch of the light emitting units may be, for example, 0.1 mm or more and 2.5 mm or less. Note that the pitch of the light emitting units usually refers to the distance between the center of one light emitting unit and the center of the other light emitting unit in adjacent light emitting units.
  • a general LED element mounting method can be applied.
  • the first wiring in the present disclosure is a conductive member that is electrically connected to the semiconductor element and electrically connects the front and back of the first base material.
  • the first wiring may be any wiring that can electrically connect the front and back of the first base material, and the form thereof is not particularly limited.
  • the first base material 11 has a through hole 11h
  • the first wiring 13 is a through wiring arranged in the through hole 11h.
  • the first wiring 3 may be disposed on the side surface of the first base material 11.
  • the first wiring 13 may be a through wiring filling the through hole 11h, so-called filled via, and as shown in FIG.
  • the first wiring 13 may be a through wiring disposed only on the side wall of the through hole 11h, a so-called conformal via.
  • a conformal via for example, as shown in FIG. 2
  • a hollow portion may be disposed in the through hole 11h, and the inside of the through hole 11h is resin as shown in FIG.
  • the portion 16 may be filled.
  • the first wiring is a conformal via, for example, as shown in FIG. 2, when the hollow portion is disposed in the through hole 11 h, the first wiring 13 is connected to the second wiring 14 and the third wiring 15. It can be formed as one piece.
  • the 1st wiring is the through wiring arrange
  • the material of the first wiring is not particularly limited as long as it is a conductive material, and a conductive material used for general wiring can be used, depending on the form of the first wiring, the formation method, and the like. It is selected appropriately.
  • the material of the first wiring is a metal such as copper, gold, silver, platinum, rhodium, tin, aluminum, nickel, chromium, or these metals
  • a metal such as copper, gold, silver, platinum, rhodium, tin, aluminum, nickel, chromium, or these metals
  • the first wiring may be a single layer or a multilayer in which a plurality of layers are stacked.
  • the first wiring may have a seed layer disposed on the side wall of the through hole and a plating layer disposed on a surface opposite to the side wall side of the through hole of the seed layer.
  • the material for the seed layer can be appropriately selected from materials used for the seed layer in a general plating method.
  • the seed layer material is preferably a conductive material having adhesion to the first substrate, such as titanium, molybdenum, tungsten, tantalum, nickel, chromium, aluminum, a compound thereof, an alloy thereof, or the like. Can be mentioned.
  • the material of the seed layer is preferably a material capable of suppressing the diffusion of copper into the first base material, such as titanium nitride, molybdenum nitride, tantalum nitride, etc. Can be mentioned.
  • the material of the plating layer is preferably a conductive material having adhesion to the seed layer, and examples thereof include the materials for the first wiring described above.
  • examples of the material of the first wiring include metals such as copper, gold, silver, nickel, chromium, titanium, and aluminum, and these metals.
  • examples thereof include alloys, conductive oxides such as indium tin oxide (ITO) and indium zinc oxide (IZO).
  • the material of 1st wiring is copper, gold
  • the first wiring may be a single layer or a multilayer in which a plurality of layers are stacked.
  • the first wiring may include a seed layer disposed on the side surface of the first base material and a plating layer disposed on the surface of the seed layer opposite to the first base material side.
  • the material of the seed layer and the material of the plating layer are as described above.
  • the resin part material include epoxy resin, acrylic resin, polyimide, polyamide, and polyester. be able to.
  • a general wiring forming method can be used, which is appropriately selected according to the form of the first wiring and the like.
  • Examples of the method for forming the first wiring include a PVD method such as a vapor deposition method and a sputtering method, a CVD method, and a plating method.
  • the 1st base material in this indication is a member in which the above-mentioned semiconductor element is mounted, and is a member which supports the above-mentioned semiconductor element.
  • the material of the first base material is not particularly limited as long as it is a material used for a general display device, but since the semiconductor element is mounted, the first base material preferably has flatness. Especially, it is preferable that a 1st base material has heat resistance with respect to the heating process at the time of mounting a semiconductor element, for example, a reflow process.
  • a first base material include a glass base material and a polyimide base material.
  • a polyimide base material having flatness can be obtained by forming a polyimide base material layer on a carrier substrate such as a glass substrate.
  • a glass substrate is preferred because of its high heat resistance.
  • Examples of the glass used for the glass substrate include soda lime glass, non-alkali glass, and quartz glass.
  • the polyimide base material is preferable from the viewpoint of thinning, lightening, and flexibility of the display device. Moreover, in the case of a polyimide base material, it can suppress that a 1st base material and a 2nd member are bonded through an adhesive member at the time of the crimping
  • LLO laser lift-off
  • the first member and the second member are bonded via an adhesive member.
  • the temporary substrate and the adhesive layer can be peeled after the first member and the second member are bonded. Therefore, even if cracks or cracks occur in the temporary substrate, the temporary substrate is peeled off, so that a decrease in yield can be suppressed.
  • the first substrate may or may not have a through hole.
  • a 1st base material has a through-hole.
  • the first wiring can be a through wiring arranged in the through hole, and the semiconductor element of the first member via the through wiring.
  • the driving element of the second member can be electrically connected.
  • the size of the diameter of the through hole can be appropriately selected according to the use of the wiring board for a display device, and is not particularly limited, but may be, for example, 10 ⁇ m to 200 ⁇ m, and 20 ⁇ m to 100 ⁇ m. Also good.
  • Examples of the method for forming the through hole include etching such as plasma etching and wet etching, laser irradiation, or mechanical processing methods such as sand blasting and ultrasonic drilling.
  • the thickness of the first base material is not particularly limited as long as the semiconductor element can be supported, and can be appropriately selected depending on the use of the display device wiring board.
  • the thickness of the first base material is preferably 10 ⁇ m or more and 700 ⁇ m or less, more preferably 100 ⁇ m or more and 500 ⁇ m or less, and particularly preferably 300 ⁇ m or more and 400 ⁇ m or less.
  • the first base material is smaller than the second base material.
  • the second member 20 has the driving element 22 on the surface side of the second base material 21 on the driving element 22 side. Electrically connected and lead wires 24 and the like for connection to an external circuit can be arranged.
  • the first member has a lead wiring arranged on the surface of the first base material opposite to the surface on the semiconductor element side.
  • the first base material is smaller than the second base material. Further, as will be described later, for example, as shown in FIG. 6, the first base material 11 is smaller than the second base material 21, thereby arranging a plurality of first members 10 for one second member 20. be able to. In this case, when increasing the mounting density of the semiconductor elements having the light emitting function, if there is a defect in the semiconductor element having the light emitting function, the loss can be reduced by using a plurality of first members. .
  • a second wiring that electrically connects the semiconductor element and the first wiring may be disposed on the surface of the first base material on the semiconductor element side.
  • a third wiring that electrically connects the first wiring and the connection member may be disposed on a surface opposite to the surface on the semiconductor element side of the first base material.
  • the material of the second wiring and the third wiring various conductive materials can be used.
  • the conductive material include zero-valent metals such as copper, molybdenum, titanium, tungsten, tantalum, aluminum, gold, and silver, alloys containing at least one selected from these metals, or indium tin oxide (ITO ), Conductive oxides such as indium zinc oxide (IZO) can be used.
  • ITO indium tin oxide
  • Conductive oxides such as indium zinc oxide (IZO) can be used.
  • the thickness of the second wiring and the third wiring can be, for example, 0.05 ⁇ m or more and 20 ⁇ m or less, 0.1 ⁇ m or more and 15 ⁇ m or less, or 0.2 ⁇ m or more and 10 ⁇ m or less. Thereby, sufficient electroconductivity can be obtained.
  • a general wiring forming method can be used, and examples thereof include a CVD method, a sputtering method, and a plating method.
  • 1st member it is preferred that a plurality of 1st members 10 are arranged to one 2nd member 20, for example, as shown in Drawing 6. This is because, in the case of increasing the mounting density of semiconductor elements having a light emitting function, if there is a defect in the semiconductor element having a light emitting function, the loss can be reduced by using a plurality of first members. .
  • the first wiring is a through wiring, it may be difficult to form the through hole if the first base material has a large area.
  • the number of first members for one second member can be one or more. When there are a plurality of first members, the number of the first members is appropriately selected according to the use of the wiring board for display device of the present disclosure.
  • the 2nd member in this indication is the 2nd base material arranged opposite to the field side opposite to the field at the side of the above-mentioned semiconductor element of the above-mentioned 1st base material, and the above-mentioned 2nd above-mentioned base material. 1 has a drive element which is disposed on the surface side of the substrate, has a function of driving the semiconductor element, and is electrically connected to the wiring.
  • the drive element in this indication is an element which is arranged at the 1st substrate side surface side of the 2nd substrate, and has a function which drives the above-mentioned semiconductor element.
  • the driving element is not particularly limited as long as it has a function of driving the semiconductor element and can control light emission for each semiconductor element.
  • Examples of the driving element include a TFT and an IC. .
  • the drive element is preferably a TFT.
  • An inexpensive wiring board for a display device can be obtained.
  • a general TFT substrate can be used as the second member.
  • an IC as a drive element in the present disclosure is different from a driver IC as described later.
  • the driving element can be arranged, for example, for each one or a plurality of semiconductor elements or for each one or a plurality of light emitting units.
  • a plurality of driving elements may be arranged for each semiconductor element or for each light emitting unit.
  • TFT and IC can be the same as those used in a general display device, and thus the description thereof is omitted here.
  • the 2nd base material in this indication is a member which supports the above-mentioned drive element.
  • the material of the second base material is not particularly limited as long as it is a material used for a general display device.
  • the driving element is a TFT
  • Examples of such a second substrate include a glass substrate and a polyimide substrate.
  • description here is abbreviate
  • the polyimide base material is preferable from the viewpoint of thinning, lightening, and flexibility of the display device. Moreover, in the case of a polyimide base material, it can suppress that a 2nd base material generate
  • a second member is manufactured using a laminated substrate in which a polyimide base material layer is formed on a carrier substrate, the first member and the second member are bonded via an adhesive member, and then laser lift-off ( When the carrier substrate is peeled from the polyimide base layer by the (LLO) method, the carrier substrate is peeled even if a crack occurs in the carrier substrate, so that a decrease in yield can be suppressed.
  • the thickness of the second base material is not particularly limited as long as the drive element can be supported, and can be appropriately selected according to the use of the display device wiring board.
  • the thickness of the second base material is, for example, preferably 10 ⁇ m or more and 700 ⁇ m or less, more preferably 100 ⁇ m or more and 500 ⁇ m or less, and particularly preferably 300 ⁇ m or more and 400 ⁇ m or less.
  • the second substrate is preferably larger than the first substrate.
  • a fourth wiring that electrically connects the drive element and the connection member may be disposed on the surface side of the second base material on the drive element side.
  • the material, thickness, and formation method of the fourth wiring can be the same as those of the second wiring and the third wiring.
  • a lead wiring electrically connected to the drive element, a driver IC electrically connected to the lead wiring, or the like may be arranged on the surface of the second base material on the drive element side.
  • the details of the lead-out wiring and the driver IC can be the same as the configuration used in a general display device, and thus description thereof is omitted here.
  • connection Member The display device wiring board of the present disclosure preferably includes a connection member that is disposed between the first member and the second member and electrically connects the first wiring and the drive element.
  • the connecting member may be any member as long as it can electrically connect the first wiring and the drive element.
  • the connecting member having anisotropic conductivity, the conductive film in contact with the columnar structure and the columnar structure, A connecting member having Each will be described below.
  • connection member having anisotropic conductivity The display device wiring board of the present disclosure is disposed between the first member and the second member, has anisotropic conductivity, and includes the first wiring and the above-described first wiring. It is preferable to have a connection member that electrically connects the drive elements.
  • connection member having anisotropic conductivity electrical connection between a semiconductor element having a light emitting function and a driving element can be easily performed.
  • electrical connection between the semiconductor element having a light emitting function and the driving element and adhesion of the first member and the second member can be performed simultaneously. Furthermore, in order to increase the pixel density, even when semiconductor elements having a light emitting function are arranged at high density, electrical connection can be performed without causing a short circuit.
  • an anisotropic conductive material such as an anisotropic conductive film (ACF) or an anisotropic conductive paste (ACP) can be used.
  • the anisotropic conductive material include a material in which conductive particles are dispersed in a resin.
  • anisotropic conductive film and the anisotropic conductive paste those used for a general wiring board can be used.
  • the connecting member having anisotropic conductivity may be disposed between the first member and the second member so as to electrically connect the first wiring and the drive element.
  • the first member and the second member You may arrange
  • the connection member 31 may be disposed only in a region where the third wiring 15 of the first member 10 and the fourth wiring 23 of the second member 20 are disposed. As shown in FIG. 7, the connection member 31 may be disposed between the first member 10 and the second member 20.
  • a resin film is disposed between the first member and the second member in a portion other than the connecting member. It is preferable.
  • the resin film functions as an adhesive member.
  • a material for the resin film for example, an epoxy resin, an acrylic resin, a silicone resin, or the like can be used.
  • connection member having a columnar structure and a conductive film in contact with the columnar structure
  • the display device wiring board of the present disclosure is disposed between the first member and the second member, and includes at least one resin including a resin.
  • a connection member having a columnar structure and a conductive film that is in contact with the columnar structure and electrically connects the first wiring and the driving element can be provided.
  • the display device wiring board 1 is disposed between the first member 10 and the second member 20, and includes at least one columnar structure 33 containing resin, and the columnar structure. 33, a connection member 35 having a conductive film 34 in contact with the first wiring 13 and the drive element 22 is provided.
  • a columnar structure 33 is disposed on the surface of the second base material 21 on the drive element 22 side, and a conductive film 34 is disposed so as to cover the upper surface and side surfaces of the columnar structure 33.
  • the conductive film 34 can function as the fourth wiring 23 and is in contact with the third wiring 15 on the upper surface of the conductive film 34.
  • the semiconductor element 12 and the driving element 22 are electrically connected through the second wiring 14, the first wiring 13, the third wiring 15, and the conductive film 34.
  • a resin film 32 is disposed between the first member 10 and the second member 20.
  • the columnar structure 33 is disposed on the surface opposite to the surface of the first base material 11 on the semiconductor element 12 side, and the conductive film 34 covers the upper surface and side surfaces of the columnar structure 33. Is arranged.
  • the conductive film 34 is in contact with the fourth wiring 23 on the upper surface of the conductive film 34.
  • the semiconductor element 12 and the driving element 22 are electrically connected via the second wiring 14, the first wiring 13, the third wiring 15, the conductive film 34 and the fourth wiring 23.
  • a resin film 32 is disposed between the first member 10 and the second member 20.
  • the “upper surface of the columnar structure” refers to the surface of the columnar structure that faces the second substrate when the columnar structure is disposed on the surface side of the first substrate. Is disposed on the surface side of the second base material, it refers to the surface of the columnar structure that faces the first base material.
  • the “upper surface of the conductive film” refers to a surface of the conductive film on the side opposite to the surface on the columnar structure side.
  • the conductive film Since the columnar structure can have a flat surface on the upper surface, the conductive film has high flatness on the upper surface of the columnar structure. Further, the wiring in contact with the upper surface of the conductive film is also flat because it is disposed on the surface side of the first base material or the second base material. For this reason, since the electrical connection between the conductive film and the wiring can be performed using a relatively large area, not only an increase in contact resistance can be suppressed, but also a more reliable electrical connection is achieved. be able to.
  • the columnar structure can exhibit elasticity, as will be described later. Therefore, when the first member and the second member are bonded together, the columnar structure is deformed and becomes conductive. The flat surface shape of the wiring in contact with the upper surface of the film is reflected on the upper surface of the columnar structure. For this reason, a flat surface is also formed on the upper surface of the conductive film, and as a result, highly reliable electrical connection can be achieved.
  • the columnar structure can exhibit elasticity, the columnar structure is not destroyed even when pressure is applied when the first member and the second member are bonded together.
  • a stress for pressing the conductive film in the direction of the wiring is generated inside after the first member and the second member are bonded. This stress contributes to reliably bringing the conductive film and the wiring into physical contact.
  • the conductive film has a columnar structure even if the columnar structure is deformed when the first member and the second member are bonded together. Since it follows the deformation of the body, damage to the conductive film can be suppressed. For this reason, the possibility that the conductive film and the wiring are separated from each other is greatly reduced, and an electrical connection having high reliability can be constructed.
  • connection member in this indication is arranged between the 1st member and the 2nd member, and has at least one columnar structure containing resin.
  • the columnar structure is an insulator containing an organic compound.
  • An example of the organic compound is a resin.
  • the resin include an epoxy resin, an acrylic resin, and a silicone resin. For this reason, the columnar structure exhibits elasticity and can be deformed by an external force.
  • the height of the columnar structure can be, for example, 1 ⁇ m to 100 ⁇ m, 1 ⁇ m to 80 ⁇ m, or 1 ⁇ m to 50 ⁇ m.
  • the maximum area in plan view of the columnar structures for example, be a 20 [mu] m 2 or more 3000 .mu.m 2 or less, or 100 [mu] m 2 or more 1500 .mu.m 2 or less.
  • the connecting member only needs to have at least one columnar structure, and may have, for example, a plurality of columnar structures.
  • some of the columnar structures 33 may be in contact with the conductive film 34, and other columnar structures 36 may not be in contact with the conductive film 34.
  • the columnar structure that is not in contact with the conductive film can function as a cushioning material or a spacer, and can contribute to maintaining the distance between the first member and the second member.
  • the columnar structure can function as a cushioning material or a spacer, like the columnar structure that is not in contact with the conductive film, and can contribute to maintaining the distance between the first member and the second member.
  • the columnar structure may be disposed on the surface side opposite to the surface of the first base member 11 on the semiconductor element 12 side, as shown in FIG. 8A. You may arrange
  • the columnar structure may be arranged so as to overlap the first wiring in a plan view, or may be arranged not to overlap the first wiring.
  • the shape of the columnar structure is not particularly limited, and the cross-sectional shape can be, for example, a rectangle or a trapezoid.
  • the cross-sectional shape of the columnar structure 33 is a rectangle
  • the cross-sectional shape of the columnar structure 33 is a trapezoid.
  • the cross-sectional shape of the columnar structure may be a shape having rounded corners, for example, as shown in FIG.
  • the side surface of the columnar structure may be a flat surface or may include a curved surface, for example.
  • a photolithography method may be mentioned.
  • the adhesive member in the present disclosure has a conductive film that contacts the columnar structure and electrically connects the first wiring and the drive element.
  • the conductive film is electrically connected to the first wiring and the driving element.
  • the conductive film 34 is in contact with the third wiring 15 on the upper surface.
  • the first wiring 13 and the drive element 22 are electrically connected via the conductive film 34.
  • FIG. 8B when the columnar structure 33 is disposed on the surface of the first substrate 11 opposite to the surface on the semiconductor element 12 side, the conductive film 34 is on the upper surface. By being in contact with the fourth wiring 23, the first wiring 13 and the drive element 22 are electrically connected through the conductive film 34.
  • the conductive film is disposed in contact with the columnar structure and is disposed so as to cover at least part of the upper surface and at least part of the side surface of the columnar structure.
  • the conductive film is the source of the TFT It can also function as an electrode and a drain electrode.
  • the conductive film may be disposed on the source electrode and the drain electrode of the TFT.
  • the material of the conductive film various conductive materials can be used.
  • the conductive material include copper, molybdenum, titanium, tungsten, tantalum, aluminum, gold, silver, tin, lead metal, an alloy containing at least one selected from these metals, or indium tin oxide (ITO ), Conductive oxides such as indium zinc oxide (IZO) can be used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the thickness of the conductive film can be, for example, 0.01 ⁇ m to 15 ⁇ m, 0.05 ⁇ m to 10 ⁇ m, or 0.2 ⁇ m to 8 ⁇ m.
  • the thickness of the conductive film is in the above range, high flexibility can be imparted to the conductive film, and even if the columnar structure is deformed, damage or disconnection of the conductive film can be prevented.
  • Examples of the method for forming the conductive film include a CVD method, a sputtering method, and a plating method.
  • the resin film may be arrange
  • the resin film functions as an adhesive member.
  • a material for the resin film for example, an epoxy resin, an acrylic resin, a silicone resin, or the like can be used.
  • the portion other than the portion where the connection member is disposed between the first member and the second member may be a space portion.
  • a space portion For example, as shown in FIG. 9B, when a columnar structure 36 that can function as a cushioning material or a spacer is disposed between the first member 10 and the second member 20, or not shown, When the pixel density is high and the density of the connection member is high, the distance between the first member and the second member can be maintained even if the space portion exists.
  • the manufacturing method for the display device wiring substrate according to the present disclosure is not particularly limited, and may be the same as a general wiring substrate manufacturing method.
  • FIG. 11A to 11D are process diagrams illustrating an example of a method for manufacturing a display device wiring board according to the present disclosure.
