WO2019225463A1 - 再生システムおよび再生方法 - Google Patents

再生システムおよび再生方法 Download PDF

Info

Publication number
WO2019225463A1
WO2019225463A1 PCT/JP2019/019466 JP2019019466W WO2019225463A1 WO 2019225463 A1 WO2019225463 A1 WO 2019225463A1 JP 2019019466 W JP2019019466 W JP 2019019466W WO 2019225463 A1 WO2019225463 A1 WO 2019225463A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
audio data
signal processing
speaker
multitrack
Prior art date
Application number
PCT/JP2019/019466
Other languages
English (en)
French (fr)
Inventor
秀幸 柘植
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Publication of WO2019225463A1 publication Critical patent/WO2019225463A1/ja
Priority to US17/098,857 priority Critical patent/US11399249B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/008Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10FAUTOMATIC MUSICAL INSTRUMENTS
    • G10F1/00Automatic musical instruments
    • G10F1/08Percussion musical instruments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/32Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/414Specialised client platforms, e.g. receiver in car or embedded in a mobile appliance
    • H04N21/41415Specialised client platforms, e.g. receiver in car or embedded in a mobile appliance involving a public display, viewable by several users in a public space outside their home, e.g. movie theatre, information kiosk
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/4302Content synchronisation processes, e.g. decoder synchronisation
    • H04N21/4307Synchronising the rendering of multiple content streams or additional data on devices, e.g. synchronisation of audio on a mobile phone with the video output on the TV screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/4302Content synchronisation processes, e.g. decoder synchronisation
    • H04N21/4307Synchronising the rendering of multiple content streams or additional data on devices, e.g. synchronisation of audio on a mobile phone with the video output on the TV screen
    • H04N21/43072Synchronising the rendering of multiple content streams or additional data on devices, e.g. synchronisation of audio on a mobile phone with the video output on the TV screen of multiple content streams on the same device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • H04N21/8106Monomedia components thereof involving special audio data, e.g. different tracks for different languages
    • H04N21/8113Monomedia components thereof involving special audio data, e.g. different tracks for different languages comprising music, e.g. song in MP3 format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/02Spatial or constructional arrangements of loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/04Synchronising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/03Transducers capable of generating both sound as well as tactile vibration, e.g. as used in cellular phones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/045Plane diaphragms using the distributed mode principle, i.e. whereby the acoustic radiation is emanated from uniformly distributed free bending wave vibration induced in a stiff panel and not from pistonic motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/01Multi-channel, i.e. more than two input channels, sound reproduction with two speakers wherein the multi-channel information is substantially preserved

