WO2019221190A1 - レーザ装置及び骨孔位置決め方法 - Google Patents

レーザ装置及び骨孔位置決め方法 Download PDF

Info

Publication number
WO2019221190A1
WO2019221190A1 PCT/JP2019/019354 JP2019019354W WO2019221190A1 WO 2019221190 A1 WO2019221190 A1 WO 2019221190A1 JP 2019019354 W JP2019019354 W JP 2019019354W WO 2019221190 A1 WO2019221190 A1 WO 2019221190A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
laser light
laser beam
unit
Prior art date
Application number
PCT/JP2019/019354
Other languages
English (en)
French (fr)
Inventor
邦男 宮地
及川 陽一
東條 誠
伸生 安達
正和 石川
Original Assignee
シンクランド株式会社
国立大学法人 広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シンクランド株式会社, 国立大学法人 広島大学 filed Critical シンクランド株式会社
Priority to JP2020517400A priority Critical patent/JP6850412B2/ja
Publication of WO2019221190A1 publication Critical patent/WO2019221190A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser

Definitions

  • the present invention is suitable for use in, for example, a laser apparatus and a bone hole positioning method used in surgery on human and animal joints and their surroundings.
  • a hole or hole (hereinafter referred to as a bone hole) with a tool such as a drill at a predetermined position of the bone
  • a tool such as a drill
  • an insertion part such as a fixing device or a screw is inserted into the bone hole (see, for example, Patent Document 1).
  • the bone hole must be formed larger than the size according to the size of the insertion part and the insertion situation.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a laser device and a bone hole positioning method capable of improving work efficiency.
  • the laser device of the present invention includes an operation input unit that receives an operation input of a user, A laser light source that emits laser light having a wavelength of 400 nm to 1200 nm in accordance with a user operation on the operation input unit; An optical unit that converts the laser light into parallel light having a predetermined two-dimensional shape for reference to a bone hole size that is a size of a bone hole that is a hole or a hole formed in a bone; And a light emitting portion that emits the laser light.
  • the laser device of the present invention includes an operation input unit that receives a user's operation input; A laser light source that emits laser light; A light emitting portion for emitting the laser light; A first optical unit that adjusts the laser light to become parallel light having a predetermined two-dimensional shape in a first mode in accordance with a user operation on the operation input unit; And a second optical unit that adjusts the laser beam so as to be focused light that is focused on the outside of the light emitting unit in a second mode according to a user operation on the operation input unit.
  • the bone hole positioning method of the present invention has a wavelength of 400 nm to 1200 nm, and has a predetermined two-dimensional shape for making a reference to the bone hole size which is the size of the bone hole which is a hole or a hole formed in the bone.
  • a bone hole that is actually opened is positioned by irradiating a bone surface that forms a bone hole according to a user's operation.
  • the present invention can realize a laser device and a bone hole positioning method that can improve work efficiency.
  • the laser device 1 has a button 4 in the main body 2, and a laser beam is emitted from the emission unit 5 at the tip in response to the user pressing the button 4.
  • FIG. 1 shows a state in which laser light is emitted to the projection surface PF and two-dimensional laser light LM is formed on the projection surface.
  • the present invention is used to estimate the size of the formed bone hole when forming the hole in the bone.
  • the projection plane PF is the surface of a human or animal bone.
  • the present invention can be applied to all operations for forming a bone hole such as a joint or a bone joint.
  • a bone hole for inserting a graft is formed.
  • it can be particularly suitably used for surgery using an arthroscope. Since no template is used, the opening can be made small.
  • Patent Literature 1 and Non-Patent Literature 1 (uences of knee flexion angle and portal position on the location of femoral tunnel outlet in anterior cruciate ligament reconstruction with anteromedial portal technique; 777 784).
  • the laser device 1 is preferably waterproof so that it can be washed with water. Waterproofing can be achieved by using rubber packing at the seam.
  • the main body 2 is made of, for example, a plastic material such as polypropylene, polystyrene, or ABS (Acrylonitrile-Butadiene-Styrene copolymer) resin, or a metal material such as aluminum or stainless steel.
  • a plastic material such as polypropylene, polystyrene, or ABS (Acrylonitrile-Butadiene-Styrene copolymer) resin
  • limiting in the shape of the main-body part 2 It is preferable to have a size and shape which is easy to hold
  • the main body 2 has a circular or elliptical cross section, or a chamfered polygonal shape (particularly, a regular square or a regular hexagon), and the diameter or the size in one vertical and horizontal direction is 1.5 cm to 4 cm. Is preferred.
  • the size and shape of the nozzle 3 are not limited, it has a circular or elliptical cross section, or a chamfered polygonal shape (particularly, a regular square or a regular hexagon), and its diameter or size in one vertical and horizontal direction (outside size) is It is preferably 4 mm to 10 mm. Further, the nozzle 3 has a diameter and a length that can be finely adjusted during the operation. For example, the length from the root to the tip, which is the beginning of the thinnest part, is about 4 to 10 cm. It is preferable.
  • FIG. 2 shows the electrical configuration of the laser device 1.
  • the ON / OFF switching unit 11 is, for example, an electrical signal transmitting unit that transmits a signal indicating that the button 4 has been pressed, or a mechanical member that makes a physical contact in response to pressing of the button 4 to energize it. It may also be a switch that starts / stops supplying power from the power supply unit 12 to the optical unit 13 when the button 4 is pressed.
  • the power supply part 12 Although there is no restriction
  • a small battery wiring can be eliminated and the housing can be miniaturized, and the operability and portability of the laser device 1 can be improved.
  • the optical unit 13 emits a parallel laser beam by the electric power supplied from the power supply unit 12 and supplies the laser beam to the emission unit 5.
  • FIG. 3 shows a configuration from the optical unit 13 to the emission unit 5.
  • the laser light source 21 is a laser diode that can emit laser light.
  • the laser since the user needs to visually recognize the two-dimensional laser light LM, visible light and near infrared light having a wavelength of 400 nm to 1200 nm are used.
  • a blue laser beam of 400 nm to 500 nm or a red laser beam of 600 to 800 nm is preferably used as the wavelength of the laser beam.
  • red laser light of 620 to 680 nm is particularly preferably used.
  • the aperture 22 passes only through the central portion where the intensity of the laser light is substantially uniform, and the passed laser light is incident on the aspherical lens 23.
  • the combination of the aspheric lenses 23 and 24 converts the laser light into parallel light while expanding it to a predetermined beam diameter through a short optical path, and enters the index mark forming unit 25.
  • the index mark forming portion 25 is formed slightly larger than the inner diameter of the nozzle 3 and is disposed adjacent to or close to the nozzle 3. Since the laser light incident on the index mark forming unit 25 is parallel light, the index mark forming unit 25 enters the nozzle 3 without changing the beam diameter of the incident laser light.
  • the laser beam incident on the index mark forming unit 25 is preferably larger than the inner diameter of the nozzle 3.
  • the index mark forming portion 25 is a flat circle or rectangle having a diameter or side of 7.5 mm, and the inner diameter of the nozzle 3 is 6.5 mm.
  • the nozzle 3 itself can act as a beam shaping unit that shapes the beam shape of the laser light.
  • the index mark forming unit 25 is formed of a material that transmits laser light, and a cross is drawn by a material that does not transmit laser light by a technique such as chrome coating, printing, or etching.
  • the emission part 5 is made of a highly permeable material such as polycarbonate and seals the nozzle 3. In order to prevent the emitting part 5 from falling on the affected part, it is preferable that the emitting part 5 is firmly fixed by an adhesive or a strong mechanical method.
  • a two-dimensional laser beam LM having a diameter of 6.5 mm that is substantially the same as the inner diameter of the nozzle 3 is formed.
  • the two-dimensional laser beam LM forms a cross-shaped index mark LC that is a shadow of the laser beam formed by the index mark forming unit 25.
  • the laser light emitted from the emission part 5 is parallel light, even when the distance from the tip of the emission part 5 to the projection plane PF is changed from D1 to D2.
  • the size of the two-dimensional laser beam LM is not substantially changed. For this reason, the user does not have to bother to bring the emitting part 5 close to the projection plane PF, and can estimate the current bone hole size by simply pressing the button 4 from a distant position, thereby improving work efficiency. Can be made.
  • the two-dimensional laser light LM is deformed into an ellipse.
  • the deformation is easy to recognize, and the tilt of the laser device 1 is operated so as to approach the perfect circle.
  • the shape of the two-dimensional laser beam LM can be maintained in a correct shape without distortion.
  • the inclination angle of the projection plane PF is estimated from the shape of the two-dimensional laser beam LM (the ratio between the minor axis and the major axis), and the drill enters based on the estimation, that is, in accordance with the bone shape.
  • the bone hole can be opened at an appropriate angle.
  • the laser apparatus 101 is separable between the nozzle 3 and the optical unit 13, and is an index mark with respect to the LM fixing unit 125A.
  • the index mark forming portion 125 can be easily replaced by a simple operation that only fixes the forming portion 125.
  • various patterns can be prepared according to the bone hole to be formed.
  • the two-dimensional laser beam LMx having can be formed.
  • the index mark forming unit 125x functions as a beam shaping unit that shapes the beam shape of the laser light.
  • FIGS. 11A and 11B it is also possible to form an inverted reticle pattern in which a cross two-dimensional laser beam LMy and a perfect circle index mark LCy are combined.
  • the index mark LCy inner circle formed as a hollow portion in the two-dimensional laser beam LMy is used as the size of the bone hole to be formed.
  • the laser device (laser device 1) of the present invention includes a power supply switching unit (ON / OFF switching unit 11) that switches connection / disconnection of a power supply according to a user operation input, and power from the power supply.
  • a laser light source (laser light source 21) that emits laser light having a wavelength of 400 nm to 1200 nm, The laser light is converted into parallel light having a predetermined two-dimensional shape (the shape of the two-dimensional laser light LM) for making a reference of a bone hole size that is a size of a hole or a hole formed in a bone. It has the optical part (optical part 13) to convert, and the light emission part (radiation part 5) which radiate
  • the size of the actually formed bone hole can be estimated with high accuracy by projecting the two-dimensional shape to a position overlapping or adjacent to the actually formed bone hole. .
  • the accuracy of the size of the bone hole can be improved by a simple operation.
  • the laser apparatus is installed on an optical path of the laser beam, and forms an index mark (index mark LC) that serves as an index of a projection position when the laser beam is projected onto a projection surface. It has a mark forming part 25).