  • the first base 11, the semiconductor element 12 having a light emitting function mounted on one surface side of the first base 11, and the semiconductor element 12 are electrically connected.
  • the first member 10 having the first wiring 13 connected and electrically connecting the front and back of the first base material 11 is produced.
  • the configuration of the first member 10 is as described above.
  • FIG. 11 (b) a second substrate 21 disposed opposite to the surface of the first substrate 11 opposite to the semiconductor element 12 side, and a second substrate 21.
  • a second member 20 that is disposed on the first substrate 11 side and has a function of driving the semiconductor element 12 and that is electrically connected to the first wiring 13 is manufactured.
  • the configuration of the second member 20 is as described above.
  • an anisotropic conductive film 31 a is pasted on the surface of the second member 20 that faces the first member 10.
  • the first member 10 is disposed on the upper surface of the anisotropic conductive film 31a, and pressure is applied while heating, so that the conductive particles contained in the anisotropic conductive film 31a.
  • the third wiring 15 and the fourth wiring 23 are made conductive.
  • the first member 10 and the second member 20 are bonded by the resin contained in the anisotropic conductive film 31a.
  • the connecting member 31 having anisotropic conductivity is disposed between the first member 10 and the second member 20. In this way, the display device wiring board 1 can be obtained.
  • Display Device A display device of the present disclosure includes the above-described display device wiring board.
  • the display device wiring board is provided, an inexpensive display device can be provided.
  • FIG. 12 is a schematic cross-sectional view showing an example of the display device of the present disclosure.
  • the display device 101 of the present disclosure includes a first member 10, a second member 20, a connection member 31 and a resin film 32 disposed between the first member 10 and the second member. It has the wiring board 1 for display apparatuses which has.
  • a lead wiring 24 electrically connected to the drive element 22 is disposed on the surface side of the second base material 21 on the drive element 22 side.
  • a driver IC 103 is mounted on the TAB 102, and the display device wiring substrate 1 and the printed circuit board 101 are electrically connected via the lead wiring 24.
  • signals and power supplied from an external circuit (not shown) are supplied to the driver IC 103, and each semiconductor element 12 is controlled based on these signals and power, thereby displaying an image.
  • members other than the above-described display device wiring board can be the same as those used in a general display device, and thus description thereof is omitted here.
  • a plurality of display device wiring boards are arranged.
  • a plurality of display device wiring substrates 1 are arranged.
  • the display device 101 is a display device that constitutes one display screen by arranging a plurality of display device wiring boards 1 and is a so-called tiling display device. By arranging the plurality of display device wiring boards, the display device can be enlarged.
  • each display device wiring board 1 a plurality of first members 10 are arranged for one second member 20, but the present invention is not limited to this, and each display device wiring is not limited thereto.
  • the substrate may have one first member and one second member. That is, the tiling display device includes, for example, a unit 40 having one or more first members 10 and one second member 20 as shown in FIG. 13, and a plurality of units 40 may be tiled. .
  • the tiling display device only needs to have at least a plurality of display device wiring boards, and can have a necessary configuration as appropriate.
  • the manufacturing method of the display device and the tiling display device is not particularly limited, and can be the same as the manufacturing method of a general display device and a tiling display device.
  • the display device of the present disclosure is preferably a micro LED display.
  • a semiconductor device includes a substrate such as a semiconductor substrate or an insulating substrate, and a stacked body of various patterned insulating films, semiconductor films, and metal films as a basic configuration.
  • a semiconductor device having various functions can be provided by appropriately designing the shape and stacked structure of the insulating film, the semiconductor film, and the metal film.
  • such a semiconductor device is used in a state where it is connected to a substrate on which wiring is formed (wiring substrate), and the semiconductor device is controlled and driven by a signal or electric power supplied via this wiring substrate.
  • a wiring pad for electrically connecting the display device and the wiring substrate has a through-wiring (through electrode) penetrating the substrate on which the display element is provided. Also called).
  • An object of the present disclosure is to provide a wiring structure for electrically connecting a plurality of substrates on which wirings are formed, a wiring substrate including the wiring structure, and a method for manufacturing the wiring substrate including the wiring structure.
  • the wiring substrate includes a first substrate, a first wiring on the first substrate, at least one columnar structure including a resin, the columnar structure, and the first wiring.
  • a conductive film located on the wiring and in contact with the columnar structure and the first wiring; a second wiring located on the conductive film and electrically connected to the conductive film; and a second wiring on the second wiring. 2 substrates.
  • the wiring substrate includes a first substrate, a first wiring on the first substrate, a conductive film located on the first wiring and electrically connected to the first wiring, and the conductive film At least one columnar structure that is in contact with the conductive film and includes a resin, a second wiring that is positioned on the columnar structure and is in contact with the columnar structure, and a second substrate on the second wiring;
  • One embodiment of the present disclosure is a method of manufacturing a wiring board.
  • a first wiring is formed on a first substrate, at least one columnar structure including a resin is formed on the first substrate, and a conductive film is formed on the columnar structure.
  • One embodiment of the present disclosure is a method of manufacturing a wiring board.
  • a first wiring is formed on a first substrate
  • a second wiring is formed on a second substrate
  • at least one columnar structure including a resin is formed on the second substrate.
  • the display device includes a first substrate, a first wiring on the first substrate, at least one columnar structure that is located on the first substrate and includes a resin, and a conductive film on the columnar structure.
  • the third wiring is configured to transmit a signal to the display element.
  • a structure is exposed from another structure means an aspect in which a part of a structure is not covered by another structure.
  • the part which is not covered with the structure includes an aspect covered with another structure.
  • FIG. 14A shows a schematic cross-sectional view of the wiring board 100.
  • the wiring substrate 100 includes a first substrate 102 and a second substrate 104, and the first wiring 110 is formed over the second substrate 104 over the first substrate 102. Is provided with a second wiring 112.
  • the first wiring 110 and the second wiring 112 may be provided so as to be in contact with the first substrate 102 and the second substrate 104, respectively, as shown in FIG. And may be formed on the first substrate 102 and the second substrate 104, respectively.
  • a film having one or a plurality of layers containing a silicon-containing inorganic compound such as silicon oxide, silicon nitride, silicon oxynitride, or silicon nitride oxide can be used.
  • the wiring substrate 100 further includes at least one columnar structure 118 on the first substrate 102.
  • the columnar structure 118 is an insulator containing an organic compound, and examples of the organic compound include a resin. Examples of the resin include an epoxy resin, an acrylic resin, and a silicone resin. For this reason, the columnar structure 118 exhibits elasticity and can be deformed by an external force.
  • the columnar structure 118 may be formed so as not to overlap with the first wiring 110 or may be provided so as to overlap with the first wiring 110 as shown in FIG.
  • the height of the columnar structure 118 can be, for example, 1 ⁇ m to 100 ⁇ m, 1 ⁇ m to 80 ⁇ m, or 1 ⁇ m to 50 ⁇ m.
  • cross section in a plane parallel to the upper surface of the first substrate 102 is the maximum area of, 20 [mu] m 2 or more 3000 .mu.m 2 or less, or may be 100 [mu] m 2 or more 1500 .mu.m 2 or less.
  • the wiring substrate 100 further includes a conductive film 116 located on the columnar structure 118 and in contact with the columnar structure 118.
  • the conductive film 116 is also in contact with the first wiring 110, whereby the conductive film 116 and the first wiring 110 are electrically connected.
  • the conductive film 116 is formed so as to cover at least part of the upper surface and at least part of the side surface of the columnar structure.
  • the first substrate 102 and the second substrate 104 are attached to each other so that the conductive film 116 is electrically connected to the second wiring 112. Therefore, the first wiring 110, the columnar structure 118, the conductive film 116, and the second wiring 112 are sandwiched between the first substrate 102 and the second substrate 104.
  • a resin film 130 functioning as an adhesive may be provided between the first substrate 102 and the second substrate 104.
  • the resin film 130 for example, an epoxy resin, an acrylic resin, a silicone resin, or the like can be used.
  • the resin film 130 covers at least part of the conductive film 116.
  • first wiring 110, the second wiring 112, and the conductive film 116 described above various materials exhibiting conductivity can be used.
  • a zero-valent metal such as copper, molybdenum, titanium, tungsten, tantalum, aluminum, gold, silver, an alloy containing at least one selected from these metals, or indium-tin oxide (ITO) or indium-zinc
  • ITO indium-tin oxide
  • IZO indium-zinc
  • copper or aluminum having high conductivity an increase in resistance due to installation of the wiring board 100 can be suppressed.
  • copper having a relatively low hardness it is possible to provide the wiring board 100 capable of constructing a more reliable electrical connection.
  • the thickness of the first wiring 110 and the second wiring 112 may be, for example, 0.05 ⁇ m to 20 ⁇ m, 0.1 ⁇ m to 15 ⁇ m, or 0.2 ⁇ m to 10 ⁇ m. Thereby, sufficient electroconductivity can be obtained.
  • the thickness of the conductive film 116 can be, for example, 0.01 ⁇ m to 15 ⁇ m, 0.05 ⁇ m to 10 ⁇ m, or 0.2 ⁇ m to 8 ⁇ m. By forming the conductive film 116 with such a thickness, high flexibility can be given to the conductive film 116, and even if the columnar structure 118 is deformed, the conductive film 116 can be prevented from being damaged or disconnected.
  • An anisotropic conductive film is widely used when two substrates provided with wiring are electrically connected.
  • An anisotropic conductive film has a structure in which conductive particles such as nickel, silver, and gold coated with a resin and solder particles are dispersed in a polymer.
  • An anisotropic conductive film is disposed between substrates. By applying pressure while heating, these metals and solder electrically connect the wiring. For this reason, since the electrical connection between the wirings is performed by contact between the particulate conductor and the planar wiring, the electrical connection is not always stable.
  • stress is accumulated in the cooling process after the connection between the wirings. For this reason, a crack occurs in the conductor, or peeling between the conductor and the wiring occurs, which causes a decrease in the reliability of the wiring board.
  • the wiring substrate 100 of the present embodiment bonds the first substrate 102 on which the conductive film 116 is formed and the second substrate 104 on which the second wiring 112 is formed,
  • the first wiring 110 and the second wiring 112 are electrically connected through the conductive film 116 by being bonded by using the resin film 130.
  • the columnar structure 118 can have a flat surface on the top surface. Therefore, the conductive film 116 also has high flatness over the columnar structure 118.
  • the second wiring 112 is formed over the second substrate 104, the flatness thereof is also high. For this reason, since the electrical connection between the conductive film 116 and the second wiring 112 can be performed using a relatively large area, not only an increase in contact resistance can be suppressed, but also more reliable electrical connection can be achieved. Connection can be achieved.
  • the columnar structure 118 Even when the upper surface of the columnar structure 118 is not flat, the columnar structure 118 exhibits elasticity. Therefore, the columnar structure 118 is deformed when the first substrate 102 and the second substrate 104 are bonded to each other. The flat surface shape of the second wiring 112 is reflected on the upper surface of the columnar structure 118. For this reason, a flat surface is also formed on the upper surface of the conductive film 116, and as a result, highly reliable electrical connection can be achieved.
  • the columnar structure 118 exhibits elasticity, the columnar structure 118 is not broken even when pressure is applied when the first substrate 102 and the second substrate 104 are bonded to each other. After the first substrate 102 and the second substrate 104 are bonded, stress for pressing the conductive film 116 in the direction of the second wiring 112 is generated inside. This stress contributes to reliably bringing the conductive film 116 and the second wiring 112 into physical contact.
  • the conductive film 116 has a column shape even if the columnar structure 118 is deformed when the first substrate 102 and the second substrate 104 are bonded to each other.
  • the structure of the wiring board 100 is not limited to the above-described structure, and the wiring board 100 can have various structures.
  • the vertical relationship between the columnar structure 118 and the conductive film 116 is not limited, and the wiring substrate 100 may be configured so that the columnar structure 118 is positioned on the conductive film 116 as illustrated in FIG. Good.
  • the conductive film 116 is disposed between the first wiring 110 and the columnar structure 118 or between the first substrate 102 and the columnar structure 118, and the conductive film 116 covers part of the resin film 130. Since electrical connection between the first wiring 110 and the second wiring 112 is performed through a flat surface of the first wiring 110 and the conductive film 116, highly reliable electrical connection is achieved. Can do.
  • the wiring board 100 may include a plurality of columnar structures 118.
  • the wiring substrate 100 includes a columnar structure 118-2 whose upper surface and side surfaces are not covered with the conductive film 116, as well as the columnar structure 118-1 in contact with the conductive film 116. You may prepare.
  • the columnar structure 118-2 can also function as a buffer material or a spacer, and contributes to maintaining the distance between the first substrate 102 and the second substrate 104.
  • the entire surface of the columnar structure 118-2 may be covered with a conductive film separated so as to be insulated from the conductive film 116 or a part thereof.
  • the wiring board 100 may include a through electrode.
  • the wiring substrate 100 can include a through hole provided in the first substrate 102 and a first through electrode 120 that passes through the through hole.
  • the first through electrode 120 is electrically connected to the first wiring 110.
  • a part of the first wiring 110 also functions as a pad for providing a sufficient area for electrically connecting the conductive film 116 and the first through electrode 120, and the part is also a land.
  • the wiring board 100 may further include a wiring (fourth wiring) 122 that is electrically connected to the first through electrode 120 under the first substrate 102. Part of the fourth wiring 122 also functions as a land, and can be used for connection to various semiconductor devices and other wiring boards.
  • a through electrode may be formed on the second substrate 104.
  • the wiring substrate 100 can further include a through hole provided in the second substrate 104 and a second through electrode 124 that passes through the through hole.
  • the second through electrode 124 is electrically connected to the second wiring 112.
  • the wiring substrate 100 may further include a wiring (third wiring) 126 that is electrically connected to the second through electrode 124 on the second substrate 104.
  • part of the second wiring 112 and the third wiring 126 can also function as lands, and the latter is connected to other semiconductor devices and wiring boards.
  • the columnar structure 118 does not necessarily overlap with the through electrode.
  • the first through electrode 120 can be formed so as not to overlap the columnar structure 118.
  • the second through electrode 124 may also be formed so as not to overlap the columnar structure 118.
  • the first through electrode 120 does not necessarily fill the entire through hole. As shown in FIG. 17A, the upper surface and part of the lower surface of the first substrate 102 and the side wall of the through hole are continuously formed. The cover may be formed so as to be electrically connected between the upper surface and the lower surface of the first substrate 102. Similarly, the second through electrode 124 does not need to fill the entire through hole of the second substrate 104, and as shown in FIG. 17B, a part of the upper surface and the lower surface of the second substrate 104, and You may form so that an electrical connection is possible between the upper surface and lower surface of the 2nd board
  • the filler 132 examples include polymers such as epoxy resin, acrylic resin, polyimide, polyamide, and polyester.
  • the wiring substrate 100 is arranged so that the first through electrode 120 also functions as the first wiring 110 as shown in FIG. It may be configured. In this case, it is not necessary to provide the first wiring 110 separately, and the first through electrode 120 is in contact with the resin film 130.
  • the first wiring 110 may be formed as the first through electrode 120 in the through hole so as to cover the whole or at least a part of the side wall of the through hole penetrating the first substrate 102. In this case, the first wiring 110 is located between the filler 132 and the side wall, and the first wiring 110 is in contact with the resin film 130.
  • the columnar structure 118 may be provided so as to overlap the filler 132.
  • the wiring substrate 100 may be configured such that the second wiring 112 does not form and the second through electrode 124 also functions as the second wiring 112. That is, the second wiring 112 may be formed in the through hole as the second through electrode 124 so as to cover all or at least a part of the side wall of the through hole penetrating the second substrate 104. In this case, the second wiring 112 is located between the filler 132 and the side wall.
  • the columnar structure 118 may be provided so as to overlap a part of the filler 132.
  • the shape of the columnar structure 118 is not limited, and the shape of a cross section perpendicular to the upper surface of the first substrate 102 (hereinafter referred to as a vertical cross section) may be a square, a rectangle, or a trapezoid.
  • a vertical cross section When the vertical cross section of the columnar structure 118 is rectangular as shown in FIG. 14A, the bottom area and the top surface area of the columnar structure 118 are the same or substantially the same.
  • the lower bottom the side that is closer to the first substrate 102 than the second substrate 104 among the parallel sides
  • the bottom area of the columnar structure 118 is larger than the area of the upper surface.
  • the columnar structure 118 may be formed so that the lower base is shorter than the upper base in the vertical cross section (FIG. 18B). In this case, the bottom area of the columnar structure 118 is smaller than the area of the upper surface.
  • the vertical cross section of the columnar structure 118 is not necessarily an accurate polygon, and may have rounded corners as shown in FIG. Further, the side surface of the columnar structure 118 does not need to be configured only by a straight line, and may include a curved surface.
  • the columnar structure 118 may have a tapered shape in a direction parallel to the upper surface of the first substrate 102. That is, the inclination of the side surface of the columnar structure 118 with respect to the upper surface of the first substrate 102 continuously increases in the vertical section as the distance from the first substrate 102 increases, and continuously decreases as the upper surface is approached.
  • the shape of the structure 118 may be adjusted.
  • the side surface of the columnar structure 118 includes a plurality of inflection points in the vertical cross section.
  • the area of the upper surface is the area of the horizontal cross section 118c passing through a position of 95% of the entire height of the columnar structure 118. (Refer to FIG. 19B).
  • the height of the columnar structure 118 is a distance H from the highest position 118a to the bottom surface of the columnar structure 118, and the bottom surface 118b is the columnar structure 118 of the first wiring 110 or the first substrate. This is a surface in contact with 102 (an insulating film when an insulating film is formed over the first substrate 102).
  • electrical connection between the first wiring 110 and the second wiring 112 is performed through a flat surface included in these and a flat surface included in the conductive film 116. For this reason, it is possible to construct a highly reliable electrical connection.
  • a through hole is formed in the first substrate 102 (FIG. 20A).
  • the material used for the first substrate 102 include silicon oxide such as glass and quartz, semiconductors such as silicon, gallium arsenide, and gallium nitride, ceramics, and polymers.
  • the polymer include a polymer having polyimide, polyamide, polyester, and polycarbonate as a basic skeleton, an epoxy resin, a novolac resin, a phenol resin, and a benzocyclobutene resin.
  • the first substrate 102 may include a composite material of glass and resin. In this case, an epoxy resin or the like can be used as the resin.
  • the first substrate 102 may have flexibility.
  • the through hole may be formed by etching such as plasma etching or wet etching, laser irradiation, or mechanical processing such as sand blasting or ultrasonic drilling.
  • etching such as plasma etching or wet etching, laser irradiation, or mechanical processing such as sand blasting or ultrasonic drilling.
  • the number and size of the through holes are arbitrarily determined according to functions required for the wiring board 100.
  • the first through electrode 120 is formed.
  • the first through electrode 120 can be formed by various methods, and a typical method is a plating method.
  • the seed layer 134 is formed so as to cover the side wall of the through hole and the upper and lower surfaces of the first substrate 102 (FIG. 20B).
  • the seed layer 134 contains titanium or copper, and can be formed by sputtering, chemical vapor deposition (CVD), electroless plating, vapor deposition, or the like. In particular, by applying a sputtering method, the seed layer 134 is efficiently formed.
  • an insulating film containing an organic compound such as polyimide or polyamide or an inorganic compound such as silicon oxide or silicon nitride is formed on the side wall of the through hole or both surfaces of the first substrate 102.
  • an insulating film containing an organic compound such as polyimide or polyamide or an inorganic compound such as silicon oxide or silicon nitride is formed on the side wall of the through hole or both surfaces of the first substrate 102.
  • a plurality of layers may be formed.
  • a resist mask 136 for protecting a region where the first through electrode 120 is not formed is formed on the upper surface and the lower surface of the first substrate 102 (FIG. 20C).
  • the resist mask 136 may be formed by applying and curing a liquid resist.
  • a film-like resist is attached to the upper surface and the lower surface, and then It can form efficiently by performing exposure and image development.
  • power is supplied to the seed layer 134 to perform electrolytic plating, and a metal film is formed over the seed layer 134 that is not covered with the resist mask 136, so that the first through electrode 120 is formed (FIG. 20D).
  • the resist mask 136 is removed (FIG. 20D), and the seed layer 134 exposed from the first through electrode 120 is removed by etching (FIG. 20E).
  • an etchant containing an acid such as sulfuric acid can be used.
  • planarization treatment may be performed on the upper surface and the lower surface of the first substrate 102.
  • the planarization treatment can be performed using, for example, physical polishing with a diamond tool or chemical mechanical polishing (CMP) using a polishing liquid in which an abrasive is dispersed.
  • the seed layer 134 is penetrated.
  • a resist mask 136 is formed so as to cover the sidewall of the hole and the upper and lower surfaces of the first substrate 102 (FIG. 21A), and then protect the region where the first through electrode 120 is not formed. It is formed on the upper surface and lower surface of the substrate 102 (FIG. 21B).
  • power is supplied to the seed layer 134 and electrolytic plating is performed to form a metal film 135 on the seed layer 134 that is not covered with the resist mask 136, and then the resist mask 136 is removed and the seed layer exposed from the metal film 135 is formed.
  • the first through electrode 120 including a stack of the seed layer 134 and the metal film 135 is formed (FIG. 21C).
  • the first through electrode 120 can function as the first wiring 110.
  • the above-described polymer is applied or pasted to fill the through hole, whereby the filler 132 is disposed in the through hole (FIG. 21D).
  • the first wiring 110 and the fourth wiring 122 are formed above and below the first substrate 102 so as to be electrically connected to the first through electrode 120, respectively.
  • the first wiring 110 and the fourth wiring 122 can be formed by a CVD method, a sputtering method, an electroless plating method, an electrolytic plating method, or the like. There is no limitation on the formation order of the first wiring 110 and the fourth wiring 122.
