WO2019223813A1 - 换流阀 - Google Patents

换流阀 Download PDF

Info

Publication number
WO2019223813A1
WO2019223813A1 PCT/CN2019/095107 CN2019095107W WO2019223813A1 WO 2019223813 A1 WO2019223813 A1 WO 2019223813A1 CN 2019095107 W CN2019095107 W CN 2019095107W WO 2019223813 A1 WO2019223813 A1 WO 2019223813A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
thyristor
module
converter valve
arrester
Prior art date
Application number
PCT/CN2019/095107
Other languages
English (en)
French (fr)
Inventor
高冲
汤广福
王华锋
周建辉
贺之渊
王治翔
盛财旺
张静
张娟娟
王航
查鲲鹏
Original Assignee
全球能源互联网研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院有限公司 filed Critical 全球能源互联网研究院有限公司
Publication of WO2019223813A1 publication Critical patent/WO2019223813A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change

Definitions

  • the present application relates to the technical field of DC power transmission, for example, to a converter valve.
  • the converter valve is the core equipment of the DC transmission project.
  • the three-phase AC voltage is connected to the DC terminal in order to obtain the desired DC voltage and control the power.
  • the potential of the shielding cover of the converter valve is fixed on the main circuit, and the stray capacitance generated on the shielding cover has an influence on the component partial voltage of the main circuit in the converter valve module, which will cause uneven component partial voltage. This non-uniformity will cause distortion and damage to the thyristor voltage on the main circuit under the shock of a steep wave.
  • the present application overcomes the defect that the lightning arrester in the valve tower in the related art is disposed outside the converter valve module, the potential of the shielding cover is connected to the main circuit, and the thyristor in the main circuit is damaged.
  • An embodiment of the present application provides a compact and intelligent converter valve, including:
  • Each layer of converter valve modules includes a main module, which includes a first main module and a second main module connected to each other.
  • a first arrester is provided, and the two ends of the first arrester are respectively a first potential and a second potential;
  • a second arrester is provided inside the second main module, and the two ends of the second arrester are respectively a second potential And third potential
  • a shield cover assembly is connected to the outside of the main module.
  • the shield cover assembly includes a first shield cover, a second shield cover, and a third shield cover.
  • the potential of the first shield cover is fixed to the first main cover.
  • the potential of the third shielding cover is fixed to the third potential of the second lightning arrester inside the second main module;
  • the potential of the second shielding cover is fixed to the first potential A second potential of a lightning arrester and a second lightning arrester;
  • a first surge arrester equivalent circuit and a second surge arrester equivalent circuit the first surge arrester equivalent circuit being disposed between a first potential of the first shielding case and a second potential of the second shielding case, the The second surge arrester equivalent circuit is set between the second potential of the second shield cover and the third potential of the third shield cover; both the first surge arrester equivalent circuit and the second surge arrester equivalent circuit are Including: three shields to ground stray capacitance, the first ends of the three shields to ground stray capacitance are respectively connected to the first potential, the second potential and the third potential, and the three shields pair The second ends of the ground stray capacitance are all grounded; and the value of the stray capacitance of the arrester is greater than the value of the stray capacitance of the shield to the ground.
  • FIG. 1 is a schematic structural diagram of a converter valve module provided by the present application
  • FIG. 2 is a schematic structural diagram of a shield cover component, a main module, and a reactor module in a converter valve module provided in the present application;
  • FIG. 3 is a schematic structural diagram of a shielding cover component in a converter valve module provided by the present application.
  • FIG. 4 is a schematic diagram of a connection between a first arrester and a second arrester provided by the present application
  • FIG. 5 is a schematic diagram of connections between a first main module frame, a second main module frame, a first reactor frame, and a second reactor frame provided in the present application;
  • FIG. 6 is a schematic structural diagram of a first damping capacitor and a second damping capacitor provided by the present application
  • FIG. 7 is a schematic structural diagram of a first reactor module and a second reactor module provided by the present application.
  • FIG. 8 is a schematic structural diagram of a first door-level unit and a second door-level unit provided in the present application;
  • FIG. 9 is a schematic structural diagram of a first thyristor press-fitting structure and a second thyristor press-fitting structure provided in the present application;
  • FIG. 10 is a schematic structural diagram of a thyristor assembly provided in the present application.
  • FIG. 11 is a cross-sectional view of a specific example of a heat sink provided by the present application.
  • FIG. 12 is a schematic diagram of a specific example of a first thyristor press-fitting structure provided in an embodiment of the present application.
  • FIG. 13 (a)-(d) are schematic diagrams of a specific example of an installation process of a thyristor press-fitting structure provided in an embodiment of the present application;
  • FIG. 14 is a side view of a specific example of a first thyristor press-fitting structure provided in an embodiment of the present application.
  • FIG. 15 is a cross-sectional view of a specific example of a pressure component provided by the present application.
  • FIG. 16 is a schematic structural diagram of the water cooling system provided by the present application.
  • FIG. 18 is a schematic diagram of a side of the heat sink set provided by the present application.
  • 19 is a schematic structural diagram of a bus bar between reactors and a bus bar between reactors and thyristors provided in the present application;
  • FIG. 21 is a schematic diagram of the arrangement of the interlayer lightning conductors and the intralayer lightning conductors provided in the present application.
  • 22 is a schematic structural diagram of the insulated water pipe provided by the present application.
  • FIG. 24 is a schematic structural diagram of the lifting ear provided by the present application.
  • FIG. 25 is a circuit schematic diagram of the compact and intelligent converter valve provided by the present application.
  • FIG. 26 is a schematic diagram of a specific example of an online monitoring device provided by the present application.
  • FIG. 27 is a schematic diagram of a specific example of a smart sensor of an online monitoring device provided by this application.
  • FIG. 28 is a waveform diagram of a thyristor voltage distribution under a single-wave shock of a single valve according to the shielded isolating voltage equalization technology of the present application;
  • FIG. 29 is a schematic diagram of a modular structure of a first reactor module or a second reactor module provided for the present application.
  • x11-first main module x111-first main module frame, x112-first thyristor press-fitting structure, x113-first gate-level unit, x114-first damping capacitor, x115-first arrester;
  • x12- second main module x121- second main module frame
  • x122- second thyristor press-fit structure x123- second door-level unit, x124- second damping capacitor; x125- second arrester;
  • 17-reactor module 171-first reactor module, 1711-first reactor frame, 1712-first reactor, 1713-second reactor, 172-second reactor module, 1721-second reactor Frame, 1722-third reactor, 1723-fourth reactor, 19-shock absorber, 1714-first auxiliary reactor, 1724-second auxiliary reactor, 1715-first parallel branch, 1716-first Branch resistance, 1717- branch line reactor, 1718- branch saturation reactor;
  • 18-shield cover assembly 181-first shield cover, 182-second shield cover, 183-third shield cover;
  • 101-reactor busbar 101-reactor busbar, 102-reactor thyristor busbar, 103-first valve module inlet and outlet line, 104-second valve module inlet and outlet line, busbar structure-105;
  • 300-online monitoring device 310- wireless communication master station, 320-sensor data collector, 330-control unit, 340-smart sensor;
  • e1-up single valve e11-first up single valve, e12-second up single valve, e2-down single valve; e21-first down single valve; e22-second down single valve;
  • R d -damping resistance L Rd -parasitic inductance, C d -damping capacitance, C thy -thyristor junction capacitance; L thy -thyristor parasitic inductance, R dc -DC equalizing resistance, C j -mutual capacitance between heat sinks, R thy -thyristor equivalent resistance.
  • the terms “center”, “upper”, “lower”, “left”, “right”, “vertical”, “horizontal”, “inside”, “outside” and the like indicate the orientation or position The relationship is based on the orientation or position relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, structure and operation in a specific orientation. It should not be construed as a limitation on this application.
  • the terms “first,” “second,” and “third” are used for descriptive purposes only, and should not be construed to indicate or imply relative importance.
  • the terms “installation,” “connected,” and “connected” should be understood in a broad sense, unless otherwise specified and defined, for example, they may be fixed connections, detachable connections, or integrated Connection; it can be mechanical or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, and it can be the internal connection of two elements.
  • installation should be understood in a broad sense, unless otherwise specified and defined, for example, they may be fixed connections, detachable connections, or integrated Connection; it can be mechanical or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, and it can be the internal connection of two elements.
  • This embodiment provides an intelligent converter valve 1000 (also referred to as a converter valve tower). As shown in FIG. 20, the top of the converter valve 1000 is suspended, and the converter valve 1000 includes a plurality of components that are sequentially hoisted in a vertical direction.
  • the converter valve module 40 can conduct electric current between two adjacent converter valve modules 40; the converter valve 1000 includes the following parts: a steel frame h1, which is fixedly installed at a suspension point, in an assembled state The steel frame h1 is fixedly connected to the workshop ceiling.
  • a top shield a1 is hoisted under the steel frame h1; a bottom shield a2 is provided under the top shield a1, and a plurality of hoists are mounted between the top shield a1 and the bottom shield a2
  • the converter valve modules 40 are arranged parallel to each other in a vertical direction.
  • the converter valve module 40 in this embodiment includes the following components:
  • the main module x1 includes a first main module x11 and a second main module x12 connected to each other.
  • the first main module x11 is located on the left side of the main module x1, and the second main module x12 is located Right position.
  • the components included in the first main module x11 and the second main module x12 are the same, but the way of setting the components is different.
  • the first main module x11 and the second main module x12 are both provided with: a main module frame, a thyristor press-fit structure, a door-level unit, a damping capacitor and a lightning arrester, a thyristor press-fit structure, a door
  • the stage unit, damping capacitor and arrester are located inside the main module frame. As shown in FIG.
  • a first lightning arrester x115 is provided in the first main module x11, and two ends of the first lightning arrester x115 are respectively a first potential a and a second potential b; the second main module x12 is internally provided with A second lightning arrester x125, the two ends of which are respectively a second potential b and a third potential c.
  • the first main module x11 includes: a first main module frame x111; a plurality of modules are installed inside the first main module frame x111
  • the first thyristor press-fitting structure x112, the first gate-level unit x113, the first damping capacitor x114, and the first arrester x115 are arranged next to each other; as shown in FIG. 4, the first in the first main module x11
  • the two ends of the arrester x115 are a first potential a and a second potential b, respectively.
  • the second main module x12 includes: a second main module frame x121; a plurality of second thyristor press-fitting structures x122, a second gate-level unit x123, Two damping capacitors x124 and a second arrester x125; as shown in FIG. 4, two ends of the second arrester x125 are a second potential b and a third potential c, respectively.
  • the first main module frame x111 and the second main module frame x121 are connected together through a connection member.
  • reactor modules 17 are provided on both sides of the main module x1.
  • two sets of reactor modules 17 are respectively disposed on the left and right sides of the main module x1, and reactors are provided inside the reactor module 17.
  • the two sets of reactor modules 17 include a first reactor module 171 and a second reactor module 172. As shown in FIG. 5 and FIG.
  • the first reactor module 171 includes: a first reactor frame 1711, a first A reactor 1712 and a second reactor 1713, and a first reactor frame 1711 is connected to the first main module frame x111; both the first reactor 1712 and the second reactor 1713 are arranged in line with the first reactor Inside the reactor frame 1711; the second reactor module 172 includes a second reactor frame 1721, a third reactor 1722, and a fourth reactor 1723, and the second reactor frame 1721 is connected to the second main module frame x121 The third reactor 1722 and the fourth reactor 1723 are arranged inside the second reactor frame 1721 in an array.
  • the first reactor module 171 is further provided with a first parallel branch 1715 including a first branch resistor 1716 and a first auxiliary reactor 1714 connected in series in this order.
  • the first auxiliary reactor 1714 is connected in parallel with the first reactor 1712 or the second reactor 1713, and is configured to transfer losses of the first reactor 1712 or the second reactor 1713, and the first auxiliary reactor 1714 It includes: a branch line reactor 1717 configured to transfer the loss of the first reactor 1712 or the second reactor 1713 to the parallel branch circuit when the converter valve 1000 is turned on and off; and a branch saturation reactor 1718 is configured to transfer the loss of the first reactor 1712 or the second reactor 1713 to the first parallel branch 1715 when the converter valve 1000 is closed.
  • the second auxiliary reactor 1724 is disposed in the second reactor module 172.
  • the first auxiliary reactor 1714 includes: a branch line reactor 1717, which is configured to switch the first reactor 1712 or The loss of the second reactor 1713 is transferred to the first parallel branch 1715.
  • the so-called branch line reactor 1717 may be a constant inductance inductor, may be a core inductor, or may be a coreless inductor.
  • Use coreless linear inductor In order to reduce the volume of the branch reactor, in this embodiment, Use coreless linear inductor.
  • the branch reactor is a branch line reactor 1717, the choice of the branch reactor value will affect the thyristor protection characteristics of the saturation reactor. Generally, the inductance of the linear reactor is small.
  • the inductance value is the same as the inductance value when the first reactor 1712 or the second reactor 1713 is not saturated, but it should be smaller than the first reactor 1712 or the second reactor. Inductance at 1713 without saturation. Because the inductance of the branch line reactor 1717 is constant, the branch line reactor 1717 plays a role of transferring the loss of the main reactor at the time of turning on and off.
