WO2019223108A1 - 移动距离的检测方法、装置和存储介质 - Google Patents

移动距离的检测方法、装置和存储介质 Download PDF

Info

Publication number
WO2019223108A1
WO2019223108A1 PCT/CN2018/098023 CN2018098023W WO2019223108A1 WO 2019223108 A1 WO2019223108 A1 WO 2019223108A1 CN 2018098023 W CN2018098023 W CN 2018098023W WO 2019223108 A1 WO2019223108 A1 WO 2019223108A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
moving wheel
radian
moving
magnets
Prior art date
Application number
PCT/CN2018/098023
Other languages
English (en)
French (fr)
Inventor
禹钟植
金海燕
Original Assignee
江苏美的清洁电器股份有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏美的清洁电器股份有限公司, 美的集团股份有限公司 filed Critical 江苏美的清洁电器股份有限公司
Priority to US16/125,794 priority Critical patent/US20190350426A1/en
Publication of WO2019223108A1 publication Critical patent/WO2019223108A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness

Definitions

  • the present application relates to home appliance detection technology, and in particular, to a method, a device, and a computer-readable storage medium for detecting a moving distance.
  • the movement of the sweeping robot is realized by its moving wheels. Accurately detecting the moving distance of the sweeping robot is an important element required for robot attitude control, position estimation and map drawing. How to accurately detect the moving distance of the moving wheel is currently needed to be solved. problem.
  • the moving wheel of the existing cleaning robot is generally equipped with a wheel encoder, which is used to detect the rotation amount of the motor connected to the moving wheel, and determine the moving distance of the cleaning robot according to the rotation amount, thereby providing the positioning of the cleaning robot. And basic information needed for map making.
  • embodiments of the present application provide a method, a device, and a computer-readable storage medium for detecting a moving distance.
  • An embodiment of the present application provides a method for detecting a moving distance.
  • the method is applied to an automatic cleaning device that includes a moving wheel; the moving wheel includes a disc magnet disposed at a center of the moving wheel axis; The disc magnet rotates with the rotation of the moving wheel; the disc magnet includes at least one set of two-pole-corresponding magnets; the moving wheel further includes a change in magnetic field strength of each set of magnets in the disc magnet
  • a Hall sensor of a quantity, the movement track of the Hall sensor is parallel and synchronized with the movement track of the axis of the moving wheel; the method includes:
  • N is related to the arc of rotation of the moving wheel, N Is a positive number
  • a moving distance of the moving wheel is determined according to a rotation arc of the disc magnet.
  • the determining the rotation radian of the disc magnet according to the N pulse waveforms includes:
  • the rotation direction includes forward rotation and reverse rotation
  • determining the first rotation radian when the moving wheel rotates in a forward direction and the second rotation radian when the moving wheel rotates in a reverse direction includes:
  • the first rotation radians and the movement wheels corresponding to the pulse waveforms generated when the moving wheels rotate in the forward direction in the N pulse waveforms are determined.
  • the method before the querying the correspondence relationship between the saved voltage waveform and the rotation radian according to the voltage waveform, the method further includes:
  • the number of groups of the magnets is determined, and the correspondence between the pulse waveform and the rotation radian is determined according to the number of groups of the magnets.
  • the determining the moving distance of the moving wheel according to the arc of rotation of the disc magnet includes:
  • the radius of the moving wheel is determined, and the moving distance of the moving wheel is determined according to the radius of the moving wheel and the arc of rotation of the disc magnet.
  • An embodiment of the present application further provides a moving distance detecting device, which is applied to an automatic cleaning device, the automatic cleaning device includes a moving wheel; the moving wheel includes a disc magnet disposed at a center of the moving wheel axis, and The disk magnet rotates with the rotation of the moving wheel; the disk magnet includes at least one set of two-pole corresponding magnets; the moving wheel further includes a magnetic field strength for monitoring the magnetic field strength of each group of the disk magnets.
  • a Hall sensor with a variable amount, the movement trajectory of the Hall sensor is parallel and synchronized with the movement trajectory of the axis of the moving wheel; the device includes: a first determination module and a second determination module; wherein,
  • the first determining module is configured to monitor a change amount of a magnetic field intensity of each group of magnets in the disc magnet, and output N pulse waveforms according to a change amount of a magnetic field intensity of each group of magnets;
  • the rotation radian of the moving wheel is related, and N is a positive number;
  • the second determining module is configured to determine a rotation arc of the disk magnet according to the N pulse waveforms; and determine a moving distance of the moving wheel according to the rotation arc of the disk magnet.
  • the second determining module is specifically configured to determine a rotation direction of the moving wheel according to voltage values corresponding to the N pulse waveforms, and the rotation direction includes a forward rotation and a reverse rotation;
  • the second determining module is specifically configured to query the correspondence relationship between the saved pulse waveform and the rotation radian according to the N pulse waveforms, to determine that the moving wheels in the N pulse waveforms are generated when the moving wheel rotates in a forward direction.
  • the second determining module is further configured to determine the number of groups of the magnets, and determine the correspondence between the pulse waveform and the rotation radian according to the number of groups of the magnets.
  • the second determining module is specifically configured to determine a radius of the moving wheel, and determine a moving distance of the moving wheel according to the radius of the moving wheel and a rotation arc of the disc magnet.
  • An embodiment of the present application further provides a device for detecting a moving distance.
  • the device includes: a processor and a memory for storing a computer program capable of running on the processor;
  • the processor when the processor is used to run the computer program, the processor executes the steps of any one of the detection methods of the moving distance.
  • An embodiment of the present application further provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of any one of the foregoing moving distance detection methods.
  • the method, device, and computer-readable storage medium for detecting the moving distance provided in the embodiments of the present application are applied to an automatic cleaning device, which includes a moving wheel; the moving wheel includes a disc disposed at a center of the moving wheel axis. A magnet, the disc magnet rotates as the moving wheel rotates; the disc magnet includes at least one set of two-pole corresponding magnets; the moving wheel further includes a means for monitoring each set of magnets in the disc magnet Hall sensor with a change amount of magnetic field strength, the movement track of the Hall sensor is parallel and synchronized with the movement track of the axis of the moving wheel; the solution of the embodiment of the present application includes: monitoring each of the disk magnets The amount of change in the magnetic field strength of the set of magnets is output as N pulse waveforms according to the amount of change in the magnetic field strength of each set of magnets; the value of N is associated with the arc of rotation of the moving wheel, and N is a positive number; according to the N The pulse waveforms determine the arc of rotation of the disc
  • Figure 1 (a) is a schematic diagram of an 8-pole disc magnet provided with a Hall sensor
  • Figure 1 (b) is a schematic diagram of a hysteresis phenomenon
  • FIG. 2 is a schematic diagram of a magnetic field strength of an 8-pole disc magnet provided with a Hall sensor
  • FIG. 3 is a schematic flowchart of a first method for detecting a moving distance according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of determining a moving distance according to a magnetic field strength according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a moving distance detection system according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a moving distance detection device 1 according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a moving distance detection device 2 according to an embodiment of the present application.
  • the change amount of the magnetic field intensity of each group of magnets in the disc magnet is monitored, and N pulse waveforms are output according to the change amount of the magnetic field intensity of each group of magnets;
  • the rotation radian of the moving wheel is related, and N is a positive number; the rotation radian of the disk magnet is determined according to the N pulse waveforms; and the moving distance of the moving wheel is determined according to the rotation radian of the disk magnet.