  • the fourth wiring 122 may be formed after the first substrate 102 and the second substrate 104 are bonded to each other.
  • the columnar structure 118 is formed by applying photolithography (FIG. 22B).
  • the columnar structure 118 is formed by applying a wet film formation method such as a spin coating method, an ink jet method, or a dip coating method to the resin or the polymer raw material oligomer forming the columnar structure 118 or the precursor photoresist. Then, it can be formed by performing exposure through a photomask, development, and heat treatment.
  • the columnar structure 118 is formed by placing the oligomer or precursor on the first substrate 102 and then performing exposure, development, and heat treatment through a photomask. .
  • the conductive film 116 is formed (FIG. 22B).
  • the conductive film 116 is also formed by applying a CVD method, a sputtering method, a plating method, or the like.
  • the second substrate 104 is also formed with a through hole, a second through electrode 124 installed in the through hole, a second wiring 112, and a third wiring 126.
  • the second substrate 104 can also include a material that can be used for the first substrate 102. By imparting flexibility to the first substrate 102 and the second substrate 104, the deformable wiring substrate 100 can be formed. It is also possible to form.
  • the through hole of the second substrate 104, the second through electrode 124, the second wiring 112, and the third wiring 126 are the through hole provided in the first substrate 102, the first through electrode 120, the first wiring Since it can be formed by a method similar to that for the wiring 110, description of these forming methods is omitted.
  • the third wiring 126 may also be formed after the first substrate 102 and the second substrate 104 are bonded to each other.
  • the resin film 130 is formed on the conductive film 116 by coating or bonding, and the first wiring 110, the columnar structure 118, the conductive film 116, and the second wiring 112 are connected to the first substrate 102 and the first wiring 102.
  • the second substrate 104 is placed over the first substrate 102 so as to be sandwiched between the two substrates 104. At this time, pressure may be applied to the second substrate 104, the first substrate 102, or both so that the conductive film 116 and the second wiring 112 are in contact with each other.
  • the flatness of the second wiring 112 is reflected on the top surfaces of the columnar structure 118 and the conductive film 116 by pressing the second wiring 112 against the columnar structure 118. Therefore, a contact surface having a relatively large area is formed between the conductive film 116 and the second wiring 112, and as a result, highly reliable electrical connection is established.
  • the first substrate 102 and the second substrate 104 are fixed by curing the resin film 130 (FIG. 18A). Note that the bonding may be performed by applying the resin film 130 to the second wiring 112 and disposing the first substrate 102 thereon.
  • the columnar structure 118 can be formed by applying photolithography. Although details are omitted, the conductive film 116 is also formed using a general-purpose semiconductor process, that is, photolithography. Therefore, the wiring substrate 100 of this embodiment can be manufactured by a process widely used in a semiconductor process, and it is not necessary to use a relatively expensive anisotropic conductive film for forming the wiring substrate 100. In addition, by applying lithography, the columnar structure 118 and the conductive film 116 can be formed with high positional accuracy. For this reason, by implementing this embodiment, it becomes possible to provide a low-cost and highly reliable wiring structure and a wiring board having the wiring structure.
  • a display device will be described as a semiconductor device to which the wiring substrate 100 described in the first and second embodiments is applied. A description of a configuration similar to or similar to the configuration described in the first embodiment may be omitted.
  • display elements are classified into non-self light emitting display elements and self light emitting display elements.
  • Non-self-luminous display elements include liquid crystal elements, electrophoretic elements, display elements having MEMS (Micro Electro Mechanical Systems) elements, and the like.
  • the self-luminous display element includes an organic electroluminescent element in which an organic compound is responsible for light emission, and an inorganic electroluminescent element in which an inorganic semiconductor is responsible for light emission. The former is called OLED and the latter is called LED.
  • OLEDs and LEDs are collectively referred to as light emitting elements.
  • FIGS. 23A and 23B A schematic top view and bottom view of a display device 150 that is one embodiment of the present disclosure are shown in FIGS. 23A and 23B, respectively.
  • the display device 150 includes a first substrate 152 and a second substrate 154 provided on the first substrate 152.
  • the first substrate 152 and the second substrate 154 correspond to the first substrate 102 and the second substrate 104 of the wiring substrate 100, respectively.
  • the display device 150 is provided with a driver circuit (a scan line driver circuit 160 and a signal line driver circuit 162) under the first substrate 152.
  • a driver circuit a scan line driver circuit 160 and a signal line driver circuit 162
  • the display device 150 is provided with two scanning line side driving circuits 160 and one signal line side driving circuit 162, but the number and arrangement of these driving circuits are not limited.
  • these driver circuits may be directly formed on one surface (lower surface) of the first substrate 152, and an integrated circuit formed on a different substrate such as a semiconductor substrate is used as the driver circuit for the first substrate 152. It may be mounted below.
  • FIGS. 24A and 24B show a schematic top view and bottom view of an end portion of the display device 150, respectively.
  • FIG. 25 shows a schematic cross-sectional view of a part of one pixel 156 and the vicinity of the end of the display device 150.
  • Each pixel 156 is connected to various wirings, and FIG. 24A illustrates one wiring 170 of them and the pixel 156 connected thereto.
  • a plurality of pixels 156 are connected to the wiring 170 in the direction in which the wiring 170 extends.
  • the wiring 170 is electrically connected to a semiconductor element such as a transistor 180 or an LED 200 (see FIG. 25) provided in each pixel 156, and various signals (a gate signal, a reset signal, and the like) are connected to each pixel 156 through the wiring 170. To be supplied.
  • the wiring 170 is connected to the third wiring 126 in the vicinity of the second substrate 154.
  • the second substrate 154 is provided with a through hole 172, a second through electrode 124 disposed in the through hole 172, and a second wiring 112 provided on the lower surface of the second substrate 154.
  • the third wiring 126, the second through electrode 124, and the second wiring 112 correspond to the third wiring 126, the second through electrode 124, and the second wiring 112 of the wiring substrate 100, respectively. .
  • the first substrate 152 is also provided with a through hole 174, and the first through electrode 120 is formed in the through hole 174 (see FIG. 25).
  • the display device 150 is further disposed on the first substrate 152 and is electrically connected to the first through electrode 120.
  • a conductive film 116 is formed over the body 118.
  • the first wiring 110, the columnar structure 118, and the conductive film 116 also correspond to the first wiring 110, the columnar structure 118, and the conductive film 116 of the wiring board 100, respectively.
  • the fourth wiring 122 is disposed below the first substrate 152 and is electrically connected to the scanning line side driving circuit 160. Therefore, the scan line side driver circuit 160 includes the fourth wiring 122, the first through electrode 120, the first wiring 110, the conductive film 116, the second wiring 112, the second through electrode 124, and the third wiring 126. And the pixel 156 through the wiring 170. In other words, the display device 150 includes the wiring substrate 100 at the end of the substrate, whereby various signals supplied from the scanning line side driving circuit 160 are given to the pixels 156.
  • each pixel 156 is provided with an LED 200 and a transistor 180 connected thereto.
  • the structure of the pixel 156 is not limited to this.
  • a plurality of transistors and capacitors may be provided for each pixel 156.
  • the transistor 180 includes, for example, a gate electrode 182, a gate insulating film 184 over the gate electrode 182, a semiconductor film 186 overlapping with the gate electrode 182 through the gate insulating film 184, and a source / drain electrode electrically connected to the semiconductor film 186. 188, 190, etc.
  • the LED 200 includes, for example, connection pads 202 and 203, a first electrode 206 electrically connected to the connection pad 202, a stacked semiconductor film 208 positioned on the first electrode 206, and a second on the semiconductor film 208. Electrode 210, and lead wiring 204 for electrically connecting second electrode 210 and connection pad 203, and the like.
  • the display device 150 is further provided with a counter substrate 214 with a sealing film 212 interposed therebetween, so that the transistor 180 and the LED 200 are protected.
  • the wiring board 100 can be applied to the connection between the signal line side driving circuit 162 and the pixel 156 as well as the scanning line side driving circuit 160, whereby a video signal or an initialization signal can be applied.
  • a video signal or an initialization signal can be applied.
  • Such as various signals and the power used for light emission of the LED 200 are supplied to each pixel 156 via the wiring substrate 100.
  • the structure of the display device 150 is not limited to the structure described above.
  • all or part of the transistors provided in each pixel 156 are provided on the lower surface of the second substrate 154 so as to be sandwiched between the first substrate 152 and the second substrate 154.
  • the transistor 180 connected to the LED 200 can be provided under the second substrate 154. More specifically, the transistor 180 may be provided so as to be positioned below the second substrate 154 and closer to the second substrate 154 than the first substrate 152. In this case, the transistor 180 is located on the resin film 130, and is provided by the second through electrode 124 and the land 128 that is provided below the second through electrode 124 and is electrically connected to the second through electrode 124.
  • the transistor 180 and the LED 200 are electrically connected.
  • a wiring 170 connected to the pixel 156 is provided below the second substrate 154 and functions as the second wiring 112 of the wiring substrate 100.
  • the transistor 180 may be disposed over the first substrate 152 so as to be positioned closer to the first substrate 152 than the second substrate 154.
  • the resin film 130 is located on the transistor 180, and the second substrate 154 is provided thereover.
  • the structure of the wiring substrate 100 can be applied for electrical connection between the transistor 180 and the LED 200. That is, the columnar structure 118 can be formed on the first substrate 152, and the source / drain electrode 188 can be provided thereon as a conductive film of the wiring substrate 100.
  • a second wiring 112 is provided under the second substrate 154, and the transistor 180 is connected to the LED 200 through the conductive film 116 functioning as the source / drain electrode 188, the second wiring 112, and the second through electrode 124. Electrically connected.
  • the semiconductor film 186 or the other source / drain electrode 190 can be regarded as the first wiring 110 of the wiring substrate 100.
  • the transistor 180 is further connected to a wiring 170 provided on the first substrate 152, and the wiring 170 is connected to the scanning line side driving circuit 160 through the first through electrode 120 formed on the first substrate 152.
  • the source / drain electrode 188 also serves as the conductive film 116.
  • the conductive film 116 in contact with the source / drain electrode 188 is provided on the source / drain electrode 188 with a columnar structure. You may provide so that 118 may be covered.
  • the source / drain electrode 188 can be regarded as the first wiring 110 of the wiring substrate 100.
  • the transistor 180 may be formed under the first substrate 152.
  • the structure of the wiring substrate 100 is used for electrical connection between the wirings provided on the first substrate 152 and the second substrate 154. That is, the first wiring 110 provided as the first through electrode 120 in the through hole of the first substrate 152, the columnar structure 118 on the first wiring 110, the conductive film 116 on the columnar structure 118, and the conductive A second wiring 112 located on the film 116 and electrically connected to the conductive film 116 corresponds to the wiring substrate 100, and the LED 200 is electrically connected to the transistor 180 through this structure.
  • the display device 150 may further include a protective film 131 for protecting the transistor 180 as an arbitrary structure.
  • the protective film 131 may be provided so as to cover at least the transistor 180.
  • the display device 150 described above is a so-called micro LED display device, but the display element applicable to the display device 150 is not limited to the LED, and for example, an OLED 220 can be applied as shown in FIG.
  • a planarization film 216 is provided on the transistor 180, and the OLED 220 is disposed thereon.
  • the OLED 220 includes a first electrode 222, a second electrode 226 on the first electrode 222, and an electroluminescent layer (hereinafter referred to as an EL layer) 224 provided between the first electrode 222 and the second electrode 226. Consists of. At least one of the first electrode 222 and the second electrode 226 is configured to transmit visible light.
  • the first electrode 222 is connected to the source / drain electrode 190 through an opening provided in the planarization film 216, and unevenness caused by the opening is covered with a partition wall 218.
  • the EL layer 224 is formed by appropriately combining various functional layers such as a carrier injection layer, a carrier transport layer, a light emitting layer, and a carrier blocking layer.
  • a liquid crystal element can be used as a display element.
  • the liquid crystal element 230 can be formed on the planarization film 216.
  • the liquid crystal element includes a first electrode 232, a first alignment film 234 that covers the first electrode 232, a liquid crystal layer 236 on the first alignment film 234, a second alignment film 238 on the liquid crystal layer 236, and a second A second electrode 240 on the alignment film 238 is provided as a basic configuration.
  • a color filter 244, a light shielding film 246, and an overcoat 242 covering these may be provided between the liquid crystal element 230 and the counter substrate 214.
  • the liquid crystal element 230 is a so-called TN (Twisted Nematic) liquid crystal element or a VA (Virtual Alignment) liquid crystal element, but an IPS (In-Plane Switching) liquid crystal element may be applied to the display device 150. Is possible.
  • TN Transmission Nematic
  • VA Virtual Alignment
  • IPS In-Plane Switching
  • the display device 150 includes the wiring substrate 100.
  • application of the wiring substrate 100 can establish highly reliable electrical connection between the wirings provided on the first substrate 152 and the second substrate 104.
  • the reliability of the display device 150 can be improved.
  • it is not necessary to use an anisotropic conductive film in the wiring substrate 100 it is possible to provide a low-cost and highly reliable display device by applying this embodiment.
  • a display device 250 having a structure different from that of the display device 150 will be described.
  • description is given using an example in which the OLED 220 is provided in each pixel 156 as a display element.
  • the applicable display element is not limited to the OLED 220, and various self-luminous display elements and non-self-luminous display elements. Can be applied. A description of a configuration similar to or similar to the configuration described in the first to third embodiments may be omitted.
  • FIG. 31 is a schematic top view of the display device 250
  • FIG. 32 is a schematic cross-sectional view of the pixel 156 and the vicinity of the ends of the display device 250.
  • a display element is provided on the first substrate 152
  • a substrate corresponding to the second substrate 154 of the display device 150 is a flexible printed circuit board ( Hereinafter, the point of being FPC) 254 is mentioned.
  • the display device 250 includes a first substrate 152, and a plurality of pixels 156 and a scanning line side driving circuit 160 for driving the pixels 156 are formed on the first substrate 152.
  • the scanning line side driving circuit 160 is disposed outside the display area 158.
  • a wiring 256 (not shown in FIG. 31) formed from a patterned conductive film extends from the display region 158 and the scan line side driver circuit 160 to one side of the first substrate 152, and the wiring 256 is connected to the first substrate 152.
  • a terminal 252 is formed by being exposed near the end. In the terminal 252, at least one columnar structure 118 is formed over the wiring 256, and a conductive film 116 that covers at least part of the side surface and the upper surface of the columnar structure 118 is provided.
  • An FPC 254 is provided so as to cover the terminal 252.
  • the signal line side driver circuit 162 is mounted on the FPC 254, but the signal line side driver circuit 162 may be directly formed on the first substrate 152.
  • FPC wiring 258 is formed in the FPC 254, and the FPC wiring 258 is electrically connected to the conductive film 116.
  • video signals and power supplied from an external circuit are applied to the display area 158, the scanning line side driving circuit 160, and the signal line side driving circuit 162 via the FPC wiring 258, the conductive film 116, and the wiring 256. It is done.
  • Each pixel 156 is controlled based on these signals and the power supply, so that an image can be displayed on the display area 158.
  • the first substrate 152 and the FPC 254 correspond to the first substrate 102 and the second substrate of the wiring substrate 100, respectively, and the wiring 256 and the FPC wiring 258 respectively correspond to the first wiring of the wiring substrate 100.
  • 110 corresponds to the second wiring 112.
  • the columnar structure 118 and the conductive film 116 correspond to the columnar structure 118 and the conductive film 116 of the wiring substrate 100, respectively.
  • the wiring substrate 100 is formed in a region where the terminal 252 is provided, and the first substrate 152 and the FPC 254 are electrically connected using the wiring substrate 100.
  • an anisotropic conductive film is used for connection between the display device and the FPC.
  • the anisotropic conductive film is relatively expensive, and the reliability of electrical connection is high. Sex is not necessarily high.
  • the wiring board 100 described in the first embodiment is applied to the connection between the display device 250 and the FPC 254 of the present embodiment. Therefore, the reliability of the electrical connection between them is high and does not cause an increase in cost. For this reason, by applying this embodiment, a highly reliable display device can be manufactured at low cost.
  • the aspect regarding the wiring board in this indication and its manufacturing method includes the following indications.
  • the columnar structure overlaps the first wiring.
  • the conductive film covers the top surface and the side surface of the columnar structure. Or 2. Wiring board as described in. 4).
  • the resin film further comprising a resin film in contact with the conductive film between the first substrate and the second substrate.
  • Wiring board as described in. 5. The above 1. having a plurality of the columnar structures. Wiring board as described in. 6). 4. At least one of the plurality of columnar structures is disposed away from the conductive film. Wiring board as described in. 7).
  • the first substrate has a through hole penetrating the first substrate, and the first wiring covers at least a part of a side wall of the through hole. Wiring board as described in. 8). 6.
  • the columnar structure overlaps with the filler.
  • Wiring board as described in. 10. 1. The above-described 1., further comprising a first through electrode penetrating the first substrate and electrically connected to the first wiring. Wiring board as described in.
  • the above-mentioned 1. further comprising a second through electrode penetrating the second substrate and electrically connected to the second wiring.
  • Wiring board as described in. 12 1.
  • the bottom area of the columnar structure is larger than the area of the upper surface of the columnar structure.
  • Wiring board as described in. 13 The columnar structure has a tapered shape in a direction parallel to the upper surface of the first substrate.
  • Wiring board as described in. 14 The display device further includes a display element selected from a liquid crystal element and a light emitting element on the second substrate.
  • Wiring board as described in. 15. 15.
  • Wiring board as described in. 16. 15.
  • a method for manufacturing a wiring board comprising: forming a second wiring thereon; and bonding the first substrate and the second substrate so that the conductive film and the second wiring are in direct contact with each other.
  • the columnar structure is formed so as to cover the first wiring.
  • the conductive film is formed so as to cover an upper surface and a side surface of the columnar structure;
  • the first substrate and the second substrate are bonded together using a resin film.
  • a plurality of the columnar structures are formed.
  • the above-mentioned 24., wherein the conductive film is formed so as to be disposed apart from at least one columnar structure.
  • the method further includes forming a through-hole penetrating the first substrate in the first substrate, wherein the first wiring is at least one of side walls of the through-hole. 20.
  • the above 20 The method described in 1. 27. 26. The method according to 26., further comprising forming a filler in the through hole after forming the first wiring and before forming the columnar structure. The method described in 1. 28. The columnar structure is formed so as to overlap the filler. The method described in 1. 29. Forming a first through electrode penetrating the first substrate before forming the first wiring, wherein the first wiring is electrically connected to the first through electrode. 20. The above 20. The method described in 1. 30. Forming a second through electrode penetrating the second substrate before forming the second wiring, and the second wiring is electrically connected to the second through electrode. 20. The above 20. The method described in 1.
  • the columnar structure is formed so that the bottom area is larger than the area of the upper surface.
  • the method described in 1. 32. The columnar structure is formed to have a tapered shape in a direction parallel to the upper surface of the first substrate.
  • the method described in 1. 33. 20.
  • the method according to 20. further comprising forming a display element selected from a liquid crystal element and a light emitting element on the second substrate.
  • the method according to claim 33 further comprising forming a transistor electrically connected to the display element.
  • the transistor is formed on the second substrate;
  • the method described in 1. 36. 34. The transistor according to 34., wherein the transistor is provided below the second substrate and is located closer to the second substrate as compared to the first substrate.
  • the columnar structure overlaps the first wiring, 39.
  • the conductive film covers the upper surface and the side surface of the columnar structure.
  • the display device described in 1. 42. 39. A resin film in contact with the conductive film between the first substrate and the second substrate.
  • the above-mentioned 39. having a plurality of the columnar structures.
  • the display device described in 1. 44. 43. At least one of the plurality of columnar structures is disposed away from the conductive film.
  • the first substrate has a through hole penetrating the first substrate, and the first wiring covers at least a part of a side wall of the through hole.
  • the above-mentioned 45. further comprising a filler in the through hole, wherein a part of the first wiring is located between the filler and the side wall.
  • the display device described in 1. 47. 46. The above 46.
  • the columnar structure overlaps with the filler.
  • the display device described in 1. 48. 39. The 39. further comprising a first through electrode penetrating the first substrate and electrically connected to the first wiring.
  • the above-mentioned 39. further comprising a second through electrode penetrating the second substrate and electrically connected to the second wiring.
  • the bottom area of the columnar structure is larger than the area of the top surface of the columnar structure.
  • the columnar structure has a taper shape in a direction parallel to the upper surface of the first substrate.
  • the transistor according to 52., wherein the transistor is provided below the second substrate and is located closer to the second substrate than the first substrate.
  • the above-mentioned 52. wherein the transistor is provided on the first substrate and is located closer to the first substrate than the second substrate.
  • 1 wiring board for display device, 10: first member, 11: first base material, 11h: through-hole, 12: semiconductor element having light emitting function, 12R: red semiconductor element, 12G: green semiconductor element, 12B: blue Semiconductor element, 13: first wiring, 14: second wiring, 15: third wiring, 20: second member, 21: second substrate, 22: drive element, 23: fourth wiring, 31, 35: connection Member: 32: resin film, 101: display device, 100: wiring substrate, 102: first substrate, 104: second substrate, 110: first wiring, 112: second wiring, 116: conductive film, 118: Columnar structure 118-1: Columnar structure 118-2: Columnar structure 120: First through electrode 122: Fourth wiring 124: Second through electrode 126: Third Wiring, 128: Land, 130: Resin film, 131: Protective film, 32: Filler, 134: Seed layer, 135: Metal film, 136: Resist mask, 150: Display device, 152: First substrate, 154: Second substrate, 156: Pixel, 158