  • the branch reactor can also be the branch saturation reactor 1718, which is set to switch the first reactor 1712 or the second reactor when the converter valve 1000 is turned off.
  • the loss of 1713 is transferred to the first parallel branch 1715.
  • the branch saturation reactor 1718 in order not to increase the volume of the branch saturation reactor 1718, should adopt a small iron core multi-winding structure, and the resistance of the iron core eddy current loss needs to be reasonably amplified according to the amount of the iron core; Ensure the suppression of the current rise rate of the branch saturation reactor 1718 as a whole.
  • the branch saturation flux cannot be selected too small and should be equal to or slightly lower than the first reactor 1712 or the second Reactor 1713 saturates the magnetic flux.
  • the branch saturation reactor 1718 is not saturated at the initial time of the switching valve 1000, the branch saturation reactor 1718 is not saturated and the inductance value is large.
  • the first parallel branch 1715 is approximately open. When the first reactor When the reactor 1712 or the second reactor 1713 is close to saturation, the branch saturation reactor 1718 reaches saturation.
  • the first parallel branch 1715 is connected to the first reactor 1712 or the second reactor 1713, and the current will be shunted from the main reactor to the first reactor 1712.
  • a parallel branch 1715 is consumed by it, and the loss of the first reactor 1712 or the second reactor 1713 when the converter valve 1000 is opened can be transferred.
  • a shielding cover assembly 18 is connected outside the main module 11 and the reactor module 17.
  • the shielding cover assembly 18 includes a first shielding cover 181 and a potential of the first shielding cover 181. Fixed to the first potential a of the first lightning arrester x115 inside the first main module x11; the potential of the third shield 183, the third shield 183 is fixed to that of the second lightning arrester x125 inside the second main module x12 The third potential c; the second shielding cover 182, the potential of the second shielding cover 182 is fixed to the second potential b of the first arrester x115 and the second arrester x125.
  • a lifting lug b0 is provided on the converter valve module 40.
  • the lifting lug b0 includes a plurality of frame hangers.
  • Ear b1 is symmetrically disposed on the first main module frame x111 and the second main module frame x121; a middle lifting ear b2 is provided on the connecting piece; a plurality of reactor lifting ears b3 are provided on the The first reactor frame 1711 and the second reactor frame 1721 are on.
  • the number of the middle lifting eyes b2 is one or more.
  • an insulator is provided in this embodiment.
  • an inter-layer insulator c1 is connected between two adjacent converter valve modules 40, and two ends of the inter-layer insulator c1 are respectively embedded in the hangers of the adjacent converter valve module 40. Ear b0.
  • a top insulator c2 is provided between the steel frame h1 and the top shield cover a1. One end of the top insulator c2 is connected to the top shield cover a1, and the other end is connected to the steel frame h1.
  • An interlayer insulator c1 is provided between the top shield a1 and the topmost converter valve module 40.
  • the lower end of the interlayer insulator c1 is connected to the lifting lug b0 of the topmost converter valve module 40, and the upper end is connected.
  • the interlayer insulator c1 is provided between the bottommost converter valve module 40 and the bottom shield a2, and the upper end of the interlayer insulator c1 is connected to the suspension of the bottommost converter valve module 40.
  • the lower end of the ear b0 is connected to the bottom shield a2.
  • a busbar structure 105 is provided in the converter valve module 40, and the busbar structure 105 is provided in each of the reactances.
  • the bus module 17, the busbar structure 105 includes:
  • the inter-reactor bus bar 101 is provided between the first reactor 1712 and the second reactor 1713, or between the third reactor 1722 and the fourth reactor 1723, so as to make a current Conduction is performed between two of the first reactor 1712 and the second reactor 1713, or between the third reactor 1722 and the fourth reactor 1723.
  • a reactor thyristor bus bar 102 is further provided in this embodiment, and the first reactor is connected at both ends of the reactor thyristor bus bar 102 on the left side.
  • the two ends of the reactor thyristor bus bar 102 on the right side are connected to the third reactor 1722 and the second thyristor press-fitting structure x122.
  • the reactor-to-thyristor bus bar 102 is used to make current flow through the second reactor 1713, the reactor bus bar 101, the first reactor 1712, the first thyristor press-fit structure x112,
  • the second thyristor press-fitting structure x122, the third reactor 1722, the inter-reactor bus bar 101, and the fourth reactor 1723 realize the transfer of current between a plurality of reactors.
  • the busbar structure 105 is also provided with a first valve module inlet and outlet line 103, which is described in each layer of the converter valve module 40.
  • the second reactor 1713 is connected; the second valve module inlet and outlet line 104 is connected to the fourth reactor 1723 in the converter valve module 40 of each layer; the current passes through the first valve module inlet and outlet line 103 and the The second valve module inlet / outlet line 104 flows into or out of each layer of the valve module 40.
  • a valve module interlayer bus bar d4 is provided between the two adjacent layers of the converter valve modules 40, and one end of the valve module interlayer bus bar d4 is connected to the upper layer of the valve module.
  • a top shield cover bus bar d2 is provided between the top shield cover a1 and the adjacent converter valve module 40.
  • top shield cover bus bar d2 is connected to the first valve module inlet and outlet line 103, and the other end is connected.
  • the top shield cover a1; a bottom shield cover bus d3 is provided between the bottom shield cover a2 and the adjacent converter valve module 40, and one end of the bottom shield cover bus d3 is connected to the second valve module in and out
  • the other end of the wire 104 is connected to the bottom shield a2.
  • a set of single valves is formed between two adjacent converter valve modules 40 in this embodiment.
  • the number of converter valve modules 40 is four.
  • the single valve includes an upper single valve e1 and a lower single valve e2, and a valve tower inlet is provided on the interlayer busbar d4 of the valve module between the upper single valve e1 and the lower single valve e2.
  • Wire tube mother d41, the top shield cover busbar d2 is provided with a valve outlet valve mother d21 on the valve tower, and the bottom shield cover busbar d3 is provided with a valve outlet valve outlet pipe mother d31 below the valve tower;
  • the current flowing into the wire tube mother d41 is divided into two paths, which respectively enter the valve outlet tube mother d21 on the valve tower and the valve outlet tube mother d31 under the valve tower and flow out.
  • the current flows in through the valve tower inlet pipe mother d41 on the valve module interlayer busbar d4, and then divides into two circuits.
  • the upward path first enters the second upper single valve e12 through the second valve module inlet and outlet line 104, flows from the first valve module inlet and outlet line 103 of the second upper single valve e12, and then flows into the second upper single valve e11.
  • the valve module inlet and outlet line 104 flows in from the first valve module inlet and outlet line 103 of the first upper single valve e11, then flows into the top shield cover bus d2, and flows out from the valve outlet tube mother d21 on the valve tower.
  • the downward route flows into the first order valve e21 through the first valve module inlet and outlet line 103, then flows out through the second valve module inlet and outlet line 104 and enters the valve module interlayer busbar d4, and then flows downward into the second order.
  • the first valve module inlet and outlet line 103 of the valve e22 flows out from the second lower single valve e22 to the bottom shield cover bus d3 through the second valve module inlet and outlet line 104, and finally flows out of the valve outlet pipe mother d31 under the valve tower.
  • the number of the converter valve modules 40 may be six groups. At this time, the three groups of converter valve modules 40 located above form the upper single valve e1, and the three groups of converter valve modules 40 located below form the lower single valve e2.
  • the number of the converter valve modules 40 is not limited to an even array.
  • the current flows from the converter valve module 40 located at the most central part, and then is divided into two Way to flow.
  • the alternating current enters through the middle part is divided into two paths and flows upward and downward respectively.
  • the two paths of current share a set of reactor modules 17, which can effectively reduce the internal reactance of the entire converter valve 1000.
  • the number of device modules contributes to the miniaturization of the device.
  • a plurality of the single valves are divided into an upper single valve e1 and a lower single valve e2, and the upper single valve e1 and the lower single valve.
  • the first arrester x115 and the second arrester x125 in the converter valve module 40 in each floor are connected by an in-layer arrester wire f1.
  • the third potential c of the second lightning arrester x125 of the converter valve module 40 and the first potential a of the first lightning arrester x115 of the converter valve module 40 located at the lower level are connected through the interlayer lightning conductor f2.
  • the first arrester x115 and the second arrester x125 between two adjacent converter valve modules 40 are connected by an in-layer arrester wire f1, and by the in-layer arrester wire f1 and the inter-layer arrester wire f2.
  • the first potential a of the first arrester x115 of the converter valve module 40 in the upper layer of the single valve and the third potential c of the second arrester x125 of the converter valve module 40 in the lower layer are connected to each other.
  • the upper single valve e1 includes a first upper single valve e11 and a second upper single valve e12; the lower single valve e2 includes a first lower single valve e21 and a second lower single valve e22.
  • the converter valve 1000 further includes an optical fiber slot j1, and an optical fiber is disposed in the optical fiber slot j1.
  • the optical fiber is two-way, and one way is connected to each layer of commutation down the top shield a1.
  • the first main module x11 of the valve module 40; the other path is connected to the second main module x12 of the converter valve module 40 of each floor downward along the top shield a1.
  • the number of optical fibers in the optical fiber slot j1 is four, and each optical fiber is connected to the first door-level unit x113 inside the first main module x11 or the second door-level unit x123 inside the second main module x12. ⁇ ⁇ Phase connection.
  • the lengths of the four fibers are shortened in order.
  • the length of the first optical fiber only acts on the first upper single valve e11
  • the length of the second optical fiber acts on the second upper single valve e12
  • the third One optical fiber acts only on the first lower single valve e21
  • the fourth optical fiber acts only on the second lower single valve e22.
  • the first thyristor press-fitting structure x112 and the second thyristor press-fitting structure x122 include: a thyristor assembly 111, and the thyristor assembly 111- A voltage equalizing resistor 4 is provided on the side, and a first bus bar 81 and a second bus bar 82 are respectively connected to both ends of the thyristor assembly 111, and a current flows into the thyristor assembly 111 through the first bus bar 81, and then from the thyristor assembly 111.
  • the second busbar 82 flows out.
  • the first thyristor press-fitting structure x112 and the second thyristor press-fitting structure x122 further include an insulating support beam 9 which is disposed between the movable end plate 61 and the fixed end plate 62 and is located at At the bottom of the thyristor assembly, before and after the first thyristor press-fitting structure x112 and the second thyristor press-fitting structure x122 are press-fitted and disassembled, the insulating support beam 9 is provided to support the thyristor assembly 111.
  • a climbing-increasing groove 91 is provided on the insulating support beam 9. The creep-increasing groove 91 is provided to increase the creepage distance between two adjacent radiators 3 to solve the problem of insufficient creep distance between two adjacent radiators 3.
  • a pressure is provided in a receiving cavity between the thyristor assembly 111 and the movable end plate 61.
  • the pressure component 7 is configured to closely attach the first bus bar 81 and the second bus bar 82 to the thyristor component 111.
  • the first bus bar 81 is mounted on the pressure component 7
  • the second bus bar 82 is mounted on the last radiator 3 of the thyristor component 111 away from the pressure component 7. .
  • a mounting hole 611 is provided in the movable end plate 61.
  • the pressure component provided in this embodiment includes: an adapter 71, which is installed in the activity In the mounting hole 611 of the end plate 61; a press-fit screw 73 is nested in the adapter 71; a pressure member is provided between the press-fit screw 73 and the first bus bar 81, and is provided to provide The first bus bar 81 presses the elastic force of the thyristor assembly 111.
  • the pressure member includes: a conical washer 79 that is sleeved on the inner wall of the press-fit screw 73 so as to be movable with respect to the press-fit screw 73; On the cone washer 79, a disc spring 74 is provided between the disc spring pressing piece 75 and the pressing screw 73, and the disc spring 74 is used to provide the elastic force.
  • a centering hole 791 is provided on the cone washer 79, and a spherical surface is provided between the centering hole 791 and the first bus bar 81.
  • a washer 77 is embedded in the centering hole 791, and the spherical spherical surface 772 of the spherical washer 77 and the spherical conical surface 792 of the tapered gasket 79 are in line contact.
  • the contact area of the line contact is small, which can effectively reduce the friction force generated when the two are in contact, which is beneficial to optimize the assembly process.
  • the assembling process of the pressure component 7 is as follows:
  • the disc spring 74 and the disc spring pressing piece 75 are sleeved into the press-fit screw 73, and the press-fit screw 73 and the outer shaft at the rear end of the press-fit screw 73 are adaptively installed; the self-aligning cone 792 and the cone washer of the spherical washer 77 described above
  • the 79 upward self-centering spherical surface 772 cooperates to adjust the pressure, so that the pressure always points to the center of the ball.
  • the fixing part of the pressure part is connected to the outer circle of the adapter 71, and the ejection mechanism of the pressure part is pressed on the central shaft of the press-fit screw 73.
  • the pressure causes the disc spring 74 to compress, and the lock nut 72 and the press-fit screw 73 move simultaneously.
  • the lock nut 72 is screwed on the movable end plate 61.
  • an alignment hole 811 is provided on the first bus bar 81, and a protrusion 771 is provided on an end of the spherical washer 77 remote from the centering hole 791, and the protrusion 771 is inserted into the Align the holes 811 so that the spherical washer 77 is stably connected to the first bus bar 81.
  • the connection stability of the spherical washer 77 on the first bus bar 81 is provided.