  • the light emitting part is formed at the tip of an elongated cylindrical nozzle part.
  • the wavelength of the laser light emitted from the light emitting unit is 400 nm to 500 nm of blue laser light or 600 to 800 nm of red laser light.
  • the wavelength of the laser light emitted from the light emitting unit is red laser light having a wavelength of 620 to 680 nm.
  • the index mark is a shadow of the laser beam formed by the index mark forming unit.
  • the index mark includes a cross shape.
  • the laser beam has a substantially perfect circle shape as the two-dimensional shape. Thereby, since the vertical and horizontal directions are irrelevant, the user can easily recognize the size.
  • the optical unit includes an exchangeable shaping member (index mark forming unit 125) that shapes the laser light into the two-dimensional shape.
  • the shaping member also serves as the index mark forming portion.
  • the index mark forming portion As a result, in addition to the two-dimensional shape, it is possible to project an index mark that matches the shape of the bone hole to be formed.
  • the two-dimensional shape is formed in the same size as the bone hole to be formed or a size larger than the bone hole by a predetermined margin.
  • the two-dimensional shape is formed in a size larger than the bone hole to be formed, and the index mark is formed in the same size as the bone hole to be formed.
  • a reticle pattern is formed by a combination of the two-dimensional shape and the index mark.
  • the inner side of the nozzle portion is substantially the same size as the two-dimensional shape.
  • the bone hole size estimation method of the present invention has a wavelength of 400 nm to 1200 nm and is used as a reference for the bone hole size, which is the size of the hole or hole formed in the bone.
  • the bone hole can be formed using the two-dimensional shape projected on the bone surface as a guide, the bone hole can be formed with an accurate size, and work efficiency can be improved.
  • the third embodiment is different from the first embodiment in that marking can be performed in accordance with a user operation.
  • the same reference numerals are added to the same portions as those in the first embodiment, and the corresponding portions are added with 200, and the description of the same portions is omitted.
  • the bone shape is often not flat.
  • a certain two-dimensional shape that is, the shape of the hole that is actually opened
  • the laser device 201 is used for positioning to determine in advance where the hole is to be drilled in the bone.
  • the laser device 201 irradiates a laser beam as convergent light in accordance with a user operation input to the operation input unit 204, and marks the marking position corresponding to a predetermined position in the two-dimensional shape. Has been made to do.
  • marking After marking, After the laser device 201 is removed and the drill is positioned with reference to the marking position, an operation of opening a bone hole using the drill is performed. As positioning of the drill, for example, the center of the drill blade is aligned with the marking, or the predetermined position of the drill is aligned with the marking (the end or the tip of the blade). Done by combining. In this manner, since the actual size of the bone hole can be projected onto the bone surface and marking can be performed as it is, the bone hole can be easily opened without mistaking the size of the bone hole.
  • the laser device 201 has a movable lens 224 that is movable in the optical axis direction. That is, as shown in FIG. 12A, the mode is changed to the first mode in accordance with the user's operation on the operation input unit 204, the movable lens 224 is moved to the position corresponding to the first mode, and the laser light source 21 is moved. A laser beam is emitted from At this time, the movable lens 224 converts the laser light incident from the aspherical lens 23 into parallel light and enters the index mark forming unit 225.
  • the index mark forming unit 225 forms a hollow reticle mark in which no mark is formed in the central portion, and laser light that is parallel light from the emitting unit 5 through the nozzle 3. Is emitted.
  • the laser device 201 can irradiate the two-dimensional laser light LM having a predetermined two-dimensional shape in the first mode.
  • the configuration of the operation input unit 204 is not particularly limited, and a known configuration such as a physical switch that switches a mode and power ON / OFF according to a button for detecting pressing and a position, a liquid crystal panel, and the like can be used as appropriate.
  • the two-dimensional laser beam LM is assumed to be used in an operating room where illumination is lit.
  • the laser light source 21 can be visually recognized even when illumination of about 200 to 2000 lx is used. Wavelength and output power are selected.
  • the mode is shifted to the second mode in accordance with the user's operation on the operation input unit 204, the movable lens 224 is moved to the position corresponding to the second mode, and the laser light source 21 is moved. A laser beam is emitted from At this time, the movable lens 224 converts the laser light incident from the aspherical lens 23 into convergent light and enters the index mark forming unit 225.
  • the index mark forming unit 225 emits a laser beam that is convergent light from the emitting unit 5 through the nozzle 3.
  • This laser beam is focused at an outer focal position outside the emitting section 5 (for example, a position of 5 to 30 cm from the tip of the emitting section 5) and at a marking position that is the center of the two-dimensional laser beam LM. ing.
  • the laser apparatus 201 can irradiate the marking laser beam MB focused on the marking position of the two-dimensional laser beam LM in the second mode.
  • the index mark forming unit 225 forms the index mark LC by blocking a part of the laser light. However, since the center of the index mark LC is not cut off and blocked, It is not necessary to block the central part with high strength.
  • the marking laser beam MB is used to mark the bone itself by scorching the bone that actually forms the bone hole to form a burnt eye or a small hole, so that the laser can be marked on the bone.
  • the wavelength and output power of the light source 21 are selected.
  • the marking laser beam MB can be emitted for a predetermined marking time (for example, 0.1 to 10 seconds) in accordance with the user's operation on the operation input unit 204. Further, for example, the marking laser beam MB is emitted while the user operates the button as the operation input unit 211, or the marking laser beam MB is emitted according to the number of times the user operates the operation input unit 211. As described above, the marking laser beam MB can be emitted for an arbitrary time according to the user's operation.
  • the fourth embodiment is different from the first embodiment in that two laser light sources are used. Note that in the fourth embodiment, the same reference numerals are added to the same portions as those in the first embodiment, and the corresponding portions are added with a reference numeral 300, and the description of the same portions is omitted.
  • the laser device 301 has a laser light source 321 capable of emitting laser light (first laser light and second laser light) of two wavelengths (first wavelength and second wavelength).
  • the wavelength of the second laser light that requires large energy is preferably shorter than the wavelength of the first laser light.
  • the laser light source 321 may be a two-can type that emits the first laser light and the second laser light from two laser diodes, respectively, and both the first laser light and the second laser light are emitted from one laser diode.
  • One can type is also acceptable.
  • the aspherical lenses 23 and 24 convert the first laser light into parallel light using the difference in wavelength, while focusing the second laser light at the outer focal position and the marking position that is the center of the two-dimensional laser light LM. Converted into convergent light.
  • the optical axis centers in the emitted light of the first laser light and the second laser light are shifted.
  • the optical power of the second laser beam can be maintained.
  • the laser light source 321 emits the first laser light.
  • the two-dimensional laser light LM having the index mark LC is irradiated.
  • the laser light source 321 emits both the first laser light and the second laser light.
  • the two laser beams can be irradiated simultaneously in a state where the two-dimensional laser beam LM and the marking laser beam BM are superimposed.
  • the user can irradiate the marking laser beam MB while visually recognizing and confirming the two-dimensional laser beam LM used for positioning, and can mark the correct position.
  • the fifth embodiment is different from the fourth embodiment in that a diffraction grating is used, a laser beam having two wavelengths is emitted alone, and a laser light source 321X is operated. .
  • the same parts as those in the fourth embodiment are denoted by the same reference numerals, and the corresponding parts are denoted by the addition of X, and the description of the same parts is omitted.
  • the diffraction grating 327 is provided between the aspherical lenses 23 and 24 and has a characteristic of refracting the laser light according to the wavelength. Accordingly, in the laser device 301X, the first laser light is converted into parallel light by utilizing the difference in the wavelengths of the first laser light and the second laser light by the three optical components of the aspheric lenses 23 and 24 and the diffraction grating 327. The second laser light is converted into convergent light.
  • the laser light source 321X is a two-can type two-wavelength laser, and includes a movable device that can move in a direction connecting the two laser light emission ports of the laser light source 321X.
  • the laser light source 321X individually emits the first laser light or the second laser light.
  • the center of the optical axis of the first laser light comes to the optical center axis of the optical unit 313X.
  • the emission port of the laser light source 321X is moved so that the center of the optical axis of the second laser beam comes to the optical center axis of the optical unit 313X.
  • the laser light source 321X emits the first laser light in a state where the center of the optical axis of the first laser light is aligned with the optical central axis.
  • the two-dimensional laser beam LM having the index mark LC is irradiated.
  • the laser light source 321 emits the second laser light in a state where the center of the optical axis of the second laser light is aligned with the optical center axis.
  • the marking laser beam MB is irradiated.
  • the center of the optical axis of the laser light source 321X can be moved and the optical axes of the first laser beam and the second laser beam are always aligned with the optical center axis, thereby wasting energy of the laser beam.
  • the two-dimensional laser beam LM and the marking laser beam MB can be irradiated.
  • the laser device 401 includes a first optical path 20 that is an optical path of the first laser light and a second optical path 30 that is an optical path of the second laser light.
  • the first laser light emitted from the laser light source 21 passes through the first optical path 20 and enters the aspherical lens 24 of the common optical path 40 through the half mirror 434.
  • the second laser light emitted from the laser light source 321 passes through the aperture 432, the aspheric lens 433, and the half mirror 434, and the aspheric lens 24 in the common optical path 40. Is incident on.
  • an index mark forming part 325 is arranged on the first optical path 20 (between the aperture 22 and the aspherical lens 23 in the figure). Therefore, a part of the second laser beam is not blocked by the index mark forming part 325, and the energy amount of the second laser beam can be used without leaving any excess.