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本開示は、第1基材(11)、上記第1基材の一方の面側に実装され、発光機能を有する半導体素子(12)、および上記半導体素子に電気的に接続され、上記第1基材の表裏を電気的に接続する配線(13)を有する第1部材(10)と、上記第1基材の上記半導体素子側の面とは反対の面側に対向して配置された第2基材(21)、および上記第2基材の上記第1基材側の面側に配置され、上記半導体素子を駆動する機能を有し、上記配線に電気的に接続された駆動素子(22)を有する第2部材(20)と、を備える、表示装置用配線基板(1)を提供する。

Description

表示装置用配線基板および表示装置、ならびに配線基板とその作製方法
 本開示は、表示装置用配線基板および表示装置、ならびに例えば複数の配線基板を接続するための配線基板、およびこの配線基板を作製するための方法に関する。
 例えば発光ダイオード素子等の発光機能を有する半導体素子を画素として用いた表示装置は、自己発色によりに視認性が高いこと、高輝度および高コントラストを実現しやすいこと、全固体ディスプレイであるため耐衝撃性が高いこと、応答速度が速いこと、視野角が大きいこと等の利点を有し、種々の用途への適用が期待されている。なお、以下の説明において発光ダイオードをLEDと称する場合がある。
 LED表示装置としては、例えば、配線基板上に複数のLED素子をマトリックス状に配列した構成が知られている(特許文献1参照)。
特許3342322号 特開2017-139489号公報
 LED表示装置において、各LED素子の発光制御を可能とする駆動素子としては、例えばICが用いられている。ここで、表示装置においては、高精細化に伴い画素密度を高くすることが求められている。しかし、LED表示装置では、画素密度を高くするためにLED素子の数を増やすと、駆動素子の数も増えることになるため、コストが高くなるという問題があった。
 そこで、コストを削減するために、駆動素子として、薄膜トランジスタを利用することが検討されている。なお、以下の説明において薄膜トランジスタをTFTと称する場合がある。
 また、LED表示装置においては、配線基板を構成する支持基板としてガラスエポキシ基板が汎用されている。しかし、ガラスエポキシ基板は耐熱性が低いことから、支持基板上にTFTを形成する際の加熱工程に耐えられないという問題がある。
 そこで、耐熱性の観点から、配線基板を構成する支持基板としてガラス基板を利用することが検討されている。しかし、ガラス基板を用いた場合であっても、下記のような問題が起こる。
 すなわち、LED表示装置においては、貫通電極を有する配線基板が多く用いられている。この場合、配線基板を構成する支持基板および貫通電極の熱膨張係数が異なるため、貫通電極を有する支持基板上にTFTを形成する際の加熱工程により、支持基板にクラックが生じたり、接続不良が発生したりするという問題がある。また、支持基板上にTFTを形成した後、支持基板に貫通孔を形成して貫通電極を形成することもできるが、この場合には、貫通孔を形成する際の熱や薬液により、あるいは貫通電極を形成する際のめっき工程により、TFTがダメージを受けてしまい、正常に動作しなくなるという問題がある。さらに、中空部が存在する貫通電極、いわゆるコンフォーマルビアの場合、貫通電極を有する支持基板上にTFTを形成する際には、貫通孔が存在する支持基板を用いることになるため、TFTを形成するのが困難である。さらに、支持基板上にLED素子およびTFTを形成する場合、製造コストが高くなるという問題もある。
 このように、配線基板において、支持基板上にLED素子およびTFTを配置するのは困難である。
 本開示は、上記問題点に鑑みてなされた発明であり、発光機能を有する半導体素子を画素として用いる表示装置に好適な表示装置用配線基板および表示装置を提供することを主目的とする。
 上記目的を達成するために、本開示は、第1基材、上記第1基材の一方の面側に実装され、発光機能を有する半導体素子、および上記半導体素子に電気的に接続され、上記第1基材の表裏を電気的に接続する配線を有する第1部材と、上記第1基材の上記半導体素子側の面とは反対の面側に対向して配置された第2基材、および上記第2基材の上記第1基材側の面側に配置され、上記半導体素子を駆動する機能を有し、上記配線に電気的に接続された駆動素子を有する第2部材と、を備える、表示装置用配線基板を提供する。
 本開示によれば、発光機能を有する半導体素子を有する第1部材と、駆動素子を有する第2部材とが別々であり、発光機能を有する半導体素子および駆動素子が、第1基材の表裏を電気的に接続する配線によって電気的に接続されている。そのため、上述したような貫通電極を有する支持基板上に駆動素子を形成する際の不具合や、駆動素子を有する支持基板に貫通孔および貫通電極を形成する際の不具合を解消することができる。また、発光機能を有する半導体素子を有する第1部材と、駆動素子を有する第2部材とを別々に作製するため、安価な表示装置用配線基板とすることができる。したがって、本開示の表示装置用配線基板は、発光機能を有する半導体素子を画素として用いる表示装置に好適である。
 本開示の表示装置用配線基板は、上記第1部材および上記第2部材の間に配置され、異方導電性を有し、上記配線および上記駆動素子を電気的に接続する接続部材を有することが好ましい。異方導電性を有する接続部材を用いることにより、発光機能を有する半導体素子および駆動素子の電気的接続を容易に行うことができる。また、発光機能を有する半導体素子および駆動素子の電気的接続、ならびに第1部材および第2部材の接着を同時に行うことができる。さらに、画素密度を高くするために、発光機能を有する半導体素子が高密度に配置されている場合であっても、短絡を起こすことなく電気的接続を行うことができる。
 本開示においては、上記駆動素子が、薄膜トランジスタであることが好ましい。安価な表示装置用配線基板とすることができるからである。
 本開示においては、上記第1基材が貫通孔を有し、上記配線が上記貫通孔に配置された貫通配線であることが好ましい。発光機能を有する半導体素子の実装密度を高くすることができるため、画素密度を高め、高精細化が可能となるからである。
 本開示においては、上記第1基材が上記第2基材よりも小さいことが好ましい。第1基材が第2基材よりも小さいことにより、第2部材において、第2基材の駆動素子側の面側に、外部回路との接続のための引出配線等を配置することができるからである。
 本開示においては、1つの上記第2部材に対して、複数の上記第1部材が配列していることが好ましい。発光機能を有する半導体素子の実装密度を高くする場合において、発光機能を有する半導体素子に不良があった場合には、第1部材を複数にすることにより、損失を少なくすることができるからである。
 本開示は、上述の表示装置用配線基板を有する、表示装置を提供する。
 本開示によれば、上述の表示装置用配線基板を有するため、安価な表示装置とすることができる。
 本開示においては、複数の上記表示装置用配線基板が配列されていることが好ましい。表示装置を大型化することができるからである。
 本開示の表示装置用配線基板は、発光機能を有する半導体素子を画素として用いる表示装置に好適である。
本開示の表示装置用配線基板を例示する概略断面図である。 本開示の表示装置用配線基板を例示する概略断面図である。 本開示の表示装置用配線基板を例示する概略断面図である。 本開示の表示装置用配線基板を例示する概略断面図である。 本開示の表示装置用配線基板を例示する概略断面図である。 本開示の表示装置用配線基板を例示する概略断面図である。 本開示の表示装置用配線基板を例示する概略断面図である。 本開示の表示装置用配線基板を例示する概略断面図である。 本開示の表示装置用配線基板を例示する概略断面図である。 本開示の表示装置用配線基板を例示する概略断面図である。 本開示の表示装置用配線基板の製造方法を例示する工程図である。 本開示の表示装置を例示する概略断面図である。 本開示の表示装置を例示する概略断面図である。 実施形態の一つに係る配線基板の模式的断面図である。 実施形態の一つに係る配線基板の模式的断面図である。 実施形態の一つに係る配線基板の模式的断面図である。 実施形態の一つに係る配線基板の模式的断面図である。 実施形態の一つに係る配線基板の模式的断面図である。 実施形態の一つに係る配線基板の模式的断面図である。 実施形態の一つに係る配線基板の作製方法を説明する模式的断面図である。 実施形態の一つに係る配線基板の作製方法を説明する模式的断面図である。 実施形態の一つに係る配線基板の作製方法を説明する模式的断面図である。 実施形態の一つに係る表示装置の模式的上面図と底面図である。 実施形態の一つに係る表示装置の模式的上面図と底面図である。 実施形態の一つに係る表示装置の模式的断面図である。 実施形態の一つに係る表示装置の模式的断面図である。 実施形態の一つに係る表示装置の模式的断面図である。 実施形態の一つに係る表示装置の模式的断面図である。 実施形態の一つに係る表示装置の模式的断面図である。 実施形態の一つに係る表示装置の模式的断面図である。 実施形態の一つに係る表示装置の模式的上面図である。 実施形態の一つに係る表示装置の模式的断面図である。
 下記に、図面等を参照しながら本開示の実施の形態を説明する。ただし、本開示は多くの異なる態様で実施することが可能であり、下記に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の形態に比べ、各部の幅、厚さ、形状等について模式的に表わされる場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
 本明細書において、ある部材の上に他の部材を配置する態様を表現するにあたり、単に「上に」、あるいは「下」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。
 本開示は、表示装置用配線基板および表示装置に関する態様と、配線基板とその作製方法に関する態様とがある。以下、それぞれについて説明する。
I.表示装置用配線基板および表示装置に関する態様
A.表示装置用配線基板
 本開示の表示措置用配線基板は、第1基材、上記第1基材の一方の面側に実装され、発光機能を有する半導体素子、および上記半導体素子に電気的に接続され、上記第1基材の表裏を電気的に接続する配線を有する第1部材と、上記第1基材の上記半導体素子側の面とは反対の面側に対向して配置された第2基材、および上記第2基材の上記第1基材側の面側に配置され、上記半導体素子を駆動する機能を有し、上記配線に電気的に接続された駆動素子を有する第2部材と、を備える。
 なお、本明細書において、第1部材において、第1基材の表裏を電気的に接続する配線を第1配線と称する場合がある。また、第1部材において、第1基材の発光機能を有する半導体素子側の面側に配置される配線を第2配線と称し、第1基材の発光機能を有する半導体素子側の面とは反対の面側に配置される配線を第3配線と称する場合がある。また、第2部材において、第2基材の駆動素子側の面側に配置される配線を第4配線と称する場合がある。
 本開示の表示装置用配線基板について、図を用いて説明する。図1~図3はそれぞれ本開示の表示装置用配線基板の一例を示す概略断面図である。図1~図3に示すように、本開示の表示装置用配線基板1は、第1基材11、第1基材11の一方の面側に実装され、発光機能を有する半導体素子12、および半導体素子12に電気的に接続され、第1基材11の表裏を電気的に接続する第1配線13を有する第1部材10と、第1基材11の半導体素子12側の面とは反対の面側に対向して配置された第2基材21、および第2基材21の第1基材11側の面側に配置され、半導体素子12を駆動する機能を有し、第1配線13に電気的に接続された駆動素子22を有する第2部材20と、を備える。
 本開示においては、図1および図2に示すように、第1基材11が貫通孔11hを有し、第1配線13が貫通孔11hに配置された貫通配線であってもよく、図3に示すように、第1配線13が第1基材11の側面に配置されていてもよい。また、第1配線13が貫通配線である場合、第1配線13は、図1に示すように、貫通孔11hを充填する貫通配線、いわゆるフィルドビアであってもよく、図2に示すように、貫通孔11hの側壁のみに配置された貫通配線、いわゆるコンフォーマルビアであってもよい。
 本開示の表示装置用配線基板1は、図1~図3に示すように、第1部材10および第2部材20の間に配置され、第1配線13および駆動素子22を電気的に接続する接続部材31を有することができる。図1および図2に示す例においては、接続部材31は、異方導電性を有する接続部材である。
 第1部材10において、半導体素子12は、図1~図3に示すように、例えば、赤色半導体素子12R、緑色半導体素子12Gおよび青色半導体素子12Bを有することができる。
 第1部材10は、図1~図3に示すように、第1基材11の一方の面側に配置され、半導体素子12および第1配線13を電気的に接続する第2配線14を有していてもよく、また、第1基材11の半導体素子12側の面とは反対の面側に配置され、第1配線13および接続部材31を電気的に接続する第3配線15を有していてもよい。
 第2部材20は、図1~図3に示すように、第2基材21の駆動素子22側の面側に配置され、駆動素子22および接続部材31を電気的に接続する第4配線23を有していてもよい。
 本開示の表示装置用配線基板1は、図1~図3に示すように、第1部材10および第2部材20の間に配置され、接続部材31以外の部分に配置された樹脂膜32を有していてもよい。
 本開示によれば、発光機能を有する半導体素子を有する第1部材と、駆動素子を有する第2部材とが別々であり、発光機能を有する半導体素子および駆動素子が、第1基材の表裏を電気的に接続する配線によって電気的に接続されている。そのため、上述したような貫通電極を有する支持基板上に駆動素子を形成する際の不具合や、駆動素子を有する支持基板に貫通孔および貫通電極を形成する際の不具合を解消することができる。また、発光機能を有する半導体素子を有する第1部材と、駆動素子を有する第2部材とを別々に作製するため、安価な表示装置用配線基板とすることができる。さらに、第2部材としては、駆動素子を有する基板として一般的に用いられているものを使用することもできる。したがって、本開示の表示装置用配線基板は、発光機能を有する半導体素子を画素として用いる表示装置に好適である。
 以下、本開示の表示装置用配線基板について構成ごとに説明する。
1.第1部材
 本開示における第1部材は、第1基材と、上記第1基材の一方の面側に実装され、発光機能を有する半導体素子と、上記半導体素子に電気的に接続され、上記第1基材の表裏を電気的に接続する第1配線とを有する。
 以下、本開示における第1部材の各構成について説明する。
(1)発光機能を有する半導体素子
 本開示における発光機能を有する半導体素子は、第1基材の一方の面側に実装され、発光機能を有する部材である。
 半導体素子としては、発光機能を有する半導体素子であれば特に限定されないが、LED素子であることが好ましい。
 本開示におけるLED素子は、通常、赤色LED素子、緑色LED素子および青色LED素子の3色のLED素子を有する。3色のLED素子は、個々のLED素子がそれぞれ等間隔に配列されていてもよい。また、3色のLED素子は、1つのチップに集積されていてもよい。この場合、第1部材においては、通常、個々のチップがそれぞれ等間隔に配列される。
 第1部材においては、通常、上記3色のLED素子が1つの発光ユニットとして用いられる。例えば、個々のLED素子がそれぞれ等間隔に配列されている場合、3色のLED素子が1つの発光ユニットとして用いられる。また、3色のLED素子が1つのチップに集積されている場合、1つのチップが1つの発光ユニットとして用いられる。発光ユニットは、本開示の表示装置用配線基板において画素として機能し得る領域を指す。
 また、LED素子は、マイクロサイズであることが好ましく、例えば、10μm角以上100μm角以下のサイズを有していてもよく、50μm角以上100μm角以下のサイズを有していてもよい。
 また、発光ユニットのピッチは、例えば、0.1mm以上2.5mm以下であってもよい。なお、発光ユニットのピッチは、通常、隣接する発光ユニットにおいて、一方の発光ユニットの中心から他方の発光ユニットの中心までの間の距離をいう。
 本開示におけるLED素子については、一般的なLED素子を用いることができるため、ここでの説明は省略する。
 また、LED素子の実装方法としては、一般的なLED素子の実装方法を適用することができる。
(2)第1配線
 本開示における第1配線は、上記半導体素子に電気的に接続され、上記第1基材の表裏を電気的に接続する、導電性を有する部材である。
 第1配線としては、第1基材の表裏を電気的に接続することができる配線であればよく、その形態としては特に限定されない。第1配線の形態としては、例えば、図1および図2に示すように、第1基材11が貫通孔11hを有し、第1配線13が貫通孔11hに配置された貫通配線であってもよく、図3に示すように、第1配線3が第1基材11の側面に配置されていてもよい。また、第1配線が貫通配線である場合、例えば、図1に示すように、第1配線13は貫通孔11hを充填する貫通配線、いわゆるフィルドビアであってもよく、図2に示すように、第1配線13は貫通孔11hの側壁のみに配置された貫通配線、いわゆるコンフォーマルビアであってもよい。また、第1配線がコンフォーマルビアである場合、例えば、図2に示すように、貫通孔11h内に中空部が配置されていてもよく、図4に示すように、貫通孔11h内が樹脂部16で充填されていてもよい。
 第1配線がコンフォーマルビアである場合において、例えば図2に示すように、貫通孔11h内に中空部が配置されている場合、第1配線13は、第2配線14および第3配線15と一体として形成することができる。
 中でも、第1配線は、第1基材の貫通孔に配置された貫通配線であることが好ましい。発光機能を有する半導体素子の実装密度を高くすることができるため、画素密度を高め、高精細化が可能となるからである。
 第1配線の材料としては、導電性を有する材料であれば特に限定されず、一般的な配線に用いられる導電性材料を使用することができ、第1配線の形態や形成方法等に応じて適宜選択される。
 例えば、第1配線が貫通配線である場合、第1配線の材料としては、具体的には、銅、金、銀、白金、ロジウム、スズ、アルミニウム、ニッケル、クロム等の金属、またはこれらの金属を含む合金等を挙げることができる。
 上記の場合、第1配線は、単層であってもよく、複数の層が積層された多層であってもよい。例えば、第1配線は、貫通孔の側壁に配置されたシード層と、シード層の貫通孔の側壁側とは反対側の面に配置されためっき層とを有していてもよい。シード層の材料としては、一般的なめっき法におけるシード層に用いられる材料から適宜選択することができる。シード層の材料は、第1基材に対して密着性を有する導電性材料であることが好ましく、例えば、チタン、モリブデン、タングステン、タンタル、ニッケル、クロム、アルミニウム、これらの化合物、これらの合金等を挙げることができる。めっき層が銅を含む場合、シード層の材料は、銅が第1基材の内部に拡散するのを抑制することができる材料であることが好ましく、例えば、窒化チタン、窒化モリブデン、窒化タンタル等を挙げることができる。めっき層の材料としては、シード層に対して密着性を有する導電性材料であることが好ましく、例えば、上述した第1配線の材料を挙げることができる。
 また、第1配線が第1基材の側面に配置されている場合、第1配線の材料としては、例えば、銅、金、銀、ニッケル、クロム、チタン、アルミニウム等の金属、これらの金属を含む合金、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)等の導電性酸化物等を挙げることができる。中でも、第1配線の材料は、銅、金、銀、ニッケルであることが好ましく、銅であることがより好ましい。めっき法を用いて第1配線を形成することができるため、簡便な方法で第1配線を形成することができるからである。
 上記の場合、第1配線は、単層であってもよく、複数の層が積層された多層であってもよい。例えば、第1配線は、第1基材の側面に配置されたシード層と、シード層の第1基材側とは反対側の面に配置されためっき層とを有していてもよい。シード層の材料およびめっき層の材料としては、上述した通りである。
 また、第1配線がコンフォーマルビアである場合において、貫通孔内が樹脂部で充填されている場合、樹脂部の材料としては、例えば、エポキシ樹脂、アクリル樹脂、ポリイミド、ポリアミド、ポリエステル等を挙げることができる。
 第1配線の形成方法としては、一般的な配線の形成方法を用いることができ、第1配線の形態等に応じて適宜選択される。第1配線の形成方法としては、例えば、蒸着法やスパッタリング法等のPVD法、CVD法、めっき法等が挙げられる。
(3)第1基材
 本開示における第1基材は、上記半導体素子が実装される部材であり、上記半導体素子を支持する部材である。
 第1基材の材質としては、一般的な表示装置に用いられる材質であれば特に限定されないが、半導体素子が実装されることから、第1基材は平坦性を有することが好ましい。中でも、第1基材は、半導体素子を実装する際の加熱工程、例えばリフロー工程に対して耐熱性を有することが好ましい。このような第1基材としては、例えば、ガラス基材、ポリイミド基材等を挙げることができる。なお、ポリイミド基材の場合、ガラス基板等のキャリア基板上にポリイミド基材層を形成することにより、平坦性を有するポリイミド基材を得ることができる。
 ガラス基材は、耐熱性が高いことから好ましい。ガラス基材に用いられるガラスとしては、例えば、ソーダライムガラス、無アルカリガラス、石英ガラス等を挙げることができる。
 ポリイミド基材は、表示装置の薄型化、軽量化、フレキシブル化の観点から好ましい。また、ポリイミド基材の場合、第1部材および第2部材を接着部材を介して貼合する際の圧着時に、第1基材にクラックやハマ欠けが発生するのを抑制することができる。具体的には、キャリア基板上にポリイミド基材層が形成された積層基板を用いて第1部材を作製する場合には、第1部材の作製後にレーザリフトオフ(LLO)法によりポリイミド基材層からキャリア基板を剥離し、第1基材の半導体素子側の面側に粘着層を介してガラス基板等の仮基板を配置した後、第1部材および第2部材を接着部材を介して貼合することができる。この場合、第1部材および第2部材の貼合後に、仮基板および粘着層は剥離することができる。そのため、仮基板にクラックやハマ欠けが生じたとしても、仮基板は剥離されるため、歩留りの低下を抑制することができる。
 第1基材は、貫通孔を有していてもよく、有していなくてもよい。中でも、第1基材は貫通孔を有することが好ましい。上述したように、第1基材が貫通孔を有することで、例えば、上記第1配線を、貫通孔に配置された貫通配線とすることができ、貫通配線を介して第1部材の半導体素子と第2部材の駆動素子とを電気的に接続させることができる。
 貫通孔の径の大きさは、表示装置用配線基板の用途に応じて適宜選択することができ、特に限定されないが、例えば、10μm以上200μm以下であってもよく、20μm以上100μm以下であってもよい。
 貫通孔の形成方法としては、例えば、プラズマエッチングやウェットエッチング等のエッチング、レーザ照射、またはサンドブラストや超音波ドリル等の機械的な加工法が挙げられる。
 第1基材の厚さは、半導体素子を支持することができれば特に限定されず、表示装置用配線基板の用途に応じて適宜選択することができる。第1基材の厚さは、例えば、10μm以上700μm以下であることが好ましく、100μm以上500μm以下であることがより好ましく、300μm以上400μm以下であることが特に好ましい。