  • a motor, a disk magnet and a Hall sensor are installed on the moving wheel of the existing cleaning robot; wherein the motor is used to drive the moving wheel to rotate, and the disk magnet and the Hall sensor are used to detect the movement of the moving wheel.
  • the circular magnet is generally composed of 12 poles to 36 poles. For accuracy consideration, the rotation amount is detected by using more than two Hall sensors.
  • the detection method includes: detecting a magnetic field of South / North (S / N) poles of a plurality of magnets, outputting a pulse, and dividing a single turning action into 6 to 18 (that is, 12 divided by 2 to 36) 360 degrees rotation with 2) pulse accuracy; then use 2 Hall sensors to distinguish 4 phases, and use 24-72 (6 times 4 to 18 times 4) phase accuracy to detect 360 degrees rotation, ie one The phase corresponds to a movement of 15 to 5 °.
  • the number of poles of the disc magnet or a multiple Hall sensor can be increased to further refine the phase, thereby achieving the purpose of improving the detection accuracy.
  • the method of increasing the number of poles of the disk magnet since the magnitude of the detected magnetic force is proportional to the volume of m / 2 (m is the number of poles) magnets, this method will cause the disk magnet to be too large;
  • the method of adding multiple Hall sensors is used to consider the position of the S / N poles on the disc magnet, and it has the problem of multiple Hall sensor allocation.
  • the printed circuit board Printed Circuit Board
  • Figure 1 (a) is a schematic diagram of an 8-pole disk magnet with a Hall sensor; as shown in Figure 1 (a), 2 Hall sensors are assigned to 4 magnetic phases of a disk magnet with 8 magnetic poles . The two Hall sensors output different phases, and the output values need to be 90 ° out of phase.
  • the outputs of the two Hall sensors have a phase difference of 90 ° and are distinguished Calculate the moving distance in 4 phases. If the position of the first Hall sensor is determined to be HALL1, the position of the second Hall sensor is HALL3, and the output values of the Hall sensors at the positions of HALL1 and HALL3 are the same without phase difference, and the action of one of the Hall sensors will be lost. Meaning; specific parameters are shown in Figure 2.
  • FIG. 3 is a schematic flowchart of a first method for detecting a moving distance according to an embodiment of the present application; the method is applied to an automatic cleaning device (such as a device having a moving wheel such as a cleaning robot), and the automatic cleaning device includes a moving wheel;
  • the moving wheel includes a disk magnet disposed at the center of the moving wheel axis, and the disk magnet rotates with the rotation of the moving wheel;
  • the disk magnet includes at least one set of two-pole corresponding magnets; wherein each set of disk magnets Including corresponding S-pole and N-pole magnets;
  • the moving wheel further includes a Hall sensor for monitoring a change amount of a magnetic field intensity of each group of magnets in the disc magnet, and a moving track of the Hall sensor is parallel to a moving track of an axis of the moving wheel and Synchronize;
  • the method includes:
  • Step 301 Monitor the change amount of the magnetic field strength of each group of magnets in the disc magnet, and output N pulse waveforms according to the change amount of the magnetic field strength of each group of magnets; the value of N is related to the arc of rotation of the moving wheel. Couple, N is a positive number;
  • the pulse waveform represents a voltage value corresponding to the magnetic field strength.
  • the moving wheel of the automatic cleaning device includes at least one Hall sensor
  • the step 301 includes: monitoring the change amount of the magnetic field strength of each group of magnets in the disc magnet through the Hall sensor, and outputting N pulse waveforms according to the change amount of the magnetic field strength of each group of magnets.
  • the automatic cleaning device may further include a processor for detecting a moving distance of the automatic cleaning device;
  • the step 301 may further include:
  • the Hall sensor monitors a change amount of the magnetic field strength of each group of magnets in the disc magnet, and the processor receives the change amount of the magnetic field strength, and performs analog-to-digital conversion on the change amount of the magnetic field strength. , To obtain N pulse waveforms that characterize changes in magnetic field strength.
  • the Hall sensor may send the detected magnetic field strength to the processor, and the processor performs analog-to-digital conversion (AD) on the magnetic field strength to obtain a characteristic magnetic field strength change.
  • the voltage waveform is presented in the form of a pulse waveform (specifically, a sine waveform).
  • the processor may be a central processing unit (CPU, Central Processing Unit), a digital signal processor (DSP, Digital Signal Processor), a micro control unit (MCU, Microcontroller Unit), or a programmable gate array (FPGA, Field-Programmable) Gate Array).
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • MCU Microcontroller Unit
  • FPGA Field-Programmable Gate Array
  • Step 302 Determine a rotation radian of the disc magnet according to the N pulse waveforms.
  • determining the rotation radian of the disc magnet according to the N pulse waveforms includes:
  • the rotation direction includes forward rotation and reverse rotation
  • the processor determines a first rotation radian when the moving wheel rotates in a forward direction and a second rotation radian when the moving wheel rotates in a reverse direction;
  • the determining the rotation direction of the moving wheel includes two types the way:
  • Method 1 Obtain a driving command sent by the processor to control the running direction of the moving wheel, and determine the forward rotation and the reverse rotation of the moving wheel according to the driving command;
  • Method 2 Determine the rotation direction of the moving wheel according to the voltage waveform.
  • the processor may preset the voltage value to indicate a positive rotation when the voltage value is negative, and the reverse rotation when the voltage value is negative;
  • the sign of the voltage corresponding to the pulse waveform determines the rotation direction of the moving wheel.
  • the processor also needs to determine the conversion point of the forward rotation and the reverse rotation.
  • the determination method includes: after the magnetic field intensity is detected by the Hall sensor, the processor sequentially inputs the magnetic field intensity, and the processor performs digital-to-analog conversion on the magnetic field intensity. Then, the processor determines, based on the pulse waveform obtained after the analog-to-digital conversion, that the multiplication of the current voltage value and the voltage value of the previous second is less than or equal to 0, as shown in formula (1), that is, a zero-crossing (zero crossing), the zero crossing indicates that a transition from forward rotation to reverse rotation occurs, or a transition from reverse rotation to forward rotation occurs;
  • f (V (i)) 1, at zero zero crossing, i represents a time point, and Vi represents a voltage detection value.
  • the processor searches for the pulse waveform according to the rotation direction and the zero crossing point, thereby determining a first rotation radian when the moving wheel rotates in a forward direction and a second rotation radian when the moving wheel rotates in a reverse direction.
  • determining the first rotation radian when the moving wheel rotates in a forward direction and the second rotation radian when the moving wheel rotates in a reverse direction includes:
  • the processor inquires the correspondence relationship between the stored pulse waveform and the rotation radian according to the N pulse waveforms, and determines the rotation radian corresponding to the pulse waveform generated when the moving wheel rotates forward in the N pulse waveforms as the The first rotation radian and the rotation radian corresponding to the pulse waveform generated when the moving wheel rotates in the reverse direction are determined as the second rotation radian.
  • the method before the querying the correspondence relationship between the saved voltage waveform and the rotation radian according to the voltage waveform, the method further includes:
  • the processor determines the number of groups of the magnets, and determines the correspondence between the pulse waveform and the rotation radian according to the number of groups of the magnets.
  • ⁇ i represents the rotation radian
  • i represents the time per second
  • Vi represents the voltage value of the i-th second
  • A represents the highest value of the sine waveform.
  • the processor determines that the obtained pulse waveform contains X complete sine waveforms, it may determine that
  • Step 303 Determine a moving distance of the moving wheel according to a rotation arc of the disc magnet.
  • the step 303 includes: the processor determines a radius of the moving wheel, and determines a moving distance of the moving wheel according to the radius of the moving wheel and a rotation arc of the disc magnet.
  • a sin waveform is equivalent to a 360 ° / 8/2 rotation angle.
