WO2022088937A1 - 一种可控避雷器用立式晶闸管开关 - Google Patents

一种可控避雷器用立式晶闸管开关 Download PDF

Info

Publication number
WO2022088937A1
WO2022088937A1 PCT/CN2021/115719 CN2021115719W WO2022088937A1 WO 2022088937 A1 WO2022088937 A1 WO 2022088937A1 CN 2021115719 W CN2021115719 W CN 2021115719W WO 2022088937 A1 WO2022088937 A1 WO 2022088937A1
Authority
WO
WIPO (PCT)
Prior art keywords
thyristor
voltage
equalizing
section
reactor
Prior art date
Application number
PCT/CN2021/115719
Other languages
English (en)
French (fr)
Inventor
邓占锋
赵国亮
石秋雨
郭贤珊
乔光尧
李芳义
李卫国
康伟
徐云飞
曾洪涛
刘海军
靳艳娇
程喆
Original Assignee
全球能源互联网研究院有限公司
国网上海市电力公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院有限公司, 国网上海市电力公司, 国家电网有限公司 filed Critical 全球能源互联网研究院有限公司
Publication of WO2022088937A1 publication Critical patent/WO2022088937A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/044Physical layout, materials not provided for elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device

Definitions

  • the invention belongs to the field of ultra-high voltage power transmission, and particularly relates to a thyristor switch for a controllable arrester.
  • Ultra-high voltage transmission of 750kV and above has the technical advantages of large transmission capacity, long transmission distance, high efficiency and low loss, and is widely used in scenarios such as cross-regional power grid interconnection and long-distance power transmission.
  • EHV/UHV transmission systems as the voltage level increases, the saturation characteristics of the impulse discharge voltage in the air gap operation are more significant, and reducing the operating overvoltage level plays a crucial role in reducing the line air gap and transmission corridors. It can effectively reduce the difficulty and cost of insulation design of power transmission and transformation equipment. Therefore, with the increase of the transmission voltage level, the deep reduction of the operating overvoltage level is of great significance for reducing the air distance of the transmission line, reducing the transmission corridor, reducing the equipment cost, and improving the insulation safety margin of the system.
  • EHV/UHV AC systems of 750kV and above operating overvoltages will occur during switching, grounding faults, and load shedding of transmission lines.
  • the current conventional practice is to use a combination of metal oxide arresters and circuit breakers with closing resistors to limit the operating overvoltage of the system to a certain level (among them, the 750kV system is limited to below 1.8p.u. (per unit, standard). Unit value), the 1000kV system is limited to 1.6p.u. ⁇ 1.7p.u..
  • the closing resistor By installing the closing resistor on the circuit breaker, the energy of the grid during the opening and closing process is released, thereby reducing the operating overvoltage level and protecting the grid equipment.
  • Metal oxide arresters also known as metal zinc oxide arresters
  • metal oxide arresters have ideal nonlinear resistance characteristics. Under the normal operating voltage of the system, its resistance is very large, the leakage current passing through is very small, and the resistive component is only about 10 ⁇ 15uA (micro ampere, microampere), such a small current will not affect the life of the valve.
  • the voltage increases its resistance becomes very small, it can pass a large current, and the residual voltage is also very low, so that the electrical equipment is protected, and after the overvoltage disappears, it enters the small current area and returns to a high resistance state.
  • the metal oxide controllable arrester is a bypass switch that can be flexibly controlled in parallel with part of the resistance sheets of the existing ultra/ultra-high voltage arrester. Under the overvoltage, the bypass switch conducts and short-circuits a part of the resistance sheets of the zinc oxide arrester. The residual voltage is reduced, the bypass switch is disconnected after the overvoltage disappears, and the short-circuited zinc oxide arrester resistors are put into operation again to withstand the power frequency voltage and maintain the low charge rate of the arrester. According to the type of bypass switch, it can be divided into circuit breaker switch-type controllable arrester and thyristor switch-type controllable arrester.
  • the bypass circuit breaker Due to the slow switching speed of the circuit breaker (generally more than 30ms), it needs to be put into the controllable arrester before the line is closed.
  • the bypass circuit breaker can only limit the closing overvoltage, and needs to be used in conjunction with the station control system, so the application effect is greatly limited.
  • the thyristor switch-type controllable arrester makes full use of the characteristics of the thyristor device, such as fast response speed, forward overvoltage automatic trigger conduction, current zero-cross automatic shutdown, etc., can act independently, control the strong current switch with weak current, and the switching speed is fast (less than 5us ), no complex secondary system is required, and it has the same response characteristics as the arrester, which is an important direction for future development.
  • the potential distribution of the arrester resistors will tend to be more uneven due to the influence of the distributed capacitance.
  • the thyristor switch in the thyristor switch controllable arrester needs to be connected in parallel with the arrester body and installed vertically.
  • the structural height of the thyristor switch and the internal distributed capacitance have an impact on the potential distribution of the arrester body, which needs to be strictly limited, and its features such as compact structure, easy expansion and small leakage current are required.
  • the present invention proposes a compact vertical thyristor switch suitable for the controllable arrester application.
  • the embodiment of the present invention provides a vertical thyristor switch for a controllable arrester, comprising an insulating jacket and a vertical switch core body encapsulated in the insulating jacket;
  • the switch core includes a thyristor valve string section, a reactor, a drive unit, The pressure equalizing component section, the structural component and the connecting piece; after the thyristor valve string section is connected with the drive unit on the side, the same pressure equalizing component section is respectively arranged in the space of the lower section of the structural component, the upper section of the structural component is provided with a reactor, and the switch core
  • the components in the body are electrically connected through the connecting piece.
  • the thyristor valve string section includes: a series-connected multilayer anti-parallel thyristor device, a push rod, a push nut, and a push end plate;
  • the thyristor device is crimped into a plurality of thyristor valve segments through a top-pressing rod and a top-pressing nut, each thyristor valve segment is connected in series to form a valve string, and the valve string is connected at the top and/or bottom through a top-pressing end plate to form an overlapping triangular structure,
  • the thyristor valve section can be flexibly expanded according to the voltage withstand requirements of the switch.
  • the top compression end plate includes a plurality of pairs of triangular structures, each of which holds a string segment.
  • the reactor has a cylindrical structure, adopts a self-cooling saturable reactor, and is integrally poured for internal insulation.
  • the top and bottom of the reactor are connected to the outside by press-fitting, and a first shed is arranged on the outside of the reactor. structure.
  • the first shed structure is a cylindrical column with a protruding shed-like structure on the side, and the tooth tips face outwards from the side; the top plate and the bottom plate of the reactor are respectively arranged on the side of the cylindrical side. top and bottom.
  • the driving unit includes a plurality of driving components, the driving components are pluggable fixed structures, and two anti-parallel thyristors in each layer share a group of driving components.
  • the driving component is a passive driving component, and the operating time of the driving component is 1us ⁇ 10us.
  • the plug-in type fixing structure is a drawer type structure.
  • the pressure equalizing assembly section includes a pressure equalizing assembly and a pressure equalizing assembly top damping spring.
  • the pressure-equalizing component is connected with the thyristor devices between each single layer in the thyristor valve string section through the electrical connection structure in the connector, and the top of the pressure-equalizing component is connected to the damping spring on the top of the pressure-equalizing component.
  • the voltage grading assembly includes a plurality of stacked voltage grading elements, all of which are connected in series;
  • the connecting piece includes the same number of metal pieces as the voltage grading elements, and each layer of the voltage grading element is connected in parallel with the anti-parallel thyristor device of the corresponding layer through one metal piece.
  • the voltage grading component only includes a non-linear resistance sheet, or the voltage grading component includes a non-linear resistance sheet and a small-capacity voltage grading capacitor, and the voltage grading capacitor is installed on the voltage grading component and the thyristor device
  • the capacitance of the small-capacity grading capacitor is determined according to potential distribution requirements and leakage current limiting conditions, and the common leakage current of the grading component and the thyristor device is lower than 5mA under normal operating voltage.
  • the insulating jacket comprises: a bottom flange, an intermediate insulating member and a top flange, the bottom flange and the top flange are respectively disposed on the top and bottom ends of the intermediate insulating member;
