WO2023142405A1 - 一种混合式换流器阀塔 - Google Patents

一种混合式换流器阀塔 Download PDF

Info

Publication number
WO2023142405A1
WO2023142405A1 PCT/CN2022/107496 CN2022107496W WO2023142405A1 WO 2023142405 A1 WO2023142405 A1 WO 2023142405A1 CN 2022107496 W CN2022107496 W CN 2022107496W WO 2023142405 A1 WO2023142405 A1 WO 2023142405A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
main branch
module group
branch
auxiliary branch
Prior art date
Application number
PCT/CN2022/107496
Other languages
English (en)
French (fr)
Inventor
王治翔
王成昊
高冲
谢剑
盛财旺
Original Assignee
国网智能电网研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网智能电网研究院有限公司 filed Critical 国网智能电网研究院有限公司
Publication of WO2023142405A1 publication Critical patent/WO2023142405A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure
    • H02G13/80Discharge by conduction or dissipation, e.g. rods, arresters, spark gaps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present application relates to the technical field of commutation in power electronics, in particular to a hybrid converter valve tower.
  • the traditional line commutated converter high voltage direct current (LCC-HVDC) transmission system has the advantages of long-distance large-capacity transmission and controllable active power, and is widely used in the world.
  • the converter As the core equipment of DC power transmission, the converter is the core functional unit to realize the conversion of AC and DC power, and its operation reliability largely determines the operation reliability of the UHV DC grid.
  • traditional converters mostly use semi-controlled device thyristors as the core components to form a six-pulse bridge commutation topology, each bridge arm is composed of multi-level thyristors and their buffer components connected in series. Commutation failures are prone to occur under conditions such as faults, resulting in a sharp increase in DC current and a rapid loss of DC transmission power, which poses more severe challenges to the safe and stable operation of the power grid.
  • the related technology provides a hybrid converter topology and its control method, which solves the problem of unstable and safe operation of the power grid caused by commutation failure.
  • the location of the device to minimize the volume of the entire device has become an urgent technical problem in this field.
  • the technical problem to be solved in this application is to overcome the disadvantages of large volume and large space occupied by the converter valve tower in the related art, so as to provide a hybrid converter valve tower with small volume and compact layout.
  • a hybrid mixer valve tower including:
  • the first module group and the second module group are arranged alternately, the output end of the first module group is electrically connected to the input end of the second module group, and the output end of the second module group is connected to the first module group on the next layer
  • the input terminals are electrically connected, and a first arrester is arranged between the input ends of the two-layer first module groups arranged close to each other, and a second arrester is arranged between the input ends of the two-layer second module groups arranged adjacently;
  • the first shielding case and the second shielding case are respectively arranged on two sides of the first module group on the top layer and the second module group on the bottom layer.
  • the input ends of the first main branch module and the second main branch module are provided with installation structures, and both the first arrester and the second arrester are arranged in the installation structures.
  • the first main branch module includes a first main branch reactor, a first thyristor valve, a low-voltage shut-off valve, a first thyristor valve and a first main branch connected in series. Reactor;
  • the first auxiliary branch module includes a first high-voltage thyristor valve, a first auxiliary branch reactor, two first high-voltage shutoff valves, a first auxiliary branch reactor and a first high-voltage thyristor valve connected in series.
  • a third arrester is connected in parallel at both ends of the low-voltage shut-off valve, and a fourth arrester is connected in parallel at both ends of the first high-voltage thyristor valve and the first auxiliary branch reactor. , a fifth arrester is connected in parallel at both ends of the two first high-pressure shut-off valves.
  • the second main branch circuit module includes a second main branch circuit reactor, two second thyristor valves and a second main branch circuit reactor sequentially connected in series;
  • the second auxiliary branch module includes a second high-voltage thyristor valve, a second auxiliary branch reactor, two second high-voltage shutoff valves, a second auxiliary branch reactor and a second high-voltage thyristor valve connected in series.
  • a sixth surge arrester is connected in parallel between the two ends of the second high-voltage thyristor valve and the second auxiliary branch reactor, and a sixth arrester is connected in parallel between the two ends of the two second high-voltage shut-off valves. Seven arresters.
  • the two first high-pressure shut-off valves are connected through a first auxiliary branch wire
  • the two second high-pressure shut-off valves are connected through a second auxiliary branch wire.
  • the second thyristor valves are connected through the main branch wire.
  • the valve tower of the hybrid converter further includes a water supply pipe and an optical fiber groove running through the first module group and the second module group from top to bottom, and the water supply pipe and the The first module group communicates with the heat sink in the second module group, and the optical fiber groove is used for accommodating optical fibers.
  • valve tower of the hybrid converter further includes an insulator arranged on the first shielding case.
  • the first main branch module and the second main branch module are connected in series, the first auxiliary branch module and the second auxiliary branch module are connected in series, and the first main branch module
  • the module and the first auxiliary branch module are arranged opposite to each other on the same floor, and the second main branch module and the second auxiliary branch module are arranged opposite to each other on the same floor.