Definitions

  • One embodiment of the present invention relates to a playback system and playback method for playing back audio data.
  • Patent Document 1 discloses a configuration in which performance sounds are recorded on different channels for each musical instrument and performance data of an automatic performance piano is recorded.
  • the automatic performance piano performs automatic performance based on the recorded performance data.
  • the sounds of other instruments are output from the speakers corresponding to the respective channels.
  • the projector plays back the video of the performer.
  • an object of one embodiment of the present invention is to provide a playback system and a playback method with higher reproducibility of live performance than before.
  • the reproduction system outputs a multitrack data in which performance sound or singing sound is recorded as audio data for each track, and based on audio data of an acoustic instrument among the audio data included in the multitrack data.
  • a vibration device that vibrates an acoustic musical instrument to generate a sound, and a speaker that outputs the performance sound or singing sound based on the audio data.
  • an acoustic instrument can be made to sound without physically driving an operator such as a keyboard, so that the reproducibility of live performance is higher than in the prior art.
  • FIG. 1 is a block diagram showing a configuration of a playback system 1.
  • FIG. 2 is a block diagram showing a configuration of an output device 10.
  • FIG. It is the schematic which shows the structure of multitrack data.
  • 2 is a block diagram showing a configuration of a mixer 11.
  • FIG. 3 is a functional block diagram of signal processing realized by a signal processing unit 204 and a CPU 206.
  • FIG. It is a figure which shows the processing structure of a certain input channel i.
  • It is sectional drawing of the cymbal 70 among drum sets.
  • FIG. 3 is a cross-sectional view showing details of the vibrator 15.
  • FIG. 3 is a cross-sectional view showing details of the vibrator 15.
  • FIG. 3 is a partially transparent plan view of the vibrator 15. It is sectional drawing which shows the detail of the vibrator 15 which concerns on a modification. It is sectional drawing which shows the structure of the vibrator 15 which concerns on an application example. It is a flowchart which shows operation
  • FIG. 1 is a block diagram showing the configuration of the playback system 1.
  • the reproduction system 1 includes an output device 10, a mixer 11, a speaker 12 ⁇ / b> L, a speaker 12 ⁇ / b> R, a guitar amplifier 13, a base amplifier 14, a vibrator 15, a projector 16, and an illumination controller 17.
  • each device is connected via a network.
  • each device is not limited to an aspect connected via a network.
  • it may be connected by a communication line such as a USB cable, HDMI (registered trademark), or MIDI.
  • each device need not be directly connected to the network.
  • Each device may be connected to a network via an IO device having an audio signal terminal and a network terminal.
  • FIG. 2 is a block diagram showing the main configuration of the output device 10.
  • the output device 10 includes a display device 101, a user interface (I / F) 102, a flash memory 103, a CPU 104, a RAM 105, and a network interface (I / F) 106.
  • the output device 10 is a general information processing device such as a personal computer, a smartphone, or a tablet computer.
  • the display device 101 is composed of, for example, an LCD (Liquid Crystal Display) or an OLED (Organic Light-Emitting Diode), and displays various information.
  • the user I / F 102 includes a switch, a keyboard, a mouse, a trackball, a touch panel, and the like, and accepts user operations. When the user I / F 102 is a touch panel, the user I / F 102 and the display device 101 constitute a GUI (Graphical User Interface).
  • GUI Graphic User Interface
  • the CPU 104 reads a program stored in the flash memory 103, which is a storage medium, into the RAM 105, and realizes a predetermined function. For example, the CPU 104 displays an image for accepting a user operation on the display device 101, and implements a GUI by accepting a selection operation on the image via the user I / F 102. Further, the CPU 104 reads and decodes predetermined data from the flash memory 103 or the outside based on the contents received by the user I / F 102. The CPU 104 outputs the decoded data to another device.
  • the program read by the CPU 104 does not need to be stored in the flash memory 103 in the apparatus itself.
  • the program may be stored in a storage medium of an external device such as a server.
  • the CPU 104 may read and execute the program from the server to the RAM 105 each time.
  • the data read by the CPU 104 is multitrack data in which performance sounds or singing sounds are recorded as audio data for each track.
  • FIG. 3 is a schematic diagram showing the configuration of multitrack data.
  • the multitrack data includes setting data, time code, audio data for each track, video data, illumination data, and signal processing parameters.
  • the setting data is data corresponding to the basic settings of the mixer.
  • the basic mixer settings include, for example, the sampling frequency of audio signals, word clocks, patch settings, or network settings.
  • FIG. 4 is a block diagram showing the configuration of the mixer 11.
  • the mixer 11 is an example of a signal processing device of the present invention.
  • the mixer 11 includes a display 201, a user I / F 202, an audio I / O (Input / Output) 203, a signal processing unit (DSP) 204, a network I / F 205, a CPU 206, a flash memory 207, and a RAM 208. These components are connected via a bus 171.
  • DSP signal processing unit
  • the CPU 206 is a control unit that controls the operation of the mixer 11.
  • the CPU 206 performs various operations by reading a predetermined program stored in the flash memory 207 as a storage medium into the RAM 208 and executing it.
  • the program read by the CPU 206 does not need to be stored in the flash memory 207 in the apparatus itself.
  • the program may be stored in a storage medium of an external device such as a server.
  • the CPU 206 may read and execute the program from the server to the RAM 208 each time.
  • the signal processing unit 204 is composed of a DSP for performing various signal processing.
  • the signal processing unit 204 performs signal processing such as mixing, gain adjustment, equalizing, or compression on an audio signal input via the audio I / O 203 or the network I / F 205.
  • the signal processing unit 204 outputs the audio signal after the signal processing to another device such as the speaker 12L or the speaker 12R via the audio I / O 203 or the network I / F 205.
  • FIG. 5 is a functional block diagram of signal processing realized by the signal processing unit 204 and the CPU 206. As shown in FIG. 5, signal processing is functionally performed by an input patch 301, an input channel 302, a bus 303, an output channel 304, and an output patch 305.
  • the input patch 301 inputs audio signals from a plurality of input ports (for example, analog input ports or digital input ports) in the audio I / O 203, and any one of the plurality of ports is set to a plurality of channels (for example, 16 channels). To at least one channel. As a result, an audio signal is supplied to each channel of the input channel 302.
  • a plurality of input ports for example, analog input ports or digital input ports
  • a plurality of channels for example, 16 channels.
  • Each channel of the input channel 302 performs various signal processing on the input audio signal.
  • FIG. 6 is a diagram showing a processing configuration of an input channel i.
  • Each channel of the input channel 302 performs various types of signal processing on the audio signal supplied from the input patch 301 in the signal processing block 351.
  • the signal processing block 351 performs signal processing of an attenuator (ATT), an equalizer (EQ), a gate (GATE), and a compressor (COMP).
  • ATT attenuator
  • EQ equalizer
  • GATE gate
  • COMP compressor
  • the audio signal after signal processing is level-adjusted by a fader unit (FADER) 352, and then sent to a bus 303 at a subsequent stage via a pan unit (PAN) 353.
  • the pan unit 353 adjusts the balance of signals supplied to the stereo bus of the bus 303 (the L channel and R channel buses serving as master outputs).
  • Each channel of the input channel 302 outputs the audio signal after the signal processing to the bus 303 at the subsequent stage.
  • the bus 303 mixes and outputs the input audio signals.
  • the bus 303 has a plurality of buses (for example, an L channel bus, an R channel bus, a SEND bus, an AUX bus, and the like).
  • the audio signal output from each bus is subjected to signal processing in the output channel 304.
  • the output channel 304 is also subjected to signal processing such as equalizing. Thereafter, the audio signal subjected to the signal processing is output to the output patch 305.
  • the output patch 305 assigns each output channel to any one of a plurality of ports in the analog output port or the digital output port. Alternatively, the output patch 305 assigns each output channel to a speaker connected via a network such as the speaker 12L or the speaker 12R. Therefore, an audio signal subjected to signal processing such as mixing is supplied to the audio I / O 203 or the network I / F 205.
  • the contents of the above signal processing are usually set by the operator before the live performance.
  • Signal processing parameters indicating the contents of signal processing are stored in the flash memory 207 or the RAM 208.
  • the mixer 11 includes a scene memory that stores signal processing parameters in the flash memory 207 or the RAM 208.
  • the operator can immediately call a value set in the past simply by instructing to call the scene memory. Thereby, the user can call the optimum value for each scene set in advance during a concert rehearsal during a live performance, for example. That is, the contents of signal processing change even during live performance.
  • the contents of signal processing include basic settings that are not changed during live performance, such as patch settings, and those that are changed during live performance (for example, the type and order of effects to be used and their respective parameters). is there.