  • top damping springs of the core are connected to the inner surface of the top flange; the number of top damping springs is determined according to the height and weight of the core.
  • the insulating jacket is an outer insulating structure, the inner diameter of which is set according to the size of the switch core, and the interior of the insulating jacket is reserved for expansion space as required, filled with nitrogen gas, and sealed as a whole.
  • the intermediate insulating member is a cylindrical outer insulating structure, a ceramic material or a composite material is used, and a second umbrella skirt structure with different heights is distributed on its surface.
  • a force equalization mechanism is also provided between the bottom of the valve string and the top pressure end plate.
  • the structural member includes: a core top damping spring, a middle layer connecting plate, an anti-pressure support beam and a lower support plate;
  • the pressure-proof support beam is arranged around the thyristor valve string section and the pressure equalizing assembly section, and the height is greater than the height of the thyristor valve string section and the pressure equalizing assembly section;
  • the horizontal lower support plate and the middle connecting plate are respectively arranged at the top and bottom ends of the anti-compression support beam;
  • the bottom of the anti-pressure support beam is connected to the upper surface of the horizontal lower support plate, and the top thereof is connected to the lower surface of the horizontal middle layer connecting plate;
  • the reactor is arranged on the upper surface of the middle-layer connecting plate, and the top of the reactor is connected to the insulating jacket through the damping spring at the top of the core.
  • the lower support plate is a plate-like structure located at the bottom of the switch core, and holes are distributed thereon; a gap is left between the lower support plate and the insulating jacket;
  • the holes of the lower support plate and the gap constitute a channel for the flow of nitrogen gas caused by the internal discharge, and the discharge port of the channel faces the bottom flange.
  • the embodiment of the present invention provides a vertical thyristor switch for a controllable arrester, comprising an insulating jacket and a vertical cylindrical switch core body encapsulated in the insulating jacket;
  • the switch core includes a thyristor valve string section, a reactor, The drive unit, the pressure-equalizing component section, the structural component and the connecting piece; after the thyristor valve string section is connected with the drive unit on the side, it is respectively arranged in the space of the lower section of the structural component together with the pressure-equalizing component section, and the upper section of the structural component is provided with a reactor,
  • the components in the switch core are electrically connected through the connector.
  • FIG. 1 is a schematic diagram of the overall structure of a vertical thyristor switch for a controllable arrester provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an insulating jacket provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a thyristor valve string section provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a saturable reactor shed according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an outlet line of a saturable reactor provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a bottom plate explosion-removing structure according to an embodiment of the present invention.
  • the existing circuit breaker controllable arrester can only limit the closing overvoltage, which needs to be used in conjunction with the station control system, and the application scenarios are greatly limited; the thyristor switch controllable arrester has a fast response time and can Independent action, no complicated secondary system is required, and it has the same response characteristics as the arrester; in order to control the height of the thyristor switch and the influence of the distributed capacitance on the potential distribution of the arrester body, the thyristor switch and the arrester body are well integrated.
  • the embodiments of the present invention provide A vertical compact thyristor switch for a controllable surge arrester is proposed. By installing a controllable surge arrester on the line side of the substation, the operating overvoltage of the system is deeply reduced.
  • the vertical thyristor switch for a controllable arrester includes a vertical thyristor valve string section, a reactor 3, a drive unit, a voltage equalizing component section 2, an insulating jacket 4, and structural parts and connectors between the parts; among them, the vertical thyristor valve section , reactor 3, drive unit, voltage equalizing component section 2 and connectors constitute the core of the thyristor switch, and the core is integrally encapsulated inside the insulating jacket 4;
  • the entire thyristor switch can be connected in series with multiple valve segments according to the voltage requirements, and the structure can be expanded flexibly; in the switch core, the reactor 3 is connected in series with the thyristor valve segment 1 through structural parts and connecting parts, and the switch core is integrally built in a closed insulating jacket. It has the characteristics of compact structure, easy expansion, small partial discharge, small leakage current, and suitable for outdoor operation.
  • an embodiment of the present invention provides a vertical thyristor switch for a controllable arrester, which includes an insulating jacket 4 and a vertical cylindrical switch core packaged in the insulating jacket 4;
  • the switch core includes The thyristor valve string section, the reactor 3, the driving unit, the pressure equalizing component section 2, the structural component and the connecting piece; after the thyristor valve string section is connected with the drive unit on the side, it is respectively arranged on the lower section of the structural component together with the pressure balancing component section 2
  • a reactor 3 is arranged on the upper section of the structural member in the space of 1 , and the components in the switch core are electrically connected through the connecting member.
  • the thyristor valve series section includes: a thyristor device composed of multi-layer anti-parallel thyristors 5 , a push rod 6 , a push nut 7 and a push end plate 10 , as the voltage of the controllable part of the arrester increases, the number of thyristor layers required in series will increase accordingly, and the number of layers of thyristor devices in series can be flexibly determined according to the voltage borne by the thyristor switch.
  • the thyristor device is crimped into a plurality of thyristor valve sections 1 through the top pressure rod 6 and the top pressure nut 7, and each thyristor valve section 1 is connected in series up and down to form a plurality of valve strings, and the entire thyristor switch can be connected by a plurality of thyristor valve sections 1 up and down in series.
  • the top pressure end plate 10 is used as a transition connection between each thyristor valve section 1, and each valve string is connected at the top and/or bottom through the top pressure end plate 10 in an overlapping diagonal structure, reducing the size of the thyristor valve section. 1.
  • the space requirements for the connection between the valve train and valve train sections, and the top pressure end plate is used as the transition connection between each valve section, which effectively reduces the height of the thyristor valve section.
  • the top-pressure end plate 10 includes a plurality of pairs of triangular structures, each of which is fixed with a string segment, and the pair of triangular structures occupies less structural space, and more can be installed and installed in a limited space
  • the series structure of the thyristor can effectively reduce the height of the thyristor valve section, effectively improve the space utilization rate of the core switch, and reduce the overall height of the switch core.
  • the reactor 3 is a cylindrical structure, and a self-cooling saturable reactor is used.
  • the self-cooling saturable reactor is connected to the thyristor valve in the switch core.
  • Section 1 is connected in series through structural parts and connecting parts, and the top and/or bottom of the self-cooling saturable reactor 3 is press-fitted and/or connected to the outside.
  • the structure and the top and bottom parts adopt a pressure-contact structure, no need to configure additional wiring, and the structure is compact; the first umbrella skirt structure 12 is arranged on the outside, in the case of ensuring the creepage distance, or in the case of increasing the creepage distance of the reactor , which can effectively reduce the height of the saturable reactor.
  • the self-cooling saturable reactor adopts integral casting for internal insulation.
  • the optimally designed cylindrical structure Through the optimally designed cylindrical structure, the uneven distribution of the electric field around the reactor 3 is effectively overcome, and the same creepage distance is guaranteed, which effectively reduces the reactor 3. the height of the reactor 3; the top and/or bottom of the reactor 3 is press-fitted and/or connected to the outside, eliminating the space for bolts or welding and other redundant wiring, making the space structure of the reactor 3 more reasonable;
  • the umbrella skirt structure 12 increases the creepage distance of the reactor and can effectively reduce the height of the reactor, thereby reducing the overall height of the switch.
  • the first shed structure 12 is a cylindrical cylinder with a protruding shed-like structure on the side.
  • the top and bottom ends of the sides further optimize the creepage distance effect of the reactor and reduce the height of the reactor.