  • both ends of the insulating tie rod 5 are provided with necked portions 51, and adjacent necked portions 51 are provided with outer diameters larger than the necked portions 51.
  • a step, a pressure bearing end 53 is provided on one side of the step, the movable end plate 61 and the fixed end plate 62 are provided with a connection hole with a gap, and the necked portion 51 enters the connection through the gap In the hole, an external force acts on the movable end plate 61 and the fixed end plate 62, the connection hole moves to the step, and the movable end plate 61 and the fixed end plate 62 are pressed by the pressure The end 53 is restricted to prevent detachment.
  • the plug-in structure is adopted between the insulating tie rod 5 and the movable end plate 61 and the fixed end plate 62.
  • the plugging action is: the neck 51 of the insulating tie rod 5 is inserted into the connection hole of the movable end plate 61 and the fixed end plate 62; the stretching action In order to: stretch the insulating tie rod 5 toward the distal end of the movable end plate 61 and the fixed end plate 62; through the insertion and pulling action, the insulating tie rod 5 fixes the insulating support beam 9 between the movable end plate 61 and the fixed end plate 62.
  • FIGS. 13 (a) to 13 (d) when the thyristor press-fitting structure of this embodiment is specifically installed, firstly, the above-mentioned pressure assembly 7 is installed on the movable end plate 61, and the above-mentioned first female The row 81 is attached to the pressure component 7, and then the thyristor 1 and the radiator 3 provided with the damping resistor 2 and the voltage equalizing resistor 4 are alternately arranged until the last radiator 3 is arranged, and finally the second bus bar 82 is mounted on the A cross-sectional view of the thyristor press-fitting structure on the last radiator 3 is shown in FIG. 14. The entire installation process does not require bolting, which reduces installation time and installation cost. Moreover, when the thyristor press-fit structure obtained by using this installation method is unloaded, the relative position of the thyristor 1 and the radiator 3 is unchanged, which can realize cooling water pipes. Replace the thyristor 1 without moving the electrical connections.
  • the structure of the thyristor assembly 111 in the thyristor press-fitting assembly includes:
  • a plurality of radiators 3 arranged along the same straight line array, and thyristors 1 are disposed between two adjacent radiators 3; the radiator 3 is provided with a damping resistor heat dissipation area 31 for the damping resistor 2 to dissipate heat, and A thyristor heat dissipation area 32 corresponding to the thyristor 1; a damping resistor cooling flow path 33 and a thyristor cooling flow path 34 are provided inside the radiator 3, and a cooling liquid is cooled along the damping resistor cooling flow path 33 and the thyristor The flow channel 34 flows.
  • the cooling liquid flows into the thyristor heat dissipation area 32 and the damping resistor heat dissipation area 31, and is used for the thyristor 1 and the damper connected to the heat sink 3
  • the resistor 2 is cooled.
  • the radiator 3 is different from the liquid inlet 35 and the liquid outlet 36 provided on the side wall connected to the thyristor 1.
  • Two adjacent radiators 3 are connected in series to form a radiator. Group, the coolant flows in through the liquid inlet 35 of one of the radiators 3, after cooling the radiator 3, flows out from the liquid outlet 36 and flows into the liquid inlet 35 of the other radiator 3, and Finally, it flows out of the liquid outlet 36 of the radiator 3.
  • the first thyristor press-fitting structure x112 and the first lightning arrester x115 and the second thyristor press-fitting structure x122 and A water cooling system 200 is provided between the second arrester x125, and the water cooling system 200 includes: a thyristor press-fit water pipe 201 connected to the first thyristor press-fit structure x112 and the second thyristor press-fit structure x122, The thyristor press-fitted water pipe 201 acts on the radiator group; and a reactor water pipe 202 connected to the first reactor module 171 and the second reactor module 172.
  • the water cooling system 200 includes a water inlet main pipe 203 and a water outlet main pipe 204.
  • Two sets of tees 205 are provided on the converter valve module 40 on each floor, and three The tee 205 is provided correspondingly.
  • the tee 205 includes two vertical water outlets and a horizontal water outlet opposite to each other. The horizontal water outlet connects the water inlet main pipe 203 and the water outlet main pipe 204.
  • a cold water head is provided on the water inlet main pipe 203, and a hot water head is provided on the water outlet main pipe 204.
  • the cold water head is connected to the liquid inlet 35 of one of the radiators 3 in the radiator group.
  • the cold water head is connected to the liquid outlet 36 of another radiator 3 in the radiator group.
  • a plurality of cold water heads and hot water heads are arranged in parallel. As shown in the figure, nine parallel cold water heads and hot water heads are provided in the thyristor press-fit water pipe 201, and the reactor water pipe 202 is provided. A cold water head and a hot water head are separately arranged on the top, and 10 groups of cold water heads and hot water heads are arranged in parallel to cool the first thyristor press-fitting structure x112 and the first reactor module 171 in the first main module. Similarly, the above-mentioned cooling principle is also adopted in the second thyristor press-fitting structure x122 and the second reactor module 172.
  • the damping resistor heat dissipation area 31 is disposed above the thyristor 1, and the damping resistor 2 is detachably mounted on the damping resistor heat dissipation area 31.
  • the damping resistor 2 is installed in the damping resistor heat dissipation area 31, the outer surface of the damping resistor 2 is flush with the outer surface of the heat sink 3.
  • the damping resistor 2 includes: an insulating shell 21 that can be mounted on the heat sink 3 by screws i1; a resistance wire 22 that is provided inside the insulating shell; a metal base plate 23 and a metal base plate 23, connected below the resistance wire 22, a thermally conductive insulating material 24 is provided between the metal base plate 23 and the resistance wire 22, and when the damping resistor 2 is installed on the heat sink 3, the metal base plate 23 is in contact with the heat sink 3, and the heat on the resistance wire 22 is transferred to the damping resistor heat dissipation area 31 through the thermally conductive insulating material 24 and the metal base plate 23.
  • the thermally conductive insulating material 24 is a ceramic plate, and a solder layer 27 is provided between the ceramic plate and the resistance wire 22 and between the ceramic plate and the metal base plate 23.
  • a spring 25 is provided between the resistance wire and the inner wall of the insulating shell. After the insulating shell 21 is installed in the damping resistor heat dissipation area 31, the insulating shell 21 pushes the spring 25. The resistance wire 22, the thermally conductive insulating material 24, and the metal base plate 23 press the force of the damping resistor heat dissipation area 31.
  • a hanging ring 10 is provided on the upper portion of the movable end plate 61 and the fixed end plate 62. During the installation process, the overhead crane 10 and other equipment can hoist the multilayer thyristor press-fitting structure in parallel inside the converter valve module 40 through the hanging ring 10.
  • the converter valve 1000 further includes two water pipes.
  • One water pipe is connected to the water inlet main pipe 203, and the other water pipe is connected to the water outlet main pipe 204.
  • the water pipe includes: an insulated water pipe g1, It is arranged between the steel frame h1 and the top shield a1; an interlayer insulating water pipe g2 is connected between the two adjacent layers of the converter valve module 40, and the interlayer insulating water pipe g2 is connected to the tee. Connection; the bypass water pipe g3, both ends of which are connected to the bottom of the two water pipes.
  • the compact and intelligent converter valve 1000 provided in this embodiment further includes a first lightning arrester equivalent circuit k1 and a second lightning arrester equivalent circuit k2, and the first lightning arrester equivalent circuit k1 is provided in the Between the first potential a of the first shielding cover 181 and the second potential b of the second shielding cover 182, the second surge arrester equivalent circuit k2 is provided at the second potential b of the second shielding cover 182 And the third potential c of the third shielding cover 183; the first lightning arrester equivalent circuit k1 and the second lightning arrester equivalent circuit k2 each include: three shielding cover stray capacitances C g , the three shield stray capacitance to ground C g are respectively connected to a first end of said first potential a, a second potential and a third potential b c, three shield the stray capacitance to ground is C g a second end grounded; and a parasitic capacitance C a surge arrester, said arrester parasitic capacitance C a surge arrester,
  • an equivalent circuit of the first arrester k1 and k2 second arresters equivalent circuit further comprises: arrester parasitic inductance L a, nonlinear resistance R (i) and the corresponding shielding The mutual capacitance C s of the shield; one end of the parallel circuit composed of the non-linear resistor R (i) and the parasitic capacitance C a of the arrester is connected to the first end of the corresponding mutual capacitance C s of the shield, the non-linearity the resistance R (i) the other end of the parallel circuit and the parasitic capacitance C a surge arrester composed by the parasitic inductance L a corresponding arrester is connected to the second end of the shield a mutual capacitance C s; said first arrester The first and second ends of the corresponding shield mutual capacitance C s of the equivalent circuit k1 are respectively connected to the first potential a and the second potential b, and the corresponding shield mutual capacitance C of the second arrester equivalent circuit k2 s first
  • the compact intelligent converter valve 1000 further includes: a first series circuit composed of a plurality of thyristor-level equivalent circuits m1 connected in series;
  • the thyristor-level equivalent circuit m1 includes: damping resistance R d , parasitic inductance L Rd , damping capacitance C d , thyristor junction capacitance C thy , thyristor equivalent resistance R thy , thyristor parasitic inductance L thy , DC equalizing resistance R dc, and mutual capacitance C between the radiator J; wherein, the damping resistor R d, and parasitic inductance L Rd damping capacitance C d of the first branch in series, the thyristor junction capacitance C thy, the equivalent resistance R thy thyristor and a thyristor connected in series parasitic inductance of L thy two branches, said equalizing current mutual capacitance C j connected in
  • one end of the first reactance module 171 is connected to the input end of the converter valve module 40, and the other end of the first reactance module 171 is connected to the first The first end of the series circuit, one end of the second reactor module 172 is connected to the output end of the converter valve module 40, and the other end of the second reactor module 172 is connected to the second end of the first series circuit. end.
  • the compact and intelligent converter valve 1000 uses a shielded equalization technology, and cleverly utilizes the built-in lightning arrester of the converter valve module 40 to clamp the potential point of the shielding cover on the lightning arrester, completely eliminating the shielding cover from the ground.
  • the influence of the stray capacitance C g on the main circuit ensures the uniform distribution of the thyristor voltage of the key components in the main circuit of the converter valve 1000.
  • the present application can reduce the thyristor voltage unevenness to 0.17%, the maximum voltage steepness to 6.8kV / ⁇ s, and the interlayer voltage unevenness to 0.8%, realizing the series thyristor voltage balance. Distribution, greatly reducing the risk of damage to the thyristor 1 due to uneven voltage distribution.
  • a comparison diagram of the voltage distribution of thyristor 1 was obtained by using the shielded voltage equalization technology and related technologies, as shown in Figure 28.
  • the left side is the shielded voltage equalization technology
  • the right side is related Technology
  • the black line in the figure is the voltage waveform (V1-1) of the first-stage thyristor of the first-layer converter valve module 40 in FIG.
  • the short dashed line is the voltage waveform (V1- 32); the dotted line is the voltage waveform of the 16th level thyristor of the second-layer converter valve module 40 (V2-16); the dotted line is the voltage waveform of the 32nd level thyristor of the second-level converter valve module 40 (V2-32); It can be seen from FIG. 28 that the use of the shielded voltage equalization technology greatly improves the non-uniformity of the voltage distribution of the thyristor 1.
  • the 1000-voltage distribution of a converter valve using a shielded voltage equalizing voltage circuit is shown in Table 1.
  • the voltage distribution trend of multi-stage thyristor 1 is basically the same, between the maximum and minimum values. The difference is only 0.004kV, and the unevenness is 0.17%, which greatly reduces the unevenness coefficient of the converter valve 1000; the maximum voltage steepness of the thyristor 1 is 6.8kV / ⁇ s, which greatly improves the reliability of the device; the multilayer converter valve module The voltage distribution between 40 is very even, and the uneven pressure is 0.03%.
  • the compact intelligent converter valve 1000 provided in the embodiment of the present application further includes: an online monitoring device 300, the online monitoring device 300 includes: a wireless communication master station 310, a sensing data collector 320, a control unit 330, and at least one intelligent Sensor 340; the at least one smart sensor 340 is configured to obtain an operating parameter of each thyristor inside the thyristor assembly, and send the operating parameter to the control unit 330 through the wireless communication master station 310 and the sensing data collector 320; control The unit 330 is configured to receive the operating parameter, compare the operating parameter with a preset value, generate a comparison result, and determine whether the commutation valve 1000 is successfully commutated according to the comparison result.
  • an online monitoring device 300 includes: a wireless communication master station 310, a sensing data collector 320, a control unit 330, and at least one intelligent Sensor 340; the at least one smart sensor 340 is configured to obtain an operating parameter of each thyristor inside the thyristor assembly, and send the operating parameter
  • the smart sensor 340 is disposed on each of the thyristors 1 and the obtained operating parameters include: the voltage across the thyristor 1, and when the control unit 330 sets the voltage across the thyristor 1 to a preset value When the voltage across the thyristor 1 is less than a preset value, the control unit 300 determines that the commutation valve 1000 has failed to commutate; when the control unit 330 replaces the thyristor 1 by two The terminal voltage is compared with a preset value, and a comparison result is generated when the voltage across the thyristor 1 is greater than a preset value and the thyristor 1 withstands a forward voltage, the control unit 330 determines that the commutation valve 1000 is commutated success.
  • the above operating parameters further include multiple physical quantities such as voltage, current, voltage change rate, current change rate, power, temperature, pressure, torque, and small leakage current.
  • the intelligent online monitoring device provided by the embodiment of the present application