  • the first surge arrester and the second surge arrester are respectively arranged between the input ends of the two-layer first module groups arranged close to them and the input ends of the two-layer second module groups arranged close to them. Between terminals, since the output terminal of the first module group is electrically connected to the input terminal of the second module group, the output terminal of the second module group is electrically connected to the input terminal of the first module group on the next layer, so the second module group.
  • the potential of the output terminal of the valve is the same as the potential of the first module group on the next floor, the first arrester and the second arrester can be installed on the same side of the valve tower, thereby shortening the length of the first arrester and the second arrester, thereby reducing
  • the volume of the entire valve tower makes the overall structure more compact.
  • the two shielding covers evenly distribute the high-voltage external electric field on the valve tower structure, and the two arresters provide overvoltage protection for the first module group and the second module group.
  • the first arrester and the second arrester are arranged in the installation structure of the input end of the first main branch module and the second main branch module, making the installation more stable and reliable.
  • the low-pressure shut-off valve in the main branch module and the two high-pressure shut-off valves in the auxiliary branch module are set. After commutation fails, the main branch module The current in the auxiliary branch circuit module can be transferred to the auxiliary branch circuit module, so as to quickly restore the commutation; and in normal operation, the auxiliary branch circuit module does not need to be put into operation, but only needs to bear the voltage stress, and will not have a negative impact on the operating conditions of the converter valve , improve device utilization, and facilitate engineering implementation.
  • the water supply pipe is used to provide cooling water for the semiconductor device and the radiator of the resistor in each module to ensure the heat dissipation effect; the setting of the insulator is convenient for hoisting of the valve tower.
  • Fig. 1 is the schematic diagram of the hybrid converter valve tower provided by the embodiment of the present application.
  • Fig. 2 is the electrical topological diagram of the hybrid converter valve tower provided by the embodiment of the present application.
  • Fig. 3 is a top view of the first module group provided by the embodiment of the present application.
  • Fig. 4 is a top view of the second module group provided by the embodiment of the present application.
  • the sixth arrester; 24. The second auxiliary branch corner shield; 25.
  • the seventh arrester; 26. The first Two auxiliary branch wires; 27, the first lightning arrester; 28, the second lightning arrester; 29, the water supply pipe; 30, the optical fiber groove; 31, the insulator.
  • a specific implementation of the hybrid converter valve tower shown in Figure 1 includes a first shielding cover 1, a first module group 2, a second module group 3, and a first module group arranged in sequence from top to bottom. 2.
  • the first module group 2 includes a first main branch module and a first auxiliary branch module arranged in parallel, and the first auxiliary branch module is used to assist the first main branch module when the phase commutation of the first main branch module fails Perform a forced commutation.
  • the first main branch module and the first auxiliary branch module are arranged opposite to each other on the same floor, and the first main branch module includes the first main branch reactor 5, the first thyristor valve 6.
  • Low-voltage shut-off valve 7 , first thyristor valve 6 and first main branch reactor 5 are set in the center, and the third lightning arrester 8 is connected in parallel at both ends.
  • Two sets of first main branch reactors 5 and the first thyristor valve 6 are arranged symmetrically on both sides of the low-voltage shut-off valve 7 .
  • the first auxiliary branch module includes a first high-voltage thyristor valve 10, a first auxiliary branch reactor 11, two first high-voltage shut-off valves 12, a first auxiliary branch reactor 11 and a first high-voltage thyristor connected in series. valve 10.
  • two first high-voltage thyristor valves 10 and two first high-pressure shut-off valves 12 are arranged side by side at intervals, and the two first high-pressure shut-off valves 12 are arranged in the middle, and the two first high-voltage thyristor valves 10 are arranged symmetrically.
  • two first auxiliary branch reactors 11 are arranged close to the outside, the first high-voltage thyristor valve 10 and the first auxiliary branch reactor 11 are connected in parallel with a fourth arrester 13, and the fourth arrester 13 passes through the first The auxiliary branch angle shield 14 (not shown in Fig.
  • first auxiliary branch reactor 11 is electrically connected to the first auxiliary branch reactor 11, and the two ends of the first high-voltage shut-off valves 12 near the outer sides are connected in parallel with the fifth lightning arrester 15, which is near the inner side The two ends of are connected by a first auxiliary branch wire 16 (not shown in FIG. 2 ).
  • the second module group 3 includes a second main branch module and a second auxiliary branch module arranged in parallel, and the second auxiliary branch module is used to assist when the commutation of the second main branch module fails.
  • the second main branch module performs forced commutation.
  • the output end of the first module group 2 is electrically connected to the input end of the second module group 3
  • the output end of the second module group 3 is electrically connected to the input end of the first module group 2 on the next layer.
  • first main branch module is connected in series with the second main branch module
  • first auxiliary branch module is connected in series with the second auxiliary branch module
  • the second main branch module and the second auxiliary branch module are arranged opposite to each other on the same floor, and the second main branch module includes a second main branch reactor 17, two second Thyristor valve 18 and second main branch reactor 17 .
  • the two second main branch reactors 17 are arranged close to the outside, and an arc-shaped installation structure 9 (not shown in FIG. 2 ) is externally connected to the ends of the second main branch reactors 17;
  • Two thyristor valves 18 are arranged close to the inside, and the two second thyristor valves 18 are connected by a main branch wire 19 (not shown in FIG. 2 ).