 本開示においては、上記第1基材が上記第2基材よりも小さいことが好ましい。例えば図5に示すように、第1基材11が第2基材21よりも小さいことにより、第2部材20において、第2基材21の駆動素子22側の面側に、駆動素子22に電気的に接続し、外部回路との接続のための引出配線24等を配置することができる。なお、本開示の表示装置用配線基板を表示装置に用いる場合、第1部材において、第1基材の半導体素子側の面とは反対の面側に引出配線を配置し、第1部材が有する引出配線とドライバICとを電気的に接続することも可能であるが、設計が複雑になり、また引出配線の長さが長くなるため信頼性が低くなるおそれがある。そのため、第1基材は第2基材よりも小さいことが好ましい。また、後述するように、例えば図6に示すように、第1基材11が第2基材21よりも小さいことにより、1つの第2部材20に対して複数の第1部材10を配列することができる。この場合、発光機能を有する半導体素子の実装密度を高くする場合において、発光機能を有する半導体素子に不良があった場合には、第1部材を複数にすることにより、損失を少なくすることができる。
(4)その他の構成
 本開示においては、第1基材の半導体素子側の面側に、半導体素子および第1配線を電気的に接続する第2配線が配置されていてもよい。また、本開示においては、第1基材の半導体素子側の面とは反対の面側に、第1配線および接続部材を電気的に接続する第3配線が配置されていてもよい。
 第2配線および第3配線の材料としては、種々の導電性材料を用いることができる。導電性材料としては、例えば、銅、モリブデン、チタン、タングステン、タンタル、アルミニウム、金、銀等の0価の金属、これらの金属から選択される少なくとも1つを含む合金、あるいは酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)等の導電性酸化物を用いることができる。導電性が高い銅やアルミニウムを用いることで、抵抗の増大を抑制することができる。また、後述するように、比較的硬度が低い銅を用いることで、より信頼性が高い電気的接続が構築可能な表示装置用配線基板を提供することができる。
 第2配線および第3配線の厚さは、例えば0.05μm以上20μm以下、0.1μm以上15μm以下、あるいは0.2μm以上10μm以下とすることができる。これにより、十分な導電性を得ることができる。
 第2配線および第3配線の形成方法としては、一般的な配線の形成方法を用いることができ、例えば、CVD法、スパッタリング法、めっき法等が挙げられる。
(5)第1部材
 本開示においては、例えば図6に示すように、1つの第2部材20に対して、複数の第1部材10が配列していることが好ましい。発光機能を有する半導体素子の実装密度を高くする場合において、発光機能を有する半導体素子に不良があった場合には、第1部材を複数にすることにより、損失を少なくすることができるからである。また、第1配線が貫通配線である場合、第1基材が大面積であると、貫通孔を形成するのが困難である場合がある。
 1つの第2部材に対する第1部材の数としては、1つまたは複数とすることができる。第1部材が複数である場合、第1部材の数としては、本開示の表示装置用配線基板の用途等に応じて適宜選択される。
2.第2部材
 本開示における第2部材は、上記第1基材の上記半導体素子側の面とは反対の面側に対向して配置された第2基材と、上記第2基材の上記第1基材側の面側に配置され、上記半導体素子を駆動する機能を有し、上記配線に電気的に接続された駆動素子とを有する。
 以下、本開示における第2部材の各構成について説明する。
(1)駆動素子
 本開示における駆動素子は、第2基材の第1基材側の面側に配置され、上記半導体素子を駆動する機能を有する素子である。
 駆動素子としては、上記半導体素子を駆動する機能を有するものであり、半導体素子毎に発光を制御することができるものであれば特に限定されるものではなく、例えば、TFT、IC等が挙げられる。中でも、駆動素子は、TFTであることが好ましい。安価な表示装置用配線基板とすることができる。また、第2部材として、一般的なTFT基板を用いることができる。
 なお、本開示における駆動素子としてのICは、後述するようなドライバICとは異なるものである。
 駆動素子は、例えば、1つまたは複数の半導体素子毎に、あるいは1つまたは複数の発光ユニット毎に、配置することができる。また、1つの半導体素子毎または1つの発光ユニット毎に、複数の駆動素子を配置してもよい。
 TFTおよびICの詳細については、一般的な表示装置に用いられる構成と同様とすることができるため、ここでの説明は省略する。
(2)第2基材
 本開示における第2基材は、上記駆動素子を支持する部材である。
 第2基材の材質としては、一般的な表示装置に用いられる材質であれば特に限定されない。中でも、駆動素子がTFTである場合には、第2基材は、TFTを形成する際の加熱工程に対して耐熱性を有することが好ましい。このような第2基材としては、例えば、ガラス基材、ポリイミド基材等を挙げることができる。なお、ガラス基材については、上記第1基材の項に記載したので、ここでの説明は省略する。
 ポリイミド基材は、表示装置の薄型化、軽量化、フレキシブル化の観点から好ましい。また、ポリイミド基材の場合、第1部材および第2部材を接着部材を介して貼合する際の圧着時に、第2基材にクラックやハマ欠けが発生するのを抑制することができる。具体的には、キャリア基板上にポリイミド基材層が形成された積層基板を用いて第2部材を作製し、第1部材および第2部材を接着部材を介して貼合した後、レーザリフトオフ(LLO)法によりポリイミド基材層からキャリア基板を剥離する場合、キャリア基板にクラックが生じたとしてもキャリア基板は剥離されるため、歩留りの低下を抑制することができる。
 第2基材の厚さは、駆動素子を支持することができれば特に限定されず、表示装置用配線基板の用途に応じて適宜選択することができる。第2基材の厚さは、例えば、10μm以上700μm以下であることが好ましく、100μm以上500μm以下であることがより好ましく、300μm以上400μm以下であることが特に好ましい。
 上述したように、第2基材は第1基材よりも大きいことが好ましい。
(3)その他の構成
 本開示においては、第2基材の駆動素子側の面側に、駆動素子および接続部材を電気的に接続する第4配線が配置されていてもよい。
 なお、第4配線の材料、厚さおよび形成方法としては、上記第2配線および第3配線と同様とすることができる。
 本開示においては、第2基材の駆動素子側の面に、駆動素子に電気的に接続された引出配線や、引出配線に電気的に接続されたドライバIC等が配置されていてもよい。
 引出配線およびドライバICの詳細については、一般的な表示装置に用いられる構成と同様とすることができるため、ここでの説明は省略する。
3.接続部材
 本開示の表示装置用配線基板は、上記第1部材および上記第2部材の間に配置され、上記第1配線および上記駆動素子を電気的に接続する接続部材を有することが好ましい。
 接続部材としては、第1配線および駆動素子を電気的に接続することができるものであればよく、例えば、異方導電性を有する接続部材や、柱状構造体と柱状構造体に接する導電膜とを有する接続部材を挙げることができる。以下、それぞれについて説明する。
(1)異方導電性を有する接続部材
 本開示の表示装置用配線基板は、上記第1部材および上記第2部材の間に配置され、異方導電性を有し、上記第1配線および上記駆動素子を電気的に接続する接続部材を有することが好ましい。異方導電性を有する接続部材を用いることにより、発光機能を有する半導体素子および駆動素子の電気的接続を容易に行うことができる。また、発光機能を有する半導体素子および駆動素子の電気的接続、ならびに第1部材および第2部材の接着を同時に行うことができる。さらに、画素密度を高くするために、発光機能を有する半導体素子が高密度に配置されている場合であっても、短絡を起こすことなく電気的接続を行うことができる。
 異方導電性を有する接続部材としては、例えば異方導電性膜(ACF)や異方導電性ペースト(ACP)等の異方導電性材料を用いることができる。異方導電性材料としては、例えば、導電性粒子が樹脂に分散されたものが挙げられる。異方導電性材料を第1部材および第2部材の間に配置して、加熱しながら圧力を加えるあるいは加熱することで、異方導電性材料に含まれる導電性粒子が第1配線および駆動素子の間を電気的に接続することができる。そして、同時に、第1部材および第2部材を接着することができる。
 異方導電性膜および異方導電性ペーストとしては、一般的な配線基板に用いられるものを使用することができる。
 異方導電性を有する接続部材は、第1配線および駆動素子を電気的に接続するように、第1部材および第2部材の間に配置されていればよく、例えば、第1部材および第2部材の間の全部に配置されていてもよく、第1部材および第2部材の間に部分的に配置されていてもよい。例えば、図1~図6に示すように、接続部材31が、第1部材10の第3配線15および第2部材20の第4配線23が配置されている領域のみに配置されていてもよく、図7に示すように、接続部材31が、第1部材10および第2部材20の間の全部に配置されていてもよい。
 接続部材が第1部材および第2部材の間に部分的に配置されている場合には、第1部材および第2部材の間において、接続部材以外の部分には、樹脂膜が配置されていることが好ましい。
 樹脂膜は、接着部材として機能するものである。樹脂膜の材料としては、例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂等を用いることができる。
(2)柱状構造体と柱状構造体に接する導電膜とを有する接続部材
 本開示の表示装置用配線基板は、上記第1部材および上記第2部材の間に配置され、樹脂を含む少なくとも1つの柱状構造体と、上記柱状構造体に接し、上記第1配線および上記駆動素子を電気的に接続する導電膜と、を有する接続部材を有することができる。
 例えば図8(a)、(b)において、表示装置用配線基板1は、第1部材10および第2部材20の間に配置され、樹脂を含む少なくとも1つの柱状構造体33と、柱状構造体33に接し、第1配線13および駆動素子22を電気的に接続する導電膜34とを有する接続部材35を有している。
 図8(a)においては、第2基材21の駆動素子22側の面側に柱状構造体33が配置され、柱状構造体33の上面および側面を覆うように導電膜34が配置されている。導電膜34は、第4配線23として機能することができ、また導電膜34の上面にて第3配線15と接している。この場合、第2配線14、第1配線13、第3配線15および導電膜34を介して、半導体素子12および駆動素子22が電気的に接続される。そして、第1部材10および第2部材20の間には樹脂膜32が配置されている。
 図8(b)においては、第1基材11の半導体素子12側の面とは反対の面側に柱状構造体33が配置され、柱状構造体33の上面および側面を覆うように導電膜34が配置されている。導電膜34は、導電膜34の上面にて第4配線23と接している。この場合、第2配線14、第1配線13、第3配線15、導電膜34および第4配線23を介して、半導体素子12および駆動素子22が電気的に接続される。そして、第1部材10および第2部材20の間には樹脂膜32が配置されている。
 なお、「柱状構造体の上面」とは、柱状構造体が第1基材の面側に配置されている場合には、柱状構造体の第2基材と対向する面をいい、柱状構造体が第2基材の面側に配置されている場合には、柱状構造体の第1基材と対向する面をいう。
 また、「導電膜の上面」とは、導電膜の柱状構造体側の面とは反対側の面をいう。
 柱状構造体は上面に平坦な面を有することができるため、柱状構造体の上面では導電膜も高い平坦性を有する。また、導電膜の上面に接する配線も、第1基材または第2基材の面側に配置されるため平坦性を有する。このため、導電膜および配線間の電気的接続には比較的大きな面積を利用して行うことができるため、接触抵抗の増大を抑制することができるだけでなく、より確実な電気的接続を達成することができる。
 また、柱状構造体の上面が平坦でない場合でも、後述するように、柱状構造体は弾性を示すことができるため、第1部材および第2部材を貼り合わせる際に柱状構造体は変形し、導電膜の上面に接する配線の平坦な面形状が柱状構造体の上面に反映される。このため、導電膜の上面にも平坦な面が形成され、その結果、信頼性の高い電気的接続を達成することができる。
 また、後述するように、柱状構造体は弾性を示すことができるため、第1部材および第2部材を貼り合わせる際に圧力が印加されても柱状構造体が破壊されることは無く、また、第1部材および第2部材の貼り合わせ後において導電膜を配線の方向に押し付けるための応力が内部に発生する。この応力は導電膜および配線を確実に物理的に接触させることに寄与する。また、後述するように、導電膜に銅等の硬度が低い導電性材料を用いる場合には、第1部材および第2部材を貼り合わせる際に柱状構造体が変形しても導電膜が柱状構造体の変形に追従するため、導電膜の破損を抑制することができる。このため、導電膜および配線間が剥離する可能性が大幅に低減され、高い信頼性を有する電気的接続を構築することができる。
 以下、上記接続部材の各構成について説明する。
(a)柱状構造体
 本開示における接続部材は、上記第1部材および上記第2部材の間に配置され、樹脂を含む少なくとも1つの柱状構造体を有する。
 柱状構造体は、有機化合物を含む絶縁体である。有機化合物としては、例えば樹脂が挙げられる。樹脂としては、例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂等が挙げられる。このため、柱状構造体は、弾性を示し、外力によって変形することができる。
 柱状構造体の高さは、例えば、1μm以上100μm以下、1μm以上80μm以下、または1μm以上50μm以下とすることができる。
 また、柱状構造体の平面視における最大面積は、例えば、20μm以上3000μm以下、または100μm以上1500μm以下とすることができる。
 接続部材は、少なくとも1つの柱状構造体を有していればよく、例えば複数の柱状構造体を有していてもよい。接続部材が複数の柱状構造体を有する場合、少なくとも1つの柱状構造体が導電膜に接していればよく、例えば図9(a)に示すように、すべての柱状構造体33が導電膜34に接していてもよく、図9(b)に示すように、一部の柱状構造体33が導電膜34に接し、他の柱状構造体36が導電膜34に接していなくてもよい。導電膜に接しない柱状構造体は、緩衝材またはスペーサとして機能することができ、第1部材および第2部材間の間隔の維持に寄与することができる。また、図示しないが、すべての柱状構造体が導電膜に接している場合であっても、一部の柱状構造体に接する導電膜から絶縁されるように分離された導電膜に接している他の柱状構造体は、導電膜に接しない柱状構造体と同様に、緩衝材またはスペーサとして機能することができ、第1部材および第2部材間の間隔の維持に寄与することができる。
 柱状構造体は、例えば図8(b)に示すように第1基材11の半導体素子12側の面とは反対の面側に配置されていてもよく、図8(a)に示すように第2基材21の駆動素子22側の面側に配置されていてもよい。
 また、柱状構造体は、平面視において、第1配線と重なるように配置されていてもよく、第1配線と重ならないように配置されていてもよい。
 柱状構造体の形状としては、特に限定されるものではなく、その断面形状は、例えば、矩形、台形等とすることができる。例えば図8(a)、(b)において、柱状構造体33の断面形状は矩形であり、図10(a)において、柱状構造体33の断面形状は台形である。
 また、柱状構造体の断面形状は、例えば図10(b)に示すように、丸みを帯びた角を有する形状であってもよい。また、柱状構造体の側面は、例えば平面であってもよく、曲面を含んでいてもよい。
 柱状構造体の形成方法としては、例えばフォトリソグラフィ法が挙げられる。
(b)導電膜
 本開示における接着部材は、上記柱状構造体に接し、上記第1配線および上記駆動素子を電気的に接続する導電膜を有する。
 導電膜は、第1配線および駆動素子に電気的に接続される。例えば図8(a)に示すように、第2基材21の駆動素子22側の面側に柱状構造体33が配置されている場合、導電膜34はその上面にて第3配線15に接していることにより、導電膜34を介して第1配線13および駆動素子22が電気的に接続される。また、図8(b)に示すように、第1基材11の半導体素子12側の面とは反対の面側に柱状構造体33が配置されている場合、導電膜34はその上面にて第4配線23に接していることにより、導電膜34を介して第1配線13および駆動素子22が電気的に接続される。
 導電膜は、柱状構造体に接して配置されており、柱状構造体の上面の少なくとも一部および側面の少なくとも一部を覆うように配置される。
 第2基材の駆動素子側の面側に柱状構造体が配置され、柱状構造体に接して導電膜が配置されている場合において、駆動素子がTFTである場合、導電膜は、TFTのソース電極およびドレイン電極として機能することもできる。また、この場合、導電膜は、TFTのソース電極およびドレイン電極上に配置されていてもよい。
 導電膜の材料としては、種々の導電性材料を用いることができる。導電性材料としては、例えば、銅、モリブデン、チタン、タングステン、タンタル、アルミニウム、金、銀、錫、鉛の金属、これらの金属から選択される少なくとも1つを含む合金、あるいは酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)等の導電性酸化物を用いることができる。導電性が高い銅やアルミニウムを用いることで、抵抗の増大を抑制することができる。また、後述するように、比較的硬度が低い銅を用いることで、より信頼性が高い電気的接続が構築可能な表示装置用配線基板を提供することができる。
 導電膜の厚さは、例えば0.01μm以上15μm以下、0.05μm以上10μm以下、あるいは0.2μm以上8μm以下とすることができる。導電膜の厚さが上記範囲であれば、導電膜に高い柔軟性を付与することができ、柱状構造体が変形しても導電膜の破損や断線を防ぐことができる。
 導電膜の形成方法としては、例えば、CVD法、スパッタリング法、めっき法等が挙げられる。
(3)その他の構成
 第1部材および第2部材の間には、上記接続部材が配置されている部分以外の部分に、樹脂膜が配置されていてもよい。
 樹脂膜は、接着部材として機能するものである。樹脂膜の材料としては、例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂等を用いることができる。
 また、第1部材および第2部材の間において、上記接続部材が配置されている部分以外の部分は、空間部であってもよい。例えば図9(b)に示すように、第1部材10および第2部材20の間に、緩衝材やスペーサとして機能することができる柱状構造体36が配置されている場合や、図示しないが、画素密度が高く、接続部材の密度が高い場合には、空間部が存在していても、第1部材および第2部材間の間隔を維持することができる。
4.表示装置用配線基板の製造方法
 本開示の表示装置用配線基板の製造方法としては、特に限定されず、一般的な配線基板の製造方法と同様とすることができる。
 図11(a)~(d)は本開示の表示装置用配線基板の製造方法の一例を示す工程図である。まず、図11(a)に示すように、第1基材11と、第1基材11の一方の面側に実装された、発光機能を有する半導体素子12と、半導体素子12に電気的に接続され、第1基材11の表裏を電気的に接続する第1配線13とを有する第1部材10を作製する。第1部材10の構成については、上述した通りである。次に、図11(b)に示すように、第1基材11の半導体素子12側の面とは反対の面側に対向して配置された第2基材21と、第2基材21の第1基材11側の面側に配置され、半導体素子12を駆動する機能を有し、第1配線13に電気的に接続された駆動素子22とを有する第2部材20を作製する。第2部材20の構成については、上述した通りである。次に、図11(c)に示すように、第2部材20の第1部材10に対向する面に異方導電性膜31aを貼る。続いて、図11(d)に示すように、異方導電性膜31aの上面に第1部材10を配置し、加熱しながら圧力をかけて、異方導電性膜31aに含まれる導電性粒子により第3配線15および第4配線23を導通させる。それと同時に、異方導電性膜31aに含まれる樹脂により第1部材10および第2部材20を接着する。これにより、第1部材10および第2部材20の間に異方導電性を有する接続部材31が配置される。このようにして、表示装置用配線基板1を得ることができる。
B.表示装置
 本開示の表示装置は、上述の表示装置用配線基板を有する。
 本開示によれば、上述の表示装置用配線基板を有するため、安価な表示装置とすることができる。
 図12は本開示の表示装置の一例を示す概略断面図である。図12に示すように、本開示の表示装置101は、第1部材10と、第2部材20と、第1部材10および第2部材の間に配置された接続部材31および樹脂膜32とを有する表示装置用配線基板1を有する。第2部材20において、第2基材21の駆動素子22側の面側には、駆動素子22に電気的に接続された引出配線24が配置されている。また、TAB102にはドライバIC103が実装されており、引出配線24を介して表示装置用配線基板1とプリント基板101とが電気的に接続されている。これにより、外部回路(図示なし)から供給される信号や電源がドライバIC103へ与えられ、各半導体素子12はこれらの信号や電源に基づいて制御され、これにより画像を表示することができる。
 本開示の表示装置において、上述の表示装置用配線基板以外の部材については、一般的な表示装置に用いられる部材と同様とすることができるので、ここでの説明は省略する。
 本開示においては、複数の表示装置用配線基板が配列されていることが好ましい。例えば図13において、複数の表示装置用配線基板1が配列されている。表示装置101は、複数の表示装置用配線基板1を配列させることにより1つの表示画面を構成する表示装置であり、いわゆるタイリング表示装置である。複数の表示装置用配線基板が配列されていることにより、表示装置を大型化することができる。
 図13においては、各表示装置用配線基板1では、1つの第2部材20に対して複数の第1部材10が配列されているが、これに限定されるものではなく、各表示装置用配線基板は、1つの第1部材と1つの第2部材とを有するものであってもよい。すなわち、タイリング表示装置は、例えば図13に示すように、1つ以上の第1部材10および1つの第2部材20を有するユニット40を備え、複数のユニット40がタイリングされていればよい。
 タイリング表示装置は、複数の表示装置用配線基板を少なくとも有していればよく、適宜必要な構成を有することができる。
 表示装置およびタイリング表示装置の製造方法としては、特に限定されるものではなく、一般的な表示装置およびタイリング表示装置の製造方法と同様とすることができる。
 本開示の表示装置は、マイクロLEDディスプレイであることが好ましい。
 なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。
II.配線基板とその作製方法に関する態様
 次に、配線基板とその作成方法に関する態様について説明する。
 半導体装置は、半導体基板や絶縁基板などの基板、およびパターニングされた種々の絶縁膜、半導体膜、金属膜の積層体を基本的な構成として備える。絶縁膜、半導体膜、金属膜の形状や積層構造を適宜設計することにより、様々な機能を有する半導体装置を提供することができる。通常、このような半導体装置は配線が形成された基板(配線基板)と接続された状態で使用され、この配線基板を介して供給される信号や電力によって半導体装置が制御、駆動される。例えば上記2に開示された半導体装置の一種である表示装置では、表示装置と配線基板とを電気的に接続するための配線パッドが、表示素子が設けられた基板を貫通する貫通配線(貫通電極とも呼ぶ)を介して設けられている。
 本開示は、配線が形成された複数の基板を電気的に接続するための配線構造とそれを含む配線基板、およびこの配線構造を含む配線基板を作製するための方法を提供することを課題の一つとする。 
 本開示の実施形態の一つは配線基板である。この配線基板は、第1の基板と、第1の基板上の第1の配線と、第1の基板上に位置し、樹脂を含む少なくとも一つの柱状構造体と、柱状構造体と第1の配線の上に位置し、柱状構造体と第1の配線と接する導電膜と、導電膜上に位置し、導電膜と電気的に接続される第2の配線と、第2の配線上の第2の基板とを有する。 
 本開示の実施形態の一つは配線基板である。この配線基板は、第1の基板と、第1の基板上の第1の配線と、第1の配線上に位置し、第1の配線と電気的に接続される導電膜と、導電膜上に位置し、導電膜と接し、樹脂を含む少なくとも一つの柱状構造体と、柱状構造体上に位置し、柱状構造体と接する第2の配線と、第2の配線上の第2の基板とを有する。