  • the smart sensor 340 of 300 monitors the operating parameters of thyristor 1 in real time and sends it to the upper control unit 330 through the transmission channel.
  • the number of smart sensors 340 in a single valve is at least one, and the number of thyristor stages in a single valve is at most;
  • Each smart sensor 340 separately monitors the operating parameters of thyristor 1 in a thyristor stage;
  • the upper control unit 330 generates the switching of the single valve according to the operating parameters of thyristor 1 transmitted by the smart sensor 340 of the same single valve in converter valve 1000 Phase failure information;
  • the DC control protection system executes the corresponding control logic based on the commutation failure information.
  • the DC control protection system uses an indirect measurement method to determine the commutation failure of the converter valve 1000.
  • the response time requires 20ms. This application can accurately determine the commutation failure of the converter valve 1000 within 1.5ms and transmit it to the DC control protection. System, the response speed is greatly accelerated, and the ability of the converter valve 1000 to resist commutation failure is enhanced.
  • the compact and intelligent converter valve 1000 provided in the embodiment of the present application adopts a built-in structure of a lightning arrester.
  • the potential point of the shielding cover on the periphery of each layer of the converter valve module 40 is fixed to the arrester, and the stray capacitance C g of the shielding cover to the ground and the converter are cut off.
  • the electrical connection relationship of the valve main circuit can completely isolate the leakage current flowing into or out of the converter valve main circuit through the shield to the ground stray capacitance C g . In this way, the capacitive current to the shield from the auxiliary circuit is provided by the auxiliary circuit arrester without passing through the main circuit of the converter valve, so that the key components of the converter valve 1000 are completely shielded.
  • the shield cover and the main body of the converter valve 1000 are only There is an electrical connection relationship between the valve head and end, and there is no electrical connection relationship between the main circuit inside the single valve and the shield. This ensures that the thyristor voltage within the single valve is evenly distributed under high-frequency shock.
  • the arrester Under the low-frequency operation of the converter valve 1000, the arrester is in an open circuit state, which ensures the safe and reliable operation of the main circuit of the converter valve 1000.
  • the parasitic capacitance of the multi-stage valve disc inside the arrester is much larger than the stray shield to ground. Capacitance C g ensures uniform voltage distribution of the multi-stage valve.
  • the present application optimizes the converter valve 1000 from an electrical and structural perspective, and provides a new type of compact converter valve tower structure with built-in arresters; and the built-in arrester cuts off the electrical connection between the shield and the main circuit to achieve shielding. Isolated voltage equalization.
  • an intelligent online monitoring device 300 is designed, as shown in FIGS. 26 and 27.
  • FIG. 26 shows a schematic diagram of the online monitoring device 300.
  • the online monitoring device 300 includes a wireless communication master station 310, a sensing data collector 320, a control unit 330, and at least one smart sensor 340.
  • the smart sensor 340 is composed of a physical quantity measurement unit, a data processing unit, and a wireless communication node.
  • the wireless communication master station is responsible for the uplink and downlink data transmission with the wireless communication node.
  • the sensor data collector 320 collects, preprocesses and stores sensor data using a wireless communication network and sends it to the control unit 330 to provide usable and reliable sensor data for data analysis and application.
  • the sensor data collector 320 and the wireless communication master station 310 may be connected through an optical fiber or a cable.
  • the smart sensor 340 includes a smart sensor core, a physical quantity sensing module (equivalent to the above-mentioned physical quantity measurement unit), wireless communication (equivalent to the aforementioned communication node), and a power supply section.
  • the core part of the smart sensor 340 includes a microprocessor, a memory, and energy management.
  • the core part of the smart sensor 340 is connected to the physical quantity measurement part, the wireless communication part and the power supply part through three interfaces.
  • the smart sensor 340 can be flexibly applied to the monitoring of new physical quantities, can support different wireless communication standards, and can also support different power supply modes. If the wireless communication standard is determined to be unchanged, the wireless transceiver module may also be placed in the core of the smart sensor 340.
  • the intelligent on-line monitoring of multiple physical quantities of key components of the converter valve 1000 is realized and the ability of the converter valve 1000 to resist commutation failure is enhanced.
  • This new type of shielded and compact intelligent converter valve 1000 saves space and improves the level of operation.
  • the compact technology will significantly reduce the volume of the converter valve by 1,000, promote the optimization of the overall layout of the converter station, save floor space, reduce the size of the converter station building, and reduce the construction cost of the DC project.
  • the intelligent monitoring technology will realize the online optimization of the key components of the converter valve 1000 and the timely intervention of the fault status. It can timely and effectively find various safety problems and hidden troubles of the equipment, and provide timely, effective, and reliable operation for the safe and reliable operation of the converter valve 1000.
  • the compact and intelligent converter valve provided in this application, by providing a lightning arrester inside the valve module, the lightning arrester is set between two potentials adjacent to the shielding cover, the shielding cover potential is clamped on the arrester, and the thyristor level is equivalent
  • the circuit completely isolates the leakage current flowing into or out of the ground stray capacitor from the shield, so that under the high-frequency impact of the compact intelligent converter valve, the current of the ground stray capacitor from the shield is provided by the surge arrester equivalent circuit and cut off.
  • the electrical connection relationship between the stray capacitance to the shield of the shield and the equivalent circuit of the thyristor level is ensured, and the uniform distribution of the thyristor voltage in the compact and intelligent converter valve under high frequency shock is ensured, which reduces the damage of the thyristor due to the uneven voltage distribution. risk.
  • the surge arrester equivalent circuit further includes: a surge arrester parasitic inductance, a non-linear resistor and a corresponding shield mutual capacitance, and a parallel circuit composed of the non-linear resistor and the arrester parasitic capacitance and After the arrester's parasitic inductance forms a series circuit, the series circuit is then connected in parallel with the corresponding shield case mutual capacitance. Due to the large resistance of the non-linear resistor in the low frequency region, the equivalent circuit of the arrester is in an open circuit state in the low frequency region, which limits compactness. The over-voltage of the type intelligent converter valve prevents the over-voltage damage of the compact intelligent converter valve and ensures the safe and reliable operation of the thyristor-level equivalent circuit.
  • the compact intelligent converter valve provided in this application, because there is a mutual capacitance between the radiators between the two radiators at the two ends of the thyristor for press-fitting the thyristor, the mutual capacitance between the radiators and the damping resistor and the damping capacitor exist.
  • the formed resistance-capacitance circuit is connected in parallel, which limits the overshoot voltage generated when the thyristor is turned off.
  • the compact intelligent converter valve provided in this application restricts the first reactor module and the second reactor module at both ends of a first series circuit composed of a plurality of thyristor-level equivalent circuits connected in series, The current of the thyristor in the initial stage and the high-frequency surge voltage.
  • the DC transmission converter valve valve tower provided by this application, by connecting the lightning arrester equivalent circuit of the multi-layer compact intelligent converter valve in series, the shield potential of each layer of the compact intelligent converter valve is clamped to the arrester respectively. , The thyristor-level equivalent circuit in each layer of the compact intelligent converter valve is completely isolated from the leakage current flowing into or out of the ground stray capacitance of the shielding cover, so that under high-frequency shock, the stray capacitance of the shielding cover to ground The electric current is provided by the equivalent circuit of the arrester, which cuts off the electrical connection relationship between the stray capacitance to the ground of the shield in each layer of the compact intelligent converter valve and the equivalent circuit of the thyristor level, ensuring DC power conversion under high frequency shock
  • the uniform distribution of thyristor voltage in the flow valve valve tower reduces the risk of thyristor damage due to uneven voltage distribution.
  • the compact intelligent converter valve provided by this application monitors the operating parameters of the key components inside the DC transmission converter valve in real time by setting an online monitoring device, and uploads the operating parameters to the upper control unit. The parameters are compared with preset values to determine whether the DC transmission converter valve has been successfully commutated. Compared with related technologies, the device can quickly determine the commutation failure of the converter valve within 1.5ms, which enhances the resistance of the converter valve to commutation. Ability to fail.
  • the compact and intelligent converter valve provided in this application.
  • the arrester is located inside the converter valve module and on the side of the thyristor press-fit structure, which will greatly reduce the volume occupied by the converter valve module and effectively reduce the entire converter. Construction cost of valve tower.
  • the potential of the shielding cover of the converter valve is fixed on the main circuit, and at this time, the capacitance of the shielding cover to the ground will have an uneven influence on the voltage distribution of the thyristor in the main circuit.
  • the arrester is arranged in parallel with the thyristor press-fitting structure, and the two ends of the arrester in the first main module are the first potential and the second potential, respectively.
  • the two ends of the arrester are respectively a second potential and a third potential.
  • the shielding cover assembly is composed of multiple parts, wherein a first shielding cover is fixed to a first potential of the arrester inside the first main module; a third shielding cover is fixed to a third potential of the arrester inside the second main module; The second shield is fixed to the second potential of the arrester inside the first main module and the second main module, respectively.
  • the potential of the shielding cover is fixed outside the main circuit, and the potential of the shielding cover is isolated from the potential of the thyristor in the main circuit, thereby greatly reducing the unevenness of the partial voltage of the thyristor in the thyristor press-fitting structure. .
  • the compact and intelligent converter valve provided by this application can prevent the vibration of the reactor from affecting the electrical and water connections of other parts of the converter valve module by suspending the reactors at both ends of the two main modules separately. Problems such as loose water pipes or loose electrical connections, disconnection of electrical connections, and water leakage have occurred.
  • the arrester is provided on one side of the thyristor press-fitting structure, and the damping capacitor and the gate-level unit are provided on the other side of the thyristor press-fitting structure, A water cooling system is provided between the thyristor press-fitting structure and the arrester.
  • the components inside the converter valve module use the thyristor press-fit structure as a boundary line, and the lightning arrester and the water cooling system are arranged on the side close to the lightning arrester.
  • the water cooling system is far away from the door-level unit and the damping capacitor. Water leakage may occur in the water cooling system, and the cooling water will seriously affect the stability of the electrical components inside the converter valve module. Therefore, separating the water cooling system from the door-level unit and other components can effectively prevent the above situation and achieve the flow "Hydroelectric separation" inside the valve module.
  • a liquid inlet and a liquid outlet are provided on the side wall of the radiator, two adjacent radiators are connected in series with each other to form a radiator group, and two radiators share one In the water circuit, the cooling liquid flows in through the liquid inlet of one of the radiators, cools the radiator, flows into the liquid inlet of the other radiator, and finally flows out of the liquid outlet of the radiator.
  • the cooling liquid before the cooling work flows in the water inlet pipe, and the cooling liquid after the cooling work flows in the water outlet pipe.
  • the water inlet head is led out from the water inlet pipe.
  • the water from the water inlet head enters the liquid inlet of the first radiator in a radiator group, cools the radiator, flows out from the liquid outlet of the radiator, and then flows into the first
  • the liquid inlets of the two radiators finally flow out of the liquid outlets of the second radiator.
  • a liquid outlet is provided on the liquid outlet, and the liquid outlet is connected to the liquid outlet pipe, and the completion is completed. The cooling liquid is taken away during the cooling process.
  • the damping resistor does not need to be provided with a heat sink separately, and thus a separate water connection port can be avoided, thereby effectively avoiding the occurrence of water leakage points.
  • the total number of nozzles can be effectively reduced, thereby reducing water leakage points, and improving the reliability of the device.
  • the compact and intelligent converter valve provided by the present application can effectively reduce the local field strength around the valve tower by providing a shield cover assembly, and prevent the local field strength from being too large to discharge.
  • the compact and intelligent converter valve provided by this application the alternating current enters through the middle part, is divided into two channels and flows up and down respectively.
  • the two channels of current share a set of reactor modules, which can effectively reduce the entire converter valve tower.
  • the number of internal reactor modules contributes to the miniaturization of the device.
  • the compact and intelligent converter valve provided in this application is provided with a creeping groove on the insulating support beam in the thyristor press-fitting structure, which is configured to increase the creepage distance between the radiators and solve the two adjacent radiators. The problem of insufficient creeping distance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Rectifiers (AREA)