  • Basic settings that are not changed during live performance are included in the setting data of the multitrack data shown in FIG. What is changed during the live performance is included in the signal processing parameters of the multitrack data shown in FIG.
  • FIG. 7 is a schematic diagram showing a live performance state.
  • Multitrack data is created during a live performance.
  • a microphone is installed for each performer or singer.
  • the singer Vo is provided with a microphone for collecting the singing sound.
  • the guitar player G, the bass player B, and the drum player Dr are not provided with microphones in this example. However, when the guitar player G, the bass player B, or the drum player Dr sings a chorus or the like, a microphone is also installed for these players.
  • Microphones for collecting drum performance sounds are installed in each musical instrument (cymbals, toms, bass drums, etc.) constituting the drum set.
  • Performance sound and singing sound are input to the mixer 11 via these microphones.
  • An instrument such as a guitar or bass supplies an analog audio signal or a digital audio signal corresponding to the performance sound to the mixer 11.
  • the guitar and bass supply analog audio signals or digital audio signals to the guitar amplifier 13 and the bass amplifier 14, respectively.
  • the guitar amplifier 13 or the bass amplifier 14 may be provided with a microphone for collecting the guitar or bass performance sound.
  • the mixer 11 performs signal processing such as patch processing, mixing processing, and effect processing on the audio signal supplied from the microphone or the musical instrument.
  • the mixer 11 outputs the audio signal after the signal processing to the speaker 12L and the speaker 12R.
  • the singing sound and the performance sound are output from the speaker 12L and the speaker 12R.
  • the speakers 12L and 12R are floor main speakers.
  • the sound output from the speaker 12L and the speaker 12R reaches the audience.
  • the drum is an acoustic instrument, the sound generated by each instrument constituting the drum also reaches the audience.
  • the sound of the guitar and the bass that are output from the amplifier speakers for musical instruments such as the guitar amplifier 13 and the bass amplifier 14 respectively reach the audience.
  • the mixer 11 transmits a signal processing parameter indicating the content of the signal processing to the output device 10.
  • the mixer 11 also transmits basic settings (setting data) to the output device 10.
  • the mixer 11 transmits the audio signal of each input channel to the output device 10 as audio data for each track.
  • the output device 10 inputs illumination data from the illumination controller 17.
  • the camera 55 is installed for each performer or singer.
  • the camera 55 transmits video data captured in a predetermined format (for example, MPEG4) to the output device 10.
  • a predetermined format for example, MPEG4
  • the camera 55 may shoot all performers and singers in a live performance.
  • the lighting controller 17 reads data in a predetermined format (for example, DMX512) for controlling various types of lighting used for live performance, and controls the lighting.
  • the illumination controller 17 transmits the illumination data to the output device 10.
  • the output device 10 receives signal processing parameters and audio data for each track from the mixer 11.
  • the output device 10 receives video data from the camera 55. Further, the output device 10 receives illumination data from the illumination controller 17.
  • the output device 10 assigns a time code to the received data and encodes it as multitrack data shown in FIG.
  • the time code is time information in which the elapsed time from the start of the live performance is recorded with the timing at which the live performance is started and the data recording is started as 0.
  • the signal processing parameter may be recorded as event data in the multitrack data only when the content of the signal processing parameter is changed, for example, when a scene memory is called. In this case, the data amount of multitrack data is reduced.
  • FIG. 8 is a schematic diagram showing a playback state of a live performance.
  • a screen is installed at a position corresponding to the performer or singer.
  • the output device 10 decodes the multitrack data and extracts setting data, a time code, and video data.
  • the output device 10 outputs the setting data to the projector 16.
  • the projector 16 performs basic settings based on the setting data.
  • the output device 10 outputs video data to the projector 16 in synchronization with the time code. Thereby, the image of the performer or the singer is projected from the projector 16 onto the screen.
  • a transmissive screen is installed.
  • a musical instrument is actually installed on the front, rear or near the transmissive screen.
  • a drum set is installed near the screen on which the image of the drummer is projected.
  • a guitar and a guitar amplifier 13 are installed near the screen on which the image of the guitar player is projected.
  • a bass and bass amplifier 14 are installed near the screen on which the video of the bass player is projected. In this way, the performer is projected near each instrument or the amplifier speaker for the instrument, so that the viewer can view the live performance with high reproducibility.
  • the projection by the screen is not an essential configuration in the present invention.
  • an image of a performer or a singer may be displayed by a display device such as a liquid crystal display.
  • the screen may be transmissive or non-transmissive.
  • the transmission screen the viewer can perceive the actual musical instrument as being superimposed on the player's video, thereby improving the reproducibility of the live performance.
  • the drum player is further projected behind the screen on which the singer is projected, the viewer can perceive as if he / she is participating in an actual live performance.
  • the output device 10 decodes the multitrack data and extracts setting data, time code, and illumination data.
  • the output device 10 outputs the setting data to the illumination controller 17.
  • the illumination controller 17 performs basic settings based on the setting data.
  • the output device 10 outputs illumination data to the illumination controller 17 in synchronization with the time code. Thereby, the illumination at the time of live performance is reproduced.
  • the output device 10 decodes the multitrack data, and extracts setting data, time code, signal processing parameters, and audio data of each track.
  • the output device 10 outputs the setting data to the mixer 11.
  • the mixer 11 performs basic settings based on the setting data. This completes patch setting, input channel setting, output channel setting, and the like.
  • the output device 10 outputs the signal processing parameters and the audio data of each track to the mixer 11 in synchronization with the time code.
  • the signal processing parameters may be always output, but may be output only when there is a change in the content of the signal processing.
  • the audio data may be converted into a digital audio signal in the output device 10 or may be converted into a digital audio signal in the DSP of the mixer 11.
  • the mixer 11 inputs audio data for each track.
  • the mixer 11 processes the audio data of each track based on the contents of the set signal place.
  • the mixer 11 transmits the audio data after the signal processing to the speaker 12L and the speaker 12R. Thereby, a singing sound and a performance sound are output from the speaker 12L and the speaker 12R in the same state as the live performance.
  • the sound output from the speaker 12L and the speaker 12R reaches the audience.
  • the setting data and the signal processing parameters can be adjusted according to the equipment configuration at the reproduction venue.
  • the operator of the mixer 11 can change the contents of the setting data and the signal processing parameter according to the equipment configuration of the reproduction venue after inputting the setting data and the signal processing parameter from the output device 10.
  • the operator can adjust the contents of the setting data and the signal processing parameter using the user I / F 102 of the output device 10 and cause the mixer 11 to output the signal processing parameter from the output device 10.
  • the operator at the playback venue changes the channel and patch settings on the output side. For example, the operator sets so that the output side signal processing is performed by mixing down the two channels on the output side into one channel.
  • the frequency at which howling is likely to occur varies depending on the acoustic transfer characteristics in the venue. Therefore, the operator of the mixer 11 changes the equalizer setting so that howling does not occur at the playback venue.
  • the mixer 11 may automatically adjust the signal processing parameters according to the equipment configuration of each reproduction venue. For example, the mixer 11 generates a test sound from each speaker in the hall and acquires transfer characteristics from each speaker in the hall to each microphone. The mixer 11 changes the equalizer setting according to the acquired transfer characteristic. For example, the mixer 11 obtains a frequency characteristic of the acquired transfer characteristic and sets a notch filter at a frequency having a steep peak in the frequency characteristic. Furthermore, the mixer 11 can dynamically change the setting of the notch filter by applying a learning algorithm such as LMS (Learning Management System). In this way, the mixer 11 can also automatically adjust the signal processing parameters in accordance with the venue equipment configuration.
  • LMS Learning Management System
  • the output device 10 reads the audio data of the track related to the audio signal output from each instrument.
  • the output device 10 reads out audio data output from the guitar and audio data of the audio signal output from the bass.
  • the output device 10 extracts these audio signals and outputs them to the corresponding guitar amplifier 13 and bass amplifier 14. Accordingly, the guitar and bass sounds reach the audience not only from the main speaker 12L and the speaker 12R but also from the guitar amplifier 13 and the bass amplifier 14 respectively. Therefore, the reproducibility of live performance is significantly improved.
  • the output device 10 reads out audio data corresponding to a microphone installed in the acoustic instrument.
