WO2019221000A1 - Photosensitive resin composition and antiglare film - Google Patents

Photosensitive resin composition and antiglare film Download PDF

Info

Publication number
WO2019221000A1
WO2019221000A1 PCT/JP2019/018520 JP2019018520W WO2019221000A1 WO 2019221000 A1 WO2019221000 A1 WO 2019221000A1 JP 2019018520 W JP2019018520 W JP 2019018520W WO 2019221000 A1 WO2019221000 A1 WO 2019221000A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
resin composition
photosensitive resin
weight
Prior art date
Application number
PCT/JP2019/018520
Other languages
French (fr)
Japanese (ja)
Inventor
義彦 平良
長谷川 亮
浩和 狩野
Original Assignee
株式会社ポラテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ポラテクノ filed Critical 株式会社ポラテクノ
Priority to JP2020519593A priority Critical patent/JPWO2019221000A1/en
Publication of WO2019221000A1 publication Critical patent/WO2019221000A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention is a novel anti-glare that can be applied to image display devices such as a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), and a cold cathode tube display (CRT).
  • image display devices such as a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), and a cold cathode tube display (CRT).
  • the present invention relates to a photosensitive resin composition for a film, an antiglare film obtained by curing the photosensitive resin composition, and an optical member such as a polarizing plate having an antiglare film, and an image display device.
  • image display devices such as liquid crystal displays, plasma displays, and electroluminescence displays have been increasing in size and definition. Since these displays have high image quality, the reflection of light and objects on the display screen has a great influence on the appearance of the image.
  • an inorganic filler or an organic filler is dispersed in a photosensitive resin and coated on a film to provide an antiglare property by making the surface uneven. It becomes possible to scatter incident light from light and prevent a decrease in visibility of the display.
  • the uneven shape on the surface of the antiglare film interferes with the phenomenon of generating a luminance distribution.
  • the brightness distribution causes a sparkling on the screen, resulting in a decrease in visibility.
  • Patent Document 1 a clear cured resin layer is provided as a first hard coat layer on a transparent plastic film or sheet substrate, and further a thin film of a cured resin containing inorganic or organic fine particles is provided as a second hard coat layer. A hard coat film is described.
  • Patent Document 2 in an antiglare hard coat film in which one or more antiglare hard coat layers are provided on at least one surface of a transparent plastic film, the internal haze is 0.5% or less and the surface haze / internal haze is 2. It describes the antiglare hard coat layer having a value of 0 or more.
  • the haze of the antiglare layer is 5% or less
  • the ten-point average height of the surface of the antiglare layer is 0.15 ⁇ m or more and 1.0 ⁇ m or less
  • a concave-convex surface of a concave portion having only a binder matrix without particles, the average interval of the concave-convex is 10 ⁇ m or more and 150 ⁇ m or less
  • the antiglare layer contains particles in the binder matrix, and the refractive index of the particles (nA ) And the refractive index difference (
  • Patent Document 4 a transparent base film and an antiglare layer are laminated, and the antiglare layer has a particle diameter of 0.5 to 2.0 ⁇ m and a refractive index of the translucent resin in the translucent resin.
  • the difference in refractive index between the first light-transmitting fine particles having a difference of 0.04 to 0.20 and the light-transmitting resin is 0.3 or less and 0.1 to 0.3 ⁇ m from the surface of the antiglare layer. It describes an antiglare film constituted by blending protruding second light-transmitting fine particles.
  • Patent Document 5 an organic resin material and a material incompatible with the organic resin material are mixed to prepare a coating liquid, and the coating liquid is applied to be incompatible with the organic resin material.
  • a second step of forming a coating film having a phase-separated structure in which the material is phase-separated, and a coating process in which the coating film is subjected to a curing process to cure the organic resin material to fix the phase-separated structure It describes about the manufacturing method of the surface uneven
  • Patent Document 6 in a light diffusive sheet in which a light diffusing layer composed of a resin film layer having fine irregularities on the surface is formed on at least one surface of a transparent substrate, the haze value of the light diffusive sheet is 40% or more.
  • a light diffusive sheet having an image sharpness of 35 or more measured by an optical comb having a width of 0.5 mm in JIS K7105.
  • An object of the present invention is to provide a novel photosensitive resin composition for an antiglare film that can be applied to an image display device such as a liquid crystal display, a plasma display, an electroluminescence display, a cold cathode tube display device, and the like.