  • the laser device 401 emits the first laser light that has passed through the first optical path 20 and the common optical path 40 as the two-dimensional laser light LM.
  • the second laser light that has passed through the second optical path 30 and the common optical path 40 together with the two-dimensional laser light LM is emitted as the marking laser light MB.
  • the two-dimensional laser beam LM is formed with a square-shaped adjustment mark LR formed in the center portion together with an index mark LC which is a cross-shaped reticle mark.
  • the adjustment mark LR is formed as a shadow by the index mark forming unit 325, like the index mark LC.
  • the shape of the adjustment mark LR is not limited and may be a polygon or a circle.
  • the marking laser beam MB is a convergent beam, and it is necessary to adjust the laser device 401 so that the vicinity of the focus of the marking laser beam MB is positioned at a marking formation portion to be marked.
  • the corner side of the adjustment mark LR is formed slightly larger than the diameter of the spot size at the focal position of the marking laser beam MB. Accordingly, the user can reliably perform marking by adjusting the position of the laser device 401 so that the spot of the marking laser beam MB enters the adjustment mark LR.
  • the laser apparatus of the present invention includes an operation input unit (button 4, operation input units 204, 304, 404) that receives an operation input of a user, A laser light source (laser light sources 21, 321, 421) that emits laser light having a wavelength of 400 nm to 1200 nm in accordance with a user operation on the operation input unit; An optical unit that converts the laser light into parallel light having a predetermined two-dimensional shape for reference to a bone hole size that is a size of a hole formed in a bone or a hole that is a hole. 213, 313), It has a light emission part (output part 5) which radiate
  • the laser device can accurately project the region where the bone hole is opened regardless of the shape factor such as the shape and inclination of the bone surface, so that there is no misperception due to the optical illusion caused by the shape factor.
  • the work efficiency at the time of hole formation can be improved.
  • the optical unit adjusts the laser light so as to be parallel light in the first mode according to the operation input of the user, In the second mode corresponding to the user's operation input, the laser light is adjusted so as to be convergent light that is focused outside the light emitting portion.
  • the laser device can project the parallel light onto the bone surface to position the bone hole, and then perform irradiation of the convergent light to mark the positioned bone hole. That is, since one laser device can be used for positioning to marking, the work efficiency at the time of bone hole formation can be significantly improved.
  • the optical unit is A first lens that enters the laser beam and changes a condensing state; It has a movable 2nd lens which changes the condensing state of the laser beam which enters from the 1st lens, It is characterized by the above-mentioned.
  • the laser beam can be converted into parallel light and convergent light simply by changing the position of the second lens, and a laser device having a marking function can be configured with a simple configuration.
  • the laser light source is the laser beam, A first laser beam used in the first mode;
  • the first laser beam used in the second mode emits a second laser beam having a different wavelength, and the optical unit is Using the wavelength difference between the first laser light and the second laser light, the first laser light is adjusted to be parallel light, and the second laser light is adjusted to be convergent light. It is characterized by.
  • the optical unit is in the second mode, The first laser light adjusted to parallel light; The second laser beam adjusted to convergent light is emitted simultaneously.
  • the laser device can irradiate the second laser beam for marking while projecting the first laser beam for positioning, so that marking is performed while confirming that the positioned location is not displaced.
  • the positioning accuracy of the marking can be improved.
  • the optical unit is A first laser light source emitting a first laser light and a second laser light source emitting a second laser light as the laser light source; In the second mode, The first laser light adjusted to parallel light; Simultaneously emitting the second laser light adjusted to convergent light, The first laser beam incident on the first optical path and the second laser beam incident on the second optical path are emitted from the light emitting section through a common optical path.
  • the laser device can use two laser light sources, increase the types of laser light sources that can be used, and improve the degree of design freedom.
  • the laser apparatus includes an index mark forming unit that is installed on the first optical path and forms an index mark that serves as an index of a projection position when the laser light is projected onto a projection surface.
  • the laser device can form the index mark for the parallel light based on the first laser light without blocking the second laser light used for marking.
  • the optical unit is In the second mode, The first laser light adjusted to parallel light; Simultaneously emitting the second laser light adjusted to convergent light,
  • the index mark forming part An adjustment mark serving as an index of the spot size of the second laser beam when the laser beam is projected onto the projection surface is formed.
  • the laser device can adjust the focal length of the second laser beam for marking using the adjustment mark, so that it is possible to prevent the marking from failing because it is out of focus, and to improve the marking reliability. Can be increased.
  • an operation input unit that receives a user's operation input;
  • a laser light source that emits laser light;
  • a light emitting portion for emitting the laser light;
  • a first optical unit that adjusts the laser light to become parallel light having a predetermined two-dimensional shape in a first mode in accordance with a user operation on the operation input unit;
  • a second optical unit that adjusts the laser light so as to be focused light that is focused outside the light emitting unit in a second mode according to a user operation on the operation input unit.
  • the parallel light for positioning and the convergent light for marking can be emitted by one laser device, it is possible to continuously perform the marking operation after positioning with respect to the projection surface. Work efficiency can be improved.
  • the light emitting part is The parallel light and the convergent light are switched and emitted.
  • the laser device can continuously perform an operation of performing marking after positioning using one laser device.
  • the light emitting part is In the first mode according to the operation input to the user operation input unit, only the parallel light is emitted, The parallel light and the convergent light are emitted in a second mode according to an operation input to a user operation input unit.
  • the convergent light can be emitted while projecting the parallel light used for positioning in the first mode as it is, and marking can be performed while maintaining the positioning state in the first mode. . For this reason, for example, it becomes possible to perform marking continuously from positioning in a state where the user holds the laser device in his / her hand, and work efficiency at the time of marking can be improved.
  • the bone hole positioning method of the present invention has a wavelength of 400 nm to 1200 nm of the present invention, and is used as a reference for the bone hole size that is the size of the hole or hole that is formed in the bone.
  • a bone hole that is actually opened is positioned by irradiating a bone surface that forms a bone hole according to a user's operation with a laser beam having a predetermined two-dimensional shape for collimated light.
  • the shape of the hole can be accurately projected on bones with complex shapes, and the bone hole can be positioned without mistaking it due to the optical illusion, improving work efficiency when forming the bone hole. Can do.
  • the reticle mark is formed by a perfect circle and a cross.
  • the present invention is not limited to this, and the reticle mark is not necessarily required.
  • an index mark made of a dot may be formed at the center portion, a cross and a polygon may be combined, or three or more intersecting lines may be used. Further, it is not always necessary to provide the index mark LC.
  • the index mark forming unit 25 is provided at the end of the optical unit 13.
  • the present invention is not limited to this.
  • the index mark forming unit is printed by printing a cross on the emitting unit that is the tip of the nozzle. It may be provided.
  • the index mark forming portion can be arranged at an arbitrary position on the optical path (the latter stage is preferable to the aperture).
  • a pattern can be formed in the light emission part and it can also be set as the exchangeable structure. In this case, it is desirable that an alarm sounds or a fall prevention string is attached when the protective member (index mark forming portion) of the emitting portion falls.
  • the present invention is not limited to this, and the shape of the laser apparatus is not limited.
  • the configurations of the first to sixth embodiments can be combined as appropriate.
  • the diffraction grating 327 of the fifth embodiment may be used in combination with the laser device 301 of the fourth embodiment.
  • the difference in wavelength is used.
  • two laser light sources having the same wavelength but different output powers may be used.
  • the configuration of the laser device according to the sixth embodiment in which the optical path after laser light emission is different is preferably used.
  • the second optical path 30 in the sixth embodiment, or the second optical path 30 and the half mirror 434 can be attached as a retrofit attachment.
  • a stand for fixing the laser device can be used.
  • the laser device 201 according to the fourth embodiment is fixed to a laser device holder that can rotate or move in the up-and-down direction of the stand, or can be rotated and moved. Positioning is performed in the mode, and when the positioning is performed, the laser device holding portion is fixed. By irradiating the marking laser beam in the second mode with the laser device holding portion fixed, marking can be performed without deviation from the positioned position.
  • the output power of the second laser beam is higher than that of the first laser beam.
  • the present invention is not limited to this, and the output power of the first laser beam may be higher than that of the second laser beam.
  • the output power of the first laser beam and the second laser beam is appropriately selected depending on the visibility of the two-dimensional laser beam LM and the marking characteristics of the marking laser beam BM, and either power may be large. Accordingly, the arrangement of the types of optical components used in the optical unit is appropriately determined.
  • the ON / OFF switching unit 11 serving as the power switching unit (operation input unit), the laser light source 21 serving as the laser light source, the optical unit 13 serving as the optical unit, and the emitting unit 5 serving as the light emitting unit.
  • the present invention is not limited to this, and the present invention is not limited to this.
  • the power source switching unit, the laser light source, the optical unit 13, and the emission unit are not limited to this. It is possible to apply a laser device consisting of 5 as the present invention.
  • the present invention can be applied to, for example, a laser device used in surgery to form a bone hole.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • Surgical Instruments (AREA)
  • Laser Beam Processing (AREA)