  • the output device 10 reads audio data of microphones installed in each instrument of the drum set. The output device 10 outputs these audio data to the vibrator 15.
  • the vibrator 15 is an example of a vibration device according to the present invention.
  • the vibrator 15 vibrates and sounds each instrument of the drum set based on the audio data input from the output device 10.
  • FIG. 9 is a cross-sectional view of the cymbal 70 in the drum set.
  • the vibrator 15 is fixed to the cymbal 70.
  • FIG. 10 is a cross-sectional view showing details of the vibrator 15.
  • FIG. 11 is a partially transparent plan view of the vibrator 15.
  • the vibrator 15 includes an actuator 151, a sheet metal 152, a cushion 153, and a magnet 154.
  • the actuator 151 has a thin cylindrical shape.
  • the actuator 151 inputs an audio signal.
  • the actuator 151 drives a voice coil (not shown) based on the input audio signal, and vibrates in the height direction (normal direction).
  • the upper surface of the actuator 151 is bonded to a flat sheet metal 152.
  • the sheet metal 152 has a circular shape in plan view.
  • the sheet metal 152 has a larger area in plan view than the actuator 151.
  • the sheet metal 152 Since the sheet metal 152 is bonded to the upper surface of the actuator 151, it vibrates according to the vibration of the actuator 151.
  • the sheet metal 152 is connected to the lower surface of the cymbal 70 via the cushion 153.
  • the cushion 153 is made of, for example, an adhesive material.
  • the cushion 153 has a function of filling a gap between the lower surface of the curved cymbal 70 and the planar sheet metal 152. Thereby, the noise sound produced at the time of vibration at the contact point between the sheet metal 152 and the cymbal 70 can be reduced.
  • the sheet metal 152 is a magnetic body. Therefore, the sheet metal 152 sandwiches the cymbal 70 by the magnetic force of the magnet 154 disposed on the upper surface of the cymbal 70.
  • the actuator 151 has a voice coil disposed in the center in plan view.
  • the voice coil is driven by a change in the magnetic field based on the audio signal and transmits vibration to the cymbal 70.
  • the magnet 154 is preferably installed at a position away from the position of the voice coil.
  • the vibrator has the following configuration.
  • An actuator that vibrates based on an audio signal.
  • a connecting portion for connecting the actuator to a musical instrument by magnetic force.
  • the connecting portion connects the actuator to the musical instrument at a position away from the axis of the actuator.
  • the connecting portion may be arranged on the axis of the actuator as shown in FIG.
  • an insulator 157 such as a resin is disposed between the actuator 151 and the sheet metal 152.
  • the insulator 157 has a function of increasing the distance between the actuator 151 and the sheet metal 152.
  • the vibration exciter may have the following configuration.
  • An actuator that vibrates based on an audio signal.
  • a connecting portion for connecting the actuator to a musical instrument by magnetic force.
  • the connection portion includes a magnet and a magnetic body on the magnet.
  • An insulating layer is disposed between the actuator and the magnetic body.
  • the vibrator 15 may have a structure in which the actuator 151 is pressed against the acoustic instrument from one direction.
  • the vibrator 15 includes a plurality of clamps attached to the rim of the tom, and a sheet metal connected between the plurality of clamps. The actuator 151 is attached to the sheet metal, and the actuator 151 presses against the head. Such a structure may be used.
  • the vibrator 15 is not limited to a drum set, and can generate sound by exciting other acoustic instruments.
  • the vibrator 15 can be attached to a soundboard of a piano and can generate sound by exciting the soundboard.
  • the sound of an acoustic instrument reaches the audience not only from the main speaker 12L and the speaker 12R but also from each acoustic instrument. Therefore, the reproducibility of live performance is significantly improved.
  • FIG. 13 is a cross-sectional view showing the configuration of the vibrator 15 according to the application example.
  • the configuration connected to the cymbal 70 is the same as the configuration shown in FIGS. 9, 10, and 11, and the description thereof is omitted.
  • the vibrator 15 further includes a baffle 90, an auxiliary speaker 901, and an auxiliary speaker 902.
  • the baffle 90 has a thin disk shape.
  • the baffle 90 has an area that is the same as or slightly smaller than the area of the cymbal 70 in plan view.
  • the baffle 90 has a circular hole or recess.
  • An auxiliary speaker 901 and an auxiliary speaker 902 are fitted in the circular hole or recess.
  • the sound emission direction of the auxiliary speaker 901 and the auxiliary speaker 902 is directed to the lower side of the cymbal 70. However, the sound emission directions of the auxiliary speaker 901 and the auxiliary speaker 902 may be directed to the upper side of the cymbal 70.
  • the auxiliary speaker 901 is a bass (or full range) speaker.
  • the auxiliary speaker 901 outputs a low-frequency sound (for example, 500 Hz or less) that cannot be reproduced by the actuator 151 among the sounds generated from the cymbal 70 in the live performance.
  • the auxiliary speaker 902 is a speaker for high sounds.
  • the auxiliary speaker 902 outputs a high-frequency sound (for example, 4 kHz or more) that cannot be reproduced by the actuator 151 among the sounds generated from the cymbal 70 in the live performance.
  • the vibrator 15 branches the audio signal input from the mixer 11 and performs a low-pass filter process. Alternatively, the vibrator 15 receives the audio signal that has been low-pass filtered by the mixer 11. Similarly, the vibrator 15 branches the audio signal input from the mixer 11 and performs high-pass filter processing. Alternatively, the vibrator 15 receives the audio signal that has been high-pass filtered by the mixer 11.
  • the vibrator 15 inputs the audio signal after the low-pass filter processing to the auxiliary speaker 901. In addition, the vibrator 15 inputs the audio signal after the high-pass filter process to the auxiliary speaker 902.
  • the vibration exciter 15 supplements the high frequency and low frequency with a speaker, so that the sound during live performance can be reproduced higher.
  • the baffle 90, the auxiliary speaker 901, and the auxiliary speaker 902 are disposed in the immediate vicinity of the cymbal 70. Therefore, even when the sound of the cymbal 70 is emitted from the speaker, the viewer can perceive that the cymbal 70 is sounding.
  • auxiliary speaker is attached via the baffle 90, and the auxiliary speaker is attached in the immediate vicinity of the cymbal 70.
  • the auxiliary speaker is arranged near the drum set, It can be perceived as if the cymbal 70 is ringing.
  • FIG. 14 is a flowchart showing the operation of the playback system of this embodiment.
  • the reproduction system includes a multitrack data output step (S11), an acoustic instrument excitation step (S12), and a sound emission from a speaker (S13).
  • the audio data is synchronized by the time code, the step of exciting the acoustic instrument (S12) and the step of emitting sound from the speaker (S13) are performed simultaneously.
  • FIG. 15 is a flowchart showing a more detailed operation of the output step. Each operation of FIG. 15 is executed by the CPU 104. The CPU 104 performs the operation shown in FIG. 15 by reading the program stored in the flash memory 103 into the RAM 105 and executing it.
  • the CPU 104 reads the multitrack data from the flash memory 103 or another storage device such as a server (S21).
  • the CPU 104 decodes the multitrack data and takes out basic data, time code, audio data, video data, illumination data, and signal processing parameters (S22).
  • the CPU 104 receives the adjustment of the signal processing parameter by displaying a confirmation screen on the display device 101, for example (S23).
  • a confirmation screen on the display device 101, for example (S23).
  • the equipment configurations of the live venue and the playback venue are not necessarily the same. Therefore, the operator uses the user I / F 102 of the output device 10 to adjust the contents of basic data and signal processing parameters.
  • FIG. 16 is a block diagram illustrating a functional configuration of the CPU 104 when the output device 10 accepts delay adjustment.
  • the CPU 104 functionally includes a plurality of delay units 172 and a decoder 175. As described in step S22, the decoder 175 decodes the multitrack data and extracts time code, audio data, video data, illumination data, and signal processing parameters. The decoder 175 synchronizes audio data, video data, illumination data, and signal processing parameters with the time code.
  • the plurality of delay units 172 each receive synchronized audio data, video data, illumination data, and signal processing parameters.
  • the plurality of delay units 172 add delays to the time code, audio data, video data, illumination data, and signal processing parameters, respectively.
  • the amount of delay in the plurality of delay units 172 is manually set by an operator.
  • the equipment configuration of the live venue and the playback venue is not necessarily the same.
  • the processing capability of each device and the network capability in the venue may be different. Therefore, even if audio data, video data, lighting data, and signal processing parameters are synchronized, the sound, video, and light reaching the viewer may be greatly shifted depending on the playback venue.
  • the operator uses the user I / F 102 of the output device 10 to adjust the delay amount of the audio data, the video data, the illumination data, and the signal processing parameter, and adjust the timing of reaching the audio, video, and light viewers. To do.
  • the operator uses the user I / F 102 to instruct the output of each data.
  • the CPU 104 synchronizes the audio data, video data, illumination data, and signal processing parameters and outputs them to each device (S25).
  • the mixer 11 may incorporate the function of the output device 10.
  • the output device 10 may be realized by combining a plurality of devices.
  • Audio I / O 204 Signal processing unit 205: Network I / F 206 ... CPU 207: Flash memory 208 ... RAM 301 ... Input patch 302 ... Input channel 303 ... Bus 304 ... Output channel 305 ... Output patch 351 ... Signal processing block 353 ... Pan 901, 902 ... Auxiliary speaker

