WO2019225444A1 - フィギュアシステムおよび動力機構 - Google Patents

フィギュアシステムおよび動力機構 Download PDF

Info

Publication number
WO2019225444A1
WO2019225444A1 PCT/JP2019/019355 JP2019019355W WO2019225444A1 WO 2019225444 A1 WO2019225444 A1 WO 2019225444A1 JP 2019019355 W JP2019019355 W JP 2019019355W WO 2019225444 A1 WO2019225444 A1 WO 2019225444A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupler
rotational force
module
drive unit
movable
Prior art date
Application number
PCT/JP2019/019355
Other languages
English (en)
French (fr)
Inventor
知昭 春日
Original Assignee
スピーシーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スピーシーズ株式会社 filed Critical スピーシーズ株式会社
Priority to JP2020521183A priority Critical patent/JPWO2019225444A1/ja
Publication of WO2019225444A1 publication Critical patent/WO2019225444A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H3/00Dolls
    • A63H3/18Jumping jacks
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H3/00Dolls
    • A63H3/36Details; Accessories
    • A63H3/46Connections for limbs

Definitions

  • the present invention relates to a movable figure system capable of performing a predetermined operation, and a power mechanism suitable for it.
  • a first figure system as an embodiment of the present invention includes a plurality of drive units each having an actuator that generates a rotational force, a plurality of movable mechanisms each including a movable body that operates by the rotational force, and a plurality of movable bodies And a figure having a plurality of rotational force transmission members each including a first end connected to the movement and a movement amount detection unit for detecting a movement amount of the movable body.
  • the plurality of drive units include a first drive unit provided inside the figure. A rotational force generated by one of the plurality of actuators is transmitted to a corresponding one of the plurality of movable bodies via one of the plurality of rotational force transmission members.
  • the plurality of drive units include at least one of a first drive unit provided inside the figure and a second drive unit provided outside the figure. That is, some or all of the plurality of drive units may be outside the figure, or some or all of the plurality of drive units may be inside the figure.
  • the operation amount detection unit may be installed in each movable mechanism, for example, or may be installed in the drive unit.
  • a second figure system as an embodiment of the present invention includes a plurality of drive units each having an actuator that generates a rotational force, a movable mechanism including a movable body that operates by the rotational force, and one end connected to the movable body.
  • the plurality of drive units include a first drive unit provided inside the figure. A rotational force generated by one of the plurality of actuators is transmitted to a corresponding one of the plurality of movable bodies via one of the plurality of rotational force transmission members. It has become so.
  • the plurality of drive units include at least one of a first drive unit provided inside the figure and a second drive unit provided outside the figure. That is, some or all of the plurality of drive units may be outside the figure, or some or all of the plurality of drive units may be inside the figure.
  • the operation amount detection unit may be installed in each movable mechanism, for example, or may be installed in the drive unit.
  • the drive unit has an actuator. For this reason, when the drive unit is outside the figure, there is no drive source in the figure itself, which is suitable for reducing the size and weight of the figure. Even when the drive unit is in the figure, the figure can be reduced in size and weight by, for example, concentrating the drive source on the body. In addition, a figure with excellent aesthetics, such as having a slim figure, is realized.
  • the rotational force generated by the actuator is transmitted to the movable body in the movable mechanism via the rotational force transmitting member, and the movement amount of the movable body is detected by the movement amount detection unit, so the movement of the figure is stabilized. And it is highly accurate, and high operation reproducibility can be expected. Moreover, if a member having excellent flexibility such as a flexible wire is employed as the rotational force transmitting member, a high degree of freedom in the movement of the figure can be obtained, and various operations can be reproduced.
  • the drive unit further includes a first coupler unit including a plurality of first couplers that rotate by driving forces from a plurality of actuators, and the figure includes a plurality of figures.
  • a second coupler unit including a plurality of second couplers connected to the second end of each of the flexible wires, each of the plurality of first couplers corresponding to one of the plurality of second couplers.
  • the second coupler is detachably connected to or configured to be detachable. This is because handling becomes easier than when the drive unit and the figure are integrated, and one drive unit can be shared by a plurality of figures if compatibility is ensured.
  • a sound insulation structure that covers a plurality of actuators may be configured by connecting the first coupler unit and the second coupler unit. This is because the quietness during operation is ensured.
  • the plurality of drive units respectively perform control of the figure by controlling the plurality of actuators based on information from the plurality of motion amount detection units. It is good to have a part.
  • the apparatus may further include a plurality of signal lines that respectively connect the plurality of operation amount detection units and the plurality of control units, and a plurality of power lines that respectively connect the plurality of operation amount detection units and the plurality of control units. .
  • a power mechanism includes a tip module having a first end provided with a position detection sensor, and a second end opposite to the first end, and a second module An intermediate module having a third end connected to the end and a fourth end opposite to the third end; a proximal module connected to the fourth end; and a rotational force And a controller that controls the operation of the drive unit based on position information of the tip module from the position detection sensor.
  • the proximal module and the intermediate module connect the movable body that operates by the rotational force generated by one of the plurality of actuators and the one actuator to the movable body, and the rotational force generated by the one actuator is movable. And a rotational force transmitting member for transmitting to the motor.
  • the figure system as one embodiment of the present invention, it is possible to ensure the appearance aesthetics of a figure and realize various operations.
  • the power mechanism as one embodiment of the present invention, it is possible to realize various operations while freely setting the function, shape, size, weight, and the like.
  • the effect of this invention is not limited to this, Any effect of the following description may be sufficient.
  • FIG. 1 It is a mimetic diagram showing the whole figure system composition concerning one embodiment. It is explanatory drawing for demonstrating the internal mechanism of the figure system shown in FIG. It is explanatory drawing for demonstrating the principal part of the figure system shown in FIG. It is a block diagram for demonstrating the internal mechanism of the drive unit shown in FIG. It is a schematic diagram showing the external appearance and internal skeleton of the figure shown in FIG. It is a schematic diagram showing the external appearance when the figure shown in FIG. 1 is seen from diagonally backward. It is a schematic diagram which expands and represents the upper external appearance of the figure shown in FIG. It is a conceptual diagram explaining the mechanism of the power transmission from a drive unit to a movable mechanism of the figure system shown in FIG. FIG.
  • FIG. 2 is an enlarged perspective view illustrating a configuration of a coupler pair in the figure system illustrated in FIG. 1. It is a conceptual diagram explaining operation
  • FIG. 6 It is a schematic diagram showing the rotational force transmission member as a 6th modification applied to the figure of this indication. It is a schematic diagram showing the rotational force transmission member as a 7th modification applied to the figure of this indication. It is a schematic diagram showing the rotational force transmission member as an 8th modification applied to the figure of this indication. It is a conceptual diagram explaining the structure of the figure system as a 9th modification. It is a conceptual diagram explaining the structure of the right arm part of the figure as a 10th modification. It is a conceptual diagram explaining the structure of the figure system as an 11th modification. It is the schematic explaining the structural example of the power mechanism of this indication. It is the schematic explaining the example of application of the figure system of this indication.
  • FIG. 1 is an external perspective view showing the overall configuration of a figure system as an embodiment of the present invention.
  • FIG. 2A is an explanatory diagram for explaining the mechanism of the entire figure system of the present embodiment.
  • 2B is an explanatory diagram for explaining a main part of the figure system shown in FIG.
  • FIG. 3 is a block diagram for explaining an internal mechanism of the drive unit DU (described later) shown in FIG.
  • FIG. 4A is a schematic diagram showing an appearance and an internal skeleton of the figure 2 shown in FIG.
  • FIG. 4B is a schematic diagram illustrating an appearance when the figure 2 is viewed obliquely from behind.
  • FIG. 4C is a schematic diagram showing the upper appearance of the figure 2 in an enlarged manner.
  • the figure system has a base 1, a figure 2 arranged on the base 1, and a base 1 and a figure 2 that are detachably connected to each other or can be detached.
  • the intermediate part 3 comprised in this is provided.
  • the intermediate part 3 supports the figure 2 above the base 1 so that the figure 2 can move freely with its body part 20 (described later) as a fulcrum.
  • the figure 2 has, for example, a body part 20, a head 21, a right arm part 22R, a left arm part 22L, a right leg part 23R, and a left leg part 23L as its bone members (see FIGS. 1, 4A, and 4B). ).
  • the right arm part 22R, the left arm part 22L, the right leg part 23R, and the left leg part 23L may be collectively referred to as a limb body part.
  • These bone members are made of a highly rigid material having, for example, a plate shape or a rod shape.
  • the cross-sectional shape orthogonal to the longitudinal direction of the bone member is, for example, a polygon such as a circle, an ellipse, or a quadrangle.
  • the bone member may be a solid structure, but is preferably a hollow structure in order to reduce the weight.
  • the torso part 20 is formed by, for example, a torso upper part 20 ⁇ / b> A and a torso lower part 20 ⁇ / b> B connected by a waist joint part 30.
  • a multi-coupler 25B is provided on the back surface of the upper body 20A.
  • the multi-coupler 25B is connected to the multi-coupler 25A provided in the intermediate portion 3 to form a multi-coupler pair 25, whereby the body portion 20 (the upper body portion 20A) and the intermediate portion 3 are connected. Yes.
  • the head 21, the right arm 22R, the left arm 22L, the right leg 23R, and the left leg 23L are a neck joint 31, a shoulder joint 32R, a shoulder joint 32L, a hip joint 33R, and a hip joint as a joint, respectively.
  • the body part 20 is connected by 33L.
  • a skeleton is formed by connecting a plurality of bone members at a plurality of joints.
  • each of the plurality of joint portions includes one or more movable mechanisms 5 described later.
  • the right arm portion 22R, the left arm portion 22L, the right leg portion 23R, and the left leg portion 23L are provided with covers 240 to 249 corresponding to the skin so as to incorporate these bone members.
  • the covers 240 to 249 are made of, for example, a hard resin such as polyvinyl chloride (PVC) and have an outer surface including a curved surface.
  • PVC polyvinyl chloride
  • the right arm portion 22R has an upper arm 221R, a forearm 222R, and a hand 223R.
  • One end of the upper arm 221R is connected to the right end of the upper body 20A via the shoulder joint portion 32R, and the other end is connected to the forearm 222R by the elbow joint portion 34R.
  • One end of the forearm 222R is connected to the upper arm 221R via the elbow joint portion 34R, and the other end is connected to the hand 223R by the wrist joint portion 35R.
  • One end of the hand 223R is connected to the forearm 222R via the wrist joint portion 35R, and, for example, five fingers are provided at the other end.
  • the upper arm 221R is covered with a cover 240A and a cover 240B, and the forearm 222R is covered with a cover 249A and a cover 249B.
  • the left arm portion 22L has a symmetrical structure with the right arm portion 22R with the body portion 20 as the center.
  • the left arm portion 22L has an upper arm 221L, a forearm 222L, and a hand 223L.
  • One end of the upper arm 221L is connected to the left end of the torso upper portion 20A via the shoulder joint portion 32L, and the other end is connected to the forearm 222L by the elbow joint portion 34L.
  • One end of the forearm 222L is connected to the upper arm 221L via the elbow joint portion 34L, and the other end is connected to the hand 223L by the wrist joint portion 35L.
  • One end of the hand 223L is connected to the forearm 222L via the wrist joint portion 35L, and, for example, five fingers are provided at the other end.
  • the upper arm 221L is covered with a cover 248A and a cover 248B, and the forearm 222L is covered with a cover 247A and a cover 247B.
  • the right leg portion 23R has a thigh 231R, a lower leg 232R, and a foot 233R.
  • One end of the thigh 231R is connected to the right end of the lower torso 20B via the hip joint portion 33R, and the other end is connected to the crus 232R by the knee joint portion 36R.
  • One end of the lower leg 232R is connected to the thigh 231R via the knee joint portion 36R, and the other end is connected to the foot 233R via the foot joint portion 37R.
  • One end of the foot 233R is connected to the crus 232R via the ankle joint portion 37R, and, for example, five fingers are provided at the other end.
  • the thigh 231R is covered with a cover 245A and a cover 245B, and the lower leg 232R is covered with a cover 244A and a cover 244B.
  • the left leg portion 23L has a symmetrical structure with the right leg portion 23R with the body portion 20 as the center. Specifically, the left leg portion 23L has a thigh 231L, a lower leg 232L, and a foot 233L. One end of the thigh 231L is connected to the left end of the lower torso 20B via the hip joint portion 33L, and the other end is connected to the crus 232L by the knee joint portion 36L. One end of the lower leg 232L is connected to the thigh 231L via the knee joint portion 36L, and the other end is connected to the foot 233L via the foot joint portion 37L.
  • One end of the foot 233L is connected to the crus 232L via the ankle joint portion 37L, and, for example, five fingers are provided at the other end.
  • the thigh 231L is covered with the cover 242A and the cover 242B, and the lower leg 232L is covered with the cover 241A and the cover 241B.
  • the foot joint portions 37R and 37L are collectively referred to as a joint portion.
  • joints may be provided in places other than the above, for example, fingers.
  • the rotating member may include a rotating member that rotates about the rotation axis and that has at least a part of a circular arc in a cross section orthogonal to the rotation axis.
  • a rotating member that rotates about the rotation axis and that has at least a part of a circular arc in a cross section orthogonal to the rotation axis.
  • each of the elbow joint portion 34L and the wrist joint portion 35L rotates around the output shaft 54, and at least a part of the cross section orthogonal to the output shaft 54 has an arc shape. It is preferable to include a rotating member 342L and a rotating member 352L.
  • the shoulder joint portions 32R and 32L, the hip joint portions 33R and 33L, the elbow joint portions 34R and 34L, the wrist joint portions 35R and 35L, the knee joint portions 36R and 36L, and the ankle joint portions 37R and 37L each include a spherical surface.
  • Each may be covered with a substantially spherical cover having a surface.
  • FIGS. 4A and 4B show a state in which the hip joint portions 33R and 33L are covered with substantially spherical covers 243 and 246 having outer surfaces including spherical surfaces, respectively.
  • the figure 2 includes a plurality of movable mechanisms 5, a plurality of coupler units 26B, a plurality of flexible wires FW2, a plurality of signal lines SW2, and a plurality of power lines PW2. And a plurality of ground lines GW2 (FIG. 2A).
  • the flexible wire FW2 rotates about the extending direction as a rotation axis, thereby transmitting a rotational force generated by the drive motor DM to a movable body (for example, a worm gear 51 described later) in the movable mechanism 5 (rotational force transmission). Member).
  • the flexible wire FW2 is made of a flexible material obtained by twisting thin metal wires such as a steel wire, for example, and is also called a flexible shaft.
  • One flexible wire FW2 is provided for each movable mechanism 5.
  • One signal line SW2, power line PW2, and ground line GW2 are also provided for each movable mechanism 5.
  • FIG. 5 schematically shows a configuration example for explaining the operation mechanism of the figure 2 including the movable mechanism 5.
  • the plurality of movable mechanisms 5 detect a reduction gear 53 as a movable body that operates by a rotational force of a drive motor DM, which will be described later, and an operation amount (for example, a rotation angle) of the reduction gear 53. And an encoder 55. More specifically, the plurality of movable mechanisms 5 each have a worm gear 51, a reduction gear 52, a reduction gear 53, an output shaft 54, and an encoder 55.
  • the worm gear 51 is connected to the end 2T1 of the flexible wire FW2, and is configured to be rotatable in the + R51 direction and the -R51 direction together with the flexible wire FW2 with the extending direction as a rotation axis.
  • the reduction gear 52 is engaged with the worm gear 51.
  • the reduction gear 53 is engaged with the reduction gear 52.
  • the rotation amount (rotation angle) of the reduction gear 53 is detected by the encoder 55 at any time.
  • the output shaft 54 is fixed to the rotation center of the reduction gear 53 and rotates together with the reduction gear 53.
  • the rotating member 56 is fixed to the output shaft 54. Therefore, the rotating member 56 rotates integrally with the reduction gear 53.
  • the end 2T2 of the flexible wire FW2 located on the side opposite to the worm gear 51 is connected to the wire coupler 27B.
  • the wire coupler 27B is rotatably held by the coupler unit 26B and rotates together with the flexible wire FW2.
  • the wire coupler 27B is configured to be detachable from the later-described wire coupler 27A, and a wire coupler pair 27 is formed by connecting to the wire coupler 27A.
  • FIG. 6 is an enlarged perspective view showing the configuration of the wire coupler pair 27. As shown in FIG.
  • the wire coupler 27B is, for example, a substantially cylindrical member, and has one or more protrusions (two protrusions T1 and T2 in FIG. 6) on the outer peripheral surface thereof.
  • the wire coupler 27A is a member that is connected to, for example, the end 3T2 of the flexible wire FW3 that passes through the intermediate portion 3, and includes a substantially cylindrical portion including a space 27V into which the wire coupler 27B is inserted, for example.
  • One or more grooves corresponding to the protrusions are provided.
  • the wire coupler 27A and the wire coupler 27B come close to each other so that the protrusions T1 and T2 are inserted into the grooves U1 and U2, and the wire coupler 27B is inserted into the space 27V. Therefore, the protrusions T1 and T2 and the grooves U1 and U2 are engaged with each other. For example, when the flexible wire FW3 rotates in the direction of RFW3, the flexible wire FW2 rotates in the direction of RFW2.
  • the coupler unit 26B further holds a signal line coupler 281B, a power line coupler 282B, and a ground line coupler 283B.
  • Figure 2 further includes a signal line SW2 that connects the signal line coupler 281B and the encoder 55, a power line PW2 that connects the power line coupler 282B and the encoder 55, and a ground line GW2 that connects the ground line coupler 283B and the encoder 55.
  • the flexible wire FW2 is accommodated in a tube 6 having flexibility for each corresponding movable mechanism 5
  • the signal line SW2, the power line PW2, and the ground line GW2 are flexible tubes for each corresponding movable mechanism 5. 7 (see FIG. 5). This is to avoid mutual interference.
  • the flexible wire FW2 is accompanied by a rotation operation, it is considered that friction and interference with the signal line SW2 and the like are likely to occur. For this reason, it is desirable to insert the flexible wire FW2, the signal line SW2, the power line PW2, and the ground line GW2 through separate tubes. However, the signal line SW2, the power line PW2, and the ground line GW2 may be individually inserted into different tubes.
  • FIG. 2 includes a plurality of coupler units 26 ⁇ / b> B corresponding to each of the plurality of movable mechanisms 5.
  • the plurality of coupler units 26B are integrated to form a multicoupler 25B.
  • all the coupler units 26 ⁇ / b> B may be combined to form one multi-coupler 25 ⁇ / b> B, or all the coupler units 26 ⁇ / b> B may be combined into several groups to form a plurality of multi-couplers 25 ⁇ / b> B. You may make it comprise.
  • the multi-coupler 25B is configured to be detachable from the later-described multi-coupler 25A in the intermediate section 3, and is connected to the multi-coupler 25A to form a multi-coupler pair 25.
  • the intermediate portion 3 is provided at one end of the stay 3A, the stay 3A supporting the figure 2 with respect to the base 1, the flexible wire FW3, the signal line SW3, the power line PW3, and the ground line GW3 inserted into the stay 3A.
  • a connecting portion 3B that connects the stay 3A and the housing 10 of the base 1 and a connecting portion 3C that is provided at the other end of the stay 3A and connects the stay 3A and the connecting portion 2C of the figure 2 are provided.
  • One or a plurality of multi-couplers 16B are provided in the connecting portion 3B.
  • one or a plurality of multi-couplers 25A are provided in the connecting portion 3C.
  • the flexible wire FW3 is a flexible power transmission member that transmits the rotational force generated by the drive motor DM to the figure 2, and is made of, for example, the same material as the flexible wire FW2.
  • the end 3T1 of the flexible wire FW3 is connected to the wire coupler 27A, and the end 3T2 of the flexible wire FW3 is connected to the wire coupler 18B.
  • One end of the signal line SW3 is connected to the signal line coupler 281A, and the other end of the signal line SW3 is connected to the signal line coupler 191B.
  • One end of the power line PW3 is connected to the power line coupler 282A, and the other end of the power line PW3 is connected to the power line coupler 192B.
  • ground line GW3 One end of the ground line GW3 is connected to the ground line coupler 283A, and the other end of the ground line GW3 is connected to the ground line coupler 193B.
  • the wire coupler 27A is configured to be detachable from the wire coupler 27B of FIG. 2, and is connected to the wire coupler 27B to form the wire coupler pair 27.
  • the wire coupler 18B is configured to be detachable from a wire coupler 18A (to be described later) provided on the base 1, and a wire coupler pair 18 is configured by being connected to the wire coupler 18A.
  • the signal line coupler 281A, the power line coupler 282A, the ground line coupler 283A and the signal line coupler 281B, the power line coupler 282B, and the ground line coupler 283B of FIG. 2 are configured to be detachable, and are connected to each other.
  • the signal line coupler pair 281, the power line coupler pair 282, and the ground line coupler pair 283 are configured respectively.
  • the signal line coupler 191B, the power line coupler 192B, and the ground line coupler 193B are configured to be detachable from the signal line coupler 191A, the power line coupler 192A, and the ground line coupler 193A provided in the base 1, respectively, and are connected to each other.
  • the signal line coupler pair 191, the power line coupler pair 192, and the ground line coupler pair 193 are configured.
  • the coupler unit 26A holds a wire coupler 27A in a rotatable manner.
  • the coupler unit 26A further holds a signal line coupler 281A, a power line coupler 282A, and a ground line coupler 283A.
  • the coupler unit 26A is configured to constitute a coupler unit pair 26 by being connected to the coupler unit 26B.
  • a plurality of coupler units 26 ⁇ / b> A are provided in the connecting portion 3 ⁇ / b> C of the intermediate portion 3.
  • the plurality of coupler units 26A are integrated to form a multicoupler 25A.
  • all the coupler units 26A may be combined to form one multi-coupler 25A, or all the coupler units 26A may be combined into several groups for a plurality of groups.
  • the multi-coupler 25A may be configured.
  • the multi-coupler 25A is configured to be detachable from the multi-coupler 25B in FIG. 2, and is connected to the multi-coupler 25B to form a multi-coupler pair 25.
  • a multi-coupler 16B is provided in the connecting portion 3B so as to face the multi-coupler 16A provided in the casing 10 of the base 1.
  • the multi-coupler 16B is configured to be detachable from the multi-coupler 16A, and forms a multi-coupler pair 16 by being connected to the multi-coupler 16A.
  • the multicoupler 16B includes a plurality of coupler units 17B.
  • FIG. 2B illustrates a case where the multi-coupler 16B is configured by the three coupler units 17B1 to 17B3 and the multi-coupler 16A is configured by the three coupler units 17A1 to 17A3.
  • the coupler unit 17B (17B1 to 17B3) holds a wire coupler 18B (18B1 to 18B3) rotatably.
  • the coupler unit 17B (17B1 to 17B3) further holds a signal line coupler 191B (191B1 to 191B3), a power line coupler 192B (192B1 to 192B3), and a ground line coupler 193B (193B1 to 193B3), respectively.
  • the coupler unit 17B (17B1 to 17B3) is connected to the coupler unit 17A (17A1 to 17A3) provided in the base 1 to constitute a coupler unit pair 17 (17-1 to 17-3). .
  • all the coupler units 17B may be combined to form one multi-coupler 16B, or all the coupler units 17B may be combined into several groups to form a plurality of groups. You may make it comprise the multicoupler 16B.
  • FIG. 2B illustration of the flexible wire FW3, the signal line SW3, the power line PW3, and the ground line GW3 is omitted.
  • the base 1 includes a plurality of drive units DU inside the housing 10.
  • the plurality of drive units DU includes a drive motor DM as an actuator that generates a rotational force, and the operation of the movable mechanism 5 in the figure 2 by controlling the drive motor DM.