  • the drive unit includes a plurality of drive assemblies 9, the drive assemblies 9 are plug-in fixed structures, and the two anti-parallel thyristors 5 in each layer share a set of drive assemblies 9. Shared with the anti-parallel thyristor 5, the use efficiency of the driving component 9 is improved, the driving performance effect of the driving component is enhanced, the number of driving boards can be reduced by half, and the volume of the switch core can be reduced.
  • the driving component is a passive driving component, and the operating time of the driving component is 1us ⁇ 10us (microsecond, microsecond).
  • the plug-in type fixing structure is a drawer type structure, which is convenient for inspection and maintenance and convenient and practical under the condition of ensuring the connection and tightness.
  • the pressure-equalizing component section 2 includes a pressure-equalizing component, a metal spacer, and a damping spring 11 at the top of the pressure-equalizing component.
  • the pressure-equalizing assembly is connected with the thyristor devices between the single layers of the thyristor valve string sections through the electrical connection structure in the connector, the top of the pressure-equalizing assembly is connected to the damping spring 11 on the top of the pressure-equalizing assembly, and the pressure-equalizing assembly does not need top pressure contact, However, considering the influence of vibration during work, transportation and earthquakes, the top damping spring 11 of the pressure equalizing component is added at the top of the pressure equalizing component section. The number of the top damping springs is determined according to the height and weight of the core to absorb the work or transportation vibration in .
  • the voltage equalization component includes a plurality of stacked voltage equalization elements; all the voltage equalization elements are connected in series; the number of the series connection corresponds to the number of the thyristor devices connected in series.
  • the connecting piece includes a metal piece with the same number and/or the same cross section as the pressure equalizing element.
  • the metal piece can be a metal spacer or other metal structure with this function.
  • Each layer of the pressure equalizing element passes through a metal piece ( That is, a metal spacer), and the electrical connection structure of the metal spacer is connected with the single layer of the thyristor valve string section, so as to realize the parallel connection between the layers of the thyristor device of the corresponding layer.
  • the voltage grading assembly includes only non-linear resistance sheets.
  • the voltage equalization component can also flexibly arrange small voltage equalization capacitors according to requirements, so as to improve the voltage equalization performance of the thyristor switch and reduce the leakage current of the switch.
  • the voltage equalizing component includes a non-linear resistance sheet and a small-capacity voltage-equalizing capacitor, wherein the capacitance of the small-capacity voltage-equalizing capacitor is determined according to potential distribution requirements and leakage current limiting conditions, for example, the capacitance is 10PF ⁇ 999PF (pico farad).
  • the voltage equalizing capacitor is installed in the connecting piece between the voltage equalizing component and the thyristor device, and the common leakage current of the voltage equalizing component and the thyristor device is lower than 5mA under normal operating voltage.
  • the insulating jacket 4 includes: a bottom flange 18 , an intermediate insulating member 19 and a top flange 20 , and the bottom flange 18 and the top flange 20 are respectively arranged in the middle The top and bottom ends of the insulating member 19; the top damping spring 14 of the core body is connected to the top inner surface of the top flange 20, and the top damping spring 14 of the core body is to absorb the vibration during transportation, installation and outdoor earthquake, and improve the shock resistance of the switch core.
  • the inside of the thyristor switch is a switch core
  • the outside is an insulating jacket 4
  • the switch core is fixed in the insulating jacket 4
  • the insulating jacket 4 is an external insulating structure, and its inner diameter is set according to the size of the switch core.
  • the interior of the insulating jacket 4 is reserved for expansion space as needed, the insulating jacket 4 is filled with nitrogen to keep the core in a gas-insulated environment, the insulating jacket 4 is sealed as a whole, and the switch is transported, installed and installed as a whole. Realize the function, suitable for outdoor operation.
  • the intermediate insulating member 19 is a cylindrical structure, which is made of a porcelain material or a composite material. Further, the cylindrical structure can use a porcelain sleeve or a composite insulating jacket, and the intermediate insulating member 19 can be made of a porcelain material or a composite material. , the surface of the intermediate insulating member 19 distributes a second shed structure with different heights, and the second shed structure can affect the electric field and charge distribution on the surface of the intermediate insulating member 19 .
  • a force equalizing mechanism is also designed inside the valve string, and an equalizing mechanism is also provided between the bottom of the valve string and the top pressure end plate 10 .
  • Force Mechanism 8 is also designed inside the valve string, and an equalizing mechanism is also provided between the bottom of the valve string and the top pressure end plate 10 .
  • the structural member includes: a damping spring 14 at the top of the core body, a middle layer connecting plate 15 , an anti-pressure support beam 16 and a lower support plate 17 .
  • the anti-pressure support beam 16 is disposed around the thyristor valve string section and the pressure equalizing assembly section 2 , and has a height greater than that of the thyristor valve string section and the pressure equalizing assembly section 2 .
  • the horizontal lower support plate 17 and the middle connecting plate 15 are respectively arranged at the top and bottom ends of the anti-pressure support beam 16 .
  • the bottom of the anti-pressure support beam 16 is connected to the upper surface of the horizontal lower support plate 17 , and the top thereof is connected to the lower surface of the horizontal middle layer connecting plate 15 .
  • the reactor 3 is arranged on the upper surface of the middle-layer connecting plate 15, and the top of the reactor 3 is connected to the insulating jacket 4 through the damping spring 14 at the top of the core body.
  • the middle connecting plate 15 and the pressure-proof support beam are designed in the switch core. 16. Form the support structure of the multiple valve segments of the switch core, so as to realize the isolation of the switch core from the vertical thyristor valve segment 1 under the pressure of the top spring.
  • the lower support plate 17 is a plate-like structure located at the bottom of the switch core, and adopts a special-shaped structure that is mutually displaced and stacked, and has holes distributed thereon; There is a gap between the lower support plate 17 and the insulating jacket 4 .
  • the voltage-equalizing resistors and the voltage-equalizing capacitors are arranged in a one-to-one correspondence with the thyristors 5, and the voltage-equalizing capacitors are installed between the two metal bus bars, which reduces the space occupied by the voltage-equalizing components and improves the The overall integration and compactness of the switch.
  • the embodiment of the present invention proposes a compact structure of a vertical thyristor switch for a controllable arrester, which is suitable for outdoor operation and can be flexibly expanded according to voltage requirements, effectively reducing the height of the thyristor switch and reducing the impact on the potential distribution of the arrester body. .
  • the embodiment of the present invention proposes a self-cooling saturable reactor 3 structure, which adopts the method of press-fitting outgoing wires at the top and/or bottom and connecting to the outside, which can avoid the partial discharge and The influence of potential distribution; the insulating shed 12 is arranged outside the saturable reactor, which can effectively reduce the height of the saturable reactor 3 while meeting the creepage distance, effectively reduce the overall height of the thyristor switch, and has a compact structure.
  • the drive assembly 9 of the plug-in structure proposed in the embodiment of the present invention is convenient for inspection and maintenance, and the two anti-parallel thyristors share one drive assembly, which reduces the complexity of the equipment and the dispersion of actions, and can effectively Improve the compactness of the switch.
  • the multi-segment thyristor valve strings are placed in an overlapping pair of triangles, which can effectively improve the space utilization rate, reduce the overall height and diameter of the core body, and reduce the volume of the switch.
  • the encapsulation method of the insulating porcelain jacket or the composite insulating jacket proposed in the embodiment of the present invention is suitable for outdoor operation, and is designed with an explosion-proof channel suitable for the enclosed space of the insulating jacket 4 to meet the explosion-proof requirements in the insulating jacket 4 .
  • the core body top damping spring 14 and the anti-pressure support beam 16 proposed in the embodiment of the present invention adapt to the overall transportation of the switch, meet the seismic requirements of the switch, and ensure the uniformity of the force of the vertical press-fit thyristor.
  • the switch has a cylindrical structure as a whole. Through the optimized design, the partial discharge of the switch is less than 2pC (picoCoulomb, pico) under the continuous operating voltage.