Abstract

骨孔を形成する際、作業効率を向上させるべく、ユーザの操作入力を受け付ける操作入力部と、前記操作入力部に対するユーザの操作に応じて400nm~1200nmの波長を有するレーザ光を発光するレーザ光源(21)と、前記レーザ光を、骨に形成される孔又は穴である骨孔の大きさである骨孔サイズの参照にするための所定の2次元形状を有する平行光に変換する光学部(13)と、前記レーザ光を出射する光出射部(5)とを有するように構成した。

Description

レーザ装置及び骨孔位置決め方法
 本発明は、例えば人間や動物の関節及びその周辺の手術に使用されるレーザ装置及び骨孔位置決め方法に使用して好適なものである。
 一般的に、膝関節の前十字靱帯の再建手術や、骨折箇所を継ぎ合わせる手術を行う場合には、骨の所定位置にドリルなどの器具で孔や穴(以下、これを骨孔と呼ぶ)を開けた後、該骨孔に固定用器具やスクリューなどの挿入部品が挿入される(例えば特許文献1参照)。
 従って、骨孔は挿入部品のサイズや挿入状況に応じたサイズより大きく形成されなくてはならない。一方で、患者の身体的負担の軽減や治療期間の軽減のためには、骨孔はできる限り小さいことが望ましい。すなわち、骨孔は設計されたサイズにできるだけ近い大きさで形成されることが望ましい。
特表2016-507318
 かかる構成の特許文献では、骨孔のサイズを確認するために、目標とする骨孔サイズを示すテンプレートを確認して骨孔を開けるため、目の錯覚などによる骨孔サイズの見誤りなどが発生することがあり、作業効率が悪いという問題があった。
 本発明はこのような問題を解決するためになされたもので、その目的は、作業効率を向上させ得るレーザ装置及び骨孔位置決め方法を提供するものである。
 かかる課題を解決するため、本発明のレーザ装置は、ユーザの操作入力を受け付ける操作入力部と、
 前記操作入力部に対するユーザの操作に応じて400nm~1200nmの波長を有するレーザ光を発光するレーザ光源と、
 前記レーザ光を、骨に形成される孔又は穴である骨孔の大きさである骨孔サイズの参照にするための所定の2次元形状を有する平行光に変換する光学部と、
 前記レーザ光を出射する光出射部とを有することを特徴とする。
 また本発明のレーザ装置は、ユーザの操作入力を受け付ける操作入力部と、
 レーザ光を発光するレーザ光源と、
 前記レーザ光を出射する光出射部と、
 前記操作入力部に対するユーザの操作に応じた第1モードにおいて、前記レーザ光を所定の2次元形状を有する平行光になるよう調整する第1光学部と、
 前記操作入力部に対するユーザの操作に応じた第2モードにおいて、前記光出射部の外側において焦点を結ぶ収束光になるように前記レーザ光を調整する第2光学部とを備えることを特徴とする。
 また本発明の骨孔位置決め方法は、400nm~1200nmの波長を有し、骨に形成される孔又は穴である骨孔の大きさである骨孔サイズの参照にするための所定の2次元形状を有し平行光でなるレーザ光を、ユーザの操作に応じて骨孔を形成する骨面に照射することにより、実際に開けられる骨穴の位置決めを行うことを特徴とする。
 本発明は、作業効率を向上させ得るレーザ装置及び骨孔位置決め方法を実現できる。
第1の実施の形態におけるレーザ装置の概略図である。 第1の実施の形態におけるレーザ装置の電気的構成を示すのブロック図である。 第1の実施の形態における光学部から出射部までの構成を示す概略図である。 第1の実施の形態におけるレーザーマークを示す概略図である。 照射位置と距離変化を説明する概略図である。 距離変化が生じた場合におけるレーザーマークの大きさを示す概略図である。 投射面と光路に傾斜が生じた状態を説明する概略図である。 傾斜が生じた状態におけるマーキング用レーザ光の形状を示す概略図である。 第2の実施の形態におけるレーザ装置の概略図である。 第2の実施の形態における指標マーク形成部の構成を示す概略図(1)である。 第2の実施の形態における指標マーク形成部の構成を示す概略図(1)である。 第3の実施の形態におけるレーザ装置の概略図である。 第3の実施の形態における2次元レーザ光及びマーキングレーザ光を示す略線図である。 第4の実施の形態におけるレーザ装置の概略図である。 第4の実施の形態における2次元レーザ光及びマーキングレーザ光を示す略線図である。 第5の実施の形態におけるレーザ装置の概略図である。 第6の実施の形態におけるレーザ装置の概略図である。 第6の実施の形態における2次元レーザ光及びマーキングレーザ光を示す略線図である。
<第1の実施の形態>
 以下、本発明を実施するための形態について図面を参照して説明する。
 図1において、レーザ装置1は、本体部2にボタン4を有しており、ユーザのボタン4に対する押下に応じて、先端の出射部5からレーザ光が出射される。図1では、投影面PFに対してレーザ光が出射され、2次元レーザ光LMが投影面に形成された様子を示している。
 本願発明は、骨に対して骨孔を形成する際に、形成された骨孔のサイズを推測するために使用されるものである。従って、投影面PFは、人や動物の骨の表面となる。実際に形成された骨孔に重複又は隣接するようにして2次元レーザ光LMを形成することにより、2次元レーザ光LMを参照して実際に形成された骨孔のサイズを推測することができる。
 本願発明は、関節や骨継ぎなど骨孔を形成する全ての手術の際に適用可能であるが、膝前十字靱帯(ACL)損傷に対する靱帯再建術において、移植片を入れるための骨孔を形成する際や、関節鏡を用いた手術などに特に好適に使用することができる。テンプレートを用いないため開口部分を小さくすることが可能である。靱帯再建術については、特許文献1及び非特許文献1(uences of knee flexion angle and portal position on the location of femoral tunnel outlet in anterior cruciate ligament reconstruction with anteromedial portal technique; Knee Surg Sports Traumatol Arthrosc (2015) 23:777 784)などに記載されている。
 レーザ装置1は、細長い本体部2から該本体部2より径の細いノズル3が突出しており、全体として先細り形状を有している。レーザ装置1は、水洗いを可能にするため、防水仕様となっていることが好ましい。継ぎ目部分にゴムパッキンを使用するなどすることにより、防水仕様とすることが可能である。
 本体部2は、例えばポリプロピレン、ポリスチレン、ABS(Acrylonitrile-Butadiene-Styrene共重合)樹脂などのプラスチック材料やアルミニウム、ステンレスなどの金属材料などで形成されている。本体部2の形状に制限は無いが、人間の手で把持しやすいようなサイズ及び形状を有することが好ましい。例えば、本体部2は、断面が円又は楕円、若しくは面取りされた多角形状(特に正四角形又は正六角形)を有しており、その径又は縦横一方向のサイズが1.5cm~4cmでなることが好ましい。
 ノズル3のサイズ及び形状に制限はないが断面が円又は楕円、若しくは面取りされた多角形状(特に正四角形又は正六角形)を有しており、その径又は縦横一方向のサイズ(外側サイズ)が4mm~10mmでなることが好ましい。また、ノズル3は、手術の際に微細な位置調整ができるような径及び長さを有しており、例えば最細部分の始まりである根元から先端までの長さは4~10cm程度であることが好ましい。
 図2に、レーザ装置1の電気的構成を示している。ON/OFF切替部11は、例えばボタン4が押下されたことを示す信号を送信する電気的な信号送信部であったり、ボタン4の押下に応じて物理的接触を行って通電させる機械的部材であってもよく、ボタン4の押下に応じて電源部12から光学部13へ電力を供給開始/終了するスイッチの役割を有している。
 電源部12の構成に制限はないが、例えばボタン電池や単4電池などの使い捨ての電池や、リチウム電池やニッケル水素電池などの充電池など、一般に販売されている小型の電池が好適に使用される。小型の電池を利用することにより配線を無くすと共に筐体を小型化でき、レーザ装置1の操作性及び携帯性を向上させ得る。
 光学部13は、電源部12から供給される電力によって平行光でなるレーザ光を発射し、出射部5へと供給する。
 図3に光学部13から出射部5までの構成を示している。レーザ光源21は、レーザ光を出射可能なレーザダイオードである。レーザとしては、ユーザが2次元レーザ光LMを視認する必要があるため、400nm~1200nmの波長を有する可視光及び近赤外光が使用される。
 骨表面は黄色味を帯びており視認性を向上させるため、レーザ光の波長としては、400nm~500nmの青色レーザ光又は600~800nmの赤色レーザ光が好適に使用される。また、必要となるエネルギー量が小さく、細胞の損傷や熱の発生が極めて少なく安全性が高いことから、620~680nmの赤色レーザ光が特に好適に使用される。
 アパーチャ22は、レーザ光の強度がほぼ均一である中心部分のみを通過し、通過したレーザ光を非球面レンズ23へ入射する。非球面レンズ23及び24は、その組み合わせにより、短い光路でレーザ光を所定のビーム径まで拡大しながら平行光へと変換し、指標マーク形成部25に入射する。
 ここで、ノズル3の内側断面が円形であり内径が6.5mmの場合について例示して説明する。指標マーク形成部25は、ノズル3の内径よりも僅かに大きく形成されており、ノズル3に隣接若しくは近接して配置されている。指標マーク形成部25に入射されるレーザ光は平行光であるため、指標マーク形成部25は入射されたレーザ光のビーム径を変更することなく、ノズル3へ入射する。
 ノズル3の材質に制限は無いが、患部に触れる可能性があるため、遮光性があり抗菌作用を有するプラスチックや金属が好適に使用される。堅くて錆びにくいことから、ステンレス(SUS304など)が特に好適に使用される。
 指標マーク形成部25に入射されるレーザ光は、ノズル3の内径よりも大きいことが好ましい。例えば指標マーク形成部25は、直径又は一辺が7.5mmの扁平な円形又は矩形でなる一方、ノズル3の内径は6.5mmとする。これにより、ノズル3自体がレーザ光のビーム形状を整形するビーム整形部として作用することができる。