  • the rotation angle can be calculated as ⁇ (360 ° -240 °) + 360 ° * 2 + 90 ° ⁇ / 8/2
  • the rotation angle can be calculated as ⁇ (360 ° -150 °) + 360 ° * 2 ⁇ / 8/2.
  • the rotation radian is determined according to the determined rotation angle, and combined with the radius of the moving wheel, the moving distance of the moving wheel can be determined.
  • the processor in this embodiment stores an unlimited number of Arcsin values.
  • the processor may store 180 Arcsin values from 0 ° to 90 ° at 0.5 ° intervals, or 90 at 1 ° intervals, and calculate the corresponding angles using the symmetry characteristic of the sin function.
  • the method for determining the Arcsin value is: in a range of 0 ° to 90 °, the Arcsin corresponding value is sampled and stored, and the measured intermediate value is interpolated using the stored value and an interpolation filter.
  • any function for x in this interval can be estimated.
  • Unobserved values can be inferred using functions that are not stored, based on predictions obtained from experiments or observations.
  • FIG. 5 is a schematic structural diagram of a moving distance detection system according to an embodiment of the present application; as shown in FIG. 5, the system includes a processor, a disc magnet 1 and a hall sensor 1 provided on a first moving wheel, and Disc magnet two and hall sensor two of the second moving wheel; one of the hall sensor collects magnetic field strength of the disc magnet one, and the hall sensor two collects magnetic field of the disc magnet two Send the collected magnetic field strength to the processor, and the processor performs digital-to-analog conversion on the magnetic field strength, and uses the method shown in FIG. 3 to determine the moving distance of each moving wheel according to the change amount of the magnetic field strength.
  • FIG. 6 is a schematic structural diagram of a moving distance detecting device 1 according to an embodiment of the present application; as shown in FIG. 6, the device is applied to an automatic cleaning device that includes a moving wheel; the moving wheel includes a A disk magnet at the center of a moving wheel, said disk magnet rotating with the rotation of said moving wheel; said disk magnet includes at least a set of two-pole corresponding magnets; said moving wheel further comprises a means for monitoring said circle Hall sensor of the change amount of magnetic field intensity of each group of magnets in the disk magnet, the movement track of the Hall sensor is parallel and synchronized with the movement track of the axis of the moving wheel; the device includes: a first determining module 601 and a second determining module 602;
  • the first determining module 601 is configured to monitor a change amount of a magnetic field intensity of each group of magnets in the disc magnet, and output N pulse waveforms according to a change amount of a magnetic field intensity of each group of magnets;
  • the rotation radian of the moving wheel is related, and N is a positive number;
  • the second determining module 602 is configured to determine a rotation arc of the disk magnet according to the N pulse waveforms; and determine a moving distance of the moving wheel according to the rotation arc of the disk magnet.
  • the second determining module 602 is specifically configured to determine a rotation direction of the moving wheel according to voltage values corresponding to the N pulse waveforms, and the rotation direction includes a forward rotation and a reverse rotation;
  • the second determining module 602 is specifically configured to query the correspondence relationship between the saved pulse waveform and the rotation radian according to the N pulse waveforms, to determine that the moving wheels in the N pulse waveforms are generated when the moving wheel rotates in a forward direction.
  • the second determining module 602 is further configured to determine the number of groups of the magnets, and determine the correspondence between the pulse waveform and the rotation radian according to the number of groups of the magnets.
  • the second determining module 602 is specifically configured to determine a radius of the moving wheel, and determine a moving distance of the moving wheel according to the radius of the moving wheel and a rotation arc of the disc magnet.
  • the embodiment of the present application provides a moving distance detecting device, which is disposed on an automatic cleaning device.
  • the device 70 includes:
  • processor 701 When the processor 701 is configured to run the computer program, execute:
  • N is related to the arc of rotation of the moving wheel, N Is a positive number
  • a moving distance of the moving wheel is determined according to a rotation arc of the disc magnet.
  • the processor 701 is configured to, when running the computer program, execute:
  • the rotation direction includes forward rotation and reverse rotation
  • the processor 701 is configured to, when running the computer program, execute:
  • the rotation radians corresponding to the pulse waveforms generated when the moving wheels rotate in the forward direction and the reverse rotation of the moving wheels in the N pulse waveforms are determined.
  • the rotation radian corresponding to the pulse waveform generated at the time is determined.
  • the processor 701 is configured to, when running the computer program, execute:
  • the number of groups of the magnets is determined, and the correspondence between the pulse waveform and the rotation radian is determined according to the number of groups of the magnets.
  • the processor 701 is configured to, when running the computer program, execute:
  • the radius of the moving wheel is determined, and the moving distance of the moving wheel is determined according to the radius of the moving wheel and the arc of rotation of the disc magnet.
  • the device 70 may further include: at least one network interface 703.
  • the various components in the moving distance detection device 70 are coupled together via a bus system 704.
  • the bus system 704 is used to implement connection and communication between these components.
  • the bus system 704 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as the bus system 704 in FIG. 7.
  • the number of the processors 704 may be at least one.
  • the network interface 703 is used for wired or wireless communication between the moving distance detecting device 70 and other devices.
  • the memory 702 in the embodiment of the present application is configured to store various types of data to support the operation of the device 70.
  • the method disclosed in the embodiments of the present application may be applied to the processor 701, or may be implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the above method may be completed by using hardware integrated logic circuits or instructions in the form of software in the processor 701.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • DSP Digital Signal Processor
  • the processor 701 may implement or execute various methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps may be directly implemented by a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium.
  • the storage medium is located in the memory 702.
  • the processor 701 reads the information in the memory 702 and completes the steps of the foregoing method in combination with its hardware.
  • the moving distance detecting device 70 may be implemented by one or more Application Specific Integrated Circuits (ASICs), DSPs, Programmable Logic Devices (PLDs), Complex Programming logic device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field-Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller), microprocessor (Microprocessor ), Or other electronic components, for performing the foregoing method.
  • ASICs Application Specific Integrated Circuits
  • DSPs Programmable Logic Devices
  • PLDs Programmable Logic Devices
  • CPLD Complex Programming logic device
  • FPGA Field Programmable Gate Array
  • general-purpose processor controller
  • controller microcontroller
  • MCU Micro Controller
  • microprocessor Microprocessor
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the computer program executes:
  • N is related to the arc of rotation of the moving wheel, N Is a positive number
  • a moving distance of the moving wheel is determined according to a rotation arc of the disc magnet.
  • the computer program when executed by a processor, the computer program executes:
  • the rotation direction includes forward rotation and reverse rotation
  • the computer program when executed by a processor, the computer program executes:
  • the rotation radians corresponding to the pulse waveforms generated when the moving wheels rotate in the forward direction and the reverse rotation of the moving wheels in the N pulse waveforms are determined
  • the rotation radian corresponding to the pulse waveform generated at the time is determined.
  • the computer program when executed by a processor, the computer program executes:
  • the number of groups of the magnets is determined, and the correspondence between the pulse waveform and the rotation radian is determined according to the number of groups of the magnets.
  • the computer program when executed by a processor, the computer program executes:
  • the radius of the moving wheel is determined, and the moving distance of the moving wheel is determined according to the radius of the moving wheel and the arc of rotation of the disc magnet.