  • the motor control unit MC, the multi-coupler 16A, and the interface unit 15 (FIG. 3).
  • the motor control unit MC functions to execute the operation of the movable mechanism 5 by controlling the drive motor DM based on information from the encoder 55. For example, when a certain movable mechanism 5 is rotated, it is determined based on information from the encoder 55 whether the movable mechanism 5 has actually rotated by a desired rotation angle, and an operation for correcting the rotation angle as necessary is performed. Do more.
  • the multicoupler 16A has a plurality of coupler units 17A.
  • Each coupler unit 17A is provided with a wire coupler 18A, a power line coupler 192A, a signal line coupler 191A, and a ground line coupler 193A.
  • the interface unit 15 includes a power supply terminal 151, a ground terminal 152, and a signal input terminal 153.
  • the drive unit DU further includes a power line PW1 that connects the power supply terminal 151 and the power line coupler 192A, a ground line GW1 that connects the ground terminal 152 and the ground line coupler 193A, and a signal that connects the signal input terminal 153 and the motor control unit MC.
  • the drive unit DU further includes a power line PW1A branched from the power line PW1 and connected to the motor control unit MC, a power line PW1B branched from the power line PW1 and connected to the drive motor DM, and a branch from the ground line GW1 to the motor.
  • the drive unit DU has a drive shaft FW1 as a power transmission member that connects the drive motor DM and the wire coupler 18A.
  • the drive shaft FW1 may be made of the same material as the flexible wire FW2 or the like, or may be a rigid metal shaft. Further, the drive shaft FW1 may be configured to be detachable from the wire coupler 18A. In FIG. 2B, illustration of power lines PW1, PW1A, PW1B and ground lines GW1, GW1A, GW1B is omitted.
  • a CPU 12, a power supply 13, and a storage unit 14 are further provided.
  • the CPU 12 controls the entire figure system, for example.
  • the storage unit 14 may store, for example, a program and various data for controlling the entire figure system or controlling the operation of the figure 2.
  • the CPU 12 is provided with a terminal 12T. When the terminal 12T is connected to the signal input terminal 153, a control signal is sent to the motor control unit MC via the signal line SW0. A control signal from the motor control unit MC is transmitted to the encoder 55 of each movable mechanism 5 through the signal line SW1, the multi-coupler pair 16, the signal lines SW3 and SW2, and the like.
  • the power supply terminal 151 is connected to a terminal 13T provided in the power supply 13, so that the motor control unit MC and the drive motor DM are connected via the power line PW1, the power line PW1A, the power line PW1B, the multicoupler pair 16, the power lines PW3 and PW2, and the like.
  • the encoder 55 can be supplied with power.
  • the ground terminal 152 is grounded.
  • Each joint includes one or more movable mechanisms 5.
  • the neck joint portion 31 includes three movable mechanisms 5 (see FIG. 4C). Specifically, a movable mechanism configured by a main body 311 that rotates about a vertical axis 31J1 relative to the upper body 20A, and a horizontal axis 31J2 of the figure 2 that rotates relative to the main body 311.
  • the movable mechanism is composed of a rotating member 312 and the movable mechanism is composed of a rotating member 313 that rotates about the axis 31J3 in the front-rear direction of the figure 2 with respect to the rotating member 312.
  • the neck joint portion 31 including such a movable mechanism.
  • the head 21 rotates in the left-right direction (the direction of the arrow Y311) while the body upper portion 20A of the figure 2 faces the front.
  • the rotation member 312 rotates about the shaft 31J2, so that the head 21 tilts in the front-rear direction (the direction of the arrow Y312).
  • the rotating member 313 rotates about the shaft 31J3, so that the head 21 tilts in the left-right direction (the direction of the arrow Y313) with the body upper portion 20A of the figure 2 facing the front.
  • the shoulder joint portion 32L includes two movable mechanisms (see FIG. 4C). Specifically, a movable mechanism configured by a rotating member 321L that rotates about a left and right axis 32J1 with respect to the upper body 20A, and a longitudinal axis 32J2 of the figure 2 with respect to the rotating member 321L.
  • the movable mechanism is composed of a rotating member 322L that rotates.
  • neck joint part 31 and the shoulder joint part 32L have been described as examples here, one or more movable mechanisms including the output shaft 54 are also provided for the other joint parts.
  • FIG. 7 is a conceptual diagram illustrating a mechanism for transmitting power from the drive unit DU to the elbow joint 34L and the wrist joint 35L.
  • the elbow joint 34L includes a fixing member 341L fixed to the upper arm 221L, a rotating member 342L that is rotatably held with respect to the fixing member 341L, and a movable mechanism that interposes them. 5.
  • the rotating member 342L is fixed to the output shaft 54 in the movable mechanism 5, and is held so as to be rotatable about the output shaft 54 with respect to the fixed member 341L.
  • a forearm 222L is fixed to the rotating member 342L.
  • the worm gear 51 is connected to the end of a flexible wire FW2 (only the tube 6A is shown in FIG. 7) disposed along the upper arm 221L and inserted into the tube 6A. The rotational force from is transmitted.
  • the encoder 55 is connected to the ends of a signal line SW2, a power line PW2, and a ground line GW2 (only the tube 7A is shown in FIG. 7) that are disposed along the upper arm 221L and inserted into the tube 7A. ing.
  • the wrist joint portion 35L includes a fixing member 351L fixed to the forearm 222L, a rotating member 352L that is rotatably held with respect to the fixing member 351L, and the movable mechanism 5 that interposes them.
  • the rotating member 352L is fixed to the output shaft 54 in the movable mechanism 5, and is held so as to be rotatable about the output shaft 54 with respect to the fixed member 351L.
  • a hand 223L is fixed to the rotating member 352L.
  • the worm gear 51 is connected to the end of a flexible wire FW2 (only the tube 6B is shown in FIG. 7) that is disposed along the forearm 222L and is inserted into the tube 6B.
  • the drive motor DM is connected to the worm gear 51.
  • the rotational force from is transmitted.
  • the encoder 55 is connected to the ends of the signal line SW2, the power line PW2, and the ground line GW2 (only the tube 7B is shown in FIG. 7) that are disposed along the forearm 222L and inserted into the tube 7B.
  • the tube 6B and the tube 7B are respectively other movable bodies located between the drive unit DU and the wrist joint portion 35L, that is, the central portion (for example, the output shaft 54) of the movable mechanism 5 in the elbow joint portion 34L. It is good to extend through the vicinity.
  • elbow joint portion 34L and the wrist joint portion 35L are illustrated here, the relationship between the movable mechanism 5 and the flexible wire FW2 in the other joint portions is the same.
  • the operation control of the figure 2 is performed based on a command from the CPU 12. Specifically, according to a predetermined program stored in the storage unit 14, a signal is transmitted to the drive motor DM corresponding to each joint unit, the drive motor DM is activated (the power is turned on), and each joint unit is activated. Rotation of the movable mechanism is executed to move the limbs freely. It is desirable that the torque required to move the drive motor DM when the power is off is larger than the torque due to the weight reaching the joint corresponding to the drive motor DM. This is because the posture of the figure 2 when the power is turned off can be maintained.
  • the CPU 12 does not turn on all the drive motors DM, turns on only some of the drive motors DM, and turns off the remaining drive motors DM. Also good. For example, when only some of the plurality of movable mechanisms are moved, the power of some of the drive motors DM corresponding to the some of the movable mechanisms is turned on for a predetermined time, and the other drive motors DM The power may be turned off for a predetermined time. Even if the power source of the drive motor DM corresponding to the movable mechanism that does not operate is turned off, the posture of the figure 2 can be maintained using the torque required to move the drive motor DM as described above. It is.
  • the operations of the forearm 222L and the hand 223L will be described by taking the elbow joint portion 34L and the wrist joint portion 35L as examples.
  • the forearm 222L operates by rotating the rotating member 342L of the elbow joint 34L. That is, the forearm 222L can be moved by transmitting the rotational force of the drive motor DM to the rotary member 342L connected to the output shaft 54 of the movable mechanism 5 via the drive shaft FW1 and the flexible wires FW2 and FW3.
  • the wire coupler pair 18, the flexible wire FW3, the wire coupler pair 18 and the flexible wire FW2 are the same. Rotate in the direction.
  • the corresponding worm gear 51 rotates in the + R51 direction
  • the reduction gear 52 engaged therewith rotates in the + R52 direction
  • the reduction gear 53 engaged in the reduction gear 52 rotates in the + R53 direction. Therefore, the rotation member 342L rotates about the output shaft 54 in the direction of the arrow + R342L (left rotation in FIG. 7 paper).
  • the forearm 222L fixed to the rotating member 342L rotates in the direction approaching parallel to the upper arm 221L (the direction of extending the elbow) with the elbow joint 34L as a fulcrum.
  • the rotating member 342L is rotated in the direction of the arrow ⁇ R342L about the output shaft 54 (rotated to the right in FIG. 7).
  • the forearm 222L fixed to the rotating member 342L rotates in the direction approaching the upper arm 221L (the direction of bending the elbow) with the elbow joint 34L as a fulcrum.
  • the wrist joint portion 35L and the hand 223L located on the distal end side are hardly affected by the movement of the elbow joint portion 34L and the forearm 222L. This is because the tube 6A that accommodates the flexible wire FW2, the tube 7B that accommodates the signal line SW2, and the like extend through the center of the rotating member 342L.
  • the hand 223L can be moved by transmitting the rotational force of the drive motor DM to the rotary member 352L connected to the output shaft 54 of the movable mechanism 5 via the drive shaft FW1 and the flexible wires FW2 and FW3.
  • the drive motor DM for driving the figure 2 is provided in the drive unit DU accommodated in the base 1. For this reason, since it is not necessary to provide a drive source in the figure 2 itself, it is suitable for size reduction and weight reduction of the figure 2. In addition, the figure 2 having a slim body shape and excellent aesthetics is realized. By reducing the weight of Figure 2, the output of the drive motor DM required for driving can be kept low, and even when the figure 2 is enlarged, the cost is reduced and the danger of falling is eliminated. Thus, weight reduction of figure 2 is advantageous.
  • connection between the base 1 and the intermediate portion 3 and the connection between the intermediate portion 3 and the figure 2 are performed by the multi-couplers 16A and 16B and the multi-couplers 25A and 25B. Excellent ease of use.
  • the intermediate part 3 is provided between the base 1 and the figure 2, but the base 1 and the figure 2 may be directly connected.
  • the multicoupler 16A and the multicoupler 25B may be connected to form a multicoupler pair.
  • a plurality of parts may be detachably connected by a multi-coupler even inside the figure 2.
  • the upper arm 221L, the forearm 222L, and the hand 223L as a plurality of bone members, and the elbow joint portion 34L and the wrist joint as a plurality of joint portions connecting them.
  • a multi-coupler pair 291 to 293 may be provided in each connection portion with the portion 35L.
  • the flexible wire FW2 extends along the portions FW2A1 and FW2B1 passing through the tubes 6A1 and 6B1 along the upper arm 221L, the portions FW2A2 and FW2B2 passing through the tubes 6A2 and 6B2 provided on the elbow joint portion 34L, and the forearm 222L. It is divided into a part FW2B3 passing through the tube 6B3 and a part FW2B4 passing through the tube 6B4 provided in the wrist joint part 35L.
  • the signal line SW2 includes portions SW2A1 and SW2B1 passing through the tubes 7A1 and 7B1 along the upper arm 221L, portions SW2A2 and SW2B2 passing through the tubes 7A2 and 7B2 provided at the elbow joint portion 34L, and a tube along the forearm 222L. It is divided into a portion SW2B3 passing through 7B3 and a portion SW2B4 passing through the tube 7B4 provided in the wrist joint portion 35L.
  • the power line PW2 and the ground line GW2 are also divided in the same manner as the signal line SW2.
  • the parts FW2A1 and FW2B1 are connected to the parts FW2A2 and FW2B2, respectively, and the parts SW2A1 and SW2B1 are connected to the parts SW2A2 and SW2B2.
  • the part FW2B2 and the part FW2B3 are connected, and the part SW2B2 and the part SW2B3 are connected.
  • part FW2B3 and part FW2B4 are connected, and part SW2B3 and part SW2B4 are connected.
  • the power line PW2 and the ground line GW2 are also connected in the same manner as the signal line SW2.
  • the manufacturing, repair, and replacement are possible. This is preferable because the handleability at the time is improved.
  • the drive unit DU is provided inside the case 10 of the base 1 outside the figure 2, but the present disclosure is not limited to this.
  • a part of the drive units (for convenience, the drive unit DU1) is provided inside the figure 2, and the other drive units (for convenience, the drive unit).
  • DU2 may be provided outside the figure, for example, inside the housing 10.
  • the signal line and the power line may be directly connected from the CPU 12 to the drive unit DU1.
  • the drive unit DU1 is provided inside the figure 2, it is desirable that the drive unit DU1 is provided near the center of gravity of the figure 2, for example, in the trunk portion 20, as in the second modification shown in FIG.
  • the moment of inertia during operation can be reduced as compared with the case where the limbs are respectively extended from the torso part 20, that is, the right arm part 22R, the left arm part 22L, the right leg part 23R or the left leg part 23L. This is because it is advantageous in terms of operation performance.
  • the drive unit DU1 may have an actuator with an output smaller than the output of the actuator in the drive unit DU2. This is because the drive unit DU1 can be reduced in weight.
  • the flexible wire FW and the like are introduced into the figure 2 from the back of the body part 20, but the wire is introduced into the figure through other parts of the figure (such as soles). May be.
  • the base 1, the intermediate part 3, and the figure 2 are configured to be detachable, but the base 1 and the intermediate part 3 cannot be separated from each other, or the intermediate part 3 and the figure 2 cannot be separated from each other. It may be.
  • FIG. 10 schematically shows the overall configuration of a figure 2A as a third modification of the present invention.
  • the figure 2A has, for example, a body module MD1, a head module MD2, a right arm module MD3, a left arm module MD4, a right leg module MD5, and a left leg module MD6.
  • These trunk module MD1, head module MD2, right arm module MD3, left arm module MD4, right leg module MD5, and left leg module MD6 each have a bone member and a movable mechanism.
  • the body module MD1 is provided with multi-couplers 4B1, 4C1, 4D1, 4E1, and 4F1.
  • the head module MD2 is provided with a multicoupler 4B2 configured to be detachable from the multicoupler 4B1 of the body module MD1.
  • the multicoupler 4B2 is connected to the multicoupler 4B1 to form a multicoupler pair 4B.
  • the right arm module MD3 is provided with a multicoupler 4C2 configured to be detachable from the multicoupler 4C1 of the body module MD1.
  • the multi-coupler 4C2 is connected to the multi-coupler 4C1 to form a multi-coupler pair 4C.
  • the left arm module MD4 is provided with a multicoupler 4D2 configured to be detachable from the multicoupler 4D1 of the body module MD1.
  • the multi-coupler 4D2 is connected to the multi-coupler 4D1 to form a multi-coupler pair 4D.
  • the right leg module MD5 is provided with a multicoupler 4E2 configured to be detachable from the multicoupler 4E1 of the body module MD1.
  • the multicoupler 4E2 is connected to the multicoupler 4E1 to form a multicoupler pair 4E.
  • the left leg module MD6 is provided with a multicoupler 4F2 configured to be detachable from the multicoupler 4F1 of the body module MD1.
  • the multicoupler 4F2 is connected to the multicoupler 4F1 to form a multicoupler pair 4F.
  • the left leg module MD6 and the body module MD1 are connected.
  • the figure 2A by making the figure 2A a combination of a plurality of modules, it is possible to complete the figure 2A by manufacturing each module individually and finally assembling them. For this reason, productivity can be improved. Further, since the figure 2A can be exchanged in units of modules, repair and the like can be performed easily and promptly. Therefore, improvement in maintainability can also be expected.
  • a plurality of signal lines and a plurality of power lines may be shared by several devices. Further, the signal line and the power line may be shared.
  • the joint portions shown in the above-described embodiment and the like are examples, and the present technology is not limited to the case where all the described joint portions are provided. Moreover, you may make it provide another joint part.
  • the figure is not limited to a doll, and may be a motif of a natural or imaginary character as well as a natural animal such as a dog. Further, the figure may be reduced in overall dimension, for example, from about 15 cm to about 30 cm, or may be a life-size figure.
  • various devices such as a display device, an acoustic device such as a speaker, and a projector may be mounted on the base or the figure.
  • the figure may have an imaging device, a microphone, or a touch sensor as an input device.
  • the figure may have a speaker, illumination (such as a light emitting diode), a vibration element, or a display device (LCD: liquid crystal display) as an output device.
  • illumination such as a light emitting diode
  • a vibration element such as a vibration element
  • LCD liquid crystal display
  • image information, audio information, or contact information can be taken into the CPU 12 via the figure.
  • image information, audio information, or contact information can be taken into the CPU 12 via the figure.
  • output device it is possible to make a conversation or action corresponding to the acquired image information or audio information to be a figure.
  • a clutch mechanism may be provided between the reduction gear 53 and the output shaft 54. This is because the force from the drive unit DU can be separated from the output shaft 54 by the clutch mechanism working when a large force is applied to the joint from the outside (human body). As a result, it is possible to avoid applying a strong force to the human body or the figure 2 itself.
  • the flexible wire FW2 is inserted from the drive unit DU to each movable mechanism 5, but the present technology is not limited to this. That is, in the present disclosure, a member other than the flexible wire can be used as the rotational force transmission member.
  • a part in the longitudinal direction of one or more flexible wires of the plurality of flexible wires may be replaced with one or more bar members having rigidity higher than that of the one or more flexible wires.
  • the rods may be disposed along a plurality of bone members.
  • bars 9A1, 9B1, and 9B3 (hereinafter sometimes collectively referred to as bars 9) are arranged along the upper arm 221L as a bone member.
  • FIG. 11 is a conceptual diagram illustrating a structure in the vicinity of a joint portion of a figure as a fourth modified example of the present disclosure.
  • rods 9A1 and 9B1 are disposed along the upper arm 221L as a bone member
  • a rod 9B3 is disposed along the forearm 222L as a bone member.
  • the rods 9A1, 9B1, and 9B3 are obtained by replacing the portions FW2A1, FW2B1, and FE2B3, respectively, of the flexible wire FW2 illustrated in FIG.
  • each of the bars 9A1, 9B1, 9B3 is connected to the multi-coupler pair 290, and the other end of each of the bars 9A1, 9B1, 9B3 is connected to the multi-coupler pair 291. That is, the bars 9A1 and 9B1 are connected to the portions FW2A0 and FW2B0 of the flexible wire FW2 via the multicoupler pair 290, respectively, and are connected to the portions FW2A2 and FW2B2 of the flexible wire FW2 via the multicoupler pair 291, respectively. ing.
  • the bar 9B3 is connected to the portion FW2B2 of the flexible wire FW2 via the multicoupler pair 291 and is connected to the portion FW2B4 of the flexible wire FW2 via the multicoupler pair 293.
  • the portions SW2A1 and SW2B1 of the signal line SW2 are connected to the portions SW2A0 and SW2B0 of the signal line SW2 through the multi-coupler pair 290, respectively.
  • the rod 9 is a shaft made mainly of aluminum or carbon, for example, and has a diameter of about 5 mm to 10 mm, for example. Since the bar 9 has higher rigidity than the flexible wire FW2, the amount of displacement such as twisting and bending is smaller than that of the flexible wire FW2. Therefore, by replacing part of the flexible wire FW2 with the bar 9, the rotational force of the drive motor DM is faster and more efficient than when part of the flexible wire FW2 is not replaced with the bar 9. Can be transmitted to the movable mechanism 5. Therefore, according to the figure of the fourth modification example, the flexible wire FW2 is used only in the portion with bending, and the highly rigid bar 9 is used in the portion that does not bend, for example, the portion along the bone member.
  • FIG. 12A is a schematic diagram illustrating a rotational force transmission member as a fifth modified example of the present disclosure.
  • a bevel gear 9G may be further provided at the tip of the bar 9 as a rotational force transmitting member.
  • the transmission direction of the rotational force can be changed to an arbitrary direction.
  • a belt mechanism 91 as a sixth modified example of the present disclosure illustrated in FIG. 12B may be used as the rotational force transmission member.
  • the belt mechanism 91 includes a driving roller 91A that is rotated by the rotational force of the actuator, a driven roller 91B, and a timing belt 91C that is stretched by the driving roller 91A and the driven roller 91B.
  • a rotational force is transmitted to the driven roller 91B by a timing belt 91C that rotates with the rotation of the drive roller 91A.
  • a wire mechanism 92 as a seventh modified example of the present disclosure illustrated in FIG. 12C may be used that uses the traction force of the wire.
  • the flexible wire of the above embodiment is configured to transmit the rotational force of the actuator to the movable mechanism by rotating the shaft about the central axis along the extending direction.
  • the wire mechanism 92 as the present modified example one rotating body 92A pulls either one of the pair of wires 92B1 and 92B2, so that the rotating force of the rotating body 92A is reduced to the other rotating body 92C. It is intended to be communicated to.
  • the rotational force transmitting member of the present disclosure is configured such that a single wire 93C is stretched by a pulley 93A and a pulley 93B, as in a wire mechanism 93 as an eighth modified example of the present disclosure illustrated in FIG. 12D. It may be what was done. In that case, the rotation angles of the pulley 93A and the pulley 93B are not particularly limited, and continuous rotation is possible.
  • the wire 93C may be inserted through the inside of the tube.
  • a brake mechanism 94 such as an electromagnetic brake may be provided at a position adjacent to the drive motor DM in the drive unit DU, for example, as in the ninth modification shown in FIG. .
  • the brake mechanism 94 is a mechanical brake that functions to brake the operation of each movable mechanism even when the rotational force from the actuator is lost when the power is lost or the voltage is reduced.
  • the brake mechanism is desirably provided in the drive unit for compactness, but may be provided in the joint portion of the figure.
  • the speed reducer 95 may be provided not in the joint portion where the movable mechanism 5 is provided, but also in the drive unit DU.
  • a part of the small drive units DU may be provided in the limb body as in the tenth modification shown in FIG. 14, for example.
  • the drive unit DU1 may be provided in the body portion 20, and the drive unit DU3 may be provided in the forearm 222R of the right arm portion 22R as shown in FIG.
  • the drive unit DU3 has, for example, three servo motors 97A to 97C.
  • the servo motors 97A to 97C are connected to a signal line SW from the CPU 12 and a power line PW from the power source 13, respectively.
  • three movable mechanisms 98A to 98C are provided in the wrist joint portion 35R.
  • the servo motors 97A to 97C and the movable mechanisms 98A to 98C are connected by, for example, three flexible wires 99A to 99C inserted into the forearm 222R, respectively, and the rotational force of the servo motors 97A to 97C is connected to the movable mechanisms 98A to 98C. It is transmitted to 98C.
  • the outputs of the servo motors 97A to 97C in the drive unit DU3 are smaller than the outputs of the other motors, for example, the drive motor in the drive unit DU1 shown in FIG.
  • a general-purpose small and lightweight servo motor (a driving unit, a deceleration unit) is used for a joint part that does not require a large driving force in the vicinity of the tip of a limb body part such as a head or a wrist.
  • a mechanism and a control circuit included therein may be installed inside the figure to supply the driving force of the servo motor.
  • the servo motors 97A to 97C are installed inside the bone member of the figure (the forearm 222R of the right arm portion 22R), but may be installed in a space in the joint portion.
  • the figure system of the present disclosure may support the figure 2 by a movable mechanism 2001 that can travel as in the eleventh modification shown in FIG. 15, for example.
  • the moving mechanism 2001 includes a stage 2002, a pillar 2003 erected on the stage 2002, a stay 2004 that can move in the vertical direction with respect to the pillar 2003, a motor 2005 that generates power for operating the stay 2004, and wheels 2007.
  • the sensor unit 2008 is provided.
  • the stage 2002 is provided with a power supply 13 and a drive unit DU.
  • the pillar 2003 is fixed to the stage 2002 and incorporates a CPU 12 and a motor 2005.
  • the wheels 2007 each have a built-in motor, and are driven in accordance with the control of the CPU 12 upon receiving power supply from the power supply 13.
  • the wheel 2007 is, for example, a Mecanum wheel, and the stage 2002 may be freely moved in a horizontal plane by driving the wheel 2007.