 指標マーク形成部25は、レーザ光を透過させる素材で形成されており、クロムコートや印刷、エッチングなどの手法により、レーザ光を透過しない材料によって十字が描かれている。出射部5は、例えばポリカーボネートなど透過性の高い素材で形成されており、ノズル3を密封している。出射部5は、患部に落下することを防止するため、接着剤や強固な機械的手法などでしっかりと固着されることが好ましい。
 図4に示すように、出射部5から出射されたレーザ光を投影面に投影させると、直径がノズル3の内径とほぼ同じ6.5mmでなる2次元レーザ光LMが形成される。2次元レーザ光LMは、指標マーク形成部25によって形成されたレーザ光の影である十字の指標マークLCが形成される。
 図5及び図6に示すように、出射部5から出射されるレーザ光は平行光であるため、出射部5の先端から投影面PFまでの距離がD1からD2に変化した場合であっても、2次元レーザ光LMのサイズはほぼ変化しない。このため、ユーザは、わざわざすぐ近くまで出射部5を投影面PFまで近づける必要はなく、離れた位置からボタン4を押すだけで現在の骨孔のサイズを推測することができ、作業効率を向上させることができる。
 図7及び図8に示すように、出射されたレーザ光の光路に対して投影面PFが垂直から傾斜していた場合、2次元レーザ光LMが楕円形に変形する。しかしながら、2次元レーザ光LMと指標マークLCとで真円と十字のレチクルパターンを形成しているため、変形が認識しやすくなっており、真円に近づくようにレーザ装置1の傾きを操作することにより、2次元レーザ光LMの形状を歪みのない正しい形状に維持できる。
 また、手術の内容によっては、投影面PFに対して垂直になるようにレーザ光を照射できない場合がある。このような場合には、2次元レーザ光LMの形状(短径と長径との比率)から投影面PFの傾斜角度を推測し、当該推測に基づいて、すなわち骨の形に合わせてドリルの進入角度を決定することにより、適正な角度で骨孔を開けることが可能となる。例えば、2次元レーザ光LMの形状を撮影し、撮影画像からのソフトウェアによる自動解析により該2次元レーザ光LMを基準としたときのドリルの進入位置や角度を決定することも可能である。
<第2の実施の形態>
 次に、第2の実施の形態について、図9~図11を用いて説明する。第1の実施の形態とは、指標マーク形成部125が取り替え可能な点が相違する。第1の実施の形態と同一箇所に同一符号を、対応する箇所に100又はx、yを加算した符号を附し、同一箇所についての説明を省略する。
 図9(A)及び(B)に示すように、第2の実施の形態におけるレーザ装置101は、ノズル3と光学部13との間で分離可能であり、LM固定部125Aに対して指標マーク形成部125を固定するだけの簡易な操作により、指標マーク形成部125を簡単に交換することが可能である。
 指標マーク形成部125としては、形成したい骨孔に応じて種々のパターンを準備できる。
 図10(A)に示すように、指標マーク形成部125xとして中心の半円部分以外の部分を遮光することにより、図10(B)に示すように、真円以外の形状となる半円形状を有する2次元レーザ光LMxを形成することができる。この場合、2次元レーザ光LMxでは、レーザ光の影として形成される指標マークLCxとして真円と十字の組み合わせでなるレチクルパターンを採用することにより、2次元レーザ光LMxの中心及び投影面PFに対する傾斜を認識しやすくできる。なおこの場合、指標マーク形成部125xがレーザ光のビーム形状を整形するビーム整形部として作用する。
 また、図11(A)及び(B)に示すように、十字の2次元レーザ光LMyと真円の指標マークLCyとを組み合わせた反転レチクルパターンを形成することも可能である。この場合、例えば2次元レーザ光LMyにおける空洞部分として形成された指標マークLCy(内円)が形成したい骨孔のサイズとして使用される。これにより、骨孔がある程度形成された状態であっても、2次元レーザ光LMy(外円の部分)が骨孔周辺に確実に投影されるため、形成するべき骨孔を認識しやすくできる。
<動作及び効果>
 以下、上記した実施形態から抽出される発明群の特徴について、必要に応じて課題及び効果等を示しつつ説明する。なお以下においては、理解の容易のため、上記各実施形態において対応する構成を括弧書き等で適宜示すが、この括弧書き等で示した具体的構成に限定されるものではない。また、各特徴に記載した用語の意味や例示等は、同一の文言にて記載した他の特徴に記載した用語の意味や例示として適用しても良い。
 以上の構成によれば、本発明のレーザ装置(レーザ装置1)は、ユーザの操作入力に応じて電源の接続可否を切替える電源切替部(ON/OFF切替部11)と、前記電源からの電力によって400nm~1200nmの波長を有するレーザ光を発光するレーザ光源(レーザ光源21)と、
 前記レーザ光を、骨に形成される孔又は穴である骨孔の大きさである骨孔サイズの参照にするための所定の2次元形状(2次元レーザ光LMの形状)を有する平行光に変換する光学部(光学部13)と、前記レーザ光を出射する光出射部(出射部5)とを有することを特徴とする。
 これにより、レーザ装置では、2次元形状を実際に形成した骨孔と重複させた位置又は隣接させた位置に投影することにより、実際に形成した骨孔のサイズを高い精度で推測することができる。これにより、簡易な操作で骨孔のサイズの精度を向上させることができる。
 また、レーザ装置は、前記レーザ光の光路上に設置され、前記レーザ光が投影面に投影されたときに投影位置の指標となる指標マーク(指標マークLC)を形成する指標マーク形成部(指標マーク形成部25)を有することを特徴とする。
 これにより、指標マークを参考にして投影位置を決定できるため、投影面の歪みや骨孔の中心位置などを確認して2次元形状を投影したい位置に高い精度で投影することができる。
 レーザ装置において前記光出射部は、細長い筒状のノズル部の先端に形成されている。
 これにより、例えば関節鏡を用いた手術や、開口部分から奥まった部位に対しても簡単に2次元形状を投影することができる。
 レーザ装置において、前記光出射部から出射されるときのレーザ光の波長は、400nm~500nmの青色レーザ光又は600~800nmの赤色レーザ光である。
 これにより、黄色味を帯びた骨に対し、2次元形状を視認できやすく投影することができる。
 レーザ装置において、前記光出射部から出射されるときのレーザ光の波長は、620~680nmの赤色レーザ光である。
 これにより、低エネルギーで安全かつ汎用性のあるレーザ光源を使用できる。
 レーザ装置において、前記指標マークは、前記指標マーク形成部によって形成された前記レーザ光の影である。
 これにより、遮光性のある素材を用いたエッチングや印刷などの公知の手法を用いて、簡単に指標マーク形成部を作製することができる。
 前記指標マークは、十字形状を含む。
 これにより、2次元形状における縦横比率が認識しやすくなり、投影面に対するレーザ光の傾斜が認識しやすくなる。
 前記レーザ光は、前記2次元形状として、略真円形状である。これにより、縦横の方向が関係ないため、ユーザがサイズを認識し易い。
 レーザ装置において、前記光学部は、前記レーザ光を前記2次元形状に整形する交換可能な整形部材(指標マーク形成部125)を有する。
 これにより整形部材の交換により自在に2次元形状を変化させることができ、形成したい骨孔の形状に合わせた2次元形状を投影することができる。
 レーザ装置において、前記整形部材は、前記指標マーク形成部を兼ねる。これにより、2次元形状に加えて、形成したい骨孔の形状に合わせた指標マークを投影することができる。
 前記2次元形状は、形成したい骨孔と同一又は骨孔より所定のマージンだけ大きいサイズで形成されている。
 これにより、骨孔の周囲に必ず2次元形状を投影させることができ、2次元形状を常に確認しながら作業することができる。
 前記2次元形状は、形成したい骨孔より大きいサイズで形成されており、前記指標マークは、形成したい骨孔と同一サイズで形成されている。
 これにより、骨孔の周囲に必ず2次元形状を投影させると共に、指標マークに沿って骨孔を形成すれば良いため、指標マークをガイドにして正確なサイズの骨孔を形成できる。
 前記2次元形状と前記指標マークとの組み合わせにより、レチクルパターンが形成されている。
 これにより、レチクルパターンによって2次元形状の歪みを容易に確認できるため、正確な2次元形状を投影させて正確なサイズの骨孔を形成できる。
 レーザ装置において、前記ノズル部の内側は、前記2次元形状とほぼ同一サイズでなる。
 これにより、ノズル部を極力細く形成できるため、出射部を奥まった位置などに配置し易くなり、操作性が向上する。
 以上の構成によれば、本発明の骨孔サイズ推測方法では、400nm~1200nmの波長を有し、骨に形成される孔又は穴である骨孔の大きさである骨孔サイズの参照にするための所定の2次元形状(2次元レーザ光LMの形状)を有し平行光でなるレーザ光を、ユーザの操作に応じて骨孔を形成する骨面(投影面PF)に照射することにより、骨穴の実際のサイズを推測する。
 これにより、骨面に投影された2次元形状をガイドにして骨孔を形成することができるため、正確なサイズで骨孔を形成することができ、作業効率を向上できる。
<第3の実施の形態>
 次に、第3の実施の形態について、図12~図13を用いて説明する。第3の実施の形態では、ユーザの操作に応じてマーキングを行い得る点が第1の実施の形態とは相違している。なお第3の実施の形態においては、第1の実施の形態と同一箇所に同一符号を、対応する箇所に200を加算した符号を附し、同一箇所についての説明を省略する。
 上述した膝関節の手術において、骨の形状は平面ではないことが多い。しかしながら、投影光であれば、骨の段差や傾斜、カーブなどの表面状態に拘わらず、一定の2次元形状(すなわち実際に開けられる孔の形状)をそのまま骨上に投影することが可能である。この特性を利用して、レーザ装置201は、予め骨のどの位置に孔を開けるかを決定する位置決めに使用される。
 さらにレーザ装置201は、位置決めを行った後、操作入力部204に対するユーザの操作入力に応じて、収束光でなるレーザ光を照射し、2次元形状における所定の位置に対応するマーキング位置にマーキングを行うようになされている。マーキングを行った後は、
レーザ装置201が外され、マーキング位置を基準にしてドリルの位置決めが行われた後、該ドリルを用いて骨孔を開ける作業が実行される。ドリルの位置決めとしては、例えばマーキングに対してドリル刃の中心を合わせたり、マーキングに対してドリルの所定の箇所を(端部や刃の先端)合わせるなど、マーキング位置に対してドリルの所定箇所を合わせることにより行われる。このように、骨孔の実際のサイズを骨面に投影した上でそのままマーキングを行うことができるため、骨孔のサイズを見誤ることなく、簡単に骨孔を開けることができる。
 図12に示すように、レーザ装置201は、光軸方向に移動可能な可動レンズ224を有している。すなわち、図12(A)に示すように、ユーザの操作入力部204に対する操作に応じて第1のモードに遷移し、可動レンズ224を第1のモードに応じた位置に移動させ、レーザ光源21からレーザ光を発射する。このとき可動レンズ224は、非球面レンズ23から入射されるレーザ光を平行光に変換し、指標マーク形成部225へ入射する。
 図13(A)に示すように、指標マーク形成部225は、中心部分にマークが形成されていない中抜きのレクチルマークを形成し、ノズル3を介して出射部5から平行光でなるレーザ光を出射する。この結果、レーザ装置201は、第1のモードにおいて、所定の2次元形状でなる2次元レーザ光LMを照射することができる。なお操作入力部204の構成は特に限定されず、押下を検出するボタンや位置に応じてモード及び電源ON/OFFを切替える物理的スイッチ、液晶パネルなど公知の構成を適宜使用可能である。
 なお2次元レーザ光LMは、照明が灯された手術室内で使用されることが想定されており、例えば200~2000lx程度の照明が使用された状態であっても視認できるように、レーザ光源21の波長と出力パワーが選択されている。
 また、図12(B)に示すように、ユーザの操作入力部204に対する操作に応じて第2のモードに遷移し、可動レンズ224を第2のモードに応じた位置に移動させ、レーザ光源21からレーザ光を発射する。このとき可動レンズ224は、非球面レンズ23から入射されるレーザ光を収束光に変換し、指標マーク形成部225へ入射する。
 図12(B)に示すように、指標マーク形成部225は、ノズル3を介して出射部5から収束光でなるレーザ光を出射する。このレーザ光は、出射部5の外側(例えば出射部5の先端から5~30cmの位置)にある外側焦点位置で、かつ2次元レーザ光LMの中心であるマーキング位置で焦点を結ぶようになされている。この結果、図13(B)に示すように、レーザ装置201は、第2のモードにおいて、2次元レーザ光LMのマーキング位置に集光するマーキングレーザ光MBを照射することができる。
 上述したように、指標マーク形成部225は、レーザ光の一部を遮断することにより指標マークLCを形成するが、指標マークLCの中心が中抜きになっており遮断されないため、レーザ光の最も強度の大きい中心部分を遮断せずに済む。
 なおマーキングレーザ光MBは、実際に骨孔を形成する骨をいわば焦がして焦げ目や小さな穴などを形成することにより、骨自体にマーキングを施すものであり、骨に対してマーキングが施せるようにレーザ光源21の波長と出力パワーが選択されている。また、ユーザの操作入力部204に対する操作に応じて所定のマーキング時間(例えば0.1~10秒間)だけマーキングレーザ光MBを出射することができる。さらに、例えばユーザが操作入力部211であるボタンを操作している間に亘ってマーキングレーザ光MBを出射したり、ユーザが操作入力部211を操作した回数に応じてマーキングレーザ光MBを出射したりというように、ユーザの操作に応じた任意の時間だけマーキングレーザ光MBを出射することもできる。
<第4の実施の形態>
 次に、第4の実施の形態について、図14~図15を用いて説明する。第4の実施の形態では、2つのレーザ光源を用いる点が第1の実施の形態とは相違している。なお第4の実施の形態においては、第1の実施の形態と同一箇所に同一符号を、対応する箇所に300を加算した符号を附し、同一箇所についての説明を省略する。
 図14に示すように、レーザ装置301は、2波長(第1波長及び第2波長)のレーザ光(第1レーザ光及び第2レーザ光)を出射可能なレーザ光源321を有している。大きいエネルギーが必要な第2レーザ光の波長は、第1レーザ光の波長より短いことが好ましい。なおレーザ光源321としては、2つのレーザダイオードからそれぞれ第1レーザ光及び第2レーザ光を発射する2カンタイプでもよく、1つのレーザダイオードから第1レーザ光及び第2レーザ光の両方を発射する1カンタイプでも良い。
 非球面レンズ23,24は、波長の差異を利用して第1レーザ光を平行光に変換する一方、第2レーザ光を外側焦点位置でかつ2次元レーザ光LMの中心であるマーキング位置で焦点を結ぶ収束光に変換する。レーザ光源321として2カンタイプを使用した場合、第1レーザ光と第2レーザ光の出射光における光軸中心がずれることになる。光学部313における光軸中心は第2レーザ光の光軸中心に設定されることにより、第2レーザ光の光パワーを保持することができる。
 第1モードにおいて、レーザ光源321は、第1レーザ光を出射する。この結果、図15(A)に示すように、指標マークLCを有する2次元レーザ光LMが照射される。
 第2モードにおいて、レーザ光源321は、第1レーザ光及び第2レーザ光の両方を出射する。この結果、図15(B)に示すように、2次元レーザ光LMとマーキングレーザ光BMとが重畳された状態で2つのレーザ光を同時に照射することができる。これにより、ユーザは、位置決めに使用した2次元レーザ光LMを視認して確認しながらマーキングレーザ光MBを照射することができ、正しい位置にマーキングを行うことができる。
<第5の実施の形態>
 次に、第5の実施の形態について、図16を用いて説明する。第5の実施の形態では、回折格子を用いる点と、2つの波長のレーザ光を単独で出射する点と、レーザ光源321Xを稼動させる点とが第4の実施の形態とは相違している。なお第5の実施の形態においては、第4の実施の形態と同一箇所に同一符号を、対応する箇所にXを加算した符号を附し、同一箇所についての説明を省略する。
 回折格子327は、非球面レンズ23,24の間に設けられており、波長に応じてレーザ光を屈折させる特性を有している。従って、レーザ装置301Xでは、非球面レンズ23,24及び回折格子327の3つの光学部品により、第1レーザ光及び第2レーザ光の波長の相違を利用して第1レーザ光を平行光に、第2レーザ光を収束光に変換する。
 レーザ光源321Xは、2カンタイプの2波長レーザであり、レーザ光源321Xにおける2つのレーザ光の出射口を結ぶ方向に移動可能な可動装置を備えている。レーザ光源321Xは、第1レーザ光又は第2レーザ光をそれぞれ単独で出射すると共に、第1レーザ光を出射するときには光学部313Xにおける光学中心軸に第1レーザ光の光軸の中心がくるように、第2レーザ光を出射するときには光学部313Xにおける光学中心軸に第2レーザ光の光軸の中心がくるように、レーザ光源321Xの出射口を移動させる。
 第1モードにおいて、レーザ光源321Xは、第1レーザ光の光軸の中心を光学中心軸に合わせた状態で第1レーザ光を出射する。この結果、図13(A)に示したように、指標マークLCを有する2次元レーザ光LMが照射される。
 第2モードにおいて、レーザ光源321は、第2レーザ光の光軸の中心を光学中心軸に合わせた状態で第2レーザ光を出射する。この結果、図13(B)に示したように、マーキングレーザ光MBが照射される。
 このように、レーザ光源321Xの光軸の中心を移動可能にして常に光学中心軸に第1レーザ光及び第2レーザ光の光軸の中心を合わせることにより、レーザ光のエネルギーを無駄にすることなく、2次元レーザ光LM及びマーキングレーザ光MBの照射を行うことができる。
<第6の実施の形態>
 次に、第6の実施の形態について、図17~図18を用いて説明する。第6の実施の形態では、2つのレーザ光源がそれぞれ別の光路から入射される点と、指標マーク形成部325の位置が第4の実施の形態とは相違している。なお第6の実施の形態においては、第1の実施の形態と同一箇所に同一符号を、対応する箇所に400を加算した符号を附し、同一箇所についての説明を省略する。
 図17(A)に示すように、レーザ装置401は、第1レーザ光の光路となる第1光路20と、第2レーザ光の光路となる第2光路30とを有している。レーザ光源21から出射された第1レーザ光は第1光路20を通り、ハーフミラー434を通って共通光路40の非球面レンズ24に入射される。
 図17(B)に示すように、第2光路30では、レーザ光源321から出射された第2レーザ光がアパーチャ432、非球面レンズ433、ハーフミラー434を通って共通光路40の非球面レンズ24に入射される。
 第1光路20上(図ではアパーチャ22と非球面レンズ23の間)には、指標マーク形成部325が配置されている。従って、指標マーク形成部325によって第2レーザ光の一部が遮断されることはなく、第2レーザ光のエネルギー量を余すことなく利用することが可能である。
 レーザ装置401は、第1モードにおいて、第1光路20及び共通光路40を通過した第1レーザ光が2次元レーザ光LMとして出射される。また第2モードにおいて、2次元レーザ光LMと共に第2光路30及び共通光路40を通過した第2レーザ光がマーキングレーザ光MBとして出射される。
 図18(A)に示すように、2次元レーザ光LMは、十字型のレクチルマークである指標マークLCと共に、中心部分に形成された正方形状の調整マークLRが形成されている。この調整マークLRは、指標マークLCと同様、指標マーク形成部325によって影として形成されている。調整マークLRの形状に制限は無く、多角形や円などであっても良い。
 上述したように、マーキングレーザ光MBは収束光であり、マーキングを行いたいマーキング被形成部分にマーキングレーザ光MBの焦点近傍が位置するようにレーザ装置401を調整する必要がある。マーキングレーザ光MBの焦点位置におけるスポットサイズの直径と比して、調整マークLRの角辺が僅かに大きく形成されている。従って、マーキングレーザ光MBのスポットが調整マークLRの内部に入るようにユーザがレーザ装置401の位置を調整することにより、確実にマーキングを行うことができる。
<動作及び効果>
 以下、上記した実施形態から抽出される発明群の特徴について、必要に応じて課題及び効果等を示しつつ説明する。なお以下においては、理解の容易のため、上記各実施形態において対応する構成を括弧書き等で適宜示すが、この括弧書き等で示した具体的構成に限定されるものではない。また、各特徴に記載した用語の意味や例示等は、同一の文言にて記載した他の特徴に記載した用語の意味や例示として適用しても良い。
 本発明のレーザ装置は、ユーザの操作入力を受け付ける操作入力部(ボタン4,操作入力部204,304,404)と、