Abstract

一种移动距离的检测方法,应用于自动清洁设备,自动清洁设备包括移动轮;移动轮包括设置于移动轮轴心处的圆盘磁铁,圆盘磁铁伴随移动轮的转动而转动;圆盘磁铁包括至少一组两极对应的磁铁;移动轮还包括用于监测圆盘磁铁中每组磁铁的磁场强度的变化量的霍尔传感器,霍尔传感器的移动轨迹与移动轮的轴心的移动轨迹平行且同步;这种方法包括:监测圆盘磁铁中每组磁铁的磁场强度的变化量,根据每组磁铁的磁场强度的变化量输出N个脉冲波形;N的数值与移动轮的旋转弧度相关联,N为正数;根据N个脉冲波形确定圆盘磁铁的旋转弧度;根据圆盘磁铁的旋转弧度确定移动轮的移动距离。还公开了一种移动距离的检测装置、存储介质。

Description

移动距离的检测方法、装置和存储介质
相关申请的交叉引用
本申请基于申请号为201810490173.4,申请日为2018年05月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及家电检测技术,尤其涉及一种移动距离的检测方法、装置、计算机可读存储介质。
背景技术
扫地机器人的移动通过其具有的移动轮实现,准确检测扫地机器人的移动距离是机器人姿态控制、位置推测及地图绘制所需的重要要素,而如何准确的检测移动轮的移动距离是目前需要解决的问题。现有扫地机器人的移动轮上一般配有轮编码器,所述轮编码器用于检测移动轮连接的电机的旋转量,并根据所述旋转量确定扫地机器人的移动距离,从而提供扫地机器人的定位和地图制作所需的基本信息。
针对现有的方法,为提高移动距离的精度,一般是通过增加霍尔传感器个数,再由K个霍尔传感器区分2^K相位来实现高精度测量;但由于霍尔传感器的空间位置难以选定且霍尔传感器价格较高,难以提高移动距离的检测精度且成本较高。
发明内容
为解决现有存在的技术问题,本申请实施例提供一种移动距离的检测方法、装置、计算机可读存储介质。
本申请的技术方案是这样实现的:
本申请实施例提供了一种移动距离的检测方法,所述方法应用于自动清洁设备,所述自动清洁设备包括移动轮;所述移动轮包括设置于移动轮轴心处的圆盘磁铁,所述圆盘磁铁伴随所述移动轮的转动而转动;所述圆盘磁铁包括至少一组两极对应的磁铁;所述移动轮还包括用于监测所述圆盘磁铁中每组磁铁的磁场强度的变化量的霍尔传感器,所述霍尔传感器的移动轨迹与所述移动轮的轴心的移动轨迹平行且同步;所述方法包括:
监测所述圆盘磁铁中每组磁铁的磁场强度的变化量,根据所述每组磁铁的磁场强度的变化量输出N个脉冲波形;N的数值与所述移动轮的旋转弧度相关联,N为正数;
根据所述N个脉冲波形确定所述圆盘磁铁的旋转弧度;
根据所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
上述方案中,所述根据所述N个脉冲波形确定所述圆盘磁铁的旋转弧度,包括:
根据所述N个脉冲波形对应的电压值确定所述移动轮的旋转方向,所述旋转方向包括正向旋转和反向旋转;
确定所述移动轮正向旋转时的第一旋转弧度和所述移动轮逆向旋转时的第二旋转弧度;
将所述第一旋转弧度和所述第二旋转弧度相加,获得的结果作为所述移动轮的旋转弧度。
上述方案中,所述确定所述移动轮正向旋转时的第一旋转弧度和所述移动轮逆向旋转时的第二旋转弧度,包括:
根据所述N个脉冲波形查询保存的脉冲波形和旋转弧度的对应关系,确定所述N个脉冲波形中所述移动轮正向旋转时产生的脉冲波形对应的第一旋转弧度和所述移动轮逆向旋转时产生的脉冲波形对应的第二旋转弧度。
上述方案中,所述根据所述电压波形查询保存的电压波形和旋转弧度的对应关系前,所述方法还包括:
确定所述磁铁的组数,根据所述磁铁的组数确定所述脉冲波形和旋转弧度的对应关系。
上述方案中,所述根据所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离,包括:
确定所述移动轮的半径,根据所述移动轮的半径和所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
本申请实施例还提供了一种移动距离的检测装置,所述装置应用于自动清洁设备,所述自动清洁设备包括移动轮;所述移动轮包括设置于移动轮轴心处的圆盘磁铁,所述圆盘磁铁伴随所述移动轮的转动而转动;所述圆盘磁铁包括至少一组两极对应的磁铁;所述移动轮还包括用于监测所述圆盘磁铁中每组磁铁的磁场强度的变化量的霍尔传感器,所述霍尔传感器的移动轨迹与所述移动轮的轴心的移动轨迹平行且同步;所述装置,包括:第一确定模块和第二确定模块;其中,
所述第一确定模块,用于监测所述圆盘磁铁中每组磁铁的磁场强度的变化量,根据所述每组磁铁的磁场强度的变化量输出N个脉冲波形;N的数值与所述移动轮的旋转弧度相关联,N为正数;
所述第二确定模块,用于根据所述N个脉冲波形确定所述圆盘磁铁的旋转弧度;根据所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
上述方案中,所述第二确定模块,具体用于根据所述N个脉冲波形对应的电压值确定 所述移动轮的旋转方向,所述旋转方向包括正向旋转和反向旋转;
确定所述移动轮正向旋转时的第一旋转弧度和所述移动轮逆向旋转时的第二旋转弧度;
将所述第一旋转弧度和所述第二旋转弧度相加,获得的结果作为所述移动轮的旋转弧度。
上述方案中,所述第二确定模块,具体用于根据所述N个脉冲波形查询保存的脉冲波形和旋转弧度的对应关系,确定所述N个脉冲波形中所述移动轮正向旋转时产生的脉冲波形对应的第一旋转弧度和所述移动轮逆向旋转时产生的脉冲波形对应的第二旋转弧度。
上述方案中,所述第二确定模块,还用于确定所述磁铁的组数,根据所述磁铁的组数确定所述脉冲波形和旋转弧度的对应关系。
上述方案中,所述第二确定模块,具体用于确定所述移动轮的半径,根据所述移动轮的半径和所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
本申请实施例还提供了一种移动距离的检测装置,所述装置包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器;
其中,所述处理器用于运行所述计算机程序时,执行上述任一所述移动距离的检测方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一所述移动距离的检测方法的步骤。
本申请实施例所提供的移动距离的检测方法、装置、计算机可读存储介质,应用于自动清洁设备,所述自动清洁设备包括移动轮;所述移动轮包括设置于移动轮轴心处的圆盘磁铁,所述圆盘磁铁伴随所述移动轮的转动而转动;所述圆盘磁铁包括至少一组两极对应的磁铁;所述移动轮还包括用于监测所述圆盘磁铁中每组磁铁的磁场强度的变化量的霍尔传感器,所述霍尔传感器的移动轨迹与所述移动轮的轴心的移动轨迹平行且同步;本申请实施例的方案,包括:监测所述圆盘磁铁中每组磁铁的磁场强度的变化量,根据所述每组磁铁的磁场强度的变化量输出N个脉冲波形;N的数值与所述移动轮的旋转弧度相关联,N为正数;根据所述N个脉冲波形确定所述圆盘磁铁的旋转弧度;根据所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。本申请实施例的方案中,在无需增加多个霍尔传感器或多个磁铁的情况下,准确检测出移动轮的移动距离。
附图说明
图1(a)为设有霍尔传感器的8极圆盘磁铁的示意图;
图1(b)为磁滞现象的示意图;
图2为设有霍尔传感器的8极圆盘磁铁的磁场强度示意图;
图3为本申请实施例提供的移动距离的检测方法一的流程示意图;
图4为本申请实施例提供的根据磁场强度确定移动距离的示意图;
图5为本申请实施例提供的移动距离的检测系统的结构示意图;
图6为本申请实施例提供的移动距离的检测装置一的结构示意图;以及
图7为本申请实施例提供的移动距离的检测装置二的结构示意图。
具体实施方式
