WO2019225475A1 - 目的物質の生産方法 - Google Patents

目的物質の生産方法 Download PDF

Info

Publication number
WO2019225475A1
WO2019225475A1 PCT/JP2019/019521 JP2019019521W WO2019225475A1 WO 2019225475 A1 WO2019225475 A1 WO 2019225475A1 JP 2019019521 W JP2019019521 W JP 2019019521W WO 2019225475 A1 WO2019225475 A1 WO 2019225475A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
autoinducer
gene
target substance
strain
Prior art date
Application number
PCT/JP2019/019521
Other languages
English (en)
French (fr)
Inventor
大貫 朗子
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2019225475A1 publication Critical patent/WO2019225475A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression

Definitions

  • the present invention relates to a method for producing a target substance.
  • a production system for producing a target substance from a metabolite has been developed in a microorganism by using a microorganism having an artificial synthetic metabolic pathway constructed by introducing a heterologous gene (eg, a plant-derived gene).
  • a heterologous gene eg, a plant-derived gene
  • isoprenoid is produced as a target substance
  • acetyl CoA is obtained by using a microorganism into which a heterologous gene corresponding to the mevalonate pathway, which is a biosynthetic pathway starting from acetyl CoA (glycolytic terminal metabolite)
  • Production systems for isoprenoids have been developed (eg, Patent Documents 1 to 4).
  • Acetyl CoA is one of intermediate metabolites in biosynthetic pathways (eg, tricarboxylic acid (TCA) cycle, amino acid synthesis system / lipid synthesis system), and is an essential metabolite for cell growth.
  • TCA tricarboxylic acid
  • the fermentation process for the production of target substances by microorganisms increases the yield of the target substance by increasing the cell growth period and the substance production period. It is examined how to switch.
  • QS quorum sensing
  • Vibrio fischeri Lux system (AHL: N-3-oxohexanoyl-L-homoserine lactone; AHL synthetic gene: luxI; AHL receptor gene: luxR) to detect and express cell density
  • the toggle switch for controlling the E.C. It is constructed in E. coli.
  • the Lux system is an E.I. It is known that gene expression can be controlled only by constructing in E. coli even at a very low cell density. Therefore, in the above prior art, by constructing the P lux lacO promoter in which the operator sequence (lacO sequence) targeted by the lac repressor (LacI) is introduced at both ends of the lux promoter (P lux ) promoter, AHL is constructed.
  • IPTG inducer
  • the P lux lacO promoter activity improves binding to the promoter by the AHL-LuxR complex by reducing steric hindrance by the LacI repressor
  • the rate of AHL synthesis Since it can be controlled, the expression of the target gene (gltA gene) can be induced by QS.
  • IPTG inducer
  • an object of the present invention is to develop a fermentation process that can increase the yield of a target substance by microorganisms by efficiently switching between the cell growth period and the substance production period without using an inducer. That is.
  • the present inventors have determined that a first microorganism having an ability to produce a target substance from a carbon source in a medium depending on an autoinducer responsible for quorum sensing, and an ability to produce the autoinducer
  • the inventors have found that the above-described object can be achieved by co-culturing a second microorganism having the above, and have completed the present invention.
  • the present invention is as follows. [1] Co-culturing a first microorganism having an ability to produce a target substance from a carbon source in a medium depending on an autoinducer responsible for quorum sensing, and a second microorganism having an ability to produce the autoinducer Producing a target substance.
  • the first microorganism comprises: (1) a first expression unit comprising one or more genes encoding a protein involved in biosynthesis of a target substance, and an autoinducer-dependent promoter operably linked to the one or more genes; and (2) A second expression unit comprising one or more genes encoding a transcription factor that binds to an autoinducer and exhibits a transcription activation effect, and a promoter operably linked to the one or more genes.
  • the second microorganism comprises a third expression unit comprising a gene encoding an autoinducer synthase and a promoter operably linked to the gene.
  • first expression unit and the second expression unit are heterologous to the first microorganism, or the third expression unit is heterologous to the second microorganism. [2] or [3].
  • the autoinducer-dependent promoter is a lux promoter (Plux)
  • the gene encoding the transcription factor is a gene encoding AHL receptor (LuxR);
  • the endogenous substance is acetyl CoA.
  • a first microorganism having an ability to produce a target substance from a carbon source in a medium depending on an autoinducer responsible for quorum sensing and a second microorganism having an ability to produce the autoinducer Culture system.
  • the method of the present invention using the first microorganism and the second microorganism efficiently converts the target substance from the carbon source in the culture medium by efficiently switching between the cell growth period and the substance production period without using an inducer. Can be produced.
  • the method of the present invention uses an endogenous substance required for the growth of microorganisms (a substance that competes between bacterial cell growth and substance production) for the synthesis of the target substance, thereby producing the target substance. After the start, the growth of microorganisms can be relatively suppressed.
  • the present invention also provides co-culture systems and microorganisms that are useful in the methods of the present invention.
  • FIG. 1 shows SC17 (0) -MAL-tetR_gltA-luxIR ⁇ eanIR strain (abbreviation: P-MAL-luxIR) and SC17 (0) -MAL-tetR_gltA-luxR ⁇ eanIR strain (abbreviation: P-MAL-luxR) used in Example 4.
  • P-MAL-luxIR SC17 (0) -MAL-tetR_gltA-luxR ⁇ eanIR strain
  • P-MAL-luxR SC17 (0) -MAL-tetR_gltA-luxR ⁇ eanIR strain
  • the cell density is low, the concentration of autoinducer (luxI) is insufficient, and a sufficient amount of the transcriptional regulatory complex [autoinducer (luxI) and its receptor ( luxR) complex] is not supplied.
  • autoinducer (luxI) and its receptor (luxR) complex As a result, the expression of the repressor (tetR) is suppressed, and as a result, the expression of the gltA gene cannot be suppressed by the repressor, and thus the gltA gene necessary for cell growth is expressed.
  • the expression of one or more genes mvaA, hmcM, and thiL
  • FIG. 2 is a graph showing the accumulated amount (g / L) of mevalonic acid (MVA) by co-culture of the P-MAL-luxIR strain and the P-MAL-luxR strain.
  • the percentage of the P-MAL-luxIR strain at the time of inoculation is shown in%.
  • the average value of N 3 and error bars are shown as standard deviation values.
  • LuxIR P-MAL-luxIR strain (second microorganism);
  • LuxR P-MAL-luxR strain (first microorganism).
  • the present invention provides a method for producing a target substance.
  • the method of the present invention includes a first microorganism having an ability to produce a target substance from a carbon source in a medium depending on an autoinducer responsible for quorum sensing, and a second microorganism having an ability to produce the autoinducer. Co-culture to produce the target substance.
  • Quorum sensing is a mechanism that senses the density of microorganisms of the same type as itself and controls the production of a predetermined substance accordingly. Quorum sensing suppresses the production of a specific substance until the microorganism grows to a certain level of microorganism density (the amount of cells), while producing a specific substance when a sufficient microorganism density is reached. It is thought to be closely related to strategy.
  • the autoinducer responsible for quorum sensing is also called quorum, and can promote the synthesis of the target protein by binding to a transcriptional regulatory factor and exhibiting a transcription activation action.
  • Such an autoinducer can act not only on the microorganism itself that produced it, but also on the incorporated microorganism by being secreted outside the cells and incorporated into other microorganisms.
  • the density of microorganisms is low (the amount of cells is small)
  • the autoinducer produced in the microorganism is secreted and diffused outside the microorganism, and the concentration of the autoinducer in the microorganism becomes low. And the synthesis of the target protein can hardly be promoted.
  • the concentration of the autoinducer in the microorganism becomes high, so that the degree of transcription activation is also high and the synthesis of the target protein can be strongly promoted.
  • N-acyl-L-homoserine lactone produced by many gram-negative bacteria can be used.
  • Acyl in AHL varies depending on the type of microorganism, but often has 4 to 16 carbon atoms.
  • AHL having acyls with different numbers of carbon atoms is used depending on the type of microorganism. More specifically, examples of AHL include N-butanoyl-L-homoserine lactone, N-3-oxobutanoyl-L-homoserine lactone, N-3-hydroxybutanoyl-L-homoserine lactone, and N-pentanoyl.
  • the autoinducer responsible for quorum sensing is 4,5-dihydroxy-2,3-pentanedione (AI2: autoinducer 2); HHQ (2-alkyl-4-quinolone), Factors such as quinolones and quinolines such as PQS (2-alkyl-3-hydroxy-4-quinolone); indoles; peptides; cyclic dipeptides can be used.
  • AI2 autoinducer 2
  • HHQ 2-alkyl-4-quinolone
  • Factors such as quinolones and quinolines such as PQS (2-alkyl-3-hydroxy-4-quinolone)
  • indoles peptides
  • cyclic dipeptides can be used.
  • the auto inducer is AHL.
  • An autoinducer can exert its action by binding to it and binding to a transcription factor (autoinducer receptor) that exhibits a transcription activation action.
  • a transcription factor that binds to AHL and exhibits a transcription activation effect for example, an AHL receptor (protein encoded by LuxR, which is an AHL receptor gene) can be used.
  • Receptors for AHL having acyls with different numbers of carbon atoms as described above are used depending on the type of microorganism.
  • examples of the AHL receptor include luxR, TraR, RaiR, CinR, RhiR, BisR, TriR, Y4qH, CerR, CepR, SolR, AhyR, AsaR, EagR, ExpR, CarR, EcbR, SdiA, Swr. SmaR, YenR, LasR, RhlR, PsyR, AblR, VanR, BjaR, PhzR, OryR, EanR, XagR, AviR, TofR.
  • LsrB, PbsB, RbsB, and LuxP as receptors for autoinducers responsible for quorum sensing
  • PqsR as a receptor for quinolone and quinolines
  • receptor for peptide AIP-I AgrC and AgrA as receptors
  • receptors such as baeSR and cpxAR can be used as receptors for indoles.
  • the transcription factor that binds to an autoinducer and exhibits a transcription activation effect is an AHL receptor (protein encoded by LuxR, which is an AHL receptor gene).
  • Autoinducers are produced in microorganisms by the autoinducer synthase.
  • the autoinducer synthase include AHL synthase (eg, LuxI, TraI, RaiI, CinI, RhiI, CerI, CepI, CviI, SolI, AhyI, AsaI, EagI, ExpI, EcI, EsaI, Swr, Synthetic enzymes of autoinducers other than SmaI, YenI, LasI, SalI, RhlI, PhzI, PsyI, AhlI, VanI, BjaI, PhzI, EanI, TofI), AHL synthase (eg, LuxS, CqsA, LuxMaL) Is mentioned.
  • the autoinducer synthase is an AHL synthase.
  • the autoinducer and the transcription factor that binds to it and exhibits a transcription activation action those derived from microorganisms having a quorum sensing mechanism can be used.
  • microorganisms having a quorum sensing mechanism are used.
  • autoinducers derived from gram-negative bacteria and transcription factors capable of binding to them can be used.
  • Gram-negative bacteria from which autoinducers and transcription factors that bind to them are derived include, for example, Vibrio bacteria (eg, Vibrio fischeri, Vibrio angulararum), Serratia (Serrati) ) Bacteria (eg, Serratia lifacfaciens, Serratia marcescens), Enterobacteria genus (eg, Enterobacter aerogenes (Enterobacter aerogenes)) [Example: Pantoea agglomerans lomerans, Pantoea ananatis, Pantoea stewartii, Erwinia bacteria (eg, Erwinia carotovori e s.).
  • Bacteria eg, Escherichia coli
  • Salmonella bacteria eg, Salmonella typbimurium
  • Yersinia bacteria eg, Yersinia enterocolitica, Yersinia enterocoliticos
  • udomonas Bacteria
  • Salmonella bacteria eg, Salmonella typbimurium
  • Yersinia bacteria eg, Yersinia enterocolitica, Yersinia enterocoliticos
  • udomonas eg, Pseudomonas aeruginosa
  • Pseudomonas array offerings tumefaciens Pseudomonas aureofaciens
  • Pseudomonas fluorescens Pseudomonas fluorescens
  • Pseudomonas syringae Pibubui-Tabaki (Pseudomonas s
  • Agrobacterium bacteria eg, Agrobacterium tumefaciens, Agrobacterium
  • Kuteriumu-Bitisu Agrobacterium vitis
  • Rhizobium (Rbizobium) bacteria eg, Rhizobium Etori (Rhizobium etli), Rhizobium Reguminosaramu (Rhizobium leguminosarum), Rhizobium sp ⁇ NGR234 (Rhizobium sp. NGR234), Rhizobium sphaeroides] Aeromonas bacteria (eg, Aeromonas hydropibila, Aeromonas salmonoida).
  • the combination of an autoinducer and a transcription factor having the ability to bind to it is not particularly limited as long as they can interact and exhibit a transcription activation effect, but the autoinducer derived from the same microorganism and the ability to bind to it It is preferred to use a combination of transcription factors having More preferably, the autoinducer and the transcription factor having the ability to bind to it are those of Vibrio bacteria such as Vibrio fischeri.
  • the first microorganism having the ability to produce the target substance from the carbon source in the medium depending on the auto-inducer responsible for quorum sensing is based on the above-described auto-inducer and the target from the carbon source in the medium.
  • Microorganisms having the ability to produce substances can be used.
  • the first microorganism expresses both a protein involved in biosynthesis of the target substance and a transcription factor that binds to an autoinducer and exhibits a transcriptional activation action, and a protein involved in biosynthesis of the target substance.
  • microorganisms in which the expression of a protein involved in the biosynthesis of a target substance is promoted via a complex of an autoinducer and a transcription factor having the ability to bind to it include, for example, A microorganism comprising one or more genes encoding a protein involved in biosynthesis of a target substance, placed under the control of an autoinducer-dependent promoter that can be activated by a complex of transcription factors having A microorganism in which the expression of a protein involved in biosynthesis is directly controlled by an autoinducer-dependent promoter), and (b) one or more genes encoding a protein involved in biosynthesis of the target substance as described above
  • inducible promoters that are not autoinducer-dependent promoters One or more genes encoding a predetermined transcription factor (eg, activator) disposed below and capable of directly or indirectly controlling the inducible promoter are Examples include microorganisms arranged under the control of a inducer-dependent promoter (microorganisms in which the expression of a protein involved in bio
  • the placement of a gene in a promoter was either a monocistronic manner in which a single gene is placed under the control of a single promoter or a polycistronic manner in which multiple genes are placed under the control of a single promoter. May be. From the viewpoint of simple construction of a microorganism expression system, the expression of a protein involved in the biosynthesis of a target substance is promoted through a complex of an autoinducer and a transcription factor having the ability to bind to it (a) The microorganisms are preferred.
  • the target substance is an arbitrary substance that can be biosynthesized in a microorganism, and is preferably a commercially valuable substance (eg, a component in a product such as a pharmaceutical, food, cosmetic, or reagent). Proteins involved in biosynthesis of the target substance vary depending on the type of target substance. In the present invention, any target substance that can be biosynthesized in a microorganism can be produced. Therefore, depending on the type of the target substance, the type of protein involved in the biosynthesis of the target substance is appropriately selected. be able to.
  • the target substance may be mevalonic acid or isoprenoid. Therefore, mevalonic acid or a protein (preferably an enzyme) involved in isoprenoid biosynthesis can be used as the protein involved in biosynthesis of the target substance.
  • proteins involved in mevalonic acid biosynthesis include hydroxymethylglutaryl (HMG) -CoA reductase (eg, EC.1.1.1.14), HMG-CoA synthase (eg, EC). 4.1.3.5), acetyl CoA-C-acetyltransferase (thiolase) (eg, EC 2.3.1.9).
  • the isoprenoid compound consists of one or more isoprene units having the molecular formula (C5H8) n.
  • Isoprenoid compounds are also called terpenes or terpenoids.
  • terpenoids are hydrocarbons, whereas terpenoids contain additional functional groups.
  • Terpenes are classified according to the number of isoprene units in the molecule [for example, hemiterpene (C5), monoterpene (C10), sesquiterpene (C15), diterpene (C20), sesterterpene (C25), triterpene (C30), Sescal terpenes (C35), tetraterpenes (C40), polyterpenes, norisoprenoids].
  • monoterpenes include pinene, nerol, citral, camphor, menthol, limonene, and linalool.
  • sesquiterpenes include nerolidol and farnesol.
  • diterpenes include phytol and vitamin A1.
  • Squalene is an example of a triterpene.
  • Carotenoids eg, carotene (eg, provitamin A1), xanthophyll
  • tetraterpenes are known as tetraterpenes. Details of terpenes or terpenoids are described in various publications (eg, Nature Chemical Biology 2,674-681 (2006); Nature Chemical Biology 5,283-291 (2009); Nature Reviews 9 Microbiol-37). 947 (2005); Adv Biochem Eng Biotechmol (DOI: 10.1007 / 10 — 2014 — 288) Irregular isoprenoids and polyterpenes have been reported and are also included in isoprenoid compounds.
  • Isoprenoids are derived from the mevalonic acid (MVA) pathway of many organisms (eg, microorganisms, plants, animals) [eg, Kuzuyama T and Seto H, Proc Jpn Acad Ser B Phys Biol Sci. 88, 41-52 (2012); Miziorko HM, Arch Biochem Biophys. 505, 131-143 (2011)] and / or the methylerythritol-4-phosphate (MEP) pathway [eg, Kuzuyama T and Seto H, Proc Jpn Acad Ser B Phys Biol Sci. 88, 41-52 (2012); Grawert T et al. , Cell Mol Life Sci.
  • MUA mevalonic acid
  • proteins involved in the biosynthesis of isoprenoids include (1) enzymes involved in the biosynthesis of IPP and / or DMAPP, which are common precursors for the biosynthesis of various isoprenoids, or (2) individual isoprenoids. And enzymes specifically involved in biosynthesis (enzymes involved in biosynthetic pathways downstream from IPP and / or DMAPP).
  • Examples of the enzyme involved in the biosynthesis of IPP and / or DMAPP include an enzyme involved in the MVA pathway, an enzyme involved in the MEP pathway, and an enzyme capable of converting between IPP and DMAPP.
  • Examples of the enzyme involved in the MVA pathway include mevalonate kinase (eg, EC 2.7.1.36), phosphomevalonate kinase (eg, EC 2.7.4.2.2), diphosphomevalon.
  • Acid decarboxylase eg, EC 4.1.1.13
  • acetyl-CoA-C-acetyltransferase eg, EC 2.3.1.9
  • hydroxymethylglutaryl-CoA synthase Eg, EC 2.3.3.310
  • hydroxymethylglutaryl-CoA reductase eg, E.C.1.1.1.1.34, and E.C.1.1.1.18
  • Acetyl-CoA-acetyltransferase / hydroxymethylglutaryl-CoA reductase eg, EC 2.3.1.9/1.1.1.34).
  • Examples of the enzyme involved in the MEP pathway include 1-deoxy-D-xylulose-5-phosphate synthase (eg, EC.2.2.1.7), 1-deoxy-D-xylulose-5- Phosphate reductoisomerase (eg, EC.1.1.1.167), 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (eg, EC 2.7.7.60) 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (eg, EC 2.7.1.148), 2-C-methyl-D-erythritol-2,4-cycloniphosphate synthase (eg, , EC 4.6.1.12), 1-hydroxy-2-methyl-2- (E) -butenyl-4-nitrophosphate synthase (eg, EC 1.1.7.7.1) 4-hydroxy-3-methyl-2-but Alkenyl diphosphate reductase
  • Examples of the enzyme having a conversion ability between IPP and DMAPP include isopentenyl diphosphate delta isomerase (eg, EC 5.3.3.2).
  • Examples of enzymes specifically involved in biosynthesis of individual isoprenoids include limonene synthase (when the target substance is limonene), linalool synthase (when the target substance is linalool), linalool synthase, cytochrome p450 monooxygenase, and trans
  • the target substance may be a polypeptide. Therefore, a protein involved in polypeptide biosynthesis can be used as a protein involved in biosynthesis of the target substance.
  • a polypeptide can be used as a component in products such as pharmaceuticals, foods, cosmetics or reagents.
  • such a polypeptide is a protein involved in the biosynthesis of another target substance when it is intended to produce another target substance (eg, mevalonic acid or isoprenoid as described above) in a microorganism.
  • the target polypeptide include cellulase, albumin, laminin, and EPO.
  • endogenous substances required for the growth of microorganisms can be used for the synthesis of target substances.
  • the endogenous substance required for the growth of the microorganism that can be used for the synthesis of the target substance varies depending on the type of the target substance described above, but from the viewpoint of efficiently performing the method of the present invention, the microorganism Is preferably an endogenous substance that can be sufficiently biosynthesized from components in the culture medium (eg, a carbon source in the medium). More preferably, from the viewpoint of strengthening switching between the cell growth phase and the substance production phase, a substance that competes between cell growth and substance production is used as an endogenous substance required for the growth of microorganisms. It is preferable.
  • the growth of the microorganism can be relatively suppressed. Even more preferably, from the viewpoint of further strengthening the switching between the cell growth phase and the substance production phase, the endogenous substance required for the growth of the microorganism is not contained in the culture medium or in an insufficient amount. Can be used (eg, use of endogenous material depleted medium).