  • the sensor unit 2008 includes, for example, an infrared sensor and an image sensor, and detects humans and objects in order to avoid collisions with humans and objects. By providing such a moving mechanism 2001, the figure 2 can be freely moved. In addition, since the figure 2 is attached to the stay 2004 that can move up and down, a more dynamic operation is possible.
  • connection between the flexible wires that transmit the rotational force, the connection between the signal lines, the connection between the power lines, and the connection between the ground lines are all connected in the coupler portion such as a multi-coupler.
  • the present technology is not limited to this.
  • connections other than flexible wires that is, connection between signal lines, connection between power lines, connection between ground lines, and the like may be performed by separately provided connectors.
  • the coupler part is made compact and the structure is simplified, and it can be expected to improve handling at the time of manufacture, repair and replacement.
  • a speed reduction mechanism may be provided on the drive unit side depending on the type of actuator corresponding to the part of the movable body.
  • a DC motor that operates at a high rotational speed although the output torque is relatively low can be used to achieve a wider variety of operations at a lower cost. It becomes possible.
  • loss of rotational force (rotational torque) when transmitting the rotational force (rotational torque) to the movable mechanism via a rotational force transmission member such as a flexible wire may be a problem. .
  • a loss mechanism can be suppressed by providing a speed reduction mechanism near the actuator and increasing the rotational torque to some extent and transmitting the rotational force (rotational torque) to the movable mechanism via the rotational force transmission member.
  • an actuator that operates at a high rotational speed such as a DC motor
  • the reduction ratio can be increased compared to a case where an actuator having a large output torque and a low rotational speed is used such as a stepping motor. For this reason, even when the joint receives torque from the outside, the operation of the joint becomes less affected by the torque from the outside.
  • the speed reduction mechanism one using a planetary gear, one using a flat gear, or one using a wave gear such as a harmonic drive (registered trademark) can be used.
  • the operation amount detection unit is provided in the vicinity of the movable mechanism (movable body).
  • the present disclosure does not limit the arrangement position of the operation amount detection unit.
  • the operation amount detection unit May be provided in the vicinity of the drive unit (actuator).
  • the encoder 55 as the operation amount detection unit may be provided not in the movable mechanism 5 but in the vicinity of the drive motor DM of the drive unit DU. . In this case, it is not necessary to provide a signal line or a power line connecting the operation amount detection unit and the drive unit inside the figure, so that the configuration of the figure can be simplified.
  • the encoder is exemplified as the operation amount detection unit, but the present disclosure is not limited to this. In the present disclosure, for example, a potentiometer may be used as the operation amount detection unit.
  • the present disclosure is a concept including a power mechanism such as a robot arm or a robot having a movable mechanism and a rotational force transmission member.
  • the power mechanism of the present disclosure includes, for example, an actuator that generates a rotational force, a movable body that operates by the rotational force, an operation amount detection unit that detects an operation amount of the movable body, and the actuator and the movable body. And a rotational force transmitting member that transmits the generated rotational force to the movable body.
  • the power mechanism of the present disclosure includes a plurality of modules coupled to each other, and a detachable portion that can be connected to a drive unit that includes a plurality of actuators each generating a rotational force.
  • Each of the plurality of modules includes a movable body that is operated by a rotational force generated by one of the plurality of actuators, an operation amount detection unit that detects an operation amount of the movable body, and one actuator and the movable body. And a rotational force transmitting member that transmits the rotational force generated by one actuator to the movable body.
  • the power mechanism according to the present disclosure further includes a plurality of bone members and a plurality of joint portions each including a plurality of movable bodies and connecting the plurality of bone members to each other, similarly to the figures described in the above embodiments and the like. You may make it have.
  • the power mechanism of the present disclosure having such a configuration has a high degree of freedom in design and can realize a variety of operations, for example, it is easy to change the length of the arm, etc., compared to conventional robots and the like. Is possible.
  • FIG. 16 is a schematic diagram illustrating an example of the overall configuration of a power mechanism 1001 as an embodiment of the present disclosure.
  • the power mechanism 1001 has a structure in which a proximal module 1002, an intermediate module 1003, an intermediate module 1004, and a distal module 1005 are connected in order.
  • the structure in which the base end module 1002, the intermediate module 1003, the intermediate module 1004, and the front end module 1005 are sequentially connected will be referred to as an arm unit for convenience.
  • the proximal module 1002 and the intermediate module 1003 are detachably connected to each other at the connecting portion CP1.
  • the intermediate module 1003 and the intermediate module 1004 are detachably connected to each other at the connecting portion CP2.
  • the power mechanism 1001 further includes a drive unit 1006, a control unit 1007, a power source 1008, and a storage unit 1009 in addition to the arm unit.
  • the drive unit 1006, the control unit 1007, the power source 1008, and the storage unit 1009 have substantially the same configuration as the drive unit DU, CPU 12, power source 13, and storage unit 14 shown in FIG.
  • the drive unit 1006, the control unit 1007, and the like may be provided in, for example, the base end module 1002 of the arm units, or may be provided outside the arm unit.
  • the proximal module 1002 has a base 1002A, a rotating part 1002B, an arm part 1002C, a joint part 1002D, and an arm part 1002E fixed to, for example, a floor surface.
  • a movable body that is operated by a rotational force generated by one of a plurality of actuators in the drive unit 1006 and one actuator and the movable body are connected to generate one actuator.
  • a rotational force transmitting member that transmits rotational force to the movable body is provided.
  • the rotating part 1002B is a substantially columnar member, and is provided so as to be rotatable in a rotation direction R1002 indicated by an arrow with respect to the base part 1002A with the rotating shaft 1002J as a rotation center.
  • the arm portion 1002C is a substantially columnar member, and connects the rotating portion 1002B and the joint portion 1002D.
  • the arm portion 1002C and the joint portion 1002D are fixed to the rotating portion 1002B, and can rotate in the rotation direction R1002 integrally with the rotating portion 1002B.
  • the joint part 1002D has the same configuration as the joint part of the figure 2 shown in FIG.
  • the joint portion 1002D has a movable body such as the worm gear 51, for example, similarly to the movable mechanism 5 shown in FIG.
  • the movable body is a member that moves when the rotational force generated in the drive unit 1006 is transmitted by a rotational force transmission member such as a flexible wire.
  • the joint portion 1002D may further be provided with a speed reducer.
  • an operation amount detection unit that detects the operation amount of the movable body, such as an encoder, may not be provided in the joint portion 1002D.
  • the joint portion 1002D includes a rotating member in which at least a part of a cross section orthogonal to the rotation axis is an arc shape, and is covered with a substantially spherical cover S1002 having an outer surface including a spherical surface.
  • the arm portion 1002E is provided to be rotatable in a rotation direction R1003 indicated by an arrow with the joint portion 1002D as a rotation center. Further, the arm portion 1002E is rotatable in the rotation direction R1002 in conjunction with the rotation in the rotation direction R1002 of the rotation portion 1002B.
  • a coupler constituting the coupling portion CP1 is provided at the end of the arm portion 1002E opposite to the joint portion 1002D, and the coupler can be attached to and detached from the coupler of the arm portion 1003A (to be described later) of the intermediate module 1003. It is connected. Therefore, the arm portion 1002E moves integrally with the arm portion 1003A of the intermediate module 1003.
  • the intermediate module 1003 includes an arm part 1003A, a joint part 1003B, and an arm part 1003C in this order from the base module 1002 side. Also in the intermediate module 1003, a movable body that operates by a rotational force generated by one of a plurality of actuators in the drive unit 1006, and one actuator and the movable body are connected to each other, and a rotation generated by one actuator. A rotational force transmitting member that transmits force to the movable body is provided.
  • the arm part 1003A is a substantially columnar member, and connects the arm part 1002E and the joint part 1003B.
  • the arm portion 1003A has a coupler at an end facing the arm portion 1002E, and the coupler is detachably connected to a coupler provided in the arm portion 1002E. Therefore, the arm portion 1003A can rotate in the rotation direction R1003 indicated by the arrow with the joint portion 1002D as the rotation center integrally with the arm portion 1002E.
  • the joint portion 1003B includes a rotating member having at least a part of an arc shape in a cross section orthogonal to the rotation axis thereof, and is covered with a substantially spherical cover S1003 having an outer surface including a spherical surface.
  • the arm portion 1003C is provided to be rotatable in a rotation direction R1004 indicated by an arrow with the joint portion 1003B as a rotation center.
  • a coupler constituting the coupling portion CP2 is provided at the end of the arm portion 1003C opposite to the joint portion 1003B, and the coupler can be detached from the coupler of the arm portion 1004A (later) of the intermediate module 1004. It is connected. Therefore, the arm portion 1003C moves integrally with the arm portion 1004A of the intermediate module 1004.
  • the intermediate module 1004 has substantially the same structure as the intermediate module 1003. That is, the intermediate module 1004 has an arm part 1004A, a joint part 1004B, and an arm part 1004C in this order from the intermediate module 1003 side. Also in the intermediate module 1004, a movable body that is operated by the rotational force generated by one of the plurality of actuators in the drive unit 1006 and the one actuator and the movable body are connected to each other, and the rotation generated by the one actuator. A rotational force transmitting member that transmits force to the movable body is provided.
  • the arm part 1004A is a substantially columnar member, and connects the arm part 1003C and the joint part 1004B.
  • the arm portion 1004A has a coupler at the end facing the arm portion 1003C, and the coupler is detachably connected to the coupler provided in the arm portion 1003C. Therefore, the arm portion 1004A can rotate in the rotation direction R1004 indicated by the arrow with the joint portion 1003B as the rotation center integrally with the arm portion 1003C. Further, the joint portion 1004B includes a rotating member having at least a part of an arc shape in a cross section orthogonal to the rotation axis thereof, and is covered with a substantially spherical cover S1004 having an outer surface including a spherical surface.
  • the arm portion 1004C is provided to be rotatable in a rotation direction R1005 indicated by an arrow with the joint portion 1004B as a rotation center.
  • a coupler constituting the coupling portion CP3 is provided at the end of the arm portion 1004C opposite to the joint portion 1004B, and the coupler is detachably coupled to the coupler of the main body 1005A (described later) of the tip module 1005. Has been. Therefore, the arm portion 1004C moves together with the main body 1005A of the tip module 1005.
  • the tip module 1005 includes a main body 1005A, an object detection sensor 1005B, a position detection sensor 1005C, and a manipulator 1005D.
  • a position detection sensor 1005C is attached to one end of the main body 1005A.
  • the main body 1005A is also provided with a rotational force transmitting member that transmits the rotational force transmitted from the intermediate module 1004 and generated by one actuator in the drive unit 1006 to the manipulator 1005D.
  • the manipulator 1005D is, for example, a gripper, and performs, for example, a clamping operation and a releasing operation by the rotational force transmitted from the intermediate module 1004 via the rotational force transmission member.
  • the other end of the main body 1005A is provided with a coupler constituting the connecting portion CP3, and the coupler is detachably connected to the coupler of the arm portion 1004C of the intermediate module 1004.
  • the object detection sensor 1005B and the position detection sensor 1005C are provided on the side surface of the main body 1005A, for example.
  • the object detection sensor 1005B is a sensor that detects the presence of a surrounding object to be detected, the position, shape, or material of the object, the distance from the tip module 1005 to the object, and the like. A distance measuring sensor using infrared rays or a tactile sensor.
  • the object detection sensor 1005B has a function of transmitting information related to an object to be detected to the control unit 1007.
  • the position detection sensor 1005C is a sensor that can detect its own position, and is, for example, an image sensor or a 9-axis sensor.
  • the 9-axis sensor has, for example, a 3-axis gyro sensor, a 3-axis acceleration sensor, and a 3-axis geomagnetic sensor.
  • the position detection sensor 1005C may be a system that receives information (beacon) from the outside and grasps its own position based on the information, for example.
  • the position detection sensor 1005C has a function of transmitting the position information of the tip module 1005 to the control unit 1007.
  • the manipulator 1005D in the tip module 1005 is not limited to a gripper, and may be, for example, a scissors, a cutter, a laser irradiation device, or the like.
  • the control unit 1007 controls each operation of the proximal module 1002, the intermediate modules 1003 and 1004, and the distal module 1005 by the drive unit 1006 based on the positional information of the distal module 1005 from the position detection sensor 1005C.
  • the control unit 1007 can control each operation of the proximal end module 1002, the intermediate modules 1003 and 1004, and the distal end module 1005 by the drive unit 1006 based on information on the object from the object detection sensor 1005B.
  • the control unit 1007 may control the drive unit 1006 so that the tip module 1005 tracks an object based on detection information from the object detection sensor 1005B.
  • the control unit 1007 controls the operation of the drive unit 1006 based on the position information of the tip module 1005 from the position detection sensor 1005C. For this reason, the position of the tip module 1005 can be adjusted to a desired position without strictly controlling the amount of movement of the movable body in the proximal module 1002 and the amount of movement of each movable body in the intermediate modules 1003 and 1004. This is because position information from the position detection sensor 1005C is used. Therefore, in the power mechanism 1001, even when the arm unit is bent by its own weight or the like, the influence on the positional accuracy of the tip module 1005 is small. Therefore, it is not necessary to use a highly rigid material such as a metal as a constituent material of the arm unit, and a lightweight and excellent workability material such as a resin can be applied. As a result, it is advantageous for weight reduction and cost reduction.
  • Such a power mechanism 1001 has high safety, it is suitable for use as an apparatus for performing various operations in a crowded environment. For example, there is a possibility of application in assisting conveyance work at a store or the like, farming work indoors and outdoors, medical practice, transport work, cargo handling work, or appearance inspection work of products indoors and outdoors.
  • the arm unit of the power mechanism 1001 is formed by detachably connecting a plurality of modules, any module can be easily mounted according to the application, which is excellent in convenience. Further, in the event of a failure, the module including the failed part can be replaced to quickly and easily recover.
  • the power mechanism 1001 can reduce the weight of the arm unit, reduce the drive force, and can be expected to improve operability and maintenance. This is also advantageous.
  • the power mechanism 1001 includes an arm unit in which a plurality of modules are connected in series.
  • the power mechanism according to the present disclosure includes an arm unit having a structure that branches from one module to two modules. There may be. Or the thing which cooperates with another power mechanism, for example, the one where the tip module of a certain power mechanism holds one object between the tip modules of another power mechanism may be used.
  • each module is not limited to what consists of a hard material, You may have a flexible material and a bellows structure.
  • the power mechanism 1001 has two intermediate modules connected in series with each other, that is, the intermediate module 1003 and the intermediate module 1004), the number thereof can be arbitrarily selected.
  • one intermediate module may connect the base end module and the front end module, or three or more intermediate modules connected in series may connect the base end module and the front end module.
  • one end of one of the intermediate modules is connected to the tip module, and one end of the other one of the three or more intermediate modules is connected to the proximal module; Become.
  • the power mechanism 1001 has a waterproof function for preventing water from entering from the outside.
  • a waterproof member such as a packing surrounding the structure corresponding to the multi-coupler pair 25 may be provided on the joint surface.
  • the power mechanism 1001 includes an operation amount detection unit that detects the operation amount of the movable body, and the control unit 1007 is based on the information from the operation amount detection unit in addition to the position information of the tip module 1005.
  • the operation of the arm unit may be controlled by controlling the actuator in 1006.
  • the operation amount detection unit is, for example, an encoder or a potentiometer provided in the drive unit 1006.
  • some actuators may be provided in parts other than the base end module 1002, that is, the intermediate module 1003, the intermediate module 1004, and the distal end module 1005. In that case, for example, some actuators may be provided in the arm portion 1003A instead of the joint portion 1003B in the intermediate module 1003.
  • the figure system and power mechanism of the present disclosure have the following industrial applicability.
  • the figure system of the present disclosure can be mounted on a gaming machine such as a pachinko machine or a stationary game machine, and can be operated in a variety of ways in conjunction with those gaming machines.
  • a small size and light weight can be realized, which is suitable for the above-described application.
  • the figure system of the present disclosure may be arranged in the interior of an automobile, for example, on a dashboard. In that case, you may make it perform operations, such as route guidance linked with a car navigation system, information transmission, etc.
  • the interlocking include performing figure output (mechanical operation, sound, light output, etc.) based on a signal from a car navigation system software, for example. Alternatively, some signal may be transmitted from the figure side to the car navigation system to control the car navigation system.
  • the electric system part can be concentrated on the base, so that a waterproof structure can be realized relatively easily. For this reason, it is suitable for the use installed outdoors.
  • the figure system and the power mechanism of the present disclosure consolidate heavy drive units on the base and the body of the figure. For this reason, since the weight of the entire figure and the weight of the limbs of the figure can be reduced, the safety can be reduced and the apparatus can be installed in a crowded environment. Therefore, it is suitable as a guide role in, for example, the vicinity of a busy shop or an art museum.
  • the figure system and the power mechanism of the present disclosure have applicability as a monitoring system for elderly people and pets in a general household, or a monitoring system for a home away from home.
  • the figure system and the power mechanism of the present disclosure may be equipped with a communication function to perform two-way communication with the outside or perform control from the outside. For example, it is conceivable that an alarm is output to the outside at the time of abnormality, or video data is periodically acquired and externally transmitted. Furthermore, a two-way conversation may be performed.
  • learners can be supported by linking with educational applications installed on personal computers or network servers. For example, within the range of information prepared in advance or based on information acquired by communication with the outside, it works in conjunction with explanations of learning content, correctness determination for learner's answer, indication of wrong place, etc. It is expected to be used for guidance.
  • the figure system and power mechanism of the present disclosure may be used as a device that performs commentary and information transmission related to broadcast contents in conjunction with television broadcasting and radio broadcasting.
  • the figure system and the power mechanism may explain the broadcast data by voice, and the limbs may also perform some operation.
  • the figure system and power mechanism of the present disclosure can be further used as a device that transmits information through an Internet line in conjunction with an information terminal such as a personal computer. Since the figure system and the power mechanism of the present disclosure are small and light, and the drive unit is gathered in one place, it can be connected to the information terminal as an accessory having a decorative property such as a strap.
  • the figure system and power mechanism of the present disclosure can be used as a toy dancing in conjunction with music production software.
  • the figure system and the power mechanism of the present disclosure can be operated by a command from a program of music software.
  • it can also be used as a device that captures human actions in conjunction with a capture device and reproduces the same actions (that is, a so-called imitation).
  • it can also be used as a device that operates in conjunction with a game machine or game software. By performing the same action (or corresponding action) as the character on the two-dimensional screen, it is possible to enhance the presence of the game player.
  • the movement of the opponent's character is linked to the display of the two-dimensional screen in the figure system, or the character of the user side that is not reflected on the two-dimensional screen It is assumed that the movement is made to the figure system.
  • the figure system and power mechanism of the present disclosure may further include a system for managing characters such as the appearance and voice quality of the figure, for example, ID information unique to the figure and its management software.
  • a system for managing characters such as the appearance and voice quality of the figure, for example, ID information unique to the figure and its management software.
  • the ID information of each figure may be stored in a storage unit or the like inside each figure itself.
  • the figure and the individuality that the figure wants to have are associated, and the associated individual information is managed.
  • a network having the Internet 3001, a server 3002, and a plurality of figures 2 may be configured.
  • the management software distributes appropriate contents stored in the server 3002 via the Internet 3001 to each figure 2A, 2B according to the individual information of each figure 2A, 2B. Production functions such as driving 2B can be realized.
  • the present disclosure is a concept including the following power mechanism.
  • An actuator that generates rotational force;
  • a movable body that operates by the rotational force;
  • An operation amount detector for detecting an operation amount of the movable body;
  • a rotational force transmitting member that connects the actuator and the movable body, and transmits the rotational force generated by the actuator to the movable body;
  • a first coupler that rotates by the rotational force from the actuator;
  • a second coupler configured to be rotatable together with the rotational force transmission member;
  • the rotational force transmitting member includes a first end connected to the movable body, and a second end connected to the second coupler,
  • the power mechanism is configured such that the first coupler is detachably connected to or detachable from the second coupler.
  • the power mechanism according to (1) further including a control unit that controls the operation of the movable body by driving the actuator based on information from the operation amount detection unit.
  • (3) A plurality of modules coupled together; A detachable portion connectable to a drive unit including a plurality of actuators each generating rotational force; An operation amount detector that detects an operation amount of a movable body that is operated by a rotational force generated by one of the plurality of actuators; Each of the plurality of modules is The movable body; A rotational force transmitting member that connects the one actuator and the movable body and transmits the rotational force generated by the one actuator to the movable body; A first coupler that rotates by the rotational force from the one actuator; A second coupler configured to be rotatable together with the rotational force transmitting member; The rotational force transmitting member includes a first end connected to the movable body, and a second end connected to the second coupler, The power mechanism is configured such that the first coupler is detachably connected to or
  • each of the plurality of joint portions includes a rotating member that rotates about a rotation axis and at least a part of a cross section orthogonal to the rotation axis has an arc shape.