  • An object is to provide an antiglare film obtained by curing a resin composition, an optical member such as a polarizing plate having the antiglare film, and an image display device.
  • the present inventors have found that the above object can be achieved by a photosensitive resin composition having the following constitution, and completed the present invention.
  • the present invention relates to the following.
  • [Invention 1] Containing polyfunctional (meth) acrylate (A) having at least three (meth) acryloyl groups in the molecule, photopolymerization initiator (C), polystyrene particles (D), and silica (E) A photosensitive resin composition for an antiglare film.
  • [Invention 2] When the total amount of the resin components of the photosensitive resin composition is 100% by weight, the component A is 10 to 95% by weight and the component C is 0.5 to 10% by weight.
  • [Invention 3] The photosensitive resin composition according to Invention 1 or 2, wherein the average particle size of the component D is 1 ⁇ m to 5 ⁇ m.
  • [Invention 4] The photosensitive resin composition according to any one of Inventions 1 to 3, wherein the difference between the refractive index of the A component and the refractive index of the D component is 0.05 to 1.5.
  • [Invention 5] The photosensitive resin composition according to any one of Inventions 1 to 4, wherein the E component has an average particle size of 1 ⁇ m to 5 ⁇ m.
  • [Invention 6] The photosensitive resin composition according to any one of Inventions 1 to 5, wherein the total haze of the antiglare film obtained by curing the photosensitive resin composition is 15% to 35%.
  • [Invention 7] The photosensitive resin composition according to any one of Inventions 1 to 6, wherein the anti-glare film obtained by curing the photosensitive resin composition has an internal haze of 10% or more.
  • [Invention 8] An antiglare film obtained by curing the photosensitive resin composition according to any one of Inventions 1 to 7.
  • [Invention 9] An optical member having a layer obtained by curing the photosensitive resin composition according to any one of Inventions 1 to 7.
  • [Invention 10] A polarizing plate having a layer obtained by curing the photosensitive resin composition according to any one of Inventions 1 to 7.
  • [Invention 11] An image display device having a layer obtained by curing the photosensitive resin composition according to any one of Inventions 1 to 7.
  • the antiglare film of the present invention provides good visibility, glare suppression, scratch resistance, scratch resistance, and / or pencil hardness. Moreover, there exists an advantage that an image display apparatus etc. has anti-glare property by applying the layer which hardened
  • the image display device of the present invention has good visibility. In one embodiment, the image display device of the present invention has good visibility and / or generation of glare is suppressed.
  • the antiglare film of the present invention can simultaneously form an uneven surface shape for scattering incident light and a region mainly responsible for internal scattering of light.
  • the photosensitive resin composition for an antiglare film of the present invention comprises a polyfunctional (meth) acrylate (A) having at least three (meth) acryloyl groups in the molecule, a photopolymerization initiator (C), and polystyrene particles. It contains (D) and silica (E).
  • the “total amount of the resin components of the photosensitive resin composition” refers to the total amount of the two components, the A component and the C component. Furthermore, when other thermopolymerizable or photopolymerizable monomers are included as the B component, the total amount of the three components of the A component, the C component, and the B component is referred to. Further, “relative to the total amount of the resin components of the photosensitive resin composition” means weight% when the total amount is 100% by weight. For example, when the total amount of component A, component B, and component C is 100 parts by weight, components other than component A, component B, and component C are added to the total amount of resin components in the photosensitive resin composition. On the other hand, 10% by weight means 10 parts by weight, and the total amount of the photosensitive resin composition is 110 parts by weight.
  • (meth) acrylate, (meth) acrylic acid, and (meth) acryloyl group described in this specification mean methacrylate or acrylate, methacrylic acid or acrylic acid, and methacryloyl group or acryloyl group, respectively. It is.
  • the polyfunctional (meth) acrylate of component A of the present invention has a (meth) acryloyl group, preferably an acryloyl group.
  • the (meth) acryloyl group is contained in the molecule at least 3 or more, preferably 3 to 10, more preferably 3 to 7, and further preferably 3 to 6.
  • the polyfunctional (meth) acrylate may further contain a functional group having active hydrogen such as a hydroxyl group or an amino group, or a functional group such as a urethane group or halogen.