  • Endogenous substances that are required for the growth of microorganisms include, for example, endogenous substances that are necessary for supply of structural components of the microorganism and cell division.
  • an endogenous substance an endogenous substance involved in a tricarboxylic acid (TCA) cycle, an amino acid biosynthesis system, or a lipid biosynthesis system is preferable.
  • TCA tricarboxylic acid
  • TCA tricarboxylic acid
  • examples of endogenous substances involved in the tricarboxylic acid (TCA) circuit include acetyl-CoA, which flows into the TCA circuit, and citric acid, aconitic acid, isocitric acid, oxalosuccinic acid, ⁇ - Ketoglutaric acid, succinyl CoA, succinic acid, fumaric acid, malic acid, and oxaloacetic acid.
  • Examples of the endogenous substance involved in the amino acid biosynthesis system include (a) ribose-5-phosphate which is a precursor of histidine, (b) 3-phosphoglycerate which is a precursor of serine, cysteine and glycine, (C) phosphoenolpyruvate which is a precursor of tryptophan, phenylalanine and tyrosine, (d) pyruvate which is a precursor of alanine, leucine and valine, (e) aspartic acid, asparagine, lysine, threonine, methionine and isoleucine.
  • Examples include oxaloacetate, which is a precursor, and (f) ⁇ -ketoglutarate, which is a precursor of proline, glutamic acid, glutamine, and arginine.
  • Examples of endogenous substances involved in the lipid biosynthesis system include acetyl-CoA, malonyl-CoA, acetyl-ACP, malonyl-ACP, 3-oxoacyl-ACP, 3-hydroxyacyl-ACP, enoyl-ACP, acyl- ACP (eg, butyryl-ACP), and 3-oxoacyl-ACP, fatty acyl-ACP.
  • an endogenous substance required for the growth of microorganisms an endogenous substance commonly involved in two or more biosynthetic systems described above is preferable, and an endogenous substance involved in a tricarboxylic acid (TCA) circuit is more preferable.
  • TCA tricarboxylic acid
  • acetyl-CoA and pyruvic acid endogenous substances that are precursors of acetyl CoA and also participate in amino acid biosynthesis systems.
  • acetyl-CoA can be used as an endogenous substance required for the growth of microorganisms.
  • the first microorganism may include: (1) a first expression unit comprising one or more genes encoding a protein involved in biosynthesis of a target substance, and an autoinducer-dependent promoter operably linked to the one or more genes; and (2) A second expression unit comprising a gene encoding a transcription factor that binds to an autoinducer and exhibits a transcription activation effect, and a promoter operably linked to the one or more genes.
  • the term “expression unit” in the first expression unit and the second expression unit described above and the third expression unit described later refers to a predetermined gene (polynucleotide) to be expressed as a protein and to be operable thereto.
  • the expression unit may appropriately contain elements such as a terminator, a ribosome binding site, and a drug resistance gene.
  • the expression unit may be DNA or RNA, but is preferably DNA.
  • the expression unit may also be homologous (ie, inherent) or heterologous (ie, non-native) relative to the host cell.
  • the expression “the expression unit is heterologous” means that one or both of a predetermined gene to be expressed as a protein and an operably linked promoter are heterologous to a microorganism (host cell). Say something.
  • An expression unit is also expressed as a gene to be expressed as a protein and a promoter operably linked thereto (ie, an expression unit that allows expression of monocistronic mRNA), or expressed as a protein.
  • An expression unit ie, polycistronic comprising a plurality of genes to be (eg, 2 or more, preferably 3 or more, more preferably 4 or more, even more preferably 5 or more genes) and a promoter operably linked thereto It may be an expression unit that enables expression of mRNA).
  • the expression unit is a genomic region (for example, a natural genomic region that is a natural locus in which a gene encoding the protein is inherently present, or a non-natural genomic region that is not the natural locus) in a microorganism (host cell), or a non-genomic region (Eg, in the cytoplasm).
  • Expression units may be included in the genomic region at one or more (eg, 1, 2, 3, 4, or 5) different positions.
  • Specific forms of expression units contained in the non-genomic region include, for example, plasmids, viral vectors, phages, and artificial chromosomes.
  • the promoter that constitutes the expression unit is not particularly limited as long as it can be operably linked to the gene so that the protein encoded by the gene can be expressed in the microorganism.
  • the promoter may be the same or different from the microorganism, but is preferably different.
  • one or more genes encoding the protein involved in the biosynthesis of the target substance in the first expression unit one or more genes encoding the above-described proteins can be used.
  • the autoinducer-dependent promoter in the first expression unit is a promoter that exhibits a transcription promoting action by binding the above-described autoinducer and a complex of a transcription factor capable of binding thereto.
  • a promoter can be appropriately selected according to the type of autoinducer and transcription factor having the ability to bind to it.
  • the autoinducer-dependent promoter include a lux promoter (Plux), a promoter having a las-rhl box, a promoter having a tra box, and a promoter having an Esa box.
  • the autoinducer dependent promoter is Plux.
  • Such promoters can also be those of microorganisms of the same type as autoinducers and transcription factors capable of binding to them.
  • the autoinducer-dependent promoter is that of a Vibrio bacterium such as Vibrio fischeri.
  • the gene encoding the transcription factor described above can be used as the gene encoding the transcription factor that binds to the autoinducer and exhibits the transcription activation action in the second expression unit.
  • a constitutive promoter widely used for the production of recombinant proteins can be used.
  • promoters include PhoA promoter, PhoC promoter, T7 promoter, T5 promoter, T3 promoter, lac promoter, trp promoter, trc promoter, tac promoter, PR promoter, PL promoter, SP6 promoter.
  • a promoter having a strong transcription activity in a microorganism (host cell) can be used.
  • promoters having a strong transcription activity in microorganisms include promoters of genes highly expressed in microorganisms and promoters derived from viruses.
  • the first microorganism has a capability of producing a target substance from a carbon source in a medium depending on an autoinducer responsible for quorum sensing, and a microorganism not capable of producing the autoinducer It may be. Since such a first microorganism does not have the ability to produce an autoinducer (eg, it does not express an autoinducer synthase), the target substance cannot be produced in the absence of the second microorganism.
  • the target substance can be produced by co-culture with the second microorganism.
  • the timing of switching from the cell growth phase to the substance production phase can be strictly controlled by mixing the first microorganism and the second microorganism (co-culture start conditions). .
  • a first microorganism is useful for efficient production of a target substance by strict control of switching from the cell growth phase to the substance production phase.
  • a microorganism that does not have the ability to produce an autoinducer it is preferable to use a microorganism that does not contain the following expression unit (1 ′):
  • the second microorganism having the ability to produce an autoinducer responsible for quorum sensing a microorganism having the ability to produce an autoinducer as described above can be used.
  • the second microorganism is a microorganism that expresses an autoinducer synthase.
  • the second microorganism may include: (3) A third expression unit comprising a gene encoding an autoinducer synthase and a promoter operably linked to the gene.
  • the gene encoding the autoinducer synthase in the third expression unit As the gene encoding the autoinducer synthase in the third expression unit, the gene encoding the autoinducer synthase described above can be used.
  • a constitutive promoter widely used for the production of recombinant proteins can be used.
  • promoters include PhoA promoter, PhoC promoter, T7 promoter, T5 promoter, T3 promoter, lac promoter, trp promoter, trc promoter, tac promoter, PR promoter, PL promoter, SP6 promoter.
  • a promoter having a strong transcription activity in a microorganism (host cell) can be used.
  • promoters having a strong transcription activity in microorganisms include promoters of genes highly expressed in microorganisms and promoters derived from viruses.
  • the second microorganism has the ability to produce an autoinducer responsible for quorum sensing, and has the ability to produce a target substance from a carbon source in the medium depending on the autoinducer. It may be a microorganism that does not have it. Microorganisms that do not have the ability to produce the target substance from the carbon source in the medium depending on the autoinducer bind to the protein involved in the biosynthesis of the target substance and / or the autoinducer and activate transcription. It may be a microorganism that does not have the ability to produce the indicated transcription factor. Such a second microorganism has the advantage of being easy to produce.
  • Such a second microorganism can not only avoid the production of the target substance in the first microorganism to be co-cultured, but also avoid the production of the target substance in the absence of the first microorganism in the second microorganism itself.
  • the timing of switching from the cell growth phase to the substance production phase can be strictly controlled in the entire co-culture system, it has the further advantage of being useful for efficient production of the target substance in the entire co-culture system.
  • a microorganism that does not contain the following expression units (2 ′) and / or (3 ′): (2 ′) an expression unit comprising one or more genes encoding proteins involved in biosynthesis of the target substance, and an autoinducer-dependent promoter operably linked to the one or more genes; and / or (3 ') An expression unit comprising a gene that encodes a transcription factor that binds to an autoinducer and exhibits a transcription activation effect, and a promoter operably linked to the one or more genes.
  • the second microorganism has an ability to produce an autoinducer responsible for quorum sensing, and produces a target substance from a carbon source in the medium depending on the autoinducer. It may be a microorganism having ability.
  • a microorganism having an ability to produce a target substance from a carbon source in a medium depending on an autoinducer binds to a protein involved in biosynthesis of the target substance and an autoinducer in the same manner as the first microorganism described above.
  • the first microorganism and / or the second microorganism efficiently switches between the cell growth phase and the substance production phase by limiting the use of endogenous substances required for the growth of the microorganisms after the growth of the microorganisms. Then, in order to efficiently produce the target substance from the carbon source in the medium, a gene expression control system including the following (a) and (b) may be included (see, for example, FIG.
  • the enzyme involved in the conversion of the endogenous substance required for the growth of the microorganism includes an enzyme that adversely affects the consumption of the endogenous substance required for the growth of the microorganism.
  • an enzyme involved in a tricarboxylic acid (TCA) circuit examples include an enzyme involved in a tricarboxylic acid (TCA) circuit, an amino acid biosynthesis system, or a lipid biosynthesis system, and an enzyme involved in a TCA circuit is preferable.
  • Enzymes involved in the TCA cycle include, for example, an initial reaction of the TCA cycle using acetyl CoA as a substrate, an enzyme that converts acetyl CoA into citric acid (eg, citrate synthase / gltA gene), and citric acid as isocitrate Enzymes that convert to (eg, aconitase / acnB gene), enzymes that convert isocitrate to 2-oxoglutarate (eg, isocitrate dehydrogenase / icd gene), enzymes that convert 2-oxoglutarate to succinyl CoA (eg, 2) -Oxoglutarate dehydrogenase / sucA / B / lpd gene), an enzyme that converts succinyl CoA to succinic acid (eg, succinyl CoA synthetase / sucC gene), an enzyme that converts succinic acid to fumaric acid (eg, succ
  • the repressor repressible promoter in (a) is a promoter whose transcription is repressed when the repressor is bound.
  • Examples of the repressor repressible promoter include Lac promoter (lac operon), Trp promoter, and Tet promoter.
  • the repressor in (b) is a factor that can reduce its transcriptional activity when a repressor-inhibitory promoter is bound.
  • a repressor examples include TetR, lacI, and a combination of trpR and tryptophan.
  • the autoinducer-dependent promoter in (b) is the same as described above.
  • any microorganism can be used as the first microorganism and the second microorganism described above.
  • microorganisms include gram positive bacteria and gram negative bacteria.
  • the Gram-positive bacteria include Corynebacterium bacteria (eg, Corynebacterium glutamicum) and Bacillus bacteria (eg, Bacillus subtilis).
  • the Gram-negative bacterium for example, a microorganism belonging to the family Enterobacteriaceae can be used.
  • Escherichia bacteria eg, Escherichia coli
  • Pantoea bacteria eg, Pantoea ananatis
  • the first microorganism and the second microorganism Gram-negative bacteria are preferable.
  • the first microorganism and the second microorganism may be the same type or different type of microorganism, but are preferably the same type of microorganism.
  • the endogenous gene may be modified.
  • such a host cell may have its genome modified so that the endogenous quorum sensing gene is deleted.
  • the endogenous quorum sensing gene include E. coli. Since the SdiA gene has been reported for E. coli and the eanIR gene and rhlIR have been reported for Pantoea ananatis, the genome of the host cell can be modified so that such genes are deleted. Even when other microorganisms are used as host cells, the endogenous quorum sensing gene can be appropriately deleted.
  • the first microorganism and the second microorganism described above can be produced by any method known in the art.
  • a transformed microorganism as described above can be produced by a method using an expression vector (eg, competent cell method, electroporation method) or a genome modification technique.
  • the expression vector is an integrative vector that produces homologous recombination with the genomic DNA of the host cell
  • the expression unit can be integrated into the genomic DNA of the host cell by transformation.
  • the expression vector is a non-integrated vector that does not cause homologous recombination with the genomic DNA of the host cell
  • the expression unit is not integrated into the genomic DNA of the host cell by transformation, and the expression vector It can exist independently of genomic DNA in the state.
  • genome editing technology eg, CRISPR / Cas system, Transcribing Activator-Like Effector Nucleases (TALEN) incorporates the expression unit into the host cell's genomic DNA and modifies the host cell's unique expression unit. Is possible.
  • the expression vector may further contain elements such as a terminator that functions in the host cell, a ribosome binding site, and a drug resistance gene, in addition to the minimum unit described above as an expression unit.
  • drug resistance genes include resistance genes for drugs such as tetracycline, ampicillin, kanamycin, hygromycin, and phosphinothricin.
  • the expression vector may further include a region allowing homologous recombination with the host cell genome for homologous recombination with the host cell genomic DNA.
  • the expression vector may be designed such that the expression unit contained therein is located between a pair of homologous regions (eg, homology arms homologous to a specific sequence in the host cell genome, loxP, FRT).
  • the genome region of the host cell into which the expression unit is to be introduced is not particularly limited, but may be a locus of a gene whose expression level is large in the host cell.
  • the expression vector may be a plasmid, a viral vector, a phage, or an artificial chromosome.
  • the expression vector may also be an integrative vector or a non-integrated vector.
  • An integrative vector may be a type of vector that is integrated entirely into the genome of the host cell.
  • the integration vector may be a type of vector in which only a part (eg, expression unit) is integrated into the genome of the host cell.
  • the expression vector may further be a DNA vector or an RNA vector (eg, retrovirus).
  • the expression vector may also be a commonly used expression vector.
  • expression vectors examples include pUC (eg, pUC19, pUC18), pSTV, pBR (eg, pBR322), pHSG (eg, pHSG299, pHSG298, pHSG399, pHSG398), RSF (eg, RSF1010), pACYC ( Examples include pACYC177, pACYC184), pMW (eg, pMW119, pMW118, pMW219, pMW218), pQE (eg, pQE30), and derivatives thereof.
  • pUC eg, pUC19, pUC18
  • pSTV pBR
  • pHSG eg, pHSG299, pHSG298, pHSG399, pHSG398)
  • RSF eg, RSF10101010
  • pACYC Examples include pACYC177, pACYC184), pMW (eg, pMW119, pMW118,
  • the target substance can be produced by co-culturing the first microorganism and the second microorganism as described above.
  • the mixing ratio of the first microorganism and the second microorganism in the co-culture can be adjusted as appropriate, but may be performed at a specific mixing ratio.
  • the first microorganism-containing liquid and the second microorganism-containing liquid may be mixed so that the amount of the second microorganism is smaller than the amount of the first microorganism in the co-culture. preferable.
  • the mixing ratio of the first microorganism and the second microorganism in the co-culture can be evaluated as a ratio (%) of the amount of the second microorganism to the total amount of the first microorganism and the second microorganism.
  • the ratio (%) of the amount of the second microorganism to the total amount of the first microorganism and the second microorganism is preferably less than 50%, more preferably 30% or less, and still more preferably. It may be 10% or less, particularly preferably 1% or less, 0.1% or less, or 0.01% or less. In the present invention, even if the ratio (%) of the amount of the cells of the second microorganism is such a small value, the excellent effect of the co-culture has been confirmed.
  • the first microorganism and the second microorganism can be co-cultured by introducing the second microorganism separately cultured in a small amount into the culture medium in which the first microorganism is cultured and proliferated in large quantities. It may be done.
  • the proportion (%) of the amount of cells of the second microorganism is not particularly limited as long as the target substance can be produced, but is 0.00001% or more, 0.0005% or more, 0.001% or more, Or 0.005% or more may be sufficient.
  • the ratio (%) of the amount of cells of the second microorganism to the total amount of cells of the first microorganism and the second microorganism is the OD of the first microorganism-containing solution and the second microorganism-containing solution (eg, microorganism culture solution).
  • the value eg, absorbance at a wavelength of 600 to 660 nm
  • it can be evaluated by appropriately mixing these containing liquids. For example, after aligning the OD values of the first microorganism-containing liquid and the second microorganism-containing liquid (eg, microorganism culture solution) to a predetermined value (eg, 2.0), these are set at a liquid volume ratio of A: B.
  • the ratio (%) can be set to a value of 100 (%) ⁇ B / (A + B).
  • a culture medium can be further added to the mixed liquid of the first microorganism and the second microorganism in such a ratio, and the microorganism concentration at the start of the co-culture can be appropriately adjusted to a predetermined range.
  • the range of the microorganism concentration at the start of co-culture is, for example, a value in the range of 0.1 to 2.0, preferably 0.2 to, for example, based on the OD value (eg, absorbance at a wavelength of 600 to 660 nm). It may be a value in the range of 1.8, more preferably a value in the range of 0.3 to 1.6.
  • a mixture of the first microorganism and the second microorganism as described above can be cultured in a culture medium.
  • a culture medium for co-culture those used for culturing microorganisms in the art can be used.
  • the culture medium preferably contains components such as a carbon source, a nitrogen source, and an organic trace nutrient source.
  • Examples of the carbon source include carbohydrates such as monosaccharides (eg, glucose), disaccharides, oligosaccharides and polysaccharides; invert sugar obtained by hydrolyzing sucrose; glycerol; methanol, formaldehyde, formate, carbon monoxide, carbon dioxide Compounds having 1 carbon number such as carbon (hereinafter referred to as C1 compounds); oils such as corn oil, palm oil and soybean oil; acetates; animal oils; animal oils; fatty acids such as saturated fatty acids and unsaturated fatty acids; lipids; Phospholipids; glycerolipids; glycerin fatty acid esters such as monoglycerides, diglycerides, and triglycerides; polypeptides such as microbial proteins and vegetable proteins; renewable carbon sources such as hydrolyzed biomass carbon sources; yeast extracts; The combination is mentioned.
  • carbohydrates such as monosaccharides (eg, glucose), disaccharides, oligosaccharides and polys
  • inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate
  • organic nitrogen such as soybean hydrolysate, ammonia gas, aqueous ammonia and the like
  • it is desirable to contain an appropriate amount of a required substance such as vitamin B1, L-homoserine or a yeast extract.