在本申请的各种实施例中,监测所述圆盘磁铁中每组磁铁的磁场强度的变化量,根据所述每组磁铁的磁场强度的变化量输出N个脉冲波形;N的数值与所述移动轮的旋转弧度相关联,N为正数;根据所述N个脉冲波形确定所述圆盘磁铁的旋转弧度;根据所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
首先,对现有的轮编码器检测移动距离的方法做以下说明。
现有的扫地机器人的移动轮上安装有电机、圆盘磁铁和霍尔传感器;其中,所述电机用以驱动所述移动轮旋转,所述圆盘磁铁和霍尔传感器用以检测移动轮的旋转量。所述圆型磁铁一般由12极~36极组成,为精度考虑利用2个以上的霍尔传感器检测所述旋转量。所述检测方法包括:检测多个磁铁中南/北(South/North,S/N)极的磁场,输出一个脉冲,并将单次回转动作分成6~18(即12除以2~~36除以2)个脉冲精度的360度旋转;再利用2个霍尔传感器,区分4个相位,用24~72(6乘以4~18乘以4)个相位精度来检测360度旋转,即一个相位相当于对应15~5°的移动。
为提高检测精度,也可增加圆盘磁铁的极数或增加多重霍尔传感器,以进一步细化相位,从而达到提高检测精度的目的。但是,若采用增加圆盘磁铁的极数的方法,由于被检测出的磁力的大小与m/2(m为极数)个磁铁的体积成正比,该方法会导致圆盘磁铁过大;若采用增加多重霍尔传感器的方法,为考虑到圆盘磁铁上S/N极的位置,具有多重霍尔传感器分配的难题,且量产中由于印制电路板(Printed Circuit Board,PCB)的实长会造成误差,导致每个产品有不同的相位,难以统一,另外霍尔传感器的价格相对较高。
图1(a)为设有霍尔传感器的8极圆盘磁铁的示意图;如图1(a)所示,2个霍尔传感器被分配至具有8个磁极的圆盘磁铁的4个磁相位。2个霍尔传感器输出各自不同的相位,输出值需有90°相位差异。
结合图1(a)所示,若第一霍尔传感器的位置确定为HALL1,且第二霍尔传感器的位置位于HALL2,则两个霍尔传感器的输出就具有90°的相位差,并区分成4个相位计算移动距离。若第一霍尔传感器的位置确定为HALL1,第二霍尔传感器的位置在HALL3,在HALL1 和HALL3位置上的霍尔传感器输出值一致,不发生相位差,其中一个霍尔传感器的动作将失去意义;具体参数如图2所示。另外,根据图2可以看出,针对霍尔传感器在HALL2_A或距离较远的HALL2_B上输出的值来说,假设第一相是60°,则第二相是120°、第3相是60°、第4相是120°,每一相都不同,导致移动距离的检测在各区间会出现误差。而且,霍尔传感器并不是在N极、S极转换界点时输出脉冲,而是存在延迟,即磁滞现象,结合图1(b)所示;因此,若由多个霍尔传感器检测不同区间的磁场强度,无法获得针对不同区间的准确、完整的脉冲。
结合上述描述,现有的扫地机器人上难以找到正确的90°相位差,4个相位动作不同,各区间检测的移动距离为阶梯状,从而无法准确检测移动距离。
下面结合实施例对本申请再作进一步详细的说明。
图3为本申请实施例提供的移动距离的检测方法一的流程示意图;所述方法应用于自动清洁设备(如扫地机器人等具有移动轮的设备),所述自动清洁设备包括移动轮;所述移动轮包括设置于移动轮轴心处的圆盘磁铁,所述圆盘磁铁伴随所述移动轮的转动而转动;所述圆盘磁铁包括至少一组两极对应的磁铁;其中,每组圆盘磁铁包括对应的S极、N极的磁铁;
所述移动轮还包括用于监测所述圆盘磁铁中每组磁铁的磁场强度的变化量的霍尔传感器,所述霍尔传感器的移动轨迹与所述移动轮的轴心的移动轨迹平行且同步;
如图3所示,所述方法包括:
步骤301、监测所述圆盘磁铁中每组磁铁的磁场强度的变化量,根据所述每组磁铁的磁场强度的变化量输出N个脉冲波形;N的数值与所述移动轮的旋转弧度相关联,N为正数;
这里,所述脉冲波形表征所述磁场强度对应的电压值。
具体地,所述自动清洁设备的移动轮包括至少一个霍尔传感器;
所述步骤301,包括:通过所述霍尔传感器监测所述圆盘磁铁中每组磁铁的磁场强度的变化量,并根据所述每组磁铁的磁场强度的变化量输出N个脉冲波形。
所述自动清洁设备还可以包括:用于检测自动清洁设备的移动距离的处理器;
具体地,所述步骤301,还可以包括:
通过所述霍尔传感器监测所述圆盘磁铁中每组磁铁的磁场强度的变化量,再由所述处理器接收所述磁场强度的变化量,对所述磁场强度的变化量进行模数转换,获得表征磁场强度变化的N个脉冲波形。
这里,所述霍尔传感器可以将检测的磁场强度发送给所述处理器,由所述处理器对所述磁场强度进行模数转换(AD,Analog-to-Digital Convert),获得表征磁场强度变化的电压波形,所述电压波形以脉冲波形(具体为一种sine波形)的形式呈现。
所述处理器可以通过中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Signal Processor)、微控制单元(MCU,Microcontroller Unit)或可编程门阵列(FPGA,Field-Programmable Gate Array)实现。
步骤302、根据所述N个脉冲波形确定所述圆盘磁铁的旋转弧度;
具体地,所述根据所述N个脉冲波形确定所述圆盘磁铁的旋转弧度,包括:
根据所述N个脉冲波形对应的电压值确定所述移动轮的旋转方向,所述旋转方向包括正向旋转和反向旋转;
所述处理器确定所述移动轮正向旋转时的第一旋转弧度和所述移动轮逆向旋转时的第二旋转弧度;
将所述第一旋转弧度和所述第二旋转弧度相加,获得的结果作为所述移动轮的旋转弧度。
具体来说,在移动轮旋转的过程中,可能发生正向旋转和逆向旋转两种情况,因此需确定所述移动轮的旋转方向;这里,所述确定所述移动轮的旋转方向包括两种方式:
方式一:获取所述处理器发送的控制移动轮运行方向的驱动命令,根据所述驱动命令确定移动轮的正向旋转和逆向旋转;
方式二:根据所述电压波形确定移动轮的旋转方向;具体来说,处理器可以预先设定电压值为正时表示正向旋转,电压值为负时表示逆向旋转;从而根据所述N个脉冲波形对应的电压值的正负确定所述移动轮的旋转方向。
所述处理器还需确定正向旋转和逆向旋转的转换点,确定方法包括:由霍尔传感器检测到磁场强度后依次输入所述处理器,所述处理器对所述磁场强度进行数模转换后,所述处理器根据模数转换后获得的所述脉冲波形,确定当前电压值和前一秒电压值的相乘小于等于0,如公式(1)所示,即确定发生零交叉(zero crossing),所述零交叉表示发生一次正向旋转到逆向旋转的转换,或者发生一次逆向旋转到正向旋转的转换;
Figure PCTCN2018098023-appb-000001
其中,f(V(i))=1,at zero crossing,所述i表示时间点,所述Vi表示电压检测值。
所述处理器根据旋转方向和零交叉点查找所述脉冲波形,从而确定所述移动轮正向旋转时的第一旋转弧度和所述移动轮逆向旋转时的第二旋转弧度。
具体来说,所述确定所述移动轮正向旋转时的第一旋转弧度和所述移动轮逆向旋转时的第二旋转弧度,包括:
所述处理器根据所述N个脉冲波形查询保存的脉冲波形和旋转弧度的对应关系,确定所述N个脉冲波形中所述移动轮正向旋转时产生的脉冲波形对应的旋转弧度,作为所述第 一旋转弧度,以及确定所述移动轮逆向旋转时产生的脉冲波形对应的旋转弧度,作为所述第二旋转弧度。
具体地,所述根据所述电压波形查询保存的电压波形和旋转弧度的对应关系前,所述方法还包括:
所述处理器确定所述磁铁的组数,根据所述磁铁的组数确定所述脉冲波形和旋转弧度的对应关系。
具体来说,假设移动轮上设置M(M为2的倍数)极的圆盘磁铁,用于测量移动轮的旋转角度;移动轮每转360°、即1圈,霍尔传感器即测得M/2个完整的脉冲波形,即一个完整的脉冲波形相当于360°/M/2旋转角度,将360°/M/2旋转角度转换为旋转弧度(1旋转弧度=180°/π),即可确定脉冲波形与旋转弧度的对应关系。根据以上描述,得到所述脉冲波形和旋转弧度的对应关系按下式(2)所示:
Figure PCTCN2018098023-appb-000002