  • polyfunctional (meth) acrylate examples include pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol hepta ( Polyester acrylates such as (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane polyethoxytri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, tripentaerythritol octa (meth) acrylate; Roxyethyl) isocyanurate, epichlorohydrin (ECH) modified glycerol tri (meth) acrylate, ethyleneoxy (EO) modified glycerol tri (meth)
  • polyfunctional (meth) acrylate of the present invention a polyfunctional (meth) acrylate having 3 to 7, preferably 3 to 6 (meth) acryloyl groups in the molecule; Polyfunctional acrylate having from 7 to 7, preferably from 3 to 6 acryloyl groups; polyester type polyfunctional having from 3 to 7, preferably from 3 to 6 (meth) acryloyl groups in the molecule (Meth) acrylate: Polyester type polyfunctional acrylate having 3 to 7, preferably 3 to 6 acryloyl groups in the molecule.
  • polyfunctional (meth) acrylate having active hydrogen examples include polyfunctional (meth) acrylates having a hydroxyl group or an amino group, such as pentaerythritol tri (meth) acrylate and dipentaerythritol hexa (meth).
  • Pentaerythritols such as acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, methylols such as trimethylolpropane tri (meth) acrylate, bisphenol A di And epoxy acrylates such as epoxy acrylate.
  • pentaerythritol triacrylate and dipentaerythritol pentaacrylate are preferable.
  • These polyfunctional (meth) acrylates having active hydrogen may be used alone or in admixture of two or more.
  • polyisocyanate a polyisocyanate composed of a chain aliphatic hydrocarbon, a cyclic aliphatic hydrocarbon (alicyclic), or an aromatic hydrocarbon
  • aliphatic hydrocarbon examples include saturated and unsaturated aliphatic hydrocarbons.
  • polyisocyanates include chain saturated hydrocarbon polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and methylenebis (4-cyclohexyl).
  • Isocyanate hydrogenated diphenylmethane diisocyanate, hydrogenated xylene diisocyanate, hydrogenated toluene diisocyanate, etc., cyclic saturated hydrocarbon (alicyclic) polyisocyanate, 2,4-tolylene diisocyanate, 1,3-xylylene diisocyanate, p-phenylene Diisocyanate, 3,3′-dimethyl-4,4′-diisocyanate, 6-isopropyl-1,3-phenyl diisocyanate Aromatic polyisocyanates such as 1,5-naphthalene diisocyanate. Of these, isophorone diisocyanate and hexamethylene diisocyanate are preferable. These polyisocyanates may be used alone or in combination of two or more.
  • the polyfunctional urethane (meth) acrylate is obtained, for example, by reacting the polyfunctional (meth) acrylate having active hydrogen with the polyisocyanate.
  • the amount of polyisocyanate used is usually in the range of 0.1 to 50 equivalents, preferably 0.1 to 10 equivalents as the isocyanate group equivalent, relative to 1 equivalent of active hydrogen group in the polyfunctional (meth) acrylate having active hydrogen. Range.
  • the reaction temperature is usually in the range of 30 to 150 ° C, preferably 50 to 100 ° C.
  • the end point of the reaction can be, for example, the time when the polyisocyanate calculated by the method of reacting residual isocyanate with excess n-butylamine and back titrating with 1N hydrochloric acid becomes 0.5% by weight or less.
  • a catalyst may be added for the purpose of shortening the reaction time for producing the polyfunctional urethane (meth) acrylate.
  • a basic catalyst or an acidic catalyst is used.
  • the basic catalyst include amines such as triethylamine, diethylamine, dibutylamine, and ammonia, phosphines such as tributylphosphine and triphenylphosphine, pyridine, pyrrole, and the like.
  • the acidic catalyst examples include metal salts such as copper naphthenate, cobalt naphthenate, zinc naphthenate, tributoxyaluminum, trititanium tetrabutoxide, zirconium tetrabutoxide, Lewis acids such as aluminum chloride, 2-ethylhexanetin, Examples thereof include tin compounds such as octyltin trilaurate, dibutyltin dilaurate, and octyltin diacetate. When these catalysts are used, the amount added is usually about 0.1 to 1 part by weight per 100 parts by weight of the polyisocyanate.
  • a polymerization inhibitor for example, methoquinone, hydroquinone, methylhydroquinone, phenothiazine, etc.
  • the amount used is about 0.01 to 1% by weight, preferably about 0.05 to 0.5% by weight, based on the reaction mixture.
  • the reaction temperature of the reaction is 60 to 150 ° C., preferably 80 to 120 ° C.