  • the second auxiliary branch module includes a second high-voltage thyristor valve 20, a second auxiliary branch reactor 21, two second high-voltage shut-off valves 22, a second auxiliary branch reactor 21 and a second high-voltage thyristor connected in series.
  • Valve 20 wherein, two second high-pressure thyristor valves 20 and two second high-pressure shut-off valves 22 are arranged side by side at intervals, and the two second high-pressure shut-off valves 22 are arranged in the middle, and the two second high-voltage thyristor valves 20 are arranged symmetrically.
  • two second auxiliary branch reactors 21 are arranged close to the outside, the second high voltage thyristor valve 20 and the two ends of the second auxiliary branch reactor 21 are connected in parallel with the sixth arrester 23, and the sixth arrester 23 passes through the second
  • the auxiliary branch angle shield 24 (not shown in Fig. 2 ) is electrically connected to the second auxiliary branch reactor 21, and the two ends of the second high-voltage shut-off valves 22 near the outer sides are connected in parallel with the seventh arrester 25, which is near the inner side Both ends of are connected by a second auxiliary branch wire 26 (not shown in FIG. 2 ).
  • the installation structure 9 (not shown in Fig. 1) of the input end of the two-layer first module group 2 is provided with the first arrester 27, the installation structure 9 (Fig. 1) of the input end of the second module group of two layers (not shown in ) is provided with a second arrester 28, and both the first arrester 27 and the second arrester 28 are single-valve arresters.
  • the fiber groove 30 is used for accommodating optical fibers.
  • a pair of insulators 31 are further provided on the first shielding case 1 , and a lifting ring is provided on the upper end of the insulators 31 to facilitate hoisting of the valve tower.
  • the low-pressure shut-off valve 7 of the first main branch module is turned off, and the two first high-pressure shut-off valves 12 of the corresponding first auxiliary branch module are turned on, Transfer the current of the first main branch circuit module to the first auxiliary branch circuit module, the current of the first auxiliary branch circuit module enters from the first high voltage thyristor valve 10, flows through the first auxiliary branch circuit reactor 11, two first The high-voltage shut-off valve 12 and the first auxiliary branch reactor 11 flow out from another first high-voltage thyristor valve 10 and enter the second auxiliary branch module.
  • the two first high-pressure shut-off valves 12 are closed to realize the forced phase change of the first main branch circuit module.
  • the hybrid converter valve tower provided by the embodiment of the present application includes at least two first module groups arranged at intervals.
  • the first module group includes a first main branch module and a first auxiliary branch module arranged in parallel.
  • the first The auxiliary branch module is used to assist the first main branch module to perform forced phase commutation when the phase commutation of the first main branch module fails;
  • the second module group is arranged at least two layers apart, and the second module group includes the first module group arranged in parallel.
  • the second auxiliary branch module is used to assist the second main branch module to perform forced commutation when the commutation of the second main branch module fails;
  • the first module group and The second module group is arranged alternately, the output end of the first module group is electrically connected to the input end of the second module group, the output end of the second module group is electrically connected to the input end of the first module group on the next layer, and is set close to the
  • a first lightning arrester is arranged between the input ends of the two layers of the first module group, and a second lightning arrester is arranged between the input ends of the two layers of the second module group arranged close to each other;
  • the first shielding case and the second shielding case are respectively arranged in The first module group on the top floor and the sides of the second module group on the bottom floor.
  • the present application arranges the first lightning arrester and the second lightning arrester respectively between the input terminals of the two-layer first module groups and between the input terminals of the two-layer second module groups, because the first module groups
  • the output end of the second module group is electrically connected to the input end of the second module group
  • the output end of the second module group is electrically connected to the input end of the first module group of the next layer, so the potential of the output end of the second module group and the potential of the next layer
  • the potential of the first module group is the same, and the first arrester and the second arrester can be installed on the same side of the valve tower, thereby shortening the length of the first arrester and the second arrester, thereby reducing the volume of the entire valve tower, making the overall structure more compact.
  • the two shielding covers evenly distribute the high-voltage external electric field on the valve tower structure, and the two arresters provide overvoltage protection for the first module group and the second module group.
  • Both the first lightning arrester and the second lightning arrester are arranged in the installation structure of the input ends of the first main branch module and the second main branch module, so that the installation is more stable and reliable.
  • the low pressure shutoff valve in the main branch module and the two high pressure shutoff valves in the auxiliary branch module after commutation failure, the current in the main branch module can be diverted to the auxiliary branch module, so as to recover quickly Phase commutation; during normal operation, the auxiliary branch module does not need to be put into operation, but only needs to bear the voltage stress, which will not have a negative impact on the operating conditions of the converter valve, improves the utilization rate of the device, and is convenient for project implementation.
  • the water supply pipe is used to provide cooling water for the semiconductor device and the radiator of the resistor in each module to ensure the heat dissipation effect; the setting of the insulator is convenient for the hoisting of the valve tower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Rectifiers (AREA)