 前記操作入力部に対するユーザの操作に応じて400nm~1200nmの波長を有するレーザ光を発光するレーザ光源(レーザ光源21,321,421)と、
 前記レーザ光を、骨に形成される孔又は穴である骨孔の大きさである骨孔サイズの参照にするための所定の2次元形状を有する平行光に変換する光学部(光学部13,213,313)と、
 前記レーザ光を出射する光出射部(出射部5)とを有することを特徴とする。
 これにより、レーザ装置は、骨面の形状や傾斜などの形状要因に拘わらず骨孔を開ける領域を正確に投影できるため、形状要因に起因する目の錯覚による誤認を生じさせることがなく、骨孔形成時の作業効率を向上し得る。
 レーザ装置において前記光学部は、前記ユーザの操作入力に応じた第1モードにおいて、平行光になるように前記レーザ光を調整し、
 前記ユーザの操作入力に応じた第2モードにおいて、前記光出射部の外側において焦点を結ぶ収束光になるように前記レーザ光を調整することを特徴とする。
 これにより、レーザ装置は、第1モードにおいて骨面に対して平行光を投影して骨孔の位置決めを行い、続いて収束光を照射して位置決めされた骨孔のマーキングを行うことができる。すなわち、一つのレーザ装置を用いて位置決めからマーキングまでを行うことができるため、骨孔形成時の作業効率を著しく向上し得る。
 レーザ装置において前記光学部は、
 前記レーザ光を入射して集光状態を変化させる第1レンズと、
 前記第1レンズから入射される前記レーザ光の集光状態を変化させる可動式の第2レンズとを有することを特徴とする。
 これにより、第2レンズの位置を変えるだけでレーザ光を平行光と収束光に変換することができ、簡易な構成でマーキングの機能を備えるレーザ装置を構成できる。
 レーザ装置において、前記レーザ光源は、前記レーザ光として、
 前記第1モードに使用される第1レーザ光と、
 前記第2モードに使用される前記第1レーザ光とは波長の相違する第2レーザ光とを発光し、前記光学部は、
 前記第1レーザ光と前記第2レーザ光との波長の差異を利用して前記第1レーザ光が平行光になるように調整し、前記第2レーザ光が収束光になるように調整することを特徴とする。
 レーザ装置において前記光学部は、前記第2モードにおいて、
 平行光に調整された前記第1レーザ光と、
 収束光に調整された前記第2レーザ光とを同時に出射することを特徴とする。
 これにより、レーザ装置では、位置決め用の第1レーザ光を投影したまま、マーキング用の第2レーザ光を照射することができるため、位置決めした場所がずれていないことを確認しながらマーキングを行うことができ、マーキングの位置精度を向上することができる。
 レーザ装置において前記光学部は、
 前記レーザ光源として第1レーザ光を発射する第1レーザ光源及び第2レーザ光を発射する第2レーザ光源を有し、
 前記第2モードにおいて、
 平行光に調整された前記第1レーザ光と、
 収束光に調整された前記第2レーザ光とを同時に出射し、
 第1光路に入射された前記第1レーザ光と第2光路に入射された第2レーザ光を共通光路を介して前記光出射部から出射することを特徴とする。
 これにより、レーザ装置は、2つのレーザ光源を用いることができ、使用可能なレーザ光源の種類を増大させ、設計の自由度を向上できる。
 レーザ装置において、前記第1光路上に設置され、前記レーザ光が投影面に投影されたときに投影位置の指標となる指標マークを形成する指標マーク形成部を有することを特徴とする。
 これにより、レーザ装置は、マーキングに使用される第2レーザ光を遮断することなく、第1のレーザ光に基づく平行光に対して指標マークを形成することができる。
 レーザ装置において前記光学部は、
 前記第2モードにおいて、
 平行光に調整された前記第1レーザ光と、
 収束光に調整された前記第2レーザ光とを同時に出射し、
 前記指標マーク形成部は、
 前記レーザ光が投影面に投影されたときに第2レーザ光のスポットサイズの指標となる調整マークを形成することを特徴とする。
 これにより、レーザ装置は、調整マークを使ってマーキング用の第2レーザ光の焦点距離を調整できるため、焦点が合っていなかったためにマーキングが失敗することを未然に防止でき、マーキングの確実性を高めることができる。
 レーザ装置において、ユーザの操作入力を受け付ける操作入力部と、
 レーザ光を発光するレーザ光源と、
 前記レーザ光を出射する光出射部と、
 前記操作入力部に対するユーザの操作に応じた第1モードにおいて、前記レーザ光を所定の2次元形状を有する平行光になるよう調整する第1光学部と、
 前記操作入力部に対するユーザの操作に応じた第2モードにおいて、前記光出射部の外側において焦点を結ぶ収束光になるように前記レーザ光を調整する第2光学部と
 を備えることを特徴とする。
 これにより、一つのレーザ装置によって位置決め用の平行光とマーキング用の収束光とを出射できるため、投影面に対して位置決めをした後にマーキングを行う動作を連続的に行うことができ、マーキング時の作業効率を向上し得る。
 レーザ装置において前記光出射部は、
 前記平行光と前記収束光とを切替えて出射することを特徴とする。
 これにより、レーザ装置は、一つのレーザ装置を用いて位置決め後にマーキングを行う動作を連続的に行うことができる。
 レーザ装置において前記光出射部は、
 ユーザの操作入力部に対する操作入力に応じた第1モードにおいて、前記平行光のみを出射し、
 ユーザの操作入力部に対する操作入力に応じた第2モードにおいて、前記平行光及び前記収束光を出射することを特徴とする。
 これにより、第2モードにおいて、第1モードで位置決め用に使用した平行光をそのまま投影しながら収束光を出射することができ、第1モードにおける位置決めの状態を維持しながらマーキングを行うことができる。このため、例えばユーザがレーザ装置を手に持った状態で位置決めからマーキングを連続的に行うことが可能となり、マーキング時の作業効率を向上し得る。
 以上の構成において、本発明の骨孔位置決め方法では、本発明の400nm~1200nmの波長を有し、骨に形成される孔又は穴である骨孔の大きさである骨孔サイズの参照にするための所定の2次元形状を有し平行光でなるレーザ光を、ユーザの操作に応じて骨孔を形成する骨面に照射することにより、実際に開けられる骨穴の位置決めを行うことを特徴とする。
 これにより、複雑な形状を有する骨に対して孔の形状を正確に投影することができ、目の錯覚により見誤ることなく、骨孔の位置決めが可能となり、骨孔形成時の作業効率を向上し得る。
<他の実施の形態>
 なお、上述実施形態では、真円と十字によるレチクルマークを形成したが、本発明はこれに限らず、レチクルマークは必ずしも必要ではない。例えば中心位置として、中心部分にドットでなる指標マークを形成したり、十字と多角形とを組み合わせたり、交差する3本以上の線を利用するなどしても良い。また、必ずしも指標マークLCを設ける必要はない。
 また上述実施形態では、光学部13の終端に指標マーク形成部25を設けたが、本発明はこれに限らず、例えばノズルの先端である出射部に十字を印刷することにより指標マーク形成部を設けても良い。要は、光路上の任意の箇所に指標マーク形成部を配置することができる(アパーチャより後段が好ましい)。また、出射部にパターンを形成し、交換可能な構成にすることもできる。この場合、出射部の保護部材(指標マーク形成部)が落下するとアラームが鳴ったり、落下防止のヒモなどを取り付けておくことが望ましい。
 さらに上述実施形態では、レーザ装置1が全体として先細るようにした場合について述べたが、本発明はこれに限らず、レーザ装置の形状に制限は無い。
 また第1~第6の実施の形態の構成を適宜組み合わせることができる。例えば第4の実施の形態のレーザ装置301に対して第5の実施の形態の回折格子327を併用しても良い。
 さらに第4~第6の実施の形態では波長の差異を利用したが、例えば同一波長で出力パワーの相違する2つのレーザ光源を使用するようにしても良い。この場合、レーザ光発射後の光路が相違する第6の実施の形態におけるレーザ装置の構成が好適に用いられる。
 また、例えば第1の実施の形態のレーザ装置に対してアタッチメントを取り付ける構成とし、後付けでマーキング用のレーザ光を発射できるようにすることも可能である。この場合、第6の実施の形態における第2光路30、又は第2光路30とハーフミラー434を後付けのアタッチメントとして取り付けることができる。
 上述実施形態では特に述べていないが、レーザ装置を固定するスタンドを用いることも可能である。例えば第4の実施の形態におけるレーザ装置201をスタンドにおける上下作用方向に回転又は移動、若しくは回転及び移動可能なレーザ装置保持部に固定し、レーザ装置保持部を回転や移動動作をさせながら第1モードで位置決めを行い、位置決めを行ったところでレーザ装置保持部を固定する。レーザ装置保持部が固定された状態で第2モードにおけるマーキング用レーザ光を照射することにより、位置決めした位置からずれることなくマーキングを行うことができる。
 上述実施形態では、第2レーザ光の出力パワーが第1レーザ光よりも高い場合について述べた。本発明はこれに限らず、第1レーザ光の出力パワーが第2レーザ光よりも高いようにしても良い。第1レーザ光及び第2レーザ光の出力パワーは、2次元レーザ光LMの視認性、及びマーキング用レーザ光BMのマーキング特性によって適宜選択され、どちらのパワーが大きくてもよい。それに応じて、光学部において使用される各光学部品の種類は配置が適宜決定される。
 また上述実施形態では、電源切替部(操作入力部)としてのON/OFF切替部11と、レーザ光源としてのレーザ光源21と、光学部としての光学部13と、光出射部としての出射部5とからなるレーザ装置1を本発明のレーザ装置として構成した場合について述べたが、本発明はこれに限らず、その他種々の構成による電源切替部と、レーザ光源と、光学部13と、出射部5からなるレーザ装置を本発明として適用することが可能である。
 本発明は、例えば骨孔を形成に手術において使用されるレーザ装置に適用することができる。
1,101,201、301、301X、401:レーザ装置
2  :本体部
3  :ノズル
4  :ボタン
5  :出射部
11 :ON/OFF切替部
12 :電源部
13、213、313、313X、413 :光学部
21、321、321X、421 :レーザ光源
22、432 :アパーチャ
23、24、433:非球面レンズ
224:可動レンズ
25、125、425 :指標マーク形成部
LC,LCx,LCy:指標マーク
LM,LMx,LMy:2次元レーザ光
MB :マーキング用レーザ光
PF :投影面