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

再生システム(1)は、演奏音または歌唱音がトラック毎のオーディオデータとして記録されたマルチトラックデータを出力するデータ出力装置(10)と、前記マルチトラックデータに含まれる前記オーディオデータのうちアコースティック楽器のオーディオデータに基づいて、アコースティック楽器を加振して発音させる加振装置(15)と、前記オーディオデータに基づいて、前記演奏音または歌唱音を出力するスピーカ(12L,12R)と、を備える。

Description

再生システムおよび再生方法
 この発明の一実施形態は、オーディオデータを再生する再生システムおよび再生方法に関する。
 特許文献1には、楽器毎に異なるチャンネルで演奏音を収録し、自動演奏ピアノの演奏データを収録する構成が開示されている。自動演奏ピアノは、収録した演奏データに基づいて自動演奏を行なう。他の楽器の音は、各チャンネルに対応するスピーカから出力される。同時に、プロジェクタは、演奏者の映像を再生する。
実開平6-21097号公報
 自動演奏ピアノは、演奏者が不在であるにも関わらず鍵盤等の部材が動く。この様に、演奏者がいないにも関わらず、アコースティック楽器において鍵盤等の部材を物理的に駆動させると、視聴者は、たとえ演奏者の映像を再生したとしても、演奏者がその場所にいるとは知覚できずに、違和感を覚える。したがって、従来の構成では、ライブ演奏の再現性に乏しい。
 そこで、この発明の一実施形態は、従来よりもライブ演奏の再現性の高い再生システムおよび再生方法を提供することを目的とする。
 再生システムは、演奏音または歌唱音がトラック毎のオーディオデータとして記録されたマルチトラックデータを出力するデータ出力装置と、前記マルチトラックデータに含まれる前記オーディオデータのうちアコースティック楽器のオーディオデータに基づいて、アコースティック楽器を加振して発音させる加振装置と、前記オーディオデータに基づいて、前記演奏音または歌唱音を出力するスピーカと、を備える。
 この発明の一実施形態は、鍵盤等の操作子を物理的に駆動することなくアコースティック楽器を発音させることができるため、従来よりもライブ演奏の再現性が高くなる。
再生システム1の構成を示すブロック図である。 出力装置10の構成を示すブロック図である。 マルチトラックデータの構成を示す概略図である。 ミキサ11の構成を示すブロック図である。 信号処理部204およびCPU206で実現される信号処理の機能的ブロック図である。 ある入力チャンネルiの処理構成を示す図である。 ライブ演奏の再生状態を示す模式図である。 ライブ演奏の再生状態を示す模式図である。 ドラムセットのうち、シンバル70の断面図である。 加振器15の詳細を示す断面図である。 加振器15の一部透過平面図である。 変形例に係る加振器15の詳細を示す断面図である。 応用例に係る加振器15の構成を示す断面図である。 再生システムの動作を示すフローチャートである。 出力ステップのより詳細な動作を示したフローチャートである。 出力装置10が遅延調整を受け付ける場合の、CPU104の機能的構成を示すブロック図である。
 図1は、再生システム1の構成を示すブロック図である。再生システム1は、出力装置10、ミキサ11、スピーカ12L、スピーカ12R、ギターアンプ13、ベースアンプ14、加振器15、投影機16、および照明コントローラ17を備えている。
 各機器は、ネットワークを介して接続されている。ただし、本発明において、各機器は、ネットワークを介して接続される態様に限るものではない。例えば、USBケーブル、HDMI(登録商標)、またはMIDI等の通信線で接続されていてもよい。また、各機器は、直接にネットワークに接続される必要はない。各機器は、オーディオ信号用の端子およびネットワーク端子を備えたIO機器を介してネットワークに接続されてもよい。
 図2は、出力装置10の主要構成を示すブロック図である。出力装置10は、表示器101、ユーザインタフェース(I/F)102、フラッシュメモリ103、CPU104、RAM105、およびネットワークインタフェース(I/F)106を備えている。
 出力装置10は、パーソナルコンピュータ、スマートフォン、またはタブレット型コンピュータ等の一般的な情報処理装置である。表示器101は、例えばLCD(Liquid Crystal Display)またはOLED(Organic Light-Emitting Diode)等からなり、種々の情報を表示する。ユーザI/F102は、スイッチ、キーボード、マウス、トラックボール、またはタッチパネル等からなり、ユーザの操作を受け付ける。ユーザI/F102がタッチパネルである場合、該ユーザI/F102は、表示器101とともに、GUI(Graphical User Interface以下略)を構成する。
 CPU104は、記憶媒体であるフラッシュメモリ103に記憶されているプログラムをRAM105に読み出して、所定の機能を実現する。例えば、CPU104は、表示器101にユーザの操作を受け付けるための画像を表示し、ユーザI/F102を介して、当該画像に対する選択操作等を受け付けることで、GUIを実現する。また、CPU104は、ユーザI/F102で受け付けた内容に基づいて、フラッシュメモリ103、または外部から所定のデータを読み出して、デコードする。CPU104は、デコードしたデータを他の機器に出力する。
 なお、CPU104が読み出すプログラムは、自装置内のフラッシュメモリ103に記憶されている必要はない。例えば、プログラムは、サーバ等の外部装置の記憶媒体に記憶されていてもよい。この場合、CPU104は、該サーバから都度プログラムをRAM105に読み出して実行すればよい。
 CPU104が読み出すデータは、演奏音または歌唱音がトラック毎のオーディオデータとして記録されたマルチトラックデータである。図3は、マルチトラックデータの構成を示す概略図である。マルチトラックデータは、設定データ、タイムコード、トラック毎のオーディオデータ、映像データ、照明データ、および信号処理パラメータを含む。
 設定データは、ミキサの基本設定に対応するデータである。ミキサの基本設定は、例えばオーディオ信号のサンプリング周波数、ワードクロック、パッチ設定、またはネットワーク設定等を含む。
 図4は、ミキサ11の構成を示すブロック図である。ミキサ11は、本発明の信号処理装置の一例である。ミキサ11は、表示器201、ユーザI/F202、オーディオI/O(Input/Output)203、信号処理部(DSP)204、ネットワークI/F205、CPU206、フラッシュメモリ207、およびRAM208を備えている。これら構成は、バス171を介して接続されている。
 CPU206は、ミキサ11の動作を制御する制御部である。CPU206は、記憶媒体であるフラッシュメモリ207に記憶された所定のプログラムをRAM208に読み出して実行することにより各種の動作を行なう。
 なお、CPU206が読み出すプログラムも、自装置内のフラッシュメモリ207に記憶されている必要はない。例えば、プログラムは、サーバ等の外部装置の記憶媒体に記憶されていてもよい。この場合、CPU206は、該サーバから都度プログラムをRAM208に読み出して実行すればよい。
 信号処理部204は、各種信号処理を行なうためのDSPから構成される。信号処理部204は、オーディオI/O203またはネットワークI/F205を介して入力されるオーディオ信号に、ミキシング、ゲイン調整、イコライジング、またはコンプレッシング等の信号処理を施す。信号処理部204は、信号処理後のオーディオ信号を、オーディオI/O203またはネットワークI/F205を介して、スピーカ12Lまたはスピーカ12R等の他の機器に出力する。
 図5は、信号処理部204およびCPU206で実現される信号処理の機能的ブロック図である。図5に示すように、信号処理は、機能的に、入力パッチ301、入力チャンネル302、バス303、出力チャンネル304、および出力パッチ305によって行なわれる。
 入力パッチ301は、オーディオI/O203における複数の入力ポート(例えばアナログ入力ポートまたはデジタル入力ポート)からオーディオ信号を入力して、複数のポートのうちいずれか1つのポートを、複数チャンネル(例えば16ch)の少なくとも1つのチャンネルに割り当てる。これにより、オーディオ信号が入力チャンネル302の各チャンネルに供給される。
 入力チャンネル302の各チャンネルは、入力されたオーディオ信号に対して、各種の信号処理を施す。
 図6は、ある入力チャンネルiの処理構成を示す図である。入力チャンネル302の各チャンネルは、信号処理ブロック351において、入力パッチ301から供給されたオーディオ信号に対して、各種の信号処理を施す。図6の例では、信号処理ブロック351は、アッテネータ(ATT)、イコライザ(EQ)、ゲート(GATE)、およびコンプレッサ(COMP)の信号処理を施す。
 信号処理後のオーディオ信号は、フェーダ部(FADER)352でレベル調整された後に、パン部(PAN)353を介して、後段のバス303に送出される。パン部353は、バス303のステレオバス(マスタ出力となるLチャンネルおよびRチャンネルのバス)に供給する信号のバランスを調整する。
 入力チャンネル302の各チャンネルは、信号処理後のオーディオ信号を、後段のバス303へ出力する。
 バス303は、入力されるオーディオ信号をそれぞれミキシングして出力する。バス303は、複数のバス(例えば、Lチャンネルバス、Rチャンネルバス、SENDバス、およびAUXバス等)を有する。
 各バスから出力されるオーディオ信号は、出力チャンネル304で信号処理が施される。出力チャンネル304においても、イコライジング等の信号処理が施される。その後、信号処理を施されたオーディオ信号は、出力パッチ305に出力される。出力パッチ305は、各出力チャンネルを、アナログ出力ポートまたはデジタル出力ポートにおける複数のポートのうちいずれか1つのポートに割り当てる。あるいは、出力パッチ305は、各出力チャンネルを、スピーカ12Lまたはスピーカ12R等のネットワーク経由で接続されるスピーカに割り当てる。よって、ミキシング等の信号処理が施されたオーディオ信号が、オーディオI/O203またはネットワークI/F205に供給される。
 以上の信号処理の内容は、通常、ライブ演奏の前にオペレータによって設定される。信号処理の内容を示す信号処理パラメータは、フラッシュメモリ207またはRAM208に記憶される。また、ミキサ11は、フラッシュメモリ207またはRAM208において、信号処理パラメータを記憶するシーンメモリを備えている。オペレータは、シーンメモリの呼び出しを指示するだけで、過去に設定した値を即座に呼び出すことができる。これにより、ユーザは、例えばコンサートのリハーサル中に事前に設定したシーン毎に最適な値を、ライブ演奏中に呼び出すことができる。つまり、信号処理の内容は、ライブ演奏中にも変化する。
 ただし、信号処理の内容は、パッチ設定等の、ライブ演奏中に変更されない基本設定と、ライブ演奏中に変更されるもの(例えば利用するエフェクトの種類、順序、およびそれぞれのパラメータ等)と、がある。ライブ演奏中に変更されない基本設定は、図3で示したマルチトラックデータのうち、設定データに含まれる。ライブ演奏中に変更されるものは、図3で示したマルチトラックデータのうち、信号処理パラメータに含まれる。