  • inorganic ions such as potassium phosphate, magnesium sulfate, iron ions, manganese ions may be added as necessary.
  • the culture medium for co-cultivation may also be a medium that does not contain or is in an insufficient amount of endogenous substances (eg, acetyl CoA) required for the growth of the microorganisms described above.
  • the culture conditions for co-culture are not particularly limited, and standard culture conditions for microorganisms can be used.
  • the culture temperature is preferably 20 to 42 ° C, more preferably 30 to 40 ° C (eg, 37 ° C).
  • the CO 2 concentration is preferably about 6% to about 84%, and the pH is preferably about 5 to 9.
  • the recovery (eg, isolation and purification) of the produced target substance can be performed as appropriate.
  • recovery methods include chromatography (eg, ion exchange chromatography, affinity chromatography, gel filtration chromatography, HPLC), extraction with an organic solvent, centrifugation, dialysis, and a method using a difference in solubility. (Eg, salting out).
  • the present invention also provides a first microorganism having an ability to produce a target substance from a carbon source in a medium depending on an autoinducer responsible for quorum sensing, and a second microorganism having an ability to produce the autoinducer.
  • a co-culture system comprising is provided.
  • the co-culture system of the present invention may contain a culture medium as described above.
  • the co-culture system of the present invention is useful, for example, for carrying out the method of the present invention.
  • the present invention further includes (1) a microorganism that has the ability to produce a target substance from a carbon source in a culture medium depending on an autoinducer responsible for quorum sensing, and that does not have the ability to produce the autoinducer. And (2) providing a microorganism having the ability to produce an autoinducer responsible for quorum sensing and not having the ability to produce a target substance from a carbon source in a medium depending on the autoinducer. .
  • the microorganism of the present invention is useful for, for example, construction of the co-culture system of the present invention and simple implementation of the method of the present invention.
  • E.E. Construction of mevalonate-producing bacteria using quorum sensing system using E. coli MG1655 Quorum sensing is a gram-negative bacterium that senses cell density using N-acyl-L-homoserine lactone (approximately AHL) as an autoinducer. The mechanism of gene expression control is the best studied for the gene of the luminescent bacterium Vibrio Fisheri.
  • a strain that senses the cell density and controls the expression of mevalonic acid using the Vibrio Fisher Lux system was prepared by the following procedure. .
  • a gene fragment for introduction into the ldhA (b1380) site on the chromosome of MG1655 was prepared using the PCR method by the following method.
  • ⁇ attL-Km- ⁇ attR a genomic fragment having ⁇ attL-Km- ⁇ attR was used as a PCR template.
  • Km kanamycin resistance drug markers
  • ⁇ attL and ⁇ attR attachment sites for ⁇ phage.
  • the last two fragments prepared as templates were subjected to a PCR reaction using primers consisting of the nucleotide sequences shown in SEQ ID NO: 4 and SEQ ID NO: 7, and a gene fragment ⁇ ldhA for chromosomal introduction added with 50 bp upstream and 50 bp downstream of the ldhA gene: : AttL-Km-attR-Plux_AML was amplified. All PCR reactions use PrimeSTAR GXL polymerase sold by Takara Bio Inc.
  • E. E. coli MG1655 contains a plasmid pKD46 having a temperature-sensitive replication ability.
  • E. coli MG1655 (hereinafter referred to as MG1655 / pKD46) was used for electroporation.
  • Plasmid pKD46 [Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 12, p6640-6645] is a DNA fragment (GenBank / EMBL accession number J02459, No. J02459) of ⁇ phage containing ⁇ Red system genes ( ⁇ , ⁇ , exo genes) controlled by the arabinose-inducible ParaB promoter. 31088th to 33241th).
  • MG1655 / pKD46 strain was cultured overnight at 30 ° C. in an LB liquid medium containing 100 g / L of carbecinillin. Then, 1 mL of the culture solution was inoculated into 100 mL of LB liquid medium containing arabinose with a final concentration of 1 mM and 100 mg / L carbecinillin, and a competent cell was prepared according to a conventional method using cells cultured by shaking at 34 ° C. for 3 hours. Then, the previously prepared fragment was introduced into a competent cell by electroporation. After culturing at 34 ° C. for 2 hours in an SOC medium, it was applied to an agar medium containing kanamycin and cultured for 16 hours.
  • the electroporation method was performed using GENE PULSER II (manufactured by BioRad) under the conditions of an electric field strength of 18 kV / cm, a capacitor capacity of 25 ⁇ F, and a resistance value of 200 ⁇ .
  • the obtained resistant colonies were subjected to colony PCR using primers consisting of the nucleotide sequences shown in SEQ ID NO: 8 and SEQ ID NO: 9, and it was confirmed that the mevalonate upstream gene was introduced into the ldhA (b1380) site.
  • This strain (MG1655 ⁇ ldhA :: attL-Km-attR-Plux_AML) was named MG-AML-Km strain.
  • helper plasmid pMW-intxis-ts (WO2005 / 010175) was used.
  • pMW-intxis-ts is a plasmid carrying a gene encoding lambda phage integrase (Int) and a gene encoding excisionase (Xis) and having temperature-sensitive replication ability.
  • Competent cells of the MG-AML-Km strain were prepared according to a conventional method, transformed with the helper plasmid pMW-intxis-ts, and colonies that acquired ampicillin resistance by culturing at 30 ° C. were obtained. Next, to remove pMW-intxis-ts, colonies obtained by inoculating on LB agar medium and culturing overnight at 37 ° C.
  • the fragment a is a kanamycin resistance gene fragment ( ⁇ attL-Km- ⁇ attR), and a PCR reaction was performed in the same manner as in 1-2 using primers consisting of the nucleotide sequences shown in SEQ ID NO: 12 and SEQ ID NO: 13.
  • the b fragment is a luxI gene expression fragment by the lux promoter (Plux), and a PCR reaction was carried out using the pTA1109 plasmid as a template and primers comprising the nucleotide sequences shown in SEQ ID NO: 14 and SEQ ID NO: 15 to obtain a fragment.
  • the c fragment is a luxR gene expression fragment by the tac promoter (Ptac), and a PCR reaction was performed using the pTA1109 plasmid as a template and primers comprising the nucleotide sequences shown in SEQ ID NO: 16 and SEQ ID NO: 17 to obtain a fragment. Finally, using the fragments a, b, and c as templates, using a primer consisting of the nucleotide sequences shown in SEQ ID NO: 12 and SEQ ID NO: 15, a PCR reaction was performed, and 50 bp upstream and 50 bp downstream of the insH4 gene were added.
  • the fragment ⁇ insH4 :: attL-Km-attR-Plux_luxI-Ptac_luxR (SEQ ID NO: 11) was amplified.
  • This fragment was prepared in the same manner as in 1-2 and introduced into the insH4 (b1331) site on the chromosome of the MG-AML-Free strain into which pKD46 was introduced by the ⁇ -red method.
  • the obtained kanamycin resistant colony was subjected to colony PCR using primers consisting of the nucleotide sequences shown in SEQ ID NO: 21 and SEQ ID NO: 22, and it was confirmed that both luxI and luxR genes were introduced into the insH4 (b1331) site. did.
  • This strain (MG1655 ⁇ ldhA :: Plux_AML ⁇ insH4 :: attL-Km-attR-Plux_luxI-Ptac_luxR) was named MG-AML-IuxIR strain.
  • the mevalonate pathway upstream gene whose expression is controlled by Plux is not expressed alone (MG-AML-Km strain), so mevalonate is not produced, but MG into which both luxI and LuxR genes have been introduced.
  • the mevalonate pathway upstream gene was expressed by the quorum sensing system, and the mevalonate accumulation amount was 6.4 g / L.
  • the mevalonate pathway starts with acetyl-CoA, but acetyl-CoA is an intermediate substance common to the TCA cycle that produces substances necessary for cell growth, so cell growth and mevalonate production compete.
  • the OD value of the MG-AML-IuxIR strain that produced mevalonic acid decreased from the OD value of the MG-AML-Km strain that did not produce mevalonic acid. From the above, it was confirmed that mevalonic acid can be produced efficiently by using Plux.
  • Example 2 E.E. Development of co-culture method for controlling mevalonic acid production using quorum sensing in E. coli
  • the quorum sensing system is a system in which the expression level is enhanced depending on the cell density.
  • substance production starts when the cell density is low (Haseltine, EL et al., Appl. Environ. Microbiol., 2008 (74). 437-335).
  • the expression level of the autoinducer AHL of the quorum sensing system was arbitrarily changed and the system capable of changing the expression time was improved.
  • a strain expressing only the AHL synthetic gene LuxI and a strain expressing the mevalonate pathway upstream gene and the AAHL receptor gene were constructed, and the two strains were improved in mevalonic acid production by a co-culture method.
  • MG-LuxI Strain Construction of AHL Synthetic Gene LuxI Expression Strain (MG-LuxI Strain)
  • the LuxI gene is constitutively expressed by the tac promoter and introduced into the insH4 (b1331) site on the chromosome of MG1655 ⁇ insH4 :: attL
  • -Km-attR-Ptac_luxI SEQ ID NO: 23
  • a PCR reaction was performed using the a fragment obtained in 1-3 as a template and a primer consisting of the nucleotide sequences shown in SEQ ID NO: 12 and SEQ ID NO: 18, A kanamycin resistance gene fragment was obtained.
  • a PCR reaction was performed using the b fragment obtained in 1-3 as a mold and primers comprising the nucleotide sequences shown in SEQ ID NO: 19 and SEQ ID NO: 20 to obtain a LuxI gene fragment.
  • a kanamycin resistance gene fragment and a LuxI gene fragment were used as templates to perform PCR reaction using primers consisting of the nucleotide sequences shown in SEQ ID NO: 12 and SEQ ID NO: 20, and a gene for chromosomal transfer added with 50 bp upstream and 50 bp downstream of the insH4 gene.
  • the fragment ⁇ insH4 :: attL-Km-attR-Ptac_luxI was amplified.
  • This fragment was prepared in the same manner as in 1-2 and introduced into the insH4 (b1331) site on the chromosome of MG1655 strain into which pKD46 was introduced by the ⁇ -red method.
  • the obtained kanamycin resistant colony was subjected to colony PCR using primers consisting of the nucleotide sequences shown in SEQ ID NO: 21 and SEQ ID NO: 22, and the ⁇ insH4 :: attL-Km-attR-Ptac_luxI fragment was introduced into the insH4 (b1331) site. Confirmed that it has been.
  • This strain (MG1655 ⁇ insH4 :: attL-Km-attR-Ptac_luxI) was designated as MG-IuxI strain.
  • the LuxR gene is constitutively expressed by the tac promoter and is located at the insH4 (b1331) site on the chromosome of the MG-AML-Free strain.
  • the c fragment obtained in 1-3 was used as a type from the nucleotide sequences shown in SEQ ID NO: 16 and SEQ ID NO: 17.
  • a PCR reaction was performed using the primers to obtain a LuxR gene fragment.
  • a PCR reaction was carried out using the kanamycin resistance gene fragment and LuxR gene fragment obtained in 2-1 as a template and using primers consisting of the nucleotide sequences shown in SEQ ID NO: 12 and SEQ ID NO: 17, and 50 bp upstream and 50 bp downstream of the insH4 gene.
  • the added chromosome introduction gene fragment ⁇ insH4 :: attL-Km-attR-Ptac_luxR was amplified. This fragment was prepared in the same manner as in 1-2 and introduced into the insH4 (b1331) site on the chromosome of the MG-AML-Free strain into which pKD46 was introduced by the ⁇ -red method.
  • the obtained kanamycin-resistant colony was subjected to colony PCR using primers consisting of the nucleotide sequences shown in SEQ ID NO: 21 and SEQ ID NO: 22, and the ⁇ insH4 :: attL-Km-attR-Ptac_luxR fragment was introduced into the insH4 (b1331) site. Confirmed that it has been.
  • This strain (MG1655 ⁇ ldhA :: Plux_AML ⁇ insH4 :: attL-Km-attR-Ptac_luxR) was designated as MG-AML-IuxR strain.
  • a bacterial cell solution was prepared by mixing the MG-AML-luxR bacterial solution and the MG-LuxI bacterial solution alone (100%) and in the ratio shown in Table 2. Finally, 1 ml each of the prepared bacterial solution is added to a thick test tube containing 3 ml of MS-Met medium, and the bacterial cell culture solution having a final OD660 value of 0.5 is shake-cultured at 30 ° C. for 24 hours. To do. The cells were removed from the culture by centrifugation, and the amount of mevalonic acid accumulated in the supernatant was quantified by liquid chromatography mass spectrometry (LCMS). The results are shown in Table 2.
  • LCMS liquid chromatography mass spectrometry
  • Example 3 Co-culture results of MG-AML-luxIR strain and MG-AML-luxR strain
  • the MG-AML-luxIR strain (second microorganism) was used as the AHL donor strain
  • the MG-AML-luxR strain Co-culture with the first microorganism
  • mevalonic acid can be obtained by adding only 0.5% of the MG-AML-luxIR strain as the AHL donor strain from the MG-AML-luxIR strain and the single expression (100%).
  • the yield was 22.1%, which was higher in the co-culture than the MG-AML-luxIR strain alone.
  • Example 4 Mevalonic acid production using quorum sensing in Pantoea ananasis
  • co-culture using quorum sensing with microorganisms other than E. coli is useful for substance production
  • co-culture using quorum sensing with Pantoea ananasis strain SC17 (0) eg, EP2336347 (A1) Mevalonic acid production by the culture method was carried out.
  • MAL has an operon structure in which HMG-CoA synthase (hmcM), HMG-CoA reductase (mvaA), and thiolase (thiL) are linearly arranged in this order.
  • the pAH162-PphoC_MAL-Km plasmid was transformed into SC17 (0) ⁇ AmpH :: attB phi80 according to a previously reported protocol (Andrewa IG et al., FEMS Microbiol Lett., 2011; 318 (1): 55-60). It was introduced into the attB phi80 site.
  • the obtained kanamycin resistant colony was subjected to colony PCR using primers consisting of the nucleotide sequences shown in SEQ ID NO: 26 and SEQ ID NO: 27, and the attL-Km-attR-PphoC_MAL fragment was introduced into the AmpH (PAJ_2071) site. It was confirmed.
  • SC17 (0) ⁇ AmpH :: attL-Km-attR-PphoC_MAL competent cells were prepared according to a conventional method, and then the RSF-Para-IX plasmid was introduced.
  • This plasmid carries a gene encoding lambda phage integrase (Int) and a gene encoding excisionase (Xis), and is a plasmid that expresses Int and Xis by arabinose induction (Y. Tajima et al. , AEM, 2015; 81 (3): 929-937).
  • the strain from which the kanamycin resistance gene was removed by arabinose induction was named SC17 (0) PphoC_MAL strain.
  • the SC17 (0) PphoC_MAL / RSFredTER strain in which RSFredTER (WO2008 / 090770A1) was introduced into the SC17 (0) PphoC_MAL strain was obtained.
  • the promoter replacement fragment is represented by SEQ ID NO: 28 having a region of 80 bp upstream from the PphoC introduction site and SEQ ID NO: 28 having 61 bp of the N-terminal region of the hmcM gene using the genome extracted from the MG-AML-Km strain as a template.
  • Colony PCR was performed using a primer having the nucleotide sequence shown to obtain a ⁇ AmpH :: attL-Km-attR-Plux_hmcM_N fragment (SEQ ID NO: 30).
  • SC17 (0) PphoC_MAL / RSFredTER strain was cultured overnight in LB liquid medium. Thereafter, 1 mL of the culture solution was inoculated into 100 mL of an LB liquid medium containing IPTG having a final concentration of 1 mM and 50 mg / L chloramphenicol, and the cells cultured by shaking at 34 ° C. for 3 hours were made competent according to a conventional method.
  • a cell was prepared, and the previously prepared fragment was introduced into a competent cell by electroporation. After culturing at 34 ° C. for 2 hours in an SOC medium, it was applied to an agar medium containing kanamycin and cultured for 16 hours. The colonies that appeared were subjected to colony PCR using primers consisting of the nucleotide sequences shown in SEQ ID NO: 28 and SEQ ID NO: 29, and it was confirmed that they were replaced with the Lux promoter. A strain in which the kanamycin resistance gene was removed from this strain was designated as SC17 (0) Plux_MAL strain.
  • Preparation of the fragment for luxIR gene introduction is shown in SEQ ID NO: 31 and SEQ ID NO: 32, respectively, using the genome of MG-AML-IuxIR strain as a template, and preparation of the fragment for luxR gene introduction using the genome of MG-AML-IuxR strain as a template.
  • a PCR reaction was performed using a primer comprising a nucleotide sequence, and a ⁇ gcd :: attL-Km-attR-Plux_luxI-Ptac_luxR fragment (SEQ ID NO: 35) and ⁇ gcd :: attL-Km- containing the upstream region 50 bp and the downstream region 50 bp of the gcd gene.
  • AttR-Ptac_luxR fragment (SEQ ID NO: 36) was obtained.
  • RSFredTER was introduced into the SC17 (0) Plux_MAL strain, and the ⁇ gcd :: attL-Km-attR-Plux_luxI-Ptac_luxR fragment or ⁇ gcd :: attL-Km- was introduced into the gcd gene site by the ⁇ Red method in the same manner as in 4-1.
  • the attR-Ptac_luxR fragment was introduced to obtain a kanamycin resistant strain.
  • strains from which the kanamycin resistance gene was removed were constructed in the same manner as in 4-1, and named SC17 (0) -MAL-luxIR strain and SC17 (0) -MAL-luxR strain.
  • the gltA gene (PAJ_0490) is composed of mevalonic acid biosynthesis and common intermediate acetyl CoA as a substrate. It is an enzyme that performs the initial reaction of the TCA circuit, and is an enzyme necessary for cell growth. Therefore, cell growth and mevalonic acid production are in a competitive relationship. In order to suppress the expression of this gltA gene after cell growth and efficiently supply acetyl-CoA to substance production, a system using a repressive transcription factor tetR gene has been reported (T.
  • a PCR reaction is performed using a genomic fragment having ⁇ attL-Km- ⁇ attR as a template and primers comprising the nucleotide sequences shown in SEQ ID NO: 37 and SEQ ID NO: 38, and ⁇ gltA :: attL-Km containing 50 bp of the gltA gene upstream region -AttR-Plux fragment (a fragment) was used with a plasmid pTA1145 (T. hanai et al., Metabolic Engineering 2015; 30: 7-15) as a template and primers comprising nucleotide sequences shown in SEQ ID NO: 39 and SEQ ID NO: 40 PCR reaction is carried out.
  • a tetR gene containing 50 bp of ananatis gltA gene N-terminal region and a tetR-PL_gltA-N fragment (b fragment) containing a PL promoter were obtained.
  • a PCR reaction was performed using the a fragment and the b fragment as a template and a primer consisting of the nucleotide sequences shown in SEQ ID NO: 37 and SEQ ID NO: 40 to obtain a ⁇ gltA :: Plux_tetR-PL_gltA-N fragment.
  • ⁇ gltA :: Plux_tetR was used to re-prepar a fragment in which the homologous recombination regions in the upstream and N-terminal regions of the gltA gene were each increased to 130 bp.
  • a PCR reaction was performed using a primer consisting of the nucleotide sequences shown in SEQ ID NO: 41 and SEQ ID NO: 42 using the -PL_gltA-N fragment as a template to obtain a ⁇ gltA :: Plux_tetR-PL_gltA-N-long fragment (SEQ ID NO: 45).
  • RSFredTER was introduced into each of the SC17 (0) -MAL-luxIR strain and the SC17 (0) -MAL-luxR strain, and ⁇ gltA :: Plux_tetR-PL_gltA-N was introduced into the gltA gene site by the ⁇ Red method as in 4-1.
  • a -long fragment was introduced to obtain a kanamycin resistant strain.
  • the obtained strain was subjected to colony PCR using primers consisting of the nucleotide sequences shown in SEQ ID NO: 43 and SEQ ID NO: 44, and it was confirmed that the target fragment was introduced into the gltA site.
  • strains from which the kanamycin resistance gene was removed were constructed in the same manner as in 4-1, and named SC17 (0) -MAL-tetR_gltA-luxIR strain and SC17 (0) -MAL-tetR_gltA-luxR strain.
  • PCR reaction was performed using primers consisting of the nucleotide sequences shown in SEQ ID NO: 46 and SEQ ID NO: 47, and ⁇ eanIR containing 50 bp upstream and 50 bp downstream regions of the eanIR gene
  • the :: attL-Km-attR (SEQ ID NO: 50) fragment was obtained as a drug gene fragment for disrupting the eanIR gene.
  • RSFredTER was introduced into each of the SC17 (0) -MAL-tetR_gltA-luxIR and SC17 (0) -MAL-tetR_gltA-luxR strains, and eanIR (PAJ — 1287,1288) was introduced by the ⁇ Red method in the same manner as in 4-1.
  • a ⁇ eanIR :: attL-Km-attR fragment was introduced into the site to obtain a kanamycin resistant strain.
  • the obtained strain was subjected to colony PCR using primers consisting of the nucleotide sequences shown in SEQ ID NO: 48 and SEQ ID NO: 49, and it was confirmed that the kanamycin resistance gene was introduced into the eanIR site.
  • strains were designated SC17 (0) -MAL-tetR_gltA-luxIR ⁇ eanIR strain (abbreviation: P-MAL-luxIR) and SC17 (0) -MAL-tetR_gltA-luxR ⁇ eanIR strain (abbreviation: P-MAL-luxR).
  • OD660 2.0.
  • a bacterial cell solution was prepared as described above.
  • a cell solution was prepared by mixing the P-MAL-luxR cell solution and the P-MAL-luxIR cell solution alone (100%) and in the ratio shown in Table 4.
  • 1 ml each of the prepared bacterial solution is added to a thick test tube containing 3 ml of MS-Met medium, and the bacterial cell culture solution having a final OD660 value of 0.5 is shake-cultured at 30 ° C. for 24 hours. To do.
  • the accumulated amount of mevalonic acid is shown in FIG.
  • P-MAL-luxIR and P-MAL-luxR strains cocultured with P-MAL-luxIR strains alone, but increased the amount of mevalonic acid accumulated, adding only 0.01% of P-MAL-luxIR strain It was confirmed that the mevalonic acid accumulation amount was 12.1 g / L, and the glucose consumption yield was as high as 30.3%.
  • the method of the present invention is useful, for example, for efficient production of a target substance.
  • the co-culture system of the present invention is useful, for example, for carrying out the method of the present invention.
  • the microorganism of the present invention is useful for, for example, construction of the co-culture system of the present invention and simple implementation of the method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、誘導剤を使用することなく、菌体増殖期と物質生産期とを効率的に切り替えることにより、微生物による目的物質の収量を増加させることができる発酵プロセスを提供する。より具体的には、本発明は、クオラムセンシングを担うオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有する第1微生物、および当該オートインデューサーを産生する能力を有する第2微生物を共培養して目的物質を生産することを含む、目的物質の生産方法;ならびにこのような第1微生物および第2微生物を含む共培養系などを提供する。