  • polyfunctional (meth) acrylate of the present invention examples include KAYARADPET30 (manufactured by Nippon Kayaku Co., Ltd.), light acrylate PE-3A, light acrylate PE-4A, light acrylate DPE-6A, light acrylate TMP-A (manufactured by Kyoeisha Chemical Co., Ltd.). ), SR444, SR351S, SR350 (above, manufactured by Sartomer Japan, Inc.), and the like.
  • the amount of the polyfunctional (meth) acrylate component used is usually 10 to 95% by weight, preferably 30 to 90% by weight, 60% of the total amount of the resin components of the photosensitive resin composition of the present invention. -90 wt%, 30-80 wt%, or 60-80 wt%.
  • thermopolymerizable or photopolymerizable monomer (B) in addition to the polyfunctional (meth) acrylate, other thermopolymerizable or photopolymerizable monomer (B) can be added.
  • the polymerizable monomer include (meth) acrylate having at least 2 or 1 (meth) acryloyl group in the molecule, (meth) acrylate having 1 or 2 or more epoxy groups, and the like.
  • bifunctional (meth) acrylate containing the above two (meth) acryloyl groups include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetra Ethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, 1,2-propylene glycol di (meth) acrylate, 1,3-propylene glycol di (meth) acrylate, 1,3-butanediol di (meth) ) Acrylate, 1,4-butanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,8-octanediol di (meth) acrylate 1,9-No Didiol (meth) acrylate, 1,10-decane
  • the monofunctional (meth) acrylate containing one (meth) acryloyl group are methyl (meth) acrylate, ethyl (meth) acrylate, 2-propyl (meth) acrylate, n-butyl (meth) ) Acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-lauryl (meth) acrylate, isolauryl (Meth) acrylate, n-stearyl (meth) acrylate, isostearyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, glycid
  • epoxy (meth) acrylate having one or more epoxy groups epoxy (meth) produced by reaction of a compound having one or more epoxy groups with (meth) acrylic acid
  • An acrylate is mentioned.
  • the epoxy (meth) acrylate is not particularly limited in structure, but it is a bisphenol A type, bisphenol S type, bisphenol F type, epoxidized depending on the compound having an epoxy group as a raw material for producing the epoxy (meth) acrylate.
  • An oil type, a phenol novolak type, an alicyclic type, or a modified version thereof may be mentioned.
  • Specific examples include an acrylate obtained by reacting an adduct of bisphenol A and epichlorohydrin with acrylic acid, an acrylate obtained by reacting phenol novolac with epichlorohydrin and reacting with acrylic acid, bisphenol S and epichlorohydrin.
  • Examples include, but are not limited to, acrylates obtained by reacting an adduct with acrylic acid, and acrylates obtained by reacting epoxidized soybean oil with acrylic acid. In addition, you may use these individually or in mixture of 2 or more types.
  • Preferred examples of the epoxy (meth) acrylate include epoxy (meth) acrylate produced by reacting a compound having two or three epoxy groups with (meth) acrylic acid; epoxidized bisphenol A and (meta ) Bisphenol A type epoxy (meth) acrylate produced by reacting acrylic acid; Bisphenol A type epoxy acrylate produced by reacting epoxidized bisphenol A and acrylic acid; Epoxidized phenol novolak and (meth) acrylic Phenol novolac type epoxy (meth) acrylate produced by reacting with acid; phenol novolak type epoxy acrylate produced by reacting epoxidized phenol novolak and acrylic acid, and the like.
  • epoxy (meth) acrylate Commercially available products can also be used as the epoxy (meth) acrylate.
  • Commercially available products include, for example, epoxy ester 3000A, epoxy ester MK (manufactured by Kyoeisha Chemical Co., Ltd.), CN104, CN104NS, CN151 (manufactured by Sartomer Japan Co., Ltd.), hyaloid 7851, hitaloid 7663 (more than, Hitachi Chemical Co., Ltd.).
  • the amount of component B used is usually 1 to 70% by weight, preferably 5 to 50% by weight, more preferably 5 to 30% by weight of the total amount of the resin components of the photosensitive resin composition of the present invention. %, Particularly preferably 10 to 30% by weight.
  • examples of the photopolymerization initiator include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; acetophenone, 2,2-diethoxy-2-phenylacetophenone, 1, 1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane
  • Acetophenones such as 1-one; anthraquinones such as 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone and 2-amylanthraquinone; Thioxanthones such as n-tone, 2-isopropylthioxanthone and
  • UV-polymerization initiator examples include Irgacure 184 (manufactured by Ciba Specialty Chemicals Co., Ltd.), Irgacure 907, 369, and 379 manufactured by BASF.