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

本发明实施例提供了一种可控避雷器用立式晶闸管开关,包括绝缘外套和封装于绝缘外套内的立式开关芯体;所述开关芯体包括晶闸管阀串段、电抗器、驱动单元、均压组件段、结构件和连接件;晶闸管阀串段与旁侧驱动单元连接后,同均压组件段分别设置于结构件下段的空间内,结构件上段设置电抗器,所述开关芯体内各部件之间通过所述连接件电气连接。

Description

一种可控避雷器用立式晶闸管开关
相关申请的交叉引用
本申请基于申请号为202011163181.1、申请日为2020年10月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明属于超/特高压输电领域,具体涉及一种可控避雷器用晶闸管开关。
背景技术
750kV及以上的超/特高压输电具有输送容量大、输电距离远、效率高和损耗低等技术优势,广泛应用于跨区电网互联、远距离输电等场景中。在超/特高压输电系统中,随着电压等级的提高,空气间隙操作冲击放电电压的饱和特性更加显著,降低操作过电压水平对减小线路空气间隙和输电走廊具有至关重要的作用,同时可有效降低输变电设备的绝缘设计难度和成本。因此,随着输电电压等级的提高,深度降低操作过电压水平对减小输电线路空气距离、减小输电走廊、降低设备成本、提升系统绝缘安全裕度等具有重要意义。
750kV及以上的超/特高压交流系统中,输电线路的投切、接地故障、甩负荷等过程中会产生操作过电压。为此,目前常规做法是采用金属氧化物避雷器和断路器加装合闸电阻两种措施联合使用,将系统操作过电压限制在一定的水平(其中750kV系统限制在1.8p.u.以下(per unit,标幺值),1000kV系统限制在1.6p.u.~1.7p.u.。通过在断路器上装设合闸电阻,释放 分合闸过程中电网的能量,从而降低操作过电压水平,保护电网设备。但是,由于合闸电阻在运行可靠性、经济性、设备占地等方面仍存在较大不足,断路器加装合闸电阻后机构复杂,大大增加断路器的运行风险,同时断路器加装合闸电阻后设备成本增加较多,电力系统运行部门和制造厂商均倾向于在系统条件允许情况下断路器不加装合闸电阻。
另外一种深度限制操作过电压的方式是采用金属氧化物可控避雷器,金属氧化物避雷器又称金属氧化锌避雷器,具有理想的非线性电阻特性。在系统正常运行电压下,它的电阻很大,通过的漏电流很小,阻性分量仅为10~15uA(micro ampere,微安)左右,这样小的电流不会对阀片的寿命产生影响,当电压升高时,它的电阻变得很小,可以通过大电流,残压也很低,使电气设备得到保护,而过电压消失之后,它又进入小电流区,恢复至高阻状态。
金属氧化物可控避雷器是在现有超/特高压避雷器的部分电阻片中并联一个可灵活控制的旁路开关,在过电压下旁路开关导通短接一部分氧化锌避雷器的电阻片,深度降低残压,过电压消失后旁路开关断开,被短接的氧化锌避雷器电阻片重新投入运行,承受工频电压,维持避雷器的低荷电率。根据旁路开关的类型,可分为断路器开关式可控避雷器和晶闸管开关式可控避雷器,由于断路器开关动作速度慢(一般超过30ms),需要在线路合闸之前投入可控避雷器中的旁路断路器,只能限制合闸过电压,且需要与站控系统配合使用,应用效果大大受限。晶闸管开关式可控避雷器充分利用了晶闸管器件响应速度快、正向过压自动触发导通、电流过零自动关断等特性,能够独立动作,用弱电控制强电开关,开关速度快(小于5us),无需复杂的二次系统,具有与避雷器相同的响应特性,是未来发展的重要方向。
随着超/特高压避雷器安装高度的增加以及高电压下避雷器串联电阻片 数量的增多,受分布电容的影响,避雷器电阻片电位分布将趋于更加的不均匀。为了安装和检修的方便性以及减小占地面积,晶闸管开关式可控避雷器中的晶闸管开关需要与避雷器本体并联,立式安装,且与避雷器距离越近对本体电位分布影响越小,需运行在户外环境,晶闸管开关的结构高度以及内部分布电容对避雷器本体电位分布产生影响,需要严格限制,要求其结构紧凑、易于扩展和漏电流小等特征。
现有应用于SVC(Static Var Compensator)、高压直流输电等领域的晶闸管阀大多采用卧式结构,且受冷却需求、以及复杂的吸收回路、均压回路和控制系统等影响,晶闸管阀结构复杂、占地面积大、漏电流远远大于避雷器的限制,且仅限于在户内环境下运行,不适用于可控避雷器应用场景需求。
因此研究适用于户外使用的紧凑型立式晶闸管开关是可控避雷器亟需攻克的技术难题,本发明提出了一种适用于可控避雷器应用的紧凑立式晶闸管开关。
发明内容
本发明实施例提供了一种可控避雷器用立式晶闸管开关,包括绝缘外套和封装于绝缘外套内的立式开关芯体;所述开关芯体包括晶闸管阀串段、电抗器、驱动单元、均压组件段、结构件和连接件;晶闸管阀串段与旁侧的驱动单元连接后,同均压组件段分别设置于结构件下段的空间内,结构件上段设置电抗器,所述开关芯体内各部件之间通过所述连接件电气连接。
在一些实施方案中,所述晶闸管阀串段包括:串联的多层反并联晶闸管器件、顶压拉杆、顶压螺母和顶压端板;
所述晶闸管器件通过顶压拉杆和顶压螺母压接成多个晶闸管阀段,各晶闸管阀段串联成阀串,阀串于顶部和/或底部通过顶压端板连接构成重叠对三角结构,晶闸管阀段可根据开关承受电压的需求进行灵活扩展。
在一些实施方案中,所述顶压端板包括多个对三角结构,每个三角结构均固定一个串段。
在一些实施方案中,所述电抗器为圆柱结构,采用自冷式饱和电抗器,整体浇筑进行内绝缘,电抗器顶部和底部通过压装出线和对外连接的方式,其外部布置第一伞裙结构。
在一些实施方案中,所述第一伞裙结构为筒状柱体,侧面有凸出的伞裙状结构,齿尖朝侧面外;电抗器的顶板与底板分别设置于所述筒状侧面的顶端和底端。
在一些实施方案中,所述驱动单元包括多个驱动组件,驱动组件为插拔式固定结构,每层两个反并联的晶闸管共用一组驱动组件。
在一些实施方案中,所述驱动组件为无源型驱动组件,所述驱动组件动作时间为1us~10us。
在一些实施方案中,所述插拔式固定结构为抽屉式结构。
在一些实施方案中,所述均压组件段包括均压组件和均压组件顶部阻尼弹簧。
所述均压组件通过连接件中的电气连接结构件与晶闸管阀串段各单层间晶闸管器件相连接,均压组件顶部连接均压组件顶部阻尼弹簧。
在一些实施方案中,所述均压组件包括多个堆叠的均压元件,所有的均压元件串联;
所述连接件包括与所述均压元件数量相同的金属件,每层均压元件均通过一个金属件与对应层的反并联晶闸管器件并联。
在一些实施方案中,所述均压组件仅包括非线性电阻片,或者,所述均压组件包括非线性电阻片和小容量均压电容,所述均压电容安装于均压组件与晶闸管器件之间连接件中,所述小容量均压电容的电容量根据电位分布需求和漏电流限制条件确定,在正常运行电压下均压组件和晶闸管器 件共同的漏电流低于5mA。