Abstract

本申请提供了一种换流阀,包括:多层沿竖直方向排列设置的换流阀模块,每层换流阀模块包括:主模块,主模块包括彼此连接的第一主模块和第二主模块,第一主模块内部设置有第一避雷器,第一避雷器的两端分别为第一电位和第二电位;第二主模块内部设置有第二避雷器,第二避雷器的两端分别为第二电位和第三电位;屏蔽罩组件,连接在所述主模块外部,所述屏蔽罩组件包括:第一屏蔽罩,电位固定为第一电位,第三屏蔽罩,电位固定为第三电位,第二屏蔽罩,电位固定为第二电位;第一避雷器等效电路和第二避雷器等效电路,第一避雷器等效电路设置于第一电位和第二电位之间,第二避雷器等效电路设置于第二电位和第三电位之间。

Description

换流阀
本申请要求在2018年5月25日提交中国专利局、申请号为201810515986.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及直流输电技术领域,例如涉及一种换流阀。
背景技术
换流阀是直流输电工程的核心设备,通过依次将三相交流电压连接到直流端得到期望的直流电压和实现对功率的控制。
相关技术中,换流阀屏蔽罩的电位固定在主电路上,屏蔽罩上产生的杂散电容对换流阀模块内主电路上的元器件分压有影响,会产生器件分压不均,这种不均匀在陡波冲击下会使主电路上的晶闸管电压发生畸变而遭到破坏。
发明内容
本申请克服相关技术中的阀塔中避雷器设置在换流阀模块外侧、屏蔽罩的电位与主电路连接,导致主电路中的晶闸管发生损坏的缺陷。
本申请实施例提供一种紧凑型智能化换流阀,包括:
多层沿竖直方向排列设置的换流阀模块,每层换流阀模块包括:主模块,所述主模块包括彼此连接的第一主模块和第二主模块,所述第一主模块中设置有第一避雷器,所述第一避雷器的两端分别为第一电位和第二电位;所述第二主模块内部设置有第二避雷器,所述第二避雷器的两端分别为第二电位和第三电位;
屏蔽罩组件,连接在所述主模块外部,所述屏蔽罩组件包括:第一屏蔽罩、、第二屏蔽罩以及第三屏蔽罩,所述第一屏蔽罩的电位固定为所述第一主模块内部的第一避雷器的第一电位;所述第三屏蔽罩的电位固定为所述第二主模块内部的第二避雷器的第三电位;所述第二屏蔽罩的电位固定为所述第一避雷器和第二避雷器的第二电位;
第一避雷器等效电路和第二避雷器等效电路,所述第一避雷器等效电路设置于所述第一屏蔽罩的第一电位和所述第二屏蔽罩的第二电位之间,所述第二避雷器等效电路设置于所述第二屏蔽罩的第二电位和所述第三屏蔽罩的第三电位之间;所述第一避雷器等效电路和所述第二避雷器等效电路均包括:三个屏蔽罩对地杂散电容,所述三个屏蔽罩对地杂散电容的第一端分别连接所述第一电位、第二电位和第三电位,所述三个屏蔽罩对地杂散电容的第二端均接地;以及,避雷器寄生电容,所述避雷器寄生电容的值大于所述屏蔽罩对地杂散电容的值。
附图说明
图1为本申请提供的换流阀模块的结构示意图;
图2为本申请提供的换流阀模块中屏蔽罩组件、主模块与电抗器模块的结构示意图;
图3为本申请提供的换流阀模块中屏蔽罩组件的结构示意图;
图4为本申请提供的第一避雷器和第二避雷器之间的连接示意图;
图5为本申请提供的第一主模块框架、第二主模块框架、第一电抗器框架和第二电抗器框架之间的连接示意图;
图6为本申请提供的第一阻尼电容和第二阻尼电容的结构示意图;
图7为本申请提供的第一电抗器模块和第二电抗器模块的结构示意图;
图8为本申请提供的第一门级单元和第二门级单元的结构示意图;
图9为本申请提供的第一晶闸管压装结构和第二晶闸管压装结构的结构示意图;
图10为本申请提供的晶闸管组件的结构示意图;
图11为本申请提供的散热器的一个具体示例的剖视图;
图12为本申请实施例中提供的第一晶闸管压装结构的一个具体示例的示意图;
图13(a)-图13(d)为本申请实施例中提供的晶闸管压装结构的安装过程的具体示例的示意图;
图14为本申请实施例中提供的第一晶闸管压装结构的一个具体示例的侧视图;
图15为本申请提供的压力组件的一个具体示例的截面图;
图16为本申请提供的所述水冷系统的结构示意图;
图17为本申请提供的所述阻尼电阻的结构示意图;
图18为本申请提供的所述散热器组的侧面的示意图;
图19为本申请提供的电抗器间母排与电抗器晶闸管间母排的结构示意图;
图20为本申请提供的所述换流阀的结构示意图;
图21为本申请提供的所述层间避雷器导线、层内避雷器导线的布置示意图;
图22为本申请提供的所述绝缘水管的结构示意图;
图23为本申请提供的所述光纤槽的结构示意图;
图24为本申请提供的所述吊耳的结构示意图;
图25为本申请提供的所述紧凑型智能化换流阀的电路原理图;
图26为本申请提供的在线监测装置的一个具体示例的示意图;
图27为本申请提供的在线监测装置的智能传感器的一个具体示例的示意图;
图28为依据本申请的屏蔽隔离均压技术单阀陡波冲击下晶闸管电压分布波形图;
图29为为本申请提供的第一电抗器模块或第二电抗器模块的模块化结构示意图。
附图标记说明:
1-晶闸管,111-晶闸管组件;
2-阻尼电阻,21-绝缘外壳,22-电阻丝,23-金属底板,24-导热绝缘材料,25-弹簧,26-填充介质;27-焊接层;
3-散热器,31-阻尼电阻散热区,32-晶闸管散热区,33-阻尼电阻冷却流道,34-晶闸管冷却流道,35-进液口,36-出液口,4-均压电阻;
40-换流阀模块;
x1-主模块;
x11-第一主模块,x111-第一主模块框架,x112-第一晶闸管压装结构,x113-第一门级单元,x114-第一阻尼电容,x115-第一避雷器;
x12-第二主模块,x121-第二主模块框架;x122-第二晶闸管压装结构;x123-第二门级单元,x124-第二阻尼电容;x125-第二避雷器;
a-第一电位,b-第二电位,c-第三电位;
17-电抗器模块,171-第一电抗器模块,1711-第一电抗器框架,1712-第一电抗器,1713-第二电抗器,172-第二电抗器模块,1721-第二电抗器框架,1722-第三电抗器,1723-第四电抗器,19-减震器,1714-第一辅助电抗器,1724-第二辅助电抗器,1715-第一并联支路,1716-第一支路电阻,1717-支路线性电抗器,1718-支路饱和电抗器;
18-屏蔽罩组件,181-第一屏蔽罩,182-第二屏蔽罩,183-第三屏蔽罩;
5-绝缘拉杆,51-缩颈部,53-承压端;
61-活动端板,611-安装孔,62-固定端板;
7-压力组件,71-适配器,72-锁紧螺母,73-压装螺杆,74-碟簧,75-碟簧压片,77-球面垫圈,771-凸台,772-调心球面,79-锥面垫圈,791-对中孔,792-调心锥面;
81-第一母排,811-对准孔,82-第二母排,9-绝缘支撑梁,91-增爬凹槽,10-挂环;
200-水冷系统,201-晶闸管压装水管,202-电抗器水管,203-进水主管,204-出水主管,205-三通;
101-电抗器间母排,102-电抗器晶闸管间母排,103-第一阀模块进出线,104-第二阀模块进出线,母排结构-105;
300-在线监测装置,310-无线通信主站,320-传感数据采集器,330-控制单元,340-智能传感器;
1000-换流阀;
h1-钢架;
a1-顶屏蔽罩,a2-底屏蔽罩;
b0-吊耳,b1-框架吊耳,b2-中部吊耳,b3-电抗器吊耳;
c1-层间绝缘子,c2-顶部绝缘子;
d2-顶屏蔽罩母排,d21-阀塔上阀出线管母,d3-底屏蔽罩母排,d31-阀塔下阀出线管母,d4-阀模块层间母排,d41-阀塔进线管母;
e1-上单阀,e11-第一上单阀,e12-第二上单阀,e2-下单阀;e21-第一下单阀;e22-第二下单阀;
f1-层内避雷器导线,f2-层间避雷器导线;
g1-绝缘水管,g2-层间绝缘水管,g3-旁通水管;
i1-螺钉;
j1-光纤槽;
k1-第一避雷器等效电路;k2-第二避雷器等效电路;
m1-晶闸管级等效电路;
C a-避雷器寄生电容,C g-屏蔽罩对地杂散电容,L a-避雷器寄生电感,R(i)-非线性电阻,C s-相对应屏蔽罩互电容;
R d-阻尼电阻,L Rd-寄生电感,C d-阻尼电容,C thy-晶闸管结电容;L thy-晶闸管寄生电感,R dc-直流均压电阻,C j-散热器间互电容,R thy-晶闸管等效电阻。
具体实施方式
在本申请的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本实施例提供一种智能换流阀1000(也称为换流阀塔),如图20所示,换流阀1000的顶部悬吊设置,换流阀1000包括多个沿竖直方向依次吊装的换流阀模块40,在相邻两个所述换流阀模块40之间可进行电流传递;换流阀1000包括有如下部分:钢架h1,固定安装在悬吊点,在装配状态下,钢架h1与车间顶棚固定连接。顶屏蔽罩a1,吊装在所述钢架h1的下方;底屏蔽罩a2,设置在所述顶屏蔽罩a1的下方,所述顶屏蔽罩a1与所述底屏蔽罩a2之间吊装有多个沿竖直方向彼此平行设置的所述换流阀模块40。
本实施例中的换流阀模块40包括如下组件:
主模块x1,如图2所示,包括彼此连接的第一主模块x11和第二主模块x12,第一主模块x11位于主模块x1的左侧位置,第二主模块x12位于主模块x1的右侧位置。
第一主模块x11和第二主模块x12中所包含的组件相同,只是组件的设置方式有所不同。在一实施例中,所述第一主模块x11和所述第二主模块x12内部均设置有:主模块框架,晶闸管压装结构、门级单元、阻尼电容及避雷器,晶闸管压装结构、门级单元、阻尼电容和避雷器设置在主模块框架内部。如图1 所示,第一主模块x11中设置有第一避雷器x115,所述第一避雷器x115的两端分别为第一电位a和第二电位b;所述第二主模块x12内部设置有第二避雷器x125,所述第二避雷器x125的两端分别为第二电位b和第三电位c。
在一实施例中,如图5、图6、图8、图9所示,所述第一主模块x11包括:第一主模块框架x111;多个安装在所述第一主模块框架x111内部且彼此排列设置的第一晶闸管压装结构x112、第一门级单元x113、第一阻尼电容x114及第一避雷器x115;如图4所示,所述第一主模块x11中的所述第一避雷器x115的两端分别为第一电位a和第二电位b。
所述第二主模块x12包括:第二主模块框架x121;多个安装在所述第二主模块框架x121内部且彼此排列设置的第二晶闸管压装结构x122、第二门级单元x123、第二阻尼电容x124及第二避雷器x125;如图4所示,所述第二避雷器x125的两端分别为第二电位b和第三电位c。
同时,为了实现第一主模块x11和第二主模块x12之间的连接,所述第一主模块框架x111与所述第二主模块框架x121之间通过连接件连接在一起。
本实施例中,在主模块x1的两侧均设置有电抗器模块17。
如图1所示,两组电抗器模块17分别设置在所述主模块x1的左右两侧,在电抗器模块17内部设置有电抗器。所述两组电抗器模块17包括第一电抗器模块171和第二电抗器模块172,如图5和图7所示,所述第一电抗器模块171包括:第一电抗器框架1711、第一电抗器1712和第二电抗器1713,第一电抗器框架1711连接在所述第一主模块框架x111上;第一电抗器1712和第二电抗器1713二者排列设置在所述第一电抗器框架1711内部;所述第二电抗器模块172包括:第二电抗器框架1721、第三电抗器1722和第四电抗器1723,第二电抗器框架1721连接在所述第二主模块框架x121上;第三电抗器1722和第四电 抗器1723排列设置在所述第二电抗器框架1721内部。
本实施例中,如图7和图29所示,所述第一电抗器模块171还设置有:第一并联支路1715,包括依次串联的第一支路电阻1716和第一辅助电抗器1714,第一辅助电抗器1714与所述第一电抗器1712或第二电抗器1713并联,设置为转移所述第一电抗器1712或第二电抗器1713的损耗,所述第一辅助电抗器1714包括:支路线性电抗器1717,设置为在换流阀1000开通和关断时将第一电抗器1712或第二电抗器1713的损耗转移到所述并联支路上;以及,支路饱和电抗器1718,设置为在换流阀1000关断时,将所述第一电抗器1712或第二电抗器1713的损耗转移到所述第一并联支路1715上。在一实施例中,第二辅助电抗器1724设置在第二电抗器模块172中。
在一实施例中,以第一电抗器模块171为例,第一辅助电抗器1714包括:支路线性电抗器1717,设置为在换流阀1000开通和关断时将第一电抗器1712或第二电抗器1713的损耗转移到第一并联支路1715上。在本实施例中,所称支路线性电抗器1717可以为感值恒定的电感,可以为有芯电感,也可以为无芯电感,为减小支路电抗器的体积,在本实施例中采用无芯线性电感。当支路电抗器为支路线性电抗器1717时,支路电抗值的选取会影响饱和电抗器对晶闸管的保护特性,通常,线性电抗器的电感值较小,为减小电抗器对晶闸管的保护特性的影响,在本实施例中,电感值与第一电抗器1712或第二电抗器1713的不饱和时电感取同一数量级的电感值,但应小于第一电抗器1712或第二电抗器1713的不饱和时电感值。由于支路线性电抗器1717的电感值恒定,在开通和关断时刻,支路线性电抗器1717都起到了转移主电抗器损耗的作用。
为了减小饱和电抗器对晶闸管的保护特性的影响,支路电抗器还可以为支 路饱和电抗器1718,设置为在换流阀1000关断时,将第一电抗器1712或第二电抗器1713的损耗转移到第一并联支路1715上。在本实施例中,为了不增加支路饱和电抗器1718的体积,支路饱和电抗器1718应采用小铁芯多绕组的结构,铁芯涡流损耗的电阻需根据铁芯用量进行合理放大;为保证支路饱和电抗器1718整体对电流上升率的抑制,在选取铁芯磁链-电流曲线时,支路饱和磁链不可选取过小,应等于或略低于第一电抗器1712或第二电抗器1713饱和磁链。在本实施例中,由于,支路饱和电抗器1718在换流阀1000开通初始时刻,支路饱和电抗器1718未饱和,电感值较大,第一并联支路1715近似开路,当第一电抗器1712或第二电抗器1713接近饱和时,支路饱和电抗器1718达到饱和,第一并联支路1715接入第一电抗器1712或第二电抗器1713,电流会从主电抗器分流到第一并联支路1715并被其消耗,可以转移第一电抗器1712或第二电抗器1713在换流阀1000开通时的损耗。
同时,如图5所示,所述第一主模块框架x111与所述第一电抗器框架1711之间、所述第二主模块框架x121与所述第二电抗器框架1721之间通过减震器19进行连接,所述减震器19设置为减弱所述电抗器模块17传递至所述主模块x1上的振动,继而提高电抗器的使用稳定性。
如图2和图3所示,屏蔽罩组件18连接在所述主模块11和所述电抗器模块17外部,所述屏蔽罩组件18包括:第一屏蔽罩181,第一屏蔽罩181的电位固定为所述第一主模块x11内部的第一避雷器x115的第一电位a;第三屏蔽罩183,第三屏蔽罩183的电位固定为所述第二主模块x12内部的第二避雷器x125的第三电位c;第二屏蔽罩182,第二屏蔽罩182的电位固定为所述第一避雷器x115和第二避雷器x125的第二电位b。
通过设置屏蔽罩组件18,可以有效地降低换流阀1000周边的局部场强,防 止局部场强过大而放电。
本实施例中,如图24所示,为了实现换流阀模块40之间的彼此吊装,在所述换流阀模块40上设置有吊耳b0,所述吊耳b0包括:多个框架吊耳b1,对称设置在所述第一主模块框架x111和所述第二主模块框架x121上;中部吊耳b2,设置在所述连接件上;多个电抗器吊耳b3,设置在所述第一电抗器框架1711和所述第二电抗器框架1721上。在一实施例中,中部吊耳b2的数量为一个或多个。
同时,如图20所示,为了起到换流阀模块40多层之间的连接作用,本实施例中设置有绝缘子。