Description

目的物質の生産方法
 本発明は、目的物質の生産方法などに関する。
 現在、異種遺伝子(例、植物由来遺伝子)の導入により構築された人工的な合成代謝経路を有する微生物を利用することにより、微生物において代謝物質からの目的物質の生産系が開発されている。例えば、目的物質としてイソプレノイドが生産される場合、アセチルCoA(解糖系末端代謝物質)を起点とする生合成経路であるメバロン酸経路に対応する異種遺伝子を導入した微生物を利用して、アセチルCoAからのイソプレノイドの生産系が開発されている(例、特許文献1~4)。アセチルCoAは生合成経路(例、トリカルボン酸(TCA)回路、アミノ酸合成系・脂質合成系)における中間代謝物質の1つであり、菌体増殖に必須な代謝物である。微生物の増殖、および微生物による目的物質の生産が競合関係にある場合、微生物による目的物質の生産のための発酵プロセスでは、目的物質の収量を増加させるため、菌体増殖期と物質生産期とを如何に切り替えるかについて検討されている。
 ところで、菌体増殖期と物質生産期とを切り替えるため、クオラムセンシング(QS)を利用することにより、菌体増殖に重要な代謝経路を、誘導剤(IPTG)を用いて培養中の任意のタイミングで遮断し、物質生産に切り替える人工遺伝子回路(トグルスイッチ)が報告されている(非特許文献1、2)。QSとは、オートインデューサー(例、N-アシル-L-ホモセリンラクトン(AHL))に基づき菌体の密度を感知し遺伝子の発現制御を行う機構であり、発光バクテリアであるVibrio fischeriの遺伝子が最もよく研究されている。上記先行技術でも、Vibrio fischeriのLuxシステム(AHL:N-3-オキソヘキサノイル-L-ホモセリンラクトン;AHL合成遺伝子:luxI;AHLレセプター遺伝子:luxR)を用いて、菌体密度を感知して発現制御を行うトグルスイッチがE.coliにおいて構築されている。しかし、LuxシステムをE.coliにおいて構築しただけでは、非常に低い菌体密度であっても遺伝子の発現制御がなされてしまうことが知られている。したがって、上記先行技術では、luxプロモーター(Plux)プロモーターの両端に対して、lacリプレッサー(LacI)が標的とするオペレーター配列(lacO配列)を導入したPluxlacOプロモーターを構築することにより、AHL-LuxR複合体(オートインデューサーおよびそのレセプターの複合体)によるプロモーターへの結合をLacIリプレッサーによる立体障害により制限している。誘導剤(IPTG)は、LacIリプレッサーに結合することにより、LacIのLacO配列への結合を阻害することができる。これにより、添加されるべき誘導剤(IPTG)の濃度に応じてPluxlacOプロモーター活性(LacIリプレッサーによる立体障害の軽減によるAHL-LuxR複合体によるプロモーターへの結合の向上)およびAHL合成速度を制御できるため、QSにより目的遺伝子(gltA遺伝子)の発現を誘導することができる。
国際公開第2013/179722号 国際公開第2015/060529号 国際公開第2015/080273号 国際公開第2016/084963号
Soma Y et al., Metabolic Engineering,23(2014) 175-184 Soma Y, Hanai T, Metabolic Engineering,30(2015) 7-15
 上記先行技術によれば、菌体増殖期と物質生産期とを切り替えるための手段として誘導剤(IPTG)の使用が必須である。しかし、このような誘導剤は高価であり、また、誘導剤の投入時期の調節も要し煩雑であるため、上記先行技術のシステムは、商業規模の物質生産には不向きである。
 したがって、本発明の目的は、誘導剤を使用することなく、菌体増殖期と物質生産期とを効率的に切り替えることにより、微生物による目的物質の収量を増加させることができる発酵プロセスを開発することである。
 本発明者らは、鋭意検討した結果、クオラムセンシングを担うオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有する第1微生物、および前記オートインデューサーを産生する能力を有する第2微生物を共培養することにより、上記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下のとおりである。
〔1〕クオラムセンシングを担うオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有する第1微生物、および前記オートインデューサーを産生する能力を有する第2微生物を共培養して目的物質を生産することを含む、目的物質の生産方法。
〔2〕前記第1微生物が、以下を含む、〔1〕の方法:
(1)目的物質の生合成に関与するタンパク質をコードする1以上の遺伝子、および当該1以上の遺伝子に作動可能に連結されたオートインデューサー依存性プロモーターを含む第1発現単位;ならびに
(2)オートインデューサーと結合して転写活性化作用を示す転写因子をコードする1以上の遺伝子、および当該1以上の遺伝子に作動可能に連結されたプロモーターを含む第2発現単位。
〔3〕前記第2微生物が、オートインデューサーの合成酵素をコードする遺伝子、および当該遺伝子に作動可能に連結されたプロモーターを含む第3発現単位を含む、〔1〕または〔2〕の方法。
〔4〕前記第1発現単位および前記第2発現単位の一方もしくは双方が前記第1微生物に対して異種であるか、または前記第3発現単位が前記第2微生物に対して異種である、〔2〕または〔3〕の方法。
〔5〕オートインデューサーがN-アシル-L-ホモセリンラクトン(AHL)である、〔1〕~〔4〕のいずれかの方法。
〔6〕前記オートインデューサー依存性プロモーターがluxプロモーター(Plux)であり、
 前記転写因子をコードする遺伝子が、AHLレセプターをコードする遺伝子(LuxR)であり、
 前記合成酵素をコードする遺伝子が、AHL合成酵素をコードする遺伝子(LuxI)である、〔5〕の方法。
〔7〕前記第1微生物および前記第2微生物の総菌体量に対する前記第2微生物の菌体量の割合(%)が50%未満である、〔1〕~〔6〕のいずれかの方法。
〔8〕前記第1微生物および前記第2微生物の総菌体量に対する前記第2微生物の菌体量の割合(%)が10%以下である、〔7〕の方法。
〔9〕前記第1微生物および/または第2微生物が、以下(a)および(b)を含む遺伝子発現制御系を含む、〔1〕~〔8〕のいずれかの方法:
(a)微生物の増殖に必要とされる内因性物質の変換に関与する酵素をコードする1以上の遺伝子、および当該1以上の遺伝子に作動可能に連結されたリプレッサー抑制性プロモーター;ならびに
(b)リプレッサーをコードする1以上の遺伝子、および当該1以上の遺伝子に作動可能に連結されたオートインデューサー依存性プロモーター。
〔10〕内因性物質がアセチルCoAである、〔9〕の方法。
〔11〕目的物質が、メバロン酸またはイソプレノイドである、〔1〕~〔10〕のいずれかの方法。
〔12〕目的物質がアミノ酸である、〔1〕~〔8〕のいずれかの方法。
〔13〕目的物質がポリペプチドである、〔1〕~〔8〕および〔12〕のいずれかの方法。
〔14〕前記第1微生物および前記第2微生物が同種の微生物である、〔1〕~〔13〕のいずれかの方法。
〔15〕前記第1微生物および/または前記第2微生物がグラム陰性細菌である、〔1〕~〔14〕のいずれかの方法。
〔16〕前記第1微生物および/または前記第2微生物が、エシェリヒア属(Escherichia)細菌である、〔1〕~〔15〕のいずれかの方法。
〔17〕エシェリヒア属(Escherichia)細菌がエシェリヒア・コリ(Escherichia coli)である、〔16〕の方法。
〔18〕前記第1微生物および/または前記第2微生物が、パントエア属(Pantoea)細菌である、〔1〕~〔15〕のいずれかの方法。
〔19〕パントエア属(Pantoea)細菌がパントエア・アナナティス(Pantoea ananatis)である、〔18〕の方法。
〔20〕クオラムセンシングを担うオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有する第1微生物、および前記オートインデューサーを産生する能力を有する第2微生物を含む共培養系。
〔21〕クオラムセンシングを担うオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有し、かつ、前記オートインデューサーを産生する能力を有しない微生物。
〔22〕クオラムセンシングを担うオートインデューサーを産生する能力を有し、かつ、前記オートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有しない微生物。
 第1微生物および第2微生物を用いる本発明の方法は、誘導剤を使用することなく、菌体増殖期と物質生産期とを効率的に切り替えることにより、培地中の炭素源から目的物質を効率的に生産することができる。本発明の方法は、微生物の増殖に必要とされる内因性物質(菌体増殖と物質生産との間で競合する物質)を目的物質の合成のために利用することにより、目的物質の生産の開始後に、微生物の増殖を相対的に抑制することができる。また、本発明によれば、本発明の方法に有用である共培養系および微生物が提供される。
図1は、実施例4で用いたSC17(0)-MAL-tetR_gltA-luxIRΔeanIR株(略称:P-MAL-luxIR)およびSC17(0)-MAL-tetR_gltA-luxRΔeanIR株(略称:P-MAL-luxR)におけるgltA遺伝子(メバロン酸生合成と共通中間物質であるアセチルCoAを基質とするTCA回路の初発反応を行う、菌体増殖に必要な酵素をコードする遺伝子)の発現調節機構の概要を示す図である。菌体増殖後にgltA遺伝子の発現を抑制することにより、菌体増殖が抑制される一方で、目的物質の生産のためにアセチルCoAを効率よく供給することができる。菌体増殖後のgltA遺伝子の発現の抑制は、gltA遺伝子の発現を改変型PLプロモーター(PLtetO1;PLプロモーターを抑制するためのリプレッサー(tetR)が結合する領域をPLプロモーター内に導入した改変型プロモーター)で制御し、そしてリプレッサー(tetR)の発現を野生型Pluxプロモーターで制御することにより行うことができる。(A)菌体生育時の概要を示す。菌体生育時には、細胞密度が低く、オートインデューサー(luxI)の濃度が不十分であり、Pluxを活性化するのに十分な量の転写調節複合体〔オートインデューサー(luxI)およびそのレセプター(luxR)の複合体〕が供給されない。その結果、リプレッサー(tetR)の発現が抑制され、ひいては当該リプレッサーによるgltA遺伝子の発現抑制を実現できないため、菌体増殖に必要であるgltA遺伝子が発現する。また、Pluxを活性化するのに十分な量の転写調節複合体が供給されないため、目的物質の生合成に関与するタンパク質をコードする1以上の遺伝子(mvaA、hmcM、およびthiL)の発現も抑制される。(B)目的物質の生産時の概要を示す。細胞密度が高くなると、オートインデューサー(luxI)の濃度が十分になり、Pluxを活性化するのに十分な量の転写調節複合体が供給される。その結果、リプレッサー(tetR)の発現が促進され、ひいては当該リプレッサーによるgltA遺伝子の発現抑制を実現できるため、菌体増殖に必要であるgltA遺伝子の発現が抑制される。また、Pluxを活性化するのに十分な量の転写調節複合体が供給されるため、目的物質の生合成に関与するタンパク質をコードする1以上の遺伝子(mvaA、hmcM、およびthiL)の発現も促進される。 図2は、P-MAL-luxIR株とP-MAL-luxR株の共培養によるメバロン酸(MVA)の蓄積量(g/L)を示す図である。植菌時のP-MAL-luxIR株の割合を%で示す。N=3の平均値とエラーバーは標準偏差値で示す。LuxIR:P-MAL-luxIR株(第2微生物);LuxR:P-MAL-luxR株(第1微生物)。
 本発明は、目的物質の生産方法を提供する。本発明の方法は、クオラムセンシングを担うオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有する第1微生物、および前記オートインデューサーを産生する能力を有する第2微生物を共培養して目的物質を生産することを含む。
 クオラムセンシングは、自分と同種の微生物の密度を感知して、それに応じて所定の物質の産生を制御する機構である。クオラムセンシングは、微生物がある程度以上の微生物密度(菌体量)に増殖するまで特定の物質生産を抑える一方、十分な微生物密度に到達したときには所定の物質の産生を行うことから、微生物の生存戦略と密接に関連していると考えられている。
 クオラムセンシングを担うオートインデューサーは、クオルモンとも呼ばれており、転写制御因子と結合して転写活性化作用を示すことにより目的タンパク質の合成を促進することができる。このようなオートインデューサーは、それを産生した微生物自体で作用するのみならず、菌体外に分泌されて他の微生物にも取り込まれることにより、取り込まれた微生物でも作用することができる。微生物密度が低い(菌体量が少ない)場合、微生物内で産生されたオートインデューサーは微生物外に分泌され拡散され、微生物内のオートインデューサー濃度は低くなることから、転写活性化作用の程度も低くなり目的タンパク質の合成を殆ど促進することができない。一方、微生物密度が高い(菌体量が多い)場合、微生物内のオートインデューサー濃度は高くなることから、転写活性化作用の程度も高くなり目的タンパク質の合成を強く促進することができる。
 クオラムセンシングを担うオートインデューサーとしては、多くのグラム陰性細菌で産生されているN-アシル-L-ホモセリンラクトン(AHL)を使用することができる。AHLにおけるアシルは、微生物の種類によっても異なるが、炭素原子数4~16であることが多い。異なる炭素原子数のアシルを有するAHLが、微生物の種類に応じて利用されている。より具体的には、AHLとしては、例えば、N-ブタノイル-L-ホモセリンラクトン、N-3-オキソブタノイル-L-ホモセリンラクトン、N-3-ヒドロキシブタノイル-L-ホモセリンラクトン、N-ペンタノイル-L-ホモセリンラクトン、N-3-オキソペンタノイル-L-ホモセリンラクトン、N-3-ヒドロキシペンタノイル-L-ホモセリンラクトン、N-ヘキサノイル-L-ホモセリンラクトン、N-3-オキソヘキサノイル-L-ホモセリンラクトン、N-3-ヒドロキシヘキサノイル-L-ホモセリンラクトン、N-ヘプタノイル-L-ホモセリンラクトン、N-3-オキソヘプタノイル-L-ホモセリンラクトン、N-3-ヒドロキシヘプタノイル-L-ホモセリンラクトン、N-オクタノイル-L-ホモセリンラクトン、N-3-オキソオクタノイル-L-ホモセリンラクトン、N-3-ヒドロキシオクタノイル-L-ホモセリンラクトン、N-ノナノイル-L-ホモセリンラクトン、N-3-オキソノナノイル-L-ホモセリンラクトン、N-3-ヒドロキシノナノイル-L-ホモセリンラクトン、N-デカノイル-L-ホモセリンラクトン、N-3-オキソデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシデカノイル-L-ホモセリンラクトン、N-ウンデカノイル-L-ホモセリンラクトン、N-3-オキソウンデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシウンデカノイル-L-ホモセリンラクトン、N-ドデカノイル-L-ホモセリンラクトン、N-3-オキソドデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシドデカノイル-L-ホモセリンラクトン、N-トリデカノイル-L-ホモセリンラクトン、N-3-オキソトリデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシトリデカノイル-L-ホモセリンラクトン、N-テトラデカノイル-L-ホモセリンラクトン、N-3-オキソテトラデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシテトラデカノイル-L-ホモセリンラクトン、N-ペンタデカノイル-L-ホモセリンラクトン、N-3-オキソペンタデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシペンタデカノイル-L-ホモセリンラクトン、N-ヘキサデカノイル-L-ホモセリンラクトン、N-3-オキソヘキサデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシヘキサデカノイル-L-ホモセリンラクトンが挙げられる。また、クオラムセンシングを担うオートインデューサーとしては、AHL以外にも、4,5-ジヒドロキシ-2,3-ペンタンジオン(AI2:オートインデューサー2);HHQ(2-アルキル-4-キノロン)、PQS(2-アルキル-3-ヒドロキシ-4-キノロン)等のキノロン・キノリン類;インドール類;ペプチド;環状ジペプチド等の因子を使用することができる。好ましくは、オートインデューサーは、AHLである。
 オートインデューサーは、それと結合して転写活性化作用を示す転写因子(オートインデューサーのレセプター)に結合することで、その作用を発揮することができる。AHLと結合して転写活性化作用を示す転写因子としては、例えば、AHLレセプター(AHLレセプター遺伝子であるLuxRによりコードされるタンパク質)を使用することができる。上述したような異なる炭素原子数のアシルを有するAHLに対するレセプターが、微生物の種類に応じて利用されている。より具体的には、AHLレセプターとしては、例えば、luxR、TraR,RaiR、CinR、RhiR、BisR、TriR、Y4qH、CerR、CepR,SolR、AhyR、AsaR、EagR、ExpR、CarR、EcbR、SdiA,SwrR、SmaR、YenR、LasR、RhlR、PsyR、AblR、VanR,BjaR、PhzR、OryR、EanR、XagR、AviR、TofRが挙げられる。また、クオラムセンシングを担うオートインデューサーに対するレセプターとしては、AHLレセプター以外にも、AI-2レセプターとしてLsrB、PbsB、RbsB、およびLuxP;キノロン・キノリン類のレセプターとしてPqsR;ペプチドAIP-IのレセプターとしてAgrCおよびAgrA;インドール類のレセプターとしてbaeSRおよびcpxAR等のレセプターを使用することができる。好ましくは、オートインデューサーと結合して転写活性化作用を示す転写因子は、AHLレセプター(AHLレセプター遺伝子であるLuxRによりコードされるタンパク質)である。
 オートインデューサーは、微生物においてオートインデューサーの合成酵素により産生される。オートインデューサーの合成酵素としては、例えば、AHLの合成酵素(例、LuxI、TraI、RaiI、CinI、RhiI、CerI、CepI、CviI、SolI、AhyI、AsaI、EagI、ExpI、EcbI、EsaI、SwrI、SmaI、YenI、LasI、SalI、RhlI、PhzI、PsyI、AhlI、VanI、BjaI、PhzI、EanI、TofI)、AHLの合成酵素以外のオートインデューサーの合成酵素(例、LuxS、CqsA、LuxM AHL synthase)が挙げられる。好ましくは、オートインデューサーの合成酵素は、AHLの合成酵素である。
 オートインデューサー、およびそれと結合して転写活性化作用を示す転写因子はそれぞれ、クオラムセンシングの機構を有する微生物由来のものを使用することができるが、好ましくは、クオラムセンシングの機構を有する微生物として種々のグラム陰性菌が報告されていることを考慮すると、グラム陰性菌由来のオートインデューサーおよびそれと結合する能力を有する転写因子を用いることができる。オートインデューサーおよびそれと結合する転写因子が由来するグラム陰性菌としては、例えば、ビブリオ属(Vibrio)細菌〔例、ビブリオ・フィシェリ(Vibrio fischeri)、ビブリオ・アングイラルム(Vibrio anguillarum)〕、セラチア属(Serratia)細菌〔例、セラチア・リクエファシエンス(Serratia liquefaciens)、セラチア・マルセッセンス(Serratia marcescens)〕、エンテロバクテリア属(enterobacteria)細菌〔例、エンテロバクター・アエロゲネス(Enterobacter aerogenes)〕、パントエア属(Pantoea)細菌〔例、パントエア・アグロメランス(Pantoea agglomerans)、パントエア・アナナティス(Pantoea ananatis)、パントエア・ステワルチイ(Pantoea stewartii)、エルウィニア属(Ervinia)細菌〔例、エルウィニア・カロトボラ(Erwinia carotovora)、エルウィニア・キリサントベミ(Erwinia chrysantbemi)〕、エシェリヒア属(Escherichia)細菌〔例、エシェリヒア・コリ(Escherichia coli)〕、サルモネラ属細菌〔例、サルモネラ・チプビムリアム(Salmonella typbimurium)〕、エルシニア属細菌〔例、エルシニア・エンテロコリチカ(Yersinia enterocolitica)〕、シュードモナス属(Pseudomonas)細菌〔例、シュードモナス・アエルギノサ(Pseudomonas aeruginosa)、シュードモナス・アレオファシエンス(Pseudomonas aureofaciens)、シュードモナス・フルオレッセンス(Pseudomonas fluorescens)、シュードモナス・シリンガエ・ピーブブイ・タバキ(Pseudomonas syringae pv.tabaci)、シュードモナス・シリンガエ・ピーブイ・シリンガエ(Pseudomonas syringae pv.syringae)〕、アグロバクテリウム属(Agrobacterium)細菌〔例、アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)、アグロバクテリウム・ビティス(Agrobacterium vitis)〕、リゾビウム属(Rbizobium)細菌〔例、リゾビウム・エトリ(Rhizobium etli)、リゾビウム・レグミノサラム(Rhizobium leguminosarum)、リゾビウム・エスピー・NGR234(Rhizobium sp.NGR234)、リゾビウム・スファエロイデス(Rhizobium sphaeroides)〕、アエロモナス属(Aeromonas)細菌〔例、アエロモナス・ハイドロピビラ(Aeromonas hydropbila)、アエロモナス・サルモニシダ(Aeromonas salmonicida)〕が挙げられる。オートインデューサーおよびそれと結合する能力を有する転写因子の組合せは、これらが相互作用して転写活性化作用を示すことができる限り特に限定されないが、同種の微生物由来のオートインデューサーおよびそれと結合する能力を有する転写因子の組合せを使用することが好ましい。より好ましくは、オートインデューサーおよびそれと結合する能力を有する転写因子は、ビブリオ・フィシェリ(Vibrio fischeri)等のビブリオ属(Vibrio)細菌のものである。