Abstract

本申请实施例提供了一种混合式换流器阀塔,包括:至少两层间隔设置的第一模块组,包括并联设置的第一主支路模块和第一辅助支路模块;至少两层间隔设置的第二模块组,包括并联设置的第二主支路模块的第二辅助支路模块;第一模块组和第二模块组交替设置,第一模块组的输出端和第二模块组的输入端电连接,第二模块组的输出端与下一层的第一模块组的输入端电连接,且靠近设置的两层第一模块组的输入端之间设置有第一避雷器,靠近设置的两层第二模块组的输入端之间设置有第二避雷器;第一屏蔽罩和第二屏蔽罩,分设在顶层的第一模块组和底层的第二模块组的两侧。本申请提供了一种体积较小,布局紧凑的混合式换流器阀塔。

Description

一种混合式换流器阀塔
相关申请的交叉引用
本申请要求在2022年01月27日提交中国专利局、申请号为202210097887.5、申请名称为“一种混合式换流器阀塔”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子中的换流技术领域,具体涉及一种混合式换流器阀塔。
背景技术
传统的电网换相高压直流(line commutated converter high voltage direct current,LCC-HVDC)输电系统具有远距离大容量输电、有功功率可控等优势,在世界范围内广泛应用。换流器作为直流输电的核心装备,是实现交、直流电能转换的核心功能单元,其运行可靠性很大程度上决定了特高压直流电网的运行可靠性。由于传统换流器多采用半控型器件晶闸管作为核心部件构成六脉动桥换流拓扑,每个桥臂由多级晶闸管及其缓冲部件串联组成,由于晶闸管不具备自关断能力,在交流系统故障等情况下容易发生换相失败,导致直流电流激增,直流传输功率迅速大量损失,给电网的安全稳定运行带来更严峻的挑战。
为此,相关技术提供了一种混合式换流器拓扑结构及其控制方法,解决了换相失败导致的电网不能稳定安全运行的问题,但是由于涉及的元器件较多,因此如何合理布置元器件的位置,以尽量减小整个装置的体积成为本领域的一个亟待解决的技术问题。
发明内容
本申请要解决的技术问题在于克服相关技术中的换流器阀塔体积较大,占用空间较大的缺陷,从而提供一种体积较小,布局紧凑的混合式换流器阀塔。
为了解决上述技术问题,本申请提供了一种混合式混流器阀塔,包括:
至少两层间隔设置的第一模块组,所述第一模块组包括并联设置的第一主支路模块和第一辅助支路模块,所述第一辅助支路模块用于在所述第一主支路模块换相失败时,辅助所述第一主支路模块进行强行换相;
至少两层间隔设置的第二模块组,所述第二模块组包括并联设置的第二主支路模块和第二辅助支路模块,所述第二辅助支路模块用于在所述第二主支路模块换相失败时,辅助所述第二主支路模块进行强行换相;
所述第一模块组和第二模块组交替设置,所述第一模块组的输出端和第二模块组的输入端电连接,第二模块组的输出端与下一层的第一模块组的输入端电连接,且靠近设置的两层第一模块组的输入端之间设置有第一避雷器,靠近设置的两层第二模块组的输入端之间设置有第二避雷器;
第一屏蔽罩和第二屏蔽罩,分设在顶层的第一模块组和底层的第二模块组的两侧。
可选地,所述第一主支路模块和所述第二主支路模块的输入端设置有安装结构,所述第一避雷器和所述第二避雷器均设置在所述安装结构中。
在本申请的一些实施例中,所述第一主支路模块包括依次串联的第一主支路电抗器、第一晶闸管阀、低压可关断阀、第一晶闸管阀和第一主支路电抗器;
所述第一辅助支路模块包括依次串联的第一高压晶闸管阀、第一辅助支路电抗器、两个第一高压可关断阀、第一辅助支路电抗器和第一高压晶闸管阀。
在本申请的一些实施例中,所述低压可关断阀的两端并联有第三避雷器,所述第一高压晶闸管阀和所述第一辅助支路电抗器的两端并联有第四避雷器,两个所述第一高压可关断阀的两端并联有第五避雷器。
在本申请的一些实施例中,所述第二主支路模块包括依次串联的第二主支路电抗器、两个第二晶闸管阀和第二主支路电抗器;
所述第二辅助支路模块包括依次串联的第二高压晶闸管阀、第二辅助支路电抗器、两个第二高压可关断阀、第二辅助支路电抗器和第二高压晶闸管阀。
在本申请的一些实施例中,所述第二高压晶闸管阀和第二辅助支路电抗器的两端并联有第六避雷器,两个所述第二高压可关断阀的两端并联有第七避雷器。
在本申请的一些实施例中,两个所述第一高压可关断阀通过第一辅助支路导线连接,两个所述第二高压可关断阀通过第二辅助支路导线连接,两个所述第二晶闸管阀通过主支路导线连接。
在本申请的一些实施例中,所述混合式换流器阀塔还包括自上而下贯穿所述第一模块组和第二模块组的供水管和光纤槽,所述供水管与所述第一模块组和第二模块组中的散热器连通,所述光纤槽用于容纳光纤。
在本申请的一些实施例中,所述混合式换流器阀塔还包括设置在第一屏蔽罩上的绝缘子。
在本申请的一些实施例中,所述第一主支路模块和第二主支路模块串联,所述第一辅助支路模块和第二辅助支路模块串联,所述第一主支路模块和第一辅助支路模块同层相对设置,所述第二主支路模块和第二辅助支路模块同层相对设置。