Landscapes

  • Toys (AREA)
  • Manipulator (AREA)

Abstract

外観上の審美性に優れ、多彩な動作が実現されるフィギュアシステムを提供する。このフィギュアシステムは、回転力を発生するアクチュエータを各々有する複数の駆動ユニットと、回転力により動作する可動体を各々含む複数の可動機構、および複数の可動体と接続された第1の端部を各々含む複数の回転力伝達部材、を有するフィギュアと、可動体の動作量を検出する動作量検出部とを備える。複数の駆動ユニットは、フィギュアの内部に設けられた第1の駆動ユニットおよびフィギュアの外部に設けられた第2の駆動ユニットのうちの少なくとも一方を含む。複数のアクチュエータのうちの1つのアクチュエータが発生する回転力は、複数の回転力伝達部材のうちの1つの回転力伝達部材を介して複数の可動体のうちの対応する1の可動体に伝達される。

Description

フィギュアシステムおよび動力機構
 本発明は、所定の動作を行うことのできる可動のフィギュアシステム、ならびにそれに好適な動力機構に関する。
 従来、アニメーションのキャラクタやスポーツ選手あるいは動物などをモチーフとしてその形を模したフィギュアが、例えば個人向けの嗜好品として作製、販売等されている。このようなフィギュアに関し、本出願人は、駆動部からの駆動力を、ワイヤを使用して可動部に伝達するようにしたものを既に提案している(例えば特許文献1,2参照)。
国際公開2015/146301号 国際公開2017/022635号
 ところで、このようなフィギュアに対しては、その用途により、よりいっそうの正確な動作が求められることが予想される。
 したがって、外観上の審美性を担保しつつ、多彩かつ正確な動作を実現することのできるフィギュアシステムが望まれる。
 本発明の一実施形態としての第1のフィギュアシステムは、回転力を発生するアクチュエータを各々有する複数の駆動ユニットと、回転力により動作する可動体を各々含む複数の可動機構、および複数の可動体と接続された第1の端部を各々含む複数の回転力伝達部材、を有するフィギュアと、可動体の動作量を検出する動作量検出部とを備える。複数の駆動ユニットは、フィギュアの内部に設けられた第1の駆動ユニットを含む。複数のアクチュエータのうちの1つのアクチュエータが発生する回転力は、複数の回転力伝達部材のうちの1つの回転力伝達部材を介して複数の可動体のうちの対応する1の可動体に伝達される。
 ここで、複数の駆動ユニットは、フィギュアの内部に設けられた第1の駆動ユニットおよびフィギュアの外部に設けられた第2の駆動ユニットのうちの少なくとも一方を含んでいる。すなわち、複数の駆動ユニットの一部または全部がフィギュアの外部に有ってもよいし、複数の駆動ユニットの一部または全部がフィギュアの内部に有ってもよい。また、動作量検出部は、例えば各可動機構に設置されていてもよいし、駆動ユニット内に設置されていてもよい。
 本発明の一実施形態としての第2のフィギュアシステムは、回転力を発生するアクチュエータを各々有する複数の駆動ユニットと、回転力により動作する可動体を含む可動機構、および可動体と接続された一端を含む回転力伝達部材、を各々有する複数のモジュールが結合してなるフィギュアと、可動体の動作量を検出する動作量検出部とを備える。複数の駆動ユニットは、フィギュアの内部に設けられた第1の駆動ユニットを含む。複数のアクチュエータのうちの1つのアクチュエータが発生する回転力が、複数の回転力伝達部材のうちの1つの回転力伝達部材を介して複数の可動体のうちの対応する1の可動体に伝達されるようになっている。
 ここで、複数の駆動ユニットは、フィギュアの内部に設けられた第1の駆動ユニットおよびフィギュアの外部に設けられた第2の駆動ユニットのうちの少なくとも一方を含んでいる。すなわち、複数の駆動ユニットの一部または全部がフィギュアの外部に有ってもよいし、複数の駆動ユニットの一部または全部がフィギュアの内部に有ってもよい。また、動作量検出部は、例えば各可動機構に設置されていてもよいし、駆動ユニット内に設置されていてもよい。
 本発明の一実施形態としての第1および第2のフィギュアシステムでは、駆動ユニットがアクチュエータを有する。このため、駆動ユニットがフィギュア外にある場合はフィギュアそのものに駆動源が存在せず、フィギュアの小型化や軽量化に適する。駆動ユニットがフィギュア内にある場合であっても、例えば胴体部に駆動源を集約することにより、フィギュアの小型化や軽量化を図ることができる。そのうえ、例えばスリムな体形を有するなど、審美性に優れたフィギュアが実現される。また、アクチュエータが発生する回転力が、回転力伝達部材を介して可動機構における可動体に伝達されるうえ、動作量検出部により可動体の動作量が検出されるので、フィギュアの動作が安定化および高精度化され、高い動作再現性が期待できる。また、回転力伝達部材として、フレキシブルワイヤなどの可撓性に優れる部材を採用すれば、フィギュアの動作上における高い自由度が得られ、多彩な動作が再現される。
 本発明の一実施形態としての第1のフィギュアシステムでは、駆動ユニットは、複数のアクチュエータからの駆動力によりそれぞれ回転する複数の第1カプラを含む第1カプラユニットをさらに有し、フィギュアは、複数のフレキシブルワイヤの第2の端部とそれぞれ接続されて回転する複数の第2カプラを含む第2カプラユニットをさらに有し、複数の第1カプラは、それぞれ、複数の第2カプラのうちの対応する1の第2カプラと脱着可能に連結され、または脱着可能に構成されているとよい。駆動ユニットとフィギュアとが一体化されている場合よりも取り扱いが容易となるうえ、互換性を確保すれば、1つの駆動ユニットを複数のフィギュアにより共有することができるからである。この場合、第1カプラユニットと第2カプラユニットとが連結されることにより、複数のアクチュエータを覆う遮音構造が構成されるようになっていてもよい。動作時の静音性が確保されるからである。
 本発明の一実施形態としての第1のフィギュアシステムでは、複数の駆動ユニットは、それぞれ、複数の動作量検出部からの情報に基づいて複数のアクチュエータを制御することによりフィギュアの動作を実行する制御部をさらに有するとよい。その場合、複数の動作量検出部と複数の制御部とをそれぞれ繋ぐ複数の信号線、および複数の動作量検出部と複数の制御部とをそれぞれ繋ぐ複数の電力線、をさらに備えていてもよい。
 本発明の一実施形態としての動力機構は、位置検出センサが設けられた第1の端部、および第1の端部と反対側の第2の端部、を有する先端モジュールと、第2の端部と接続される第3の端部、および第3の端部と反対側の第4の端部、を有する中間モジュールと、第4の端部と接続される基端モジュールと、回転力を各々発生する複数のアクチュエータを含む駆動ユニットと、位置検出センサからの先端モジュールの位置情報に基づき、駆動ユニットの動作の制御を行う制御部とを備える。基端モジュールおよび中間モジュールは、複数のアクチュエータのうちの一のアクチュエータが発生する回転力により動作する可動体と、一のアクチュエータと可動体とを繋ぎ、一のアクチュエータが発生する回転力を可動体に伝達する回転力伝達部材とを有する。
 本発明の一実施形態としてのフィギュアシステムによれば、フィギュアにおける外観上の審美性を担保することができるうえ、多彩な動作を実現することが可能となる。また、本発明の一実施形態としての動力機構によれば、その機能、形状、寸法および重量などを自由に設定しつつ、多彩な動作を実現することが可能である。なお、本発明の効果はこれに限定されるものではなく、以下の記載のいずれの効果であってもよい。
一実施の形態に係るフィギュアシステムの全体構成を表す模式図である。 図1に示したフィギュアシステムの内部機構を説明するための説明図である。 図1に示したフィギュアシステムの要部を説明するための説明図である。 図1に示した駆動ユニットの内部機構を説明するためのブロック図である。 図1に示したフィギュアの外観および内部の骨格を表す模式図である。 図1に示したフィギュアを斜め後方から眺めたときの外観を表す模式図である。 図1に示したフィギュアの上部外観を拡大して表す模式図である。 図1に示したフィギュアシステムの、駆動ユニットから可動機構への動力伝達の仕組みを説明する概念図である。 図1に示したフィギュアシステムにおけるカプラ対の構成を拡大して表す斜視図である。 図1に示したフィギュアシステムの関節部の動作を説明する概念図である。 第1の変形例としてのフィギュアの関節部近傍の構造を説明する概念図である。 第2の変形例としてのフィギュアシステムの全体構成を表す模式図である。 第3の変形例としてのフィギュアの構造を説明する模式図である。 第4の変形例としてのフィギュアの関節部近傍の構造を説明する概念図である。 本開示のフィギュアに適用される、第5の変形例としての回転力伝達部材を表す模式図である。 本開示のフィギュアに適用される、第6の変形例としての回転力伝達部材を表す模式図である。 本開示のフィギュアに適用される、第7の変形例としての回転力伝達部材を表す模式図である。 本開示のフィギュアに適用される、第8の変形例としての回転力伝達部材を表す模式図である。 第9の変形例としてのフィギュアシステムの構造を説明する概念図である。 第10の変形例としてのフィギュアの右腕部の構造を説明する概念図である。 第11の変形例としてのフィギュアシステムの構造を説明する概念図である。 本開示の動力機構の構成例を説明する概略図である。 本開示のフィギュアシステムの適用例を説明する概略図である。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態(基本構造を有するフィギュアシステム)
(1)フィギュアシステムの基本構成例
(2)関節部の詳細な構成例
(3)フィギュアシステムの基本動作の例
(4)関節部の動作の例
(5)作用および効果
2.変形例
<1.一実施の形態>
[1.フィギュアシステムの基本構成例]
 図1は、本発明の一実施の形態としてのフィギュアシステムの全体構成を表す外観斜視図である。図2Aは、本実施の形態のフィギュアシステム全体の機構を説明するための説明図である。図2Bは、図1に示したフィギュアシステムの要部を説明するための説明図である。図3は、図1に示した駆動ユニットDU(後出)の内部機構を説明するためのブロック図である。図4Aは、図1に示したフィギュア2の外観および内部の骨格を表す模式図である。図4Bは、フィギュア2を斜め後方から眺めたときの外観を表す模式図である。図4Cは、フィギュア2の上部外観を拡大して表す模式図である。
 図1に示したように、本実施の形態のフィギュアシステムは、ベース1と、このベース1の上に配置されたフィギュア2と、ベース1とフィギュア2とを脱着可能に連結し、または脱着可能に構成された中間部3とを備えたものである。中間部3は、フィギュア2を、その胴体部20(後出)を支点として自在に動作できるようにベース1の上方に支持する。
 フィギュア2は、その骨部材として、例えば胴体部20、頭部21、右腕部22R、左腕部22L、右脚部23Rおよび左脚部23Lを有している(図1,図4Aおよび図4B参照)。なお、本出願では、右腕部22R、左腕部22L、右脚部23Rおよび左脚部23Lを包括して肢体部ともいう場合がある。これらの骨部材は、例えば板状や棒状などの形状を有する剛性の高い材料からなる。骨部材における長手方向と直交する断面の形状は、例えば円形、楕円形、四角形などの多角形である。また、骨部材は中実構造でもよいが、軽量化を図るために中空構造であることが望ましい。胴体部20は、例えば胴体上部20Aと胴体下部20Bとが腰関節部30により連結されたものである。胴体上部20Aの背面にはマルチカプラ25Bが設けられている。このマルチカプラ25Bが中間部3に設けられたマルチカプラ25Aと連結されてマルチカプラ対25を形成することにより、胴体部20(胴体上部20A)と中間部3とが連結されるようになっている。頭部21、右腕部22R、左腕部22L、右脚部23Rおよび左脚部23Lは、それぞれ、関節部としての首関節部31、肩関節部32R、肩関節部32L、股関節部33Rおよび股関節部33Lによって胴体部20と連結されている。このようにフィギュア2では、複数の骨部材が複数の関節部において連結されることにより、骨格が形成されている。ここで、これらの複数の関節部の各々は、後述する可動機構5を1または複数含んでいる。なお、右腕部22R、左腕部22L、右脚部23Rおよび左脚部23Lは、それらの骨部材を内蔵するように、皮膚に相当するカバー240~249が設けられている。カバー240~249は、例えばポリ塩化ビニル(PVC)などの硬質樹脂を用いて構成され、曲面を含む外表面を有する。
 右腕部22Rは、上腕221R、前腕222Rおよび手223Rを有している。上腕221Rは、その一端が肩関節部32Rを介して胴体上部20Aの右端と連結され、他端が肘関節部34Rによって前腕222Rと連結されている。前腕222Rは、その一端が肘関節部34Rを介して上腕221Rと連結され、他端が手関節部35Rによって手223Rと連結されている。手223Rは、その一端が手関節部35Rを介して前腕222Rと連結され、他端には例えば5本の指が設けられている。上腕221Rはカバー240Aとカバー240Bとによって自らの周囲が覆われており、前腕222Rはカバー249Aとカバー249Bとによって自らの周囲が覆われている。
 左腕部22Lは、胴体部20を中心として右腕部22Rと左右対称の構造を有している。具体的には、左腕部22Lは上腕221L、前腕222Lおよび手223Lを有している。上腕221Lは、その一端が肩関節部32Lを介して胴体上部20Aの左端と連結され、他端が肘関節部34Lによって前腕222Lと連結されている。前腕222Lは、その一端が肘関節部34Lを介して上腕221Lと連結され、他端が手関節部35Lによって手223Lと連結されている。手223Lは、その一端が手関節部35Lを介して前腕222Lと連結され、他端には例えば5本の指が設けられている。上腕221Lはカバー248Aとカバー248Bとによって自らの周囲が覆われており、前腕222Lはカバー247Aとカバー247Bとによって自らの周囲が覆われている。
 右脚部23Rは、大腿231R、下腿232Rおよび足233Rを有している。大腿231Rは、その一端が股関節部33Rを介して胴体下部20Bの右端と連結され、他端が膝関節部36Rによって下腿232Rと連結されている。下腿232Rは、その一端が膝関節部36Rを介して大腿231Rと連結され、他端が足関節部37Rによって足233Rと連結されている。足233Rは、その一端が足関節部37Rを介して下腿232Rと連結され、他端には例えば5本の指が設けられている。大腿231Rはカバー245Aとカバー245Bとによって自らの周囲が覆われており、下腿232Rはカバー244Aとカバー244Bとによって自らの周囲が覆われている。
 左脚部23Lは、胴体部20を中心として右脚部23Rと左右対称の構造を有している。具体的には、左脚部23Lは大腿231L、下腿232Lおよび足233Lを有している。大腿231Lは、その一端が股関節部33Lを介して胴体下部20Bの左端と連結され、他端が膝関節部36Lによって下腿232Lと連結されている。下腿232Lは、その一端が膝関節部36Lを介して大腿231Lと連結され、他端が足関節部37Lによって足233Lと連結されている。足233Lは、その一端が足関節部37Lを介して下腿232Lと連結され、他端には例えば5本の指が設けられている。大腿231Lはカバー242Aとカバー242Bとによって自らの周囲が覆われており、下腿232Lはカバー241Aとカバー241Bとによって自らの周囲が覆われている。
 本実施の形態では、腰関節部30、首関節部31、肩関節部32R,32L、股関節部33R,33L、肘関節部34R,34L、手関節部35R,35L、膝関節部36R,36L、足関節部37R,37Lをまとめて関節部と呼ぶ。なお、上記以外の箇所、例えば指などにも関節部を設けるようにしてもよい。これらの関節部のうち、肩関節部32R,32L、股関節部33R,33L、肘関節部34R,34L、手関節部35R,35L、膝関節部36R,36L、足関節部37R,37Lは、それぞれ、回転軸を中心として回転すると共にその回転軸と直交する断面における少なくとも一部が円弧状である回転部材を含むとよい。例えば、後述する図7に示したように、肘関節部34Lおよび手関節部35Lは、それぞれ、出力軸54を中心として回転すると共にその出力軸54と直交する断面における少なくとも一部が円弧状である回転部材342Lおよび回転部材352Lを含んでいるとよい。特に、肩関節部32R,32L、股関節部33R,33L、肘関節部34R,34L、手関節部35R,35L、膝関節部36R,36L、足関節部37R,37Lは、それぞれ、球面を含む外表面を有する略球体のカバーによってそれぞれ覆われているとよい。例えば図4Aおよび図4Bでは、股関節部33R,33Lが、球面を含む外表面を有する略球体のカバー243,246によってそれぞれ覆われている様子を表している。
 フィギュア2は、図2A,2Bおよび図3に示したように、複数の可動機構5と、複数のカプラユニット26Bと、複数のフレキシブルワイヤFW2と、複数の信号線SW2と、複数の電力線PW2と、複数の接地線GW2とを有している(図2A)。フレキシブルワイヤFW2は、その延在方向を回転軸として回転することにより、駆動モータDMが発生する回転力を可動機構5における可動体(例えば後述のウォームギヤ51)へ伝達する動力伝達部材(回転力伝達部材)である。フレキシブルワイヤFW2は、例えば鋼線などの金属細線を撚り合わせた可撓性を有する素材からなり、フレキシブルシャフトとも呼ばれる。フレキシブルワイヤFW2は、可動機構5ごとに1つ設けられている。信号線SW2、電力線PW2および接地線GW2についても可動機構5ごとに1つ設けられている。図5に、可動機構5を含むフィギュア2の動作機構を説明するための構成例を模式的に表す。
 図5などに示したように、複数の可動機構5は、後述する駆動モータDMの回転力により動作する可動体としての減速ギヤ53と、その減速ギヤ53の動作量(例えば回転角)を検出するエンコーダ55とを各々含んでいる。より詳細には、複数の可動機構5は、ウォームギヤ51と、減速ギヤ52と、減速ギヤ53と、出力軸54と、エンコーダ55とをそれぞれ有している。ここで、ウォームギヤ51はフレキシブルワイヤFW2の端部2T1と接続されており、その延在方向を回転軸として、フレキシブルワイヤFW2と共に+R51方向および-R51方向へ回転可能に構成されている。減速ギヤ52はウォームギヤ51と係合しており、+R51方向にウォームギヤ51が回転すると減速ギヤ52は例えば+R52方向へ回転し、-R51方向にウォームギヤ51が回転すると減速ギヤ52は-R52方向へ回転するようになっている。減速ギヤ53は減速ギヤ52と係合しており、+R52方向に減速ギヤ52が回転すると減速ギヤ53は例えば+R53方向へ回転し、-R52方向に減速ギヤ52が回転すると減速ギヤ53は-R53方向へ回転するようになっている。減速ギヤ53の回転量(回転角)はエンコーダ55により随時検出するようになっている。出力軸54は減速ギヤ53の回転中心に固定され、減速ギヤ53と一体となって回転するようになっている。回転部材56は出力軸54に固定されている。したがって、回転部材56は、減速ギヤ53と一体となって回転する。
 また、図2Aおよび図3に示したように、フレキシブルワイヤFW2の、ウォームギヤ51と反対側に位置する端部2T2は、ワイヤカプラ27Bと接続されている。ワイヤカプラ27Bは、カプラユニット26Bに回転可能に保持され、フレキシブルワイヤFW2と共に回転するようになっている。ワイヤカプラ27Bは、例えば図6に示したように、後出のワイヤカプラ27Aと脱着可能に構成されており、ワイヤカプラ27Aと連結することによりワイヤカプラ対27を形成するようになっている。なお図6は、ワイヤカプラ対27の構成を拡大して表す斜視図である。図6に示したように、ワイヤカプラ27Bは、例えば略円柱状の部材であり、その外周面に1以上の突起(図6では2つの突起T1,T2)を有している。ワイヤカプラ27Aは、例えば中間部3を通過するフレキシブルワイヤFW3の端部3T2と接続され、例えばワイヤカプラ27Bが挿入される空間27Vを含む略円筒状の部分を含む部材であり、その内面に、ワイヤカプラ27Bの突起と対応する1以上の溝(図6では2つの溝U1,U2)を有している。このような構造により、突起T1,T2が溝U1,U2に差し込まれるようにワイヤカプラ27Aとワイヤカプラ27Bとが接近して空間27Vにワイヤカプラ27Bが挿入される。このため、突起T1,T2と溝U1,U2とがそれぞれ係合し、例えばフレキシブルワイヤFW3がRFW3の方向へ回転するとフレキシブルワイヤFW2がRFW2の方向へ回転するようになっている。
 カプラユニット26Bには、さらに、信号線カプラ281Bと、電力線カプラ282Bと、接地線カプラ283Bとが保持されている。フィギュア2には、信号線カプラ281Bとエンコーダ55とを繋ぐ信号線SW2と、電力線カプラ282Bとエンコーダ55とを繋ぐ電力線PW2と、接地線カプラ283Bとエンコーダ55とを繋ぐ接地線GW2とがさらに配設されている。ここでフレキシブルワイヤFW2は、対応する可動機構5ごとに可撓性を有するチューブ6に収容され、信号線SW2、電力線PW2および接地線GW2は、対応する可動機構5ごとに可撓性を有するチューブ7に収容されているとよい(図5参照)。互いの干渉を回避するためである。特に、フレキシブルワイヤFW2は回転動作を伴うので、信号線SW2などとの摩擦や干渉が生じやすいと考えられる。このため、フレキシブルワイヤFW2と、信号線SW2、電力線PW2および接地線GW2とを別々のチューブに挿通させることが望ましい。ただし、信号線SW2、電力線PW2および接地線GW2についても、それぞれ個別に異なるチューブに挿通させるようにしてもよい。
 フィギュア2には、複数の可動機構5の各々に対応して複数のカプラユニット26Bが設けられている。これら複数のカプラユニット26Bは、一体化されてマルチカプラ25Bを構成している。なお、フィギュア2では、全てのカプラユニット26Bをまとめることで1つのマルチカプラ25Bを構成するようにしてもよいし、全てのカプラユニット26Bをいくつかのグループごとにまとめることで複数のマルチカプラ25Bを構成するようにしてもよい。マルチカプラ25Bは、中間部3における後出のマルチカプラ25Aと脱着可能に構成されており、マルチカプラ25Aと連結することによりマルチカプラ対25を形成するようになっている。
 中間部3は、ベース1に対しフィギュア2を支持するステー3Aと、ステー3Aの内部に挿通されたフレキシブルワイヤFW3、信号線SW3、電力線PW3および接地線GW3と、ステー3Aの一端に設けられてステー3Aとベース1の筐体10とを連結する連結部3Bと、ステー3Aの他端に設けられてステー3Aとフィギュア2の連結部2Cとを連結する連結部3Cと有している。連結部3Bには、1または複数のマルチカプラ16Bが設けられている。一方、連結部3Cには、1または複数のマルチカプラ25Aが設けられている。フレキシブルワイヤFW3は、駆動モータDMが発生する回転力をフィギュア2へ伝達する可撓性を有する動力伝達部材であり、例えばフレキシブルワイヤFW2と同様の素材からなる。フレキシブルワイヤFW3の端部3T1はワイヤカプラ27Aと接続され、フレキシブルワイヤFW3の端部3T2はワイヤカプラ18Bと接続されている。信号線SW3の一端は信号線カプラ281Aと接続され、信号線SW3の他端は信号線カプラ191Bと接続されている。電力線PW3の一端は電力線カプラ282Aと接続され、電力線PW3の他端は電力線カプラ192Bと接続されている。接地線GW3の一端は接地線カプラ283Aと接続され、接地線GW3の他端は接地線カプラ193Bと接続されている。ここで、既に述べたように、ワイヤカプラ27Aはフィギュア2のワイヤカプラ27Bと脱着可能に構成され、ワイヤカプラ27Bと連結することでワイヤカプラ対27を構成するようになっている。一方、ワイヤカプラ18Bはベース1に設けられたワイヤカプラ18A(後出)と脱着可能に構成され、そのワイヤカプラ18Aと連結することでワイヤカプラ対18を構成するようになっている。同様に、信号線カプラ281A,電力線カプラ282A,接地線カプラ283Aとフィギュア2の信号線カプラ281B,電力線カプラ282B,接地線カプラ283Bとがそれぞれ脱着可能に構成され、両者がそれぞれ連結されることにより、信号線カプラ対281,電力線カプラ対282および接地線カプラ対283をそれぞれ構成するようになっている。さらに、信号線カプラ191B,電力線カプラ192B,接地線カプラ193Bはベース1に設けられた信号線カプラ191A,電力線カプラ192A,接地線カプラ193Aとそれぞれ脱着可能に構成され、両者がそれぞれ連結されることにより、信号線カプラ対191,電力線カプラ対192および接地線カプラ対193をそれぞれ構成するようになっている。
 カプラユニット26Aには、ワイヤカプラ27Aが回転可能に保持されている。カプラユニット26Aには、さらに、信号線カプラ281A,電力線カプラ282Aおよび接地線カプラ283Aがそれぞれ保持されている。カプラユニット26Aは、カプラユニット26Bと連結することでカプラユニット対26を構成するようになっている。中間部3の連結部3Cには、複数のカプラユニット26Aが設けられている。これら複数のカプラユニット26Aは、一体化されてマルチカプラ25Aを構成している。なお、中間部3の連結部3Cでは、全てのカプラユニット26Aをまとめて1つのマルチカプラ25Aを構成するようにしてもよいし、全てのカプラユニット26Aをいくつかのグループごとにまとめて複数のマルチカプラ25Aを構成するようにしてもよい。マルチカプラ25Aは、フィギュア2におけるマルチカプラ25Bと脱着可能に構成されており、マルチカプラ25Bと連結することによりマルチカプラ対25を形成する。
 連結部3Bには、図2Bに示したように、ベース1の筐体10に設けられたマルチカプラ16Aと対向するようにマルチカプラ16Bが設けられている。マルチカプラ16Bはマルチカプラ16Aと脱着可能に構成されており、マルチカプラ16Aと連結することによりマルチカプラ対16を形成する。マルチカプラ16Bは、複数のカプラユニット17Bにより構成されている。図2Bでは、3つのカプラユニット17B1~17B3によりマルチカプラ16Bが構成されると共に、3つのカプラユニット17A1~17A3によりマルチカプラ16Aが構成されている場合を例示している。カプラユニット17B(17B1~17B3)には、ワイヤカプラ18B(18B1~18B3)が回転可能に保持されている。カプラユニット17B(17B1~17B3)には、さらに、信号線カプラ191B(191B1~191B3),電力線カプラ192B(192B1~192B3)および接地線カプラ193B(193B1~193B3)がそれぞれ保持されている。カプラユニット17B(17B1~17B3)は、ベース1に設けられたカプラユニット17A(17A1~17A3)と連結することでカプラユニット対17(17-1~17-3)を構成するようになっている。なお、中間部3の連結部3Bでは、全てのカプラユニット17Bをまとめて1つのマルチカプラ16Bを構成するようにしてもよいし、全てのカプラユニット17Bをいくつかのグループごとにまとめて複数のマルチカプラ16Bを構成するようにしてもよい。なお、図2Bでは、フレキシブルワイヤFW3、信号線SW3、電力線PW3および接地線GW3の図示を省略している。
 図1に示したように、ベース1は、筐体10の内部に駆動ユニットDUを複数備えている。図2A,2Bおよび図3に示したように、複数の駆動ユニットDUは、回転力を発生するアクチュエータとしての駆動モータDMと、その駆動モータDMを制御することによりフィギュア2における可動機構5の動作を実行するモータ制御部MCと、マルチカプラ16Aと、インターフェイス部15(図3)とを各々有する。
 モータ制御部MCは、エンコーダ55からの情報に基づいて駆動モータDMを制御することにより、可動機構5の動作を実行するように機能する。例えば、ある可動機構5を回転させた場合に、実際にその可動機構5が所望の回転角だけ回転したかどうかをエンコーダ55からの情報により判断し、必要に応じて回転角を補正する動作をさらに行うようにする。
 図2Bに示したように、マルチカプラ16Aは、複数のカプラユニット17Aを有している。各カプラユニット17Aには、それぞれ、ワイヤカプラ18A、電力線カプラ192A、信号線カプラ191Aおよび接地線カプラ193Aが設けられている。インターフェイス部15は、図3に示したように、電源端子151と接地端子152と信号入力端子153とを有している。駆動ユニットDUは、さらに、電源端子151と電力線カプラ192Aとを繋ぐ電力線PW1と、接地端子152と接地線カプラ193Aとを繋ぐ接地線GW1と、信号入力端子153とモータ制御部MCとを繋ぐ信号線SW0と、モータ制御部MCと信号線カプラ191Aとを繋ぐ信号線SW1とを有している。駆動ユニットDUは、さらに、電力線PW1から分岐されてモータ制御部MCと接続された電力線PW1Aと、電力線PW1から分岐されて駆動モータDMと接続された電力線PW1Bと、接地線GW1から分岐されてモータ制御部MCと接続された接地線GW1Aと、接地線GW1から分岐されて駆動モータDMと接続された接地線GW1Bとを有する。さらに、駆動ユニットDUは、駆動モータDMとワイヤカプラ18Aとを繋ぐ動力伝達部材としての駆動軸FW1を有している。駆動軸FW1はフレキシブルワイヤFW2などと同じ素材からなるものであってもよいし、剛性を有する金属シャフトであってもよい。さらに、この駆動軸FW1を、ワイヤカプラ18Aに対し脱着可能に構成するとよい。なお、図2Bでは、電力線PW1,PW1A,PW1Bおよび接地線GW1,GW1A,GW1Bの図示を省略している。
 筐体10の内部には、CPU12と、電源13と、記憶部14とがさらに設けられている。CPU12は、例えばフィギュアシステム全体の制御を行うものである。記憶部14には、例えばフィギュアシステム全体の制御、またはフィギュア2の動作制御を行うためのプログラムや各種データが格納されているとよい。CPU12には端子12Tが設けられており、端子12Tが信号入力端子153と接続されることで、信号線SW0を介してモータ制御部MCに対し制御信号が送られるようになっている。モータ制御部MCからの制御信号は、信号線SW1、マルチカプラ対16、信号線SW3,SW2などを介して各可動機構5のエンコーダ55に伝達されるようになっている。電源端子151は、電源13に設けられた端子13Tと接続されることで、電力線PW1、電力線PW1A、電力線PW1B、マルチカプラ対16、電力線PW3,PW2などを介してモータ制御部MC、駆動モータDM、エンコーダ55に対して電源が供給可能となっている。また、接地端子152は接地されるようになっている。
[2.関節部の詳細な構成例]
 続いて、関節部の構成の詳細について説明する。各関節部は、1または複数の可動機構5をそれぞれ含んでいる。
(首関節部31の構成例)
 例えば首関節部31は3つの可動機構5を含んでいる(図4C参照)。具体的には、胴体上部20Aに対して鉛直方向の軸31J1を中心として回動する本体311により構成される可動機構と、本体311に対してフィギュア2の左右方向の軸31J2を中心として回動する回転部材312により構成される可動機構と、回転部材312に対してフィギュア2の前後方向の軸31J3を中心として回動する回転部材313により構成される可動機構との3つである。
 このような可動機構を含む首関節部31を設けることにより以下のような挙動が実現される。例えば軸31J1を中心として本体311が回動することにより、フィギュア2の胴体上部20Aが正面を向いたまま頭部21が左右方向(矢印Y311の方向)に回転することとなる。また、回転部材312が軸31J2を中心として回動することにより、頭部21が前後方向(矢印Y312の方向)に傾くこととなる。さらに、回転部材313が軸31J3を中心として回動することにより、フィギュア2の胴体上部20Aが正面を向いたまま頭部21が左右方向(矢印Y313の方向)に傾くこととなる。
(肩関節部32Lの構成例)
 また、例えば肩関節部32Lは2つの可動機構を含んでいる(図4C参照)。具体的には、胴体上部20Aに対して左右方向の軸32J1を中心として回動する回転部材321Lにより構成される可動機構と、回転部材321Lに対してフィギュア2の前後方向の軸32J2を中心として回動する回転部材322Lにより構成される可動機構との2つである。肩関節部32Lが含む2つの可動機構により、例えば軸32J1を中心として回転部材321Lが回動することにより、軸32J1を中心として左腕部22Lが前後方向(矢印Y321の方向)に回動することとなる。また、軸32J2を中心として回転部材322Lが回動することにより、左腕部22Lが上下方向(矢印Y322の方向)に回動することとなる。
 なお、ここでは首関節部31および肩関節部32Lを例に挙げて説明したが、他の関節部についても出力軸54を含む可動機構が1以上設けられている。
(可動機構5とフレキシブルワイヤFWとの関係)
 次に、図7を参照して、左腕部22Lにおける肘関節部34Lおよび手関節部35Lを例に挙げて可動機構5とフレキシブルワイヤFWとの関係について説明する。図7は、駆動ユニットDUから肘関節部34Lおよび手関節部35Lへの動力伝達を行う仕組みを説明する概念図である。
 図7などに示したように、肘関節部34Lは、上腕221Lに固定された固定部材341Lと、その固定部材341Lに対して回転可能に保持される回転部材342Lと、それらを介在する可動機構5とを有している。回転部材342Lは可動機構5における出力軸54に固定され、固定部材341Lに対して出力軸54を中心として回転可能に保持されている。回転部材342Lには、前腕222Lが固定されている。また、ウォームギヤ51には、上腕221Lに沿って配設されてチューブ6Aの内部に挿通されるフレキシブルワイヤFW2(図7ではチューブ6Aのみを示す)の端部が接続され、ウォームギヤ51に駆動モータDMからの回転力が伝達されるようになっている。さらにエンコーダ55には、上腕221Lに沿って配設されてチューブ7Aの内部に挿通される信号線SW2,電力線PW2および接地線GW2(図7ではチューブ7Aのみを示す)の端部がそれぞれ接続されている。
 同様に、手関節部35Lは、前腕222Lに固定された固定部材351Lと、その固定部材351Lに対して回転可能に保持される回転部材352Lと、それらを介在する可動機構5とを有している。回転部材352Lは可動機構5における出力軸54に固定され、固定部材351Lに対して出力軸54を中心として回転可能に保持されている。回転部材352Lには、手223Lが固定されている。また、ウォームギヤ51には、前腕222Lに沿って配設されてチューブ6Bの内部に挿通されるフレキシブルワイヤFW2(図7ではチューブ6Bのみを示す)の端部が接続され、ウォームギヤ51に駆動モータDMからの回転力が伝達されるようになっている。さらにエンコーダ55には、前腕222Lに沿って配設されてチューブ7Bの内部に挿通される信号線SW2,電力線PW2および接地線GW2(図7ではチューブ7Bのみを示す)の端部がそれぞれ接続されている。ここで、チューブ6Bおよびチューブ7Bは、それぞれ、駆動ユニットDUと手関節部35Lとの間に位置する他の可動体、すなわち肘関節部34Lにおける可動機構5の中心部(例えば出力軸54)の近傍を貫いて延設されているとよい。例えば肘関節部34Lにおける回転部材342Lを回転させた際、その回転部材342Lの回転がチューブ6Bおよびチューブ7Bと干渉することで、チューブ6Bおよびチューブ7Bを通るフレキシブルワイヤFW2などに対して不要な張力が印加されるなどの事態を避けるためである。
 なお、ここでは肘関節部34Lおよび手関節部35Lを例示したが、他の関節部における可動機構5と、フレキシブルワイヤFW2との関係についても同様の構成である。
[3.フィギュアの基本動作]
 本実施の形態のフィギュアシステムでは、CPU12の指令に基づいてフィギュア2の動作制御を行う。具体的には、記憶部14に格納された所定のプログラムにしたがって各関節部に対応する駆動モータDMへ信号を送信し、その駆動モータDMを起動し(電源オンの状態とし)、各関節部における可動機構の回転動作を実行させ、肢体を自在に動かすようにする。なお、電源オフ時における駆動モータDMを動かすのに要するトルクは、その駆動モータDMに対応する関節部に及ぶ重量によるトルクよりも大きいことが望ましい。電源をオフにした際のフィギュア2の姿勢を保持することができるからである。
 また、CPU12は、全ての駆動モータDMの電源をオンの状態とせず、一部の駆動モータDMの電源のみをオンの状態とし、残りの駆動モータDMの電源をオフの状態とするようにしてもよい。例えば複数の可動機構のうちの一部の可動機構のみを動かす際は、その一部の可動機構に対応する一部の駆動モータDMの電源を所定時間に亘ってオンとし、他の駆動モータDMの電源を所定時間に亘ってオフとするようにしてもよい。動作を行わない可動機構に対応する駆動モータDMの電源をオフにしたとしても、上述のようにその駆動モータDMを動かすのに要するトルクを利用してフィギュア2の姿勢を保持することができるからである。
[4.関節部の動作]
 ここで、図7などを参照して、肘関節部34Lおよび手関節部35Lを例に挙げて前腕222Lおよび手223Lの動作について説明する。前腕222Lは、肘関節部34Lの回転部材342Lが回転することにより動作する。すなわち、駆動モータDMの回転力を、駆動軸FW1およびフレキシブルワイヤFW2,FW3を介して可動機構5の出力軸54と接続された回転部材342Lへ伝達することにより、前腕222Lを動かすことができる。具体的には、CPU12からの信号に基づいて対応する駆動モータDMが駆動し、その駆動軸FW1が所定の方向へ回転すると、ワイヤカプラ対18,フレキシブルワイヤFW3,ワイヤカプラ対18およびフレキシブルワイヤFW2も同方向へ回転する。このため、対応するウォームギヤ51が例えば+R51方向へ回転し、これに係合する減速ギヤ52は+R52方向へ回転し、減速ギヤ52に係合する減速ギヤ53は+R53方向へ回転する。よって、回転部材342Lが出力軸54を中心として矢印+R342Lの方向へ回転(図7紙面において左回転)する。その結果、回転部材342Lに固定された前腕222Lが肘関節部34Lを支点として上腕221Lと平行に近づく方向(肘を伸ばす方向)へ回動することとなる。反対に、対応するウォームギヤ51が-R51方向へ回転するようにすれば、回転部材342Lが出力軸54を中心として矢印-R342Lの方向へ回転(図7紙面において右回転)する。その結果、回転部材342Lに固定された前腕222Lが肘関節部34Lを支点として上腕221Lに対して近づく方向(肘を曲げる方向)へ回動することとなる。なお、この肘関節部34Lおよび前腕222Lの動作に伴って、それよりも先端側に位置する手関節部35Lおよび手223Lが影響を受けることはほとんどない。フレキシブルワイヤFW2を収容するチューブ6Aや信号線SW2などを収容するチューブ7Bが、回転部材342Lの中心部を貫いて延設されているからである。
 手関節部35Lについても同様である。すなわち、駆動モータDMの回転力を、駆動軸FW1およびフレキシブルワイヤFW2,FW3を介して可動機構5の出力軸54と接続された回転部材352Lへ伝達することにより、手223Lを動かすことができる。
[5.作用および効果]
 本実施の形態のフィギュアシステムでは、ベース1に収容される駆動ユニットDUに、フィギュア2を駆動するための駆動モータDMを設けるようにした。このため、フィギュア2そのものに駆動源を設ける必要がないので、フィギュア2の小型化や軽量化に適する。そのうえ、例えばスリムな体形を有するなど、審美性に優れたフィギュア2が実現される。フィギュア2の軽量化により、駆動に必要な駆動モータDMの出力を低く抑えることができるうえ、フィギュア2の大型化をした場合であっても低コスト化や転倒時の危険性の排除などの点でフィギュア2の軽量化は有利となる。また、フィギュア2を駆動するにあたり、駆動ユニットDUにおける駆動モータDMの回転力を、フレキシブルワイヤFWを介して各関節部へ伝達するようにしたので、フィギュア2の動作が安定し、高い動作再現性が得られる。そのうえ、エンコーダ55により可動機構5における出力軸54の動作量(回転角)が検出されるので、フィギュア2の動作が安定化および高精度化され、より高い動作再現性が期待できる。また、可撓性を有するフレキシブルワイヤFWの採用により、フィギュア2の動作上における高い自由度が得られ、多彩な動作が再現される。
 また、本実施の形態では、ベース1と中間部3との接続、および中間部3とフィギュア2との接続を、マルチカプラ16A,16B、およびマルチカプラ25A,25Bにより行う構造としたので、取り扱いの容易性に優れる。
<2.変形例>
 以上、いくつかの実施の形態および変形例を挙げて本発明を説明したが、本発明は上記実施の形態等に限定されるものではなく、種々の変形が可能である。例えば駆動源としては、ポリマーアクチュエータやソレノイドアクチュエータなどの他の簡易アクチュエータを用いることもできる。また、より大きな駆動力を必要とする関節部には、サーボモータにより直接駆動させてもよい。いずれにせよ、用途や使用に応じて異なる種類のアクチュエータを組み合わせて用いてもよい。
 また、上記実施の形態では、ベース1とフィギュア2との間に中間部3を設けるようにしたが、ベース1とフィギュア2とを直接接続するようにしてもよい。その場合、例えば図2の例において、マルチカプラ16Aとマルチカプラ25Bとを連結し、マルチカプラ対を形成するようにすればよい。
 また、本発明では、例えばフィギュア2の内部においても複数のパーツをマルチカプラにより脱着可能に連結するようにしてもよい。その場合、例えば図8に示した第1の変形例のように、複数の骨部材としての上腕221L,前腕222Lおよび手223Lと、それらを繋ぐ複数の関節部としての肘関節部34Lおよび手関節部35Lとの各接続部においてそれぞれマルチカプラ対291~293を設ければよい。ここで、フレキシブルワイヤFW2は、上腕221Lに沿ったチューブ6A1,6B1を通る部分FW2A1,FW2B1と、肘関節部34Lに設けられたチューブ6A2,6B2を通る部分FW2A2,FW2B2と、前腕222Lに沿ったチューブ6B3を通る部分FW2B3と、手関節部35Lに設けられたチューブ6B4を通る部分FW2B4とに分割されている。また、信号線SW2は、上腕221Lに沿ったチューブ7A1,7B1を通る部分SW2A1,SW2B1と、肘関節部34Lに設けられたチューブ7A2,7B2を通る部分SW2A2,SW2B2と、前腕222Lに沿ったチューブ7B3を通る部分SW2B3と、手関節部35Lに設けられたチューブ7B4を通る部分SW2B4とに分割されている。電力線PW2および接地線GW2についても信号線SW2と同様に分割されている。マルチカプラ対291において、部分FW2A1,FW2B1と、部分FW2A2,FW2B2とがそれぞれ接続され、部分SW2A1,SW2B1と、部分SW2A2,SW2B2とがそれぞれ接続される。マルチカプラ対292において、部分FW2B2と部分FW2B3とが接続され、部分SW2B2と部分SW2B3とが接続される。さらに、マルチカプラ対293において、部分FW2B3と部分FW2B4とが接続され、部分SW2B3と部分SW2B4とが接続される。電力線PW2および接地線GW2についても信号線SW2と同様に接続される。このように、マルチカプラ対291~293において骨部材と関節部とが、フレキシブルワイヤFW2、信号線SW2、電力線PW2および接地線GW2と共に脱着可能に構成されていると、製造時、修理時および交換時などにおける取り扱い性が向上するので好ましい。
 また、上記実施の形態のフィギュアシステムでは、駆動ユニットDUを、フィギュア2の外部にあるベース1の筐体10の内部に設けるようにしたが、本開示はこれに限定されるものではない。例えば図9に示した第2の変形例としてのフィギュアシステムのように、一部の駆動ユニット(便宜上、駆動ユニットDU1とする)をフィギュア2の内部に設け、他の駆動ユニット(便宜上、駆動ユニットDU2とする)をフィギュアの外部、例えば筐体10の内部に設けるようにしてもよい。その場合、駆動ユニットDU1に対し、CPU12から信号線および電力線を直接接続するとよい。なお、フィギュア2の内部に駆動ユニットDU1を設ける場合、図9に示した第2の変形例のように、フィギュア2の重心の近くに、例えば胴体部20に設けることが望ましい。胴体部20からそれぞれ延設される肢体部、すなわち、右腕部22R、左腕部22L、右脚部23Rまたは左脚部23Lに設けるようにした場合と比較して、動作時の慣性モーメントを低減でき、動作性能の点で有利だからである。なお、駆動ユニットDU1としては、駆動ユニットDU2におけるアクチュエータの出力よりも小さな出力のアクチュエータを有するものとするとよい。駆動ユニットDU1を軽量化できるからである。
 また、上記実施の形態等では、胴体部20の背面からフレキシブルワイヤFWなどをフィギュア2の内部に導入するようにしたが、フィギュアの他の部分(足裏など)を通じてワイヤをフィギュア内部に導入してもよい。
 また、実施の形態では、ベース1と中間部3とフィギュア2とが脱着可能に構成されているが、ベース1と中間部3とが分離できない構造や中間部3とフィギュア2とが分離できない構造であってもよい。
 また、本発明では、例えば図10に示したフィギュア2Aのように、1または複数の可動機構を各々含む複数のモジュールMDが結合してなるものとしてもよい。図10は、本発明の第3の変形例としてのフィギュア2Aの全体構成を概略的に表したものである。
 具体的には、フィギュア2Aは、例えば胴体部モジュールMD1と、頭部モジュールMD2と、右腕部モジュールMD3と、左腕部モジュールMD4と、右脚部モジュールMD5と、左脚部モジュールMD6とを有している。これらの胴体部モジュールMD1、頭部モジュールMD2、右腕部モジュールMD3、左腕部モジュールMD4、右脚部モジュールMD5および左脚部モジュールMD6は、それぞれ骨部材と可動機構とを有する。また、胴体部モジュールMD1には、マルチカプラ4B1,4C1,4D1,4E1,4F1が設けられている。頭部モジュールMD2には胴体部モジュールMD1のマルチカプラ4B1と脱着可能に構成されたマルチカプラ4B2が設けられている。そのマルチカプラ4B2がマルチカプラ4B1と連結することでマルチカプラ対4Bを構成し、その結果、頭部モジュールMD2と胴体部モジュールMD1とが連結されるようになっている。右腕部モジュールMD3には胴体部モジュールMD1のマルチカプラ4C1と脱着可能に構成されたマルチカプラ4C2が設けられている。そのマルチカプラ4C2がマルチカプラ4C1と連結することでマルチカプラ対4Cを構成し、その結果、右腕部モジュールMD3と胴体部モジュールMD1とが連結されるようになっている。左腕部モジュールMD4には胴体部モジュールMD1のマルチカプラ4D1と脱着可能に構成されたマルチカプラ4D2が設けられている。そのマルチカプラ4D2がマルチカプラ4D1と連結することでマルチカプラ対4Dを構成し、その結果、左腕部モジュールMD4と胴体部モジュールMD1とが連結されるようになっている。右脚部モジュールMD5には胴体部モジュールMD1のマルチカプラ4E1と脱着可能に構成されたマルチカプラ4E2が設けられている。そのマルチカプラ4E2がマルチカプラ4E1と連結することでマルチカプラ対4Eを構成し、その結果、右脚部モジュールMD5と胴体部モジュールMD1とが連結されるようになっている。左脚部モジュールMD6には胴体部モジュールMD1のマルチカプラ4F1と脱着可能に構成されたマルチカプラ4F2が設けられている。そのマルチカプラ4F2がマルチカプラ4F1と連結することでマルチカプラ対4Fを構成し、その結果、左脚部モジュールMD6と胴体部モジュールMD1とが連結されるようになっている。
 このように、フィギュア2Aを複数のモジュールの結合体とすることで、各モジュールを個別に製造し、最終的にそれらを組み立てることによりフィギュア2Aを完成させることができる。このため、生産性の向上を図ることができる。また、フィギュア2Aではモジュール単位での交換が可能であるため、修理等を容易にかつ速やかに行うことができる。よってメンテナンス性の向上も期待できる。
 また、複数の信号線や複数の電力線は、それぞれいくつかのデバイスにより共用するようにしてもよい。さらには、信号線と電力線との共用を行うようにしてもよい。
 また、上記実施の形態等で示した関節部は例示であり、本技術は説明した関節部の全てを備える場合に限定されるものではない。また、他の関節部を設けるようにしてもよい。さらに、フィギュアは人形に限定されるものではなく、例えば犬などの自然界の動物のほか、空想上あるいは想像上のキャラクタをモチーフとしたものであってもよい。また、フィギュアは、その全体の寸法が例えば15cmから30cm程度に縮小されたものでもよいし、等身大のものであってもよい。
 さらに、本技術では、表示装置、スピーカなどの音響装置、投影機などの各種デバイスをベースやフィギュアに搭載させてもよい。具体的には、フィギュアは、入力デバイスとして撮像装置やマイク、あるいはタッチセンサなどを有していてもよい。さらにフィギュアは、出力デバイスとして、スピーカや照明(発光ダイオードなど)、振動素子あるいは表示デバイス(LCD:liquid crystal display)などを有していてもよい。それらの入力デバイスや出力デバイスは、信号線SW、電力線PWおよび接地線GWなどによりCPU12、電源13およびGNDと接続される。このような入力デバイスや出力デバイスをフィギュアシステムが備えることにより、フィギュアを介して画像情報や音声情報、あるいは接触情報をCPU12に取り込むことができる。一方、出力デバイスを備えることにより、取得した画像情報や音声情報に対応した会話や動作をフィギュアにさせることができる。
 また、本技術では、例えば減速ギヤ53と出力軸54との間にクラッチ機構を設けるとよい。関節に外部(人体)から大きな力が加わった場合などにそのクラッチ機構が働くことで、駆動ユニットDUからの力を出力軸54と切り離すことができるからである。その結果、人体やフィギュア2自体などに強い力が及ぶのを回避することができる。
 また、上記実施の形態等では、駆動ユニットDUから各可動機構5に至るまで、フレキシブルワイヤFW2を挿通させるようにしたが、本技術はこれに限定されるものではない。すなわち、本開示は、回転力伝達部材としてフレキシブルワイヤ以外の部材を用いることができる。例えば、複数のフレキシブルワイヤのうちの1以上のフレキシブルワイヤにおける長手方向の一部分が、1以上のフレキシブルワイヤの剛性よりも高い剛性を有する1以上の棒材に置換されていてもよい。その場合、それらの棒材は、複数の骨部材に沿って配設されているとよい。例えば図11に示した第4の変形例では、では、骨部材としての上腕221Lに沿って棒材9A1,9B1,9B3(以下、総括して棒材9という場合がある。)がそれぞれ配設されている様子を表している。図11は、本開示の第4の変形例としてのフィギュアの関節部近傍の構造を説明する概念図である。図11では、骨部材としての上腕221Lに沿って棒材9A1,9B1が配設されると共に、骨部材としての前腕222Lに沿って棒材9B3が配設されている。棒材9A1,9B1,9B3は、それぞれ、図8に示したフレキシブルワイヤFW2のうちの部分FW2A1,FW2B1,FE2B3をそれぞれ置換したものである。なお、棒材9A1,9B1,9B3の各々の一端はマルチカプラ対290と接続され、棒材9A1,9B1,9B3の各々の他端はマルチカプラ対291と接続されている。すなわち、棒材9A1,9B1は、マルチカプラ対290を介してフレキシブルワイヤFW2の部分FW2A0,FW2B0とそれぞれ接続されると共に、マルチカプラ対291を介してフレキシブルワイヤFW2の部分FW2A2,FW2B2とそれぞれ接続されている。また、棒材9B3は、マルチカプラ対291を介してフレキシブルワイヤFW2の部分FW2B2と接続されると共に、マルチカプラ対293を介してフレキシブルワイヤFW2の部分FW2B4と接続されている。なお、信号線SW2の部分SW2A1,SW2B1は、マルチカプラ対290を介して信号線SW2の部分SW2A0,SW2B0とそれぞれ接続されている。
 棒材9は、例えばアルミニウムやカーボンを主原料とするシャフトであり、例えば5mm~10mm程度の直径を有する。棒材9はフレキシブルワイヤFW2よりも高い剛性を有するので、フレキシブルワイヤFW2と比べて捻じれや曲がりなどの変位量が小さい。よって、フレキシブルワイヤFW2の一部を棒材9に置換することにより、フレキシブルワイヤFW2の一部を棒材9に置換しなかった場合と比べ、駆動モータDMの回転力をより速くかつ、より効率的に可動機構5へ伝達することができる。したがって、第4の変形例のフィギュアによれば、曲げを伴う部分にのみフレキシブルワイヤFW2を使用し、曲がらない部分、例えば骨部材に沿う部分には高剛性の棒材9を用いることで、より素早い動作を遅滞なく行うことができるなど、より多彩な動作の再現に有利なものとなる。また、可撓性を有するフレキシブルワイヤFW2よりも高剛性を有しハンドリングし易い棒材9を用いることで、製造時、修理時および交換時などにおける取り扱い性が向上するうえ、棒材9に汎用品を適用することで低コスト化も期待できる。また、回転力伝達部材として棒材のみを用いることにより、フレキシブルワイヤを用いた場合よりもより大きな回転力を伝達するのに有利となる。
 図12Aは、本開示の第5の変形例としての回転力伝達部材を表す模式図である。図12Aに示したように、回転力伝達部材としての棒材9の先端に傘歯車9Gをさらに備えるようにしてもよい。このように、先端に傘歯車9Gをそれぞれ取り付けた2つの棒材9を組み合わせることにより、回転力の伝達方向を任意の方向へ変換することができる。
 本開示では、回転力伝達部材として、例えば図12Bに示した本開示の第6の変形例としてのベルト機構91を用いてもよい。ベルト機構91は、アクチュエータの回転力により回転する駆動ローラ91Aと、従動ローラ91Bと、駆動ローラ91Aおよび従動ローラ91Bにより張架されたタイミングベルト91Cとを有する。駆動ローラ91Aの回転に伴って回転するタイミングベルト91Cにより、従動ローラ91Bに回転力が伝達されるようになっている。
 本開示では、さらに、一部の回転力伝達部材として、例えば図12Cに示した本開示の第7の変形例としてのワイヤ機構92のように、ワイヤの牽引力を利用したものを用いてもよい。上記実施の形態のフレキシブルワイヤは、その延在方向に沿った中心軸を回転中心とする軸回転により、アクチュエータの回転力を可動機構に伝達するようにしたものである。これに対し、本変形例としてのワイヤ機構92は、一方の回転体92Aが一対のワイヤ92B1,92B2のうちのいずれか一方を牽引することにより、回転体92Aの回転力を他方の回転体92Cへ伝達するようにしたものである。なお、図12Cでは、一方の回転体92Aが、アクチュエータからの回転力により矢印92R+の方向へ回転すると、ワイヤ92B1が牽引されて他方の回転体92Cが矢印92R+の方向へ回転する。反対に、一方の回転体92Aが、アクチュエータからの回転力により矢印92R-の方向へ回転すると、ワイヤ92B2が牽引されて他方の回転体92Cが矢印92R-の方向へ回転する。但し、ワイヤ機構92では、回転体92Aおよび回転体92Bの回転角は180°未満である。なお、ワイヤ92B1,92B2は、それぞれチューブの内部を挿通するものであってもよい。
 さらに、本開示の回転力伝達部材は、例えば図12Dに示した本開示の第8の変形例としてのワイヤ機構93のように、一本のワイヤ93Cが、プーリ93Aとプーリ93Bとによって張架されたものであってもよい。その場合、プーリ93Aおよびプーリ93Bの回転角は特に制限されず、連続回転が可能である。なお、ワイヤ93Cは、チューブの内部を挿通するものであってもよい。
 また、本開示のフィギュアシステムでは、例えば図13に示した第9の変形例のように、駆動ユニットDUにおける駆動モータDMと隣接した位置に電磁ブレーキなどのブレーキ機構94を設けるようにしてもよい。このブレーキ機構94は、電源喪失や電圧低下時にアクチュエータからの回転力が失われた場合であっても、各可動機構の動作を制動するように機能する機械ブレーキである。このブレーキ機構94を備えることにより、意図しない電源喪失や電圧低下が生じた場合であっても、例えば高所にある肢体が自重により落下するなどの不測の事態の発生を防ぎ、高い安全性を確保できる。なお、ブレーキ機構はコンパクト化のためには駆動ユニットに設けることが望ましいが、フィギュアの関節部などに設けるようにしてもよい。さらに、減速機95を、可動機構5が設けられた関節部ではなく、駆動ユニットDUにも設けるようにしてもよい。
 また、本開示のフィギュアシステムでは、例えば図14に示した第10の変形例のように、一部の小型の駆動ユニットDUを肢体部に設けるようにしてもよい。例えば胴体部20に駆動ユニットDU1を設けると共に、図14に示したように、右腕部22Rの前腕222Rの内部に駆動ユニットDU3を設けることもできる。駆動ユニットDU3は、例えば3つのサーボモータ97A~97Cを有している。サーボモータ97A~97Cには、それぞれ、CPU12からの信号線SWや電源13からの電力線PWが接続されている。また、手関節部35Rには3つの可動機構98A~98Cが設けられている。サーボモータ97A~97Cと可動機構98A~98Cとが、例えば前腕222Rの内部に挿通された3つのフレキシブルワイヤ99A~99Cによりそれぞれ接続されており、サーボモータ97A~97Cの回転力が可動機構98A~98Cへ伝達されるようになっている。ここで、駆動ユニットDU3におけるサーボモータ97A~97Cの出力は、他のアクチュエータ、例えば図9に示した駆動ユニットDU1における駆動モータの出力よりも小さいものである。このように、本開示では、フィギュアのうち頭部や手首などの肢体部の先端近傍の、大きな駆動力を必要としない関節部に対しては、汎用の小型軽量のサーボモータ(駆動部、減速機構および制御回路を内部に含むもの)をフィギュア内部に設置してそのサーボモータの駆動力を供給するようにしてもよい。なお、図14の例ではフィギュアの骨部材(右腕部22Rの前腕222R)の内部にサーボモータ97A~97Cを設置したが、関節部内のスペースに設置するようにしてもよい。このように、可動機構を含む関節部の近傍に小型軽量のアクチュエータを設置することで、回転力伝達部材の長さを短縮でき、コンパクト化、軽量化および設計の自由度の改善が期待できる。
 また、本開示のフィギュアシステムは、例えば図15に示した第11の変形例のように、走行可能な移動機構2001によりフィギュア2を支持するようにしてもよい。移動機構2001は、ステージ2002と、そのステージ2002に立設するピラー2003と、ピラー2003に対し鉛直方向に移動可能なステー2004と、ステー2004を稼働させる動力を発生するモータ2005と、車輪2007と、センサユニット2008とを備えている。ステージ2002には、電源13や駆動ユニットDUが設けられている。ピラー2003はステージ2002に固定されており、CPU12およびモータ2005を内蔵している。車輪2007は、それぞれモータを内蔵しており、電源13からの電力の供給を受けてCPU12の制御に従って駆動するようになっている。車輪2007は例えばメカナムホイールであり、車輪2007の駆動により、ステージ2002が水平面内において自在に移動するようになっているとよい。センサユニット2008は、例えば赤外線センサや撮像素子を有しており、人間や物体との衝突を回避するため、それら人間や物体の検出を行うものである。このような移動機構2001を備えることにより、フィギュア2の移動を自由に行うことができる。そのうえ、フィギュア2が上下動可能なステー2004に取り付けられているので、よりダイナミックな動作が可能となる。
 また、上記実施の形態等では、回転力を伝達するフレキシブルワイヤ同士の接続と、信号線同士の接続と、電力線同士の接続と、接地線同士の接続とをマルチカプラなどのカプラ部分において全て接続するようにしたが、本技術はこれに限定されるものではない。例えばフレキシブルワイヤ同士以外の接続、すなわち、信号線同士の接続、電力線同士の接続または接地線同士の接続などは、それぞれ別途設けたコネクタにより行うようにしてもよい。カプラ部分のコンパクト化や構造の簡素化が実現され、製造時、修理時および交換時などにおける取り扱い性の向上が期待できる。
 また、上記実施の形態等では、フィギュアに減速機構を設けるようにしたが、本技術では、可動体の部位に応じたアクチュエータの種類により、駆動ユニット側に減速機構を設けるようにしてもよい。例えば、手や指などの比較的小さなトルクで作動する部位においては、出力トルクは比較的低いものの高い回転数で動作するDCモータを用いることで、より低コストでありながらより多彩な動作が実現可能となる。但し、アクチュエータの出力トルクが低い場合、フレキシブルワイヤなどの回転力伝達部材を介して可動機構に回転力(回転トルク)を伝達する際の回転力(回転トルク)の損失が問題となる場合がある。そこで、アクチュエータの近くに減速機構を設け、予めある程度回転トルクを大きくした上で回転力伝達部材を介して可動機構に回転力(回転トルク)を伝達することで、その損失を抑えることができる。なお、DCモータのように高回転数で動作するアクチュエータを用いると、ステッピングモータのように出力トルクが大きく低回転数のアクチュエータを用いた場合と比べ、減速比を大きくすることができる。このため、関節部が外部からトルクを受けた場合であっても、その関節部の動作はその外部からのトルクによる影響を受けにくくなる。この場合、減速機構をフィギュア側に設置する、駆動ユニット側に設置する、またはその両方に設置する(図13参照)、という3種の選択肢がありうる。駆動ユニット側だけに置いた場合は、関節動作の精密さという点では不利であるが、関節をより簡便に軽量に構成するという場合には好適で、より低コストのコンシューマ製品には向く方法である。また、減速機構としては、遊星ギヤを使ったものや、平ギヤを使ったもの、あるいは、ハーモニックドライブ(登録商標)など波動ギヤを使ったものなどが利用可能である。
 また、上記実施の形態等では動作量検出部を可動機構(可動体)の近傍に設けるようにしたが、本開示は動作量検出部の配置位置を限定するものではなく、例えば動作量検出部を駆動ユニット(アクチュエータ)の近傍に設けるようにしてもよい。具体的には、図13の第9の変形例に示したように、動作量検出部としてのエンコーダ55を、可動機構5ではなく駆動ユニットDUの駆動モータDMの近傍に設けるようにしてもよい。その場合、動作量検出部と駆動ユニットとを繋ぐ信号線や電力線をフィギュアの内部に設ける必要がないので、フィギュアの構成を簡素化できる。なお、上記実施の形態等では、動作量検出部としてエンコーダを例示して説明したが、本開示はこれに限定されるものではない。本開示では、動作量検出部として、例えばポテンショメータを用いてもよい。
 また、上記実施の形態等では、可動機構やフレキシブルワイヤを有するフィギュアおよびフィギュアシステムを例示して説明したが、本開示はこれに限定されるものではない。本開示は、可動機構や回転力伝達部材を有するロボットアームまたはロボットなどの動力機構をも含む概念である。本開示の動力機構は、例えば回転力を発生するアクチュエータと、回転力により動作する可動体と、その可動体の動作量を検出する動作量検出部と、アクチュエータと可動体とを繋ぎ、アクチュエータが発生する回転力を可動体に伝達する回転力伝達部材とを有する。あるいは、本開示の動力機構は、互いに結合された複数のモジュールと、回転力を各々発生する複数のアクチュエータを含む駆動ユニットと接続可能な脱着部とを備える。複数のモジュールは、それぞれ、複数のアクチュエータのうちの一のアクチュエータが発生する回転力により動作する可動体と、その可動体の動作量を検出する動作量検出部と、一のアクチュエータと可動体とを繋ぎ、一のアクチュエータが発生する回転力を可動体に伝達する回転力伝達部材とを有する。本開示の動力機構は、上記実施の形態等で説明したフィギュアと同様に、複数の骨部材と、複数の可動体をそれぞれ含んで複数の骨部材同士を互いに繋ぐ複数の関節部と、をさらに有するようにしてもよい。このような構成を有する本開示の動力機構は、これまでのロボット等と比較して、例えばアームの長さなどを変更しやすいなど、設計上自由度が高く、多彩な動作を実現することが可能である。
 図16は、本開示の一実施の形態としての動力機構1001の全体構成例を表す模式図である。動力機構1001は、基端モジュール1002と、中間モジュール1003と、中間モジュール1004と、先端モジュール1005とが順に連結された構造を有するものである。この基端モジュール1002、中間モジュール1003、中間モジュール1004、および先端モジュール1005が順に連結された構造を便宜上、アームユニットと呼ぶこととする。基端モジュール1002と中間モジュール1003とは、連結部CP1において互いに脱着可能に接続されている。同様に、中間モジュール1003と中間モジュール1004とは、連結部CP2において互いに脱着可能に接続されている。さらに、中間モジュール1004と先端モジュール1005とは、連結部CP3において互いに脱着可能に接続されている。連結部CP1~CP3は、いずれも、例えば図2Aに示したワイヤカプラ対27を含むマルチカプラ対25に相当する構造を有する。動力機構1001は、アームユニットに加えて、駆動ユニット1006と、制御部1007と、電源1008と、記憶部1009とをさらに備えている。駆動ユニット1006、制御部1007、電源1008および記憶部1009は、例えば図1などに示した駆動ユニットDU、CPU12、電源13および記憶部14とそれぞれ実質的に同じ構成を有する。駆動ユニット1006や制御部1007などは、アームユニットのうちの例えば基端モジュール1002内に設けられていてもよいし、アームユニットの外部に設けられていてもよい。
 基端モジュール1002は、例えば床面などに固定される基部1002Aと、回転部1002Bと、アーム部1002Cと、関節部1002Dと、アーム部1002Eとを有している。基端モジュール1002の内部には、駆動ユニット1006における複数のアクチュエータのうちの一のアクチュエータが発生する回転力により動作する可動体と、一のアクチュエータと可動体とを繋ぎ、一のアクチュエータが発生する回転力を可動体に伝達する回転力伝達部材とが設けられている。回転部1002Bは、略円柱状をなす部材であり、回転軸1002Jを回転中心として基部1002Aに対し矢印で示した回転方向R1002へ回転可能に設けられている。アーム部1002Cは、略円柱状をなす部材であり、回転部1002Bと関節部1002Dとを繋いでいる。アーム部1002Cおよび関節部1002Dは、回転部1002Bに固定されており、回転部1002Bと一体に回転方向R1002へ回転可能となっている。関節部1002Dは、例えば図1などに示したフィギュア2の関節部と同様の構成を有している。すなわち、関節部1002Dは、例えば図5に示した可動機構5と同様に、ウォームギヤ51などの可動体を有している。可動体は、駆動ユニット1006において発生する回転力がフレキシブルワイヤなどの回転力伝達部材により伝達されて動く部材である。関節部1002Dには減速機がさらに設けられていてもよい。但し、その場合、エンコーダなどの、可動体の動作量を検出する動作量検出部を関節部1002Dには設けなくともよい。また、関節部1002Dは、その回転軸と直交する断面における少なくとも一部が円弧状である回転部材を含んでおり、球面を含む外表面を有する略球体のカバーS1002によって覆われている。アーム部1002Eは、関節部1002Dを回転中心として、矢印で示した回転方向R1003へ回転可能に設けられている。また、アーム部1002Eは、回転部1002Bの回転方向R1002へ回転と連動して回転方向R1002にも回転可能となっている。アーム部1002Eのうちの関節部1002Dと反対側の端部には連結部CP1を構成するカプラが設けられており、そのカプラが中間モジュール1003のアーム部1003A(後出)のカプラと脱着可能に連結されている。したがって、アーム部1002Eは、中間モジュール1003のアーム部1003Aと一体に動くようになっている。
 中間モジュール1003は、基端モジュール1002の側から順に、アーム部1003Aと、関節部1003Bと、アーム部1003Cとを有している。中間モジュール1003の内部にも、駆動ユニット1006における複数のアクチュエータのうちの一のアクチュエータが発生する回転力により動作する可動体と、一のアクチュエータと可動体とを繋ぎ、一のアクチュエータが発生する回転力を可動体に伝達する回転力伝達部材とが設けられている。アーム部1003Aは、略円柱状をなす部材であり、アーム部1002Eと関節部1003Bとを繋いでいる。アーム部1003Aはアーム部1002Eと対向する端部にカプラを有しており、そのカプラがアーム部1002Eに設けられたカプラと脱着可能に連結されている。したがって、アーム部1003Aは、アーム部1002Eと一体となって関節部1002Dを回転中心として、矢印で示した回転方向R1003へ回転可能である。また、関節部1003Bは、その回転軸と直交する断面における少なくとも一部が円弧状である回転部材を含んでおり、球面を含む外表面を有する略球体のカバーS1003によって覆われている。アーム部1003Cは、関節部1003Bを回転中心として、矢印で示した回転方向R1004へ回転可能に設けられている。アーム部1003Cのうちの関節部1003Bと反対側の端部には連結部CP2を構成するカプラが設けられており、そのカプラが中間モジュール1004のアーム部1004A(後出)のカプラと脱着可能に連結されている。したがって、アーム部1003Cは、中間モジュール1004のアーム部1004Aと一体に動くようになっている。
 中間モジュール1004は、中間モジュール1003と実質的に同じ構造を有する。すなわち、中間モジュール1004は、中間モジュール1003の側から順に、アーム部1004Aと、関節部1004Bと、アーム部1004Cとを有している。中間モジュール1004の内部にも、駆動ユニット1006における複数のアクチュエータのうちの一のアクチュエータが発生する回転力により動作する可動体と、一のアクチュエータと可動体とを繋ぎ、一のアクチュエータが発生する回転力を可動体に伝達する回転力伝達部材とが設けられている。アーム部1004Aは、略円柱状をなす部材であり、アーム部1003Cと関節部1004Bとを繋いでいる。アーム部1004Aはアーム部1003Cと対向する端部にカプラを有しており、そのカプラがアーム部1003Cに設けられたカプラと脱着可能に連結されている。したがって、アーム部1004Aは、アーム部1003Cと一体となって関節部1003Bを回転中心として、矢印で示した回転方向R1004へ回転可能である。また、関節部1004Bは、その回転軸と直交する断面における少なくとも一部が円弧状である回転部材を含んでおり、球面を含む外表面を有する略球体のカバーS1004によって覆われている。アーム部1004Cは、関節部1004Bを回転中心として、矢印で示した回転方向R1005へ回転可能に設けられている。アーム部1004Cのうちの関節部1004Bと反対側の端部には連結部CP3を構成するカプラが設けられており、そのカプラが先端モジュール1005の本体1005A(後出)のカプラと脱着可能に連結されている。したがって、アーム部1004Cは、先端モジュール1005の本体1005Aと一体に動くようになっている。
 先端モジュール1005は、本体1005Aと、物体検出センサ1005Bと、位置検出センサ1005Cと、マニピュレータ1005Dとを備えている。本体1005Aの一端には位置検出センサ1005Cが取り付けられている。本体1005Aの内部にも、中間モジュール1004から伝達される、駆動ユニット1006における一のアクチュエータが発生する回転力を、マニピュレータ1005Dへ伝達する回転力伝達部材が設けられている。マニピュレータ1005Dは、例えばグリッパであり、中間モジュール1004から回転力伝達部材を介して伝達される回転力により、例えばクランプ動作およびリリース動作などを行うものである。本体1005Aの他端には、連結部CP3を構成するカプラが設けられており、そのカプラが中間モジュール1004のアーム部1004Cのカプラと脱着可能に連結されている。物体検出センサ1005Bおよび位置検出センサ1005Cは、それぞれ、例えば本体1005Aの側面に設けられている。物体検出センサ1005Bは、検出対象とする周囲の物体の存在や、その物体の位置、形状もしくは材質、あるいは先端モジュール1005からその物体までの距離などを検出するセンサであり、例えば撮像素子、レーダや赤外線等を用いた測距センサ、あるいは触覚センサなどである。物体検出センサ1005Bは、検出対象とする物体に関する情報を制御部1007へ送信する機能を有する。位置検出センサ1005Cは、自らの位置を検出することのできるセンサであり、例えば撮像素子や9軸センサなどである。9軸センサは、例えば3軸ジャイロセンサ、3軸加速度センサおよび3軸地磁気センサを有するものである。また、位置検出センサ1005Cは、例えば外部からの情報(ビーコン)を受信し、その情報に基づいて自らの位置を把握するシステムであってもよい。位置検出センサ1005Cは、先端モジュール1005の位置情報を制御部1007へ送信する機能を有する。なお、先端モジュール1005におけるマニピュレータ1005Dは、グリッパに限定されるものではなく、例えば鋏やカッター、レーザ照射装置などでもよい。
 制御部1007は、位置検出センサ1005Cからの先端モジュール1005の位置情報に基づき、駆動ユニット1006による基端モジュール1002、中間モジュール1003,1004および先端モジュール1005の各動作の制御を行うものである。また、制御部1007は、物体検出センサ1005Bからの物体に関する情報に基づき、駆動ユニット1006による基端モジュール1002、中間モジュール1003,1004および先端モジュール1005の各動作の制御を行うことができる。例えば、制御部1007は、物体検出センサ1005Bからの検出情報に基づいて、先端モジュール1005が物体を追尾するよう、駆動ユニット1006の制御を行うものであってもよい。
 動力機構1001によれば、制御部1007が、位置検出センサ1005Cからの先端モジュール1005の位置情報に基づき、駆動ユニット1006の動作の制御を行うようにした。このため、基端モジュール1002における可動体の動作量や中間モジュール1003,1004における各々の可動体の動作量を厳密に制御しなくとも、先端モジュール1005の位置を所望の位置に合わせることができる。位置検出センサ1005Cからの位置情報を利用しているからである。よって、動力機構1001では、アームユニットが自重等により撓む場合であっても、先端モジュール1005の位置精度への影響は少ない。したがって、アームユニットの構成材料として金属などの高剛性の材料を用いる必要がなく、例えば樹脂などの軽量かつ加工性に優れる材料を適用できる。その結果、軽量化や低コスト化に有利となる。
 このような、動力機構1001は高い安全性を有するので、衆人環境下での各種作業を行う装置としての使用に好適である。例えば販売店等での搬送作業等の補助、屋内外での農作業、医療行為、運搬作業、荷役作業、あるいは屋内外での製品等の外観検査業務での適用可能性がある。
 また、動力機構1001のアームユニットは、複数のモジュールが脱着可能に連結されたものであるので、用途に応じて任意のモジュールを容易に装着することができ、利便性に優れる。また、故障時には、故障箇所を含むモジュールを交換することで、速やかに、かつ簡便に復旧を図ることができる。
 さらに、動力機構1001は、駆動ユニット1006をアームユニットの外部に設置するようにすれば、アームユニットの軽量化がなされ、駆動力を低減することができ、操作性の向上が期待できるうえ、メンテナンス上においても有利である。
 動力機構1001は、複数のモジュールが直列に接続されたアームユニットを備えたものとしたが、本開示の動力機構は、1つのモジュールから2つのモジュールに枝分かれする構造のアームユニットを備えたものであってもよい。あるいは他の動力機構と協働するもの、例えばある動力機構の先端モジュールが他の動力機構の先端モジュールとの間に1つの物体を把持するものであってもよい。また、各モジュールは硬質の材料からなるものに限定されず、可撓性材料や蛇腹構造を有するものであってもよい。さらに、動力機構1001は、互いに直列に接続された2つの中間モジュール、すなわち中間モジュール1003および中間モジュール1004)を有するようにしたが、その数は任意に選択可能である。すなわち、1つの中間モジュールが基端モジュールと先端モジュールとを繋ぐようにしてもよいし、直列接続された3以上の中間モジュールが基端モジュールと先端モジュールとを繋ぐようにしてもよい。3以上の中間モジュールを有する場合、そのうちの1つの中間モジュールの一端が先端モジュールと接続され、3以上の中間モジュールのうちの他の1つの中間モジュールの一端が基端モジュールと接続されることとなる。
 さらに、動力機構1001は、外部からの水の浸入を防ぐ防水機能を有することが望ましい。例えば連結部CP1~CP3においては、その接合面に、マルチカプラ対25に相当する構造を取り囲むパッキンなどの防水部材が設けられているとよい。
 さらに、動力機構1001は、可動体の動作量を検出する動作量検出部を備え、制御部1007が、先端モジュール1005の位置情報に加えてその動作量検出部からの情報にも基づいて駆動ユニット1006におけるアクチュエータを制御することにより、アームユニットの動作の制御を行うようにしてもよい。動作量検出部は、例えば駆動ユニット1006に設けられたエンコーダやポテンショメータなどである。このような動作量検出部を用いることにより、各モジュール(中間モジュール1003,1004や先端モジュール1005など)のおおよその姿勢(角度や向き)を把握することができ、より素早く先端モジュール1005を所望の位置へ移動させることができる。また、動力機構1001では、一部のアクチュエータが基端モジュール1002以外の部分、すなわち中間モジュール1003、中間モジュール1004、および先端モジュール1005に設けられていてもよい。その場合、一部のアクチュエータは、例えば中間モジュール1003のうち、関節部1003Bではなくアーム部1003Aに設けるようにするとよい。
 また、本明細書中に記載された効果はあくまで例示であってその記載に限定されるものではなく、他の効果があってもよい。当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。
 本開示のフィギュアシステムおよび動力機構は以下のような産業上の利用可能性を有する。
 例えばパチンコ台や据え置き型ゲーム機などの遊技機に搭載し、それらの遊技機と連動した多彩な動作をさせることができる。本開示のフィギュアシステムによれば小型軽量が実現できるので、上記の用途に好適である。また、自動車の室内、例えばダッシュボード上に本開示のフィギュアシステムを配置してもよい。その場合、カーナビゲーション・システムなどと連動した道案内や情報伝達などの所作を行うようにしてもよい。ここでいう連動としては、例えばカーナビゲーション・システムのソフトウェアからの信号に基づき、フィギュアの出力(機械的動作、音声、光の出力など)を行うことが挙げられる。あるいは、フィギュア側から何らかの信号をカーナビゲーション・システムに送信し、カーナビゲーション・システムの制御を行うようにしてもよい。
 また、本開示のフィギュアシステムおよび動力機構では、ベースに電気系統部分を集約することもできるので、防水構造を比較的容易に実現できる。このため、屋外に設置する用途に好適である。
 また、本開示のフィギュアシステムおよび動力機構は、ベースやフィギュアの胴体部に重量の大きな駆動ユニットを集約している。このため、フィギュア全体の軽量化やフィギュアの肢体部の軽量化による低モーメント化を図ることができるので、安全性に優れており、衆人環境下にも設置できる。したがって、例えば人通りの多い店舗周辺や美術館等における案内役として好適である。
 また、本開示のフィギュアシステムおよび動力機構は、一般家庭での高齢者やペットなどの見守りシステム、あるいは留守宅の監視システムとしての利用可能性を有する。本開示のフィギュアシステムおよび動力機構に通信機能を搭載し、外部との双方向通信を行うことや、外部からの制御を行うようにしてもよい。例えば異常時には外部へ警報を出力したり、あるいは定期的に映像データを取得し、外部送信したりすることが考えられる。さらには、双方向の会話を行うようにしてもよい。
 また、パーソナルコンピュータやネットワーク上のサーバ等にインストールされた教育用アプリケーションとの連動により、学習者のサポートを行うこともできる。例えば、予め用意された情報の範囲内で、または外部との通信により取得した情報に基づき、学習内容の解説と併せて動作したり、学習者の回答に対する正誤判定や間違った箇所の指摘などの指導を行ったりするような使い方が想定される。
 また、本開示のフィギュアシステムおよび動力機構は、テレビ放送やラジオ放送と連動して放送内容に関連した解説や情報伝達を行うデバイスとしての利用可能性がある。この場合、フィギュアシステムおよび動力機構は、放送データの解説等を音声で行い、併せて手足が何らかの動作を行うようにしてもよい。本開示のフィギュアシステムおよび動力機構は、さらに、パーソナルコンピュータ等の情報端末と連動して、インターネット回線を通じた情報伝達を行うデバイスとして利用できる。本開示のフィギュアシステムおよび動力機構は小型かつ軽量であるうえ、駆動部を一箇所にまとめていることから、例えばストラップのような装飾性を有する付属品として情報端末に繋げておくこともできる。
 さらに、本開示のフィギュアシステムおよび動力機構は、音楽制作ソフトと連動して踊る玩具としての利用可能性を有する。例えば音楽ソフトのプログラムからの指令により本開示のフィギュアシステムおよび動力機構を動作させることができる。あるいは、キャプチャー機器と連動して、人間の動作を取り込み、同一の動作を再現する(いわゆる物真似をする)デバイスとしても利用できる。さらには、ゲーム機器やゲームソフトと連動した動作を行うデバイスとして利用することもできる。二次元の画面上におけるキャラクタと同じ動作(あるいは対応した動作)をさせることで、ゲームのプレーヤーの臨場感を高めることができる。例えば対戦型ゲーム(戦闘ゲームやスポーツゲームなど)において、対戦相手のキャラクタの動作を二次元の画面の表示と連動してフィギュアシステムにさせたり、二次元画面上に映っていないユーザ側のキャラクタの動作をフィギュアシステムにさせたりすることが想定される。
 さらに、本開示のフィギュアシステムおよび動力機構は、フィギュアの外観や声質などのキャラクタを管理するためのシステム、例えばフィギュア固有のID情報と、その管理ソフトウェアなどをさらに備えるとよい。そうすることにより、各フィギュアと、そのフィギュアが有するキャラクタとを関連付けて管理するプロダクション機能を実現することができる。各々のフィギュアのID情報は、それぞれのフィギュア自体の内部の記憶部等に保持させるようにするとよい。このようなプロダクション機能においては、フィギュアと、そのフィギュアに持たせたい個性(外観、声の質、仕草、コンテンツなど)とを関連付けた上で、その関連付けられた個別情報を管理する。なお、ネットワークを通じて各々のフィギュアおよびそのフィギュアの個性に適合するコンテンツ(声や仕草など)を配信するようにしてもよい。例えば図17に示したように、インターネット3001と、サーバ3002と、複数のフィギュア2(図17では2つのフィギュア2Aおよびフィギュア2Bを例示)とを有するネットワークを構成するとよい。図17のネットワークでは、管理ソフトウェアにより、各フィギュア2A,2Bの個別情報に応じて、インターネット3001を介してサーバ3002に格納された適切なコンテンツを各フィギュア2A,2Bに配信して各フィギュア2A,2Bを駆動させるなどのプロダクション機能が実現できる。
 さらに、本開示は、下記の動力機構をも包含する概念である。
(1)
  回転力を発生するアクチュエータと、
  前記回転力により動作する可動体と、
  前記可動体の動作量を検出する動作量検出部と、
  前記アクチュエータと前記可動体とを繋ぎ、前記アクチュエータが発生する前記回転力を前記可動体に伝達する回転力伝達部材と、
  前記アクチュエータからの前記回転力により回転する第1カプラと、
  前記回転力伝達部材と共に回転可能に構成された第2カプラとを有し、
  前記回転力伝達部材は、前記可動体と接続された第1の端部と、前記第2カプラと接続された第2の端部とを含み、
  前記第1カプラは、前記第2カプラと脱着可能に連結され、または脱着可能に構成されている
  動力機構。
(2)
  前記動作量検出部からの情報に基づいて前記アクチュエータを駆動することにより前記可動体の動作を制御する制御部をさらに有する
  上記(1)記載の動力機構。
(3)
  互いに結合された複数のモジュールと、
  回転力を各々発生する複数のアクチュエータを含む駆動ユニットと接続可能な脱着部と、
  前記複数のアクチュエータのうちの一の前記アクチュエータが発生する回転力により動作する可動体の動作量を検出する動作量検出部と
  を備え、
  前記複数のモジュールは、それぞれ、
  前記可動体と、
  前記一のアクチュエータと前記可動体とを繋ぎ、前記一のアクチュエータが発生する前記回転力を前記可動体に伝達する回転力伝達部材と、
  前記一のアクチュエータからの前記回転力により回転する第1カプラと、
  前記回転力伝達部材と共に回転可能に構成された第2カプラと
  を有し、
  前記回転力伝達部材は、前記可動体と接続された第1の端部と、前記第2カプラと接続された第2の端部とを含み、
  前記第1カプラは、前記第2カプラと脱着可能に連結され、または脱着可能に構成されている
  動力機構。
(4)
  複数の骨部材と、複数の前記可動体をそれぞれ含んで前記複数の骨部材同士を互いに繋ぐ複数の関節部と、をさらに有する
  上記(1)から(3)のいずれか1つに記載の動力機構。
(5)
  前記複数の関節部は、それぞれ、回転軸を中心として回転すると共に前記回転軸と直交する断面における少なくとも一部が円弧状である回転部材を含む
 上記(4)に記載の動力機構。
 なお、本明細書中に記載された効果はあくまで例示であってその記載に限定されるものではなく、他の効果があってもよい。
 本出願は、日本国特許庁において2018年5月22日に出願された日本特許出願番号2018-98159号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (30)

  1.  回転力を発生するアクチュエータを各々有する複数の駆動ユニットと、
     前記回転力により動作する可動体を各々含む複数の可動機構、および複数の前記可動体と接続された第1の端部を各々含む複数の回転力伝達部材、を有するフィギュアと、
     前記可動体の動作量を検出する動作量検出部と
     を備え、
     前記複数の駆動ユニットは、前記フィギュアの内部に設けられた第1の駆動ユニットおよび前記フィギュアの外部に設けられた第2の駆動ユニットのうちの少なくとも一方を含み、
     複数の前記アクチュエータのうちの1つの前記アクチュエータが発生する前記回転力が、前記複数の回転力伝達部材のうちの1つの前記回転力伝達部材を介して複数の前記可動体のうちの対応する1の前記可動体に伝達される
     フィギュアシステム。
  2.  前記複数の駆動ユニットは、前記第1の駆動ユニットおよび前記第2の駆動ユニットの双方を含む
     請求項1記載のフィギュアシステム。
  3.  前記第2の駆動ユニットにおける前記複数のアクチュエータのうちの少なくとも1つの物理量は、前記第1の駆動ユニットにおける前記複数のアクチュエータのうちの少なくとも1つの前記物理量よりも大きく、
     前記物理量は、出力、寸法および重量のうちの少なくとも1つである
     請求項1または請求項2に記載のフィギュアシステム。
  4.  前記フィギュアは、胴体部と、前記胴体部に接続された複数の肢体部および頭部とをさらに有し、
     前記複数の駆動ユニットは、前記フィギュアの内部に設けられた第3の駆動ユニットをさらに含み、
     前記第1の駆動ユニットは前記胴体部に設けられ、
     前記第3の駆動ユニットは前記肢体部および前記頭部のうちの少なくとも一方に設けられ、
     前記第3の駆動ユニットにおける前記複数のアクチュエータのうちの少なくとも1つの物理量は、前記第1の駆動ユニットにおける前記複数のアクチュエータのうちの少なくとも1つの前記物理量よりも小さく、
     前記物理量は、出力、寸法および重量のうちの少なくとも1つである
     請求項1または請求項2に記載のフィギュアシステム。
  5.  前記フィギュアは、複数の骨部材と、複数の前記可動体をそれぞれ含んで前記複数の骨部材同士を互いに繋ぐ複数の関節部と、をさらに有し、
     前記動作量検出部は、前記関節部に設けられている
     請求項1から請求項4のいずれか1項に記載のフィギュアシステム。
  6.  前記動作量検出部は、前記複数の駆動ユニットに設けられている
     請求項1から請求項4のいずれか1項に記載のフィギュアシステム。
  7.  前記回転力伝達部材は、フレキシブルワイヤ、ワイヤ、棒材、ギヤおよびベルトのうちの少なくとも1種である
     請求項1から請求項6のいずれか1項に記載のフィギュアシステム。
  8.  前記回転力伝達部材は、フレキシブルワイヤであり、
     前記フィギュアは複数の第1チューブを有し、
     複数の前記フレキシブルワイヤは、前記複数の可動機構のうちの対応する前記可動機構ごとに前記複数の第1チューブのいずれかに収容されて延設されている
     請求項1から請求項7のいずれか1項に記載のフィギュアシステム。
  9.  前記複数の駆動ユニットは、それぞれ、前記動作量検出部からの情報に基づいて前記アクチュエータを制御することにより前記可動機構の動作を実行する制御部をさらに有する
     請求項1から請求項8のいずれか1項に記載のフィギュアシステム。
  10.  前記フィギュアは、複数の骨部材と、複数の前記可動体をそれぞれ含んで前記複数の骨部材同士を互いに繋ぐ複数の関節部とを、さらに有し、
     前記複数の関節部は、それぞれ、回転軸を中心として回転すると共に前記回転軸と直交する断面における少なくとも一部が円弧状である回転部材を含む
     請求項1から請求項9のいずれか1項に記載のフィギュアシステム。
  11.  前記関節部は、球面を含む外表面を有するカバーによって覆われている
     請求項10記載のフィギュアシステム。
  12.  前記フィギュアは、複数の骨部材と、複数の前記可動体をそれぞれ含んで前記複数の骨部材同士を互いに繋ぐ複数の関節部と、をさらに有し、
     前記複数のフレキシブルワイヤは、前記骨部材に沿って配設され、または前記骨部材の内部に挿通された第1部分と、前記関節部に沿って配設され、または前記関節部の内部に挿通された第2部分とを各々含み、
     前記骨部材は、前記第1部分の端部に設けられた第1部分カプラを含み、
     前記関節部は、前記第2部分の端部に設けられ、前記第1部分カプラと脱着可能に連結され、または脱着可能に構成された第2部分カプラを含み、
     前記第1部分と前記第2部分との接続および離脱は、前記第1部分カプラと前記第2部分カプラとの脱着により行われるようになっている
     請求項1から請求項11のいずれか1項に記載のフィギュアシステム。
  13.  前記複数の駆動ユニットは、それぞれ、前記アクチュエータからの前記回転力により回転する第1カプラを含む第1カプラユニットをさらに有し、
     前記フィギュアは、前記複数のフレキシブルワイヤの第2の端部と各々接続されて前記複数のフレキシブルワイヤと共にそれぞれ回転可能に構成された複数の第2カプラを含む第2カプラユニットをさらに有し、
     複数の前記第1カプラは、それぞれ、前記複数の第2カプラのうちの対応する1の前記第2カプラと脱着可能に連結され、または脱着可能に構成されている
     請求項1から請求項11のいずれか1項に記載のフィギュアシステム。
  14.  中間部をさらに備え、
     前記複数の駆動ユニットは、それぞれ、前記アクチュエータからの前記回転力により回転する第1カプラを含む第1カプラユニットをさらに有し、
     前記フィギュアは、前記複数のフレキシブルワイヤの第2の端部と各々接続されて前記複数のフレキシブルワイヤと共にそれぞれ回転可能に構成された複数の第2カプラを含む第2カプラユニットをさらに有し、
     前記中間部は、複数の前記第1カプラのうちの対応する1の前記第1カプラと各々脱着可能に連結され、または各々脱着可能に構成され、前記第1カプラと共に回転可能に構成された複数の第3カプラを含む第3カプラユニットと、前記複数の第2カプラのうちの対応する1の前記第2カプラと各々脱着可能に連結され、または各々脱着可能に構成され、前記第2カプラと共に回転可能に構成された複数の第4カプラを含む第4カプラユニットと、前記複数の第3カプラと前記複数の第4カプラとを各々繋ぎ、前記回転力を前記第3カプラから前記第4カプラへ各々伝達する複数の中間回転力伝達部材を有する
     請求項1から請求項11のいずれか1項に記載のフィギュアシステム。
  15.  前記フィギュアは、複数の第1チューブと複数の第2チューブとを有し、
     前記複数のフレキシブルワイヤは、複数の前記可動体のうちの対応する前記可動体ごとに前記第1チューブに収容されて延設されており、
     前記複数の信号線の少なくとも一部および前記複数の電力線の少なくとも一部は、前記複数の可動体のうちの対応する前記可動体ごとに前記第2チューブに収容されて延設されている
     請求項14記載のフィギュアシステム。
  16.  回転力を発生するアクチュエータを各々有する複数の駆動ユニットと、
     前記回転力により動作する可動体を含む可動機構、および前記可動体と接続された一端を含む回転力伝達部材、を各々有する複数のモジュールが結合してなるフィギュアと、
     前記可動体の動作量を検出する動作量検出部と
     を備え、
     前記複数の駆動ユニットは、前記フィギュアの内部に設けられた第1の駆動ユニットおよび前記フィギュアの外部に設けられた第2の駆動ユニットのうちの少なくとも一方を含み、
     複数の前記アクチュエータのうちの1つの前記アクチュエータが発生する前記回転力が、複数の前記回転力伝達部材のうちの1つの前記回転力伝達部材を介して複数の前記可動体のうちの対応する1の前記可動体に伝達される
     フィギュアシステム。
  17.  前記複数の駆動ユニットは、前記第1の駆動ユニットおよび前記第2の駆動ユニットの双方を含む
     請求項16記載のフィギュアシステム。
  18.  前記第2の駆動ユニットにおける前記複数のアクチュエータのうちの少なくとも1つの物理量は、前記第1の駆動ユニットにおける前記複数のアクチュエータのうちの少なくとも1つの前記物理量よりも大きく、
     前記物理量は、出力、寸法および重量のうちの少なくとも1つである
     請求項16または請求項17に記載のフィギュアシステム。
  19.  前記複数のモジュールは、胴体部モジュールと、前記胴体部モジュールに接続された複数の肢体部モジュールおよび頭部モジュールとをさらに有し、
     前記複数の駆動ユニットは、前記複数の肢体部モジュールおよび前記頭部モジュールのうちの少なくとも一方の内部に設けられた第3の駆動ユニットをさらに含み、
     前記第1の駆動ユニットは前記胴体部モジュールに設けられ、
     前記第3の駆動ユニットにおける前記複数のアクチュエータのうちの少なくとも1つの物理量は、前記第1の駆動ユニットにおける前記複数のアクチュエータのうちの少なくとも1つの前記物理量よりも小さく、
     前記物理量は、出力、寸法および重量のうちの少なくとも1つである
     請求項16または請求項17に記載のフィギュアシステム。
  20.  位置検出センサが設けられた第1の端部、および前記第1の端部と反対側の第2の端部、を有する先端モジュールと、
     一の中間モジュール、または互いに直列に接続された複数の中間モジュールと、
     前記一の中間モジュールまたは前記複数の中間モジュールを介して前記第2の端部と接続される基端モジュールと、
     回転力を各々発生する複数のアクチュエータを含む駆動ユニットと、
     前記位置検出センサからの前記先端モジュールの位置情報に基づき、前記駆動ユニットの動作の制御を行う制御部と
     を備え、
     前記基端モジュール、および前記一の中間モジュールまたは前記複数の中間モジュールは、
     前記複数のアクチュエータのうちの一の前記アクチュエータが発生する前記回転力により動作する可動体と、 
     前記一のアクチュエータと前記可動体とを繋ぎ、前記一のアクチュエータが発生する前記回転力を前記可動体に伝達する回転力伝達部材と
     を有する動力機構。
  21.  前記一の中間モジュールは、前記先端モジュールの前記第2の端部と脱着可能な第3の端部と、前記基端モジュールと脱着可能な第4の端部とを含み、
     または、
     前記複数の中間モジュールのうちの第1の前記中間モジュールは、前記先端モジュールの前記第2の端部と脱着可能な第3の端部を含み、前記複数の中間モジュールのうちの第2の前記中間モジュールは、前記基端モジュールと脱着可能な第4の端部を含む
     請求項20記載の動力機構。
  22.  前記先端モジュールは、物体の検出を行う物体検出センサをさらに有する
     請求項20または請求項21記載の動力機構。
  23.  前記制御部は、
     前記物体検出センサからの検出情報に基づいて前記先端モジュールが前記物体を追尾するよう、前記駆動ユニットの制御を行う
     請求項22記載の動力機構。
  24.  前記駆動ユニットは、前記基端モジュールに設けられている
     請求項20から請求項23のいずれか1項に記載の動力機構。
  25.  複数の骨部材と、複数の前記可動体をそれぞれ含んで前記複数の骨部材同士を互いに繋ぐ複数の関節部と、をさらに有する
     請求項20から請求項24のいずれか1項に記載の動力機構。
  26.  前記複数の関節部は、それぞれ、回転軸を中心として回転すると共に前記回転軸と直交する断面における少なくとも一部が円弧状である回転部材を含む
     請求項25に記載の動力機構。
  27.  前記複数の関節部は、球面を含む外表面を有するカバーによって覆われている
     請求項25または請求項26記載の動力機構。
  28.  前記基端モジュールと、前記一の中間モジュールまたは前記複数の中間モジュールと、前記先端モジュールとは、いずれも防水機能を有する
     請求項20から請求項27のいずれか1項に記載の動力機構。 
  29.  前記可動体の動作量を検出する動作量検出部をさらに備え、
     前記制御部は、さらに前記動作量検出部からの情報をも考慮して前記アクチュエータを制御することにより前記可動体の動作の制御を行う
     請求項20から請求項28のいずれか1項に記載の動力機構。 
  30.  前記フィギュアの固有情報と前記フィギュアに関連付けられた個別情報とを記憶する記憶部と、
     前記固有情報および前記個別情報に応じて前記フィギュアを駆動させる管理ソフトウェアと
     をさらに備えた
     請求項1から請求項19のいずれか1項に記載のフィギュアシステム。
PCT/JP2019/019355 2018-05-22 2019-05-15 フィギュアシステムおよび動力機構 WO2019225444A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020521183A JPWO2019225444A1 (ja) 2018-05-22 2019-05-15 フィギュアシステムおよび動力機構

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018098159 2018-05-22
JP2018-098159 2018-05-22

Publications (1)

Publication Number Publication Date
WO2019225444A1 true WO2019225444A1 (ja) 2019-11-28

Family

ID=68617368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019355 WO2019225444A1 (ja) 2018-05-22 2019-05-15 フィギュアシステムおよび動力機構

Country Status (2)

Country Link
JP (1) JPWO2019225444A1 (ja)
WO (1) WO2019225444A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200366A (ja) * 2001-12-26 2003-07-15 Sony Corp ロボット
WO2015146301A1 (ja) * 2014-03-24 2015-10-01 スピーシーズ株式会社 フィギュア、台座、およびフィギュアシステム
WO2017022635A1 (ja) * 2015-08-06 2017-02-09 スピーシーズ株式会社 フィギュアおよびフィギュアシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200366A (ja) * 2001-12-26 2003-07-15 Sony Corp ロボット
WO2015146301A1 (ja) * 2014-03-24 2015-10-01 スピーシーズ株式会社 フィギュア、台座、およびフィギュアシステム
WO2017022635A1 (ja) * 2015-08-06 2017-02-09 スピーシーズ株式会社 フィギュアおよびフィギュアシステム

Also Published As

Publication number Publication date
JPWO2019225444A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
JP6408748B1 (ja) フィギュア、駆動ユニット、動力機構、およびフィギュアシステム
JP2019072633A (ja) フィギュアおよびフィギュアシステム
JP5858556B1 (ja) フィギュア、台座、およびフィギュアシステム
AU733717B2 (en) Omni-directional treadmill
US20070171199A1 (en) Locomotion simulation apparatus, system and method
US5577981A (en) Virtual reality exercise machine and computer controlled video system
US5980256A (en) Virtual reality system with enhanced sensory apparatus
US6152854A (en) Omni-directional treadmill
WO1998008572A1 (en) Omni-directional treadmill
JP2001150371A (ja) ロボット、及びロボット用の関節装置
US8761927B2 (en) Externally actuated figure
WO2006017926A1 (en) Locomotion simulation system and method
Park et al. Control hardware integration of a biped humanoid robot with an android head
WO2019225444A1 (ja) フィギュアシステムおよび動力機構
Hackel et al. Humanoid robot platform suitable for studying embodied interaction
Or Towards the development of emotional dancing humanoid robots
JP2022189541A (ja) フィギュアシステムおよび動力機構
EP2676776A1 (en) Humanoid torso mechanism
CN114986478A (zh) 手臂外骨骼、上身外骨骼以及遥操作系统
TW200941236A (en) Simulated teaching system for emulated intelligent robot
CN205586559U (zh) 互动智能玩具动物
WO2019140568A1 (zh) 儿童陪伴机器人
CN109316731A (zh) 一种远程外骨骼授课机器人
Zygomalas et al. In silico development and simulation of a modular reconfigurable assembly micro-robot for use in natural orifice transluminal endoscopic surgery
Flores et al. A novel robotic neck for realizing an anatomically accurate android head targeting facial perception research

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521183

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807726

Country of ref document: EP

Kind code of ref document: A1