在一些实施方案中,所述绝缘外套包括:底部法兰、中间绝缘件和顶部法兰,底部法兰与顶部法兰分别设置于中间绝缘件顶端和底端;
芯体顶部阻尼弹簧与顶部法兰的内表面连接;顶部阻尼弹簧的数量根据芯体的高度和重量确定。
绝缘外套为外绝缘结构,其内径根据所述开关芯体大小设定,绝缘外套的内部按需预留扩展空间,填充氮气,整体密闭。
在一些实施方案中,所述中间绝缘件为筒状外绝缘结构,采用瓷材料或复合材料,其表面分布高度不等的第二伞裙结构。
在一些实施方案中,在阀串底部与顶压端板之间还设有均力机构。
在一些实施方案中,所述结构件包括:芯体顶部阻尼弹簧、中层连接板、防压支撑梁和下部支撑板;
所述防压支撑梁设置于所述晶闸管阀串段和均压组件段的周围,且高度大于所述晶闸管阀串段和均压组件段的高度;
水平的下部支撑板与中层连接板分别设置于防压支撑梁顶端和底端;
所述防压支撑梁底部连接水平下部支撑板上表面,其顶部连接水平中层连接板下表面;
所述电抗器设置于中层连接板上表面,所述电抗器顶端通过所述芯体顶部阻尼弹簧与绝缘外套连接。
在一些实施方案中,所述下部支撑板为板状结构位于开关芯体的底部,其上分布有孔;所述下部支撑板与绝缘外套之间留有间隙;
所述下部支撑板的孔与所述间隙构成内部放电引起的氮气流动的通道,且所述通道的排放口朝向底部法兰。
与现有技术相比,本发明实施例的有益效果包括:
本发明实施例提供了一种可控避雷器用立式晶闸管开关,包括绝缘外 套和封装于绝缘外套内的立式圆柱形的开关芯体;所述开关芯体包括晶闸管阀串段、电抗器、驱动单元、均压组件段、结构件和连接件;晶闸管阀串段与旁侧的驱动单元连接后,同均压组件段一起分别设置于结构件下段的空间内,结构件上段设置电抗器,所述开关芯体内各部件之间通过所述连接件电气连接。通过可控避雷器用立式晶闸管开关的紧凑型结构,立式安装、占地小、易于扩展、局放低、漏电流小、响应速度快、适用于户外运行,有效降低晶闸管开关的高度,可减小开关芯体对避雷器本体电位分布的影响。
附图说明
图1为本发明一实施例提供的一种可控避雷器用立式晶闸管开关整体结构示意图;
图2为本发明一实施例提供的绝缘外套结构示意图;
图3为本发明一实施例提供的晶闸管阀串段结构示意图;
图4为本发明一实施例提供的饱和电抗器伞裙结构示意图;
图5为本发明一实施例提供的饱和电抗器出线结构示意图;
图6为本发明一实施例提供的底板排爆结构示意图。
具体实施方式
现有断路器开关式可控避雷器由于断路器开关动作速度慢,只能限制合闸过电压,需要与站控系统配合使用,应用场景大大受限;晶闸管开关式可控避雷器响应时间快、能够独立动作、无需复杂的二次系统,具有与避雷器相同的响应特性;为了控制晶闸管开关的高度以及分布电容对避雷器本体电位分布的影响,实现晶闸管开关与避雷器本体的良好集成。
为解决上述问题,以及为了解决现有晶闸管开关不能与避雷器本体实现良好集成、占地大、不易于扩展、局放水平大,不适用于户外运行、漏 电流大的问题,本发明实施例提供了一种可控避雷器用立式紧凑型晶闸管开关,通过在变电站线路侧安装可控避雷器,深度降低系统操作过电压。
可控避雷器用立式晶闸管开关包括立式晶闸管阀串段、电抗器3、驱动单元、均压组件段2、绝缘外套4、各部分之间的结构件和连接件;其中立式晶闸管阀段、电抗器3、驱动单元、均压组件段2及连接件构成了晶闸管开关的芯体,芯体整体封装在绝缘外套4内部;晶闸管阀串段由多层反并联晶闸管器件压接而成,整个晶闸管开关可根据电压的需要串联多个阀段,结构可灵活性扩展;在开关芯体中电抗器3通过结构件和连接件与晶闸管阀段1串联,开关芯体整体内置于封闭绝缘外套内,具有结构紧凑、易于扩展、局放小、漏电流小、适于户外运行等特点。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述。
如图1所示,本发明实施例提供了一种可控避雷器用立式晶闸管开关,包括绝缘外套4和封装于绝缘外套4内的立式圆柱形的开关芯体;所述开关芯体包括晶闸管阀串段、电抗器3、驱动单元、均压组件段2、结构件和连接件;晶闸管阀串段与旁侧的驱动单元连接后,同均压组件段2一起分别设置于结构件下段的空间内,结构件上段设置电抗器3,所述开关芯体内各部件之间通过所述连接件电气连接。
在本发明实施例中,如图1和图3所示,所述晶闸管阀串段包括:由多层反并联晶闸管5组成晶闸管器件、顶压拉杆6、顶压螺母7和顶压端板10,随着避雷器可控部分电压的提高,所需串联的晶闸管层数会随之增加,根据晶闸管开关承担的电压可灵活确定晶闸管器件串联的层数。
所述晶闸管器件通过顶压拉杆6和顶压螺母7压接成多个晶闸管阀段1,各晶闸管阀段1上下串联连接组成多个阀串,整个晶闸管开关可由多个晶闸管阀段1上下串联而成,各晶闸管阀段1之间采用顶压端板10作为过 渡连接,每个阀串于顶部和/或底部通过顶压端板10采用重叠对角结构连接而成,减小晶闸管阀段1、阀串、阀串段之间连接的空间需求,同时各阀段之间采用顶压端板作为过渡连接,有效降低晶闸管阀段的高度。
在本发明实施例中,所述顶压端板10包括多个对三角结构,每个三角结构均固定一个串段,对三角结构占用的结构空间较小,在有限空间内可以设置安装更多的串段结构,通过顶压端板10采用重叠对三角放置,有效降低晶闸管阀段的高度,能有效提高芯体开关空间利用率,降低开关芯体整体高度。
在本发明实施例中,如图1、图4和图5所示,所述电抗器3为圆柱结构,采用自冷式饱和电抗器,自冷式饱和电抗器在开关芯体中与晶闸管阀段1通过结构件和连接件串联,自冷式饱和电抗器3顶部和/或底部用压装出线和/或对外连接的方式,进一步地,该出线方式可以采用铝排出线结构13,其出线结构与顶部底部部分采用压力接触式结构,无需配置额外的接线,结构紧凑;其外部布置第一伞裙结构12,在保证爬电距离的情况下,或者增加电抗器的爬电距离的情况下,可有效降低饱和电抗器的高度。
自冷式饱和电抗器采用整体浇筑进行内绝缘,通过优化设计的圆柱结构,有效克服了电抗器3周围的电场分布不均匀,在保证相同爬电距离的情况下,有效的降低了电抗器3的高度;通过电抗器3顶部和/或底部采用压装出线和/或对外连接的方式,省去了螺栓或者焊接以及其他多余接线的空间,使电抗器3空间结构更加合理;配合外部布置的伞裙结构12,以增加电抗器的爬电距离,可有效减小电抗器的高度,进而降低开关的整体高度。
在本发明实施例中,所述第一伞裙结构12为筒状柱体,侧面有凸出的伞裙状结构伞裙朝侧面外;电抗器3的顶板与底板分别设置于所述筒状侧面的顶端和底端,进一步优化了电抗器的爬电距离效果,减小电抗器的高 度。