 クオラムセンシングを担うオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有する第1微生物としては、上述したようなオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有する微生物を使用することができる。好ましくは、第1微生物は、目的物質の生合成に関与するタンパク質およびオートインデューサーと結合して転写活性化作用を示す転写因子の双方を発現し、かつ目的物質の生合成に関与するタンパク質の発現がオートインデューサーおよびそれと結合する能力を有する転写因子の複合体を介して促進される微生物である。目的物質の生合成に関与するタンパク質の発現がオートインデューサーおよびそれと結合する能力を有する転写因子の複合体を介して促進される微生物としては、例えば、(a)オートインデューサーおよびそれと結合する能力を有する転写因子の複合体により活性化され得るオートインデューサー依存性プロモーターの制御下に配置されている、目的物質の生合成に関与するタンパク質をコードする1以上の遺伝子を含む微生物(目的物質の生合成に関与するタンパク質の発現がオートインデューサー依存性プロモーターにより直接的に制御される微生物)、ならびに(b)目的物質の生合成に関与するタンパク質をコードする1以上の遺伝子が、上述したようなオートインデューサー依存性プロモーターではない誘導性プロモーターの制御下に配置されており、かつ、当該誘導性プロモーターを直接的または間接的に制御する能力を有する所定の転写因子(例、アクチベーター)をコードする1以上の遺伝子が、上述したようなオートインデューサー依存性プロモーターの制御下に配置されている微生物(目的物質の生合成に関与するタンパク質の発現がオートインデューサー依存性プロモーターにより間接的に制御される微生物)が挙げられる。遺伝子のプロモーターへの配置は、単一遺伝子が単一プロモーターの制御下に配置されるモノシストロニック様式、または複数遺伝子が単一プロモーターの制御下に配置されるポリシストロニック様式のいずれかであってもよい。微生物の発現システムの簡便な構築等の観点からは、目的物質の生合成に関与するタンパク質の発現がオートインデューサーおよびそれと結合する能力を有する転写因子の複合体を介して促進される(a)の微生物が好ましい。
 目的物質は、微生物において生合成が可能である任意の物質であり、商業的に価値のある物質(例、医薬、食品、化粧品または試薬等の製品における成分)が好ましい。目的物質の生合成に関与するタンパク質は、目的物質の種類に応じて異なる。本発明では、微生物において生合成が可能である任意の目的物質を生産することができるため、このような目的物質の種類に応じて、目的物質の生合成に関与するタンパク質の種類を適宜選択することができる。
 一実施形態では、目的物質は、メバロン酸、またはイソプレノイドであってもよい。したがって、目的物質の生合成に関与するタンパク質として、メバロン酸、またはイソプレノイドの生合成に関与するタンパク質(好ましくは酵素)を使用することができる。
 メバロン酸の生合成に関与するタンパク質としては、例えば、ヒドロキシメチルグルタリル(HMG)-CoAレダクターゼ(例、E.C.1.1.1.34)、HMG-CoAシンターゼ(例、E.C.4.1.3.5)、アセチルCoA-C-アセチルトランスフェラーゼ(チオラーゼ)(例、E.C.2.3.1.9)が挙げられる。
 イソプレノイド化合物は、分子式(C5H8)nを有する1以上のイソプレン単位からなる。イソプレノイド化合物は、テルペンまたはテルペノイドとも呼ばれる。テルペンとテルペノイドとの相違は、テルペンが炭化水素であるのに対し、テルペノイドはさらなる官能基を含む点にある。テルペンは、分子中のイソプレン単位数により分類される〔例えば、ヘミテルペン(C5)、モノテルペン(C10)、セスキテルペン(C15)、ジテルペン(C20)、セステルテルペン(C25)、トリテルペン(C30)、セスカルテルペン(C35)、テトラテルペン(C40)、ポリテルペン、ノルイソプレノイド〕。モノテルペンとしては、例えば、ピネン、ネロール、シトラール、カンファー、メントール、リモネン、およびリナロールが挙げられる。セスキテルペンとしては、例えば、ネロリドール、およびファルネソールが挙げられる。ジテルペンとしては、例えば、フィトール、およびビタミンA1が挙げられる。スクアレンはトリテルペンの例である。また、カロテノイド〔例、カロテン(例、プロビタミンA1)、キサントフィル〕は、テトラテルペンとして知られている。テルペンまたはテルペノイドの詳細は、種々の刊行物に記載されている(例、Nature Chemical Biology  2,674~681(2006);Nature Chemical Biology  5,283~291(2009);Nature Reviews Microbiology  3,937~947(2005);Adv Biochem Eng Biotechmol(DOI:10.1007/10_2014_288)。不規則なイソプレノイドおよびポリテルペンが報告されており、これらもイソプレノイド化合物に含まれる。
 イソプレノイドは、多くの生物(例、微生物、植物、動物)が有するメバロン酸(MVA)経路〔例、Kuzuyama TおよびSeto H, Proc Jpn Acad Ser B Phys Biol Sci.88,41-52(2012);Miziorko HM,Arch Biochem Biophys.505,131-143(2011)を参照〕および/またはメチルエリスリトール-4-リン酸(MEP)経路〔例、Kuzuyama TおよびSeto H,Proc Jpn Acad Ser B Phys Biol Sci.88,41-52(2012);Grawert T et al.,Cell Mol Life Sci.68,3797-3814(2011)を参照〕を介して、イソプレン単位の前駆体であるイソペンテニルピロリン酸(IPP)および/またはジメチルアリルピロリン酸(DMAPP)から生合成される。したがって、イソプレノイドの生合成に関与するタンパク質としては、(1)種々のイソプレノイドの生合成に共通する前駆物質であるIPPおよび/またはDMAPPの生合成に関与する酵素、または(2)個々のイソプレノイドの生合成に特異的に関与する酵素(IPPおよび/またはDMAPPよりも下流の生合成経路に関与する酵素)が挙げられる。
 IPPおよび/またはDMAPPの生合成に関与する酵素としては、例えば、MVA経路に関与する酵素、MEP経路に関与する酵素、ならびにIPPおよびDMAPP間の変換能を有する酵素が挙げられる。
 MVA経路に関与する酵素としては、例えば、メバロン酸キナーゼ(例、E.C.2.7.1.36)、ホスホメバロン酸キナーゼ(例、E.C.2.7.4.2)、ジホスホメバロン酸デカルボキシラーゼ(例、E.C.4.1.1.33)、アセチル-CoA-C-アセチルトランスフェラーゼ(例、E.C.2.3.1.9)、ヒドロキシメチルグルタリル-CoAシンターゼ(例、E.C.2.3.3.10)、ヒドロキシメチルグルタリル-CoAリダクターゼ(例、E.C.1.1.1.34、およびE.C.1.1.1.88)、アセチル-CoA-アセチルトランスフェラーゼ/ヒドロキシメチルグルタリル-CoAリダクターゼ(例、E.C.2.3.1.9/1.1.1.34)が挙げられる。
 MEP経路に関与する酵素としては、例えば、1-デオキシ-D-キシルロース-5-リン酸シンターゼ(例、E.C.2.2.1.7)、1-デオキシ-D-キシルロース-5-リン酸リダクトイソメラーゼ(例、E.C.1.1.1.267)、4-ジホスホシチジル-2-C-メチル-D-エリスリトールシンターゼ(例、E.C.2.7.7.60)、4-ジホスホシチジル-2-C-メチル-D-エリスリトールキナーゼ(例、E.C.2.7.1.148)、2-C-メチル―D-エリスリトール-2,4-シクロニリン酸シンターゼ(例、E.C.4.6.1.12)、1-ヒドロキシ-2-メチル-2-(E)-ブテニル-4-ニリン酸シンターゼ(例、E.C.1.17.7.1)、4-ヒドロキシ-3-メチル-2-ブテニル二リン酸レダクターゼ(例、E.C.1.17.1.2)が挙げられる。
 IPPおよびDMAPP間の変換能を有する酵素としては、例えば、イソペンテニル二リン酸デルタイソメラーゼ(例、E.C.5.3.3.2)が挙げられる。
 個々のイソプレノイドの生合成に特異的に関与する酵素としては、例えば、リモネンシンターゼ(目的物質がリモネンの場合)、リナロールシンターゼ(目的物質がリナロールの場合)、リナロールシンターゼ、チトクロームp450モノオキシゲナーゼ、およびトランスカルベオールデヒドロゲナーゼからなる群より選ばれる1以上の酵素(目的物質がカルボンの場合)、バレンセンシンターゼからなる群より選ばれる1以上の酵素(目的物質がバレンセンの場合)、バレンセンシンターゼ、チトクロームP450、およびアルコールオキシダーゼからなる群より選ばれる1以上の酵素(目的物質がヌートカトンの場合)が挙げられる。
 別の実施形態では、目的物質は、ポリペプチドであってもよい。したがって、目的物質の生合成に関与するタンパク質として、ポリペプチドの生合成に関与するタンパク質を使用することができる。このようなポリペプチドは、医薬、食品、化粧品または試薬等の製品における成分として用いることができる。あるいは、このようなポリペプチドは、微生物において別の目的物質(例、上述したようなメバロン酸、またはイソプレノイド)の生産が意図される場合に、当該別の目的物質の生合成に関与するタンパク質であってもよい。より具体的には、目的物質であるポリペプチドとしては、例えば、セルラーゼ、アルブミン、ラミニン、EPOが挙げられる。
 本発明では、微生物の増殖に必要とされる内因性物質を、目的物質の合成のために利用することができる。目的物質の合成のために利用することができる微生物の増殖に必要とされる内因性物質は、上述した目的物質の種類に応じて異なるが、効率的に本発明の方法を行う観点から、微生物が培養培地中の成分(例、培地中の炭素源)から十分に生合成することができる内因性物質が好ましい。より好ましくは、菌体増殖期と物質生産期との切り替えを強化する観点から、微生物の増殖に必要とされる内因性物質として、菌体増殖と物質生産との間で競合する物質を利用することが好ましい。微生物の増殖に必要とされる内因性物質を目的物質の合成のために利用することで、微生物の増殖を相対的に抑制することができる。さらにより好ましくは、菌体増殖期と物質生産期との切り替えのさらなる強化の観点から、微生物の増殖に必要とされる内因性物質としては、培養培地中に含まれない、または不十分な量でしか含まれない内因性物質を使用することができる(例、内因性物質の枯渇培地の使用)。
 微生物の増殖に必要とされる内因性物質としては、例えば、微生物の構造の構成要素の供給および細胞分裂に必要である内因性物質が挙げられる。このような内因性物質としては、トリカルボン酸(TCA)回路、アミノ酸生合成系、または脂質生合成系に関与する内因性物質が好ましい。
 トリカルボン酸(TCA)回路に関与する内因性物質としては、例えば、TCA回路に流入する物質であるアセチル-CoA、ならびにTCA回路を構成するクエン酸、アコニット酸、イソクエン酸、オキサロコハク酸、α-ケトグルタル酸、スクシニルCoA、コハク酸、フマル酸、リンゴ酸、およびオキサロ酢酸が挙げられる。
 アミノ酸生合成系に関与する内因性物質としては、例えば、(a)ヒスチジンの前駆体であるリボース-5-リン酸、(b)セリン、システインおよびグリシンの前駆体である3-ホスホグリセリン酸、(c)トリプトファン、フェニルアラニンおよびチロシンの前駆体であるホスホエノールピルビン酸、(d)アラニン、ロイシンおよびバリンの前駆体であるピルビン酸、(e)アスパラギン酸、アスパラギン、リジン、スレオニン、メチオニンおよびイソロイシンの前駆体であるオキサロ酢酸、ならびに(f)プロリン、グルタミン酸、グルタミンおよびアルギニンの前駆体であるα-ケトグルタル酸が挙げられる。
 脂質生合成系に関与する内因性物質としては、例えば、アセチル-CoA、マロニル-CoA、アセチル-ACP、マロニル-ACP、3-オキソアシル-ACP、3-ヒドロキシアシル-ACP、エノイル-ACP、アシル-ACP(例、ブチリル-ACP)、および3-オキソアシル-ACP、脂肪酸アシル-ACPが挙げられる。
 微生物の増殖に必要とされる内因性物質としては、上述した2以上の生合成系に共通して関与する内因性物質が好ましく、トリカルボン酸(TCA)回路に関与する内因性物質がより好ましく、アセチル-CoAおよびピルビン酸(アセチルCoAの前駆体であり、また、アミノ酸生合成系にも関与する内因性物質)がさらにより好ましい。特に好ましくは、本発明では微生物の増殖に必要とされる内因性物質としてアセチル-CoAを利用することができる。
 特定の実施形態では、第1微生物は、以下を含んでいてもよい:
(1)目的物質の生合成に関与するタンパク質をコードする1以上の遺伝子、および当該1以上の遺伝子に作動可能に連結されたオートインデューサー依存性プロモーターを含む第1発現単位;ならびに
(2)オートインデューサーと結合して転写活性化作用を示す転写因子をコードする遺伝子、および当該1以上の遺伝子に作動可能に連結されたプロモーターを含む第2発現単位。
 本発明において、上述した第1発現単位および第2発現単位、ならびに後述する第3発現単位における用語「発現単位」とは、タンパク質として発現されるべき所定の遺伝子(ポリヌクレオチド)およびそれに作動可能に連結されたプロモーターを含む、当該遺伝子の転写、ひいては当該遺伝子によりコードされるタンパク質の産生を可能にする最小単位をいう。発現単位は、ターミネーター、リボゾーム結合部位、および薬剤耐性遺伝子等のエレメントを適宜含んでいてもよい。発現単位は、DNAであってもRNAであってもよいが、DNAであることが好ましい。発現単位はまた、宿主細胞に対して同種(homologous)(すなわち、固有(inherent))であっても、異種(heterologous)(すなわち、非固有)であってもよい。ここで、表現「発現単位が異種である」とは、タンパク質として発現されるべき所定の遺伝子およびそれに作動可能に連結されたプロモーターのいずれか一方または双方が微生物(宿主細胞)に対して異種であることをいう。発現単位はまた、タンパク質として発現されるべき1つの遺伝子、およびそれに作動可能に連結されたプロモーターを含む発現単位(すなわち、モノシストロニックmRNAの発現を可能にする発現単位)、またはタンパク質として発現されるべき複数の遺伝子(例えば2以上、好ましくは3以上、より好ましくは4以上、さらにより好ましくは5以上の遺伝子)、およびそれに作動可能に連結されたプロモーターを含む発現単位(すなわち、ポリシストロニックmRNAの発現を可能にする発現単位)であってもよい。発現単位は、微生物(宿主細胞)においてゲノム領域(例、上記タンパク質をコードする遺伝子が固有に存在する天然ローカスである天然ゲノム領域、もしくは当該天然ローカスではない非天然ゲノム領域)、または非ゲノム領域(例、細胞質内)に含まれることができる。発現単位は、1または2以上(例、1、2、3、4、または5)の異なる位置においてゲノム領域中に含まれていてもよい。非ゲノム領域に含まれる発現単位の具体的な形態としては、例えば、プラスミド、ウイルスベクター、ファージ、および人工染色体が挙げられる。発現単位を構成するプロモーターは、遺伝子に作動可能に連結されることにより、遺伝子によりコードされるタンパク質を微生物で発現させることができるものであれば特に限定されない。例えば、プロモーターは、微生物に対して同種であっても異種であってもよいが、好ましくは異種である。
 第1発現単位における、目的物質の生合成に関与するタンパク質をコードする1以上の遺伝子としては、上述したタンパク質をコードする1以上の遺伝子を使用することができる。
 第1発現単位におけるオートインデューサー依存性プロモーターは、上述したオートインデューサーおよびそれに結合する能力を有する転写因子の複合体が結合して転写促進作用を示すプロモーターである。このようなプロモーターは、オートインデューサーおよびそれに結合する能力を有する転写因子の種類に応じて適宜選択することができる。オートインデューサー依存性プロモーターとしては、例えば、luxプロモーター(Plux)、las-rhl boxを持つプロモーター、tra boxを持つプロモーター、Esa boxを持つプロモーターが挙げられる。好ましくは、オートインデューサー依存性プロモーターは、Pluxである。このようなプロモーターはまた、オートインデューサーおよびそれと結合する能力を有する転写因子と同種の微生物のものを使用することができる。好ましくは、オートインデューサー依存性プロモーターは、ビブリオ・フィシェリ(Vibrio fischeri)等のビブリオ属(Vibrio)細菌のものである。
 第2発現単位における、オートインデューサーと結合して転写活性化作用を示す転写因子をコードする遺伝子としては、上述した転写因子をコードする遺伝子を使用することができる。
 第2発現単位におけるプロモーターとしては、例えば、組換えタンパク質の産生に汎用される構成プロモーターを用いることができる。このようなプロモーターとしては、例えば、PhoAプロモーター、PhoCプロモーター、T7プロモーター、T5プロモーター、T3プロモーター、lacプロモーター、trpプロモーター、trcプロモーター、tacプロモーター、PRプロモーター、PLプロモーター、SP6プロモーターが挙げられる。好ましくは、微生物(宿主細胞)で強力な転写活性を有するプロモーターを用いることができる。微生物で強力な転写活性を有するプロモーターとしては、例えば、微生物で高発現している遺伝子のプロモーター、およびウイルス由来のプロモーターが挙げられる。
 好ましくは、第1微生物は、クオラムセンシングを担うオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有し、かつ、当該オートインデューサーを産生する能力を有しない微生物であってもよい。このような第1微生物は、オートインデューサーを産生する能力を有しない(例、オートインデューサーの合成酵素を発現しない)ことから、第2微生物の不在下では目的物質を生産することができないが、第2微生物との共培養により目的物質を生産することができる。このような第1微生物を用いることで、第1微生物および第2微生物の混合(共培養の開始条件)により、菌体増殖期から物質生産期への切り替えの時期を厳密に制御することができる。したがって、このような第1微生物は、菌体増殖期から物質生産期への切り替えの厳密な制御による、効率的な目的物質の生産に有用である。オートインデューサーを産生する能力を有しない第1微生物としては、以下の発現単位(1’)を含まない微生物を使用することが好ましい:
(1’)オートインデューサーの合成酵素をコードする遺伝子、および当該遺伝子に作動可能に連結されたプロモーターを含む発現単位。
 クオラムセンシングを担うオートインデューサーを産生する能力を有する第2微生物としては、上述したようなオートインデューサーを産生する能力を有する微生物を使用することができる。好ましくは、第2微生物は、オートインデューサーの合成酵素を発現する微生物である。
 特定の実施形態では、第2微生物は、以下を含んでいてもよい:
(3)オートインデューサーの合成酵素をコードする遺伝子、および当該遺伝子に作動可能に連結されたプロモーターを含む第3発現単位。
 第3発現単位における、オートインデューサーの合成酵素をコードする遺伝子としては、上述したオートインデューサーの合成酵素をコードするものを使用することができる。
 第3発現単位におけるプロモーターとしては、例えば、組換えタンパク質の産生に汎用される構成プロモーターを用いることができる。このようなプロモーターとしては、例えば、PhoAプロモーター、PhoCプロモーター、T7プロモーター、T5プロモーター、T3プロモーター、lacプロモーター、trpプロモーター、trcプロモーター、tacプロモーター、PRプロモーター、PLプロモーター、SP6プロモーターが挙げられる。好ましくは、微生物(宿主細胞)で強力な転写活性を有するプロモーターを用いることができる。微生物で強力な転写活性を有するプロモーターとしては、例えば、微生物で高発現している遺伝子のプロモーター、およびウイルス由来のプロモーターが挙げられる。
 特定の実施形態では、第2微生物は、クオラムセンシングを担うオートインデューサーを産生する能力を有し、かつ、当該オートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有しない微生物であってもよい。オートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有しない微生物は、目的物質の生合成に関与するタンパク質、および/またはオートインデューサーと結合して転写活性化作用を示す転写因子を産生する能力を有しない微生物であってもよい。このような第2微生物は、作製が簡便であるという利点を有する。このような第2微生物はまた、共培養されるべき第1微生物において目的物質の生産を回避できるのみならず、第2微生物自体においても第1微生物の不在下で目的物質の生産を回避することにより、共培養系全体において菌体増殖期から物質生産期への切り替えの時期を厳密に制御できることから、共培養系全体における効率的な目的物質の生産に有用であるというさらなる利点を有する。このような第2微生物としては、以下の発現単位(2’)ならびに/あるいは(3’)を含まない微生物を使用することが好ましい:
(2’)目的物質の生合成に関与するタンパク質をコードする1以上の遺伝子、および当該1以上の遺伝子に作動可能に連結されたオートインデューサー依存性プロモーターを含む発現単位;ならびに/あるいは
(3’)オートインデューサーと結合して転写活性化作用を示す転写因子をコードする遺伝子、および当該1以上の遺伝子に作動可能に連結されたプロモーターを含む発現単位。
 別の特定の実施形態では、第2微生物は、クオラムセンシングを担うオートインデューサーを産生する能力を有し、かつ、当該オートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有する微生物であってもよい。オートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有する微生物は、上述した第1微生物と同様に、目的物質の生合成に関与するタンパク質およびオートインデューサーと結合して転写活性化作用を示す転写因子の双方を発現し、かつ目的物質の生合成に関与するタンパク質の発現がオートインデューサーおよびそれと結合する能力を有する転写因子の複合体を介して促進される微生物であってもよい。したがって、このような第2微生物は、クオラムセンシングを担うオートインデューサーを産生する能力を有しつつ、上述した発現単位(2’)ならびに/あるいは(3’)を含む微生物であってもよい。