在一实施例中,相邻两个所述换流阀模块40之间连接有层间绝缘子c1,所述层间绝缘子c1的两端分别嵌入与其相邻的换流阀模块40的所述吊耳b0中。
所述钢架h1与所述顶屏蔽罩a1之间设置有顶部绝缘子c2,所述顶部绝缘子c2一端连接所述顶屏蔽罩a1、另一端连接所述钢架h1。
所述顶屏蔽罩a1与位于最顶端的换流阀模块40之间设置有层间绝缘子c1,所述层间绝缘子c1下端连接在最顶端的换流阀模块40的吊耳b0中,上端连接在所述顶屏蔽罩a1上。
同时,在最底层的换流阀模块40与所述底屏蔽罩a2之间设置有所述层间绝缘子c1,所述层间绝缘子c1上端连接在最底层的换流阀模块40的所述吊耳b0中,下端连接在所述底屏蔽罩a2上。
本实施例中,如图19所示,为了实现多层换流阀模块40内部的导电功能,在换流阀模块40中设置了母排结构105,母排结构105设置在每个所述电抗器模块17内部,所述母排结构105包括:
电抗器间母排101,设置在所述第一电抗器1712和所述第二电抗器1713之 间、或所述第三电抗器1722与所述第四电抗器1723之间,设置为使电流在两个所述第一电抗器1712和所述第二电抗器1713之间、或所述第三电抗器1722与所述第四电抗器1723之间传导。
为了实现第一电抗器模块171和第二电抗器模块172的导通,本实施例还设置了电抗器晶闸管间母排102,位于左侧的电抗器晶闸管间母排102两端连接第一电抗器1712和第一晶闸管压装结构x112,位于右侧的电抗器晶闸管间母排102两端连接第三电抗器1722和第二晶闸管压装结构x122。通过电抗器晶闸管间母排102,用以使电流依次流经所述第二电抗器1713、电抗器间母排101、所述第一电抗器1712、所述第一晶闸管压装结构x112、所述第二晶闸管压装结构x122、所述第三电抗器1722、电抗器间母排101和所述第四电抗器1723,实现电流在多个电抗器之间的传递。
如图19所示,为了实现电流在多层换流阀模块40之间的传导,母排结构105中还设置了第一阀模块进出线103,与每层换流阀模块40中的所述第二电抗器1713相连接;第二阀模块进出线104,与每层换流阀模块40中的所述第四电抗器1723相连接;电流通过所述第一阀模块进出线103和所述第二阀模块进出线104流入或流出每层换流阀模块40。
如图20所示,同时,在相邻两层所述换流阀模块40之间设置有阀模块层间母排d4,所述阀模块层间母排d4的一端连接位于其上层的所述换流阀模块40中的所述第二阀模块进出线104;所述阀模块层间母排d4的另一端连接位于其下层的所述换流阀模块40的所述第一阀模块进出线103,通过所述阀模块层间母排d4,完成电流在相邻两层所述换流阀模块40之间的传导。此外,在顶屏蔽罩a1与相邻的换流阀模块40之间设置有顶屏蔽罩母排d2,所述顶屏蔽罩母排d2一端连接所述第一阀模块进出线103,另一端连接所述顶屏蔽罩a1;所述 底屏蔽罩a2与相邻的换流阀模块40之间设置有底屏蔽罩母排d3,所述底屏蔽罩母排d3一端连接所述第二阀模块进出线104,另一端连接所述底屏蔽罩a2。
如图20所示,为了实现电流的转换作用,本实施例中两个相邻的所述换流阀模块40之间形成一组单阀,本实施例中,换流阀模块40数量为四组,单阀的数量为两组,单阀包括上单阀e1和下单阀e2,上单阀e1和下单阀e2之间的所述阀模块层间母排d4上设置有阀塔进线管母d41,所述顶屏蔽罩母排d2上设置有阀塔上阀出线管母d21,所述底屏蔽罩母排d3上设置有阀塔下阀出线管母d31;从所述阀塔进线管母d41流入的电流分成两路,分别进入所述阀塔上阀出线管母d21和所述阀塔下阀出线管母d31中并流出。
在一实施例中,电流通过所述阀模块层间母排d4上的阀塔进线管母d41流入,然后分为两路。向上的一路首先通过第二阀模块进出线104进入第二上单阀e12中,从第二上单阀e12的第一阀模块进出线103中流入,然后流入第一上单阀e11的第二阀模块进出线104中,并从第一上单阀e11的第一阀模块进出线103中流入,然后流入顶屏蔽罩母排d2,并从阀塔上阀出线管母d21流出。
向下的一路通过第一阀模块进出线103流入第一下单阀e21中,然后通过第二阀模块进出线104流出并进入阀模块层间母排d4中,接着向下流入第二下单阀e22的第一阀模块进出线103,并通过第二阀模块进出线104从第二下单阀e22中流出至底屏蔽罩母排d3中,最终从阀塔下阀出线管母d31中流出。
作为变型,换流阀模块40的数量可以为六组,此时位于上方的三组换流阀模块40形成上单阀e1,位于下方的三组换流阀模块40形成下单阀e2。
本实施例中,换流阀模块40的数量不限于偶数组,当换流阀模块40的数量为奇数组时,电流从位于最中心部位的换流阀模块40中流入,然后分为上下两路进行流动。
本实施例中的换流阀1000中,交流电通过中间部位进入,分成两路并分别向上和向下流动,两路电流共用一套电抗器模块17,可以有效的降低整个换流阀1000内部电抗器模块的数量,有利于装置的小型化。
如图20、21所示,本实施例中,按照装配时的上下位置,多个所述单阀分为上单阀e1和下单阀e2,所述上单阀e1和所述下单阀e2的内部的每个所述单阀中,每层换流阀模块40内部的第一避雷器x115和第二避雷器x125之间通过层内避雷器导线f1进行连接,所述单阀中位于上层的所述换流阀模块40的第二避雷器x125的第三电位c与位于下层的所述换流阀模块40的第一避雷器x115的第一电位a通过所述层间避雷器导线f2相连接。
相邻两个所述换流阀模块40之间的第一避雷器x115和第二避雷器x125之间通过层内避雷器导线f1进行连接,通过所述层内避雷器导线f1和所述层间避雷器导线f2,所述单阀中位于上层的所述换流阀模块40的第一避雷器x115的第一电位a与位于下层的所述换流阀模块40的第二避雷器x125的第三电位c相互连接。通过上述的设置方式,可以有效地防止屏蔽罩组件18中的杂质电容引入主回路中。
如图20所示,所述上单阀e1包括第一上单阀e11和第二上单阀e12;所述下单阀e2包括第一下单阀e21和第二下单阀e22。
如图23所示,所述换流阀1000还包括光纤槽j1,所述光纤槽j1内设置有光纤,所述光纤为两路,一路沿所述顶屏蔽罩a1向下连接每层换流阀模块40的所述第一主模块x11;另一路沿所述顶屏蔽罩a1向下连接每层换流阀模块40的所述第二主模块x12。
如图23所述,所述光纤槽j1内部的光纤数量为四根,每根光纤与第一主模块x11内部的第一门级单元x113或第二主模块x12内部的第二门级单元x123 相连接。四根光纤的长度依次缩短。在一实施例中,从图中看,从左到右:第一根光纤的长度只作用到第一上单阀e11上,第二根光纤至作用到第二上单阀e12上,第三根光纤只作用到第一下单阀e21上,第四根光纤只作用到第二下单阀e22上。
本实施例中提供的晶闸管压装结构如下:
如图12、13(a)-13(d)和图14所示,所述第一晶闸管压装结构x112和所述第二晶闸管压装结构x122包括:晶闸管组件111,所述晶闸管组件111一侧设置有均压电阻4,晶闸管组件111的两端分别连接有第一母排81和第二母排82,电流经过所述第一母排81流入所述晶闸管组件111中,然后从所述第二母排82中流出。多根绝缘拉杆5,所述绝缘拉杆5的延伸方向与所述晶闸管组件111的延伸方向一致;相对设置的活动端板61和固定端板62,多根所述绝缘拉杆5的两端分别连接在所述活动端板61和固定端板62上,所述活动端板61、固定端板62和所述绝缘拉杆5形成用以容纳所述晶闸管组件111的容纳腔。
同时,所述第一晶闸管压装结构x112和所述第二晶闸管压装结构x122还包括绝缘支撑梁9,绝缘支撑梁9设置于所述活动端板61及固定端板62之间并位于所述晶闸管组件底部,在所述第一晶闸管压装结构x112和所述第二晶闸管压装结构x122进行压装前和拆卸后,所述绝缘支撑梁9设置为支撑所述晶闸管组件111。在所述绝缘支撑梁9上设置有增爬凹槽91。设置增爬凹槽91设置为增加相邻两个散热器3间的爬电距离,解决相邻两个散热器3间爬距不够的问题。
为了提供晶闸管组件111在第一晶闸管压装结构x112和第二晶闸管压装结构x122内部的稳定性,在容纳腔内位于所述晶闸管组件111与所述活动端板61之间的位置设置有压力组件7,所述压力组件7设置为将所述第一母排81和所 述第二母排82贴紧在所述晶闸管组件111上。本实施例中,所述第一母排81贴装于所述压力组件7上,所述第二母排82贴装于所述晶闸管组件111远离所述压力组件7的最后一个散热器3上。
本实施例中,如图13(a)-13(d)、15所示,在活动端板61上设置有安装孔611,本实施例提供的压力组件包括:适配器71,安装在所述活动端板61的安装孔611中;压装螺杆73,嵌套在所述适配器71中;压力件,设置在所述压装螺杆73与所述第一母排81之间,设置为提供使所述第一母排81压紧所述晶闸管组件111的弹力。
在一实施例中,所述压力件包括:锥面垫圈79,可相对所述压装螺杆73运动地套设在所述压装螺杆73的内壁上;碟簧压片75,过盈连接在所述锥面垫圈79上,所述碟簧压片75与所述压装螺杆73之间设置有碟簧74,所述碟簧74用以提供所述弹力。
同时,为了实现锥面垫圈79和球面垫圈77之间的对中,在锥面垫圈79上设置有对中孔791,所述对中孔791与所述第一母排81之间设置有球面垫圈77,所述球面垫圈77嵌入所述对中孔791中,所述球面垫圈77的调心球面772与所述锥面垫圈79的调心锥面792之间线接触。线接触的接触面积较小,可以有效地减小二者接触时产生的摩擦力,有利于优化装配过程。
本实施例中,上述压力组件7的装配过程如下:
将碟簧74和碟簧压片75套入压装螺杆73,将压装螺杆73与压装螺杆73后端的外轴适应性安装;由上述球面垫圈77的调心锥面792和锥面垫圈79上调心球面772配合对压力进行调整,使得压力始终指向球心。将压力件的固定件连接到适配器71的外圆上,压力件的顶出机构顶在压装螺杆73的中轴上, 压力使得碟簧74压缩,锁紧螺母72和压装螺杆73同时移动,当压力达到设计要求时,将锁紧螺母72拧在活动端板61上。
如图15所示,此外,在第一母排81上设置有对准孔811,所述球面垫圈77远离所述对中孔791的一端设置有凸台771,所述凸台771插入所述对准孔811中以使所述球面垫圈77稳定连接在所述第一母排81上。从而提供球面垫圈77在第一母排81上的连接稳定性。
本实施例中,如图13(a)所示,所述绝缘拉杆5的两端设置有缩颈部51,相邻所述缩颈部51上设置有外径大于所述缩颈部51的台阶,所述台阶一侧设置有承压端53,所述活动端板61和所述固定端板62设置有带有缺口的连接孔,所述缩颈部51通过所述缺口进入所述连接孔中,外力作用在所述活动端板61和所述固定端板62上,所述连接孔运动至所述台阶处,所述活动端板61和所述固定端板62被所述承压端53限制以防止脱出。
绝缘拉杆5与活动端板61、固定端板62之间采用插拉结构,插接动作为:绝缘拉杆5的缩颈部51插入活动端板61及固定端板62的连接孔;拉伸动作为:将绝缘拉杆5向活动端板61及固定端板62的远端拉伸;通过插拉动作,绝缘拉杆5将绝缘支撑梁9固定在活动端板61及固定端板62之间。
如图13(a)-图13(d)所示,本实施例的晶闸管压装结构在具体安装时,可以是,首先将上述压力组件7安装在活动端板61上,将上述第一母排81贴在压力组件7上,然后将晶闸管1与设置有阻尼电阻2和均压电阻4的散热器3交替排列,直至最后一个散热器3排列完成,最后将第二母排82贴装于上述最后一个散热器3上,安装完成的晶闸管压装结构的截面图如图14所示。整个安装过程无需螺栓连接,减少了安装时间,降低了安装成本,并且,采用该安装 方法得到的晶闸管压装结构在卸载时,晶闸管1与散热器3的相对位置不变,可实现冷却用水管和电气连接件都不移动的情况下更换晶闸管1。
本实施例中,如图10,11和12所示,晶闸管压装组件中的晶闸管组件111结构包括:
多个沿同一直线阵列设置的散热器3,相邻两片所述散热器3之间设置有晶闸管1;所述散热器3上设置有可供阻尼电阻2散热的阻尼电阻散热区31,以及,与所述晶闸管1相对应的晶闸管散热区32;阻尼电阻冷却流道33和晶闸管冷却流道34,设置在所述散热器3内部,冷却液沿所述阻尼电阻冷却流道33和晶闸管冷却流道34流动,在冷却过程中,冷却液流入所述晶闸管散热区32,以及流入所述阻尼电阻散热区31,用以对连接在所述散热器3上的所述晶闸管1及所述阻尼电阻2进行冷却。
同时,如图18所示,散热器3异于与所述晶闸管1相连接的侧壁上设置有进液口35和出液口36,相邻两个所述散热器3彼此串联形成散热器组,冷却液通过其中一个所述散热器3的进液口35流入,对该散热器3进行冷却后从出液口36流出并流入另一个散热器3的所述进液口35中,并最终从该散热器3的所述出液口36中流出。
同时,如图16所示,为了配合进液口35和出液口36的使用,在所述第一晶闸管压装结构x112与所述第一避雷器x115、所述第二晶闸管压装结构x122与所述第二避雷器x125之间设置有水冷系统200,所述水冷系统200包括:连接在所述第一晶闸管压装结构x112和所述第二晶闸管压装结构x122上的晶闸管压装水管201,所述晶闸管压装水管201作用在所述散热器组上;以及,连接在所述第一电抗器模块171和第二电抗器模块172上的电抗器水管202。
在一实施例中,所述水冷系统200包括进水主管203和出水主管204,每层 换流阀模块40上设置有两组三通205,相邻两层所述换流阀模块40的三通205对应设置,所述三通205包括相对设置的两个竖直水口,以及一个水平水口,所述水平水口连接所述进水主管203和所述出水主管204。
所述进水主管203上设置有冷水头,所述出水主管204上设置有热水头,所述冷水头连接所述散热器组中其中一个所述散热器3的进液口35,所述冷水头连接所述散热器组中另一个所述散热器3的出液口36。
本实施例中,如图16所述,多个冷水头和热水头并联设置,如图所示,晶闸管压装水管201中设置有9个并联的冷水头和热水头,电抗器水管202上单独设置有冷水头和热水头,10组冷水头和热水头并联设置,起到对第一主模块中的第一晶闸管压装结构x112和第一电抗器模块171的冷却。同理,在第二晶闸管压装结构x122和第二电抗器模块172中也采用了上述的冷却原理。
本实施例中,如图11所示,所述阻尼电阻散热区31设置在所述晶闸管1上方,所述阻尼电阻2可拆卸地安装在所述阻尼电阻散热区31上。所述阻尼电阻2安装在所述阻尼电阻散热区31时,所述阻尼电阻2的外表面与所述散热器3的外表面平齐设置。
本实施例中提供的阻尼电阻的结构如下所述:
如图10和17所示,所述阻尼电阻2包括:绝缘外壳21,可通过螺钉i1安装在所述散热器3上;电阻丝22,设置在所述绝缘外壳内部;金属底板23,金属底板23,连接在所述电阻丝22下方,所述金属底板23与所述电阻丝22之间设置有导热绝缘材料24,所述阻尼电阻2安装在所述散热器3上时,所述金属底板23与所述散热器3相接触,所述电阻丝22上的热量通过所述导热绝缘材料24和所述金属底板23传递至所述阻尼电阻散热区31上。
在一实施例中,所述导热绝缘材料24为陶瓷板,所述陶瓷板与所述电阻丝 22之间、所述陶瓷板与所述金属底板23之间设置有焊接层27。
弹簧25设置在所述电阻丝与所述绝缘外壳内壁之间,所述绝缘外壳21安装在所述阻尼电阻散热区31后,所述绝缘外壳21推动所述弹簧25,所述弹簧25提供使所述电阻丝22、所述导热绝缘材料24和所述金属底板23压紧所述阻尼电阻散热区31的力。
本实施例中,如图14所示,在活动端板61和所述固定端板62的上部设置有挂环10。在安装过程中,天车等设备通过挂环10可将多层晶闸管压装结构平行吊装在换流阀模块40内部。