其中,θ i表示旋转弧度,i表示每秒的时间,Vi表示第i秒的电压值,A表示sine波形的最高值。
需要说明的是,所述处理器确定获得的所述脉冲波形包含有X个完整的sine波形,则可以确定
Figure PCTCN2018098023-appb-000003
步骤303、根据所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
具体地,所述步骤303包括:所述处理器确定所述移动轮的半径,根据所述移动轮的半径和所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
具体来说,所述移动距离=R*θi;其中,所述R表示移动轮半径,所述θi表示旋转弧度;其中,θi=2*π*angle°/360°,所述angle°表示旋转角度。
图4为本申请实施例提供的根据磁场强度确定移动距离的示意图;如图4所示,以M=8极圆盘磁铁构成的移动轮为例,并假设每个移动轮设有一个处理器(实际应用中,同一自动清洁设备的各个移动轮也可共用一个处理器),在t=0时,移动轮一的初始值为60°,移动轮二的初始值为90°;两个移动轮同时进行旋转,确定t=ta时移动轮已移动的移动距离。
这里,移动轮一的处理器、即Enc1在t=0测量到的波形输出值与Asin240°相当;移动轮二的处理器、即Enc2在t=0测量到的波形输出值与Asin150°相当。这里,一个sin波形与360°/8/2的旋转角相当,根据移动轮一的处理器的sin波形可以测算旋转角为 {(360°-240°)+360°*2+90°}/8/2,根据移动轮二的处理器的sin波形可以测算旋转角为{(360°-150°)+360°*2}/8/2。根据确定的旋转角确定旋转弧度,再结合移动轮的半径,即可确定移动轮的移动距离。图4中的三角波(Angle dist.1和Angle dist.2)、即Arcsin函数表示了对应的旋转弧度,根据所述三角波可快速确定移动轮的移动距离。
需要说明的是,为快速确定连续的Arcsin角对应的值,本实施例的处理器中存有无限个Arcsin值。这里,所述处理器可以将0°~90°的Arcsin值以0.5°间隔储存180个,或是以1°的间隔储存90个,利用sin函数的对称特点计算相应的角度。确定Arcsin值的方式为:在旋转角度为0°~90°的范围,将Arcsin对应的值抽样储存,测量的中间值利用储存的值和内插滤波器(interpolation filter)进行内插。对利用储存的值和内插滤波器进行内插来说,在实变数x的函数f(x)的形状未知、具有某种间隔的2个以上变数的值x i(i=1、2、…)的函数值f(x i)已知的情况下,在此区间内的任意针对x函数可以推算。可以根据实验或观测所获得的预测结果,利用没有储存的函数推测出未观测值。在本实施例中,利用函数的展开,在变数x0、x1的邻域,通过将函数f(x)近似表达的公式
Figure PCTCN2018098023-appb-000004
计算出多项式内插。
图5为本申请实施例提供的移动距离的检测系统的结构示意图;如图5所示,所述系统包括处理器、设于第一移动轮的圆盘磁铁一和霍尔传感器一,以及设于所述第二移动轮的圆盘磁铁二和霍尔传感器二;所述霍尔传感器一采集所述圆盘磁铁一的磁场强度,所述霍尔传感器二采集所述圆盘磁铁二的磁场强度;将采集的磁场强度发送给处理器,由所述处理器对磁场强度进行数模转换,运用图3所示的方法根据所述磁场强度的变化量确定各移动轮的移动距离。
图6为本申请实施例提供的移动距离的检测装置一的结构示意图;如图6所示,所述装置应用于自动清洁设备,所述自动清洁设备包括移动轮;所述移动轮包括设置于移动轮轴心处的圆盘磁铁,所述圆盘磁铁伴随所述移动轮的转动而转动;所述圆盘磁铁包括至少一组两极对应的磁铁;所述移动轮还包括用于监测所述圆盘磁铁中每组磁铁的磁场强度的变化量的霍尔传感器,所述霍尔传感器的移动轨迹与所述移动轮的轴心的移动轨迹平行且同步;所述装置,包括:第一确定模块601和第二确定模块602;其中,
所述第一确定模块601,用于监测所述圆盘磁铁中每组磁铁的磁场强度的变化量,根据所述每组磁铁的磁场强度的变化量输出N个脉冲波形;N的数值与所述移动轮的旋转弧度相关联,N为正数;
所述第二确定模块602,用于根据所述N个脉冲波形确定所述圆盘磁铁的旋转弧度; 根据所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
具体地,所述第二确定模块602,具体用于根据所述N个脉冲波形对应的电压值确定所述移动轮的旋转方向,所述旋转方向包括正向旋转和反向旋转;
确定所述移动轮正向旋转时的第一旋转弧度和所述移动轮逆向旋转时的第二旋转弧度;
将所述第一旋转弧度和所述第二旋转弧度相加,获得的结果作为所述移动轮的旋转弧度。
具体地,所述第二确定模块602,具体用于根据所述N个脉冲波形查询保存的脉冲波形和旋转弧度的对应关系,确定所述N个脉冲波形中所述移动轮正向旋转时产生的脉冲波形对应的旋转弧度和所述移动轮逆向旋转时产生的脉冲波形对应的旋转弧度。
具体地,所述第二确定模块602,还用于确定所述磁铁的组数,根据所述磁铁的组数确定所述脉冲波形和旋转弧度的对应关系。
具体地,所述第二确定模块602,具体用于确定所述移动轮的半径,根据所述移动轮的半径和所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
为实现本申请实施例的方法,本申请实施例提供一种移动距离的检测装置,设置在自动清洁设备上,具体来说,如图7所示,该装置70包括:
处理器701和用于存储能够在所述处理器上运行的计算机程序的存储器702;其中,
所述处理器701用于运行所述计算机程序时,执行:
监测所述圆盘磁铁中每组磁铁的磁场强度的变化量,根据所述每组磁铁的磁场强度的变化量输出N个脉冲波形;N的数值与所述移动轮的旋转弧度相关联,N为正数;
根据所述N个脉冲波形确定所述圆盘磁铁的旋转弧度;
根据所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
在一实施例中,所述处理器701用于运行所述计算机程序时,执行:
根据所述N个脉冲波形对应的电压值确定所述移动轮的旋转方向,所述旋转方向包括正向旋转和反向旋转;
确定所述移动轮正向旋转时的第一旋转弧度和所述移动轮逆向旋转时的第二旋转弧度;
将所述第一旋转弧度和所述第二旋转弧度相加,获得的结果作为所述移动轮的旋转弧度。
在一实施例中,所述处理器701用于运行所述计算机程序时,执行:
根据所述N个脉冲波形查询保存的脉冲波形和旋转弧度的对应关系,确定所述N个脉冲波形中所述移动轮正向旋转时产生的脉冲波形对应的旋转弧度和所述移动轮逆向旋转时 产生的脉冲波形对应的旋转弧度。
在一实施例中,所述处理器701用于运行所述计算机程序时,执行:
确定所述磁铁的组数,根据所述磁铁的组数确定所述脉冲波形和旋转弧度的对应关系。
在一实施例中,所述处理器701用于运行所述计算机程序时,执行:
确定所述移动轮的半径,根据所述移动轮的半径和所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
需要说明的是:上述实施例提供的移动距离的检测装置与移动距离的检测方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
当然,实际应用时,如图7所示,该装置70还可以包括:至少一个网络接口703。移动距离的检测装置70中的各个组件通过总线系统704耦合在一起。可理解,总线系统704用于实现这些组件之间的连接通信。总线系统704除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统704。其中,所述处理器704的个数可以为至少一个。网络接口703用于移动距离的检测装置70与其他设备之间有线或无线方式的通信。本申请实施例中的存储器702用于存储各种类型的数据以支持装置70的操作。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,所述移动距离的检测装置70可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