  • the amount of the photopolymerization initiator used is 0.5 to 10% by weight, preferably 1 to 7% by weight of the total amount of the resin components of the photosensitive resin composition of the present invention. %.
  • a curing accelerator can also be used.
  • the curing accelerator that can be used include triethanolamine, diethanolamine, N-methyldiethanolamine, 2-methylaminoethylbenzoate, dimethylaminoacetophenone, p-dimethylaminobenzoic acid isoamyl ester, amines such as EPA, 2-mercaptobenzo And hydrogen donors such as thiazole.
  • the amount of these curing accelerators used is usually 0 to 5% by weight when the solid content of the resin composition of the present invention is 100% by weight.
  • examples of the polystyrene particles include translucent particles such as non-crosslinked polystyrene particles, crosslinked polystyrene particles, crosslinked methyl methacrylate-styrene copolymer particles, and crosslinked acrylic-styrene copolymer particles.
  • the surface treatment is not particularly required, but the surface-treated particles may be used.
  • the shape of the polystyrene particles is not particularly limited. For example, a spherical shape or a cylindrical shape can be used. Of these, spherical ones are preferred. A spherical shape and a uniform shape are particularly preferable.
  • the polystyrene particles preferably have an average particle diameter of 1 to 5 ⁇ m, and commercially available products can be used.
  • commercially available products include SX series manufactured by Soken Chemical Co., Ltd., Techpolymer series manufactured by Sekisui Chemicals Co., Ltd., 3000 series, 4000 series and 2000 series manufactured by Moritex Corporation.
  • the average particle diameter is measured by, for example, a particle size distribution meter (for example, ELSZ-2000 manufactured by Otsuka Electronics Co., Ltd.) using a static light scattering method (photon correlation method).
  • a particle size distribution meter for example, ELSZ-2000 manufactured by Otsuka Electronics Co., Ltd.
  • static light scattering method photon correlation method
  • the average particle size of the polystyrene particles is preferably 1 to 5 ⁇ m, more preferably 2 to 4 ⁇ m. If it is less than 1 ⁇ m, sufficient antiglare properties tend not to be obtained. If it exceeds 5 ⁇ m, glare is likely to occur due to surface irregularities, and the permeability may be lowered.
  • the difference between the refractive index of the polyfunctional (meth) acrylate or the mixture of the polyfunctional (meth) acrylate and the epoxy (meth) acrylate and the refractive index of the polystyrene particles is 0.
  • it is from 05 to 1.5.
  • the refractive index of polyfunctional (meth) acrylate or a mixture of polyfunctional (meth) acrylate and epoxy (meth) acrylate can be measured, for example, with a multiwavelength Abbe refractometer (DR-M2, manufactured by Atago Co., Ltd.). .
  • DMD2 multiwavelength Abbe refractometer
  • a mixture of pentaerythritol triacrylate and epoxy acrylate having a refractive index of 1.482 to 1.493 can be used.
  • the refractive index of pentaerythritol triacrylate is 1.477.
  • the refractive index of polystyrene particles can be measured by an arbitrary method. For example, the mixing ratio of two kinds of solvents having different refractive indexes selected from methylene iodide, 1,2-dibromopropane, and n-hexane is used. It is also possible to measure the turbidity by dispersing an equal amount of translucent particles in a solvent whose refractive index has been changed by changing the refractive index, and measuring the refractive index of the solvent when the turbidity is minimized with an Abbe refractometer. it can.
  • the amount of polystyrene particles used is preferably 1 to 30% by weight, more preferably 5 to 25% by weight, based on the total amount of resin components of the photosensitive resin composition.
  • the shape of silica is not particularly limited.
  • spherical or non-spherical shapes such as a needle shape, an uneven shape, an elliptical shape, a bead shape, a cocoon shape, a rod shape, and a spindle shape can be given.
  • examples of silica include the NIPSIL series manufactured by Tosoh Silica Co., Ltd., the Excelica series manufactured by Tokuyama Corporation, and the like.
  • organosilica sol series manufactured by Nissan Chemical Industries, Snowtex series, Quatron PL series manufactured by Fuso Chemical Industry Co., Ltd., Seahoster KE series manufactured by Nippon Shokubai Co., Ltd., JGC Catalysts & Chemicals Co., Ltd.
  • the OSCAL series made may be used.