 第1微生物および/または第2微生物は、微生物の増殖に必要とされる内因性物質の利用を、微生物の増殖後において制限することにより、菌体増殖期と物質生産期とを効率的に切り替え、ひいては培地中の炭素源から目的物質を効率的に生産するために、以下(a)および(b)を含む遺伝子発現制御系を含んでいてもよい(例、図1を参照):
(a)微生物の増殖に必要とされる内因性物質の変換に関与する酵素をコードする1以上の遺伝子、および当該1以上の遺伝子に作動可能に連結されたリプレッサー抑制性プロモーター;ならびに
(b)リプレッサーをコードする1以上の遺伝子、および当該1以上の遺伝子に作動可能に連結されたオートインデューサー依存性プロモーター。
 (a)において、微生物の増殖に必要とされる内因性物質の変換に関与する酵素としては、微生物の増殖に必要とされる当該内因性物質の消費に対して不利に作用する酵素が挙げられる。このような酵素としては、例えば、トリカルボン酸(TCA)回路、アミノ酸生合成系、または脂質生合成系に関与する酵素が挙げられるが、TCA回路に関与する酵素が好ましい。TCA回路に関与する酵素としては、例えば、アセチルCoAを基質とするTCA回路の初発反応を行う、アセチルCoAをクエン酸に変換する酵素(例、クエン酸シンターゼ/gltA遺伝子)、クエン酸をイソクエン酸に変換する酵素(例、アコニターゼ/acnB遺伝子)、イソクエン酸を2-オキソグルタル酸に変換する酵素(例、イソクエン酸デヒドロゲナーゼ/icd遺伝子)、2-オキソグルタル酸をスクシニルCoAに変換する酵素(例、2-オキソグルタル酸デヒドロゲナーゼ/sucA/B/lpd遺伝子)、スクシニルCoAをコハク酸に変換する酵素(例、スクシニルCoAシンテターゼ/sucC遺伝子)、コハク酸をフマル酸に変換する酵素(例、コハク酸デヒドロゲナーゼ/adhC遺伝子)、フマル酸をリンゴ酸に変換する酵素(例、フマル酸ヒドラターゼ/fumC遺伝子)、およびリンゴ酸をオキサロ酢酸に変換する酵素(例、リンゴ酸デヒドロゲナーゼ/mdh/mqo遺伝子)が挙げられる。より好ましくは、微生物の増殖に必要とされる内因性物質の変換に関与する酵素は、アセチルCoAをクエン酸に変換する酵素(例、クエン酸シンターゼ/gltA遺伝子)である。
 (a)におけるリプレッサー抑制性プロモーターは、リプレッサーが結合すると、転写が抑制されるプロモーターである。リプレッサー抑制性プロモーターとしては、例えば、Lacプロモーター(lacオペロン)、Trpプロモーター、およびTetプロモーターが挙げられる。
 (b)におけるリプレッサーは、リプレッサー抑制性プロモーターが結合すると、その転写活性を低減できる因子である。このようなリプレッサーとしては、例えば、TetR、lacI、およびtrpRとトリプトファンの組合せが挙げられる。
 (b)におけるオートインデューサー依存性プロモーターは、上述したものと同様である。
 上述した第1微生物および第2微生物としては、任意の微生物(宿主細胞)を用いることができる。このような微生物としては、例えば、グラム陽性菌およびグラム陰性菌が挙げられる。グラム陽性菌としては、例えば、コリネバクテリウム属(Corynebacterium)細菌〔例、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)〕、バチルス属(Bacillus)菌〔例、バチルス・サブチリス(Bacillus subtilis)〕が挙げられる。グラム陰性菌としては、例えば、腸内細菌科(Enterobacteriaceae)に属する微生物を使用することができる。また、グラム陰性菌としては、エシェリヒア(Escherichia)属細菌〔例、エシェリヒア・コリ(Escherichia coli)〕、パントエア(Pantoea)属細菌〔例、パントエア・アナナティス(Pantoea ananatis)〕を用いることもできる。第1微生物および第2微生物としては、グラム陰性菌が好ましい。第1微生物および第2微生物は、同種または異種のいずれの微生物であってもよいが、同種の微生物であることが好ましい。
 第1微生物および第2微生物として用いられる宿主細胞は、内因性遺伝子が改変されていてもよい。例えば、このような宿主細胞は、内因性クオラムセンシング遺伝子が欠失するようにゲノムが改変されていてもよい。内因性クオラムセンシング遺伝子としては、例えば、E.coliについてはSdiA遺伝子、パントエア・アナナティスについてはeanIR遺伝子およびrhlIRが報告されているので、このような遺伝子が欠失するように宿主細胞のゲノムを改変することができる。他の微生物を宿主細胞として用いる場合も、内因性クオラムセンシング遺伝子を適宜欠失させることができる。
 上述した第1微生物および第2微生物は、当該分野において公知である任意の方法により作製することができる。例えば、上述したような形質転換微生物は、発現ベクターを用いる方法(例、コンピテント細胞法、エレクトロポレーション法)、またはゲノム改変技術により作製することができる。発現ベクターが宿主細胞のゲノムDNAと相同組換えを生じる組込み型(integrative)ベクターである場合、発現単位は、形質転換により、宿主細胞のゲノムDNAに組み込まれることができる。一方、発現ベクターが宿主細胞のゲノムDNAと相同組換えを生じない非組込み型ベクターである場合、発現単位は、形質転換により、宿主細胞のゲノムDNAに組み込まれず、宿主細胞内において、発現ベクターの状態のまま、ゲノムDNAから独立して存在できる。あるいは、ゲノム編集技術(例、CRISPR/Casシステム、Transcription Activator-Like Effector Nucleases(TALEN))によれば、発現単位を宿主細胞のゲノムDNAに組み込むこと、および宿主細胞が固有に備える発現単位を改変することが可能である。
 発現ベクターは、発現単位として上述した最小単位に加えて、宿主細胞で機能するターミネーター、リボゾーム結合部位、および薬剤耐性遺伝子等のエレメントをさらに含んでいてもよい。薬剤耐性遺伝子としては、例えば、テトラサイクリン、アンピシリン、カナマイシン、ハイグロマイシン、ホスフィノスリシン等の薬剤に対する耐性遺伝子が挙げられる。
 発現ベクターはまた、宿主細胞のゲノムDNAとの相同組換えのために、宿主細胞のゲノムとの相同組換えを可能にする領域をさらに含んでいてもよい。例えば、発現ベクターは、それに含まれる発現単位が一対の相同領域(例、宿主細胞のゲノム中の特定配列に対して相同なホモロジーアーム、loxP、FRT)間に位置するように設計されてもよい。発現単位が導入されるべき宿主細胞のゲノム領域(相同領域の標的)としては、特に限定されないが、宿主細胞において発現量が多い遺伝子のローカスであってもよい。
 発現ベクターは、プラスミド、ウイルスベクター、ファージ、または人工染色体であってもよい。発現ベクターはまた、組込み型(integrative)ベクターであっても非組込み型ベクターであってもよい。組込み型ベクターは、その全体が宿主細胞のゲノムに組み込まれるタイプのベクターであってもよい。あるいは、組込み型ベクターは、その一部(例、発現単位)のみが宿主細胞のゲノムに組み込まれるタイプのベクターであってもよい。発現ベクターはさらに、DNAベクター、またはRNAベクター(例、レトロウイルス)であってもよい。発現ベクターはまた、汎用されている発現ベクターであってもよい。このような発現ベクターとしては、例えば、pUC(例、pUC19、pUC18)、pSTV、pBR(例、pBR322)、pHSG(例、pHSG299、pHSG298、pHSG399、pHSG398)、RSF(例、RSF1010)、pACYC(例、pACYC177、pACYC184)、pMW(例、pMW119、pMW118、pMW219、pMW218)、pQE(例、pQE30)、およびその誘導体が挙げられる。
 本発明の方法では、上述したような第1微生物および第2微生物を共培養することにより、目的物質を生産することができる。共培養における第1微生物および第2微生物の混合比率は、適宜調節することができるが、特定の混合比率で行われてもよい。興味深いことに、共培養において第2微生物の菌体量が第1微生物の菌体量よりも少ない場合、目的物質の対グルコース消費収率が増加することが確認されている(実施例4、表4)。したがって、本発明の方法では、共培養において第2微生物の菌体量が第1微生物の菌体量よりも少なくなるように、第1微生物含有液および第2微生物含有液が混合されることが好ましい。
 共培養における第1微生物および第2微生物の混合比率は、第1微生物および前記第2微生物の総菌体量に対する前記第2微生物の菌体量の割合(%)として評価することができる。第1微生物および前記第2微生物の総菌体量に対する前記第2微生物の菌体量の割合(%)は、好ましくは50%未満であり、より好ましくは30%以下であり、さらにより好ましくは10%以下であり、特に好ましくは1%以下、0.1%以下または0.01%以下であってもよい。本発明では、このような第2微生物の菌体量の割合(%)がこのように小さい値であっても、共培養の優れた効果が確認されている。したがって、本発明の方法は、第1微生物を培養して大量に増殖させた培養培地中に、別途少量培養された第2微生物を投入することにより、第1微生物および第2微生物の共培養が行われてもよい。このような第2微生物の菌体量の割合(%)はまた、目的物質の生産が可能である限り特に限定されないが、0.00001%以上、0.0005%以上、0.001%以上、または0.005%以上であってもよい。
 第1微生物および前記第2微生物の総菌体量に対する前記第2微生物の菌体量の割合(%)は、第1微生物含有液および第2微生物含有液(例、微生物の培養液)のOD値(例、波長600~660nmの吸光度)を考慮して、これらの含有液を適宜混合することにより評価することができる。例えば、第1微生物含有液および第2微生物含有液(例、微生物の培養液)のOD値を所定の値(例、2.0)にそろえた後、これらをA:Bの液量比率で混合することにより、上記割合(%)を100(%)×B/(A+B)の値に設定することができる。共培養に際しては、このような割合の第1微生物および第2微生物の混合液に対して、培養培地をさらに添加して、共培養開始時の微生物濃度を所定の範囲に適宜調節することもできる。共培養開始時の微生物濃度の範囲としては、例えば、OD値(例、波長600~660nmの吸光度)を基準にすると、例えば0.1~2.0の範囲の値、好ましくは0.2~1.8の範囲の値、より好ましくは0.3~1.6の範囲の値であってもよい。
 本発明の方法では、上述したような第1微生物および第2微生物の混合物を培養培地において培養することができる。共培養のための培養培地としては、当該分野において微生物の培養のために使用されるものを用いることができる。培養培地は、炭素源、窒素源、有機微量栄養源等の成分を含むことが好ましい。炭素源としては、例えば、単糖類(例、グルコース)、二糖類、オリゴ糖類、多糖類等の炭水化物;ショ糖を加水分解した転化糖;グリセロール;メタノール、ホルムアルデヒド、ギ酸塩、一酸化炭素、二酸化炭素等の炭素数が1の化合物(以下、C1化合物という。);コーン油、パーム油、大豆油等のオイル;アセテート;動物油脂;動物オイル;飽和脂肪酸、不飽和脂肪酸等の脂肪酸;脂質;リン脂質;グリセロ脂質;モノグリセライド、ジグリセライド、トリグリセライド等のグリセリン脂肪酸エステル;微生物性タンパク質、植物性タンパク質等のポリペプチド;加水分解されたバイオマス炭素源等の再生可能な炭素源;酵母エキス;又はこれらを組み合わせたものが挙げられる。窒素源としては、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等の無機アンモニウム塩、大豆加水分解物などの有機窒素、アンモニアガス、アンモニア水等を用いることができる。有機微量栄養源としては、ビタミンB1、L-ホモセリンなどの要求物質または酵母エキス等を適量含有させることが望ましい。これらの他に、必要に応じて、リン酸カリウム、硫酸マグネシウム、鉄イオン、マンガンイオン等の無機イオンが少量添加されていてもよい。共培養のための培養培地はまた、上述した微生物の増殖に必要とされる内因性物質(例、アセチルCoA)を含まないか、または不十分な量でしか含まない培地であってもよい。
 共培養のための培養条件としては、特に限定されず、標準的な微生物の培養条件を用いることができる。培養温度としては、20~42℃が好ましく、30~40℃がより好ましい(例、37℃)。ガス組成としては、CO濃度が約6%~約84%であることが好ましく、pHが、約5~9であることが好ましい。また、共培養される第1微生物および第2微生物の性質に応じて好気性、無酸素性、又は嫌気性条件下で培養を行うことが好ましい。培養方法としては、任意の適切な方法を用いることができる。このような培養方法としては、例えば、バッチ培養法、流加培養法、連続培養法が挙げられる。
 生産された目的物質の回収(例、単離、精製)は、適宜行うことができる。このような回収方法としては、例えば、クロマトグラフィー(例、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー、ゲル濾過クロマトグラフィー、HPLC)、有機溶媒による抽出、遠心分離、透析、ならびに溶解度の差異を利用する方法(例、塩析)が挙げられる。
 本発明はまた、クオラムセンシングを担うオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有する第1微生物、および当該オートインデューサーを産生する能力を有する第2微生物を含む共培養系を提供する。本発明の共培養系は、上述したような培養培地を含んでいてもよい。本発明の共培養系は、例えば、本発明の方法の実施に有用である。
 本発明はさらに、(1)クオラムセンシングを担うオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有し、かつ、前記オートインデューサーを産生する能力を有しない微生物、ならびに(2)クオラムセンシングを担うオートインデューサーを産生する能力を有し、かつ、前記オートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有しない微生物を提供する。本発明の微生物は、例えば、本発明の共培養系の構築、および本発明の方法の簡便な実施に有用である。
 以下、本発明を実施例により詳細に説明するが、本発明は、これらの実施例に限定されるものではない。
実施例1:E.coliにおけるクオラムセンシングを用いたメバロン酸生産(単独培養)
1-1)E.coli MG1655によるクオラムセンシングシステムを用いたメバロン酸生産菌の構築
 クオラムセンシングとは、グラム陰性細菌でN-アシル-L-ホモセリンラクトン(略AHL)をオートインデューサーとして菌体の密度を感知し、遺伝子の発現制御を行う機構のことで、発光バクテリアVibrio Fisheriの遺伝子が最もよく研究されている。E.coli内で、このVibrio FisheriのLuxシステム(AHL合成遺伝子LuxIとAHLレセプター遺伝子であるLuxR)を用いて、菌体密度を感知してメバロン酸の発現制御を行う株を、以下の手順により作製した。
1-2)Lactococcus Lactis由来メバロン酸経路上流遺伝子の染色体導入株の作製
 Lactococcus Lactis由来のメバロン酸経路の上流遺伝子をコードする塩基配列(NCBI Reference Sequences NC_002662.1、mvaA GI:1115230、hmcM GI:1115232、thiL GI:115231)は公知である。この情報よりHMG-CoAレダクターゼ(mvaA)、HMG-CoAシンターゼ(hmcM)、チオラーゼ(thiL:翻訳開始コドンをGTGからMTGに変更)の順に、配列番号1のRBS配列を間に挟んで直線状に並べたオペロン構造となるように化学合成を行い、常法によりtacプロモーター(Ptac)とtrpターミネーターを持つ発現プラスミドを、pSTV28(タカラバイオ社)を用いて構築した。このプラスミドをpSTV-Ptac_AML(配列番号2)と命名した。
 次に、MG1655の染色体上のldhA(b1380)部位に導入するための遺伝子断片を以下の方法でPCR法を用いて調製した。
 最初に2つの断片を作製した。1つは薬剤遺伝子用断片で、PCR用鋳型としてλattL-Km-λattRを有するゲノム断片を使用した。これは、カナマイシン耐性薬剤マーカー(Km)、及びλファージのアタッチメントサイトであるλattL及びλattRが含まれる。これらのヌクレオチド配列を配列番号3に示す。配列番号4と配列番号5に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、薬剤遺伝子用断片としてΔldhA::attL-Km-attRを得た。
 次に、メバロン酸経路上流遺伝子用断片のPCR鋳型として、先に述べたpSTV-Ptac_AML(配列情報2)を使用し、配列番号6と配列番号7に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、luxプロモーター(Plux)を持つメバロン酸上流遺伝子断片Plux_AMLを得た。最後に作製した2つの断片を鋳型に配列番号4と配列番号7に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、ldhA遺伝子の上流50bp、下流50bpが付加した染色体導入用遺伝子断片ΔldhA::attL-Km-attR―Plux_AMLを増幅した。全てのPCR反応はDNAポリメラーゼとして、タカラバイオ社より販売されているPrimeSTAR GXLポリメラーゼを利用し、98℃、2分、(98℃、10秒、55℃、15秒、72℃、1分/kb)×40サイクルの条件で反応を行った。また、遺伝子断片の精製はGE Healthcare社のGFP PCR DNA and Gel Band Purification Kitを用いた。
 MG1655の染色体上に遺伝子断片ΔldhA::attL-Km-attR―Plux_AMLを導入する方法は、λ-red法により実施した。E.coli MG1655に温度感受性の複製能を有するプラスミドpKD46を含むE.coli MG1655(以下MG1655/pKD46と表記する)を、エレクトロポレーションのために用いた。プラスミドpKD46[Proc.Natl.Acad.Sci.USA,2000,vol.97,No.12,p6640-6645]は、アラビノース誘導性ParaBプロモーターに制御されるλRedシステムの遺伝子(λ、β、exo遺伝子)を含むλファージの合計2154塩基のDNAフラグメント(GenBank/EMBLアクセッション番号 J02459,第31088番目~33241番目)を含む。
 MG1655/pKD46株をカルベシニリン100g/Lを含むLB液体培地で30℃終夜培養した。その後、培養液1mLを終濃度1mMのアラビノースと100mg/Lのカルベシニリンを含むLB液体培地100mLに植菌して、34℃3時間振とう培養をおこなった菌体を常法に従いコンピテントセルを作製し、先に調製した断片をエレクトロポーレーション法でコンピテントセルに導入した。SOC培地で34℃2時間培養後、カナマイシン含有寒天培地に塗布し、16時間培養を行った。
 エレクトロポレーション法は、GENE PULSER II(BioRad社製)を用いて、電場強度18kV/cm、コンデンサー容量25μF、抵抗値200Ωの条件で行った。得られた耐性コロニーは、配列番号8と配列番号9に示すヌクレオチド配列からなるプライマーを用いて、コロニーPCRを行い、ldhA(b1380)部位にメバロン酸上流遺伝子が導入されていることを確認した。この株(MG1655 ΔldhA::attL-Km-attR―Plux_AML)をMG-AML-Km株と命名した。
 次にMG-AML-Km株からattL-Km-attR遺伝子を除去するために、ヘルパープラスミドpMW-intxis-ts(WO2005/010175)を使用した。pMW-intxis-tsはλファージのインテグラーゼ(Int)をコードする遺伝子、エクシジョナーゼ(Xis)をコードする遺伝子を搭載し、温度感受性の複製能を有するプラスミドである。pMW-intxis-tsが細胞に導入されると、同プラスミドと染色体上のattL、又はattRとの間で組み換えが起こり、attLとattRの間の遺伝子を切り出し、染色体上にはattL、又はattR配列のみ残る。
 MG-AML-Km株のコンピテントセルを常法に従って作製し、ヘルパープラスミドpMW-intxis-tsにて形質転換し、30℃培養でアンピシリン耐性を獲得したコロニーを取得した。次にpMW-intxis-ts除去のためLB寒天培地上に植菌し、37℃で一晩培養して得たコロニーのアンピシリン耐性及びカナマイシン耐性を試験し、attL-Km-attRとpMW-intxis-tsが脱落しているカナマイシン遺伝子除去株を得た。この株をMG-AML-Free株と命名した。
1-3)Vibrio Fisheri由来LuxI及びLuxR遺伝子の染色体導入株の作製
 発光バクテリアVibrio Fisheri由来luxI及びluxR遺伝子をコードする塩基配列(NCBI Reference Sequences NC_011186、luxI GI:6808033、LuxR Accession No.AF170104)は公知である。この配列を用いて構築されたプラスミドpTA1109(T.hanai et al.,Metabolic Engineering 2015;30:7-15,配列番号10)をPCR鋳型として用い、MG1655の染色体上のinsH4(b1331)部位に導入するための遺伝子断片ΔinsH4::attL-Km-attR―Plux_luxI-Ptac_luxR(配列番号11)を以下の方法で構築した。