 

Claims (15)

  1.  ユーザの操作入力を受け付ける操作入力部と、
     前記操作入力部に対するユーザの操作に応じて400nm~1200nmの波長を有するレーザ光を発光するレーザ光源と、
     前記レーザ光を、骨に形成される孔又は穴である骨孔の大きさである骨孔サイズの参照にするための所定の2次元形状を有する平行光に変換する光学部と、
     前記レーザ光を出射する光出射部と
     を有することを特徴とするレーザ装置。
  2.  前記レーザ光の光路上に設置され、前記レーザ光が投影面に投影されたときに投影位置の指標となる指標マークを形成する指標マーク形成部
     を有することを特徴とする請求項1に記載のレーザ装置。
  3.  前記光出射部は、
     細長い筒状のノズル部の先端に形成されている
     ことを特徴とする請求項1に記載のレーザ装置。
  4.  前記光学部は、
     前記ユーザの操作入力に応じた第1モードにおいて、平行光になるように前記レーザ光を調整し、
     前記ユーザの操作入力に応じた第2モードにおいて、前記光出射部の外側において焦点を結ぶ収束光になるように前記レーザ光を調整する
     ことを特徴とする請求項1に記載のレーザ装置。
  5.  前記光学部は、
     前記レーザ光を入射して集光状態を変化させる第1レンズと、
     前記第1レンズから入射される前記レーザ光の集光状態を変化させる可動式の第2レンズとを有する
     ことを特徴とする請求項4に記載のレーザ装置。
  6.  前記レーザ光源は、
     前記レーザ光として、
     前記第1モードに使用される第1レーザ光と、
     前記第2モードに使用される前記第1レーザ光とは波長の相違する第2レーザ光とを発光し、
     前記光学部は、
     前記第1レーザ光と前記第2レーザ光との波長の差異を利用して前記第1レーザ光が平行光になるように調整し、前記第2レーザ光が収束光になるように調整する
     ことを特徴とする請求項4に記載のレーザ装置。
  7.  前記光学部は、
     前記第2モードにおいて、
     平行光に調整された前記第1レーザ光と、
     収束光に調整された前記第2レーザ光とを同時に出射する
     ことを特徴とする請求項6に記載のレーザ装置。
  8.  前記光学部は、
     前記レーザ光源として第1レーザ光を発射する第1レーザ光源及び第2レーザ光を発射する第2レーザ光源を有し、
     前記第2モードにおいて、
     平行光に調整された前記第1レーザ光と、
     収束光に調整された前記第2レーザ光とを同時に出射し、
     第1光路に入射された前記第1レーザ光と第2光路に入射された第2レーザ光を共通光路を介して前記光出射部から出射する
     ことを特徴とする請求項4に記載のレーザ装置。
  9.  前記第1光路上に設置され、前記レーザ光が投影面に投影されたときに投影位置の指標となる指標マークを形成する指標マーク形成部
     を備えることを特徴とする請求項8に記載のレーザ装置。
  10.  前記光学部は、
     前記第2モードにおいて、
     平行光に調整された前記第1レーザ光と、
     収束光に調整された前記第2レーザ光とを同時に出射し、
     前記指標マーク形成部は、
     前記レーザ光が投影面に投影されたときに第2レーザ光のスポットサイズの指標となる調整マークを形成する
     ことを特徴とする請求項8に記載のレーザ装置。
  11.  ユーザの操作入力を受け付ける操作入力部と、
     レーザ光を発光するレーザ光源と、
     前記レーザ光を出射する光出射部と、
     前記操作入力部に対するユーザの操作に応じた第1モードにおいて、前記レーザ光を所定の2次元形状を有する平行光になるよう調整する第1光学部と、
     前記操作入力部に対するユーザの操作に応じた第2モードにおいて、前記光出射部の外側において焦点を結ぶ収束光になるように前記レーザ光を調整する第2光学部と
     を備えることを特徴とするレーザ装置。
  12.  前記光出射部は、
     前記平行光と前記収束光とを切替えて出射する
     ことを特徴とする請求項8に記載のレーザ装置。
  13.  前記光出射部は、
     ユーザの操作入力部に対する操作入力に応じた第1モードにおいて、前記平行光のみを出射し、
     ユーザの操作入力部に対する操作入力に応じた第2モードにおいて、前記平行光及び前記収束光を出射する
     ことを特徴とする請求項8に記載のレーザ装置。
  14.  前記指標マークは、
     十字形状を含む
     ことを特徴とする請求項2に記載のレーザ装置。
  15.  400nm~1200nmの波長を有し、骨に形成される孔又は穴である骨孔の大きさである骨孔サイズの参照にするための所定の2次元形状を有し平行光でなるレーザ光を、ユーザの操作に応じて骨孔を形成する骨面に照射することにより、実際に開けられる骨穴の位置決めを行う
     ことを特徴とする骨孔位置決め方法。

     
PCT/JP2019/019354 2018-05-16 2019-05-15 レーザ装置及び骨孔位置決め方法 WO2019221190A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020517400A JP6850412B2 (ja) 2018-05-16 2019-05-15 レーザ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-094903 2018-05-16
JP2018094903 2018-05-16

Publications (1)

Publication Number Publication Date
WO2019221190A1 true WO2019221190A1 (ja) 2019-11-21

Family

ID=68540322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019354 WO2019221190A1 (ja) 2018-05-16 2019-05-15 レーザ装置及び骨孔位置決め方法

Country Status (2)

Country Link
JP (1) JP6850412B2 (ja)
WO (1) WO2019221190A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116327097A (zh) * 2023-03-03 2023-06-27 上海交通大学医学院附属第九人民医院 一种内镜检测肿物大小的测量方法和测量装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233545A (ja) * 1995-02-24 1996-09-13 Sumitomo Electric Ind Ltd 穴形状測定方法および測定装置
JP2001514057A (ja) * 1997-08-29 2001-09-11 アサハ メディコ エ/エス 組織治療装置
JP2003083722A (ja) * 2001-09-14 2003-03-19 Toto Ltd レーザー投影による形状計測方法および装置
JP2017099918A (ja) * 2011-09-02 2017-06-08 ストライカー・コーポレイション ハウジングから延びる切断アクセサリ及びハウジングに対する切断アクセサリの位置を確立するアクチュエータを備える手術器具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233545A (ja) * 1995-02-24 1996-09-13 Sumitomo Electric Ind Ltd 穴形状測定方法および測定装置
JP2001514057A (ja) * 1997-08-29 2001-09-11 アサハ メディコ エ/エス 組織治療装置
JP2003083722A (ja) * 2001-09-14 2003-03-19 Toto Ltd レーザー投影による形状計測方法および装置
JP2017099918A (ja) * 2011-09-02 2017-06-08 ストライカー・コーポレイション ハウジングから延びる切断アクセサリ及びハウジングに対する切断アクセサリの位置を確立するアクチュエータを備える手術器具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116327097A (zh) * 2023-03-03 2023-06-27 上海交通大学医学院附属第九人民医院 一种内镜检测肿物大小的测量方法和测量装置
CN116327097B (zh) * 2023-03-03 2023-12-05 上海交通大学医学院附属第九人民医院 一种内镜检测肿物大小的测量方法和测量装置

Also Published As

Publication number Publication date
JP6850412B2 (ja) 2021-03-31
JPWO2019221190A1 (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
US3710798A (en) Laser system for microsurgery
ES2436199T3 (es) Fuente de iluminación y de láser y método de transmisión de la luz de iluminación y de la luz de tratamiento con láser
US5128509A (en) Method and apparatus for transforming and steering laser beams
US9427822B2 (en) Laser treatment device
US6383149B1 (en) Laser length discrepancy device
MX2009004286A (es) Dispositivo para cirugia de ojo con laser optico.
DE60329186D1 (de) Handstück zur gewebebehandlung
EP2631697B1 (en) Device and Method For Optical Image Correction In Metrology Systems
US11844494B2 (en) Alignment method and tools
WO2019221190A1 (ja) レーザ装置及び骨孔位置決め方法
KR100314093B1 (ko) 레이저 핸드피스
IL108335A (en) Laser microscope adaptor apparatus with auto-focus
JP6307510B2 (ja) レーザ治療装置
KR101751230B1 (ko) 의료용 핸드피스 및 그 제어방법
KR101765491B1 (ko) 부작용을 예방하고 치료 효과를 높일 수 있는 레이저 치료용 핸드피스 장치
CN205433837U (zh) 光学辅助测距手术刀
JP6134896B2 (ja) レーザハンドピース
US10966862B2 (en) Ophthalmic laser treatment apparatus
KR101552499B1 (ko) 교체형 의료용 핸드피스
US10139591B2 (en) Aspherical mirror for focusing laser beam in linear pattern and laser surgery device equipped with same
JPS61161781A (ja) レ−ザ−調整装置
JP2006346740A (ja) リモート溶接教示装置
US10470931B2 (en) Ophthalmic laser treatment apparatus
US20240102887A1 (en) Method for testing an orientation of a distal end of an optical fiber and test device therefor
JP4365302B2 (ja) 骨手術用支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020517400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804380

Country of ref document: EP

Kind code of ref document: A1