  • the average particle diameter of the silica is preferably 1 to 5 ⁇ m. If it exceeds 5 ⁇ m, glare is likely to occur due to surface irregularities, and the transmitted image definition and transparency may be lowered. If it is less than 1.0 ⁇ m, it is difficult to obtain antiglare properties, and the antiglare properties may be inferior.
  • the average particle size of the polystyrene particles and the average particle size of silica can be selected independently, but it is preferable to reduce the average particle size of silica.
  • the amount of silica used is usually 0.1 to 10% by weight, preferably 0.1%, based on the total amount of resin components of the photosensitive resin composition. Is 5 to 5% by weight, more preferably 0.1 to 2% by weight, and particularly preferably 0.3 to 2% by weight.
  • a leveling agent, an antifoaming agent, an ultraviolet absorber, a light stabilizer, and the like can be added to the photosensitive resin composition of the present invention as necessary, and the respective functionalities can be imparted.
  • leveling agents include fluorine compounds, silicone compounds, acrylic compounds, UV absorbers include benzotriazole compounds, benzophenone compounds, triazine compounds, and light stabilizers include hindered amine compounds, Examples thereof include benzoate compounds.
  • a diluent can be used in the photosensitive resin composition of the present invention.
  • diluents that can be used include alcohols (eg, methanol, ethanol, isopropyl alcohol, normal propyl alcohol, isobutyl alcohol, n-butyl alcohol, etc.), lactones (eg, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -heptalactone, ⁇ -acetyl- ⁇ -butyrolactone, ⁇ -caprolactone, etc.), ethers (eg, dioxane, 1,2-dimethoxymethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol) Monomethyl ether, propylene glycol monoethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, tetra Tylene glycol dimethyl
  • the concentration of the solid content (total amount of components A to E) of the photosensitive resin composition of the present invention is usually 10 to 80% by weight.
  • the amount is preferably 20 to 80% by weight, more preferably 20 to 60% by weight, and particularly preferably 30 to 60% by weight.
  • the manufacturing method of the anti-glare film of this invention is demonstrated.
  • the antiglare film of the present invention forms a coating layer on the base film using the resin composition of the present invention, and then forms an antiglare layer by irradiating the coating layer with active energy rays.
  • the active energy ray is not particularly limited, and examples thereof include ultraviolet rays and electron beams. In the case of curing with ultraviolet rays, it is preferable to use a xenon lamp, a high-pressure mercury lamp, or a metal halide lamp as the light source, and the amount of light, the arrangement of the light source, and the like are adjusted as necessary.
  • the temperature condition is not particularly limited, but is preferably 10 to 30 ° C, more preferably 15 to 25 ° C.
  • the irradiation time is preferably such that the base film is not damaged from the extent that the antiglare layer is sufficiently exhibited, and is preferably 5 to 30 seconds.
  • the oxygen concentration is preferably 1% by volume or less, and more preferably 0.5% by volume or less.
  • Nitrogen gas is preferable as the inert gas used.
  • the base film to be used may be a transparent film, and examples thereof include polyester, polypropylene, polyethylene, polyacrylate, polycarbonate, triacetylcellulose, polyethersulfone, and cycloolefin polymer.
  • the base film may be a thick sheet.
  • the base film to be used may be one provided with a color or an easy-adhesion layer or one subjected to surface treatment such as corona treatment.
  • the thickness of the substrate film can be selected from the range of 5 to 2000 ⁇ m, preferably 20 to 200 ⁇ m.
  • the thickness of the antiglare film of the present invention needs to be in the range of 1.0 to less than 25.0 ⁇ m, preferably 1.5 to 20 ⁇ m, more preferably 2.0 to 15.0 ⁇ m. If the thickness of the antiglare film is less than 1.0 ⁇ m, irregularities of polystyrene particles are formed on the surface of the antiglare film, and glare is likely to occur, and scratch resistance, pencil hardness, etc. are poor. When the thickness is 25.0 ⁇ m or more, curling tends to occur. In addition, the display device cannot be made thinner.
  • Examples of the method for applying the photosensitive resin composition include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, micro gravure coating, reverse micro gravure coating, and die coating. Ter coating, vacuum die coating, lip die coating, dip coating, flow coating, spin coating coating and the like.
  • the composition of the resin, the particle diameter of the dispersed particles, and the refractive index are formed simultaneously to form the surface irregularities for scattering incident light and the region mainly responsible for internal scattering of light. It is preferable to design the balance of dispersibility.