 本開示の実施形態の一つは配線基板を作製する方法である。この方法は、第1の基板上に第1の配線を形成すること、第1の基板上に樹脂を含む少なくとも一つの柱状構造体を形成すること、柱状構造体上に導電膜を形成すること、第2の基板上に第2の配線を形成すること、導電膜と第2の配線が互いに直接接するように第1の基板と第2の基板を貼り合わせることを含む。 
 本開示の実施形態の一つは配線基板を作製する方法である。この方法は、第1の基板上に第1の配線を形成すること、第2の基板上に第2の配線を形成すること、第2の基板上に樹脂を含む少なくとも一つの柱状構造体を形成すること、柱状構造体上に導電膜を形成すること、導電膜と第2の配線が互いに直接接するように第1の基板と第2の基板を貼り合わせることを含む。 
 本開示の実施形態の一つは表示装置である。この表示装置は、第1の基板と、第1の基板上の第1の配線と、第1の基板上に位置し、樹脂を含む少なくとも一つの柱状構造体と、柱状構造体上の導電膜と、導電膜上に位置し、導電膜と電気的に接続される第2の配線と、第2の配線上の第2の基板と、第2の基板上に位置し、第2の配線と電気的に接続される第3の配線と、第2の基板上の表示素子とを有する。第3の配線は、表示素子へ信号を伝達するように構成される。 
 以下、本開示の各実施形態について、図面等を参照しつつ説明する。但し、本開示は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。 
 本明細書および請求項において、「ある構造体が他の構造体から露出するという」という表現は、ある構造体の一部が他の構造体によって覆われていない態様を意味し、この他の構造体によって覆われていない部分は、さらに別の構造体によって覆われる態様も含む。
(第1実施形態)
1.基本構造
 本実施形態では、配線が設けられた二つの基板を電気的に接続するための配線基板100を説明する。図14(A)に配線基板100の断面模式図を示す。図14(A)に示すように、配線基板100は第1の基板102と第2の基板104を有し、第1の基板102上には第1の配線110が、第2の基板104上には第2の配線112が設けられる。第1の配線110や第2の配線112は、図14(A)に示すようにそれぞれ第1の基板102と第2の基板104と接するように設けられてもよく、あるいは図示しない絶縁膜を介してそれぞれ第1の基板102、第2の基板104上に形成されていてもよい。絶縁膜を用いる場合、例えば酸化ケイ素や窒化ケイ素、酸化窒化ケイ素、窒化酸化ケイ素などのケイ素含有無機化合物を含む層を一つ、あるいは複数有する膜を用いることができる。 
 配線基板100はさらに、第1の基板102上に少なくとも一つの柱状構造体118を有する。柱状構造体118は有機化合物を含む絶縁体であり、有機化合物としては樹脂が挙げられる。樹脂としては、エポキシ樹脂、アクリル樹脂、シリコーン樹脂などが例示される。このため、柱状構造体118は弾性を示し、外力によって変形することができる。柱状構造体118は第1の配線110と重ならないように形成されてもよく、あるいは図14(B)に示すように第1の配線110と重なるように設けられてもよい。柱状構造体118の高さは、例えば1μm以上100μm以下、1μm以上80μm以下、あるいは1μm以上50μm以下とすることができる。また、第1の基板102の上面に平行な面における断面(以下、水平断面と記す)の最大面積は、20μm以上3000μm以下、あるいは100μm以上1500μm以下とすることができる。
 配線基板100はさらに、柱状構造体118上に位置し、柱状構造体118と接する導電膜116を有する。導電膜116は第1の配線110とも接し、これにより導電膜116と第1の配線110が電気的に接続される。導電膜116は柱状構造体の上面の少なくとも一部、および側面の少なくとも一部を覆うように形成される。
 第1の基板102と第2の基板104は、導電膜116が第2の配線112と電気的に接続されるよう、互いに貼り合わされる。したがって、第1の配線110、柱状構造体118、導電膜116、および第2の配線112は第1の基板102と第2の基板104に挟まれる。この時、接着材として機能する樹脂膜130を第1の基板102と第2の基板104の間に設けてもよい。樹脂膜130には、例えばエポキシ樹脂やアクリル樹脂、シリコーン樹脂などを用いることができる。図14(A)や図14(B)に示した配線基板100では、樹脂膜130は導電膜116の少なくとも一部を覆う。
 上述した第1の配線110、第2の配線112、および導電膜116には導電性を示す種々の材料を用いることができる。例えば銅、モリブデン、チタン、タングステン、タンタル、アルミニウム、金、銀などの0価の金属、これらの金属から選択される少なくとも一つを含む合金、あるいはインジウム-スズ酸化物(ITO)やインジウム-亜鉛酸化物(IZO)などの導電性酸化物を用いることができる。導電性が高い銅やアルミニウムを用いることで、配線基板100を設置することによる抵抗の増大を抑制することができる。また、後述するように、比較的硬度が低い銅を用いることで、より信頼性が高い電気的接続が構築可能な配線基板100を提供することができる。第1の配線110、第2の配線112の厚さは、例えば0.05μm以上20μm以下、0.1μm以上15μm以下、あるいは0.2μm以上10μm以下とすればよい。これにより、十分な導電性を得ることができる。導電膜116の厚さは、例えば0.01μm以上15μm以下、0.05μm以上10μm以下、あるいは0.2μm以上8μm以下とすることができる。このような厚さで導電膜116を形成することで導電膜116に高い柔軟性を付与することができ、柱状構造体118が変形しても導電膜116の破損や断線を防ぐことができる。
 配線が設けられる二つの基板を電気的に接続する場合、異方性導電膜が汎用される。異方性導電膜は、樹脂でコーティングされたニッケルや銀、金などの導電体粒子やはんだ粒子が高分子に分散された構造を有しており、異方性導電膜を基板間に配置して加熱しながら圧力を加えることで、これらの金属やはんだが配線間を電気的に接続する。このため、配線間の電気的接続は粒子状の導電体と平面状の配線との接触によって行われるため、必ずしも電気的接続は安定しない。また、高分子と導電体の間には大きな熱膨張係数の差が存在するため、配線間の接続後の冷却過程で応力が蓄積される。このため、導電体にクラックが発生する、あるいは導電体と配線との剥離が生じ、これは配線基板の信頼性を低下させる要因となる。
 これに対し、詳細は後述するが、本実施形態の配線基板100は、導電膜116が形成された第1の基板102と第2の配線112が形成された第2の基板104を貼り合わせ、樹脂膜130を用いて接着することで作製され、これにより第1の配線110と第2の配線112が導電膜116を介して電気的に接続される。図14(A)や図14(B)に示すように、柱状構造体118は上面に平坦な面を有することができる。したがって、柱状構造体118上では導電膜116も高い平坦性を有する。また、第2の配線112は第2の基板104上に形成されるため、その平坦性も高い。このため、導電膜116と第2の配線112間の電気的接続には比較的大きな面積を利用して行うことができるため、接触抵抗の増大を抑制することができるだけでなく、より確実な電気的接続を達成することができる。
 柱状構造体118を形成した時点でその上面が平坦でない場合でも、柱状構造体118は弾性を示すため、第1の基板102と第2の基板104を貼り合わせる際に柱状構造体118は変形し、第2の配線112の平坦な面形状が柱状構造体118の上面に反映される。このため、導電膜116の上面にも平坦な面が形成され、その結果、信頼性の高い電気的接続を達成することができる。
 上述したように、柱状構造体118は弾性を示すため、第1の基板102と第2の基板104を貼り合わせる際に圧力が印加されても柱状構造体118が破壊されることは無く、また、第1の基板102と第2の基板104の貼り合わせ後において導電膜116を第2の配線112の方向に押し付けるための応力が内部に発生する。この応力は導電膜116と第2の配線112を確実に物理的に接触させることに寄与する。また、銅などの硬度が低い導電材料を導電膜116に採用することで、第1の基板102と第2の基板104を貼り合わせる際に柱状構造体118が変形しても導電膜116が柱状構造体118の変形に追従するため、導電膜116の破損を抑制することができる。このため、導電膜116と第2の配線112間が剥離する可能性が大幅に低減され、高い信頼性を有する電気的接続を構築することができる。
2.変形例
 配線基板100の構造は上述した構造に限られることは無く、配線基板100は種々の構造を有することができる。例えば柱状構造体118と導電膜116との上下関係に制約は無く、図14(C)に示すように、導電膜116上に柱状構造体118が位置するよう、配線基板100を構成してもよい。この場合、導電膜116は第1の配線110と柱状構造体118の間、あるいは第1の基板102と柱状構造体118の間に配置され、導電膜116は樹脂膜130の一部を覆う。第1の配線110と第2の配線112間の電気的接続は、第1の配線110と導電膜116が有する平坦な面を介して行われるため、信頼性の高い電気的接続を達成することができる。
 あるいは図15(A)に示すように、配線基板100は複数の柱状構造体118を有してもよい。複数の柱状構造体118を設ける場合、少なくとも1つは導電膜116から離れて配置され、導電膜116と接しなくてもよい。具体的には図15(B)に示すように、配線基板100は、導電膜116と接する柱状構造体118-1と共に、上面や側面が導電膜116によって覆われない柱状構造体118-2を備えてもよい。この場合、柱状構造体118-2は緩衝材、あるいはスペーサーとして機能することもでき、第1の基板102と第2の基板104間の間隔の維持に寄与する。図示しないが、柱状構造体118-2は、導電膜116から絶縁されるように分離された導電性の膜で表面のすべて、あるいはその一部が覆われていてもよい。
 あるいは図16(A)から図16(C)に示すように、配線基板100は貫通電極を備えてもよい。例えば図16(A)に示した例のように、配線基板100は第1の基板102に設けられる貫通孔、およびこの貫通孔を貫通する第1の貫通電極120を有することができる。第1の貫通電極120は第1の配線110と電気的に接続される。この場合、第1の配線110の一部は、導電膜116と第1の貫通電極120を電気的に接続するために十分な面積を提供するためのパッドとしても機能し、その部分はランドとも呼ばれる。任意の構成として、配線基板100はさらに、第1の基板102の下に、第1の貫通電極120と電気的に接続される配線(第4の配線)122を有してもよい。第4の配線122もその一部がランドとして機能し、種々の半導体装置や他の配線基板との接続に利用することができる。
 同様に、第2の基板104にも貫通電極を形成してもよい。例えば図16(B)に示すように、配線基板100はさらに、第2の基板104に設けられる貫通孔、およびこの貫通孔を貫通する第2の貫通電極124を有することができる。第2の貫通電極124は第2の配線112と電気的に接続される。配線基板100はさらに、第2の基板104の上に、第2の貫通電極124と電気的に接続される配線(第3の配線)126を有してもよい。第1の配線110や第4の配線122と同様、第2の配線112や第3の配線126の一部もランドとしても機能することができ、後者は他の半導体装置や配線基板との接続に供される。なお、柱状構造体118は必ずしも貫通電極と重なる必要は無い。例えば図16(C)に示すように、第1の貫通電極120は柱状構造体118と重ならないように形成することができる。図示していないが、第2の貫通電極124も柱状構造体118と重ならないよう形成してもよい。
 第1の貫通電極120は必ずしも貫通孔の全体を埋める必要は無く、図17(A)に示すように、第1の基板102の上面と下面の一部、および貫通孔の側壁を連続的に覆うことで第1の基板102の上面と下面の間で電気的接続が可能なように形成されればよい。同様に、第2の貫通電極124も第2の基板104の貫通孔の全体を埋める必要は無く、図17(B)に示すように、第2の基板104の上面と下面の一部、および貫通孔の側壁を連続的に覆うことで第2の基板104の上面と下面の間で電気的接続が可能なように形成してもよい。このような構造を採用する場合、貫通孔には充填材132を充填してもよい。充填材132としては、エポキシ樹脂やアクリル樹脂、ポリイミド、ポリアミド、ポリエステルなどの高分子が挙げられる。なお、貫通孔の全体を第1の貫通電極120で埋めない場合、図17(C)に示すように、第1の貫通電極120が第1の配線110としても機能するよう、配線基板100を構成してもよい。この場合、第1の配線110を別途設ける必要は無く、第1の貫通電極120は樹脂膜130と接する。換言すると、第1の基板102を貫通する貫通孔の側壁の全体、あるいは少なくとも一部を覆うように、第1の配線110を貫通孔内に第1の貫通電極120として形成してもよい。この場合、第1の配線110は充填材132と側壁の間に位置し、第1の配線110が樹脂膜130と接する。柱状構造体118は充填材132と重なるように設けてもよい。
 図示しないが、第2の配線112を形成せず、第2の貫通電極124が第2の配線112としても機能するよう、配線基板100を構成してもよい。すなわち、第2の基板104を貫通する貫通孔の側壁の全体、あるいは少なくとも一部を覆うように、第2の配線112を第2の貫通電極124として貫通孔内に形成してもよい。この場合、第2の配線112は充填材132と側壁の間に位置する。柱状構造体118は充填材132の一部と重なるように設けてもよい。
 柱状構造体118の形状に制約は無く、第1の基板102の上面に垂直な断面(以下、垂直断面と記す)の形状は、正方形、長方形、台形でもよい。図14(A)に示すように柱状構造体118の垂直断面が長方形になる場合、柱状構造体118の底面積と上面の面積は同一、あるいは実質的に同一となる。これに対し図18(A)に示す例では、垂直断面は、下底(互いに平行な辺のうち、第2の基板104よりも第1の基板102により近い辺)が上底よりも長くなるように構成される台形である。この場合、柱状構造体118の底面積は上面の面積よりも大きい。これに対し、垂直断面において下底が上底よりも短くなるよう柱状構造体118を形成してもよい(図18(B))。この場合には、柱状構造体118の底面積は上面の面積よりも小さい。
 柱状構造体118の垂直断面は、必ずしも正確な多角形である必要は無く、図19(A)に示すように丸みを帯びた角を有していてもよい。また、柱状構造体118の側面は直線のみで構成される必要は無く、曲面を含んでもよい。例えば、柱状構造体118は、第1の基板102の上面に平行な方向においてテーパー形状を有してもよい。すなわち、柱状構造体118の側面の第1の基板102の上面に対する傾きは、垂直断面において、第1の基板102から離れるにしたがって連続的に増大し、上面に近づくにつれて連続的に減少するよう柱状構造体118の形状を調整してもよい。このような形状を採用する場合、垂直断面において柱状構造体118の側面は複数の変曲点を含む。なお本明細書と請求項において、柱状構造体118の垂直断面の角が丸みを帯びる場合、上面の面積とは、柱状構造体118の高さ全体の95%の位置を通る水平断面118cの面積を指す(図19(B)参照)。ここで、柱状構造体118の高さとは、柱状構造体118の最も高い位置118aから底面までの距離Hであり、底面118bとは柱状構造体118が第1の配線110、あるいは第1の基板102(第1の基板102上に絶縁膜を形成する場合には、絶縁膜)と接する面である。
 上述した変形例においても、第1の配線110と第2の配線112間の電気的接続は、これらが有する平坦な面、および導電膜116が有する平坦な面を介して行われる。このため、信頼性の高い電気的接続を構築することが可能となる。
(第2実施形態)
 本実施形態では、配線基板100の作製方法の一例を説明する。ここでは図18(A)に示した配線基板100の作製方法を図20(A)から図22(B)に示した断面模式図を用いて述べる。第1実施形態で述べた構成と同様、あるいは類似する構成に関しては説明を割愛することがある。
 まず、第1の基板102に貫通孔を形成する(図20(A))。第1の基板102に用いられる材料としては、ガラスや石英などの酸化ケイ素、シリコン、ヒ化ガリウム、窒化ガリウムなどの半導体、セラミックス、高分子などが挙げられる。高分子としては、ポリイミドやポリアミド、ポリエステル、ポリカルボナートを基本骨格として有する高分子や、エポキシ樹脂、ノボラック樹脂、フェノール樹脂、ベンゾシクロブテン樹脂などが例示される。あるいは第1の基板102は、ガラスと樹脂の複合材料を含んでもよく、この場合、樹脂としてはエポキシ樹脂などを用いることができる。第1の基板102は可撓性を有していてもよい。
 貫通孔は、プラズマエッチングやウェットエッチングなどのエッチング、レーザ照射、あるいはサンドブラストや超音波ドリルなどの機械的な加工によって形成すればよい。貫通孔の数や大きさは配線基板100に要求される機能に従って任意に決定される。
 次に、第1の貫通電極120を形成する。第1の貫通電極120は種々の方法によって形成することができるが、代表的な方法としてめっき法が挙げられる。この場合、まず、シード層134を貫通孔の側壁や第1の基板102の上面と下面を覆うように形成する(図20(B))。シード層134はチタン、あるいは銅を含み、スパッタリング法や化学気相堆積(CVD)法、無電解めっき、蒸着法などによって形成することができる。特にスパッタリング法を適用することで、効率よくシード層134が形成される。図示しないが、シード層134の形成の前に、貫通孔の側壁や第1の基板102の両面にポリイミドやポリアミドなどの有機化合物、あるいは酸化ケイ素や窒化ケイ素などの無機化合物を含む絶縁膜を一層、あるいは複数層形成してもよい。
 次に、第1の貫通電極120を形成しない領域を保護するためのレジストマスク136を第1の基板102の上面と下面に形成する(図20(C))。レジストマスク136は、液体のレジストを塗布、硬化することで形成しても良いが、第1の基板102が貫通孔を有しているため、フィルム状のレジストを上面と下面に貼り付け、その後露光と現像を行うことで効率よく形成することができる。その後、シード層134に給電して電解めっきを行い、レジストマスク136に覆われていないシード層134上に金属膜を成膜し、第1の貫通電極120が形成される(図20(D))。
 その後、レジストマスク136を除去し(図20(D))、第1の貫通電極120から露出したシード層134をエッチングによって除去する(図20(E))。エッチャントとしては、硫酸などの酸を含むエッチャントを使用することができる。必要に応じ、第1の基板102の上面と下面に対して平坦化処理を行ってもよい。平坦化処理は、例えば例えばダイヤモンドバイトによる物理的な研磨、あるいは研磨剤が分散した研磨液を用いる化学機械研磨(CMP)を利用して行うことができる。
 図17(A)から図17(C)に示す配線基板100のように、第1の基板102の貫通孔の全体を第1の貫通電極120で充填しない場合も同様に、シード層134を貫通孔の側壁や第1の基板102の上面と下面を覆うように形成し(図21(A))、その後第1の貫通電極120を形成しない領域を保護するためのレジストマスク136を第1の基板102の上面と下面に形成する(図21(B))。引き続きシード層134に給電して電解めっきを行い、レジストマスク136に覆われていないシード層134上に金属膜135を成膜し、その後レジストマスク136の除去、および金属膜135から露出したシード層134をエッチングによって除去することで、シード層134と金属膜135の積層を含む第1の貫通電極120が形成される(図21(C))。第1の貫通電極120は第1の配線110として機能することができる。この後、上述した高分子を塗布する、あるいは貼り合わせて貫通孔を充填することで、充填材132が貫通孔内に配置される(図21(D))。
 図20(E)の状態が得られた後、第1の貫通電極120と電気的に接続されるように第1の配線110と第4の配線122をそれぞれ第1の基板102の上下に形成する(図22(A))。第1の配線110や第4の配線122はCVD法やスパッタリング法、無電解めっき法、電解めっき法などを用いて形成することができる。第1の配線110と第4の配線122の形成順序に限定は無い。また、第4の配線122は、第1の基板102と第2の基板104を貼り合わせたのちに形成してもよい。
 この後、柱状構造体118をフォトリソグラフィーを適用して形成する(図22(B))。柱状構造体118は、柱状構造体118を構成する樹脂や高分子の原料であるオリゴマー、あるいは前駆体であるフォトレジストをスピンコート法やインクジェット法、ディップコーティング法などの湿式成膜法を適用して塗布し、その後フォトマスクを介した露光、現像、加熱処理を行うことで形成することができる。オリゴマーや前駆体がシート状である場合には、これを第1の基板102上に設置し、その後、フォトマスクを介した露光、現像、加熱処理を行うことで柱状構造体118が形成される。
 柱状構造体118を形成した後、導電膜116を形成する(図22(B))。導電膜116もCVD法やスパッタリング法、めっき法などを適用して形成される。
 第2の基板104に対しても貫通孔、貫通孔内に設置される第2の貫通電極124、第2の配線112、第3の配線126が形成される。第2の基板104も第1の基板102で使用可能な材料を含むことができ、第1の基板102と第2の基板104に可撓性を付与することで、変形可能な配線基板100を形成することも可能である。第2の基板104の貫通孔や第2の貫通電極124、第2の配線112、第3の配線126は、第1の基板102に設けられる貫通孔、第1の貫通電極120、第1の配線110と同様の方法で形成できるため、これらの形成方法の説明は割愛する。第3の配線126も、第1の基板
102と第2の基板104を貼り合わせたのちに形成してもよい。
 この後、樹脂膜130を導電膜116上に塗布、あるいは貼り合わせによって形成し、第1の配線110、柱状構造体118、導電膜116、および第2の配線112が第1の基板102と第2の基板104に挟まれるよう、第2の基板104を第1の基板102上に配置する。この時、導電膜116と第2の配線112が確実に接するよう、第2の基板104、あるいは第1の基板102、もしくは両者に対して圧力を加えてもよい。柱状構造体118の上面が平坦でない場合、第2の配線112が柱状構造体118に押し付けられることで第2の配線112の平坦性が柱状構造体118と導電膜116の上面に反映される。このため、導電膜116と第2の配線112間には比較的広い面積を有する接触面が形成され、その結果、信頼性の高い電気的接続が構築される。その後樹脂膜130を硬化させることで第1の基板102と第2の基板104が固定される(図18(A))。なお、樹脂膜130を第2の配線112に塗布し、その上に第1の基板102を配置することで貼り合わせを行ってもよい。
 上述したように、柱状構造体118はフォトリソグラフィーを適用して形成することができる。詳細は割愛するが、導電膜116も汎用半導体プロセス、すなわちフォトリソグラフィーを利用して形成される。したがって、本実施形態の配線基板100は、半導体プロセスで汎用される工程によって作製することができ、配線基板100の形成に比較的高価な異方性導電膜を用いる必要は無い。また、リソグラフィーを適用することで、柱状構造体118や導電膜116を位置精度よく形成することが可能である。このため、本実施形態を実施することにより、低コストで高い信頼性を有する配線構造とそれを有する配線基板を提供することが可能となる。
(第3実施形態)
 本実施形態では、第1、第2実施形態で述べた配線基板100が適用された半導体装置として表示装置を説明する。第1実施形態で述べた構成と同様、あるいは類似する構成に関しては説明を割愛することがある。なお、本明細書と請求項において、表示素子は非自発光型表示素子と自発光型表示素子に分類される。非自発光型表示素子は、液晶素子や電気泳動素子、MEMS(Micro Electro Mechanical Systems)素子を有する表示素子などを含む。自発光型表示素子は、有機化合物が発光を担う有機電界発光素子、および無機半導体が発光を担う無機電界発光素子を含む。前者をOLEDと呼び、後者をLEDと呼ぶ。本明細書と請求項では、OLEDとLEDを総じて発光素子と記す。