本申请技术方案,具有如下优点:
1、本申请提供的混合式换流器阀塔,第一避雷器和第二避雷器分别设置在靠近设置的两层第一模块组的输入端之间和靠近设置的两层第二模块组的输入端之间,由于第一模块组的输出端和第二模块组的输入端电连接,第二模块组的输出端与下一层的第一模块组的输入端电连接,因此第二模块组的输出端的电位和下一层的第一模块组的电位相同,可将第一避雷器和第二避雷器均安装在阀塔的同一侧,从而缩短第一避雷器和第二避雷器的长度,进而减小整个阀塔的体积,使得整体结构更加紧凑。此外,两个屏蔽罩对阀塔结构起到高压外电场在阀塔上均匀分布的作用,两个避雷器对第一模块组和第二模块组提供过电压保护。
2、本申请提供的混合式换流器阀塔,第一避雷器和第二避雷器均设置在第一主支路模块和第二主支路模块输入端的安装结构中,使得安装更加稳定可靠。
3、本申请提供的混合式换流器阀塔,主支路模块中低压可关断阀和辅助支路模块中两个高压可关断阀的设置,在换相失败后,主支路模块中的电流可转移至辅助支路模块,从而快速恢复换相;而在正常运行时,辅助支路模块可不投入运行,只需承担电压应力,不会对换流阀各运行工况造成负面影响,提高了器件利用率,便于工程实施。
4、本申请提供的混合式换流器阀塔,供水管用于为每个模块中的半导体器件和电阻的散热器提供冷却水,保证散热效果;绝缘子的设置便于阀塔的吊装。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实 施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的混合式换流器阀塔的示意图;
图2为本申请实施例提供的混合式换流器阀塔的电气拓扑图;
图3为本申请实施例提供的第一模块组的俯视图;
图4为本申请实施例提供的第二模块组的俯视图。
附图标记说明:
1、第一屏蔽罩;2、第一模块组;3、第二模块组;4、第二屏蔽罩;5、第一主支路电抗器;6、第一晶闸管阀;7、低压可关断阀;8、第三避雷器;9、安装结构;10、第一高压晶闸管阀;11、第一辅助支路电抗器;12、第一高压可关断阀;13、第四避雷器;14、第一辅助支路角屏蔽;15、第五避雷器;16、第一辅助支路导线;17、第二主支路电抗器;18、第二晶闸管阀;19、主支路导线;20、第二高压晶闸管阀;21、第二辅助支路电抗器;22、第二高压可关断阀;23、第六避雷器;24、第二辅助支路角屏蔽;25、第七避雷器;26、第二辅助支路导线;27、第一避雷器;28、第二避雷器;29、供水管;30、光纤槽;31、绝缘子。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
如图1所示的混合式换流器阀塔的一种具体实施方式,包括自上而下依次设置的第一屏蔽罩1、第一模块组2、第二模块组3、第一模块组2、第二模块组3和第二屏蔽罩4,设置在上的一组第一模块组2和第二模块组3组成一个单阀,设置在下的另一组第一模块组2和第二模块组3组成另一个单阀。
第一模块组2包括并联设置的第一主支路模块和第一辅助支路模块,第一辅助支路模块用于在第一主支路模块换相失败时,辅助第一主支路模块进行强行换相。
如图2、图3所示,第一主支路模块和第一辅助支路模块同层相对设置,第一主支路模块包括依次串联的第一主支路电抗器5、第一晶闸管阀6、低压可关断阀7、第一晶闸管阀6和第一主支路电抗器5。其中,低压可关断阀7设于中央,两端并联有第三避雷器8,两组第一主支路电抗器5和第一晶闸管阀6对称设置在低压可关断阀7的两侧,且第一主支路电抗器5靠外侧设置,第一晶闸管阀6靠内侧设置,第三避雷器8位于两个第一主支路电抗器5之间,且在第一主支路电抗器5的端部外接有一个弧形的安装结构9(图2中未示出)。第一辅助支路模块包括依次串联的第一高压晶闸管阀10、第一辅助支路电抗器11、两个第一高压可关断阀12、第一辅助支路电抗器11和第一高压晶闸管阀10。其中,两个第一高压晶闸管阀10和两个第一高压可关断阀12并排间隔设置,且两个第一高压可关断阀12设置在中间,两个第一高压晶闸管阀10对称设置在外侧,两个第一辅助支路电抗器11靠近外侧设置,第一高压晶闸管阀10和第一辅助支路电抗器11的两端并联有第四避雷器13,且第四避雷器13通过第一辅助支路角屏蔽14(图2中未示出)与第一辅助支路电抗器11电连接,两个第一高压可关断阀12靠近外侧的两端并联有第五避雷器15,靠近内侧的两端通过第一辅助支路导线16(图2中未示出) 连接。
如图1所示,第二模块组3包括并联设置的第二主支路模块和第二辅助支路模块,第二辅助支路模块用于在第二主支路模块换相失败时,辅助第二主支路模块进行强行换相。第一模块组2的输出端和第二模块组3的输入端电连接,第二模块组3的输出端与下一层的第一模块组2的输入端电连接。
可以理解的是,第一主支路模块和第二主支路模块串联,第一辅助支路模块和第二辅助支路模块串联。