 最初に3つの断片(a、b、c)を作製した。a断片はカナマイシン耐性遺伝子用断片(λattL-Km-λattR)で、配列番号12と配列番号13に示すヌクレオチド配列からなるプライマーを用いて1-2と同様にPCR反応を行い、断片を得た。b断片は、luxプロモーター(Plux)によるluxI遺伝子発現用断片で、pTA1109プラスミドを鋳型に、配列番号14と配列番号15に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、断片を得た。c断片は、tacプロモーター(Ptac)によるluxR遺伝子発現用断片で、pTA1109プラスミドを鋳型に、配列番号16と配列番号17に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、断片を得た。最後にa、b、cの断片を鋳型に、配列番号12と配列番号15に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、insH4遺伝子の上流50bp、下流50bpが付加した染色体導入用遺伝子断片ΔinsH4::attL-Km-attR―Plux_luxI-Ptac_luxR(配列番号11)を増幅した。この断片を1-2と同様に調製し、pKD46を導入したMG-AML-Free株の染色体上のinsH4(b1331)部位にλ-red法で導入した。得られたカナマイシン耐性コロニーは、配列番号21と配列番号22に示すヌクレオチド配列からなるプライマーを用いて、コロニーPCRを行い、insH4(b1331)部位にluxIとluxR両遺伝子が導入されていることを確認した。この株(MG1655 ΔldhA::Plux_AMLΔinsH4::attL-Km-attR―Plux_luxI-Ptac_luxR)をMG-AML-IuxIR株と命名した。
1-4)クオラムセンシングシステムによるメバロン酸生産菌MG-AML-IuxIR株の培養結果
 クオラムセンシングシステムによるメバロン酸生産菌MG-AML-IuxIR株の培養評価を実施した。カナマイシン(50ug/ml)入りLB寒天培地上で34℃16時間培養したMG-AML-IuxIR株、及び対照用株として培養したMG-AML-Km株を、各々菌体1白金耳をMS-Met培地(グルコース40g、酵母エキス2g、硫酸マグネシウム・7水和物1g、硫酸アンモニウム20g、硫酸鉄・7水和物10mg、硫酸マンガン・5水和物10mg、DL-Met1gを水1Lに含みpH7.2に調製後、炭酸カルシウムを50g加えた培地)4mlを含む太型試験管に接種し、30℃で24時間振とう培養する。遠心分離により培養物から菌体を除去し、上清中のメバロン酸の蓄積量を液体クロマトグラフィー質量分析(LCMS)により定量した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、Pluxで発現制御されるメバロン酸経路上流遺伝子は、単独(MG-AML-Km株)では発現しないのでメバロン酸は生産されないが、luxI及びLuxR両遺伝子を導入したMG-AML-IuxIR株は、クオラムセンシングシステムによりメバロン酸経路上流遺伝子が発現し、6.4g/Lのメバロン酸蓄積量を示した。メバロン酸経路はアセチルCoAを出発物質としているが、アセチルCoAは菌体増殖に必要な物質を生産するTCA回路と共通な中間物質であるため、菌体増殖とメバロン酸生産は競合する。よって、メバロン酸を生産しないMG-AML-Km株のOD値よりもメバロン酸を生産したMG-AML-IuxIR株のOD値が減少した。
 以上より、Pluxを利用することにより、メバロン酸を効率よく生産できることが確認された。
実施例2:E.coliにおけるクオラムセンシングを用いたメバロン酸生産を制御するための共培養法の開発
 クオラムセンシングシステムは菌体密度依存的に発現量が強化されるシステムである。一方、微生物を用いた物質生産において、菌体密度が低い時に高い能力の物質生産を行うと、菌体生育を阻害することがあり、結果として全体の物質生産量が低下することがある。野生型luxプロモーターを用いてE.coli内でクオラムセンシングシステムを再構築すると、菌体密度が低い時から物質生産をすることが報告されている(Haseltine, E.L.et al.,Appl.Environ.Microbiol.,2008(74)437-335)。この問題を回避するため、クオラムセンシングシステムのオートインデューサーAHLの発現量を任意に変更し、且つ発現時期を変更可能なシステムの改良を行った。
 即ち、AHL合成遺伝子LuxIのみを発現させる株と、メバロン酸経路上流遺伝子とAAHLレセプター遺伝子を発現させた株を構築し、この2株を共培養法でメバロン酸生産量向上を行った。
2-1)AHL合成遺伝子LuxI発現株(MG-LuxI株)の構築
 LuxI遺伝子はtacプロモーターで恒常発現させて、MG1655の染色体上のinsH4(b1331)部位に導入するための遺伝子断片ΔinsH4::attL-Km-attR―Ptac_luxI(配列番号23)を調製するために、1-3で得たa断片を鋳型に配列番号12と配列番号18に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、カナマイシン耐性遺伝子断片を得た。次に、1-3で得たb断片を型に配列番号19と配列番号20に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、LuxI遺伝子断片を得た。最後にカナマイシン耐性遺伝子断片とLuxI遺伝子断片を鋳型に配列番号12と配列番号20に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、insH4遺伝子の上流50bp、下流50bpが付加した染色体導入用遺伝子断片ΔinsH4::attL-Km-attR―Ptac_luxIを増幅した。この断片を1-2と同様に調製し、pKD46を導入したMG1655株の染色体上のinsH4(b1331)部位にλ-red法で導入した。得られたカナマイシン耐性コロニーは、配列番号21と配列番号22に示すヌクレオチド配列からなるプライマーを用いて、コロニーPCRを行い、insH4(b1331)部位にΔinsH4::attL-Km-attR―Ptac_luxI断片が導入されていることを確認した。この株(MG1655 ΔinsH4::attL-Km-attR―Ptac_luxI)をMG-IuxI株と命名した。
2-2)メバロン酸経路上流遺伝子とAHLレセプター遺伝子発現株(MG-AMLluxR株)の構築
 LuxR遺伝子はtacプロモーターで恒常発現させて、MG-AML-Free株の染色体上のinsH4(b1331)部位に導入するための遺伝子断片ΔinsH4::attL-Km-attR―Ptac_luxR(配列番号24)を調製するために、1-3で得たc断片を型に配列番号16と配列番号17に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、LuxR遺伝子断片を得た。次に2-1で得たカナマイシン耐性遺伝子断片とLuxR遺伝子断片を鋳型に配列番号12と配列番号17に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、insH4遺伝子の上流50bp、下流50bpが付加した染色体導入用遺伝子断片ΔinsH4::attL-Km-attR―Ptac_luxRを増幅した。この断片を1-2と同様に調製し、pKD46を導入したMG-AML-Free株の染色体上のinsH4(b1331)部位にλ-red法で導入した。得られたカナマイシン耐性コロニーは、配列番号21と配列番号22に示すヌクレオチド配列からなるプライマーを用いて、コロニーPCRを行い、insH4(b1331)部位にΔinsH4::attL-Km-attR―Ptac_luxR断片が導入されていることを確認した。この株(MG1655ΔldhA::Plux_AMLΔinsH4::attL-Km-attR―Ptac_luxR)をMG-AML-IuxR株と命名した。
2-3)MG-AML-luxR株とMG-LuxI株を用いた共培養結果
 MG-AML-luxR株(第1微生物)とMG-LuxI株(第2微生物)の共培養評価を実施した。カナマイシン(50ug/ml)入りLB寒天培地上で34℃16時間培養したMG-AML-luxR株とMG-LuxI株及び対照用株としてMG-AML-IuxIR株を、各々寒天培地上から菌体をかきとり、OD660=2.0となるように上記2株の菌体液をそれぞれ調製した。次に、MG-AML-luxR菌体液とMG-LuxI菌体液を単独(100%)及び表2の割合で混ぜた菌体液を調製した。最後に、MS-Met培地3mlが入った太型試験管に、調製した菌体液を各1mlずつ添加して最終OD660値が0.5の菌体培養液を、30℃で24時間振とう培養する。遠心分離により培養物から菌体を除去し、上清中のメバロン酸の蓄積量を液体クロマトグラフィー質量分析(LCMS)により定量した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかのように、luxI単独発現(MG-luxI株100%)及びメバロン酸経路上流遺伝子とluxR遺伝子を発現するMG-AML-luxR株単独発現(100%)では、メバロン酸の蓄積は見られなかったが、MG-AML-luxR株とMG-luxI株の共培養では、MG-luxI株の割合が20%以下でMG-AML-luxIR株単独発現(100%)よりメバロン酸の蓄積量は向上し、MG-luxI株の割合が5%で、最大で8.6g/Lの蓄積量を示し、収率は21.5%とMG-AML-luxIR株単独培養より共培養の方が高かった。
 したがって、目的物質の産生のためには、第1微生物および第2微生物の共培養が共発現微生物の培養よりも優れることが確認された。
実施例3:MG-AML-luxIR株とMG-AML-luxR株の共培養結果
 次に、AHL供与株としてMG-AML-luxIR株(第2微生物)を使用し、MG-AML-luxR株(第1微生物)との共培養を実施した。共培養の割合は事前に検討し、MG-AML-luxR株99.5%、MG-AML-luxIR株0.5%で2-3と同様に培養を行った。培養はN=2で行い、平均値の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかのように、共培養法では、MG-AML-luxIR株と単独発現(100%)より、AHL供与株としてMG-AML-luxIR株を僅か0.5%添加するだけでメバロン酸の蓄積量は8.9g/L、収率は22.1%と、MG-AML-luxIR株単独培養より共培養の方が高かった。
実施例4:Pantoea ananasisにおけるクオラムセンシングを用いたメバロン酸生産
 E.coli以外の微生物でクオラムセンシングを用いた共培養が物質生産に有用であることを示すために、Pantoea ananasisのSC17(0)株(例、EP2336347(A1))でクオラムセンシングを用いた共培養法によるメバロン酸生産を実施した。
4-1)SC17(0)Plux_MAL株の構築
 染色体導入用ベクターpAH162-λattL-Km-λattR ベクター(Minaeva NI et al.,BMC Biotechnol.2008;8:63)の制限酵素BamHIとEcoRIサイトに、常法に従いメバロン酸経路上流遺伝子がP.ananatisのphoCプロモーター制御下に導入されたプラスミド、pAH162-PphoC_MAL-Km(pAH162-λattL-Km-λattR―PphoC_hmcM_mvaA_thiL)を、PIR2株(ThermoFisherScientific社、C111110)を用いて構築した(配列番号25)。なお、MALは、上述のAMLとは異なり、HMG-CoAシンターゼ(hmcM)、HMG-CoAレダクターゼ(mvaA)、チオラーゼ(thiL)の順に直線状に並べたオペロン構造となっている。
 次に、上記pAH162-PphoC_MAL-Kmプラスミドを、既報のプロトコル(Andreeva IG et al.,FEMS Microbiol Lett.,2011;318(1):55-60)にしたがってSC17(0)ΔAmpH::attBphi80のattBphi80部位に導入した。得られたカナマイシン耐性コロニーは、配列番号26と配列番号27に示すヌクレオチド配列からなるプライマーを用いて、コロニーPCRを行い、AmpH(PAJ_2071)部位にattL-Km-attR―PphoC_MAL断片が導入されていることを確認した。
 次に、SC17(0)ΔAmpH::attL-Km-attR―PphoC_MALのコンピテントセルを常法に従い作成後、RSF-Para-IXプラスミドを導入した。このプラスミドは、λファージのインテグラーゼ(Int)をコードする遺伝子、エクシジョナーゼ(Xis)をコードする遺伝子を搭載し、アラビノース誘導でInt及びXisを発現するプラスミドである(Y. Tajima et al.,AEM,2015;81(3):929-937)。また、アラビノース誘導でカナマイシン耐性遺伝子が除去した株をSC17(0)PphoC_MAL株と命名した。
 次にSC17(0)PphoC_MAL株のphoCプロモーターをluxプロモーターにλRed法で置換するために、RSFredTER(WO2008/090770A1)をSC17(0)PphoC_MAL株に導入したSC17(0)PphoC_MAL/RSFredTER株を得た。プロモーター置換用断片は、MG-AML-Km株から抽出したゲノムを鋳型に、PphoC導入部位より260bp上流領域80bpを持つ配列番号28と、hmcM遺伝子のN末側領域の61bpをもつ配列番号29に示すヌクレオチド配列からなるプライマーを用いて、コロニーPCRを行い、ΔAmpH::attL-Km-attR―Plux_hmcM_N断片(配列番号30)を得た。λRed用のコンピテントセルは、SC17(0)PphoC_MAL/RSFredTER株をLB液体培地にて終夜培養した。その後、培養液1mLを終濃度1mMのIPTGと50mg/Lのクロラムフェニコールを含むLB液体培地100mLに植菌して、34℃3時間振とう培養をおこなった菌体を常法に従いコンピテントセルを作製し、先に調製した断片をエレクトロポーレーション法でコンピテントセルに導入した。SOC培地で34℃2時間培養後、カナマイシン含有寒天培地に塗布し、16時間培養を行った。出現したコロニーを配列番号28と配列番号29に示すヌクレオチド配列からなるプライマーを用いて、コロニーPCRを行い、Luxプロモーターに置換されたことを確認した。この株よりカナマイシン耐性遺伝子を除去した株をSC17(0)Plux_MAL株と命名した。
4-2)SC17(0)-MAL-luxIR株及びSC17(0)-MAL-luxR株の構築
 P.ananatisのgcd遺伝子は、グルコースデヒドロゲナーゼをコードしており、P.ananatisは好気性増殖中にグルコン酸を蓄積することが知られている(Andreeva IGら,FEMS Microbiol Lett.2011 May;318(1):55-60)ので、2-ケトグルコン酸生成経路が遮断されていることが好ましい。クオラムセンシングシステムに必要なluxI及びluxR遺伝子発現用断片をgcd(PAJ_3473)部位に導入し、同時にgcd遺伝子を欠損させて2-ケトグルコン酸生成経路が遮断を行った。
 luxIR遺伝子導入用断片の調製はMG-AML-IuxIR株のゲノムを鋳型に、luxR遺伝子導入用断片の調製はMG-AML-IuxR株のゲノムを鋳型に、各々配列番号31と配列番号32に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、gcd遺伝子上流領域50bp及び下流領域50bpを含むΔgcd::attL-Km-attR―Plux_luxI-Ptac_luxR断片(配列番号35)及びΔgcd::attL-Km-attR―Ptac_luxR断片(配列番号36)を得た。次にSC17(0)Plux_MAL株にRSFredTERを導入し、4-1と同様にλRed法でgcd遺伝子の部位にΔgcd::attL-Km-attR―Plux_luxI-Ptac_luxR断片、或いはΔgcd::attL-Km-attR―Ptac_luxR断片を導入し、カナマイシン耐性株を得た。得られた株は、配列番号33と配列番号34に示すヌクレオチド配列からなるプライマーを用いてコロニーPCRを行い、gcd部位に目的断片が導入されたことを確認した。次に、4-1と同様な方法でカナマイシン耐性遺伝子を除去した株を構築し、SC17(0)-MAL-luxIR株及びSC17(0)-MAL-luxR株と命名した。
4-3)SC17(0)-MAL-tetR_gltA-luxIR株及びSC17(0)-MAL-tetR_gltA-luxR株の構築
 gltA遺伝子(PAJ_0490)はメバロン酸生合成と共通中間物質であるアセチルCoAを基質とするTCA回路の初発反応を行う酵素で、菌体増殖に必要な酵素である。よって、菌体増殖とメバロン酸生産は競合関係にある。このgltA遺伝子の発現を菌体増殖後に抑制し、アセチルCoAを物質生産に効率よく供給するために抑制型転写因子tetR遺伝子を用いたシステムが報告されている(T.hanai et al.,Metabolic Engineering 2015;30:7-15、および特開2015-154768号公報)。このシステムを、野生型luxプロモーターを用いてP.ananatisで再構築するために以下の方法でΔgltA::Plux_tetR-PL_gltA-N断片を作製し、ゲノムへ導入を試みた。
 最初に、λattL-Km-λattRを有するゲノム断片を鋳型に配列番号37と配列番号38に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、gltA遺伝子上流領域50bpを含むΔgltA::attL-Km-attR-Plux断片(a断片)を、プラスミドpTA1145(T.hanai et al.,Metabolic Engineering 2015;30:7-15)を鋳型に配列番号39と配列番号40に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、P.ananatisのgltA遺伝子N末領域50bpを含むtetR遺伝子とPLプロモーターを含むtetR-PL_gltA-N断片(b断片)を得た。次に、a断片とb断片を鋳型に配列番号37と配列番号40に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、ΔgltA::Plux_tetR-PL_gltA-N断片を得た。しかしこの断片を用いたλRed法による染色体導入株が取れなかったので、gltA遺伝子の上流及びN末側の領域の相同組み換え領域を各々130bpに長くした断片を再調製するために、ΔgltA::Plux_tetR-PL_gltA-N断片を鋳型に配列番号41と配列番号42に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、ΔgltA::Plux_tetR-PL_gltA-N-long断片(配列番号45)を得た。
 次にSC17(0)-MAL-luxIR株及びSC17(0)-MAL-luxR株に各々RSFredTERを導入し、4-1と同様にλRed法でgltA遺伝子の部位にΔgltA::Plux_tetR-PL_gltA-N-long断片を導入し、カナマイシン耐性株を得た。得られた株は、配列番号43と配列番号44に示すヌクレオチド配列からなるプライマーを用いてコロニーPCRを行い、gltA部位に目的断片が導入されたことを確認した。次に、4-1と同様な方法でカナマイシン耐性遺伝子を除去した株を構築し、SC17(0)-MAL-tetR_gltA-luxIR株及びSC17(0)-MAL-tetR_gltA-luxR株と命名した。
4-4)SC17(0)-MAL-tetR_gltA-luxIRΔeanIR株(略称:P-MAL-luxIR)及びSC17(0)-MAL-tetR_gltA-luxRΔeanIR株(略称:P-MAL-luxR)の構築
 P.ananatisには内因性クオラムセンシング遺伝子としてeanIR(PAJ_1287,1288)が報告されている(Morohoshi T.,et al.J Bacteriol 2007 189(22) 8333-8338)。この内因性のeanIR遺伝子を欠損させるために、以下の方法で構築した。
 最初に、λattL-Km-λattRを有するゲノム断片を鋳型に、配列番号46と配列番号47に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行い、eanIR遺伝子上流領域50bp及び下流領域50bpを含むΔeanIR::attL-Km-attR(配列番号50)断片をeanIR遺伝子破壊用の薬剤遺伝子用断片として得た。次にSC17(0)-MAL-tetR_gltA-luxIR株及びSC17(0)-MAL-tetR_gltA-luxR株の各々に、RSFredTERを導入し、4-1と同様にλRed法でeanIR(PAJ_1287,1288)の部位にΔeanIR::attL-Km-attR断片を導入し、カナマイシン耐性株を得た。得られた株は、配列番号48と配列番号49に示すヌクレオチド配列からなるプライマーを用いてコロニーPCRを行い、eanIR部位にカナマイシン耐性遺伝子が導入されたことを確認した。これらの株をSC17(0)-MAL-tetR_gltA-luxIRΔeanIR株(略称:P-MAL-luxIR)及びSC17(0)-MAL-tetR_gltA-luxRΔeanIR株(略称:P-MAL-luxR)と命名した。
4-5)SC17(0)-MAL-tetR_gltA-luxIRΔeanIR株(略称:P-MAL-luxIR)及びSC17(0)-MAL-tetR_gltA-luxRΔeanIR株(略称:P-MAL-luxR)を用いた共培養法によるメバロン酸生産
 P-MAL-luxIR株(第2微生物)とP-MAL-luxR株(第1微生物)の共培養評価を実施した。カナマイシン(50ug/ml)入りLB寒天培地上で34℃16時間培養したP-MAL-luxIR株及びP-MAL-luxR株を、各々寒天培地上から菌体をかきとり、OD660=2.0となるように菌体液を調製した。次に、P-MAL-luxR菌体液とP-MAL-luxIR菌体液を単独(100%)及び表4の割合で混ぜた菌体液を調製した。最後に、MS-Met培地3mlが入った太型試験管に、調製した菌体液を各1mlずつ添加して最終OD660値が0.5の菌体培養液を、30℃で24時間振とう培養する。遠心分離により培養物から菌体を除去し、上清中のメバロン酸の蓄積量を液体クロマトグラフィー質量分析(LCMS)により定量した。培養はN=3で行い、その平均値の結果を表4に示す。また、メバロン酸の蓄積量を図1に示す。
 P-MAL-luxIR株単独培養に対し、P-MAL-luxIR株とP-MAL-luxR株の共培養はメバロン酸の蓄積量が向上し、P-MAL-luxIR株を僅か0.01%添加でメバロン酸蓄積量12.1g/L、対グルコース消費収率は30.3%と高いことを確認した。
Figure JPOXMLDOC01-appb-T000004
 本発明の方法は、例えば、目的物質の効率的な生産に有用である。
 本発明の共培養系は、例えば、本発明の方法の実施に有用である。
 本発明の微生物は、例えば、本発明の共培養系の構築、および本発明の方法の簡便な実施に有用である。