 図7は、ライブ演奏の状態を示す模式図である。マルチトラックデータは、ライブ演奏中に作成される。ライブ演奏では、演奏者または歌唱者毎にマイクが設置される。例えば、歌唱者Voには、歌唱音を収音するためのマイクが設置される。ギター奏者G、ベース奏者B、およびドラム奏者Drには、この例ではマイクが設置されていない。ただし、ギター奏者G、ベース奏者B、またはドラム奏者Drがコーラス等の歌唱を行なう場合には、これら奏者にもマイクが設置される。ドラムの演奏音を収音するためのマイクは、ドラムセットを構成する各楽器(シンバル、タム、およびバスドラム等)のそれぞれに設置される。
 演奏音および歌唱音は、これらマイクを介してミキサ11に入力される。ギターまたはベース等の楽器は、演奏音に応じたアナログオーディオ信号またはデジタルオーディオ信号を、ミキサ11に供給する。また、ギターおよびベースは、それぞれギターアンプ13およびベースアンプ14にアナログオーディオ信号またはデジタルオーディオ信号を供給する。なお、ギターアンプ13またはベースアンプ14には、ギターまたはベースの演奏音を収音するためのマイクが設置されていてもよい。
 ミキサ11は、マイクまたは楽器から供給されたオーディオ信号に、パッチ処理、ミキシング処理、およびエフェクト処理等の信号処理を行なう。ミキサ11は、信号処理後のオーディオ信号をスピーカ12Lおよびスピーカ12Rに出力する。
 これにより、ライブ演奏においては、スピーカ12Lおよびスピーカ12Rから歌唱音および演奏音が出力される。スピーカ12Lおよびスピーカ12Rは、フロア用のメインスピーカである。スピーカ12Lおよびスピーカ12Rから出力された音は、観客に到達する。また、ドラムは、アコースティック楽器であるため、ドラムを構成する各楽器で発生した音も、観客に到達する。また、ギターおよびベースの音は、それぞれギターアンプ13およびベースアンプ14等の楽器用アンプスピーカから出力される音も、観客に到達する。
 そして、ミキサ11は、信号処理の内容を示す信号処理パラメータを出力装置10に送信する。また、ミキサ11は、基本設定(設定データ)も、出力装置10に送信する。また、ミキサ11は、出力装置10に対して、各入力チャンネルのオーディオ信号を、トラック別のオーディオデータとして送信する。
 出力装置10は、照明コントローラ17から照明データを入力する。図7に示す様に、カメラ55は、演奏者または歌唱者毎に設置されている。カメラ55は、所定の形式(例えばMPEG4)撮影した映像データを、出力装置10に送信する。ただし、本発明において、カメラ55を演奏者または歌唱者毎に設置することは必須ではない。例えば、カメラ55は、1台でライブ演奏の全演奏者および歌唱者を撮影してもよい。
 また、照明コントローラ17は、ライブ演奏に利用される各種の照明をコントロールするための所定の形式(例えばDMX512)のデータを読み出し、照明をコントロールする。照明コントローラ17は、照明データを出力装置10に送信する。
 出力装置10は、ミキサ11から信号処理パラメータおよびトラック別のオーディオデータを受信する。出力装置10は、カメラ55から映像データを受信する。また、出力装置10は、照明コントローラ17から照明データを受信する。出力装置10は、これら受信したデータにタイムコードを付与して、図3に示したマルチトラックデータとしてエンコードする。タイムコードは、ライブ演奏が開始され、データの記録が開始されたタイミングを0として、ライブ演奏の開始からの経過時間を記録した時間情報である。なお、信号処理パラメータは、例えばシーンメモリの呼び出しがあった場合等、信号処理パラメータの内容に変化があった時のみ、マルチトラックデータ内にイベントデータとして記録されてもよい。この場合、マルチトラックデータのデータ量が削減される。
 以上のようにして、ライブ演奏を記録したマルチトラックデータが作成される。
 図8は、ライブ演奏の再生状態を示す模式図である。ライブ演奏の再生会場では、演奏者または歌唱者に応じた位置に、スクリーンが設置される。出力装置10は、マルチトラックデータをデコードして、設定データ、タイムコード、および映像データを取り出す。出力装置10は、設定データを投影機16に出力する。投影機16は、設定データに基づいて、基本設定を行なう。出力装置10は、タイムコードに同期して映像データを投影機16に出力する。これにより、スクリーンには、投影機16から、演奏者または歌唱者の映像が投影される。
 図8の例では、透過型スクリーンが設置される。透過型スクリーンの前面、後面、または近傍には、実際に楽器が設置される。例えば、ドラム奏者の映像が投影されるスクリーンの近くにはドラムセットが設置される。また、ギター奏者の映像が投影されるスクリーンの近くには、ギターおよびギターアンプ13が設置される。ベース奏者の映像が投影されるスクリーンの近くには、ベースおよびベースアンプ14が設置される。この様に、各楽器または楽器用アンプスピーカの近くに演奏者が投影されるため、視聴者は、高い再現性でライブ演奏を視聴することができる。
 なお、スクリーンによる投影は、本願発明において必須の構成ではない。例えば、液晶ディスプレイ等の表示器により、演奏者または歌唱者の映像を表示してもよい。なお、スクリーンは、透過型であってもよいし、非透過型であってもよい。ただし、透過型スクリーンを用いることで、視聴者は、演奏者の映像に重畳して実際の楽器が設置されているように知覚することができるため、よりライブ演奏の再現性が向上する。また、歌唱者が投影されたスクリーンのさらに後ろにさらにドラム奏者が投影されるため、視聴者は、実際のライブに参加している様に知覚できる。
 出力装置10は、マルチトラックデータをデコードして、設定データ、タイムコード、および照明データを取り出す。出力装置10は、設定データを照明コントローラ17に出力する。照明コントローラ17は、設定データに基づいて、基本設定を行なう。出力装置10は、タイムコードに同期して照明データを照明コントローラ17に出力する。これにより、ライブ演奏時の照明が再現される。
 また、出力装置10は、マルチトラックデータをデコードして、設定データ、タイムコード、信号処理パラメータ、および各トラックのオーディオデータを取り出す。出力装置10は、設定データをミキサ11に出力する。ミキサ11は、設定データに基づいて、基本設定を行なう。これにより、パッチ設定、入力チャンネルの設定、および出力チャンネルの設定等が完了する。ライブ演奏の再生開始操作がなされると、出力装置10は、タイムコードに同期して、信号処理パラメータおよび各トラックのオーディオデータをミキサ11に出力する。なお、信号処理パラメータは、常に出力されてもよいが、信号処理の内容に変化があった場合に限り出力されてもよい。また、オーディオデータは、出力装置10においてデジタルオーディオ信号に変換してもよいし、ミキサ11のDSPにおいてデジタルオーディオ信号に変換してもよい。
 ミキサ11は、各トラックのオーディオデータを入力する。ミキサ11は、設定された信号所の内容に基づいて各トラックのオーディオデータを処理する。ミキサ11は、信号処理した後のオーディオデータを、スピーカ12Lおよびスピーカ12Rにオーディオ信号を送信する。これにより、ライブ演奏と同じ状態で、スピーカ12Lおよびスピーカ12Rから歌唱音および演奏音が出力される。スピーカ12Lおよびスピーカ12Rから出力された音は、観客に到達する。
 なお、図7のライブ会場および図8の再生会場の例では、いずれも同じ設備構成を有しているが、ライブ会場と再生会場との設備構成は、同じであるとは限らない。したがって、設定データおよび信号処理パラメータは、再生会場における設備構成に応じて、調整可能になっている。ミキサ11のオペレータは、出力装置10から設定データおよび信号処理パラメータを入力した後に、再生会場の設備構成に応じて、設定データおよび信号処理パラメータの内容を変更できる。または、オペレータは、出力装置10のユーザI/F102を用いて、設定データおよび信号処理パラメータの内容を調整して、出力装置10からミキサ11に当該信号処理パラメータを出力させることができる。
 例えば、再生会場で1つのスピーカしか設置されていない場合、再生会場のオペレータは、出力側のチャンネルおよびパッチ設定を変更する。例えば、オペレータは、出力側の2つのチャンネルを1つのチャンネルにミックスダウンして出力側の信号処理を行なう設定を行なうように設定する。
 また、例えば、ハウリングが生じ易い周波数は、会場内の音響的な伝達特性に応じて変化する。したがって、ミキサ11のオペレータは、再生会場においてハウリングが生じない様に、イコライザの設定を変更する。
 また、ミキサ11は、各再生会場の設備構成に応じて、信号処理パラメータを自動的に調整してもよい。例えば、ミキサ11は、会場内の各スピーカからテスト音を発生させて、会場内の各スピーカから各マイクに至る伝達特性を取得する。ミキサ11は、取得した伝達特性に応じて、イコライザの設定を変更する。例えば、ミキサ11は、取得した伝達特性の周波数特性を求め、当該周波数特性のうち急峻なピークを有する周波数にノッチフィルタを設定する。さらに、ミキサ11は、LMS(Learning Management System)等の学習アルゴリズムを適用することで、動的にノッチフィルタの設定を変更することもできる。このようにして、ミキサ11は、会場の設備構成に応じて、信号処理パラメータを自動調整することも可能である。
 さらに、出力装置10は、各楽器から出力されたオーディオ信号に係るトラックのオーディオデータを読み出す。図8の例では、出力装置10は、ギターから出力されたオーディオ信号、およびベースから出力されたオーディオ信号のオーディオデータを読み出す。出力装置10は、これらオーディオ信号を取り出して、対応するギターアンプ13およびベースアンプ14に出力する。これにより、ギターおよびベースの音は、メインのスピーカ12Lおよびスピーカ12Rからだけではなく、それぞれギターアンプ13およびベースアンプ14から出力される音も、観客に到達する。したがって、ライブ演奏の再現性が顕著に向上する。
 また、出力装置10は、アコースティック楽器に設置したマイクに対応するオーディオデータを読み出す。図8の例では、出力装置10は、ドラムセットの各楽器に設置されたマイクのオーディオデータを読み出す。出力装置10は、これらオーディオデータを加振器15に出力する。
 加振器15は、本発明の加振装置の一例である。加振器15は、出力装置10から入力したオーディオデータに基づいて、ドラムセットの各楽器を加振して発音させる。
 図9は、ドラムセットのうち、シンバル70の断面図である。加振器15は、シンバル70に固定される。図10は、加振器15の詳細を示す断面図である。図11は、加振器15の一部透過平面図である。
 加振器15は、アクチュエータ151、板金152、クッション153、および磁石154を備えている。アクチュエータ151は、薄い円柱形状である。アクチュエータ151は、オーディオ信号を入力する。アクチュエータ151は、入力したオーディオ信号に基づいてボイスコイル(不図示)を駆動し、高さ方向(法線方向)に振動する。