如图2、图4所示,第二主支路模块和第二辅助支路模块同层相对设置,第二主支路模块包括依次串联的第二主支路电抗器17、两个第二晶闸管阀18和第二主支路电抗器17。其中,两个第二主支路电抗器17靠近外侧设置,且在第二主支路电抗器17的端部外接有一个弧形的安装结构9(图2中未示出);两个第二晶闸管阀18靠近内侧设置,且两个第二晶闸管阀18通过主支路导线19(图2中未示出)连接。
第二辅助支路模块包括依次串联的第二高压晶闸管阀20、第二辅助支路电抗器21、两个第二高压可关断阀22、第二辅助支路电抗器21和第二高压晶闸管阀20。其中,两个第二高压晶闸管阀20和两个第二高压可关断阀22并排间隔设置,且两个第二高压可关断阀22设置在中间,两个第二高压晶闸管阀20对称设置在外侧,两个第二辅助支路电抗器21靠近外侧设置,第二高压晶闸管阀20和第二辅助支路电抗器21的两端并联有第六避雷器23,且第六避雷器23通过第二辅助支路角屏蔽24(图2中未示出)与第二辅助支路电抗器21电连接,两个第二高压可关断阀22靠近外侧的两端并联有第七避雷器25,靠近内侧的两端通过第二辅助支路导线26(图2中未示出)连接。
如图1所示,两层第一模块组2的输入端的安装结构9(图1中未示出)中设置有第一避雷器27,两层第二模块组的输入端的安装结构9(图1中未示出)中设置有第二避雷器28,第一避雷器27和第二避雷器28均为单阀避雷器。
为保证冷却效果和保证光纤铺设的准确性,还包括自上而下贯穿第一模块组2和第二模块组3的供水管29和光纤槽30,供水管29与第一模块组2和第二模块组3中的散热器连通,光纤槽30用于容纳光纤。
在一些实施例中,在第一屏蔽罩1上还设有一对绝缘子31,绝缘子31上端设有便于对阀塔进行吊装的吊环。
如图2所示,当混合式换流器阀塔正常运行时,第一辅助支路模块和第二辅助支路模块均保持关断状态,只需承担电压应力,由第一主支路模块和第二主支路模块承载正常运行电流,第一主支路模块的电流由第一主支路电抗器5进入,流经第一晶闸管阀6、低压可关断阀7、第一晶闸管阀6,从另一第一主支路电抗器5流出,进入第二主支路模块,由第二主支路电抗器17进入,流经两个第二晶闸管阀18,从另一第二主支路电抗器17流出。当第一主支路模块换相失败时,关断第一主支路模块的低压可关断阀7,导通相应的第一辅助支路模块的两个第一高压可关断阀12,将第一主支路模块的电流转移至第一辅助支路模块,第一辅助支路模块的电流由第一高压晶闸管阀10进入,流经第一辅助支路电抗器11、两个第一高压可关断阀12、第一辅助支路电抗器11,从另一第一高压晶闸管阀10流出,进入第二辅助支路模块,当第一主支路模块的电流完全转移至第一辅助支路时,关断两个第一高压可关断阀12,实现第一主支路模块的强行换相。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请创造的保护范围之中。
工业实用性
本申请实施例提供的混合式换流器阀塔,包括至少两层间隔设置的第一模块组,第一模块组包括并联设置的第一主支路模块和第一辅助支路模块,第一辅助支路模块用于在第一主支路模块换相失败时,辅助第一主支路模块进行强行换相;至少两层间隔设置的第二模块组,第二模块组包括并联设置的第二主支路模块和第二辅助支路模块,第二辅助支路模块用于在第二主支路模块换相失败时,辅助第二主支路模块进行强行换相;第一模块组和第二模块组交替设置,第一模块组的输出端和第二模块组的输入端电连接,第二模块组的输出端与下一层的第一模块组的输入端电连接,且靠近设置的两层第一模块组的输入端之间设置有第一避雷器,靠近设置的两层第二模块组的输入端之间设置有第二避雷器;第一屏蔽罩和第二屏蔽罩,分设在顶层的第一模块组和底层的第二模块组的两侧。明显,本申请将第一避雷器和第二避雷器分别设置在靠近设置的两层第一模块组的输入端之间和靠近设置的两层第二模块组的输入端之间,由于第一模块组的输出端和第二模块组的输入端电连接,第二模块组的输出端与下一层的第一模块组的输入端电连接,因此第二模块组的输出端的电位和下一层的第一模块组的电位相同,可将第一避雷器和第二避雷器均安装在阀塔的同一侧,从而缩短第一避雷器和第二避雷器的长度,进而减小整个阀塔的体积,使得整体结构更加紧凑。此外,两个屏蔽罩对阀塔结构起到高压外电场在阀塔上均匀分布的作用,两个避雷器对第一模块组和第二模块组提供过电压保护。第一避雷器和第二避雷器均设置在第一主支路模块和第二主支路模块输入端的安装结构中,使得安装更加稳定可靠。主支路模块中低压可关断阀和辅助支路模块中两个高压可关断阀的设置,在换相失败后,主支路模块中的电流可转移至辅助支路模块,从而快速恢复换相;而在正常运行时,辅助支路模块可不投入运行,只需承担电压应力,不会对换流阀各运行工况造成负面影响,提高了器件利用率,便于工程实施。供水管用于为每个模块中的半导体器件和电阻的散热器提供冷却水,保证散热效果;绝缘子的设置便于阀塔的吊装。