在本发明实施例中,所述驱动单元包括多个驱动组件9,驱动组件9为插拔式固定结构,每层反并联的两个晶闸管5共用一组驱动组件9,通过每层都配置并和反并联晶闸管5共用,提高了驱动组件9的使用效率,增强驱动组件的驱动性能效果,可将驱动板卡数量减小一半,减小开关芯体的体积。
示例性地,驱动组件为无源型驱动组件,驱动组件动作时间为1us~10us(microsecond,微秒)。
在本发明实施例中,所述插拔式固定结构为抽屉式结构,在保证连接紧固的情况下,便于检修和维护,方便实用。
在本发明实施例中,所述均压组件段2包括均压组件、金属垫块和均压组件顶部阻尼弹簧11。
所述均压组件通过连接件中的电气连接结构件与晶闸管阀串段各单层间晶闸管器件相连接,均压组件顶部连接均压组件顶部阻尼弹簧11,均压组件不需要顶压接触,但考虑到工作、运输及地震时振动的影响,在均压组件段顶部增加了均压组件顶部阻尼弹簧11,顶部阻尼弹簧的数量根据芯体的高度和重量确定,用来吸收工作或运输过程中的振动。
在本发明实施例中,所述均压组件包括多个堆叠的均压元件;所有的均压元件串联;串联的数量与晶闸管器件串联的数量相对应。
所述连接件包括与所述均压元件数量相同和/或截面相等的金属件,该金属件可以是金属垫块或其他具有该功能的金属结构,每层均压元件均通过一个金属件(也即金属垫块),通过该金属垫块的电气连接结构件与晶闸管阀串段单层间相连接,实现对应层的晶闸管器件层间并联。
示例性地,一些实施例中,均压组件仅包括非线性电阻片。
可以理解的是,均压组件还可以根据需求可灵活布置小的均压电容, 以提高晶闸管开关的均压性能和减小开关的漏电流。例如,另一些实施例中,均压组件包括非线性电阻片和小容量均压电容,其中,小容量均压电容的电容量根据电位分布需求和漏电流限制条件确定,例如,电容量为10PF~999PF(pico farad,皮法)。所述均压电容安装于均压组件与晶闸管器件之间连接件中,在正常运行电压下均压组件和晶闸管器件共同的漏电流低于5mA。
在本发明实施例中,如图1~2所示,所述绝缘外套4包括:底部法兰18、中间绝缘件19和顶部法兰20,底部法兰18与顶部法兰20分别设置于中间绝缘件19顶端和底端;芯体顶部阻尼弹簧14与顶部法兰20顶部内表面连接,芯体顶部阻尼弹簧14为了吸收运输、安装及户外地震过程中的振动,提升开关芯体抗震能力。
在本发明实施例中,该晶闸管开关内部为开关芯体,外部为绝缘外套4,开关芯体在绝缘外套4中固定,绝缘外套4为外绝缘结构,其内径根据所述开关芯体大小设定,并考虑一定的安装空间,绝缘外套4的内部按需预留扩展空间,绝缘外套4中填充氮气使芯体处于气体绝缘环境,绝缘外套4整体密闭,开关以整体的方式运输、安装并实现功能,适于户外运行。
在本发明实施例中,所述中间绝缘件19为筒状结构,采用瓷材料或复合材料,进一步的筒状结构可采用瓷套或者复合绝缘外套,中间绝缘件19可采用瓷材料或者复合材料,所述中间绝缘件19其表面分布高度不等的第二伞裙结构,第二伞裙结构可以影响中间绝缘件19表面电场和电荷分布。
在本发明实施例中,如图3所示,为保证晶闸管器件压接面受力均匀,阀串内部还设计有均力机构,在阀串底部与顶压端板10之间还设有均力机构8。
在本发明实施例中,所述结构件包括:芯体顶部阻尼弹簧14、中层连接板15、防压支撑梁16和下部支撑板17。
所述防压支撑梁16设置于所述晶闸管阀串段和均压组件段2的周围,且高度大于所述晶闸管阀串段和均压组件段2的高度。
为了减少芯体顶部阻尼弹簧14的压力对底部晶闸管阀串段的压力影响,水平的下部支撑板17与中层连接板15分别设置于防压支撑梁16顶端和底端。
所述防压支撑梁16底部连接水平下部支撑板17上表面,其顶部连接水平中层连接板15下表面。
所述电抗器3设置于中层连接板15上表面,所述电抗器3顶端通过所述芯体顶部阻尼弹簧14与绝缘外套4连接,在开关芯体中设计中间连接板15和防压支撑梁16,形成开关芯体多个阀段的支撑结构,实现开关芯体在顶部弹簧压力下与立式晶闸管阀段1的隔离。
在本发明实施例中,如图1和图6所示,所述下部支撑板17为板状结构位于开关芯体的底部,采用上下相互错位并堆叠的异形结构,其上分布有孔;所述下部支撑板17与绝缘外套4之间有间隙。
在本发明实施例中,均压电阻片和均压电容与晶闸管5进行一一对应配置,均压电容安装于两个金属母排之间,减小了均压组件所占用的空间,提高了开关整体的集成度和紧凑性。
为了适应瓷套密闭空间的防爆要求,开关芯体中下部支撑板17上留有足够的排爆通道。所述下部支撑板17的孔与所述间隙构成电火花与氮气的排爆通道,且所述排爆通道的排放口朝向底部法兰18,满足绝缘外套内防爆要求。
本发明实施例的技术方案整体至少包括以下有益效果:
1、本发明实施例提出了可控避雷器用立式晶闸管开关的紧凑型结构,适用于户外运行,可根据电压的需求灵活扩展,有效降低晶闸管开关的高度,减小对避雷器本体电位分布的影响。
2、本发明实施例提出了一种自冷式饱和电抗器3结构,采用在顶部和/或底部压装出线和对外连接的方式,可避免增加辅助接线和固定螺栓带来的对局部放电和电位分布的影响;饱和电抗器外部布置绝缘伞裙12,可在满足爬电距离的情况下有效降低饱和电抗器3的高度,有效降低晶闸管开关整体高度,结构紧凑。
3、本发明实施例提出的插拔式结构的驱动组件9,便于检修和维护,且反并联的两只晶闸管共用一个驱动组件,降低了设备复杂度,减小了动作的分散性,可有效提高开关的紧凑性。
4、本发明实施例中多段晶闸管阀串重叠对三角放置,能有效提高空间利用率,降低芯体整体高度和直径,减小开关的体积。
5、本发明实施例中提出的绝缘瓷套或者复合绝缘外套的封装方式,适于户外运行,设计具有适应绝缘外套4密闭空间的排爆通道,满足绝缘外套4内防爆要求。
6、本发明实施例提出的具有适应开关整体运输的芯体顶部阻尼弹簧14和防压支撑梁16,适应开关抗震要求,保障了立式压装晶闸管受力的均匀性。
7、开关整体呈圆柱形结构,通过优化设计,开关在持续运行电压下局部放电量小于2pC(picoCoulomb,皮库)。
8、采用小的均压电容和/或非线性电阻片进行晶闸管器件5的均压和保护,多层并联时使用层间母排实现电气连接,这种方法使得在保障均压效果的前提下,开关的漏电流小于5mA,可适用于避雷器等对漏电流要求严格的场合,同时通过将均压组件与晶闸管器件的结构开展紧密设计,大大降低了开关的体积。
显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其它实施例,都属于本发明保护的范围。
本发明在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
以上仅为本发明的实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均包含在申请待批的本发明的权利要求范围之内。