1.構造
 本開示の実施形態の一つである表示装置150の模式的上面図と底面図をそれぞれ図23(A)、図23(B)に示す。これらの図から理解されるように、表示装置150は第1の基板152、および第1の基板152上に設けられる第2の基板154を有する。第1の基板152と第2の基板154はそれぞれ、配線基板100の第1の基板102と第2の基板104に対応する。
 第2の基板154上にはパターニングされた種々の絶縁膜、半導体膜、絶縁膜が積層され、これらによって複数の画素156が構成される。複数の画素156が設けられる領域が表示領域158である。後述するように、各画素156にはLED200が設けられる。図23(A)、図23(B)に示した例では、表示装置150は第1の基板152下に駆動回路(走査線側駆動回路160、信号線側駆動回路162)が設けられる。ここでは表示装置150に二つの走査線側駆動回路160と一つの信号線側駆動回路162が設けられる例が示されているが、これらの駆動回路の数や配置に制約はない。また、これらの駆動回路は第1の基板152の一つの面(下面)上に直接形成されてもよく、半導体基板などの異なる基板上に形成された集積回路を駆動回路として第1の基板152下に搭載してもよい。
 図24(A)と図24(B)に表示装置150の端部の模式的上面図と底面図をそれぞれ示す。一つの画素156の一部と表示装置150の端部付近の断面模式図を図25に示す。各画素156は種々の配線と接続されており、図24(A)にはそのうちの一つの配線170とそれに接続される画素156が図示されている。図24(A)に示した例では、配線170が延伸する方向において複数の画素156が配線170と接続される。配線170は、各画素156に設けられるトランジスタ180やLED200(図25参照)などの半導体素子と電気的に接続され、種々の信号(ゲート信号、リセット信号など)が配線170を介して各画素156に供給される。
 配線170は第2の基板154付近で第3の配線126に接続される。第2の基板154には、貫通孔172とそこに配置される第2の貫通電極124、および第2の基板154の下面に設けられる第2の配線112が設けられる。これらの第3の配線126、第2の貫通電極124、および第2の配線112はそれぞれ、配線基板100の第3の配線126、第2の貫通電極124、および第2の配線112に対応する。
 第1の基板152にも貫通孔174が設けられ、貫通孔174には第1の貫通電極120が形成される(図25参照)。表示装置150はさらに、第1の基板152上に配置され、第1の貫通電極120と電気的に接続される第1の配線110、第1の基板152上の柱状構造体118、および柱状構造体118上に形成される導電膜116を有する。これらの第1の配線110、柱状構造体118、および導電膜116もそれぞれ、配線基板100の第1の配線110、柱状構造体118、および導電膜116に対応する。
 第4の配線122は第1の基板152の下に配置され、走査線側駆動回路160と電気的に接続される。したがって走査線側駆動回路160は、第4の配線122、第1の貫通電極120、第1の配線110、導電膜116、第2の配線112、第2の貫通電極124、第3の配線126、および配線170を介し、画素156と電気的に接続される。換言すると、表示装置150は、その基板端部に配線基板100を有し、これによって走査線側駆動回路160から供給される各種信号が画素156に与えられる。
 図25に示すように、各画素156にはLED200とそれに接続されるトランジスタ180が設けられる。ただし、画素156の構造はこれに限定されない。例えば複数のトランジスタや容量素子が各画素156に設けられていてもよい。
 トランジスタ180は、例えばゲート電極182、ゲート電極182上のゲート絶縁膜184、ゲート絶縁膜184を介してゲート電極182と重なる半導体膜186、および半導体膜186と電気的に接続されるソース/ドレイン電極188、190などを含む。LED200は、例えば接続パッド202、203、接続パッド202と電気的に接続される第1の電極206、第1の電極206の上に位置する積層された半導体膜208、半導体膜208上の第2の電極210、および第2の電極210と接続パッド203を電気的に接続する引回し配線204などを含む。ソース/ドレイン電極188、接続パッド202、および第1の電極206を介してホールが半導体膜208に注入され、一方、接続パッド203、引回し配線204、および第2の電極210を介して電子が半導体膜208に注入される。注入されたホールと電子は半導体膜208内の活性層で再結合し、発光に至る。表示装置150にはさらに、封止膜212を介して対向基板214が設けられ、これらによってトランジスタ180やLED200が保護される。
 詳細な説明は割愛するが、走査線側駆動回路160と同様、信号線側駆動回路162と画素156間の接続においても配線基板100を適用することができ、これにより、映像信号や初期化信号などの各種信号、ならびにLED200の発光に用いられる電力が配線基板100を介して各画素156へ供給される。
2.変形例
 表示装置150の構造は、上述した構造に限られない。例えば図26に示すように、各画素156中に設けられるトランジスタの全て、あるいは一部は第2の基板154の下面に、第1の基板152と第2の基板154に挟まれるように設けてもよい。例えばLED200と接続されるトランジスタ180を第2の基板154の下に設けることができる。より具体的には、第2の基板154の下に位置し、かつ、第1の基板152と比較して第2の基板154により近く位置するよう、トランジスタ180を設けてもよい。この場合、樹脂膜130上にトランジスタ180が位置し、第2の貫通電極124、および第2の貫通電極124の下に設けられ、第2の貫通電極124と電気的に接続されるランド128によってトランジスタ180とLED200が電気的に接続される。画素156と接続される配線170は第2の基板154の下に設けられ、配線基板100の第2の配線112として機能する。
 あるいは図27に示すように、トランジスタ180は、第2の基板154と比較して第1の基板152により近く位置するように第1の基板152の上に配置してもよい。この場合、樹脂膜130はトランジスタ180の上に位置し、その上に第2の基板154が設けられる。この時、トランジスタ180とLED200との電気的接続のために配線基板100の構造を適用することができる。すなわち、柱状構造体118を第1の基板152上に形成し、その上に配線基板100の導電膜としてソース/ドレイン電極188を設けることができる。第2の基板154の下には第2の配線112が設けられ、トランジスタ180はソース/ドレイン電極188として機能する導電膜116、第2の配線112、第2の貫通電極124を介してLED200と電気的に接続される。この時、半導体膜186、あるいはもう一方のソース/ドレイン電極190が配線基板100の第1の配線110と見做すことができる。トランジスタ180はさらに、第1の基板152上に設けられる配線170と接続され、配線170は第1の基板152に形成される第1の貫通電極120を介して走査線側駆動回路160と接続される。なお、図27に示した例では、ソース/ドレイン電極188が導電膜116を兼ねる構成が示されているが、ソース/ドレイン電極188上にソース/ドレイン電極188に接する導電膜116を柱状構造体118を覆うように設けてもよい。この場合には、ソース/ドレイン電極188を配線基板100の第1の配線110と見做すことができる。
 あるいは図28に示すように、トランジスタ180を第1の基板152の下に形成してもよい。この場合、図25に示した表示装置150と同様、第1の基板152と第2の基板154に設けられる配線間の電気的接続に配線基板100の構造が利用される。すなわち、第1の基板152の貫通孔に第1の貫通電極120として設けられる第1の配線110、第1の配線110上の柱状構造体118、柱状構造体118上の導電膜116、および導電膜116の上に位置し、導電膜116と電気的に接続される第2の配線112が配線基板100に相当し、この構造を介してLED200がトランジスタ180と電気的に接続される。トランジスタ180を第1の基板152の下に設ける場合、表示装置150は、トランジスタ180を保護する保護膜131を任意の構成としてさらに有してもよい。保護膜131は、少なくともトランジスタ180を覆うように設ければよい。
 上述した表示装置150はいわゆるマイクロLED表示装置であるが、表示装置150に適用可能な表示素子もLEDに限られることはなく、例えば図29に示すようにOLED220を適用することができる。図29に示した例では、トランジスタ180上に平坦化膜216が設けられ、その上にOLED220が配置される。OLED220は第1の電極222、第1の電極222上の第2の電極226、および第1の電極222と第2の電極226の間に設けられる電界発光層(以下、EL層と記す)224によって構成される。第1の電極222と第2の電極226の少なくとも一方は可視光を透過可能なように構成される。第1の電極222は、平坦化膜216中に設けられる開口を介してソース/ドレイン電極190と接続され、開口に起因する凹凸は隔壁218によって覆われる。EL層224の構造に制約は無く、キャリア注入層、キャリア輸送層、発光層、キャリアブロッキング層などの種々の機能層を適宜組み合わせて形成される。
 同様に、表示素子として液晶素子を利用することも可能である。例えば図30に示すように、液晶素子230を平坦化膜216上に形成することができる。液晶素子は第1の電極232、第1の電極232を覆う第1の配向膜234、第1の配向膜234上の液晶層236、液晶層236上の第2の配向膜238、第2の配向膜238上の第2の電極240を基本的な構成として有する。任意の構成として、液晶素子230と対向基板214の間にカラーフィルタ244や遮光膜246、およびこれらを覆うオーバーコート242を設けてもよい。ここに示した例では、液晶素子230はいわゆるTN(Twisted Nematic)液晶素子、あるいはVA(Virtical Alignment)液晶素子であるが、IPS(In-Plane Switching)液晶素子を表示装置150に適用することも可能である。
 上述したように、表示装置150は配線基板100を含む。また、第1実施形態で述べたように、配線基板100を適用することで、第1の基板152と第2の基板104に設けられる配線間において信頼性の高い電気的接続が構築されるため、表示装置150の信頼性を向上させることができる。また、配線基板100では異方性導電膜を使用する必要が無いため、本実施形態を適用することにより、低コストで高信頼性の表示装置を提供することが可能となる。
(第4実施形態)
 本実施形態では、表示装置150とは異なる構造を有する表示装置250に関して説明する。本実施形態では、表示素子としてOLED220が各画素156に設けられる例を用いて説明を行うが、適用可能な表示素子はOLED220に限られず、種々の自発光型表示素子、非自発光型表示素子を適用することができる。第1から第3実施形態で述べた構成と同様、あるいは類似する構成に関しては説明を割愛することがある。
 表示装置250の上面模式図を図31に、画素156と表示装置250の端部付近の断面模式図を図32に示す。表示装置250と表示装置150の相違点として、表示装置250では第1の基板152上に表示素子が設けられる点、および表示装置150の第2の基板154に相当する基板がフレキシブル印刷回路基板(以下、FPC)254である点などが挙げられる。
 具体的には、表示装置250は第1の基板152を有し、第1の基板152上に複数の画素156や画素156を駆動するための走査線側駆動回路160が形成される。走査線側駆動回路160は表示領域158外に配置される。表示領域158や走査線側駆動回路160からはパターニングされた導電膜で形成される配線256(図31では図示しない)が第1の基板152の一辺へ延び、配線256は第1の基板152の端部付近で露出されて端子252を形成する。端子252では、配線256上に少なくとも1つの柱状構造体118が形成され、さらに柱状構造体118の側面と上面の少なくとも一部を覆う導電膜116が設けられる。端子252を覆うようにFPC254が設けられる。図31に示した例では信号線側駆動回路162はFPC254上に搭載されているが、信号線側駆動回路162は第1の基板152上に直接形成してもよい。
 FPC254にはFPC配線258が形成されており、FPC配線258が導電膜116と電気的に接続される。これにより、外部回路(図示しない)から供給される映像信号や電源がFPC配線258、導電膜116、配線256を介して表示領域158、走査線側駆動回路160、信号線側駆動回路162へ与えられる。各画素156はこれらの信号や電源に基づいて制御され、これにより表示領域158上に映像を表示することができる。
 表示装置250では、第1の基板152とFPC254が配線基板100の第1の基板102と第2の基板にそれぞれに対応し、配線256とFPC配線258がそれぞれ、配線基板100の第1の配線110と第2の配線112に対応する。また、柱状構造体118と導電膜116はそれぞれ、配線基板100の柱状構造体118と導電膜116に対応する。換言すると、表示装置250では、端子252が設けられる領域に配線基板100が形成され、この配線基板100を利用して第1の基板152とFPC254との電気的接続が行われる。
 通常、表示装置とFPCとの接続には異方性導電膜が用いられるが、第1実施形態で述べたように、異方性導電膜は比較的高価であり、かつ、電気的接続の信頼性は必ずしも高くない。これに対し、本実施形態の表示装置250とFPC254の接続には第1実施形態で述べた配線基板100が適用される。したがって、これらの間の電気的接続の信頼性は高く、かつ、コストの増大を引き起こさない。このため、本実施形態を適用することにより、信頼性の高い表示装置を低コストで製造することが可能となる。
 なお、本開示における配線基板とその作製方法に関する態様は、以下の開示を含むものである。
1.第1の基板、前記第1の基板上の第1の配線、前記第1の基板上に位置し、樹脂を含む少なくとも一つの柱状構造体、前記柱状構造体と前記第1の配線の上に位置し、前記柱状構造体と前記第1の配線と接する導電膜、前記導電膜の上に位置し、前記導電膜と電気的に接続される第2の配線、および前記第2の配線上の第2の基板を有する配線基板。
2.前記柱状構造体は前記第1の配線と重なる、上記1.に記載の配線基板。
3.前記導電膜は前記柱状構造体の上面と側面を覆う、上記1.または2.に記載の配線基板。
4.前記第1の基板と前記第2の基板の間に前記導電膜と接する樹脂膜をさらに有する、上記1.に記載の配線基板。
5.前記柱状構造体を複数有する、上記1.に記載の配線基板。
6.前記複数の柱状構造体のうち少なくとも一つは前記導電膜から離れて配置される、上記5.に記載の配線基板。
7.前記第1の基板は、前記第1の基板を貫通する貫通孔を有し、前記第1の配線は前記貫通孔の側壁の少なくとも一部を覆う、上記1.に記載の配線基板。
8.前記貫通孔内に充填材をさらに有し、前記第1の配線の一部は前記充填材と前記側壁の間に位置する、上記7.に記載の配線基板。
9.前記柱状構造体が前記充填材と重なる、上記8.に記載の配線基板。
10.前記第1の基板を貫通し、前記第1の配線と電気的に接続される第1の貫通電極をさらに有する、上記1.に記載の配線基板。
11.前記第2の基板を貫通し、前記第2の配線と電気的に接続される第2の貫通電極をさらに有する、上記1.に記載の配線基板。
12.前記柱状構造体の底面積は前記柱状構造体の上面の面積よりも大きい、上記1.に記載の配線基板。
13.前記柱状構造体は、前記第1の基板の上面に平行な方向においてテーパー形状を有する、上記1.に記載の配線基板。
14.前記第2の基板上に、液晶素子と発光素子から選択される表示素子をさらに有する、上記1.に記載の配線基板。
15.前記表示素子と電気的に接続されるトランジスタをさらに有する、上記14.に記載の配線基板。
16.前記トランジスタは前記第2の基板上に配置される、上記15.に記載の配線基板。
17.前記トランジスタは前記第2の基板の下に設けられ、前記第1の基板と比較して前記第2の基板により近く位置する、上記15.に記載の配線基板。
18.前記トランジスタは前記第1の基板の上に設けられ、前記第2の基板と比較して前記第1の基板により近く位置する、上記15.に記載の配線基板。
19.前記トランジスタは前記第1の基板の下に位置する、上記15.に記載の配線基板。
20.第1の基板上に第1の配線を形成し、樹脂を含む少なくとも一つの柱状構造体を前記第1の基板上に形成し、前記柱状構造体上に導電膜を形成し、第2の基板上に第2の配線を形成し、前記導電膜と前記第2の配線が互いに直接接するように第1の基板と第2の基板を貼り合わせることを含む、配線基板を作製する方法。
21.前記柱状構造体は前記第1の配線を覆うように形成される、上記20.に記載の方法。
22.前記導電膜は前記柱状構造体の上面と側面を覆うように形成される、上記20.に記載の方法。
23.前記第1の基板と前記第2の基板は樹脂膜を用いて貼り合わされる、上記20.に記載の方法。
24.前記柱状構造体は複数形成される、上記20.に記載の方法。
25.前記導電膜は、少なくとも1つの柱状構造体と離れて配置されるように形成される、上記24.に記載の方法。
26.前記第1の配線を形成する前に、前記第1の基板を貫通する貫通孔を前記第1の基板に形成することをさらに含み、前記第1の配線は、前記貫通孔の側壁の少なくとも一部を覆うように形成される、上記20.に記載の方法。
27.前記第1の配線の形成後、前記柱状構造体を形成する前に、前記貫通孔内に充填材を形成することをさらに含む、上記26.に記載の方法。
28.前記柱状構造体は、前記充填材と重なるように形成される、上記27.に記載の方法。
29.前記第1の基板を貫通する第1の貫通電極を前記第1の配線を形成する前に形成することを含み、前記第1の配線は、前記第1の貫通電極と電気的に接続されるように形成される、上記20.に記載の方法。
30.前記第2の基板を貫通する第2の貫通電極を前記第2の配線を形成する前に形成することを含み、前記第2の配線は、前記第2の貫通電極と電気的に接続されるように形成される、上記20.に記載の方法。
31.前記柱状構造体は、底面積が上面の面積よりも大きくなるように形成される、上記20.に記載の方法。
32.前記柱状構造体は、前記第1の基板の上面に平行な方向においてテーパー形状を有するように形成される、上記20.に記載の方法。
33.液晶素子と発光素子から選択される表示素子を前記第2の基板上に形成することをさらに含む、上記20.に記載の方法。
34.前記表示素子と電気的に接続されるトランジスタを形成することをさらに含む、上記33.に記載の方法。
35.前記トランジスタは前記第2の基板上に形成される、上記34.に記載の方法。
36.前記トランジスタは、前記第2の基板の下に設けられ、かつ、前記第1の基板と比較して前記第2の基板により近く位置するように形成される、上記34.に記載の方法。
37.前記トランジスタは、前記第1の基板の下に設けられ、かつ、前記第2の基板と比較して前記第1の基板により近く位置するように形成される、上記34.に記載の方法。
38.前記トランジスタは、前記第1の基板の下に位置するように形成される、上記34.に記載の方法。
39.第1の基板、前記第1の基板上の第1の配線、前記第1の基板上に位置し、樹脂を含む少なくとも一つの柱状構造体、前記柱状構造体上の導電膜、前記導電膜上に位置し、前記導電膜と電気的に接続される第2の配線、前記第2の配線上の第2の基板、前記第2の基板上に位置し、前記第2の配線と電気的に接続される第3の配線、および前記第2の基板上の表示素子を有し、前記第3の配線は、表示素子へ信号を伝達するように構成される表示装置。
40.前記柱状構造体は前記第1の配線と重なる、上記39.に記載の表示装置。
41.前記導電膜は前記柱状構造体の上面と側面を覆う、上記39、または40.に記載の表示装置。
42.前記第1の基板と前記第2の基板の間に前記導電膜と接する樹脂膜をさらに有する、上記39.に記載の表示装置。
43.前記柱状構造体を複数有する、上記39.に記載の表示装置。
44.前記複数の柱状構造体のうち少なくとも一つは前記導電膜から離れて配置される、上記43.に記載の表示装置。
45.前記第1の基板は、前記第1の基板を貫通する貫通孔を有し、前記第1の配線は、前記貫通孔の側壁の少なくとも一部を覆う、上記39.に記載の表示装置。
46.前記貫通孔内に充填材をさらに有し、前記第1の配線の一部は前記充填材と前記側壁の間に位置する、上記45.に記載の表示装置。
47.前記柱状構造体が前記充填材と重なる、上記46.に記載の表示装置。
48.前記第1の基板を貫通し、前記第1の配線と電気的に接続される第1の貫通電極をさらに有する、上記39.に記載の表示装置。
49.前記第2の基板を貫通し、前記第2の配線と電気的に接続される第2の貫通電極をさらに有する、上記39.に記載の表示装置。
50.前記柱状構造体の底面積は前記柱状構造体の上面の面積よりも大きい、上記39.に記載の表示装置。
51.前記柱状構造体は、前記第1の基板の上面に平行な方向においてテーパー形状を有する、上記39.に記載の表示装置。
52.前記表示素子と電気的に接続されるトランジスタをさらに有する、上記39.に記載の表示装置。
53.前記トランジスタは前記第2の基板上に配置される、上記52.に記載の表示装置。
54.前記トランジスタは前記第2の基板の下に設けられ、前記第1の基板と比較して前記第2の基板により近く位置する、上記52.に記載の表示装置。
55.前記トランジスタは前記第1の基板の上に設けられ、前記第2の基板と比較して前記第1の基板により近く位置する、上記52.に記載の表示装置。
56.前記トランジスタは前記第1の基板の下に設けられる、上記52.に記載の表示装置。 
 本開示の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったものも、本開示の要旨を備えている限り、本開示の範囲に含まれる。
 また、上述した各実施形態によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本開示によりもたらされるものと理解される。 
  1:表示装置用配線基板、10:第1部材、11:第1基材、11h:貫通孔、12:発光機能を有する半導体素子、12R:赤色半導体素子、12G:緑色半導体素子、12B:青色半導体素子、13:第1配線、14:第2配線、15:第3配線、20:第2部材、21:第2基材、22:駆動素子、23:第4配線、31、35:接続部材、32:樹脂膜、101:表示装置、100:配線基板、102:第1の基板、104:第2の基板、110:第1の配線、112:第2の配線、116:導電膜、118:柱状構造体、118-1:柱状構造体、118-2:柱状構造体、120:第1の貫通電極、122:第4の配線、124:第2の貫通電極、126:第3の配線、128:ランド、130:樹脂膜、131:保護膜、132:充填材、134:シード層、135:金属膜、136:レジストマスク、150:表示装置、152:第1の基板、154:第2の基板、156:画素、158:表示領域、160:走査線側駆動回路、162:信号線側駆動回路、170:配線、172:貫通孔、174:貫通孔、180:トランジスタ、182:ゲート電極、184:ゲート絶縁膜、186:半導体膜、188:ソース/ドレイン電極、190:ソース/ドレイン電極、200:LED、202:接続パッド、203:接続パッド、204:引回し配線、206:第1の電極、208:半導体膜、210:第2の電極、212:封止膜、214:対向基板、216:平坦化膜、218:隔壁、220:OLED、222:第1の電極、224:EL層、226:第2の電極、230:液晶素子、232:第1の電極、234:第1の配向膜、236:液晶層、238:第2の配向膜、240:第2の電極、242:オーバーコート、244:カラーフィルタ、246:遮光膜、250:表示装置、252:端子、254:FPC、256:配線、258:FPC配線