 アクチュエータ151の上面は、平板状の板金152に接着されている。板金152は、平面視して円形状である。板金152は、アクチュエータ151よりも平面視して面積が大きい。
 板金152は、アクチュエータ151の上面に接着されているため、アクチュエータ151の振動に従って振動する。板金152は、クッション153を介して、シンバル70の下面に接続される。クッション153は、例えば、粘着材からなる。クッション153は、曲面形状のシンバル70の下面と、平面形状の板金152の隙間を埋める機能を有する。これにより、板金152とシンバル70との接触点で振動時に生じるノイズ音を低減できる。また、板金152は、磁性体である。したがって、板金152は、シンバル70の上面に配置された磁石154の磁力によりシンバル70を挟み込む。
 図11の平面図に示す様に、この例では2つの磁石154が配置されている。アクチュエータ151は、平面視して中央に、ボイスコイルが配置されている。ボイスコイルは、オーディオ信号に基づく磁界の変化により駆動し、シンバル70に振動を伝える。ここで、仮に磁石154をアクチュエータ151に近づけると、磁石154の磁界がボイスコイルの磁界に影響する可能性がある。そこで、磁石154は、ボイスコイルの位置から離れた位置に設置されることが好ましい。
 すなわち、加振器は、以下の様な構成を有することが好ましい。 
 (1)オーディオ信号に基づいて振動するアクチュエータ。 
 (2)前記アクチュエータを磁力により楽器に接続する接続部。 
 (3)前記接続部は、前記アクチュエータの軸から離れた位置で、前記アクチュエータを前記楽器に接続する。
 また、接続部(磁石154)は、図12に示す様に、アクチュエータの軸上に配置されていてもよい。この場合、加振器は、アクチュエータ151と板金152との間に樹脂等の絶縁体157が配置されている。絶縁体157は、アクチュエータ151と板金152との距離を遠くする機能を有する。
 すなわち、加振器は、以下の様な構成を有する態様であってもよい。 
 (1)オーディオ信号に基づいて振動するアクチュエータ。 
 (2)前記アクチュエータを磁力により楽器に接続する接続部。 
 (3)前記接続部は、磁石と、前記磁石に磁性体と、を備える。 
 (4)前記アクチュエータと前記磁性体との間に、絶縁層が配置される。
 これら構成により、加振器は、シンバル等のアコースティック楽器に取り付ける際に、磁石の影響を受けずにアコースティック楽器を加振することができる。また、加振器は、磁石によりアコースティック楽器に固定されるため、容易に着脱することが可能である。したがって、アコースティック楽器は、加振器15を取り外してライブ演奏に使用することも容易である。
 なお、上記実施形態の加振器15は、シンバル70を加振する例について説明したが、他のドラムセットの楽器も全て同じ構成および機能により、加振することができる。ただし、加振器15の構成は、図11および図12に示した構造に限らない。例えば、加振器15は、アクチュエータ151をアコースティック楽器に一方向から押し当てる様な構造でもよい。例えば、加振器15は、タムのリムに取り付けられる複数のクランプと、複数のクランプ間に接続される板金と、を備え、アクチュエータ151が板金に取り付けられて、該アクチュエータ151がヘッドに押し当てられる様な構造でもよい。
 また、加振器15は、ドラムセットに限らず、他のアコースティック楽器を加振して音を生じさせることができる。例えば、加振器15は、ピアノの響板に取り付けられ、響板を加振して音を生じさせることもできる。
 以上の構成により、アコースティック楽器の音は、メインのスピーカ12Lおよびスピーカ12Rからだけではなく、それぞれのアコースティック楽器から発生した音も、観客に到達する。したがって、ライブ演奏の再現性が顕著に向上する。
 図13は、応用例に係る加振器15の構成を示す断面図である。シンバル70に接続される構成は図9、図10および図11に示した構成と同一であり、説明を省略する。
 加振器15は、さらにバッフル90、補助スピーカ901および補助スピーカ902を備えている。バッフル90は、薄い円板形状である。バッフル90は、平面視して、シンバル70の面積と同一またはわずかに小さい面積を有する。図示はしていないが、バッフル90には、円形の孔または凹みが形成されている。円形の孔または凹みには、補助スピーカ901および補助スピーカ902がはめ込まれている。
 補助スピーカ901および補助スピーカ902の放音方向は、シンバル70の下側に向けられている。ただし、補助スピーカ901および補助スピーカ902の放音方向は、シンバル70の上側に向けられていてもよい。
 補助スピーカ901は、低音用(またはフルレンジ)のスピーカである。補助スピーカ901は、ライブ演奏でシンバル70から発生した音のうち、アクチュエータ151では再現できない程度の低域(例えば500Hz以下)の音を出力する。また、補助スピーカ902は、高音用のスピーカである。補助スピーカ902は、ライブ演奏でシンバル70から発生した音のうち、アクチュエータ151では再現できない程度の高域(例えば4kHz以上)の音を出力する。
 加振器15は、ミキサ11から入力されたオーディオ信号を分岐して、ローパスフィルタ処理を行なう。あるいは、加振器15は、ミキサ11でローパスフィルタ処理された後のオーディオ信号を受信する。同様に、加振器15は、ミキサ11から入力されたオーディオ信号を分岐して、ハイパスフィルタ処理を行なう。あるいは、加振器15は、ミキサ11でハイパスフィルタ処理された後のオーディオ信号を受信する。
 加振器15は、ローパスフィルタ処理後のオーディオ信号を補助スピーカ901に入力する。また、加振器15は、ハイパスフィルタ処理後のオーディオ信号を補助スピーカ902に入力する。
 以上の構成により、加振器15は、スピーカで高域および低域を補うため、ライブ演奏時の音をより高く再現することができる。また、バッフル90、補助スピーカ901および補助スピーカ902は、シンバル70の直近に配置されている。したがって、スピーカからシンバル70の音を発する場合でも、視聴者は、シンバル70が鳴っているように知覚することができる。
 また、シンバル70以外のアコースティック楽器についても、補助スピーカを配置することにより、高域または低域の音を補うことで、ライブ演奏時の音をより高く再現することができる。また、上述の例では、バッフル90を介して補助スピーカが取り付けられ、シンバル70の直近に補助スピーカが取り付けられているが、例えばドラムセットの近くに補助スピーカを配置する場合も、視聴者は、シンバル70が鳴っているように知覚することができる。
 次に、図14は、本実施形態の再生システムの動作を示すフローチャートである。再生システムは、マルチトラックデータの出力ステップ(S11)、アコースティック楽器の加振ステップ(S12)、およびスピーカから放音するステップ(S13)を含む。ただし、オーディオデータは、タイムコードにより同期されるため、アコースティック楽器の加振ステップ(S12)、およびスピーカから放音するステップ(S13)は、同時に行なわれる。
 出力装置10は、演奏音または歌唱音がトラック毎のオーディオデータとして記録されたマルチトラックデータを出力する。図15は、出力ステップのより詳細な動作を示したフローチャートである。図15の各動作は、CPU104により実行される。CPU104は、フラッシュメモリ103に記憶されているプログラムをRAM105に読み出して実行することにより、図15に示す動作を行なう。
 CPU104は、フラッシュメモリ103またはサーバ等の他の記憶装置からマルチトラックデータを読み出す(S21)。CPU104は、マルチトラックデータをデコードして、基本データ、タイムコード、オーディオデータ、映像データ、照明データ、および信号処理パラメータを取り出す(S22)。
 その後、CPU104は、例えば表示器101に確認画面を表示することにより、信号処理パラメータの調整を受け付ける(S23)。上述の様に、ライブ会場と再生会場との設備構成は、同じであるとは限らない。したがって、オペレータは、出力装置10のユーザI/F102を用いて、基本データおよび信号処理パラメータの内容を調整する。
 その後、CPU104は、例えば表示器101に確認画面を表示することにより、遅延調整を受け付ける(S24)。図16は、出力装置10が遅延調整を受け付ける場合の、CPU104の機能的構成を示すブロック図である。
 CPU104は、機能的に、複数の遅延部172と、デコーダ175と、を備えている。デコーダ175は、S22のステップで説明した様に、マルチトラックデータをデコードして、タイムコード、オーディオデータ、映像データ、照明データ、および信号処理パラメータを取り出す。また、デコーダ175は、タイムコードにより、オーディオデータ、映像データ、照明データ、および信号処理パラメータを同期する。
 複数の遅延部172は、それぞれ同期されたオーディオデータ、映像データ、照明データ、および信号処理パラメータを入力する。複数の遅延部172は、それぞれタイムコード、オーディオデータ、映像データ、照明データ、および信号処理パラメータに遅延を付与する。複数の遅延部172における遅延量は、オペレータにより手動で設定される。
 上述のように、ライブ会場と再生会場との設備構成は、同じであるとは限らない。また、各装置の処理能力、および会場内におけるネットワークの能力も異なる場合がある。したがって、オーディオデータ、映像データ、照明データ、および信号処理パラメータを同期しても、再生会場によって、視聴者に到達する音、映像、および光は、大きくずれる場合がある。オペレータは、出力装置10のユーザI/F102を用いて、オーディオデータ、映像データ、照明データ、および信号処理パラメータの遅延量を調整し、音、映像、および光の視聴者に到達するタイミングを調整する。
 以上の調整操作が完了し、ライブ演奏の再生時において、オペレータは、ユーザI/F102を用いて、各データの出力を指示する。CPU104は、オーディオデータ、映像データ、照明データ、および信号処理パラメータを同期して、各機器に出力する(S25)。
 本実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、ミキサ11は、出力装置10の機能を内蔵していてもよい。また、出力装置10は、複数の装置を組み合わせることにより実現されてもよい。
1…再生システム
10…出力装置
11…ミキサ
12L…スピーカ
12R…スピーカ
13…ギターアンプ
14…ベースアンプ
15…加振器
16…投影機
17…照明コントローラ
55…カメラ
70…シンバル
90…バッフル
101…表示器
102…ユーザI/F
103…フラッシュメモリ
104…CPU
105…RAM
106…ネットワークI/F
151…アクチュエータ
152…板金
153…クッション
154…磁石
157…絶縁体
171…バス
172…遅延部
175…デコーダ
201…表示器
202…ユーザI/F
203…オーディオI/O
204…信号処理部
205…ネットワークI/F
206…CPU
207…フラッシュメモリ
208…RAM
301…入力パッチ
302…入力チャンネル
303…バス
304…出力チャンネル
305…出力パッチ
351…信号処理ブロック
353…パン部
901,902…補助スピーカ