  • the measurement of the haze value of a film can be performed as follows. That is, the total haze value (total Hz) of the obtained film is measured according to JIS K7136.
  • the measuring device for example, a haze meter HM-150 manufactured by Murakami Color Research Laboratory Co., Ltd. can be used.
  • the total haze of the antiglare film is preferably 15 to 35%.
  • a film having a total haze of less than 15% is applied to a high-definition display of 100 ppi or more, glare is likely to occur.
  • the total haze exceeds 35%, glare is unlikely to occur, but the transmittance and color reproduction. And contrast may be reduced.
  • the internal haze of the antiglare film is preferably 10% or more. When the internal haze is less than 10%, glare is likely to occur when used for a high-definition display of 100 ppi or more.
  • the surface haze of the antiglare film is preferably 1 to 15%, more preferably 1 to 10%.
  • the surface haze is less than 1%, there is a problem that the antiglare effect of external light due to the uneven structure on the surface is small, and it is difficult to improve the visibility.
  • a film having a surface haze exceeding 15% is used for a high-definition display body of 100 ppi or more, there is a problem that glare is likely to occur due to the uneven structure of the surface.
  • an antireflection layer can be formed on the antiglare film in order to reduce the surface reflectance.
  • a material for forming the antireflection layer a refractive index material lower than that of the antiglare film is used.
  • the material for forming the antireflection layer include ultraviolet or thermosetting acrylic resin materials containing fluorine or silicon in the molecule, hybrid materials in which inorganic fine particles such as colloidal silica are dispersed in the resin, tetra Examples thereof include sol-gel materials using metal alkoxides such as ethoxysilane and titanium tetraethoxide.
  • the film thickness after drying is 0.05 to 0.15 ⁇ m (preferably, the film thickness is set so that the wavelength indicating the minimum reflectance is 500 to 700 nm, more preferably 520 to 650 nm).
  • the antireflection layer can be obtained by applying a material for forming the antireflection layer so that it is dried and then irradiating active energy rays such as ultraviolet rays and electron beams to form a cured film.
  • the anti-glare film of the present invention is preferably provided on the display surface of a high-definition display device of 100 ppi or more typified by liquid crystal display, plasma display, rear projection display, organic EL display, SED, flexible display, CRT and the like. It is.
  • the antiglare film of the present invention is also suitable for use in optical members such as polarizing plates.
  • the diluted solution of the obtained photosensitive resin composition was applied onto a triacetyl cellulose film (80 ⁇ m) so that the film thickness was about 6 ⁇ m, dried at 80 ° C., and then irradiated with an ultraviolet irradiator (UV conveyor device, eye graphics). Co., Ltd.) was cured by irradiation with 120 mJ / cm 2 to obtain an antiglare film.
  • an ultraviolet irradiator UV conveyor device, eye graphics
  • Example 2 95 parts by weight of pentaerythritol triacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARADPET 30) as polyfunctional (meth) acrylate, 5 parts by weight of Irgacure 184 (manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and tech as polystyrene particles 15 parts by weight of polymer XX-01JH (manufactured by Sekisui Plastics Co., Ltd., polystyrene particles, average particle size 2.0 ⁇ m, refractive index 1.595), NIPSIL SS-50F (manufactured by Tosoh Silica Co., Ltd., average)
  • a photosensitive resin composition was formulated by blending 0.575 parts by weight of (particle diameter 1.1 ⁇ m), and this was diluted with toluene so that the solid content concentration was 50%.
  • the diluted solution of the obtained photosensitive resin composition was applied on a triacetyl cellulose film (80 ⁇ m) so as to have a film thickness of about 6 ⁇ m, dried at 80 ° C., and then irradiated with an ultraviolet irradiator (UV conveyor device, eye graphics). Co., Ltd.) was cured by irradiation with 120 mJ / cm 2 to obtain an antiglare film.
  • an ultraviolet irradiator UV conveyor device, eye graphics
  • Example 3 Except that the ratio of pentaerythritol triacrylate and epoxy acrylate was changed as shown in Table 1, coating and film curing were performed in the same manner as in Example 1 to obtain an antiglare film.
  • Example 4 The ratio of pentaerythritol triacrylate and epoxy acrylate was changed as shown in Table 1, and coating and film curing were performed in the same manner as in Example 1 except that the amount of polystyrene particles was changed from 15 parts by weight to 17 parts by weight. An antiglare film was obtained.