Claims (21)

  1.  第1基材、前記第1基材の一方の面側に実装され、発光機能を有する半導体素子、および前記半導体素子に電気的に接続され、前記第1基材の表裏を電気的に接続する配線を有する第1部材と、
     前記第1基材の前記半導体素子側の面とは反対の面側に対向して配置された第2基材、および前記第2基材の前記第1基材側の面側に配置され、前記半導体素子を駆動する機能を有し、前記配線に電気的に接続された駆動素子を有する第2部材と、
     を備える、表示装置用配線基板。
  2.  前記第1部材および前記第2部材の間に配置され、異方導電性を有し、前記配線および前記駆動素子を電気的に接続する接続部材を有する、請求項1に記載の表示装置用配線基板。
  3.  前記駆動素子が、薄膜トランジスタである、請求項1または請求項2に記載の表示装置用配線基板。
  4.  前記第1基材が貫通孔を有し、前記配線が前記貫通孔に配置された貫通配線である、請求項1から請求項3までのいずれかの請求項に記載の表示装置用配線基板。
  5.  前記第1基材が前記第2基材よりも小さい、請求項1から請求項4までのいずれかの請求項に記載の表示装置用配線基板。
  6.  1つの前記第2部材に対して、複数の前記第1部材が配列している、請求項5に記載の表示装置用配線基板。
  7.  請求項1から請求項6までのいずれかの請求項に記載の表示装置用配線基板を有する、表示装置。
  8.  複数の前記表示装置用配線基板が配列されている、請求項7に記載の表示装置。
  9.  第1の基板、
     前記第1の基板上の第1の配線、
     前記第1の基板上に位置し、樹脂を含む少なくとも一つの柱状構造体、
     前記柱状構造体と前記第1の配線の上に位置し、前記柱状構造体と前記第1の配線と接する導電膜、
     前記導電膜の上に位置し、前記導電膜と電気的に接続される第2の配線、および前記第2の配線上の第2の基板を有する配線基板。
  10.  前記導電膜は前記柱状構造体の上面と側面を覆う、請求項9に記載の配線基板。
  11.  前記第1の基板と前記第2の基板の間に前記導電膜と接する樹脂膜をさらに有する、請
    求項9または請求項10に記載の配線基板。
  12.  前記第1の基板は、前記第1の基板を貫通する貫通孔を有し、
     前記第1の配線は前記貫通孔の側壁の少なくとも一部を覆う、請求項9から請求項11までのいずれかの請求項に記載の配線基板。
  13.  前記第2の基板を貫通し、前記第2の配線と電気的に接続される第2の貫通電極を有する、請求項9から請求項12までのいずれかの請求項に記載の配線基板。
  14.  前記第2の基板上に、液晶素子と発光素子から選択される表示素子をさらに有する、請
    求項9から請求項13までのいずれかの請求項に記載の配線基板。
  15.  前記表示素子と電気的に接続されるトランジスタをさらに有する、請求項14に記載の
    配線基板。
  16.  第1の基板上に第1の配線を形成し、
     樹脂を含む少なくとも一つの柱状構造体を前記第1の基板上に形成し、
     前記柱状構造体上に導電膜を形成し、
     第2の基板上に第2の配線を形成し、
     前記導電膜と前記第2の配線が互いに直接接するように第1の基板と第2の基板を貼り合わせることを含む、配線基板を作製する方法。
  17.  第1の基板、
     前記第1の基板上の第1の配線、
     前記第1の基板上に位置し、樹脂を含む少なくとも一つの柱状構造体、
     前記柱状構造体上の導電膜、
     前記導電膜上に位置し、前記導電膜と電気的に接続される第2の配線、
     前記第2の配線上の第2の基板、
     前記第2の基板上に位置し、前記第2の配線と電気的に接続される第3の配線、および
     前記第2の基板上の表示素子を有し、
     前記第3の配線は、表示素子へ信号を伝達するように構成される表示装置。
  18.  前記導電膜は前記柱状構造体の上面と側面を覆う、請求項17に記載の表示装置。
  19.  前記第1の基板と前記第2の基板の間に前記導電膜と接する樹脂膜をさらに有する、請
    求項17または請求項18に記載の表示装置。
  20.  前記第1の基板は、前記第1の基板を貫通する貫通孔を有し、
     前記第1の配線は、前記貫通孔の側壁の少なくとも一部を覆う、請求項17から請求項19までのいずれかの請求項に記載の表示装置。
  21.  前記表示素子と電気的に接続されるトランジスタをさらに有する、請求項17から請求項20までのいずれかの請求項に記載の表示装置。
PCT/JP2019/020510 2018-05-25 2019-05-23 表示装置用配線基板および表示装置、ならびに配線基板とその作製方法 WO2019225708A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020520375A JPWO2019225708A1 (ja) 2018-05-25 2019-05-23 表示装置用配線基板および表示装置、ならびに配線基板とその作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018100602 2018-05-25
JP2018-100602 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019225708A1 true WO2019225708A1 (ja) 2019-11-28

Family

ID=68617112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020510 WO2019225708A1 (ja) 2018-05-25 2019-05-23 表示装置用配線基板および表示装置、ならびに配線基板とその作製方法

Country Status (3)

Country Link
JP (1) JPWO2019225708A1 (ja)
TW (1) TW202032780A (ja)
WO (1) WO2019225708A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786577A (zh) * 2020-08-24 2021-05-11 錼创显示科技股份有限公司 显示装置及其制造方法
WO2023053500A1 (ja) * 2021-09-30 2023-04-06 ソニーグループ株式会社 表示モジュールの製造方法および表示モジュール
US11990499B2 (en) 2020-08-24 2024-05-21 PlayNitride Display Co., Ltd. Display apparatus and method of fabricating the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004070196A (ja) * 2002-08-09 2004-03-04 Nec Kagoshima Ltd 液晶表示装置用基板及びその製造方法並びに液晶表示装置
JP2016538586A (ja) * 2013-12-17 2016-12-08 ルクスビュー テクノロジー コーポレイション ディスプレイモジュール及びシステムアプリケーション
WO2017043216A1 (ja) * 2015-09-11 2017-03-16 シャープ株式会社 画像表示装置
US20170250329A1 (en) * 2016-02-26 2017-08-31 Seoul Semiconductor Co., Ltd. Display apparatus and manufacturing method thereof
US20170301724A1 (en) * 2016-04-14 2017-10-19 Innolux Corporation Display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004070196A (ja) * 2002-08-09 2004-03-04 Nec Kagoshima Ltd 液晶表示装置用基板及びその製造方法並びに液晶表示装置
JP2016538586A (ja) * 2013-12-17 2016-12-08 ルクスビュー テクノロジー コーポレイション ディスプレイモジュール及びシステムアプリケーション
WO2017043216A1 (ja) * 2015-09-11 2017-03-16 シャープ株式会社 画像表示装置
US20170250329A1 (en) * 2016-02-26 2017-08-31 Seoul Semiconductor Co., Ltd. Display apparatus and manufacturing method thereof
US20170301724A1 (en) * 2016-04-14 2017-10-19 Innolux Corporation Display apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786577A (zh) * 2020-08-24 2021-05-11 錼创显示科技股份有限公司 显示装置及其制造方法
US11990499B2 (en) 2020-08-24 2024-05-21 PlayNitride Display Co., Ltd. Display apparatus and method of fabricating the same
WO2023053500A1 (ja) * 2021-09-30 2023-04-06 ソニーグループ株式会社 表示モジュールの製造方法および表示モジュール

Also Published As

Publication number Publication date
TW202032780A (zh) 2020-09-01
JPWO2019225708A1 (ja) 2021-07-08

Similar Documents

Publication Publication Date Title
US20210296394A1 (en) Array substrate and preparation method therefor, and display panel and display device
KR102567001B1 (ko) 유기 발광 표시 장치
CN111009562B (zh) 可拉伸显示面板和装置及该可拉伸显示装置的制造方法
KR101041146B1 (ko) 표시 장치
WO2019225708A1 (ja) 表示装置用配線基板および表示装置、ならびに配線基板とその作製方法
KR101056435B1 (ko) 이방성 도전 필름 및 이를 포함하는 표시 장치
JP2017151371A (ja) 表示装置
US10685930B2 (en) Driving integrated circuit and display device including the same
KR20200057502A (ko) 스트레쳐블 표시장치
JP7477647B2 (ja) 積層構造体、表示スクリーン、および表示装置
US20140300849A1 (en) Chip-on-film package and device assembly including the same
US10446465B2 (en) Chip-on-film package and display device including the same
CN111698823A (zh) 显示装置
CN111354768A (zh) 显示装置和制造该显示装置的设备
JP2020112647A (ja) 表示装置
KR102401089B1 (ko) 표시 장치
CN113725379A (zh) 显示模组和显示装置
JP2010171289A (ja) 画像表示装置
KR20210025167A (ko) 표시 장치
US8586155B2 (en) Display device
KR101244026B1 (ko) 표시 장치 및 그 제조 방법 및 디스플레이
KR20170081058A (ko) 패드와 이를 구비하는 디스플레이 패널 및 디스플레이 장치
US11723243B2 (en) Organic light emitting display device including a connecting structure with dummy pad on flexible substrate
KR101427131B1 (ko) 영상표시장치용 연성인쇄회로
JP2019161155A (ja) 配線基板とその作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520375

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807889

Country of ref document: EP

Kind code of ref document: A1