Claims (16)

  1. 一种可控避雷器用立式晶闸管开关,包括:绝缘外套和封装于所述绝缘外套内的立式圆柱形的开关芯体;
    所述开关芯体包括晶闸管阀串段、电抗器、驱动单元、均压组件段、结构件和连接件;
    所述晶闸管阀串段与旁侧的所述驱动单元连接后,同均压组件段一起分别设置于所述结构件下段的空间内,所述结构件上段设置所述电抗器,所述开关芯体内各部件之间通过所述连接件电气连接。
  2. 根据权利要求1所述的立式晶闸管开关,所述晶闸管阀串段包括:由多层反并联晶闸管组成晶闸管器件、顶压拉杆、顶压螺母和顶压端板;
    所述晶闸管器件通过顶压拉杆和顶压螺母压接成多个晶闸管阀段,各晶闸管阀段串联成阀串,阀串于顶部和/或底部通过顶压端板连接构成重叠对三角结构。
  3. 根据权利要求2所述的立式晶闸管开关,所述顶压端板包括多个对三角结构,每个三角结构均固定一个串段。
  4. 根据权利要求1所述的立式晶闸管开关,所述电抗器为圆柱结构,采用自冷式饱和电抗器,电抗器顶部和底部通过压装出线和对外连接的方式,其外部布置第一伞裙结构。
  5. 根据权利要求4所述的立式晶闸管开关,所述第一伞裙结构为筒状柱体,侧面有伞裙状结构,伞裙朝侧面外;电抗器的顶板与底板分别设置于所述筒状侧面的顶端和底端。
  6. 根据权利要求2所述的立式晶闸管开关,所述驱动单元包括多个驱动组件,驱动组件为插拔式固定结构,每层两个反并联的晶闸管共用一组驱动组件。
  7. 根据权利要求6所述的立式晶闸管开关,所述驱动组件为无源型驱 动组件,所述驱动组件动作时间为1us~10us。
  8. 根据权利要求6所述的立式晶闸管开关,所述插拔式固定结构为抽屉式结构。
  9. 根据权利要求2所述的立式晶闸管开关,所述均压组件段包括均压组件和均压组件顶部阻尼弹簧;
    所述均压组件通过连接件中的电气连接结构件与晶闸管阀串段各单层间晶闸管器件相连接,均压组件顶部连接均压组件顶部阻尼弹簧。
  10. 根据权利要求9所述的立式晶闸管开关,所述均压组件包括多个堆叠的均压元件;所有的均压元件串联;
    所述连接件包括与所述均压元件数量相同的金属件,每层均压元件均通过一个金属件与对应层的反并联晶闸管器件并联。
  11. 根据权利要求10所述的立式晶闸管开关,所述均压组件仅包括非线性电阻片;或者,所述均压组件包括非线性电阻片和小容量均压电容,所述均压电容安装于均压组件与晶闸管器件之间连接件中,所述小容量均压电容的电容量根据电位分布需求和漏电流限制条件确定;在正常运行电压下均压组件和晶闸管器件共同的漏电流低于5mA。
  12. 根据权利要求1所述的立式晶闸管开关,所述绝缘外套包括:底部法兰、中间绝缘件和顶部法兰,
    底部法兰与顶部法兰分别设置于中间绝缘件顶端和底端;
    芯体顶部阻尼弹簧与顶部法兰顶部内表面连接;顶部阻尼弹簧的数量根据芯体的高度和重量确定;
    绝缘外套为外绝缘结构,其内径根据所述开关芯体大小设定,绝缘外套的内部按需预留扩展空间,填充氮气,整体密闭。
  13. 根据权利要求12所述的立式晶闸管开关,所述中间绝缘件为筒状结构,采用瓷材料或复合材料,其表面分布高度不等的第二伞裙结构。
  14. 根据权利要求2所述的立式晶闸管开关,在阀串底部与顶压端板之间还设有均力机构。
  15. 根据权利要求12所述的立式晶闸管开关,所述结构件包括:芯体顶部阻尼弹簧、中层连接板、防压支撑梁和下部支撑板,
    所述防压支撑梁设置于所述晶闸管阀串段和均压组件段的周围,且高度大于所述晶闸管阀串段和均压组件段的高度;
    水平的下部支撑板与中层连接板分别设置于防压支撑梁顶端和底端;
    所述防压支撑梁底部连接水平下部支撑板上表面,其顶部连接水平中层连接板下表面;
    所述电抗器设置于中层连接板上表面,所述电抗器顶端通过所述芯体顶部阻尼弹簧与绝缘外套连接。
  16. 根据权利要求15所述的立式晶闸管开关,所述下部支撑板为板状结构位于开关芯体的底部,其上分布有孔;所述下部支撑板与绝缘外套之间有间隙;
    所述下部支撑板的孔与所述间隙构成内部放电引起的氮气流动的通道,且所述通道的排放口朝向底部法兰。
PCT/CN2021/115719 2020-10-27 2021-08-31 一种可控避雷器用立式晶闸管开关 WO2022088937A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011163181.1 2020-10-27
CN202011163181.1A CN112467706A (zh) 2020-10-27 2020-10-27 一种可控避雷器用立式晶闸管开关