Claims (10)

  1. 一种混合式换流器阀塔,其中,所述混合式换流器阀塔包括:
    至少两层间隔设置的第一模块组,所述第一模块组包括并联设置的第一主支路模块和第一辅助支路模块,所述第一辅助支路模块用于在所述第一主支路模块换相失败时,辅助所述第一主支路模块进行强行换相;
    至少两层间隔设置的第二模块组,所述第二模块组包括并联设置的第二主支路模块和第二辅助支路模块,所述第二辅助支路模块用于在所述第二主支路模块换相失败时,辅助所述第二主支路模块进行强行换相;
    所述第一模块组和第二模块组交替设置,所述第一模块组的输出端和第二模块组的输入端电连接,第二模块组的输出端与下一层的第一模块组的输入端电连接,且靠近设置的两层第一模块组的输入端之间设置有第一避雷器(27),靠近设置的两层第二模块组的输入端之间设置有第二避雷器(28);
    第一屏蔽罩(1)和第二屏蔽罩(4),分设在顶层的第一模块组和底层的第二模块组的两侧。
  2. 根据权利要求1所述的混合式换流器阀塔,其中,所述第一主支路模块和所述第二主支路模块的输入端设置有安装结构(9),所述第一避雷器(27)和所述第二避雷器(28)均设置在所述安装结构(9)中。
  3. 根据权利要求1所述的混合式换流器阀塔,其中,所述第一主支路模块包括依次串联的第一主支路电抗器(5)、第一晶闸管阀(6)、低压可关断阀(7)、第一晶闸管阀(6)和第一主支路电抗器(5);
    所述第一辅助支路模块包括依次串联的第一高压晶闸管阀(10)、第一辅助支路电抗器(11)、两个第一高压可关断阀(12)、第一辅助支路电抗器(11)和第一高压晶闸管阀(10)。
  4. 根据权利要求3所述的混合式换流器阀塔,其中,所述低压可关断阀(7)的两端并联有第三避雷器(8),所述第一高压晶闸管阀(10)和所述第一辅助支路电抗器(11)的两端并联有第四避雷器(13),两个所述第一高压可关断阀(12)的两端并联有第五避雷器(15)。
  5. 根据权利要求1至4中任一项所述的混合式换流器阀塔,其中,所述第二主支路模块包括依次串联的第二主支路电抗器(17)、两个第二晶闸管阀(18)和第二主支路电抗器(17);
    所述第二辅助支路模块包括依次串联的第二高压晶闸管阀(20)、第二辅助支路电抗器(21)、两个第二高压可关断阀(22)、第二辅助支路电抗器(21)和第二高压晶闸管阀(20)。
  6. 根据权利要求5所述的混合式换流器阀塔,其中,所述第二高压晶闸管阀(20)和第二辅助支路电抗器(21)的两端并联有第六避雷器(23),两个所述第二高压可关断阀(22)的两端并联有第七避雷器(25)。
  7. 根据权利要求6所述的混合式换流器阀塔,其中,两个所述第一高压可关断阀(12)通过第一辅助支路导线(16)连接,两个所述第二高压可关断阀(22)通过第二辅助支路导线(26)连接,两个所述第二高压晶闸管阀(20)通过主支路导线(19)连接。
  8. 根据权利要求1至7中任一项所述的混合式换流器阀塔,其中,所述混合式换流器阀塔还包括自上而下贯穿所述第一模块组和第二模块组的供水管(29)和光纤 槽(30),所述供水管(29)与所述第一模块组和第二模块组中的散热器连通,所述光纤槽(30)用于容纳光纤。
  9. 根据权利要求1至8中任一项所述的混合式换流器阀塔,其中,所述混合式换流器阀塔还包括设置在第一屏蔽罩(1)上的绝缘子(31)。
  10. 根据权利要求1至9中任一项所述的混合式换流器阀塔,其中,所述第一主支路模块和第二主支路模块串联,所述第一辅助支路模块和第二辅助支路模块串联,所述第一主支路模块和第一辅助支路模块同层相对设置,所述第二主支路模块和第二辅助支路模块同层相对设置。
PCT/CN2022/107496 2022-01-27 2022-07-22 一种混合式换流器阀塔 WO2023142405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210097887.5 2022-01-27
CN202210097887.5A CN114421409B (zh) 2022-01-27 2022-01-27 一种混合式换流器阀塔

Publications (1)

Publication Number Publication Date
WO2023142405A1 true WO2023142405A1 (zh) 2023-08-03

Family

ID=81278609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107496 WO2023142405A1 (zh) 2022-01-27 2022-07-22 一种混合式换流器阀塔

Country Status (2)

Country Link
CN (1) CN114421409B (zh)
WO (1) WO2023142405A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421409B (zh) * 2022-01-27 2024-01-23 国网智能电网研究院有限公司 一种混合式换流器阀塔

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169859A (zh) * 2011-03-21 2011-08-31 许继集团有限公司 一种用于高压直流输电的晶闸管换流阀阀塔
CN204089617U (zh) * 2014-09-28 2015-01-07 国家电网公司 一种新型的晶闸管换流阀的阀塔
US20180262120A1 (en) * 2015-05-28 2018-09-13 Nr Electric Co., Ltd Converter valve
CN108667313A (zh) * 2017-04-01 2018-10-16 国家电网公司 一种±1100kV直流换流阀
CN208675115U (zh) * 2018-04-17 2019-03-29 全球能源互联网研究院有限公司 一种避雷器内置的换流阀塔
CN110380624A (zh) * 2019-09-04 2019-10-25 常州博瑞电力自动化设备有限公司 一种换流阀阀塔
CN114421409A (zh) * 2022-01-27 2022-04-29 全球能源互联网研究院有限公司 一种混合式换流器阀塔

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009651B (zh) * 2014-05-30 2016-06-22 许继电气股份有限公司 换流阀阀塔及使用该换流阀阀塔的阀厅
CN105958407B (zh) * 2016-05-26 2018-07-06 许继电气股份有限公司 一种高压直流断路器阀塔结构
CN110535354B (zh) * 2018-05-25 2020-07-24 全球能源互联网研究院有限公司 一种紧凑型智能化换流阀
CN112803798A (zh) * 2021-02-01 2021-05-14 全球能源互联网研究院有限公司 主动换相单元、强迫换相的混合式换流器拓扑结构及方法
CN113541509B (zh) * 2021-08-19 2022-10-21 西安西电电力系统有限公司 集成轻型化功率模块的柔直悬吊阀塔

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169859A (zh) * 2011-03-21 2011-08-31 许继集团有限公司 一种用于高压直流输电的晶闸管换流阀阀塔
CN204089617U (zh) * 2014-09-28 2015-01-07 国家电网公司 一种新型的晶闸管换流阀的阀塔
US20180262120A1 (en) * 2015-05-28 2018-09-13 Nr Electric Co., Ltd Converter valve
CN108667313A (zh) * 2017-04-01 2018-10-16 国家电网公司 一种±1100kV直流换流阀
CN208675115U (zh) * 2018-04-17 2019-03-29 全球能源互联网研究院有限公司 一种避雷器内置的换流阀塔
CN110380624A (zh) * 2019-09-04 2019-10-25 常州博瑞电力自动化设备有限公司 一种换流阀阀塔
CN114421409A (zh) * 2022-01-27 2022-04-29 全球能源互联网研究院有限公司 一种混合式换流器阀塔

Also Published As

Publication number Publication date
CN114421409A (zh) 2022-04-29
CN114421409B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
CN208522665U (zh) 转换器装置
US20160336751A1 (en) Tripolar vsc-hvdc transmission system and method
WO2017024598A1 (zh) Mmc-hvdc系统及其直流侧隔离装置和隔离方法
CN105119511B (zh) 一种具有直流侧故障阻断能力的mmc子模块电路
CN106786349A (zh) 一种辅助换流模块及高压直流断路器
WO2023142405A1 (zh) 一种混合式换流器阀塔
CN114172135B (zh) 一种适用于多端直流电网的双主断型多端口混合直流断路器
CN107910886A (zh) 一种用于柔性直流输电换流阀的子模块拓扑结构及方法
CN206452122U (zh) 双极柔性直流输电系统及其换流站
CN204668938U (zh) 混合直流故障处理装置、混合直流输电系统
CN111600497B (zh) 抑制高压直流换相失败的串联双向二极管桥换流器
CN109600049A (zh) 一种直流固态变压器
EP3446400A1 (en) Converter arrangement
CN105703324A (zh) 一种电流转移型高压直流断路器
ES2880973T3 (es) Dispositivo de compensación en serie aplicable a línea de circuito doble
WO2022160927A1 (zh) 直流侧共母线辅助换相的混合式换流器拓扑结构及其方法
WO2022183696A1 (zh) 一种多功能多端口混合式直流断路器及控制方法
CN106533145B (zh) 一种高压直流断路器
WO2019148619A1 (zh) 模块化多电平变流器功率模块的故障保护与旁路装置
CN105680793A (zh) 一种光伏系统的电压补偿装置及光伏系统
CN206211546U (zh) 双极柔性直流输电系统及其换流站
CN109687416A (zh) 一种多端口经济型直流故障限流器
CN112909986B (zh) 一种模块化多电平换流器子模块及其控制方法
CN212163154U (zh) 抑制高压直流换相失败的串联双向二极管桥换流器
WO2021204076A1 (zh) 直流调压单元的控制方法及控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923213

Country of ref document: EP

Kind code of ref document: A1