Claims (22)

  1.  クオラムセンシングを担うオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有する第1微生物、および前記オートインデューサーを産生する能力を有する第2微生物を共培養して目的物質を生産することを含む、目的物質の生産方法。
  2.  前記第1微生物が、以下を含む、請求項1記載の方法:
    (1)目的物質の生合成に関与するタンパク質をコードする1以上の遺伝子、および当該1以上の遺伝子に作動可能に連結されたオートインデューサー依存性プロモーターを含む第1発現単位;ならびに
    (2)オートインデューサーと結合して転写活性化作用を示す転写因子をコードする1以上の遺伝子、および当該1以上の遺伝子に作動可能に連結されたプロモーターを含む第2発現単位。
  3.  前記第2微生物が、オートインデューサーの合成酵素をコードする遺伝子、および当該遺伝子に作動可能に連結されたプロモーターを含む第3発現単位を含む、請求項1または2記載の方法。
  4.  前記第1発現単位および前記第2発現単位の一方もしくは双方が前記第1微生物に対して異種であるか、または前記第3発現単位が前記第2微生物に対して異種である、請求項2または3記載の方法。
  5.  オートインデューサーがN-アシル-L-ホモセリンラクトン(AHL)である、請求項1~4のいずれか一項記載の方法。
  6.  前記オートインデューサー依存性プロモーターがluxプロモーター(Plux)であり、
     前記転写因子をコードする遺伝子が、AHLレセプターをコードする遺伝子(LuxR)であり、
     前記合成酵素をコードする遺伝子が、AHL合成酵素をコードする遺伝子(LuxI)である、請求項5記載の方法。
  7.  前記第1微生物および前記第2微生物の総菌体量に対する前記第2微生物の菌体量の割合(%)が50%未満である、請求項1~6のいずれか一項記載の方法。
  8.  前記第1微生物および前記第2微生物の総菌体量に対する前記第2微生物の菌体量の割合(%)が10%以下である、請求項7記載の方法。
  9.  前記第1微生物および/または第2微生物が、以下(a)および(b)を含む遺伝子発現制御系を含む、請求項1~8のいずれか一項記載の方法:
    (a)微生物の増殖に必要とされる内因性物質の変換に関与する酵素をコードする1以上の遺伝子、および当該1以上の遺伝子に作動可能に連結されたリプレッサー抑制性プロモーター;ならびに
    (b)リプレッサーをコードする1以上の遺伝子、および当該1以上の遺伝子に作動可能に連結されたオートインデューサー依存性プロモーター。
  10.  内因性物質がアセチルCoAである、請求項9記載の方法。
  11.  目的物質が、メバロン酸またはイソプレノイドである、請求項1~10のいずれか一項記載の方法。
  12.  目的物質がアミノ酸である、請求項1~8のいずれか一項記載の方法。
  13.  目的物質がポリペプチドである、請求項1~8および12のいずれか一項記載の方法。
  14.  前記第1微生物および前記第2微生物が同種の微生物である、請求項1~13のいずれか一項記載の方法。
  15.  前記第1微生物および/または前記第2微生物がグラム陰性細菌である、請求項1~14のいずれか一項記載の方法。
  16.  前記第1微生物および/または前記第2微生物が、エシェリヒア属(Escherichia)細菌である、請求項1~15のいずれか一項記載の方法。
  17.  エシェリヒア属(Escherichia)細菌がエシェリヒア・コリ(Escherichia coli)である、請求項16記載の方法。
  18.  前記第1微生物および/または前記第2微生物が、パントエア属(Pantoea)細菌である、請求項1~15のいずれか一項記載の方法。
  19.  パントエア属(Pantoea)細菌がパントエア・アナナティス(Pantoea ananatis)である、請求項18記載の方法。
  20.  クオラムセンシングを担うオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有する第1微生物、および前記オートインデューサーを産生する能力を有する第2微生物を含む共培養系。
  21.  クオラムセンシングを担うオートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有し、かつ、前記オートインデューサーを産生する能力を有しない微生物。
  22.  クオラムセンシングを担うオートインデューサーを産生する能力を有し、かつ、前記オートインデューサーに依存して培地中の炭素源から目的物質を産生する能力を有しない微生物。
PCT/JP2019/019521 2018-05-25 2019-05-16 目的物質の生産方法 WO2019225475A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-100217 2018-05-25
JP2018100217 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019225475A1 true WO2019225475A1 (ja) 2019-11-28

Family

ID=68616691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019521 WO2019225475A1 (ja) 2018-05-25 2019-05-16 目的物質の生産方法

Country Status (1)

Country Link
WO (1) WO2019225475A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112852850A (zh) * 2021-01-27 2021-05-28 中国科学技术大学 用于基于生物量来调控功能基因表达的试剂盒及使用其的方法
CN113980882A (zh) * 2021-11-30 2022-01-28 天津科技大学 一种动态调控磷酸葡糖异构酶产组氨酸的基因工程菌株及其构建方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047113A2 (en) * 2006-10-18 2008-04-24 University Of Durham Ethanol production
US20120107916A1 (en) * 2009-06-30 2012-05-03 Donald Mattsson Methods and compositions for affecting the differentiation of clostridia in culture
JP2014023489A (ja) * 2012-07-27 2014-02-06 Sumitomo Heavy Ind Ltd パラコッカス属細菌
US20150031102A1 (en) * 2012-01-19 2015-01-29 Butrolix Llc Methods and compositions for enhanced production of butanol by clostridia
JP2015180194A (ja) * 2014-03-03 2015-10-15 国立大学法人宇都宮大学 微生物製剤、微生物フロック及びその製造方法
WO2016084963A1 (ja) * 2014-11-28 2016-06-02 味の素株式会社 イソプレノイド化合物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047113A2 (en) * 2006-10-18 2008-04-24 University Of Durham Ethanol production
US20120107916A1 (en) * 2009-06-30 2012-05-03 Donald Mattsson Methods and compositions for affecting the differentiation of clostridia in culture
US20150031102A1 (en) * 2012-01-19 2015-01-29 Butrolix Llc Methods and compositions for enhanced production of butanol by clostridia
JP2014023489A (ja) * 2012-07-27 2014-02-06 Sumitomo Heavy Ind Ltd パラコッカス属細菌
JP2015180194A (ja) * 2014-03-03 2015-10-15 国立大学法人宇都宮大学 微生物製剤、微生物フロック及びその製造方法
WO2016084963A1 (ja) * 2014-11-28 2016-06-02 味の素株式会社 イソプレノイド化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, EM ET AL., AUTONOMOUS CONTROL OF METABOLIC STATE BY A QUORUM SENSING (QS)-MEDIATED REGULATOR FOR BISABOLENE PRODUCTION IN ENGINEERED E. COLI, METAB. ENG, vol. 44, 2017, pages 325 - 336, XP085285795 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112852850A (zh) * 2021-01-27 2021-05-28 中国科学技术大学 用于基于生物量来调控功能基因表达的试剂盒及使用其的方法
CN113980882A (zh) * 2021-11-30 2022-01-28 天津科技大学 一种动态调控磷酸葡糖异构酶产组氨酸的基因工程菌株及其构建方法与应用
CN113980882B (zh) * 2021-11-30 2023-09-26 天津科技大学 一种动态调控磷酸葡糖异构酶产组氨酸的基因工程菌株及其构建方法与应用

Similar Documents

Publication Publication Date Title
Sáez-Sáez et al. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production
CN103906845B (zh) 在重组微生物细胞中制备奇数链脂肪酸衍生物
JP6271494B2 (ja) 3−ヒドロキシプロピオン酸および他の生成物を生成するための方法
Zhang et al. Microbial production of sabinene—a new terpene-based precursor of advanced biofuel
Wu et al. Metabolic engineering of Escherichia coli for efficient free fatty acid production from glycerol
JP2018507698A (ja) テルペンのデノボ微生物利用合成方法
JP6337013B2 (ja) テルペノイドを調製するための組換え微生物、及び組換え微生物の構築方法
CN106795519A (zh) 用于生成戊二酸和戊二酸甲酯的方法
JP7242058B2 (ja) デカルボキシラーゼ、及びそれを用いた不飽和炭化水素化合物の製造方法
Zhang et al. Enhanced l-ornithine production by systematic manipulation of l-ornithine metabolism in engineered Corynebacterium glutamicum S9114
CN104321434A (zh) 生物合成1,3丁二烯的方法
WO2018188617A1 (zh) 产3-羟基丙酸的重组菌及其制备方法与应用
Cao et al. Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis
WO2019225475A1 (ja) 目的物質の生産方法
EP2766492A1 (en) New biosynthesis pathway for prenol in a recombinant microorganism
JP6711278B2 (ja) イソプレノイド化合物の製造方法
Khandelwal et al. Expression of Escherichia coli malic enzyme gene in Zymomonas mobilis for production of malic acid
JP2017512460A (ja) イソプレンモノマーの製造方法
Wang et al. Metabolic engineering of Escherichia coli for efficient production of linalool from biodiesel-derived glycerol by targeting cofactors regeneration and reducing acetate accumulation
US10556930B2 (en) Host cells and methods for producing fatty acid-derivatives with high branched-chain percentage
Skorokhodova et al. Anaerobic synthesis of succinic acid by recombinant Escherichia coli strains with activated NAD+-reducing pyruvate dehydrogenase complex
WO2021054441A1 (ja) サッカロミケス由来フェルラ酸デカルボキシラーゼ変異体、及びそれを用いた不飽和炭化水素化合物の製造方法
JP2017104099A (ja) リモネンの製造方法
JP2021023284A (ja) 栄養要求性大腸菌におけるビリジフロロール産生
WO2018147446A1 (ja) イソプレノイド化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP