WO2019225170A1 - 位置指示デバイス及び空間位置指示システム - Google Patents
位置指示デバイス及び空間位置指示システム Download PDFInfo
- Publication number
- WO2019225170A1 WO2019225170A1 PCT/JP2019/015043 JP2019015043W WO2019225170A1 WO 2019225170 A1 WO2019225170 A1 WO 2019225170A1 JP 2019015043 W JP2019015043 W JP 2019015043W WO 2019225170 A1 WO2019225170 A1 WO 2019225170A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- position indicating
- virtual reality
- unit
- reality space
- force sense
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
- G06F3/03545—Pens or stylus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/016—Input arrangements with force or tactile feedback as computer generated output to the user
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/017—Gesture based interaction, e.g. based on a set of recognized hand gestures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/0304—Detection arrangements using opto-electronic means
- G06F3/0325—Detection arrangements using opto-electronic means using a plurality of light emitters or reflectors or a plurality of detectors forming a reference frame from which to derive the orientation of the object, e.g. by triangulation or on the basis of reference deformation in the picked up image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04162—Control or interface arrangements specially adapted for digitisers for exchanging data with external devices, e.g. smart pens, via the digitiser sensing hardware
Definitions
- the present invention relates to a position indicating device and a spatial position indicating system, and more particularly to a position indicating device and a spatial position indicating system corresponding to haptics.
- Patent Document 1 discloses a game that uses a virtual marker, a paintbrush, and a paint spray can to create a work of art or graffiti on a virtual surface or an actual surface.
- Patent Document 1 discloses a technique in which an actuator is provided in each of a marker type, paintbrush type, and paint spray can type controller, and this actuator is given vibration. Yes.
- Non-Patent Document 2 interference between a surgical instrument such as a virtual catheter and a 3D model is determined based on the position and direction of a stylus mechanically connected to a robot arm, and the touch (viscosity) corresponding to each part is determined.
- a haptic characteristic such as rigidity and friction
- one of the objects of the present invention is to provide a position indicating device capable of realizing the use of the electronic pen in the virtual reality space.
- the input can be performed not only on the real tablet but also on the virtual tablet.
- the electronic pen is placed on the surface of the object in the virtual reality space. It is desirable to generate a force sense in the electronic pen when the pen tip hits.
- a position sensor for detecting the position of the electronic pen has a certain size, and at least at present, there is no small position sensor that can be installed on the pen tip. As a result, even if a force sense is generated when the detected position hits the surface of the object, the pen tip is not always on the surface of the object at that time, so that the user feels uncomfortable.
- another object of the present invention is to provide a spatial position indicating system that can generate a force sense without making the user feel uncomfortable when the user uses an electronic pen in a virtual reality space. There is to do.
- a position indication device includes a housing configured to be able to mount an electronic pen having a pen tip, a force sense generating unit that generates a force sense, and the electronic pen mounted on the housing.
- a position indicating device includes a housing configured to be able to mount an electronic pen having a pen tip, a force sense generating unit that generates a force sense, and the electronic pen mounted on the housing.
- a controller for controlling the force sense generating unit so as to generate a force sense when a distance between the position of the pen tip in the virtual reality space and an object in the virtual reality space is a predetermined value or less;
- a position indication device includes a position indication unit, a force generation unit that generates a force sense, a position of the position indication unit in a virtual reality space, and an object in the virtual reality space. And a controller that controls the force generation unit so as to generate a force sense when the distance between them is equal to or less than a predetermined value.
- the space position indicating system obtains the position of the position indicating unit of the position indicating device in the real space and the position indicating unit in the virtual reality space based on the position of the position indicating unit in the real space.
- a step of acquiring a position a determination step of determining whether a distance between a position of the position indicating unit in the virtual reality space and an object in the virtual reality space is equal to or less than a predetermined value, and the determination
- a spatial position indicating system including a computer that executes a transmission step of transmitting a control signal for controlling the force sense generating unit to the position indicating device having the force sense generating unit according to a determination result of the step. .
- the electronic pen can be mounted on the space position indicating device, the electronic pen can be used in the virtual reality space.
- the electronic pen itself operates as a space position indicating device, so that the electronic pen can be used in the virtual reality space.
- the force of the position indicating device is based on the position of the pen tip, not the position of the position indicating device (or electronic pen) indicated by the position information. Since a force sense can be generated in the sense generating unit, it is possible to generate a force sense without causing the user who uses the electronic pen in the virtual reality space to feel uncomfortable.
- FIG. 2A is a perspective view showing an external appearance of the electronic pen 5
- FIG. 2B is a schematic block diagram showing functional blocks of the electronic pen 5.
- FIG. 3 is a process flow diagram illustrating a process performed by a processing unit 50 illustrated in FIG.
- FIG. 1 is a diagram showing a configuration of a spatial position indicating system 1 according to the first embodiment of the present invention.
- the spatial position indicating system 1 includes a computer 2, a virtual reality display 3, a tablet 4, an electronic pen 5, lightning houses 7a and 7b, and position sensors 8a to 8c. It is comprised including.
- the position sensors 8a to 8c are provided on the tablet 4, the virtual reality display 3, and the electronic pen 5, respectively.
- FIG. 1 Each device shown in FIG. 1 is arranged in a room in principle. In the space position indicating system 1, almost the entire room can be used as a virtual reality space.
- the computer 2 includes a control unit 2a and a memory 2b. Each process performed by the computer 2 described below can be realized by the controller 2a reading and executing a program stored in the memory 2b.
- the computer 2 is connected to each of the virtual reality display 3, the lightning houses 7a and 7b, and the tablet 4 by wire or wirelessly.
- wired it is preferable to use USB (Universal Serial Bus), for example.
- wireless for example, it is preferable to use a wireless LAN such as Wi-Fi (registered trademark) or a short-range wireless communication such as Bluetooth (registered trademark).
- Wi-Fi registered trademark
- Bluetooth registered trademark
- the computer 2 is configured to have a function of displaying a virtual reality space on the virtual reality display 3.
- This virtual reality space may be a VR (Virtual Reality) space, an AR (Augmented Reality) space, or an MR (Mixed Reality) space.
- VR Virtual Reality
- AR Augmented Reality
- MR Magnetic Reality
- the user wearing the virtual reality display 3 recognizes the virtual reality and is separated from the real world.
- the AR space or the MR space the user wearing the virtual reality display 3 recognizes a space in which the virtual reality and the real world are mixed.
- the computer 2 functions as a rendering device that renders various 3D objects (objects) in the virtual reality space set with respect to the positions of the lightning houses 7a and 7b, and displays the virtual reality display 3 according to the rendering result. Configured to update. As a result, various 3D objects appear in the virtual reality space displayed on the virtual reality display 3. Rendering by the computer 2 is executed based on 3D object information stored in the memory 2b.
- the 3D object information is information indicating the shape, position, and orientation of the 3D object in the virtual reality space indicating the virtual reality space set by the computer 2, and is stored in the memory 2b for each 3D object to be rendered.
- the 3D object rendered by the computer 2 includes a 3D object that actually exists such as the tablet 4 and the electronic pen 5 shown in FIG. 1 (hereinafter referred to as “first 3D object”) and a virtual tablet ( 3D objects that do not exist in reality (hereinafter referred to as “second 3D objects”), such as those not shown).
- first 3D object 3D object that actually exists
- second 3D objects 3D objects that do not exist in reality
- the computer 2 first detects the position and orientation of the position sensor 8b in the real space, and acquires viewpoint information indicating the user's viewpoint based on the detection result.
- the computer 2 When rendering the first 3D object, the computer 2 further detects the position and orientation of the position sensor (for example, the position sensors 8a and 8c) attached to the corresponding object in the real space, and stores the detection result in the memory 2b. To store. Then, the first 3D object is rendered in the virtual reality space based on the stored position and orientation, the viewpoint information described above, and the shape stored for the first 3D object. Further, the computer 2 detects the operation performed by the user in the virtual reality space by detecting the position of the position sensor 8c, and creates a new second 3D object based on the result. (That is, the 3D object information is newly stored in the memory 2b), or the second 3D object already held is moved or updated (that is, the 3D object information already stored in the memory 2b is updated). Process. This point will be described later in detail.
- the position sensor for example, the position sensors 8a and 8c
- the computer 2 when rendering the second 3D object, the computer 2 renders the second 3D object in the virtual reality space based on the 3D object information stored in the memory 2b and the viewpoint information described above. Composed.
- the computer 2 further selects the electronic pen 5 based on the position of the pen tip of the electronic pen 5 in the virtual reality space (position in the virtual reality space) and the position in the virtual reality space of the 3D object being displayed in the virtual reality space. It is determined whether or not a force sense generating unit 56 (described later) of the pen 5 generates a force sense, and when it is determined that the force sense is generated, a control signal for starting the force sense generating unit 56 is sent to the electronic pen 5. Process to send. In a specific example, when the pen tip of the electronic pen 5 comes into contact with the touch surface of the virtual tablet in the virtual reality space, a control signal for starting the force sense generating unit 56 is transmitted to the electronic pen 5. It is configured as follows. This point will be described in detail again later.
- the virtual reality display 3 is a VR display (head mounted display) used by being worn on a human head.
- VR display head mounted display
- various types of commercially available virtual reality displays such as “transmission type” or “non-transmission type”, “glasses type” or “hat type”, and any of them is used as the virtual reality display 3. Is also possible.
- the virtual reality display 3 is connected to each of the position sensor 8a and the electronic pen 5 (including the position sensor 8c) by wire or wirelessly.
- the position sensors 8a and 8c are configured to notify the virtual reality display 3 of light reception level information to be described later through this connection.
- the virtual reality display 3 notifies the computer 2 of the light reception level information notified from each of the position sensors 8a and 8c together with the light reception level information of the position sensor 8b built therein.
- the computer 2 detects the positions and orientations of the position sensors 8a to 8c in the real space based on the light reception level information thus notified.
- Tablet 4 is a device having a tablet surface 4a.
- the tablet surface 4a is preferably a flat surface and can be made of a material suitable for sliding the pen tip of the electronic pen 5.
- the tablet 4 is a so-called digitizer, and includes a touch sensor that detects an instruction position of the electronic pen 5 in the touch surface and a communication function that notifies the computer 2 of the detected instruction position.
- the tablet surface 4a is constituted by the touch surface of the digitizer.
- the tablet 4 is a so-called tablet computer, a display, a touch sensor that detects the indicated position of the electronic pen 5 within the display surface of the display, and a communication function that notifies the computer 2 of the detected indicated position. It is comprised.
- the tablet surface 4a in this case is constituted by a display surface of a display.
- the position sensor 8a is fixedly installed on the surface of the tablet 4. Therefore, the position and orientation of the position sensor 8a detected by the computer 2 indicate the position and orientation of the tablet surface 4a in the virtual reality space coordinate system.
- the electronic pen 5 is a stylus having a pen shape, and functions as an input device to the tablet 4 (hereinafter referred to as “tablet input function”) and a function as an input device to the computer 2 (hereinafter referred to as “ It is called “virtual reality space input function”).
- the tablet input function includes a function for indicating a position in the touch surface of the tablet 4.
- the virtual reality space input function includes a function for indicating a position in the virtual reality space. Details of each function will be described later.
- the lightning houses 7a and 7b are base station devices that constitute a position detection system for detecting the positions of the position sensors 8a to 8c, and are configured to emit laser signals while changing directions according to control by the computer 2, respectively.
- the Each of the position sensors 8a to 8c is composed of a plurality of light receiving sensors, and each of the light receiving sensors receives a laser signal emitted from each of the lightning houses 7a and 7b, and acquires light receiving level information including each light receiving level. It is configured as follows. The light reception level information acquired in this way is supplied to the computer 2 via the virtual reality display 3 as described above.
- FIG. 2A is a perspective view showing the appearance of the electronic pen 5, and FIG. 2B is a schematic block diagram showing functional blocks of the electronic pen 5.
- the electronic pen 5 includes a substantially cylindrical casing 5a and a pen tip 5b provided at the tip of the casing 5a.
- various members for realizing a force generation unit 56 may be attached to the actual surface of the electronic pen 5, but drawing is omitted in FIG.
- various switches may be provided on the side or end of the electronic pen 5.
- the user When performing input using the tablet input function, the user holds the casing 5a with one hand and brings the pen tip 5b into contact with the touch surface of the tablet 4. Then, an input operation using the electronic pen 5 is performed by moving the pen tip 5b on the touch surface while maintaining the contact state.
- the user when performing input using the virtual reality space input function, the user performs an input operation with the electronic pen 5 by holding the housing 5a with one hand and moving the electronic pen 5 in the air.
- Input by the virtual reality space input function includes input to the virtual tablet described above.
- the virtual tablet can be seen by the user wearing the virtual reality display 3, but in reality there is no tablet at that location. Therefore, the pen tip 5b cannot be brought into contact with the touch surface of the virtual tablet, but this makes it difficult to perform an input operation on the virtual tablet. Therefore, in the spatial position indication system 1, by generating a force sense when the pen tip 5b is at the position of the touch surface of the virtual tablet, a feeling as if the pen tip 5b is in contact with the touch surface of the virtual tablet. To the user. This point will be described later in detail.
- the electronic pen 5 functionally includes a processing unit 50, communication units 51 and 53, a pen pressure detection unit 52, a position detection unit 54, a switch unit 55, and a force sense generation unit 56. Configured.
- the processing unit 50 is connected to other units in the electronic pen 5 and is configured by a processor that controls these and performs various processes described below.
- the processing unit 50 is arranged in the electronic pen 5, but the present invention is not limited to this, and the processing unit 50 may be arranged outside the electronic pen 5.
- the communication unit 51 and the writing pressure detection unit 52 are functional units that realize a tablet input function.
- the communication unit 51 has a function of transmitting and receiving signals to and from the touch sensor of the tablet 4 under the control of the processing unit 50.
- This signal transmission / reception includes a case where a signal is unilaterally transmitted from the electronic pen 5 to the tablet 4 and a case where a signal is bidirectionally transmitted / received between the electronic pen 5 and the tablet 4.
- an electromagnetic induction method or an active electrostatic method can be used as a specific method for signal transmission / reception.
- the writing pressure detection unit 52 is a functional unit that detects the pressure (writing pressure) applied to the pen tip 5b.
- the writing pressure detection unit 52 includes a capacitance sensor (not shown) whose capacitance value changes with writing pressure. Is done.
- the tablet input function will be described in detail by taking as an example the case where the communication unit 51 transmits and receives signals by the active electrostatic method.
- the touch sensor corresponding to the active electrostatic method is configured to transmit a beacon signal at a predetermined time interval from a sensor electrode (not shown) arranged in the touch surface.
- the beacon signal includes a command for controlling the electronic pen 5 from the touch sensor.
- the control content of the command causes the pen pressure data indicating the pen pressure detected by the pen pressure detection unit 52 to be transmitted, and the pressing state of various switches (not shown) provided in the electronic pen 5 to be transmitted. And transmitting a unique ID stored in advance in a memory (not shown) of the electronic pen 5.
- the communication unit 51 detects the beacon signal via a pen tip electrode (not shown) provided at the pen tip of the electronic pen 5 and supplies the detected beacon signal to the processing unit 50.
- the processing unit 50 generates a pen signal including a burst signal, which is an unmodulated carrier wave, and a data signal obtained by modulating the carrier wave with data according to a command in accordance with the supplied beacon signal, and performs communication. Supplied to the unit 51.
- the communication unit 51 transmits the supplied pen signal to the touch sensor via the pen tip electrode.
- the touch sensor tries to detect the burst signal by the sensor electrode, and detects the position of the electronic pen 5 in the touch surface based on the detection result. Further, by detecting and demodulating the data signal with the sensor electrode, the data transmitted by the electronic pen 5 in response to the command is received.
- the tablet 4 is configured to sequentially transmit the acquired position of the electronic pen 5 and the data transmitted by the electronic pen 5 toward the computer 2.
- a predetermined value for example, 0
- the computer 2 causes the electronic pen 5 to touch the touch surface of the tablet 4. It is determined that Then, while the computer 2 determines that the electronic pen 5 is in contact with the touch surface of the tablet 4, ink data (a plurality of positions are interpolated based on a series of positions continuously received). Curve data interpolated with a curve) is generated and stored in the memory 2b shown in FIG. Thereby, a tablet input function is realized.
- the computer 2 may sequentially render the ink data stored in the memory 2 b and display the result on the display of the tablet 4.
- the communication unit 53, the position detection unit 54, the switch unit 55, and the force generation unit 56 are functional units that realize a virtual reality space input function.
- the communication unit 53 has a function of transmitting and receiving signals to and from the computer 2 via the virtual reality display 3 under the control of the processing unit 50. As described above, transmission / reception of this signal is realized by wire or wireless.
- the position detection unit 54 is a functional unit configured by the position sensor 8c shown in FIG. 1, and is a laser signal transmitted by the lightning houses 7a and 7b (position detection signal for detecting a position in the real space). ) And generates light reception level information (position information) corresponding to the detected laser signal.
- the light reception level information generated by the position detection unit 54 is transmitted toward the computer 2 by the communication unit 53.
- the switch unit 55 is a switch provided on the surface of the casing 5a of the electronic pen 5, and is configured to be pressed by the user. Switch information indicating the pressed state of the switch unit 55 is also transmitted to the computer 2 by the communication unit 53.
- the force sense generator 56 has a function of generating a force sense according to a control signal supplied from the outside. This control signal is supplied from the computer 2 through the communication unit 53. The force sense generator 56 will be described later in more detail later.
- the computer 2 sequentially detects the position and orientation of the position sensor 8c based on the received light reception level information, and determines whether or not the switch unit 55 is pressed based on the received switch information. And while it determines with the switch part 55 being pressed down, the process which produces
- the 3D ink data generated in this way corresponds to the second 3D object described above, and is the rendering target described above. Thereby, a virtual reality space input function is realized.
- the computer 2 is in contact with the touch surface of the virtual tablet and the pen tip 5b of the electronic pen 5 in the virtual reality space. Only in some cases, 3D ink data is generated. By doing so, the user can perform input to the virtual tablet in the same manner as input to the actual tablet 4. Note that the generation of 3D ink data in this case may be executed regardless of the pressed state of the switch unit 55.
- FIGS. 3 to 9 are diagrams showing first to seventh examples of the configuration of the force generation unit 56, respectively.
- FIGS. 3A to 5B are cross-sectional views of the electronic pen 5, and
- FIG. 8A is a perspective view of the electronic pen 5.
- FIG. 8B is an exploded perspective view of the portion D shown in FIG.
- FIG. 9 is a perspective view showing a usage state of the electronic pen 5.
- the force generation unit 56 includes a flat plate-like contact portion 56 a disposed in front of the pen tip 5 b and a cylindrical member disposed so as to cover the housing 5 a.
- the sliding portion 56b and a bridge portion 56c fixed to each of the contact portion 56a and the sliding portion 56b.
- the sliding portion 56b is configured to be slidable in the longitudinal direction of the housing 5a with respect to the housing 5a from the position shown in FIG. 3A to the position shown in FIG. .
- the sliding portion 56b is fixed with respect to the user's hand in a state where the user holds the electronic pen 5, the casing 5a is actually moved by this sliding.
- the sliding portion 56b is in the position shown in FIG. 3A, the pen tip 5b is not in contact with the contact portion 56a.
- the sliding part 56b is in the position shown in FIG. 3B, the pen tip 5b comes into contact with the contact part 56a.
- the processing unit 50 moves the housing 5a from the position shown in FIG. 3A to the position shown in FIG. 3B in accordance with the control signal received from the computer 2. Thereby, the nib 5b collides with the contact part 56a. Therefore, by configuring the computer 2 to transmit a control signal in response to the pen tip 5b of the electronic pen 5 touching the touch surface of the virtual tablet in the virtual reality space, the user can use the pen of the electronic pen 5 It can be felt as an actual impact that the tip 5b has touched the touch surface of the virtual tablet.
- the force generation unit 56 includes a magnetic fluid.
- the magnetic fluid is a material whose hardness can be controlled by the frequency of the applied pulse current.
- the frequency of the pulse current applied to the magnetic fluid is changed and the transition is made continuously between a relatively hard state and a relatively soft state, vibration appears to occur in a person in contact with the magnetic fluid. felt.
- Various objects can also be moved by changing the hardness of the magnetic fluid.
- FIG. 10 is a diagram illustrating an example of a control signal generated by the computer 2 when the force generation unit 56 is configured to move the housing 5a using a change in hardness of the magnetic fluid.
- the control signal in this case is constituted by a pulse current signal that repeats the burst period BU and the blank period BL at a constant duty ratio.
- the magnetic fluid becomes harder as the proportion of the burst period BU occupying the entire section increases. Therefore, the computer 2 controls the hardness of the magnetic fluid by controlling the duty ratio of the control signal, and as a result, moves the housing 5a. In this way, it is realized that a force sense is generated by the magnetic fluid.
- the force generation unit 56 includes a flat contact portion 56a disposed in front of the pen tip 5b, a bridge portion 56c fixed to the housing 5a, A hinge portion 56d provided between the contact portion 56a and the bridge portion 56c is included.
- the contact portion 56a is configured to be rotatable over a range B shown in the figure from the position shown in FIG. 4A to the position shown in FIG. 4B, with one end connected to the hinge portion 56d as the center.
- the contact portion 56a is in the position shown in FIG. 4A, the pen tip 5b is not in contact with the contact portion 56a.
- the contact portion 56a is at the position shown in FIG. 4B, the pen tip 5b contacts the contact portion 56a.
- the processing unit 50 moves the contact portion 56a from the position shown in FIG. 4A to the position shown in FIG. 4B in accordance with the control signal received from the computer 2.
- the pen tip 5b collides with the contact portion 56a, so that the user feels that the pen tip 5b of the electronic pen 5 is in contact with the touch surface of the virtual tablet as an actual impact, as in the first example. It becomes possible.
- the force generation unit 56 includes a flat contact portion 56a disposed in front of the pen tip 5b, a bridge portion 56c fixed to the housing 5a, The contact part 56a and the slide part 56e formed integrally are comprised.
- the slide portion 56e has a tenon for accommodating the end portion of the bridge portion 56c, for example, and the bridge portion 56c slides in the tenon so that the slide portion 56c in FIG. It is configured to be movable in the longitudinal direction of the electronic pen 5 over the range C shown from the position shown to the position shown in FIG.
- the slide part 56e is in the position shown in FIG. 5A, the pen tip 5b is not in contact with the contact part 56a.
- the slide part 56e is in the position shown in FIG. 5B, the pen tip 5b comes into contact with the contact part 56a.
- the movement of the slide part 56e is realized using a magnetic fluid.
- the processing unit 50 moves the slide unit 56e from the position shown in FIG. 5A to the position shown in FIG. 5B in accordance with the control signal received from the computer 2.
- the pen tip 5b collides with the abutment portion 56a, so that the user feels that the pen tip 5b of the electronic pen 5 has touched the touch surface of the virtual tablet, as in the first and second examples. It becomes possible to feel.
- the force generation unit 56 is configured to include a hardness changing unit 56 f arranged so as to be exposed on the surface of the housing 5 a.
- the hardness changing portion 56f is made of vinyl containing the magnetic fluid described above.
- the processing unit 50 changes the hardness of the hardness changing unit 56f by giving the control signal received from the computer 2 to the hardness changing unit 56f.
- the user feels as if the hardness of the hardness changing unit 56f is vibrating, so that the user can place the pen tip 5b of the electronic pen 5 on the touch surface of the virtual tablet, as in the first to third examples. It is possible to feel contact as a real shock.
- the force generation unit 56 includes a base part 56g fixed to the housing 5a, a vibration part 56h disposed in the base part 56g, and one end of the vibration part 56h. And an actuator 56i that is a high-rigidity member arranged with the other end pressed against the inner wall of the housing 5a.
- the processing unit 50 vibrates the vibration unit 56h by giving the control signal received from the computer 2 to the vibration unit 56h. Then, since the vibration is transmitted to the housing 5a through the actuator 56i, the housing 5a also vibrates. As a result, the user can feel that the pen tip 5b of the electronic pen 5 has touched the touch surface of the virtual tablet as an actual impact, as in the first to fourth examples.
- the force generation unit 56 includes a groove portion 5c provided in the housing 5a and a vibrating portion 56j disposed inside the housing 5a. Is done. A part of the vibration part 56j is exposed to the outside through the groove part 5c. Moreover, the vibration part 56j is comprised including the magnetic fluid mentioned above.
- FIG. 8B shows a specific structure of the groove 5c and the vibrating part 56j.
- the vibrating portion 56j includes a base portion 56ja that is a cylindrical member disposed in the housing 5a and three protruding portions 56jb provided so as to protrude from the side surface of the base portion 56ja. It is configured.
- the three protruding portions 56jb are formed integrally with the base body portion 56ja and are arranged at equal intervals in the circumferential direction of the base body portion 56ja.
- the groove 5c is provided corresponding to each of the three protrusions 56jb.
- the processing unit 50 vibrates the vibration unit 56j by giving the control signal received from the computer 2 to the vibration unit 56j. Since the user can directly sense this vibration through the three protrusions 56jb exposed through the groove 5c, the pen tip 5b of the electronic pen 5 is placed on the touch surface of the virtual tablet, as in the first to fifth examples. It is possible to feel contact as a real shock.
- the force generation unit 56 is provided as a separate body from the main body of the electronic pen 5, and specifically, a flat plate-like contact disposed in front of the pen tip 5b.
- the contact portion 56a and a bridge portion 56k fixed to the user's arm are included.
- An opening 56ka is provided in the vicinity of one end of the bridge portion 56k, and the bridge portion 56k is fixed to the user's arm by the user inserting his / her own arm into the opening 56ka.
- the contact portion 56a is configured to be movable over the range E shown in the vicinity of the other end of the bridge portion 56k.
- the specific movement range of the contact portion 56a is determined so as to come into contact with the pen tip 5b when the contact portion 56a comes closest to the electronic pen 5.
- the processing unit 50 applies the control signal received from the computer 2 to the force generation unit 56, thereby causing the contact portion 56a to collide with the pen tip 5b.
- the user can feel as an actual shock that the pen tip 5b of the electronic pen 5 has touched the touch surface of the virtual tablet.
- the configuration of the force generation unit 56 provided in the electronic pen 5 has been described with seven examples. Next, generation of the control signal of the force generation unit 56 by the computer 2 will be described in detail.
- FIG. 11 is a process flow diagram showing a process performed by the control unit 2a (see FIG. 1) of the computer 2.
- FIG. 12 is a diagram showing details of the pen point position acquisition processing in the virtual reality space executed in steps S2 and S6 of FIG.
- FIG. 13 is an explanatory diagram of processing executed in FIG.
- the generation of the control signal of the force generation unit 56 by the computer 2 will be described in detail with reference to these drawings.
- the computer 2 first displays an object in the virtual reality space as a premise (step S1).
- This object is the above-described second 3D object (for example, a virtual tablet).
- FIG. 13A shows the surface S of the object displayed in this way on a three-dimensional coordinate space.
- the computer 2 performs a process of acquiring the position VP 2 of the nib 5b of the electronic pen 5 in the virtual reality space (step S2). More specifically, as shown in FIG. 12, the computer 2 first acquires light reception level information (step S20).
- the light reception level information is generated by the position detection unit 54 (see FIG. 2) of the electronic pen 5, and the computer 2 acquires the light reception level information by reception from the electronic pen 5.
- the computer 2 that has acquired the light reception level information acquires (calculates) a physical space position P 1 (first physical space position) indicating the position of the electronic pen 5 in the physical space based on the acquired light reception level information (Ste S21).
- Position P 1 acquired in this way is a position of the position sensor 8c shown in FIG. 1, not the position of the pen tip 5b. Therefore, the computer 2 converts the position of the position sensor 8c into the position of the pen tip 5b based on the shape of the electronic pen 5 stored in the memory 2b in advance, so that the pen tip 5b of the electronic pen 5 in the real space is converted.
- a process of acquiring (calculating) the position P 2 in the real space (the second position in the real space) indicating the position is performed (step S22).
- the computer 2 based on the position P 2 obtained, to acquire a virtual reality space position VP 2 indicating the position of the pen tip 5b of the electronic pen 5 in the virtual reality space (calculated) (step S23).
- the pen point position acquisition process in the virtual reality space ends with the processes so far.
- the computer 2 that acquires position VP 2, based on the position of the surface S of the object (as indicated by step S1) in the virtual reality space and position VP 2, the electronic pen 5 nib 5b It is determined whether or not has collided with the surface S (second determination step, steps S3 and S4). Specifically, it is determined that a collision when a is located VP 2 points included in the region constituting the surface S, it may be determined that no collision has taken place otherwise.
- step S4 When it determines with having collided in determination of step S4 (affirmation determination of step S4), the computer 2 produces
- This control signal is, for example, the pulse current signal shown in FIG.
- the processing unit 50 of the electronic pen 5 causes the force generation unit 56 to generate a force sense in response to the control signal, so that the user can obtain a collision experience with the surface S (for example, the touch surface of the virtual tablet). It becomes possible.
- the computer 2 performs the process of acquiring the virtual reality space position VP 2 again (step S6), and determines whether or not the distance between the surface S and the position VP 2 is equal to or smaller than a predetermined value L (first step). 1 determination step (steps S7, S8).
- This process are that the normal line of the surface S passing through the position VP 2 intersects with the surface S, it may be performed by the distance between the position Vp 2 to determine whether it is less than the predetermined value L.
- step S8 When it determines with it being below predetermined value L by step S8 (affirmation determination of step S8), the computer 2 produces
- the computer 2 produces
- step S9 the computer 2 returns to step S6 and continues processing.
- the distance between the surface S and the position VP 2 is less than the predetermined value L, and continue to feel contact with the surface S to the user Is possible.
- the computer 2 may (step as that with the implementation of steps S9, the position VP 2 to practice the process of moving the position of the object to be a position on the surface S S10). By doing so, it is possible to maintain the contact state not only by force sense but also visually.
- step S4 If it is determined in step S4 that there is no collision (negative determination in step S4), and if it is determined in step S8 that it is not less than the predetermined value L (negative determination in step S8), the computer 2 proceeds to step S2. Return and continue processing. In this case, since the generation of the force by the force generating unit 56 does not occur, despite apart distance between the position VP 2 and the surface S, the force is prevented from being put away occur. Therefore, it is possible to generate a force sense in the force sense generator 56 without causing the user using the electronic pen 5 in the virtual reality space to feel uncomfortable.
- the surface S and the position VP 2 are used as conditions for stopping the generation of the force sense after the pen tip 5 b of the electronic pen 5 once collides with the surface S (that is, the condition for returning to step S 2).
- the distance between is no longer than the predetermined value L
- other events may be used as conditions for stopping the generation of force sense.
- the moving distance of the electronic pen 5 after colliding with the surface S exceeds a predetermined value
- the moving speed of the electronic pen 5 exceeds a predetermined value
- the acceleration of the electronic pen 5 exceeds a predetermined value
- a pressure sensor for example, the user's electronic pen 5 is not shown.
- the generation of the force sense may be stopped.
- the electronic pen 5 itself has the position detection unit 54, and therefore the electronic pen 5 operates as a space position indicating device.
- the electronic pen 5 can be used inside.
- the force generation unit 56 generates a force sense based on the position of the pen tip 5b instead of the position of the electronic pen 5 indicated by the received light level information. Therefore, it is possible to generate a force sense without causing the user using the electronic pen 5 in the virtual reality space to feel uncomfortable.
- FIG. 14 is a diagram showing a spatial position indicating device 6 used in the spatial position indicating system 1 according to the second embodiment of the present invention.
- FIG. 14A is a perspective view showing a usage state of the spatial position indicating device 6, and
- FIG. 14B is a schematic block diagram showing functional blocks of the spatial position indicating device 6.
- the spatial position indicating device 6 is configured to be usable with the electronic pen 5 inserted.
- This embodiment is different from the first embodiment in that a virtual reality space input function is provided on the space position indicating device 6 side among the functions of the electronic pen 5 described with reference to FIG. To do.
- the electronic pen 5 according to the present embodiment is a general electronic pen that does not have a virtual reality space input function.
- the same components as those in the first embodiment will be denoted by the same reference numerals, and will be described in detail focusing on differences from the first embodiment.
- the spatial position indicating device 6 is functionally configured to include a processing unit 50, a communication unit 53, a position detection unit 54, a switch unit 55, and a force generation unit 56.
- the These basic functions are the same as those described with reference to FIG.
- the switch unit 55 is provided not on the electronic pen 5 but on the surface of the space position indicating device 6.
- the spatial position indicating device 6 fixes the housing 6a, the handle 6b, the position sensor 8c shown in FIG. 1, and the position sensor 8c to the housing 6a. 6d, a direction indicator 6e, a flat contact portion 56a, and a bridge portion 56m fixed between the housings 6a.
- the contact part 56 a and the bridge part 56 m constitute a force sense generating part 56 of the spatial position indicating device 6.
- the housing 6a is a member that constitutes the main body of the space position indicating device 6, and is configured so that the electronic pen 5 can be mounted. More specifically, the housing 6 a has an insertion port for inserting the electronic pen 5.
- the handle portion 6 b is a member for the user to hold the spatial position indicating device 6. As shown in FIG. 14, the user uses the space position indicating device 6 in a state where the electronic pen 5 is inserted into the insertion opening of the housing 6a and the handle 6b is held with one hand.
- the direction indicator 6e is a member for improving the user's feeling of use, and is configured so that the right thumb can be placed when the user holds the handle 6b with the right hand.
- the abutting portion 56a is arranged in front of the pen tip 5b via the bridge portion 56m.
- the contact portion 56a is configured to be movable over the range F shown in the vicinity of one end of the bridge portion 56m.
- the movement of the contact portion 56a is preferably realized using the magnetic fluid described above.
- the specific position of the contact portion 56 a is determined so as to come into contact with the pen tip 5 b when the contact portion 56 a comes closest to the electronic pen 5.
- the processing unit 50 moves the contact part 56a in the right direction in the drawing according to the control signal received from the computer 2, the pen tip 5b collides with the contact part 56a.
- the user can feel as an actual shock that the pen tip 5b of the electronic pen 5 is in contact with the touch surface of the virtual tablet.
- step S3 shown in FIG. 11 the position of the position sensor 8c is converted into the position of the pen tip 5b based on the shape of the electronic pen 5 stored in the memory 2b in advance.
- the computer 2 stores the shape of the spatial position indicating device 6 in a state where the electronic pen 5 is inserted in the memory 2b in advance, and based on this, the position sensor 8c The position is converted to the position of the pen tip 5b.
- the force sense generating unit 56 it is possible to cause the force sense generating unit 56 to generate a force sense based on the position of the pen tip 5b, not the position of the position sensor 8c.
- the electronic pen 5 can be mounted on the space position indicating device 6. Therefore, the electronic pen 5 can be used in the virtual reality space.
- the force generation unit 56 generates a force sense based on the position of the pen tip 5b instead of the position of the position sensor 8c indicated by the received light level information. Therefore, it is possible to generate a force sense without making the user who uses the space position indicating device 6 and the electronic pen 5 feel uncomfortable in the virtual reality space.
- the computer 2 causes the force generation unit 56 to generate a force sense when the pen tip of the electronic pen 5 contacts the touch surface of the virtual tablet in the virtual reality space.
- the force generation unit 56 may generate a force sense.
- the force generation unit 56 may generate a force sense when input by the virtual reality space input function is started instead of contact (that is, when generation of a 3D object by the computer 2 is started.
- the force generation unit 56 may generate a force sense when input to the virtual tablet is performed.
- the example in which the force generation unit 56 includes the contact portion 56a has been described.
- a mechanism similar to the example shown in FIGS. Or it is good also as comprising the force generation part 56 by providing in the handle part 6b.
- control signal for activating the force generation unit 56 is generated in the computer 2
- this control signal is generated in the electronic pen 5 or the spatial position indicating device 6. It may be generated.
- processing performed by the processing unit 50 illustrated in FIG. 2 when the electronic pen 5 is configured as described above will be described with reference to the drawings. Note that the same applies to the case where the control signal is generated in the spatial position indicating device 6 except that the processing unit 50 shown in FIG. 14 instead of FIG. 2 performs the processing.
- FIG. 15 is a processing flowchart showing processing performed by the processing unit 50 shown in FIG.
- the processing unit 50 first acquires information on an object displayed in the virtual reality space as a premise (step S30).
- This object is the above-described second 3D object (for example, a virtual tablet), and the processing unit 50 acquires information on the object by reception from the computer 2.
- processor 50 performs processing for acquiring position VP 2 of the nib 5b of the electronic pen 5 in the virtual reality space (step S31).
- the details of this process are the same as those described with reference to FIG. Note that the processing unit 50 acquires light reception level information from the position detection unit 54 illustrated in FIG.
- Position VP 2 processing section 50 acquires, based on the position of the surface S of the object (that obtains information at step S1) in the virtual reality space and position VP 2, nib 5b surface of the electronic pen 5 It is determined whether or not it has collided with S (steps S32 and S33). This process is the same process as steps S3 and S4 in FIG.
- the process part 50 When it determines with having collided in determination of step S33 (affirmation determination of step S33), the process part 50 produces
- the user can obtain a collision experience with the surface S (for example, the touch surface of the virtual tablet).
- the processing unit 50 performs the process of acquiring the virtual reality space position VP 2 again (step S35), and determines whether or not the distance between the surface S and the position VP 2 is equal to or less than a predetermined value L (step S35). Steps S36 and S37). This process is the same as steps S7 and S8 in FIG.
- step S37 determines with it being below predetermined value L by step S37 (affirmation determination of step S37)
- the process part 50 produces
- step S38 the processing unit 50 returns to step S35 and continues processing.
- the processing unit 50 determines whether the distance between the surface S and the position VP 2 is less than the predetermined value L, and continue to feel contact with the surface S to the user Is possible.
- step S33 If it is determined in step S33 that there is no collision (negative determination in step S33), and if it is determined in step S37 that it is not less than the predetermined value L (negative determination in step S37), the processing unit 50 performs step S31. Return to and continue processing. In this case, since the generation of the force by the force generating unit 56 does not occur, despite apart distance between the position VP 2 and the surface S, the force is prevented from being put away occur. Therefore, it is possible to generate a force sense in the force sense generator 56 without causing the user using the electronic pen 5 in the virtual reality space to feel uncomfortable.
- the processing unit 50 may transmit the acquired virtual reality space position VP 2 to the computer 2 when the virtual reality space position VP 2 is acquired. In this way, even when the computer 2 generates a control signal for the force generation unit 56 in the electronic pen 5, step S ⁇ b> 9 shown in FIG. 11 can be performed. Therefore, it is possible to maintain the contact state not only by force sense but also visually.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
【課題】仮想現実空間内における電子ペンの使用を実現できる位置指示デバイスを提供する。 【解決手段】空間位置指示デバイス6は、ペン先を有する電子ペン5を搭載可能に構成される筐体6aと、力覚を発生する力覚発生部56と、仮想現実空間内におけるペン先5bの位置と仮想現実空間内における物体との間の距離が所定値以下である場合に力覚を発生させるように力覚発生部56を制御する処理部50とを有する。これによれば、空間位置指示デバイス6に電子ペン5を搭載することができるので、仮想現実空間内における電子ペン5の使用が可能になる。
Description
本発明は位置指示デバイス及び空間位置指示システムに関し、特に、ハプティクスに対応する位置指示デバイス及び空間位置指示システムに関する。
仮想現実(VR:Virtual Reality、AR:Augmented Reality、MR:Mixed Realityを含む)空間内において、仮想平面に字を書いたり絵を描いたりするための技術が登場している。例えば、非特許文献1に記載の「Tilt Brush」は、専用コントローラを用いて、仮想現実空間の空中に絵を描くことを実現している。また、特許文献1には、仮想のマーカ、絵筆、塗料スプレー缶を使用して、仮想表面又は実際の表面に芸術作品又はグラフィティ作品を制作するゲームが開示されている。
また、仮想現実に関して、ハプティクスという技術が注目されている。ハプティクスは、振動を仮想現実のユーザに与えるもので、例えば特許文献1には、マーカ型、絵筆型、塗料スプレー缶型の各コントローラにアクチュエータを設け、このアクチュエータに振動を与える技術が開示されている。また、非特許文献2には、ロボットアームに機械的に接続されたスタイラスの位置と方向に基づいて仮想カテーテル等の手術器具と3Dモデル間の干渉判定を行い、各部位に相当する感触(粘性、剛性、摩擦などといった力覚特性)を生成する技術が開示されている。
「VRお絵かきアプリ『Tilt Brush』とは?使い方・購入方法も紹介」、[online]、MoguraVR、[平成30年2月28日検索]、インターネット<URL:http://www.moguravr.com/vr-tilt-brush/>
「ImmersiveTouch外科手術トレーニングシミュレータ」、[online]、日本バイナリー株式会社、[平成30年2月28日検索]、インターネット<URL:http://www.nihonbinary.co.jp/Products/Medical/MedicalTraining/SurgicalSimulation/ImmersiveTouch.html>
ところで、タブレット(タブレットコンピュータ、デジタイザを含む)との間で信号の送受信を行うことにより、タブレットに対する入力を行えるように構成されたペン型のスタイラス(以下、「電子ペン」という)が知られている。従来、仮想現実空間内ではこの種の電子ペンを使用することができなかったが、近年、仮想現実空間内でも電子ペンを使用したいという要望が高まっている。
したがって、本発明の目的の一つは、仮想現実空間内における電子ペンの使用を実現できる位置指示デバイスを提供することにある。
また、電子ペンを仮想現実空間内で使用する場合には、現実のタブレットだけでなく、仮想のタブレットにも入力可能とすることが好ましいが、この場合、仮想現実空間内で物体の表面に電子ペンのペン先が当たった場合に、電子ペンに力覚を発生させることが望まれる。しかしながら、電子ペンの位置を検出するための位置センサはある程度の大きさを有しており、少なくとも現時点では、ペン先に設置できるような小型の位置センサは存在しない。その結果、検出した位置が物体の表面に当たった場合に力覚を発生させたとしても、その時点でペン先が物体の表面にあるとは限らないので、ユーザに違和感を感じさせてしまう。
したがって、本発明の目的の他の一つは、ユーザが仮想現実空間内で電子ペンを使用する場合に、ユーザに違和感を感じさせることなく力覚を発生させることのできる空間位置指示システムを提供することにある。
本発明の一側面による位置指示デバイスは、ペン先を有する電子ペンを搭載可能に構成される筐体と、力覚を発生する力覚発生部と、前記筐体に搭載される前記電子ペンの仮想現実空間内における前記ペン先の位置と前記仮想現実空間内における物体との間の距離が所定値以下である場合に力覚を発生させるように前記力覚発生部を制御するコントローラと、を有する位置指示デバイスである。
本発明の他の一側面による位置指示デバイスは、位置指示部と、力覚を発生する力覚発生部と、仮想現実空間内における前記位置指示部の位置と前記仮想現実空間内における物体との間の距離が所定値以下である場合に力覚を発生させるように前記力覚発生部を制御するコントローラと、を有する位置指示デバイスである。
本発明による空間位置指示システムは、現実空間における位置指示デバイスの位置指示部の位置を取得するステップと、前記現実空間における前記位置指示部の位置に基づき、仮想現実空間内における前記位置指示部の位置を取得するステップと、前記仮想現実空間内における前記位置指示部の位置と前記仮想現実空間内における物体との間の距離が所定値以下であるか否かを判定する判定ステップと、前記判定ステップの判定結果に応じて、力覚発生部を有する前記位置指示デバイスに前記力覚発生部を制御するための制御信号を送信する送信ステップと、を実行するコンピュータを含む空間位置指示システムである。
本発明の一側面による位置指示デバイスによれば、空間位置指示デバイスに電子ペンを搭載することができるので、仮想現実空間内における電子ペンの使用が可能になる。
本発明の他の一側面による位置指示デバイスによれば、電子ペン自体が空間位置指示デバイスとして動作するので、仮想現実空間内における電子ペンの使用が可能になる。
本発明の位置指示デバイス及び空間位置指示システムによれば、位置情報により示される位置指示デバイス(又は電子ペン)の位置ではなく、ペン先の位置に基づいて位置指示デバイス(又は電子ペン)の力覚発生部に力覚を発生させることができるので、仮想現実空間内で電子ペンを使用するユーザに違和感を感じさせることなく、力覚を発生させることが可能になる。
以下、添付図面を参照しながら、本発明の実施の形態について詳細に説明する。
図1は、本発明の第1の実施の形態による空間位置指示システム1の構成を示す図である。同図に示すように、本実施の形態による空間位置指示システム1は、コンピュータ2と、仮想現実ディスプレイ3と、タブレット4と、電子ペン5と、ライトニングハウス7a,7bと、位置センサ8a~8cとを含んで構成される。位置センサ8a~8cはそれぞれ、タブレット4、仮想現実ディスプレイ3、及び電子ペン5に設けられる。
図1に示した各装置は、原則として部屋の中に配置される。空間位置指示システム1においては、この部屋のほぼ全体が仮想現実空間として利用され得る。
コンピュータ2は、制御部2aとメモリ2bとを含む。以下で説明するコンピュータ2が行う各処理は、制御部2aがメモリ2b内に記憶されるプログラムを読み出して実行することにより実現することができる。
コンピュータ2は、仮想現実ディスプレイ3、ライトニングハウス7a,7b、タブレット4のそれぞれと、有線又は無線により接続される。有線による場合、例えばUSB(Universal Serial Bus)などを用いることが好適である。無線による場合、例えばWi-Fi(登録商標)などの無線LAN、又は、ブルートゥース(登録商標)などの近距離無線通信を用いることが好適である。なお、タブレット4や仮想現実ディスプレイ3がコンピュータとしての機能を内蔵する場合には、そのコンピュータによりコンピュータ2を構成することとしてもよい。
コンピュータ2は、仮想現実ディスプレイ3上に仮想現実空間を表示する機能を有して構成される。この仮想現実空間は、VR(Virtual Reality)空間であってもよいし、AR(Augmented Reality)空間であってもよいし、MR(Mixed Reality)空間であってもよい。VR空間を表示する場合、仮想現実ディスプレイ3を装着したユーザは、仮想現実を認識し、現実世界と切り離される。一方、AR空間又はMR空間を表示する場合、仮想現実ディスプレイ3を装着したユーザは、仮想現実と現実世界とが混合した空間を認識することになる。
コンピュータ2は、ライトニングハウス7a,7bの位置を基準として設定された仮想現実空間内において様々な3Dオブジェクト(物体)をレンダリングするレンダリング装置として機能するとともに、レンダリングの結果により、仮想現実ディスプレイ3の表示を更新するよう構成される。これにより、仮想現実ディスプレイ3上に表示される仮想現実空間内には、様々な3Dオブジェクトが現れることになる。コンピュータ2によるレンダリングは、メモリ2b内に記憶される3Dオブジェクト情報に基づいて実行される。3Dオブジェクト情報は、コンピュータ2により設定された仮想現実空間を示す仮想現実空間における3Dオブジェクトの形状、位置、及び向きを示す情報であり、レンダリング対象の3Dオブジェクトごとにメモリ2b内に記憶される。
コンピュータ2によりレンダリングされる3Dオブジェクトには、図1に示したタブレット4、電子ペン5のように現実にも存在する3Dオブジェクト(以下、「第1の3Dオブジェクト」と称する)と、仮想タブレット(図示せず)のような現実には存在しない3Dオブジェクト(以下、「第2の3Dオブジェクト」と称する)とが含まれる。これらの3Dオブジェクトをレンダリングするにあたり、コンピュータ2はまず、現実空間における位置センサ8bの位置及び向きを検出し、検出結果に基づいて、ユーザの視点を示す視点情報を取得する。
第1の3Dオブジェクトをレンダリングする場合、コンピュータ2はさらに、対応する物体に取り付けられている位置センサ(例えば、位置センサ8a,8c)の現実空間における位置及び向きを検出し、検出結果をメモリ2bに格納する。そして、格納した位置及び向きと、上述した視点情報と、第1の3Dオブジェクトについて記憶している形状とに基づき、第1の3Dオブジェクトを仮想現実空間内にレンダリングする。また、コンピュータ2は、電子ペン5に関して特に、位置センサ8cの位置を検出することによって仮想現実空間内でユーザが行った操作を検出し、その結果に基づいて第2の3Dオブジェクトを新規に作成し(すなわち、メモリ2bに3Dオブジェクト情報を新規に格納し)、又は、既に保持している第2の3Dオブジェクトを移動ないし更新する(すなわち、メモリ2bに格納済みの3Dオブジェクト情報を更新する)処理を行う。この点については、後ほど別途詳しく説明する。
一方、第2の3Dオブジェクトをレンダリングする場合、コンピュータ2は、メモリ2bに格納されている3Dオブジェクト情報と、上述した視点情報とに基づき、第2の3Dオブジェクトを仮想現実空間内にレンダリングするよう構成される。
コンピュータ2はさらに、仮想現実空間内における電子ペン5のペン先の位置(仮想現実空間内位置)と、仮想現実空間内に表示中の3Dオブジェクトの仮想現実空間内における位置とに基づいて、電子ペン5の力覚発生部56(後述)に力覚を発生させるか否かを判定し、発生させると判定した場合に、力覚発生部56を起動するための制御信号を電子ペン5に対して送信する処理を行う。具体的な例では、仮想現実空間内において電子ペン5のペン先が仮想タブレットのタッチ面に接触した場合に、力覚発生部56を起動するための制御信号を電子ペン5に対して送信するよう構成される。この点については、後ほど再度詳しく説明する。
仮想現実ディスプレイ3は、人間の頭部に装着して用いるVRディスプレイ(ヘッドマウントディスプレイ)である。一般に市販される仮想現実ディスプレイには、「透過型」又は「非透過型」、「メガネ型」又は「帽子型」など各種のものがあるが、仮想現実ディスプレイ3としては、そのいずれを用いることも可能である。
仮想現実ディスプレイ3は、位置センサ8a及び電子ペン5(位置センサ8cを含む)のそれぞれと有線又は無線により接続される。位置センサ8a,8cは、この接続を通じて、後述する受光レベル情報を仮想現実ディスプレイ3に通知するよう構成される。仮想現実ディスプレイ3は、位置センサ8a,8cのそれぞれから通知された受光レベル情報を、自身に内蔵している位置センサ8bの受光レベル情報とともにコンピュータ2に通知する。コンピュータ2は、こうして通知された受光レベル情報に基づき、現実空間内における位置センサ8a~8cそれぞれの位置及び向きを検出する。
タブレット4は、タブレット面4aを有する装置である。タブレット面4aは平らな表面であることが好ましく、電子ペン5のペン先を滑らせるのに適した材料によって構成され得る。一例では、タブレット4はいわゆるデジタイザであり、タッチ面内における電子ペン5の指示位置を検出するタッチセンサと、検出した指示位置をコンピュータ2に通知する通信機能とを有して構成される。この場合のタブレット面4aは、デジタイザのタッチ面によって構成される。他の一例では、タブレット4はいわゆるタブレットコンピュータであり、ディスプレイと、このディスプレイの表示面内における電子ペン5の指示位置を検出するタッチセンサと、検出した指示位置をコンピュータ2に通知する通信機能とを有して構成される。この場合のタブレット面4aは、ディスプレイの表示面によって構成される。
位置センサ8aは、タブレット4の表面に固定設置される。したがって、コンピュータ2によって検出される位置センサ8aの位置及び向きは、仮想現実空間座標系におけるタブレット面4aの位置及び向きを示している。
電子ペン5は、ペン型の形状を有するスタイラスであり、タブレット4への入力装置としての機能(以下、「タブレット入力機能」と称する)と、コンピュータ2への入力装置としての機能(以下、「仮想現実空間入力機能」と称する)とを有して構成される。タブレット入力機能には、タブレット4のタッチ面内の位置を指示する機能が含まれる。一方、仮想現実空間入力機能には、仮想現実空間内の位置を指示する機能が含まれる。各機能の詳細については、別途後述する。
ライトニングハウス7a,7bは、位置センサ8a~8cの位置を検出するための位置検出システムを構成する基地局装置であり、それぞれ、コンピュータ2による制御に従って方向を変えながらレーザー信号を射出可能に構成される。位置センサ8a~8cは、それぞれ複数の受光センサによって構成されており、ライトニングハウス7a,7bのそれぞれが照射したレーザー信号を各受光センサによって受光し、それぞれの受光レベルを含む受光レベル情報を取得するよう構成される。こうして取得された受光レベル情報は、上述したように、仮想現実ディスプレイ3を介してコンピュータ2に供給される。
図2(a)は、電子ペン5の外観を示す斜視図であり、図2(b)は、電子ペン5の機能ブロックを示す略ブロック図である。図2(a)に示すように、電子ペン5は、略筒型の筐体5aと、筐体5aの先端に設けられたペン先5bとを有して構成される。なお、実際の電子ペン5の表面には、後述する力覚発生部56を実現するための各種部材が取り付けられる場合があるが、図2(a)では描画を省略している。また、図示していないが、電子ペン5の側面又は端部に各種のスイッチを設けることとしてもよい。
タブレット入力機能による入力を行う場合、ユーザは、片方の手によって筐体5aを把持し、ペン先5bをタブレット4のタッチ面に当接させる。そして、当接状態を保ちながらタッチ面上でペン先5bを移動させることによって、電子ペン5による入力操作を行う。一方、仮想現実空間入力機能による入力を行う場合、ユーザは、片方の手によって筐体5aを把持し、空中で電子ペン5を移動させることによって、電子ペン5による入力操作を行う。
仮想現実空間入力機能による入力には、上述した仮想タブレットへの入力が含まれる。この場合、仮想現実ディスプレイ3を装着したユーザの目には仮想タブレットが見えているが、現実には、その場所にタブレットは存在しない。したがって、仮想タブレットのタッチ面にペン先5bを当接させることはできないが、それでは仮想タブレットへの入力操作が困難になる。そこで空間位置指示システム1では、ペン先5bが仮想タブレットのタッチ面の位置にある場合に力覚を発生させることで、あたかも仮想タブレットのタッチ面にペン先5bが当接しているかのような感覚をユーザに与える処理を行う。この点については、後ほど別途詳しく説明する。
図2(b)を参照すると、電子ペン5は機能的に、処理部50、通信部51,53、筆圧検出部52、位置検出部54、スイッチ部55、及び力覚発生部56を有して構成される。
処理部50は、電子ペン5内の他の各部と接続され、これらを制御するとともに、後述する各種の処理を行うプロセッサにより構成される。なお、本実施の形態では電子ペン5内に処理部50を配置しているが、これに限定されず、電子ペン5の外部に処理部50を配置してもよい。
通信部51及び筆圧検出部52は、タブレット入力機能を実現する機能部である。
通信部51は、処理部50の制御に従い、タブレット4のタッチセンサとの間で信号の送受信を行う機能を有する。この信号の送受信には、電子ペン5からタブレット4に対して一方的に信号を送信する場合と、電子ペン5とタブレット4の間で双方向に信号の送受信を行う場合とが含まれる。また、信号送受信の具体的な方式としては、例えば電磁誘導方式又はアクティブ静電方式が用いられ得る。
筆圧検出部52は、ペン先5bに加えられた圧力(筆圧)を検出する機能部であり、具体的な例では、筆圧によって容量値が変化する容量センサ(図示せず)によって構成される。以下、通信部51がアクティブ静電方式によって信号を送受信する場合を例に取り、タブレット入力機能について具体的に説明する。
アクティブ静電方式に対応するタッチセンサは、タッチ面内に配置されるセンサ電極(図示せず)から、所定の時間間隔でビーコン信号を送出するよう構成される。ビーコン信号には、タッチセンサから電子ペン5を制御するためのコマンドが含まれる。コマンドによる制御の内容には、例えば、筆圧検出部52によって検出された筆圧を示す筆圧データを送信させること、電子ペン5に設けられる各種スイッチ(図示せず)の押下状態を送信させること、電子ペン5のメモリ(図示せず)に予め格納されている固有IDを送信させることなどが含まれる。
通信部51は、電子ペン5のペン先に設けられたペン先電極(図示せず)を介して上記ビーコン信号を検出し、検出したビーコン信号を処理部50に供給する。処理部50は、供給されたビーコン信号に応じて、無変調の搬送波であるバースト信号と、コマンドに応じたデータによって搬送波を変調することにより得られるデータ信号とを含むペン信号を生成し、通信部51に供給する。通信部51は、上記ペン先電極を介して、供給されたペン信号をタッチセンサに送信する。
タッチセンサは、上記センサ電極によってバースト信号の検出を試み、検出結果に基づいて、タッチ面内における電子ペン5の位置を検出する。また、上記センサ電極によってデータ信号を検出して復調することにより、コマンドに応じて電子ペン5が送信したデータを受信する。
タブレット4は、取得した電子ペン5の位置及び電子ペン5が送信したデータを、逐次、コンピュータ2に向けて送信するよう構成される。コンピュータ2は、タブレット4から受信したデータに含まれる筆圧データにより示される筆圧が所定値(例えば、0)より大きい値となっている場合に、電子ペン5がタブレット4のタッチ面に接触していると判定する。そしてコンピュータ2は、電子ペン5がタブレット4のタッチ面に接触していると判定している間、継続的に、順次受信される一連の位置に基づいてインクデータ(複数の位置を所定の補間曲線により補間してなる曲線データ)を生成し、図1に示したメモリ2bに格納する処理を実行する。これにより、タブレット入力機能が実現される。なお、タブレット4がディスプレイを有する場合には、コンピュータ2は、メモリ2bに格納したインクデータを逐次レンダリングし、その結果をタブレット4のディスプレイに表示することとしてもよい。
通信部53、位置検出部54、スイッチ部55、及び力覚発生部56は、仮想現実空間入力機能を実現する機能部である。
通信部53は、処理部50の制御に従い、仮想現実ディスプレイ3を介してコンピュータ2との間で信号の送受信を行う機能を有する。この信号の送受信は、上述したように、有線又は無線によって実現される。
位置検出部54は、図1に示した位置センサ8cによって構成される機能部であり、ライトニングハウス7a,7bが送信しているレーザー信号(現実空間内の位置を検出するための位置検出用信号)を検出し、検出したレーザー信号に応じた受光レベル情報(位置情報)を生成する機能を有する。位置検出部54によって生成された受光レベル情報は、通信部53により、コンピュータ2に向けて送信される。
スイッチ部55は、電子ペン5の筐体5aの表面に設けられるスイッチであり、ユーザによって押下可能に構成される。スイッチ部55の押下状態を示すスイッチ情報も、通信部53により、コンピュータ2に向けて送信される。
力覚発生部56は、外部から供給される制御信号に応じて力覚を発生する機能を有する。この制御信号は、通信部53を通じて、コンピュータ2から供給される。力覚発生部56については、後ほど別途、より詳しく説明する。
コンピュータ2は、受信した受光レベル情報に基づき、逐次、位置センサ8cの位置及び向きを検出するとともに、受信したスイッチ情報に基づき、スイッチ部55が押下されているか否かの判定を行う。そして、スイッチ部55が押下されていると判定している間、継続的に、順次検出される一連の位置に基づいて3Dのインクデータを生成し、図1に示したメモリ2bに格納する処理を実行する。こうして生成された3Dのインクデータは上述した第2の3Dオブジェクトに相当し、上述したレンダリングの対象となる。これにより、仮想現実空間入力機能が実現される。
ここで、仮想現実空間内に上述した仮想タブレットを表示している場合には、コンピュータ2は、この仮想タブレットのタッチ面と電子ペン5のペン先5bとが仮想現実空間内で接触している場合に限り、3Dのインクデータを生成する。こうすることで、ユーザは、現実のタブレット4への入力と同様に仮想タブレットへの入力を行うことが可能になる。なお、この場合における3Dのインクデータの生成は、スイッチ部55の押下状態にかかわらず実行されることとしてもよい。
以上が空間位置指示システム1の全体概要である。次に、電子ペン5に設けられる力覚発生部56の構成について詳しく説明するが、力覚発生部56は様々な構成を取り得るので、以下では7つの例を挙げ、順に説明することとする。
図3~図9はそれぞれ、力覚発生部56の構成の第1~第7の例を示す図である。図3~図5それぞれの(a)(b)、図6、及び図7は電子ペン5の断面図であり、図8(a)は電子ペン5の斜視図である。図8(b)は、図8(a)に示した部分Dの分解斜視図である。図9は、電子ペン5の使用状態を示す斜視図である。
第1の例による力覚発生部56は、図3に示すように、ペン先5bの前方に配置された平板状の当接部56aと、筐体5aを覆うように配置された筒状部材である摺動部56bと、当接部56a及び摺動部56bのそれぞれに固定されたブリッジ部56cとを含んで構成される。
摺動部56bは、図3(a)に示す位置から図3(b)に示す位置まで、図示した範囲Aにわたり筐体5aに対して筐体5aの長手方向に摺動可能に構成される。ただし、ユーザが電子ペン5を把持した状態では、摺動部56bはユーザの手に対して固定されるので、この摺動によって実際に移動するのは筐体5aの方である。摺動部56bが図3(a)に示す位置にある場合、ペン先5bは当接部56aと接していない。一方、摺動部56bが図3(b)に示す位置にある場合、ペン先5bは当接部56aと当接する。
処理部50は、コンピュータ2から受信される制御信号に応じて、筐体5aを図3(a)に示す位置から図3(b)に示す位置に移動させる。これにより、ペン先5bが当接部56aに衝突する。したがって、仮想現実空間内において電子ペン5のペン先5bが仮想タブレットのタッチ面に接触したことに応じて制御信号を送信するようにコンピュータ2を構成することにより、ユーザは、電子ペン5のペン先5bが仮想タブレットのタッチ面に接触したことを現実の衝撃として感じることが可能になる。
ここで、力覚発生部56は、磁性流体を含んで構成されることが好ましい。磁性流体は、印加するパルス電流の周波数により固さを制御可能な材料である。磁性流体に与えるパルス電流の周波数を変化させ、相対的に固い状態と相対的に柔らかい状態との間を連続的に遷移させると、磁性流体に接触している人間には振動が発生したように感じられる。また、磁性流体の固さを変化させることによって、各種の物体を移動させることもできる。
図10は、磁性流体の固さの変化を利用して筐体5aを移動させるように力覚発生部56を構成した場合に、コンピュータ2が生成する制御信号の一例を示す図である。同図に示すように、この場合の制御信号は、バースト期間BUとブランク期間BLとを一定のデューティー比で繰り返すパルス電流信号によって構成される。この制御信号によれば、磁性流体は、全区間に占めるバースト期間BUの割合が大きくなるほど固くなる。そこでコンピュータ2は、制御信号のデューティー比を制御することによって磁性流体の固さを制御し、その結果として筐体5aを移動させる。こうして、磁性流体により力覚を発生させることが実現される。
第2の例による力覚発生部56は、図4に示すように、ペン先5bの前方に配置された平板状の当接部56aと、筐体5aに固定されたブリッジ部56cと、当接部56aとブリッジ部56cの間に設けられたヒンジ部56dとを含んで構成される。
当接部56aは、ヒンジ部56dと接続された一端を中心として、図4(a)に示す位置から図4(b)に示す位置まで、図示した範囲Bにわたり回動可能に構成される。当接部56aが図4(a)に示す位置にある場合、ペン先5bは当接部56aと接していない。一方、当接部56aが図4(b)に示す位置にある場合、ペン先5bは当接部56aと当接する。本例においても、当接部56aの移動は磁性流体を利用して実現することが好ましい。
処理部50は、コンピュータ2から受信される制御信号に応じて、当接部56aを図4(a)に示す位置から図4(b)に示す位置に移動させる。これによりペン先5bが当接部56aに衝突するので、第1の例と同様、ユーザは、電子ペン5のペン先5bが仮想タブレットのタッチ面に接触したことを現実の衝撃として感じることが可能になる。
第3の例による力覚発生部56は、図5に示すように、ペン先5bの前方に配置された平板状の当接部56aと、筐体5aに固定されたブリッジ部56cと、当接部56aと一体に形成されたスライド部56eとを含んで構成される。
スライド部56eは、図5に示すように、例えばブリッジ部56cの端部を収容するほぞを有しており、ブリッジ部56cがこのほぞの中を摺動することにより、図5(a)に示す位置から図5(b)に示す位置まで、図示した範囲Cにわたり電子ペン5の長手方向に移動可能に構成される。スライド部56eが図5(a)に示す位置にある場合、ペン先5bは当接部56aと接していない。一方、スライド部56eが図5(b)に示す位置にある場合、ペン先5bは当接部56aと当接する。本例においても、スライド部56eの移動は磁性流体を利用して実現することが好ましい。
処理部50は、コンピュータ2から受信される制御信号に応じて、スライド部56eを図5(a)に示す位置から図5(b)に示す位置に移動させる。これによりペン先5bが当接部56aに衝突するので、第1及び第2の例と同様、ユーザは、電子ペン5のペン先5bが仮想タブレットのタッチ面に接触したことを現実の衝撃として感じることが可能になる。
第4の例による力覚発生部56は、図6に示すように、筐体5aの表面に露出するように配置された固さ変化部56fを含んで構成される。固さ変化部56fは、上述した磁性流体を含むビニールなどで構成される。
処理部50は、コンピュータ2から受信された制御信号を固さ変化部56fに与えることにより、固さ変化部56fの固さを変化させる。これにより固さ変化部56fの固さが振動しているかのように感じられることから、ユーザは、第1乃至第3の例と同様、電子ペン5のペン先5bが仮想タブレットのタッチ面に接触したことを現実の衝撃として感じることが可能になる。
第5の例による力覚発生部56は、図7に示すように、筐体5aに固定された基体部56gと、基体部56gの中に配置された振動部56hと、一端が振動部56hに押し当てられ、他端が筐体5aの内壁に押し当てられた状態で配置された高剛性部材であるアクチュエータ56iと、を有して構成される。
処理部50は、コンピュータ2から受信された制御信号を振動部56hに与えることにより、振動部56hを振動させる。すると、その振動がアクチュエータ56iを通じて筐体5aに伝達されるので、筐体5aも振動する。これによりユーザは、第1乃至第4の例と同様、電子ペン5のペン先5bが仮想タブレットのタッチ面に接触したことを現実の衝撃として感じることが可能になる。
第6の例による力覚発生部56は、図8(a)に示すように、筐体5aに設けられた溝部5cと、筐体5aの内部に配置された振動部56jとを含んで構成される。振動部56jの一部は、溝部5cを通じて外部に露出している。また、振動部56jは、上述した磁性流体を含んで構成される。
図8(b)には、溝部5c及び振動部56jの具体的な構造を示している。同図に示すように、振動部56jは、筐体5a内に配置された筒状部材である基体部56jaと、基体部56jaの側面から突出するように設けられた3つの突出部56jbとを有して構成される。3つの突出部56jbは、基体部56jaと一体に形成されるもので、基体部56jaの円周方向に等間隔で配置される。溝部5cは、これら3つの突出部56jbのそれぞれに対応して設けられる。
処理部50は、コンピュータ2から受信された制御信号を振動部56jに与えることにより、振動部56jを振動させる。ユーザは、溝部5cを通じて露出している3つの突出部56jbを通じてこの振動を直接感じ取ることができるので、第1乃至第5の例と同様、電子ペン5のペン先5bが仮想タブレットのタッチ面に接触したことを現実の衝撃として感じることが可能になる。
第7の例による力覚発生部56は、図9に示すように、電子ペン5の本体とは別体として設けられ、具体的には、ペン先5bの前方に配置された平板状の当接部56aと、ユーザの腕に固定されるブリッジ部56kとを含んで構成される。ブリッジ部56kの一端近傍には開口部56kaが設けられており、ブリッジ部56kは、この開口部56kaにユーザが自身の腕を挿入することによって、ユーザの腕に固定される。
当接部56aは、ブリッジ部56kの他端近傍を、図示した範囲Eにわたって移動可能に構成される。当接部56aの具体的な移動範囲は、当接部56aが電子ペン5にもっとも近づいたときにペン先5bと接触するように決定される。なお、ユーザによって手の大きさが異なることを考慮すると、当接部56aの移動範囲は、予め行うキャリブーション処理によりユーザごとに調節することが好ましい。本例においても、当接部56aの移動は磁性流体を利用して実現することが好ましい。
処理部50は、コンピュータ2から受信された制御信号を力覚発生部56に与えることにより、当接部56aをペン先5bに衝突させる。これによりユーザは、第1乃至第6の例と同様、電子ペン5のペン先5bが仮想タブレットのタッチ面に接触したことを現実の衝撃として感じることが可能になる。
以上、電子ペン5に設けられる力覚発生部56の構成について、7つの例を挙げて説明した。次に、コンピュータ2による力覚発生部56の制御信号の生成について、詳しく説明する。
図11は、コンピュータ2の制御部2a(図1を参照)が行う処理を示す処理フロー図である。図12は、図11のステップS2,S6で実行される仮想現実空間内ペン先位置取得処理の詳細を示す図である。図13は、図11において実行される処理の説明図である。以下、これらの図を参照しながら、コンピュータ2による力覚発生部56の制御信号の生成について詳細に説明する。
初めに図11を参照すると、コンピュータ2は、まず前提として、仮想現実空間内に物体を表示する(ステップS1)。この物体は、上述した第2の3Dオブジェクト(例えば、仮想タブレット)である。図13(a)は、こうして表示される物体の表面Sを3次元座標空間上に示したものである。
続いてコンピュータ2は、仮想現実空間内における電子ペン5のペン先5bの位置VP2を取得する処理を行う(ステップS2)。具体的に説明すると、図12に示すように、コンピュータ2はまず、受光レベル情報を取得する(ステップS20)。この受光レベル情報は電子ペン5の位置検出部54(図2を参照)によって生成されるものであり、コンピュータ2は、電子ペン5からの受信によって受光レベル情報を取得する。
受光レベル情報を取得したコンピュータ2は、取得した受光レベル情報に基づき、現実空間における電子ペン5の位置を示す現実空間内位置P1(第1の現実空間内位置)を取得(算出)する(ステップS21)。こうして取得される位置P1は図1に示した位置センサ8cの位置であって、ペン先5bの位置ではない。そこでコンピュータ2は、予めメモリ2b内に記憶している電子ペン5の形状に基づいて位置センサ8cの位置をペン先5bの位置に変換することにより、現実空間における電子ペン5のペン先5bの位置を示す現実空間内位置P2(第2の現実空間内位置)を取得(算出)する処理を行う(ステップS22)。
続いてコンピュータ2は、取得した位置P2に基づき、仮想現実空間内における電子ペン5のペン先5bの位置を示す仮想現実空間内位置VP2を取得(算出)する(ステップS23)。仮想現実空間内ペン先位置取得処理は、ここまでの処理で終了する。
図11に戻り、位置VP2を取得したコンピュータ2は、位置VP2と仮想現実空間内における物体(ステップS1で表示したもの)の表面Sの位置とに基づいて、電子ペン5のペン先5bが表面Sに衝突したか否かを判定する(第2の判定ステップ。ステップS3,S4)。具体的には、点である位置VP2が表面Sを構成する領域の中に含まれる場合に衝突したと判定し、それ以外の場合に衝突していないと判定すればよい。
ステップS4の判定において衝突したと判定した場合(ステップS4の肯定判定)、コンピュータ2は、力覚を発生させるための制御信号を生成し、電子ペン5に対して送信する(第2の力覚発生ステップ。ステップS5)。この制御信号は、例えば、図10に示したパルス電流信号である。電子ペン5の処理部50がこの制御信号に応じて力覚発生部56に力覚を発生させることにより、ユーザは、表面S(例えば、仮想タブレットのタッチ面)への衝突体験を得ることが可能になる。
続いてコンピュータ2は、再度仮想現実空間内位置VP2を取得する処理を行い(ステップS6)、表面Sと位置VP2の間の距離が所定値L以下であるか否かを判定する(第1の判定ステップ。ステップS7,S8)。この処理は、位置VP2を通る表面Sの法線が表面Sと交わる点と、位置Vp2との間の距離が所定値L以下であるか否かを判定することによって行えばよい。
ステップS8で所定値L以下であると判定した場合(ステップS8の肯定判定)、コンピュータ2は、再度力覚を発生させるための制御信号を生成し、電子ペン5に対して送信する(第1の力覚発生ステップ。ステップS9)。これによりユーザは、手元がぶれて電子ペン5のペン先5bが表面Sから離れたとしても、あまり離れていない場合には、引き続き表面Sに接触している感覚を得ることができる。現実に存在していない表面Sに意図的にペン先5bを接触させ続けることは難しいので、仮想現実空間内においてはこの処理が非常に有効である。
ステップS9を終了したコンピュータ2は、ステップS6に戻って処理を続ける。これにより、表面Sと位置VP2との間の距離が所定値L以下である間(すなわち、ステップS8の判定結果が肯定的である間)、表面Sとの接触をユーザに感じさせ続けることが可能になる。
なお、図11に破線で示したように、コンピュータ2は、ステップS9の実施とともに、位置VP2が表面S上の位置となるよう物体の位置を移動させる処理を実施することとしてもよい(ステップS10)。こうすることで、力覚だけでなく視覚的にも接触状態を維持することが可能になる。
ステップS4の判定において衝突していないと判定した場合(ステップS4の否定判定)、及び、ステップS8で所定値L以下でないと判定した場合(ステップS8の否定判定)、コンピュータ2は、ステップS2に戻って処理を続ける。この場合、力覚発生部56による力覚の発生が生じないので、位置VP2と表面Sとの間の距離が離れているにも関わらず、力覚が発生しまうことが防止される。したがって、仮想現実空間内で電子ペン5を使用するユーザに違和感を感じさせることなく、力覚発生部56に力覚を発生させることが可能になる。
なお、図11の例においては、電子ペン5のペン先5bが表面Sに一旦衝突した後、力覚の発生を中止する条件(すなわち、ステップS2に戻る条件)として、表面Sと位置VP2の間の距離が所定値L以下でなくなったことを使用したが、その他の事象を力覚の発生を中止する条件として用いることとしてもよい。例えば、表面Sに衝突してからの電子ペン5の移動距離が所定値を上回った場合、電子ペン5の移動速度が所定値を上回った場合、電子ペン5の加速度が所定値を上回った場合、ユーザが電子ペン5を用いて所定のジェスチャを行った場合、図示しないマイクによりユーザが所定の音声入力を行ったことが検出された場合、図示しない圧力センサ(例えば、ユーザによる電子ペン5の把持力を測定するために電子ペン5の側面に設けられる圧力センサ)によりユーザが所定の圧力を加えたことが検出された場合などに、力覚の発生を中止することとしてもよい。
以上説明したように、本実施の形態による電子ペン5によれば、電子ペン5自体が位置検出部54を有しており、したがって電子ペン5が空間位置指示デバイスとして動作するので、仮想現実空間内における電子ペン5の使用が可能になる。
また、本実施の形態による空間位置指示システム1によれば、受光レベル情報により示される電子ペン5の位置ではなく、ペン先5bの位置に基づいて力覚発生部56に力覚を発生させることができるので、仮想現実空間内で電子ペン5を使用するユーザに違和感を感じさせることなく、力覚を発生させることが可能になる。
図14は、本発明の第2の実施の形態による空間位置指示システム1で用いられる空間位置指示デバイス6を示す図である。図14(a)は空間位置指示デバイス6の使用状態を示す斜視図を、図14(b)は空間位置指示デバイス6の機能ブロックを示す略ブロック図を、それぞれ表している。図14(a)に示すように、空間位置指示デバイス6は、電子ペン5を差し込んで使用可能に構成される。本実施の形態は、図2(b)を参照して説明した電子ペン5の機能のうち仮想現実空間入力機能が空間位置指示デバイス6側に設けられる点で、第1の実施の形態と相違する。本実施の形態による電子ペン5は、仮想現実空間入力機能を有しない一般的な電子ペンである。以下、第1の実施の形態と同一の構成については同一の符号を付し、第1の実施の形態との相違点に着目して詳しく説明する。
初めに図14(b)を参照すると、空間位置指示デバイス6は機能的に、処理部50、通信部53、位置検出部54、スイッチ部55、及び力覚発生部56を有して構成される。これらの基本的な機能は、図2(b)を参照して説明したものと同様である。ただし、スイッチ部55は、電子ペン5ではなく空間位置指示デバイス6の表面に設けられる。
次に図14(a)を参照すると、空間位置指示デバイス6は、筐体6aと、持ち手部6bと、図1にも示した位置センサ8cと、位置センサ8cを筐体6aに固定するためのブリッジ部6dと、方向指示器6eと、平板状の当接部56aと、筐体6aの間に固定されたブリッジ部56mと、を含んで構成される。このうち当接部56a及びブリッジ部56mは、空間位置指示デバイス6の力覚発生部56を構成する。
筐体6aは、空間位置指示デバイス6の本体を構成する部材であり、電子ペン5を搭載可能に構成される。より具体的に言えば、筐体6aは、電子ペン5を差し込むための差し込み口を有している。また、持ち手部6bは、ユーザが空間位置指示デバイス6を持つための部材である。図14に示すように、ユーザは、筐体6aの差し込み口に電子ペン5を差し込み、持ち手部6bを片手でつかんだ状態で、空間位置指示デバイス6を使用する。方向指示器6eは、ユーザの使用感を向上させるための部材であり、ユーザが右手で持ち手部6bをつかんだ場合に、右手親指を置けるように構成される。
当接部56aは、ブリッジ部56mを介して、ペン先5bの前方に配置される。当接部56aは、ブリッジ部56mの一端近傍を、図示した範囲Fにわたって移動可能に構成される。当接部56aの移動は、上述した磁性流体を利用して実現することが好ましい。当接部56aの具体的な位置は、当接部56aが電子ペン5にもっとも近づいたときにペン先5bと接触するように決定される。処理部50がコンピュータ2から受信される制御信号に応じて当接部56aを図面右方向に移動させると、ペン先5bが当接部56aに衝突する。これにより、第1の実施の形態と同様、ユーザは、電子ペン5のペン先5bが仮想タブレットのタッチ面に接触したことを現実の衝撃として感じることが可能になる。
本実施の形態においてコンピュータ2が行う処理も、基本的には第1の実施の形態で説明したとおりである。ただし、図11に示したステップS3において、第1の実施の形態では、予めメモリ2b内に記憶している電子ペン5の形状に基づき、位置センサ8cの位置をペン先5bの位置に変換する処理を行うとしたが、本実施の形態によるコンピュータ2は、電子ペン5を差し込んだ状態の空間位置指示デバイス6の形状を予めメモリ2b内に記憶しておき、それに基づいて、位置センサ8cの位置をペン先5bの位置に変換する処理を行うよう構成される。これにより、位置センサ8cの位置ではなく、ペン先5bの位置に基づいて力覚発生部56に力覚を発生させることが可能になる。
以上説明したように、本実施の形態による電子ペン5によれば、空間位置指示デバイス6に電子ペン5を搭載することができる。したがって、仮想現実空間内における電子ペン5の使用が可能になる。
また、本実施の形態による空間位置指示システム1によれば、受光レベル情報により示される位置センサ8cの位置ではなく、ペン先5bの位置に基づいて力覚発生部56に力覚を発生させることができるので、仮想現実空間内で空間位置指示デバイス6及び電子ペン5を使用するユーザに違和感を感じさせることなく、力覚を発生させることが可能になる。
以上、本発明の好ましい実施の形態について説明したが、本発明はこうした実施の形態に何等限定されるものではなく、本発明が、その要旨を逸脱しない範囲において、種々なる態様で実施され得ることは勿論である。
例えば、上記各実施の形態では、コンピュータ2は、仮想現実空間内において電子ペン5のペン先が仮想タブレットのタッチ面に接触した場合に、力覚発生部56に力覚を発生させることとしたが、仮想タブレット以外の第2の3Dオブジェクトの表面に電子ペン5のペン先が接触した場合に、力覚発生部56に力覚を発生させることとしてもよい。また、接触ではなく、仮想現実空間入力機能による入力が開始された場合(すなわち、コンピュータ2による3Dオブジェクトの生成が開始された場合。また、仮想タブレットへの入力を行っている場合には、3Dのインクデータの生成が開始された場合)に、力覚発生部56に力覚を発生させることとしてもよい。
また、上記第2の実施の形態では、力覚発生部56が当接部56aを含んで構成される例を説明したが、図6~図8に示した例と同様の仕組みを筐体6又は持ち手部6bに設けることによって力覚発生部56を構成することとしてもよい。
また、上記各実施の形態では、力覚発生部56を起動するための制御信号をコンピュータ2内で生成する例を説明したが、電子ペン5又は空間位置指示デバイス6の中でこの制御信号を生成することとしてもよい。以下、このように電子ペン5を構成する場合に図2に示した処理部50が行う処理について、図面を参照しながら説明する。なお、空間位置指示デバイス6の中で制御信号を生成する場合についても、図2ではなく図14に示した処理部50が処理を行う他は、同様である。
図15は、図2に示した処理部50が行う処理を示す処理フロー図である。同図に示すように、処理部50は、まず前提として、仮想現実空間内に表示されている物体の情報を取得する(ステップS30)。この物体は、上述した第2の3Dオブジェクト(例えば、仮想タブレット)であり、処理部50は、コンピュータ2からの受信によって物体の情報を取得する。
続いて処理部50は、仮想現実空間内における電子ペン5のペン先5bの位置VP2を取得する処理を行う(ステップS31)。この処理の詳細は図12を参照した説明したものと同様であるので、詳しい説明は省略する。なお、処理部50は、図2に示した位置検出部54から受光レベル情報を取得する。
位置VP2を取得した処理部50は、位置VP2と仮想現実空間内における物体(ステップS1で情報を取得したもの)の表面Sの位置とに基づいて、電子ペン5のペン先5bが表面Sに衝突したか否かを判定する(ステップS32,S33)。この処理は、図11のステップS3,S4と同様の処理である。
ステップS33の判定において衝突したと判定した場合(ステップS33の肯定判定)、処理部50は、力覚を発生させるための制御信号を生成し、図2に示した力覚発生部56に供給する(ステップS34)。これによりユーザは、表面S(例えば、仮想タブレットのタッチ面)への衝突体験を得ることが可能になる。
続いて処理部50は、再度仮想現実空間内位置VP2を取得する処理を行い(ステップS35)、表面Sと位置VP2の間の距離が所定値L以下であるか否かを判定する(ステップS36,S37)。この処理は、図11のステップS7,S8と同様の処理である。
ステップS37で所定値L以下であると判定した場合(ステップS37の肯定判定)、処理部50は、再度力覚を発生させるための制御信号を生成し、図2に示した力覚発生部56に供給する(ステップS38)。これによりユーザは、手元がぶれて電子ペン5のペン先5bが表面Sから離れたとしても、あまり離れていない場合には、引き続き表面Sに接触している感覚を得ることができる。
ステップS38を終了した処理部50は、ステップS35に戻って処理を続ける。これにより、表面Sと位置VP2との間の距離が所定値L以下である間(すなわち、ステップS8の判定結果が肯定的である間)、表面Sとの接触をユーザに感じさせ続けることが可能になる。
ステップS33の判定において衝突していないと判定した場合(ステップS33の否定判定)、及び、ステップS37で所定値L以下でないと判定した場合(ステップS37の否定判定)、処理部50は、ステップS31に戻って処理を続ける。この場合、力覚発生部56による力覚の発生が生じないので、位置VP2と表面Sとの間の距離が離れているにも関わらず、力覚が発生しまうことが防止される。したがって、仮想現実空間内で電子ペン5を使用するユーザに違和感を感じさせることなく、力覚発生部56に力覚を発生させることが可能になる。
なお、処理部50は、仮想現実空間内位置VP2を取得した場合に、取得した仮想現実空間内位置VP2をコンピュータ2に対して送信することとしてもよい。こうすれば、コンピュータ2は、電子ペン5の中で力覚発生部56の制御信号を生成する場合であっても、図11に示したステップS9を実施することができる。したがって、力覚だけでなく視覚的にも接触状態を維持することが可能になる。
また、図11の説明の中で、力覚の発生を中止する条件として、表面Sと位置VP2の間の距離が所定値L以下でなくなったこと以外の各種事象を用いることができる点を説明したが、この点は図15の例においても同様に適用可能である。
1 空間位置指示システム
2 コンピュータ
2a 制御部
2b メモリ
3 仮想現実ディスプレイ
4 タブレット
4a タブレット面
5 電子ペン
5a 筐体
5b ペン先
5c 溝部
6 空間位置指示デバイス
6a 筐体
6b 持ち手部
6d,56c,56k,56m ブリッジ部
6e 方向指示器
7a,7b ライトニングハウス
8a~8c 位置センサ
50 処理部
51,53 通信部
52 筆圧検出部
54 位置検出部
55 スイッチ部
56 力覚発生部
56a 当接部
56b 摺動部
56d ヒンジ部
56e スライド部
56f 固さ変化部
56h,56j 振動部
56g,56ja 基体部
56i アクチュエータ
56jb 突出部
56ka 開口部
BL ブランク期間
BU バースト期間
P1 現実空間における電子ペン5の位置
P2 現実空間における電子ペン5のペン先5bの位置
VP2 仮想現実空間内における電子ペン5のペン先5bの位置
S 仮想現実空間内に表示した物体の表面
2 コンピュータ
2a 制御部
2b メモリ
3 仮想現実ディスプレイ
4 タブレット
4a タブレット面
5 電子ペン
5a 筐体
5b ペン先
5c 溝部
6 空間位置指示デバイス
6a 筐体
6b 持ち手部
6d,56c,56k,56m ブリッジ部
6e 方向指示器
7a,7b ライトニングハウス
8a~8c 位置センサ
50 処理部
51,53 通信部
52 筆圧検出部
54 位置検出部
55 スイッチ部
56 力覚発生部
56a 当接部
56b 摺動部
56d ヒンジ部
56e スライド部
56f 固さ変化部
56h,56j 振動部
56g,56ja 基体部
56i アクチュエータ
56jb 突出部
56ka 開口部
BL ブランク期間
BU バースト期間
P1 現実空間における電子ペン5の位置
P2 現実空間における電子ペン5のペン先5bの位置
VP2 仮想現実空間内における電子ペン5のペン先5bの位置
S 仮想現実空間内に表示した物体の表面
Claims (20)
- ペン先を有する電子ペンを搭載可能に構成される筐体と、
力覚を発生する力覚発生部と、
前記筐体に搭載される前記電子ペンの仮想現実空間内における前記ペン先の位置と前記仮想現実空間内における物体との間の距離が所定値以下である場合に力覚を発生させるように前記力覚発生部を制御するコントローラと、
を有する位置指示デバイス。 - 前記コントローラは、前記仮想現実空間内における前記ペン先の位置が前記仮想現実空間内における前記物体の表面内に位置する場合に力覚を発生させるように前記力覚発生部を制御する、
請求項1に記載の位置指示デバイス。 - 前記コントローラは、前記仮想現実空間内における前記ペン先の位置が前記仮想現実空間内における前記物体の表面内に位置する場合に力覚を発生させるように前記力覚発生部を制御した後、前記仮想現実空間内における前記ペン先の位置と前記仮想現実空間内における前記物体との間の距離が所定値以下である場合に力覚を発生させるように前記力覚発生部を制御する
請求項2に記載の位置指示デバイス。 - 前記コントローラは、所定の事象が発生した場合に、前記力覚発生部に力覚を発生させることを中止する、
請求項3に記載の位置指示デバイス。 - 前記所定の事象は、現実空間内における当該空間位置指示デバイスの位置の情報を示す位置情報に基づいて算出された前記ペン先の位置と前記仮想現実空間内における前記物体との間の距離が所定値以下ではない事象である
請求項4に記載の位置指示デバイス。 - 前記力覚発生部は磁性流体を含み、
前記コントローラは、前記磁性流体の固さを制御する制御信号に応じて力覚を発生させるように前記力覚発生部を制御する
請求項1乃至5のいずれか一項に記載の位置指示デバイス。 - 前記力覚発生部は前記ペン先と当接する当接部を含み、
前記コントローラは、前記制御信号に応じて前記ペン先を前記当接部に衝突させる、
請求項6に記載の位置指示デバイス。 - 前記力覚発生部は振動部を含み、
前記コントローラは、前記制御信号に応じて前記振動部を振動させる、
請求項6に記載の位置指示デバイス。 - 位置指示部と、
力覚を発生する力覚発生部と、
仮想現実空間内における前記位置指示部の位置と前記仮想現実空間内における物体との間の距離が所定値以下である場合に力覚を発生させるように前記力覚発生部を制御するコントローラと、
を有する位置指示デバイス。 - 前記コントローラは、前記仮想現実空間内における前記位置指示部の位置が前記仮想現実空間内における前記物体の表面内に位置する場合に力覚を発生させるように前記力覚発生部を制御する、
請求項9に記載の位置指示デバイス。 - 前記コントローラは、前記仮想現実空間内における前記位置指示部の位置が前記仮想現実空間内における前記物体の表面内に位置する場合に力覚を発生させるように前記力覚発生部を制御した後、前記仮想現実空間内における前記位置指示部の位置と前記仮想現実空間内における前記物体との間の距離が所定値以下である場合に力覚を発生させるように前記力覚発生部を制御する
請求項10に記載の位置指示デバイス。 - 前記コントローラは、所定の事象が発生した場合に、前記力覚発生部に力覚を発生させることを中止する、
請求項11に記載の位置指示デバイス。 - 前記所定の事象は、現実空間内における当該位置指示デバイスの位置の情報を示す位置情報に基づいて算出された前記位置指示部の位置と前記仮想現実空間内における前記物体との間の距離が所定値以下ではない事象である
請求項12に記載の位置指示デバイス。 - 前記力覚発生部は磁性流体を含み、
前記コントローラは、前記磁性流体の固さを制御する制御信号に応じて力覚を発生させるように前記力覚発生部を制御する
請求項9乃至12のいずれか一項に記載の位置指示デバイス。 - 前記力覚発生部は前記位置指示部と当接する当接部を含み、
前記コントローラは、前記制御信号に応じて前記ペン先を前記当接部に衝突させる、
請求項14に記載の位置指示デバイス。 - 前記力覚発生部は振動部を含み、
前記コントローラは、前記制御信号に応じて前記振動部を振動させる、
請求項14に記載の位置指示デバイス。 - 現実空間における位置指示デバイスの位置指示部の位置を取得するステップと、
前記現実空間における前記位置指示部の位置に基づき、仮想現実空間内における前記位置指示部の位置を取得するステップと、
前記仮想現実空間内における前記位置指示部の位置と前記仮想現実空間内における物体との間の距離が所定値以下であるか否かを判定する判定ステップと、
前記判定ステップの判定結果に応じて、力覚発生部を有する前記位置指示デバイスに前記力覚発生部を制御するための制御信号を送信する送信ステップと、
を実行するコンピュータを含む空間位置指示システム。 - 前記判定ステップは、さらに、前記仮想現実空間内における前記位置指示部の位置と前記仮想現実空間内における物体との間の距離に基づいて、前記位置指示部が前記物体に衝突したか否かを判定し、
前記送信ステップは、さらに、前記位置指示部が前記物体に衝突したか否かの判定結果に応じて、前記空間位置指示デバイスに前記力覚発生部を制御するための制御信号を送信する
請求項17に記載の空間位置指示システム。 - 前記力覚発生部は磁性流体を含み、
前記制御信号は、前記磁性流体の固さを制御する信号である、
請求項17に記載の空間位置指示システム。 - 前記力覚発生部は振動部を含み、
前記制御信号は、前記磁性流体の固さを制御することにより、前記振動部を振動させる、
請求項19に記載の空間位置指示システム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410576053.1A CN118567473A (zh) | 2018-05-21 | 2019-04-04 | 位置指示设备、计算机及空间位置指示系统 |
CN201980029213.8A CN112041789B (zh) | 2018-05-21 | 2019-04-04 | 位置指示设备及空间位置指示系统 |
JP2020521071A JP7401427B2 (ja) | 2018-05-21 | 2019-04-04 | 位置指示デバイス及び空間位置指示システム |
US16/951,713 US11604520B2 (en) | 2018-05-21 | 2020-11-18 | Position indicating device and spatial position indicating system |
US18/167,006 US12073032B2 (en) | 2018-05-21 | 2023-02-09 | Position indicating device and spatial position indicating system |
JP2023194216A JP2024012599A (ja) | 2018-05-21 | 2023-11-15 | 位置指示デバイス及びコンピュータ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-096936 | 2018-05-21 | ||
JP2018096936 | 2018-05-21 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/951,713 Continuation US11604520B2 (en) | 2018-05-21 | 2020-11-18 | Position indicating device and spatial position indicating system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019225170A1 true WO2019225170A1 (ja) | 2019-11-28 |
Family
ID=68616765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015043 WO2019225170A1 (ja) | 2018-05-21 | 2019-04-04 | 位置指示デバイス及び空間位置指示システム |
Country Status (4)
Country | Link |
---|---|
US (2) | US11604520B2 (ja) |
JP (2) | JP7401427B2 (ja) |
CN (2) | CN112041789B (ja) |
WO (1) | WO2019225170A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11294478B2 (en) * | 2018-03-23 | 2022-04-05 | Wacom Co., Ltd. | Three-dimensional position indicator and three-dimensional position detection system |
WO2022201693A1 (ja) | 2021-03-22 | 2022-09-29 | 株式会社ワコム | コントローラ及びトラッキングシステム |
WO2023286191A1 (ja) * | 2021-07-14 | 2023-01-19 | 株式会社ソニー・インタラクティブエンタテインメント | 情報処理装置および駆動データ生成方法 |
WO2023157653A1 (ja) * | 2022-02-18 | 2023-08-24 | ソニーグループ株式会社 | 情報処理装置及び情報処理方法 |
JP7544952B2 (ja) | 2021-03-02 | 2024-09-03 | 株式会社ソニー・インタラクティブエンタテインメント | 力覚提示装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112433628B (zh) * | 2021-01-28 | 2021-06-08 | 深圳市瑞立视多媒体科技有限公司 | 双光球交互笔的刚体位姿确定方法、装置和计算机设备 |
EP4328717A1 (en) * | 2021-04-23 | 2024-02-28 | Wacom Co., Ltd. | Controller and computer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010225335A (ja) * | 2009-03-20 | 2010-10-07 | Victor Co Of Japan Ltd | 入力装置および入力方法 |
WO2016181469A1 (ja) * | 2015-05-11 | 2016-11-17 | 富士通株式会社 | シミュレーションシステム |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5629594A (en) * | 1992-12-02 | 1997-05-13 | Cybernet Systems Corporation | Force feedback system |
US5694013A (en) * | 1996-09-06 | 1997-12-02 | Ford Global Technologies, Inc. | Force feedback haptic interface for a three-dimensional CAD surface |
US6281651B1 (en) * | 1997-11-03 | 2001-08-28 | Immersion Corporation | Haptic pointing devices |
US8884870B2 (en) | 2008-12-19 | 2014-11-11 | Immersion Corporation | Interactive painting game and associated controller |
JP2010287221A (ja) * | 2009-05-11 | 2010-12-24 | Univ Of Tokyo | 力覚提示装置 |
JP2012022639A (ja) * | 2010-07-16 | 2012-02-02 | Ntt Docomo Inc | 表示装置、映像表示システムおよび映像表示方法 |
JP5664301B2 (ja) * | 2011-02-08 | 2015-02-04 | 大日本印刷株式会社 | コンピュータ装置、電子ペン入力システム、及びプログラム |
US9563266B2 (en) * | 2012-09-27 | 2017-02-07 | Immersivetouch, Inc. | Haptic augmented and virtual reality system for simulation of surgical procedures |
US10108266B2 (en) * | 2012-09-27 | 2018-10-23 | The Board Of Trustees Of The University Of Illinois | Haptic augmented and virtual reality system for simulation of surgical procedures |
US20160189427A1 (en) * | 2014-12-31 | 2016-06-30 | Immersion Corporation | Systems and methods for generating haptically enhanced objects for augmented and virtual reality applications |
US10296086B2 (en) * | 2015-03-20 | 2019-05-21 | Sony Interactive Entertainment Inc. | Dynamic gloves to convey sense of touch and movement for virtual objects in HMD rendered environments |
JP6651297B2 (ja) * | 2015-03-27 | 2020-02-19 | ユニバーシティ・オブ・タンペレUniversity of Tampere | ハプティック・スタイラス |
KR20170055135A (ko) * | 2015-11-11 | 2017-05-19 | 엘지전자 주식회사 | 가상현실 단말기 및 그 제어방법 |
CN106371604B (zh) * | 2016-09-18 | 2020-03-20 | Tcl集团股份有限公司 | 交互控制手套、虚拟现实系统及其应用方法 |
WO2019220803A1 (ja) * | 2018-05-18 | 2019-11-21 | 株式会社ワコム | 位置指示装置及び情報処理装置 |
US11009955B2 (en) * | 2018-07-30 | 2021-05-18 | Apple Inc. | Stylus with shear force feedback |
US20200310561A1 (en) * | 2019-03-29 | 2020-10-01 | Logitech Europe S.A. | Input device for use in 2d and 3d environments |
-
2019
- 2019-04-04 WO PCT/JP2019/015043 patent/WO2019225170A1/ja active Application Filing
- 2019-04-04 CN CN201980029213.8A patent/CN112041789B/zh active Active
- 2019-04-04 CN CN202410576053.1A patent/CN118567473A/zh active Pending
- 2019-04-04 JP JP2020521071A patent/JP7401427B2/ja active Active
-
2020
- 2020-11-18 US US16/951,713 patent/US11604520B2/en active Active
-
2023
- 2023-02-09 US US18/167,006 patent/US12073032B2/en active Active
- 2023-11-15 JP JP2023194216A patent/JP2024012599A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010225335A (ja) * | 2009-03-20 | 2010-10-07 | Victor Co Of Japan Ltd | 入力装置および入力方法 |
WO2016181469A1 (ja) * | 2015-05-11 | 2016-11-17 | 富士通株式会社 | シミュレーションシステム |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11294478B2 (en) * | 2018-03-23 | 2022-04-05 | Wacom Co., Ltd. | Three-dimensional position indicator and three-dimensional position detection system |
US11934592B2 (en) | 2018-03-23 | 2024-03-19 | Wacom Co., Ltd. | Three-dimensional position indicator and three-dimensional position detection system including grip part orthogonal to electronic pen casing |
US20240192788A1 (en) * | 2018-03-23 | 2024-06-13 | Wacom Co., Ltd. | Three-dimensional position indicator and three-dimensional position detection system including grip part and tracker |
JP7544952B2 (ja) | 2021-03-02 | 2024-09-03 | 株式会社ソニー・インタラクティブエンタテインメント | 力覚提示装置 |
US12105882B2 (en) | 2021-03-02 | 2024-10-01 | Sony Interactive Entertainment Inc. | Force sense presentation device |
WO2022201693A1 (ja) | 2021-03-22 | 2022-09-29 | 株式会社ワコム | コントローラ及びトラッキングシステム |
WO2023286191A1 (ja) * | 2021-07-14 | 2023-01-19 | 株式会社ソニー・インタラクティブエンタテインメント | 情報処理装置および駆動データ生成方法 |
WO2023157653A1 (ja) * | 2022-02-18 | 2023-08-24 | ソニーグループ株式会社 | 情報処理装置及び情報処理方法 |
Also Published As
Publication number | Publication date |
---|---|
US20230185389A1 (en) | 2023-06-15 |
JP7401427B2 (ja) | 2023-12-19 |
US20210072847A1 (en) | 2021-03-11 |
US12073032B2 (en) | 2024-08-27 |
JPWO2019225170A1 (ja) | 2021-06-24 |
JP2024012599A (ja) | 2024-01-30 |
CN112041789B (zh) | 2024-05-31 |
CN112041789A (zh) | 2020-12-04 |
US11604520B2 (en) | 2023-03-14 |
CN118567473A (zh) | 2024-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019225170A1 (ja) | 位置指示デバイス及び空間位置指示システム | |
US10564730B2 (en) | Non-collocated haptic cues in immersive environments | |
JP5969626B2 (ja) | 高められたジェスチャ・ベースの対話のためのシステム及び方法 | |
JP4044114B2 (ja) | 把持式コンピュータインタラクティブデバイス | |
JP6626576B2 (ja) | 操作デバイス、及び制御システム | |
KR101548156B1 (ko) | 촉감과 관절 저항감을 동시에 전달하는 무선 외골격 햅틱 인터페이스 장치 및 그 구성 방법 | |
KR100812624B1 (ko) | 입체영상 기반 가상현실장치 | |
CN104714687A (zh) | 用于触觉显示参数的光学传输的系统和方法 | |
US20120135803A1 (en) | Game device utilizing stereoscopic display, method of providing game, recording medium storing game program, and game system | |
JP2010287221A (ja) | 力覚提示装置 | |
KR101578345B1 (ko) | 역감을 재생하는 장치 | |
JPWO2017043610A1 (ja) | 情報処理装置、方法およびコンピュータプログラム | |
CN102426486B (zh) | 一种立体交互方法及被操作设备 | |
KR20080034291A (ko) | 범용 입력장치 | |
CN111344663B (zh) | 渲染装置及渲染方法 | |
KR101518727B1 (ko) | 입체 인터랙션 시스템 및 입체 인터랙션 방법 | |
EP3470960A1 (en) | Haptic effects with multiple peripheral devices | |
CN102508562A (zh) | 一种立体交互系统 | |
KR20190059234A (ko) | 햅틱 액세서리 장치 | |
JP2003337962A (ja) | 画像処理装置および画像処理方法、ならびに、画像処理プログラムおよびその記録媒体 | |
CN102508561A (zh) | 一种操作棒 | |
JP2021162876A (ja) | 画像生成システム、画像生成装置及び画像生成方法 | |
KR102337816B1 (ko) | 입력장치 및 이를 이용한 데이터 입력방법 | |
KR20170124199A (ko) | 인체의 움직임을 이용한 전자기기 제어장치 | |
KR20160089982A (ko) | 동작인식센서를 이용한 입력장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19806766 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020521071 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19806766 Country of ref document: EP Kind code of ref document: A1 |