Publications (1)

Publication Number Publication Date
WO2022088937A1 true WO2022088937A1 (zh) 2022-05-05

Family

ID=74834577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115719 WO2022088937A1 (zh) 2020-10-27 2021-08-31 一种可控避雷器用立式晶闸管开关

Country Status (2)

Country Link
CN (1) CN112467706A (zh)
WO (1) WO2022088937A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467706A (zh) * 2020-10-27 2021-03-09 全球能源互联网研究院有限公司 一种可控避雷器用立式晶闸管开关
CN113543398B (zh) * 2021-09-14 2021-11-30 中国工程物理研究院流体物理研究所 一种提升高功率脉冲氙灯光源可靠性的装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241805A (ja) * 1995-03-03 1996-09-17 Toshiba Corp 避雷器
CN202513580U (zh) * 2012-04-01 2012-10-31 北京博电新能电力科技有限公司 一种固态复合无功设备投切开关用晶闸管阀
CN105513775A (zh) * 2015-12-18 2016-04-20 薛建仁 一种新型的高压电抗器
CN108649937A (zh) * 2018-05-23 2018-10-12 全球能源互联网研究院有限公司 一种抑制响应雷击过电压的可控避雷器晶闸管阀开关
CN108667001A (zh) * 2018-05-18 2018-10-16 中国电力科学研究院有限公司 一种110kV晶闸管阀型可控避雷器装置及验证方法
CN208445258U (zh) * 2018-05-03 2019-01-29 全球能源互联网研究院有限公司 一种晶闸管开关型可控避雷器
CN109859914A (zh) * 2019-03-05 2019-06-07 哈尔滨理工大学 一种输电系统用可控金属氧化物避雷器
CN111091941A (zh) * 2019-12-27 2020-05-01 江西中南绝缘子有限公司 一种整体式电气化铁道用支柱绝缘子型避雷器
CN112467706A (zh) * 2020-10-27 2021-03-09 全球能源互联网研究院有限公司 一种可控避雷器用立式晶闸管开关

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241805A (ja) * 1995-03-03 1996-09-17 Toshiba Corp 避雷器
CN202513580U (zh) * 2012-04-01 2012-10-31 北京博电新能电力科技有限公司 一种固态复合无功设备投切开关用晶闸管阀
CN105513775A (zh) * 2015-12-18 2016-04-20 薛建仁 一种新型的高压电抗器
CN208445258U (zh) * 2018-05-03 2019-01-29 全球能源互联网研究院有限公司 一种晶闸管开关型可控避雷器
CN108667001A (zh) * 2018-05-18 2018-10-16 中国电力科学研究院有限公司 一种110kV晶闸管阀型可控避雷器装置及验证方法
CN108649937A (zh) * 2018-05-23 2018-10-12 全球能源互联网研究院有限公司 一种抑制响应雷击过电压的可控避雷器晶闸管阀开关
CN109859914A (zh) * 2019-03-05 2019-06-07 哈尔滨理工大学 一种输电系统用可控金属氧化物避雷器
CN111091941A (zh) * 2019-12-27 2020-05-01 江西中南绝缘子有限公司 一种整体式电气化铁道用支柱绝缘子型避雷器
CN112467706A (zh) * 2020-10-27 2021-03-09 全球能源互联网研究院有限公司 一种可控避雷器用立式晶闸管开关

Also Published As

Publication number Publication date
CN112467706A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2022088937A1 (zh) 一种可控避雷器用立式晶闸管开关
Liu et al. Research on key technologies in±1100 kV ultra‐high voltage DC transmission
CN106558864A (zh) 一种混合式快速直流断路器
WO2020098750A1 (zh) 高压隔离变压器
KR20220046659A (ko) 컨버터 밸브
US20190157871A1 (en) Series Compensation Device Applicable To Double-Circuit Line
CN104333001B (zh) 一种分布式串联耦合型潮流控制器
Wang et al. E-field distribution analysis on three types of converter double valve in 800kV valve hall
CN212380841U (zh) 一种35kV撬装一体式移动变电站
CN201937271U (zh) 一种紧凑型并联电容器成套装置
CN211045235U (zh) 一种固体绝缘结构的高压级联隔离变压器
CN214412280U (zh) 一种立式晶闸管开关
US11240929B2 (en) Inhibitor module and shielding arrangements for high voltage equipment
CN101533694B (zh) 一种具备液体蒸发冷却功能的新型高能量ZnO避雷器
Chen et al. Energization transient suppression of 750 kV AC filters using a preinsertion resistor circuit breaker with a controlled switching device
CN201378482Y (zh) 一种具备液体蒸发冷却功能的新型高能量ZnO避雷器
Weijiang et al. The new technological developments of UHV AC power transmission equipment
CN218274267U (zh) 一种用于35kV电力系统的高压自愈式并联电容器的结构
CN214226813U (zh) 一种铁道专用单极真空断路器
CN220710099U (zh) 单相三绕组220kV气体绝缘变压器
CN116960915A (zh) 一种交流可控耗能限压装置
CN211045239U (zh) 一种组合绝缘结构的高压隔离变压器
CN220122619U (zh) 全绝缘柜式无功补偿装置
CN217159279U (zh) 含调谐电抗器的并联电容器组装置
CN207765334U (zh) 一种特高压交流输电抗震并联电容器装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884669

Country of ref document: EP

Kind code of ref document: A1