如图16和图22所示,所述换流阀1000还包括两路水管,一路水管连接所述进水主管203,另一水路连接所述出水主管204,所述水管包括:绝缘水管g1,设置在所述钢架h1与所述顶屏蔽罩a1之间;层间绝缘水管g2,连接在相邻两层所述换流阀模块40之间,所述层间绝缘水管g2与三通相连接;旁通水管g3,两端连接在两路所述水管的底部。
如图25所示,本实施例提供的紧凑型智能化换流阀1000还包括:第一避雷器等效电路k1和第二避雷器等效电路k2,所述第一避雷器等效电路k1设置于所述第一屏蔽罩181的第一电位a和所述第二屏蔽罩182的第二电位b之间,所述第二避雷器等效电路k2设置于所述第二屏蔽罩182的第二电位b和所述第三屏蔽罩183的第三电位c之间;所述第一避雷器等效电路k1和所述第二避雷器等效电路k2均包括:三个屏蔽罩对地杂散电容C g,所述三个屏蔽罩对地杂散电容C g的第一端分别连接所述第一电位a、第二电位b和第三电位c,所述三个屏蔽罩对地杂散电容C g的第二端均接地;以及,避雷器寄生电容C a,所述避雷器寄生电容C a的值大于所述杂散电容C g的值。
在一实施例中,如图25所示,所述第一避雷器等效电路k1和第二避雷器等效电路k2还均包括:避雷器寄生电感L a、非线性电阻R(i)和相对应屏蔽罩互电容C s;所述非线性电阻R(i)与所述避雷器寄生电容C a组成的并联电路的一端连接至所述相对应屏蔽罩互电容C s的第一端,所述非线性电阻R(i)与所述避雷器寄生电容C a组成的并联电路的另一端通过所述避雷器寄生电感L a连接至所述相对应屏蔽罩互电容C s的第二端;所述第一避雷器等效电路k1的相对应屏蔽罩互电容C s的第一端和第二端分别连接第一电位a和第二电位b,所述第二避雷器等效电路k2的相对应屏蔽罩互电容C s的第一端和第二端分别连接第二电位b和第三电位c。
在一实施例中,如图25所示,所述紧凑型智能化换流阀1000还包括:多个相互串联的晶闸管级等效电路m1组成的第一串联电路;所述晶闸管级等效电路m1包括:阻尼电阻R d、寄生电感L Rd、阻尼电容C d、晶闸管结电容C thy、晶闸管等效电阻R thy、晶闸管寄生电感L thy、直流均压电阻R dc和散热器间互电容C j;其中,所述阻尼电阻R d、寄生电感L Rd和阻尼电容C d串联组成第一支路,所述晶闸管结电容C thy、晶闸管等效电阻R thy和晶闸管寄生电感L thy串联组成第二支路,所述直流均压电阻R dc和散热器间互电容C j并联组成第三支路,所述第一支路、第二支路分别与所述第三支路并联。
在一实施例中,如图25所示,所述第一电抗模块器171的一端连接所述换流阀模块40的输入端,所述第一电抗模块器171的另一端连接所述第一串联电路的第一端,所述第二电抗器模块172的一端连接所述换流阀模块40的输出端,所述第二电抗器模块172的另一端连接所述第一串联电路的第二端。
本申请提供的紧凑型智能化换流阀1000,采用屏蔽式均压技术,巧妙地利 用了换流阀模块40内置避雷器,将屏蔽罩电位点钳制于避雷器上,完全消除了屏蔽罩对地杂散电容C g对主回路的影响,保证了换流阀1000主回路中关键器件晶闸管电压的均匀分布。在单阀陡波冲击电压作用下,本申请可实现晶闸管电压不均匀度降低到0.17%,最大电压陡度达到6.8kV/μs;层间电压不均匀度达到0.8%,实现了串联晶闸管电压均衡分布,大幅度降低晶闸管1由于电压分配不均导致损坏的风险。
在单阀陡波冲击电压作用下,采用屏蔽式均压技术和相关技术得出了晶闸管1电压分布对比图,如图28所示,其中,左侧为屏蔽式均压技术,右侧为相关技术,图中黑色线为图3中第一层换流阀模块40第1级晶闸管电压波形(V1-1),短虚线为第一层换流阀模块40第32级晶闸管电压波形(V1-32);点虚线为第二层换流阀模块40第16级晶闸管电压波形(V2-16);点画线为第二层换流阀模块40第32级晶闸管电压波形(V2-32),由图28可知,采用屏蔽式均压技术大大改善了晶闸管1电压分布不均匀性。
采用屏蔽式均压电压电路的换流阀1000电压分布如表1所示,在不考虑多级晶闸管参数差异性的情况下,多级晶闸管1电压分布趋势基本一致,最大值和最小值之间只差0.004kV,不均度为0.17%,大大降低了换流阀1000不均匀系数;晶闸管1最大电压陡度为6.8kV/μs,大幅度提高了器件的可靠性;多层换流阀模块40之间电压分布很均压,不均压度为0.03%。
表1
Figure PCTCN2019095107-appb-000001
本申请技术与相关技术中的换流阀均压技术对比结果如下表2,在冲击电压下换流阀关键元器件晶闸管电压、最大电压陡度、电压不均匀度等多项重要指标均显著优于相关技术中换流阀电气均衡的效果。
表2
Figure PCTCN2019095107-appb-000002
经过以上表2的对比,可知本申请实施例提供的应用于换流阀1000的屏蔽式均压电路在工作的过程中,高频冲击下换流阀关键元器件晶闸管电压、最大电压陡度、电压不均匀度等多项重要指标均显著优于相关技术中的换流阀电气均衡效果。
本申请实施例提供的紧凑型智能化换流阀1000还包括:在线监测装置300,所述在线监测装置300包括:无线通信主站310、传感数据采集器320、控制单元330和至少一个智能传感器340;所述至少一个智能传感器340,设置为获取晶闸管组件内部每个晶闸管的运行参数,并将所述运行参数通过无线通信主站310和传感数据采集器320发送至控制单元330;控制单元330,设置为接收所述运行参数,并将所述运行参数与预设值进行对比,生成对比结果,并根据所述对比结果判断所述换流阀1000是否换相成功。
在一实施例中,所述智能传感器340设置于每个所述晶闸管1上,获取的运行参数包括:晶闸管1两端电压,当所述控制单元330将所述晶闸管1两端电压与预设值进行对比,生成的对比结果为所述晶闸管1两端电压小于预设值时,所述控制单元300判定所述换流阀1000换相失败;当所述控制单元330将 所述晶闸管1两端电压与预设值进行对比,生成的对比结果为所述晶闸管1两端电压大于预设值且所述晶闸管1承受正向电压时,所述控制单元330判定所述换流阀1000换相成功。
在一实施例中,上述运行参数还包括:电压、电流、电压变化率、电流变化率、功率、温度、压力、力矩以及微小漏电流等多物理量,本申请实施例提供的智能化在线监测装置300的智能传感器340实时监测晶闸管1的运行参数,并将其通过传输通道发送至上层的控制单元330,单阀中配置智能传感器340的数量至少为一个,至多为单阀中晶闸管级的数量;每个智能传感器340分别监测一个晶闸管级中晶闸管1的运行参数;上层的控制单元330依据换流阀1000中同一个单阀的智能传感器340传输的晶闸管1的运行参数生成所述单阀的换相失败信息;直流控制保护系统依据换相失败信息执行相应控制逻辑。相比于相关技术中直流控制保护系统采用间接测量方法判断换流阀1000换相失败响应时间需要20ms,本申请能够在1.5ms内准确判断出换流阀1000换相失败并传输至直流控制保护系统,响应速度大大加快,增强了换流阀1000抵御换相失败的能力。
本申请实施例提供的紧凑型智能化换流阀1000采用避雷器内置结构,每层换流阀模块40外围屏蔽罩电位点固定在避雷器上,切断了屏蔽罩对地杂散电容C g与换流阀主电路的电气连接关系,可完全隔离换流阀主电路通过屏蔽罩对地杂散电容C g流入或流出的泄漏电流。这样屏蔽罩对地的电容电流均由辅助回路避雷器提供,不经过换流阀主电路,使得换流阀1000关键元部件处于完全的屏蔽状态,同时,屏蔽罩与换流阀1000本体仅在单阀首末端存在电气连接关系,单阀内部主电路与屏蔽罩之间没有任何电气连接关系。从而保证高频冲击下单 阀内晶闸管电压均匀分布。在换流阀1000低频域运行下,避雷器处于开路状态,保证了换流阀1000主电路安全可靠运行;在高频冲击下,避雷器内部多级阀片寄生电容要远大于屏蔽罩对地杂散电容C g,保证了多级阀片电压分布均匀。
本申请从电气和结构的角度对换流阀1000进行了整体优化,提供一种全新的避雷器内置的紧凑型换流阀塔结构;并采用内置避雷器切断屏蔽罩与主电路电气连接关系来实现屏蔽隔离均压。同时,设计出一种智能化在线监测装置300,如图26及图27所示。
图26给出了在线监测装置300的示意图,在线监测装置300包括无线通信主站310、传感数据采集器320、控制单元330和至少一个智能传感器340。智能传感器340由物理量测量单元,数据处理单元和无线通信节点组成。无线通信主站负责和无线通信节点的上下行数据传输。传感数据采集器320利用无线通信网采集,预处理和储存传感数据,并将其发送至控制单元330,为数据分析和应用提供可用可靠的传感数据。传感数据采集器320与无线通信主站310可以通过光纤或电缆线连接。图27中给出了智能传感器340的示意图,智能传感器340包括智能传感器核心,物理量传感模块(相当于上述的物理量测量单元),无线通信(相当于上述的通信节点)和供电部分。智能传感器340的核心部分包括微处理器,储存器和能源管理。智能传感器340的核心部分通过三个接口分别和物理量测量部分,无线通信部分和供电部分连接。采用统一接口标准,智能传感器340可以灵活的应用到新的物理量的监测,可以支持不同的无线通信标准,也可以支持不同的供电模式。如果无线通信标准确定不变,也可以将无线收发模块放到智能传感器340核心中去。
利用当前先进的智能传感技术、无线信号传输及数据处理技术,实现换流 阀1000关键组部件多物理量的智能在线监测并增强了换流阀1000抵御换相失败的能力。该种新型的屏蔽式紧凑型智能化换流阀1000,节约了占地空间,提升了运行水平。紧凑化技术将显著降低换流阀1000体积,推动换流站整体布局优化,节约占地面积,减少换流站建筑规模,降低直流工程建设成本。智能化监测技术将实现换流阀1000关键部件运行状态在线优化和故障状态及时干预,可以及时有效地发现设备的多种安全问题及故障隐患,为换流阀1000的安全可靠运行提供及时有效、全面完善的技术支持。
本申请技术方案,具有如下优点:
1、本申请提供的紧凑型智能化换流阀,通过在阀模块内部设置避雷器,将避雷器设置在屏蔽罩相邻两个电位之间,将屏蔽罩电位钳制在避雷器上,将晶闸管级等效电路通过屏蔽罩对地杂散电容流入或流出的泄露电流完全隔离,使得紧凑型智能化换流阀在高频冲击下,屏蔽罩对地杂散电容的电流均由避雷器等效电路提供,切断了屏蔽罩对地杂散电容与晶闸管级等效电路的电气连接关系,保证了高频冲击下紧凑型智能化换流阀内晶闸管电压的均匀分布,降低了晶闸管由于电压分配不均导致损坏的风险。
2、本申请提供的紧凑型智能化换流阀,其中的避雷器等效电路还包括:避雷器寄生电感、非线性电阻和相对应屏蔽罩互电容,非线性电阻与避雷器寄生电容组成的并联电路与避雷器寄生电感组成串联电路后,再将该串联电路与相对应屏蔽罩互电容并联,由于非线性电阻在低频域的电阻很大,使得避雷器等效电路在低频域下处于开路状态,限制了紧凑型智能化换流阀的过电压,避免了紧凑型智能化换流阀过压损坏,保证了晶闸管级等效电路的安全可靠运行。
3、本申请提供的紧凑型智能化换流阀,由于位于晶闸管两端用于压装晶闸管的两散热器之间存在散热器间互电容,通过将散热器间互电容与阻尼电阻和阻尼电容组成的阻容回路并联,限制了晶闸管关断时产生的过冲电压。
4、本申请提供的紧凑型智能化换流阀,通过在多个相互串联的晶闸管级等效电路组成的第一串联电路的两端设置第一电抗器模块和第二电抗器模块,限制了晶闸管开通初期的电流以及高频冲击电压。
5、本申请提供的直流输电换流阀阀塔,通过将多层紧凑型智能化换流阀的避雷器等效电路串联,将每层紧凑型智能化换流阀的屏蔽罩电位分别钳制在避雷器上,将每层紧凑型智能化换流阀中的晶闸管级等效电路通过屏蔽罩对地杂散电容流入或流出的泄露电流完全隔离,使得在高频冲击下,屏蔽罩对地杂散电容的电流均由避雷器等效电路提供,切断了每层紧凑型智能化换流阀中的屏蔽罩对地杂散电容与晶闸管级等效电路的电气连接关系,保证了高频冲击下直流输电换流阀阀塔内晶闸管电压的均匀分布,降低了晶闸管由于电压分配不均导致损坏的风险。
6、本申请提供的紧凑型智能化换流阀,通过设置在线监测装置,实时监测直流输电换流阀内部关键部件的运行参数,并将运行参数上传至上层控制单元,上层控制单元通过将运行参数与预设值对比,判断出直流输电换流阀是否换相成功,与相关技术相比,该装置能够在1.5ms内快速判断换流阀的换相失败,增强了换流阀抵御换相失败的能力。
7、本申请提供的紧凑型智能化换流阀,避雷器设置在换流阀模块内部、晶闸管压装结构的一侧,将大大减小换流阀模块所占用的体积,有效地降低整个换流阀塔的建筑成本。
同时,在相关技术中,换流阀屏蔽罩的电位固定在主电路上,此时屏蔽罩的对地电容会对主电路中的晶闸管的电压分布产生不均匀影响。
而在本申请提供的换流阀模块中,避雷器与晶闸管压装结构平行设置,在第一主模块中的所述避雷器的两端分别为第一电位和第二电位,在第二主模块中的所述避雷器的两端分别为第二电位和第三电位。同时屏蔽罩组件由多部分组成,其中第一屏蔽罩与所述第一主模块内部的避雷器的第一电位固定;第三 屏蔽罩与所述第二主模块内部的避雷器的第三电位固定;第二屏蔽罩分别与所述第一主模块和所述第二主模块内部的所述避雷器的第二电位固定。
通过上述的设置方式,将屏蔽罩的电位固定在主电路之外,屏蔽罩电位与主电路中晶闸管的电位相互隔离,进而将大大减小晶闸管压装结构内部的晶闸管的分压的不均匀程度。
8、本申请提供的紧凑型智能化换流阀,通过将电抗器单独悬吊在两个主模块的两端,可以避免电抗器的振动影响换流阀模块其他部分的电气与水路连接,避免出现水管松动或电路连接松动、导致电气连接断开及漏水情况等问题。
9、本申请提供的紧凑型智能化换流阀,所述晶闸管压装结构一侧设置有所述避雷器,所述晶闸管压装结构另一侧设置有所述阻尼电容及所述门级单元,在所述晶闸管压装结构与所述避雷器之间设置有水冷系统。
在本申请中,换流阀模块内部的组件以晶闸管压装结构为分界线,将避雷器和水冷系统设置在靠近避雷器的一侧,此时水冷系统与门级单元和阻尼电容相远离。由于水冷系统可能发生漏水,而冷却水会严重影响换流阀模块内部电气元件的使用稳定性,因此将水冷系统与门级单元等器件分离,可以有效地预防上述情况的发生,并实现换流阀模块内部的“水电分离”。
10、本申请提供的紧凑型智能化换流阀,散热器侧壁上设置有进液口和出液口,相邻两个所述散热器彼此串联形成散热器组,两个散热器共用一个水路,冷却液通过其中一个所述散热器的进液口流入,对该散热器进行冷却后流入另一个散热器的所述进液口中,最终从该散热器的所述出液口中流出。
本申请中,进行冷却工作前的冷却液在进水管中流动,进行完冷却工作的冷却液在出水管中流动。进水管中引出进水头,进水头的水进入一个散热器组中的第一个散热器的进液口,对该散热器进行冷却后从该散热器的出液口流出,然后流入第二个散热器的所述进液口中,最终从第二个散热器的所述出液口中 流出,在该出液口上设置有出液头,出液头与出液管相连接,并将完成冷却过程的冷却液带走。
同时,本申请提供的散热机构中,阻尼电阻不用单独设置散热器,进而可以避免单独设置接水口,从而有效的避免了漏水点的出现。通过上述的方案,可以有效地减少总的水口数量,进而减少漏水点,提高了装置的可靠性。
11、本申请提供的紧凑型智能化换流阀,通过设置屏蔽罩组件,可以有效地降低阀塔周边的局部场强,防止局部场强过大而放电。
12、本申请提供的紧凑型智能化换流阀,交流电通过中间部位进入,分成两路并分别向上和向下流动,两路电流共用一套电抗器模块,可以有效的降低整个换流阀塔内部电抗器模块的数量,有利于装置的小型化。
13、本申请提供的紧凑型智能化换流阀,在晶闸管压装结构中的绝缘支撑梁上设置有增爬凹槽,设置为增加散热器间的爬电距离,解决相邻两个散热器间爬距不够的问题。

Claims (23)

  1. 一种换流阀,包括:
    多层沿竖直方向排列设置的换流阀模块(40),每层换流阀模块(40)包括:主模块(x1),所述主模块(x1)包括彼此连接的第一主模块(x11)和第二主模块(x12),所述第一主模块(x11)内部设置有第一避雷器(x115),所述第一避雷器(x115)的两端分别为第一电位(a)和第二电位(b);所述第二主模块(x12)内部设置有第二避雷器(x125),所述第二避雷器的两端分别为所述第二电位(b)和第三电位(c);
    屏蔽罩组件(18),连接在所述主模块(x1)外部,所述屏蔽罩组件(18)包括:第一屏蔽罩(181)、第二屏蔽罩(182)以及第三屏蔽罩(183),所述第一屏蔽罩(181)的电位固定为所述第一主模块(x11)内部的第一避雷器(x115)的第一电位(a);所述第三屏蔽罩(183)的电位固定为所述第二主模块(x12)内部的第二避雷器(x125)的第三电位(c);所述第二屏蔽罩(182)的电位固定为所述第一避雷器(x115)和第二避雷器(x125)的第二电位(b);
    第一避雷器等效电路(k1)和第二避雷器等效电路(k2),所述第一避雷器等效电路(k1)设置于所述第一屏蔽罩(181)的第一电位(a)和所述第二屏蔽罩(182)的第二电位(b)之间,所述第二避雷器等效电路(k2)设置于所述第二屏蔽罩(182)的第二电位(b)和所述第三屏蔽罩(183)的第三电位(c)之间;
    所述第一避雷器等效电路(k1)和所述第二避雷器等效电路(k2)均包括:三个屏蔽罩对地杂散电容(C g),所述三个屏蔽罩对地杂散电容(C g)的第一端分别连接所述第一电位(a)、所述第二电位(b)和所述第三电位(c),所述三个屏蔽罩对地杂散电容(C g)的第二端均接地;以及,避雷器寄生电容(C a),所述避雷器寄生电容(C a)的值大于所述屏蔽罩对地杂散电容(C g)的值。
  2. 根据权利要求1所述的换流阀,其中,所述第一避雷器等效电路(k1)和第二避雷器等效电路(k2)还均包括:避雷器寄生电感(L a)、非线性电阻(R(i))和相对应屏蔽罩互电容(C s);
    所述非线性电阻(R(i))与所述避雷器寄生电容(C a)组成的并联电路的一端连接至所述相对应屏蔽罩互电容(C s)的第一端,所述非线性电阻(R(i))与所述避雷器寄生电容(C a)组成的并联电路的另一端通过所述避雷器寄生电感(L a) 连接至所述相对应屏蔽罩互电容(C s)的第二端;
    所述第一避雷器等效电路(k1)的相对应屏蔽罩互电容(C s)的第一端和第二端分别连接所述第一电位(a)和所述第二电位(b),所述第二避雷器等效电路(k2)的相对应屏蔽罩互电容(C s)的第一端和第二端分别连接所述第二电位(b)和所述第二电位(c)。
  3. 根据权利要求1或2所述的换流阀,还包括:多个相互串联的晶闸管级等效电路(m1)组成的第一串联电路;
    所述晶闸管级等效电路包括:阻尼电阻(R d)、寄生电感(L Rd)、阻尼电容(C d)、晶闸管结电容(C thy)、晶闸管等效电阻(R thy)、晶闸管寄生电感(L thy)、直流均压电阻(R dc)和散热器间互电容(C j);
    其中,所述阻尼电阻(R d)、所述寄生电感(L Rd)和所述阻尼电容(C d)串联组成第一支路,所述晶闸管结电容(C thy)、所述晶闸管等效电阻(R thy)和所述晶闸管寄生电感(L thy)串联组成第二支路,所述直流均压电阻(R dc)和所述散热器间互电容(C j)并联组成第三支路,所述第一支路、所述第二支路分别与所述第三支路并联。
  4. 根据权利要求3所述的换流阀,其中,所述换流阀模块(40)还包括:
    两组电抗器模块(17),分别设置在所述主模块(x1)两侧,所述两组电抗器模块(17)包括第一电抗器模块(171)和第二电抗器模块(172),所述第一电抗器模块(171)设置有排列设置的第一电抗器(1712)和第二电抗器(1713),所述第二电抗器模块(172)内部设置有排列设置的第三电抗器(1722)和第四电抗器(1723);
    所述第一电抗器模块(171)的一端连接所述换流阀模块(40)的输入端,所述第一电抗器模块(171)的另一端连接所述第一串联电路的第一端,所述第二电抗器模块(172)的一端连接所述换流阀模块(40)的输出端,所述第二电抗器模块(172)的另一端连接所述第一串联电路的第二端。
  5. 根据权利要求4所述的换流阀,其中,所述第一主模块(x11)内部设置有第一晶闸管压装结构(x112),所述第二主模块(x22)内部设置有第二晶闸管压装结构(x122),所述第一晶闸管压装结构(x112)和所述第二晶闸管压装结构(x122)均包括晶闸管组件(111),所述晶闸管组件(111)包括有 多个沿同一直线阵列设置的晶闸管(1)。
  6. 根据权利要求5所述的换流阀,还包括在线监测装置(300):
    所述在线监测装置(300)包括:无线通信主站(310)、传感数据采集器(320)、控制单元(330)和至少一个智能传感器(340);
    所述至少一个智能传感器(340),设置为获取所述晶闸管组件(111)内部的每个晶闸管(1)的运行参数,并将所述运行参数通过所述无线通信主站(310)和所述传感数据采集器(320)发送至所述控制单元(330);
    所述控制单元(330),设置为接收所述运行参数,并将所述运行参数与预设值进行对比,生成对比结果,并根据所述对比结果判断所述换流阀(1000)是否换相成功。
  7. 根据权利要求6所述的换流阀,其中,每个所述晶闸管(1)上设置有所述智能传感器(340),所述智能传感器(340)获取的所述运行参数包括:晶闸管(1)两端的电压。
  8. 根据权利要求7所述的换流阀,其中,所述控制单元(330)是设置为:
    在将所述晶闸管(1)两端的电压与所述预设值进行对比,生成的对比结果为所述晶闸管(1)两端的电压小于所述预设值的情况下,判定所述换流阀(1000)换相失败;
    在将所述晶闸管(1)两端的电压与所述预设值进行对比,生成的对比结果为所述晶闸管(1)两端的电压大于所述预设值且所述晶闸管(1)承受正向电压的情况下,判定所述换流阀(1000)换相成功。
  9. 根据权利要求5所述的换流阀,其中,所述第一晶闸管压装结构(x112)和所述第二晶闸管压装结构(x122)还包括:
    在所述晶闸管组件(111)一侧设置的均压电阻(4);
    多根绝缘拉杆(5),所述绝缘拉杆(5)的延伸方向与所述晶闸管组件(111)的延伸方向一致;
    相对设置的活动端板(61)和固定端板(62),每根绝缘拉杆(5)的两端分别连接在所述活动端板(61)和固定端板(62)上,所述活动端板(61)、固定端板(62)和所述绝缘拉杆(5)形成用以容纳所述晶闸管组件(111)的 容纳腔;
    所述晶闸管组件(111)包括:
    多个沿同一直线阵列设置的散热器(3),相邻两片所述散热器(3)之间设置有所述晶闸管(1);所述散热器(3)上设置有可供阻尼电阻(2)散热的阻尼电阻散热区(31),以及,与所述晶闸管(1)相对应的晶闸管散热区(32);
    阻尼电阻冷却流道(33)和晶闸管冷却流道(34),设置在所述散热器(3)内部,冷却液沿所述阻尼电阻冷却流道(33)和晶闸管冷却流道(34)流动,所述冷却液流入所述晶闸管散热区(32),以及流入所述阻尼电阻散热区(31),用以对连接在所述散热器(3)上的所述晶闸管(1)及所述阻尼电阻(2)进行冷却。
  10. 根据权利要求9所述的换流阀,其中,所述散热器(3)不朝向所述晶闸管(1)的侧壁上设置有进液口(35)和出液口(36),相邻两个所述散热器(3)彼此串联形成散热器组,所述冷却液通过所述散热器组中的一个所述散热器(3)的进液口(35)流入,对所述散热器(3)进行冷却后从出液口(36)流出并流入所述散热器组中的另一个散热器(3)的所述进液口(35)中,并最终从所述另一个散热器(3)的所述出液口(36)中流出。
  11. 根据权利要求10所述的换流阀,其中,所述第一晶闸管压装结构(x112)与所述第一避雷器(x115)、所述第二晶闸管压装结构(x122)与所述第二避雷器(x125)之间均设置有水冷系统(200),所述水冷系统(200)包括:连接在所述第一晶闸管压装结构(x112)和所述第二晶闸管压装结构(x122)上的晶闸管压装水管(201),所述晶闸管压装水管(201)作用在所述散热器组上;以及,连接在所述第一电抗器模块(171)和第二电抗器模块(172)上的电抗器水管(202)。
  12. 根据权利要求11所述的换流阀,其中,所述水冷系统(200)包括进水主管(203)和出水主管(204),每层换流阀模块(40)上设置有两组三通(205),相邻两层所述换流阀模块的所述三通(205)对应设置,所述三通(205)包括相对设置的两个竖直水口,以及一个水平水口,所述水平水口连接所述进水主管(203)和所述出水主管(204)。
  13. 根据权利要求12所述的换流阀,其中,所述进水主管(203)上设置 有冷水头,所述出水主管(204)上设置有热水头,所述冷水头连接所述散热器组中的一个所述散热器(3)的进液口(35),所述冷水头连接所述散热器组中另一个所述散热器(3)的出液口(36)。
  14. 根据权利要求5所述的换流阀,其中,所述换流阀模块还包括母排结构(105),所述母排结构(105)设置在每个所述电抗器模块(17)内部;
    所述母排结构(105)包括:电抗器间母排(101),设置在所述第一电抗器(1712)和所述第二电抗器(1713)之间、或所述第三电抗器(1722)与所述第四电抗器(1723)之间,设置为使电流在所述第一电抗器(1712)和所述第二电抗器(1713)之间、或所述第三电抗器(1722)与所述第四电抗器(1723)之间传导;
    电抗器晶闸管间母排(102),所述电抗器晶闸管间母排(102)的一端连接所述第一电抗器(1712)或所述第三电抗器(1722),所述电抗器晶闸管间母排(102)的另一端连接所述第一晶闸管压装结构(x112)或所述第二晶闸管压装结构(x122),设置为使电流依次流经所述第二电抗器(1713)、所述第一电抗器(1712)、所述第一晶闸管压装结构(x112)、所述第二晶闸管压装结构(x122)、所述第三电抗器(1722)和所述第四电抗器(1723)。
  15. 根据权利要求14所述的换流阀,其中,所述第一电抗器模块(171)还设置有:
    第一并联支路(1715),包括依次串联的第一支路电阻(1716)和第一辅助电抗器(1714),所述第一并联支路(1715)与所述第一电抗器(1712)或第二电抗器(1713)并联,设置为转移所述第一电抗器(1712)或第二电抗器(1713)的损耗,所述第一辅助电抗器(1714)包括:支路线性电抗器(1717),设置为在换流阀开通和关断时将第一电抗器(1712)或第二电抗器(1713)的损耗转移到所述第一并联支路(1715)上;以及,支路饱和电抗器(1718),设置为在换流阀关断时,将所述第一电抗器(1712)或第二电抗器(1713)的损耗转移到所述第一并联支路(1715)上。
  16. 根据权利要求15所述的换流阀,其中,所述母排结构(105)还包括:
    第一阀模块进出线(103),与每层换流阀模块(40)中的所述第二电抗器(1713)相连接;
    第二阀模块进出线(104),与每层换流阀模块(40)中的所述第四电抗器(1723)相连接;
    电流通过所述第一阀模块进出线(103)和所述第二阀模块进出线(104)流入或流出每层换流阀模块(40)。
  17. 根据权利要求16所述的换流阀,其中,相邻两层所述换流阀模块(40)之间设置有阀模块层间母排(d4),所述阀模块层间母排(d4)的一端连接位于所述阀模块层间母排(d4)上层的所述换流阀模块(40)中的所述第二阀模块进出线(104);所述阀模块层间母排(d4)的另一端连接位于所述阀模块层间母排(d4)下层的所述换流阀模块(40)的所述第一阀模块进出线(103);通过所述阀模块层间母排(d4),完成电流在相邻两层所述换流阀模块(40)之间的传导。
  18. 根据权利要求17所述的换流阀,还包括:
    钢架(h1),固定安装在悬吊点;
    顶屏蔽罩(a1),吊装在所述钢架(h1)的下方;
    底屏蔽罩(a2),设置在所述顶屏蔽罩(a1)的下方,所述顶屏蔽罩(a1)与所述底屏蔽罩(a2)之间吊装有多个沿竖直方向彼此平行设置的所述换流阀模块(40);
    所述顶屏蔽罩(a1)与相邻的换流阀模块(40)之间设置有顶屏蔽罩母排(d2),所述顶屏蔽罩母排(d2)的一端连接所述第一阀模块进出线(103),所述顶屏蔽罩母排(d2)的另一端连接所述顶屏蔽罩(a1);所述底屏蔽罩(a2)与相邻的换流阀模块(40)之间设置有底屏蔽罩母排(d3),所述底屏蔽罩母排(d3)的一端连接所述第二阀模块进出线(104),所述底屏蔽罩母排(d3)的另一端连接所述底屏蔽罩(a2)。
  19. 根据权利要求18所述的换流阀,其中,所述换流阀模块上设置有吊耳(b0),所述吊耳(b0)包括:
    多个框架吊耳(b1),对称设置在所述第一主模块框架和所述第二主模块框架的相应位置上;
    中部吊耳(b2),设置在所述连接件上;
    多个电抗器吊耳(b3),分别设置在所述第一电抗器框架(1711)和所述第二电抗器框架(1721)上。
  20. 根据权利要求19所述的换流阀,其中,相邻两层所述换流阀模块(40)之间连接有层间绝缘子(c1),所述层间绝缘子(c1)的两端分别嵌入与所述层间绝缘子(c1)相邻的换流阀模块(40)的所述吊耳(b0)中;
    所述换流阀模块(40)与所述底屏蔽罩(a2)之间设置有所述层间绝缘子(c1),所述层间绝缘子(c1)的一端连接在所述换流阀模块(40)的所述吊耳(b0)中,所述层间绝缘子(c1)的另一端连接在所述底屏蔽罩(a2)上;
    所述换流阀模块(40)与所述顶屏蔽罩(a1)之间设置有所述层间绝缘子(c1),所述层间绝缘子(c1)的一端连接在所述换流阀模块(40)所述吊耳(b0)中,所述层间绝缘子(c1)的另一端连接在所述顶屏蔽罩(a1)上。
  21. 根据权利要求20所述的换流阀,其中,所述钢架(h1)与所述顶屏蔽罩(a1)之间设置有顶部绝缘子(c2),所述顶部绝缘子(c2)的一端连接所述顶屏蔽罩(a1)、所述顶部绝缘子(c2)的另一端连接所述钢架(h1)。
  22. 根据权利要求21所述的换流阀,其中,多层相邻所述换流阀模块(40)之间形成一组单阀,在所述单阀的组数为偶数的情况下,位于中心部位的两个所述单阀之间的所述阀模块层间母排(d4)上设置有阀塔进线管母(d41),所述顶屏蔽罩母排(d2)上设置有阀塔上阀出线管母(d21),所述底屏蔽罩母排(d3)上设置有阀塔下阀出线管母(d31);从所述阀塔进线管母(d41)流入的电流分成两路,分别进入所述阀塔上阀出线管母(d21)和所述阀塔下阀出线管母(d31)中并流出。
  23. 根据权利要求22所述的换流阀,其中,按照装配时的上下位置,多个所述单阀分为上单阀(e1)和下单阀(e2),所述上单阀(e1)和所述下单阀(e2)的内部的每个所述单阀中,每层换流阀模块(40)内部的第一避雷器(x115)和第二避雷器(x125)之间通过层内避雷器导线(f1)进行连接,所述单阀中位于上层的所述换流阀模块(40)的第二避雷器(x125)的第三电位(c)与位于下层的所述换流阀模块(40)的第一避雷器(x115)的第一电位(a)通过所述层间避雷器导线(f2)相连接。
PCT/CN2019/095107 2018-05-25 2019-07-08 换流阀 WO2019223813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810515986.4A CN110535354B (zh) 2018-05-25 2018-05-25 一种紧凑型智能化换流阀
CN201810515986.4 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019223813A1 true WO2019223813A1 (zh) 2019-11-28

Family

ID=68616586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095107 WO2019223813A1 (zh) 2018-05-25 2019-07-08 换流阀

Country Status (2)

Country Link
CN (1) CN110535354B (zh)
WO (1) WO2019223813A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304364A (zh) * 2020-09-24 2021-02-02 许继集团有限公司 一种耗能换流阀的全景巡检方法及耗能换流阀的监视装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421409B (zh) * 2022-01-27 2024-01-23 国网智能电网研究院有限公司 一种混合式换流器阀塔

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719719A (zh) * 2009-12-14 2010-06-02 中国电力科学研究院 一种新型的晶闸管换流阀阀模块
CN105207498A (zh) * 2015-09-02 2015-12-30 国网智能电网研究院 一种高压直流输电换流阀单列阀塔
CN108494270A (zh) * 2018-04-17 2018-09-04 全球能源互联网研究院有限公司 一种避雷器内置的换流阀塔
CN108695307A (zh) * 2018-04-17 2018-10-23 全球能源互联网研究院有限公司 一种避雷器内置的换流阀模块

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202034366U (zh) * 2011-03-21 2011-11-09 许继集团有限公司 用于高压直流输电的晶闸管换流阀阀塔
CN103354234B (zh) * 2013-06-26 2015-11-04 许继电气股份有限公司 一种晶闸管换流阀组件
CN104467457A (zh) * 2014-09-28 2015-03-25 国家电网公司 一种高压晶闸管换流阀阀塔
CN104270016A (zh) * 2014-09-28 2015-01-07 国家电网公司 一种新型的晶闸管换流阀的阀塔
CN104392986B (zh) * 2014-10-21 2017-07-07 许继电气股份有限公司 一种晶闸管换流阀组件
CN106547990B (zh) * 2016-11-24 2019-06-18 华北电力大学 特高压直流换流阀塔阀层集成宽频等效电路模型的建模方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719719A (zh) * 2009-12-14 2010-06-02 中国电力科学研究院 一种新型的晶闸管换流阀阀模块
CN105207498A (zh) * 2015-09-02 2015-12-30 国网智能电网研究院 一种高压直流输电换流阀单列阀塔
CN108494270A (zh) * 2018-04-17 2018-09-04 全球能源互联网研究院有限公司 一种避雷器内置的换流阀塔
CN108695307A (zh) * 2018-04-17 2018-10-23 全球能源互联网研究院有限公司 一种避雷器内置的换流阀模块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304364A (zh) * 2020-09-24 2021-02-02 许继集团有限公司 一种耗能换流阀的全景巡检方法及耗能换流阀的监视装置

Also Published As

Publication number Publication date
CN110535354B (zh) 2020-07-24
CN110535354A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
CN105355603B (zh) 一种大组件igbt压装单元
WO2019223813A1 (zh) 换流阀
CN106452097A (zh) 牵引功率模块
WO2020098750A1 (zh) 高压隔离变压器
CN106026693A (zh) 一种高集成变流器模块
CN105529164A (zh) 电感可调的开放式空心电抗器
WO2018040308A1 (zh) 风电变流器功率柜
WO2021031729A1 (zh) 换流阀
CN108494270B (zh) 一种避雷器内置的换流阀塔
WO2022088937A1 (zh) 一种可控避雷器用立式晶闸管开关
CN105024563A (zh) 一字型阀层布置的直流换流阀
CN102956350A (zh) 一种一体化高频功率变压器
CN205092111U (zh) 一种低损耗减震变压器
CN201951278U (zh) 电气化铁路牵引供电系统接触网全分段并联供电系统
CN103178722A (zh) 一种大容量整流水冷功率模块
WO2023142405A1 (zh) 一种混合式换流器阀塔
CN212463081U (zh) 换流装置
WO2021031730A1 (zh) 换流阀阀层及换流阀
CN108695307B (zh) 一种避雷器内置的换流阀模块
CN108111029B (zh) 一种饱和电抗器集中布置的换流阀塔
CN211208208U (zh) 一种大电流空心平波水冷电抗器
CN210201731U (zh) 一种换流阀阀塔
CN112751496B (zh) 一种变流器
WO2020250486A1 (ja) 電力変換装置
CN212063397U (zh) 安全节能母线单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807813

Country of ref document: EP

Kind code of ref document: A1