具体地,本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所 述计算机程序被处理器运行时,执行:
监测所述圆盘磁铁中每组磁铁的磁场强度的变化量,根据所述每组磁铁的磁场强度的变化量输出N个脉冲波形;N的数值与所述移动轮的旋转弧度相关联,N为正数;
根据所述N个脉冲波形确定所述圆盘磁铁的旋转弧度;
根据所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
在一实施例中,所述计算机程序被处理器运行时,执行:
根据所述N个脉冲波形对应的电压值确定所述移动轮的旋转方向,所述旋转方向包括正向旋转和反向旋转;
确定所述移动轮正向旋转时的第一旋转弧度和所述移动轮逆向旋转时的第二旋转弧度;
将所述第一旋转弧度和所述第二旋转弧度相加,获得的结果作为所述移动轮的旋转弧度。
在一实施例中,所述计算机程序被处理器运行时,执行:
根据所述N个脉冲波形查询保存的脉冲波形和旋转弧度的对应关系,确定所述N个脉冲波形中所述移动轮正向旋转时产生的脉冲波形对应的旋转弧度和所述移动轮逆向旋转时产生的脉冲波形对应的旋转弧度。
在一实施例中,所述计算机程序被处理器运行时,执行:
确定所述磁铁的组数,根据所述磁铁的组数确定所述脉冲波形和旋转弧度的对应关系。
在一实施例中,所述计算机程序被处理器运行时,执行:
确定所述移动轮的半径,根据所述移动轮的半径和所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种移动距离的检测方法,所述方法应用于自动清洁设备,所述自动清洁设备包括移动轮;其特征在于,所述移动轮包括设置于移动轮轴心处的圆盘磁铁,所述圆盘磁铁伴随所述移动轮的转动而转动;所述圆盘磁铁包括至少一组两极对应的磁铁;所述移动轮还包括用于监测所述圆盘磁铁中每组磁铁的磁场强度的变化量的霍尔传感器,所述霍尔传感器的移动轨迹与所述移动轮的轴心的移动轨迹平行且同步;所述方法包括:
    监测所述圆盘磁铁中每组磁铁的磁场强度的变化量,根据所述每组磁铁的磁场强度的变化量输出N个脉冲波形;N的数值与所述移动轮的旋转弧度相关联,N为正数;
    根据所述N个脉冲波形确定所述圆盘磁铁的旋转弧度;
    根据所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述N个脉冲波形确定所述圆盘磁铁的旋转弧度,包括:
    根据所述N个脉冲波形对应的电压值确定所述移动轮的旋转方向,所述旋转方向包括正向旋转和反向旋转;
    确定所述移动轮正向旋转时的第一旋转弧度和所述移动轮逆向旋转时的第二旋转弧度;
    将所述第一旋转弧度和所述第二旋转弧度相加,获得的结果作为所述移动轮的旋转弧度。
  3. 根据权利要求2所述的方法,其特征在于,所述确定所述移动轮正向旋转时的第一旋转弧度和所述移动轮逆向旋转时的第二旋转弧度,包括:
    根据所述N个脉冲波形查询保存的脉冲波形和旋转弧度的对应关系,确定所述N个脉冲波形中所述移动轮正向旋转时产生的脉冲波形对应的第一旋转弧度和所述移动轮逆向旋转时产生的脉冲波形对应的第二旋转弧度。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述电压波形查询保存的电压波形和旋转弧度的对应关系前,所述方法还包括:
    确定所述磁铁的组数,根据所述磁铁的组数确定所述脉冲波形和旋转弧度的对应关系。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离,包括:
    确定所述移动轮的半径,根据所述移动轮的半径和所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
  6. 一种移动距离的检测装置,所述装置应用于自动清洁设备,所述自动清洁设备包括 移动轮;其特征在于,所述移动轮包括设置于移动轮轴心处的圆盘磁铁,所述圆盘磁铁伴随所述移动轮的转动而转动;所述圆盘磁铁包括至少一组两极对应的磁铁;所述移动轮还包括用于监测所述圆盘磁铁中每组磁铁的磁场强度的变化量的霍尔传感器,所述霍尔传感器的移动轨迹与所述移动轮的轴心的移动轨迹平行且同步;所述装置,包括:第一确定模块和第二确定模块;其中,
    所述第一确定模块,用于监测所述圆盘磁铁中每组磁铁的磁场强度的变化量,根据所述每组磁铁的磁场强度的变化量输出N个脉冲波形;N的数值与所述移动轮的旋转弧度相关联,N为正数;
    所述第二确定模块,用于根据所述N个脉冲波形确定所述圆盘磁铁的旋转弧度;根据所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
  7. 根据权利要求6所述的装置,其特征在于,所述第二确定模块,具体用于根据所述N个脉冲波形对应的电压值确定所述移动轮的旋转方向,所述旋转方向包括正向旋转和反向旋转;
    确定所述移动轮正向旋转时的第一旋转弧度和所述移动轮逆向旋转时的第二旋转弧度;
    将所述第一旋转弧度和所述第二旋转弧度相加,获得的结果作为所述移动轮的旋转弧度。
  8. 根据权利要求7所述的装置,其特征在于,所述第二确定模块,具体用于根据所述N个脉冲波形查询保存的脉冲波形和旋转弧度的对应关系,确定所述N个脉冲波形中所述移动轮正向旋转时产生的脉冲波形对应的第一旋转弧度和所述移动轮逆向旋转时产生的脉冲波形对应的第二旋转弧度。
  9. 根据权利要求7所述的装置,其特征在于,所述第二确定模块,还用于确定所述磁铁的组数,根据所述磁铁的组数确定所述脉冲波形和旋转弧度的对应关系。
  10. 根据权利要求6所述的装置,其特征在于,所述第二确定模块,具体用于确定所述移动轮的半径,根据所述移动轮的半径和所述圆盘磁铁的旋转弧度确定所述移动轮的移动距离。
  11. 一种移动距离的检测装置,其特征在于,所述装置包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器;
    其中,所述处理器用于运行所述计算机程序时,执行权利要求1至5任一所述方法的步骤。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至5任一所述方法的步骤。
PCT/CN2018/098023 2018-05-21 2018-08-01 移动距离的检测方法、装置和存储介质 WO2019223108A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/125,794 US20190350426A1 (en) 2018-05-21 2018-09-10 Method and device for detecting moving distance, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810490173.4 2018-05-21
CN201810490173.4A CN108759644B (zh) 2018-05-21 2018-05-21 移动距离的检测方法、装置和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/125,794 Continuation US20190350426A1 (en) 2018-05-21 2018-09-10 Method and device for detecting moving distance, and storage medium