Claims (14)

  1.  演奏音または歌唱音がトラック毎の複数のオーディオデータとして記録されたマルチトラックデータを出力する出力装置と、
     前記マルチトラックデータに含まれる前記複数のオーディオデータのうちアコースティック楽器のオーディオデータに基づいて、アコースティック楽器を加振して発音させる加振装置と、
     前記複数のオーディオデータに基づいて、前記演奏音または歌唱音を出力するスピーカと、
     を備えた再生システム。
  2.  前記スピーカは、メインスピーカと、楽器用アンプスピーカと、を含む、
     請求項1に記載の再生システム。
  3.  前記マルチトラックデータは、信号処理パラメータを含み、
     前記信号処理パラメータに基づいて、前記複数のオーディオデータを処理し、信号処理後のオーディオデータを前記加振装置および前記スピーカに出力する信号処理装置をさらに備える、
     請求項1または請求項2に記載の再生システム。
  4.  前記マルチトラックデータに含まれる前記複数のオーディオデータのうち前記加振装置に入力されるトラックのオーディオデータに基づいて、前記演奏音を出力する補助スピーカを備える、
     請求項1乃至請求項3のいずれかに記載の再生システム。
  5.  前記マルチトラックデータは、時間情報を含む、
     請求項1乃至請求項4のいずれかに記載の再生システム。
  6.  前記マルチトラックデータは、演奏者または歌唱者を撮影した映像データを含む
     請求項1乃至請求項5のいずれかに記載の再生システム。
  7.  前記トラック毎のオーディオデータに遅延を付与する遅延部を備えた、
     請求項1乃至請求項6のいずれかに記載の再生システム。
  8.  演奏音または歌唱音がトラック毎の複数のオーディオデータとして記録されたマルチトラックデータを入力し、
     前記マルチトラックデータに含まれる前記複数のオーディオデータのうちアコースティック楽器のオーディオデータに基づいて、アコースティック楽器を加振して発音させ、
     前記複数のオーディオデータに基づいて、前記演奏音または歌唱音を出力する、
     再生方法。
  9.  前記演奏音を楽器用アンプスピーカから出力する、
     請求項8に記載の再生方法。
  10.  前記マルチトラックデータは、信号処理パラメータを含み、
     前記信号処理パラメータに基づいて、前記複数のオーディオデータを処理し、
     信号処理後のオーディオデータに基づいて、前記アコースティック楽器を加振して発音させ、
     信号処理後のオーディオデータに基づいて、前記演奏音または歌唱音を出力する、
     請求項8または請求項9に記載の再生方法。
  11.  前記マルチトラックデータに含まれる前記複数のオーディオデータのうち前記アコースティック楽器を加振させるためのトラックのオーディオデータに基づいて、前記演奏音を補助スピーカから出力する、
     請求項8乃至請求項10のいずれかに記載の再生方法。
  12.  前記マルチトラックデータは、時間情報を含む、
     請求項8乃至請求項11のいずれかに記載の再生方法。
  13.  前記マルチトラックデータは、演奏者または歌唱者を撮影した映像データを含む
     請求項8乃至請求項12のいずれかに記載の再生方法。
  14.  前記トラック毎のオーディオデータに遅延を付与する、
     請求項8乃至請求項13のいずれかに記載の再生方法。
PCT/JP2019/019466 2018-05-25 2019-05-16 再生システムおよび再生方法 WO2019225463A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/098,857 US11399249B2 (en) 2018-05-25 2020-11-16 Reproduction system and reproduction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-100186 2018-05-25
JP2018100186A JP7143632B2 (ja) 2018-05-25 2018-05-25 再生システムおよび再生方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/098,857 Continuation US11399249B2 (en) 2018-05-25 2020-11-16 Reproduction system and reproduction method

Publications (1)

Publication Number Publication Date
WO2019225463A1 true WO2019225463A1 (ja) 2019-11-28

Family

ID=68616736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019466 WO2019225463A1 (ja) 2018-05-25 2019-05-16 再生システムおよび再生方法

Country Status (3)

Country Link
US (1) US11399249B2 (ja)
JP (1) JP7143632B2 (ja)
WO (1) WO2019225463A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040317A (zh) * 2021-09-22 2022-02-11 北京车和家信息技术有限公司 音响的声道补偿方法及装置、电子设备和存储介质
JP7022872B1 (ja) * 2021-03-18 2022-02-18 ヤマハ株式会社 データ処理方法およびデータ処理装置
WO2022195911A1 (ja) * 2021-03-18 2022-09-22 ヤマハ株式会社 データ処理方法およびデータ処理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022061167A (ja) * 2020-10-06 2022-04-18 ヤマハ株式会社 打楽器駆動装置
JP7184218B1 (ja) * 2022-03-24 2022-12-06 ヤマハ株式会社 音響機器および該音響機器のパラメータ出力方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006941A1 (en) * 1989-11-07 1991-05-16 Fred Paroutaud Method and apparatus for stimulation of acoustic musical instruments
JPH0621097U (ja) * 1992-08-21 1994-03-18 ヤマハ株式会社 音源対応再生装置
WO1997030564A1 (fr) * 1996-02-13 1997-08-21 Tsuneshige Kojima Dispositif electronique acoustique
JP2016045316A (ja) * 2014-08-21 2016-04-04 ヤマハ株式会社 弦楽器の支持体、弦楽器の加振装置
JP2016082575A (ja) * 2014-10-17 2016-05-16 ヤマハ株式会社 音響システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6442854B2 (ja) * 2014-04-09 2018-12-26 ヤマハ株式会社 加振器の取付構造、及び、楽器
JP6446896B2 (ja) * 2014-08-01 2019-01-09 ヤマハ株式会社 加振器の取付構造、及び、楽器
US20160112799A1 (en) 2014-10-17 2016-04-21 Yamaha Corporation Acoustic system, acoustic system control device, and acoustic system control method
JP6524927B2 (ja) * 2016-01-20 2019-06-05 ヤマハ株式会社 楽器及び加振装置
US10621965B2 (en) * 2016-12-04 2020-04-14 Hiroshi Abiko Acoustic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006941A1 (en) * 1989-11-07 1991-05-16 Fred Paroutaud Method and apparatus for stimulation of acoustic musical instruments
JPH0621097U (ja) * 1992-08-21 1994-03-18 ヤマハ株式会社 音源対応再生装置
WO1997030564A1 (fr) * 1996-02-13 1997-08-21 Tsuneshige Kojima Dispositif electronique acoustique
JP2016045316A (ja) * 2014-08-21 2016-04-04 ヤマハ株式会社 弦楽器の支持体、弦楽器の加振装置
JP2016082575A (ja) * 2014-10-17 2016-05-16 ヤマハ株式会社 音響システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7022872B1 (ja) * 2021-03-18 2022-02-18 ヤマハ株式会社 データ処理方法およびデータ処理装置
WO2022195911A1 (ja) * 2021-03-18 2022-09-22 ヤマハ株式会社 データ処理方法およびデータ処理装置
CN114040317A (zh) * 2021-09-22 2022-02-11 北京车和家信息技术有限公司 音响的声道补偿方法及装置、电子设备和存储介质
CN114040317B (zh) * 2021-09-22 2024-04-12 北京车和家信息技术有限公司 音响的声道补偿方法及装置、电子设备和存储介质

Also Published As

Publication number Publication date
US20210067890A1 (en) 2021-03-04
JP2019205105A (ja) 2019-11-28
US11399249B2 (en) 2022-07-26
JP7143632B2 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2019225463A1 (ja) 再生システムおよび再生方法
Thompson Understanding audio: getting the most out of your project or professional recording studio
JP5258796B2 (ja) インテリジェント等化のためのシステム及び方法
KR101387195B1 (ko) 오디오 신호의 공간 추출 시스템
US20100223552A1 (en) Playback Device For Generating Sound Events
Savage The art of digital audio recording: A practical guide for home and studio
US11758345B2 (en) Processing audio for live-sounding production
d'Escrivan Music technology
JP2006513656A (ja) サウンドを発生させるための装置および方法
Elmosnino Audio production principles: Practical studio applications
JP6568351B2 (ja) カラオケシステム、プログラム及びカラオケ音声再生方法
JP6459379B2 (ja) 音響システム
JP2009038605A (ja) 音声信号生成装置、音声信号生成方法、音声信号生成プログラム並びに音声信号を記録した記録媒体
JP4967916B2 (ja) 信号処理装置
US6399868B1 (en) Sound effect generator and audio system
JP7426006B2 (ja) 通信方法およびシステム
JP7434083B2 (ja) カラオケ装置
JP4360212B2 (ja) カラオケ装置
Malyshev Sound production for 360 videos: in a live music performance case study
JP2004129058A (ja) 弦楽器を使用したスピーカによるコンサートシステム
JPH03268599A (ja) 音響装置
US10083680B2 (en) Mixing console
JP2009194924A (ja) サウンドを発生させるための装置および方法
Edwards What Every Singer Needs to Know about Audio Technology
JPH10214093A (ja) 楽音再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807729

Country of ref document: EP

Kind code of ref document: A1