Publications (1)

Publication Number Publication Date
WO2019223108A1 true WO2019223108A1 (zh) 2019-11-28

Family

ID=64007650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098023 WO2019223108A1 (zh) 2018-05-21 2018-08-01 移动距离的检测方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN108759644B (zh)
WO (1) WO2019223108A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111664782A (zh) * 2020-07-15 2020-09-15 苏州曼宇智能科技有限公司 一种柔性绳索或线缆长度测量仪
CN112697153A (zh) * 2020-12-31 2021-04-23 广东美的白色家电技术创新中心有限公司 自主移动设备的定位方法、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2053741U (zh) * 1988-03-08 1990-02-28 陈源 自动计长仪
CN201066268Y (zh) * 2007-08-10 2008-05-28 浙江大学 利用霍尔效应测量曲线长度的装置
DE102010027166A1 (de) * 2010-07-14 2012-01-19 Ic - Haus Gmbh Positionsmessvorrichtung und Verfahren zur Positionsmessung mittels Hall-Sensoren
CN104534994A (zh) * 2014-12-26 2015-04-22 长沙中联重科环卫机械有限公司 用于清洁车辆的管线收放检测设备及位置检测方法
CN106949823A (zh) * 2017-04-20 2017-07-14 王振兴 高精度手持轮式测距仪
CN207556447U (zh) * 2017-11-30 2018-06-29 郑州恺德尔科技发展有限公司 基于霍尔传感器的辊轮转向和行程测量装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD241983A1 (de) * 1985-10-22 1987-01-07 Zwickau Ing Hochschule Einrichtung zur impulsbreitenaenderung mit einem hall-schaltkreis
DE10334869B3 (de) * 2003-07-29 2004-09-16 Tech3 E.K. Drehwinkelsensor
CN101046699A (zh) * 2006-03-31 2007-10-03 财团法人工业技术研究院 磁场感应式游戏杆
KR101081591B1 (ko) * 2010-02-25 2011-11-09 삼성전기주식회사 가변 히스테리시스 홀 집적회로
CN201748928U (zh) * 2010-09-07 2011-02-16 王建国 隧道磁电阻效应磁性编码器
JP5472045B2 (ja) * 2010-11-08 2014-04-16 株式会社安川電機 エンコーダ付モータ及びモータ用エンコーダ
CN104618636A (zh) * 2015-02-27 2015-05-13 广东欧珀移动通信有限公司 一种摄像头防止堵转的方法和装置
CN105805308B (zh) * 2016-04-11 2019-05-31 浙江沃得尔科技股份有限公司 一种挡位传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2053741U (zh) * 1988-03-08 1990-02-28 陈源 自动计长仪
CN201066268Y (zh) * 2007-08-10 2008-05-28 浙江大学 利用霍尔效应测量曲线长度的装置
DE102010027166A1 (de) * 2010-07-14 2012-01-19 Ic - Haus Gmbh Positionsmessvorrichtung und Verfahren zur Positionsmessung mittels Hall-Sensoren
CN104534994A (zh) * 2014-12-26 2015-04-22 长沙中联重科环卫机械有限公司 用于清洁车辆的管线收放检测设备及位置检测方法
CN106949823A (zh) * 2017-04-20 2017-07-14 王振兴 高精度手持轮式测距仪
CN207556447U (zh) * 2017-11-30 2018-06-29 郑州恺德尔科技发展有限公司 基于霍尔传感器的辊轮转向和行程测量装置

Also Published As

Publication number Publication date
CN108759644B (zh) 2020-06-19
CN108759644A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN101174811B (zh) 一种采用空间矢量脉冲宽度调制的电机控制方法和装置
CN101521480B (zh) 一种旋转变压器信号解算方法及解算器
CN107919830A (zh) 一种电机位置传感器的标定方法及装置
JPS62162968A (ja) 速度検出装置
JPWO2017195600A1 (ja) モータ駆動制御装置、電動パワーステアリング装置及び車両
CN103222168B (zh) 一种伺服电机和伺服控制系统
JPS60100718A (ja) 位置,速度検出方法及び装置
CN103516283A (zh) 用于估算电机转子的角位置和/或角速度的方法、系统和设备
WO2019223108A1 (zh) 移动距离的检测方法、装置和存储介质
CN101799337B (zh) 永磁同步电动机齿槽转矩的自动检测方法
JPH02141670A (ja) メータ駆動装置
JP2012149908A (ja) 回転角検出装置
CN109283354A (zh) 一种基于增量式光电编码器的变m/t测速方法
CN108183639B (zh) 一种无刷直流电机最小二乘分类调速方法
CN112304211B (zh) 一种通过反电动势校准电机霍尔扇区的方法
CN107529384B (zh) 基于线性霍尔元件的微飞轮测速方法及装置
CN209877990U (zh) 一种旋转体的非接触式绝对角度位置传感器
CN110133316B (zh) 一种光电编码器精密测速系统及方法
US9593965B2 (en) Non-contact adjustable hysteretic magnetic encoder
KR20180114743A (ko) 앱솔루트 엔코더, 앱솔루트 엔코더의 직교 정현파의 룩업테이블 생성 방법 및 이를 이용한 절대각도 검출방법
US20230024298A1 (en) Electronic rotary encoder
US20190350426A1 (en) Method and device for detecting moving distance, and storage medium
CN103297006A (zh) 磁电式转速信号盘齿偏差纠正方法和调理电路
CN113162488B (zh) 电机的转子位置测量方法、控制方法、电机转子和电机
CN204128573U (zh) 一种缝纫机上的电机位置检测传感装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920152

Country of ref document: EP

Kind code of ref document: A1