  • Example 5 Coating and film curing were carried out in the same manner as in Example 2 except that the amount of pentaerythritol triacrylate was changed as shown in Table 1, and the amount of polystyrene particles was changed from 15 parts by weight to 13 parts by weight. A characteristic film was obtained.
  • Example 6 As silica, NIPSIL SS-50F of Example 1 was changed to NIPSILSS-178B (manufactured by Tosoh Silica Co., Ltd., average particle size 2.9 ⁇ m), and the blending amount was changed from 0.575 parts by weight to 0.375 parts by weight. Except that, application and film curing were performed in the same manner as in Example 1 to obtain an antiglare film.
  • Example 7 As the epoxy acrylate, except that the epoxy ester 3000A described in Example 1 was changed to CN-104NS (Sartomer Japan, Inc., epoxy acrylate), and the amount of NIPSILSS-50F was changed to 1.15 parts by weight. Coating and film curing were performed in the same manner as in Example 1 to obtain an antiglare film.
  • Example 8 Except that the polystyrene particles were changed from XX-01JH described in Example 1 to XX-02JH (manufactured by Sekisui Plastics Co., Ltd., polystyrene particles, average particle diameter 3.0 ⁇ m, refractive index 1.595). Application
  • Example 9 The amount of pentaerythritol triacrylate was changed as shown in Table 1, polystyrene particles were changed from XX-01JH to XX-02JH (manufactured by Sekisui Plastics Co., Ltd.), and the amount was changed from 15 parts by weight to 10 parts by weight. Except that, application and film curing were carried out in the same manner as in Example 2 to obtain an antiglare film.
  • Example 10 Except for changing the pentaerythritol triacrylate described in Example 1 to dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.), coating and film curing were performed in the same manner as in Example 1 to obtain an antiglare film. Obtained.
  • Comparative Example 1 Example except that the polystyrene particles were changed from XX-01JH described in Example 1 to XX-05JH (manufactured by Sekisui Plastics Co., Ltd., polystyrene particles, average particle diameter 2.5 ⁇ m, refractive index 1.525). Application
  • Comparative Example 2 Coating and curing were performed in the same manner as in Example 1 except that 66.5 parts by weight of pentaerythritol triacrylate described in Example 1 and 28.5 parts by weight of epoxy ester 3000A were blended and silica was not added. An antiglare film was obtained.
  • Comparative Example 3 Coating and curing were carried out in the same manner as in Example 1 except that 95 parts by weight of dipentaerythritol hexaacrylate described in Example 8 and epoxy ester 3000A and SS-50F were not added, to obtain an antiglare film. .
  • Table 1 shows the composition of Examples and Comparative Examples.
  • PET30 represents pentaerythritol triacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARADPET30)
  • DPHA represents dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.)
  • 3000A Represents an epoxy acrylate (manufactured by Kyoeisha Chemical Co., Ltd., epoxy ester 3000A)
  • CN-104NS represents an epoxy acrylate (manufactured by Sartomer Japan, Inc., CN-104NS)
  • 184D represents a photopolymerization initiator.
  • XX-01JH is polystyrene particles (manufactured by Sekisui Plastics Co., Ltd., Techpolymer XX-01JH, average particle size 2.0 ⁇ m, refractive index 1.
  • XX-02JH represents polystyrene particles (Sekisui XX-02JH, average particle size 3.0 ⁇ m, refractive index 1.595) manufactured by Seikoku Kogyo Co., Ltd.
  • XX-05JH is polystyrene particles (XX-05JH, Sekisui Plastics Co., Ltd., average)
  • SS-50F represents silica (manufactured by Tosoh Silica Co., Ltd., NIPSIL SS-50F, average particle diameter 1.1 ⁇ m)
  • SS-178B represents a particle diameter of 2.5 ⁇ m and a refractive index of 1.525).
  • the total light transmittance (Tt) was measured with a haze meter HM-150 manufactured by Murakami Color Research Laboratory.
  • total haze (total Hz) was measured with a haze meter HM-150 manufactured by Murakami Color Research Laboratory. Internal haze (internal Hz) and surface haze (surface Hz) were bonded to the antiglare layer-forming surface via an adhesive to cancel the surface haze, and then the haze manufactured by Murakami Color Research Laboratory Co., Ltd. It was measured with a meter HM-150.
  • the transmitted image definition was evaluated by a image clarity measuring instrument ICM-1 (manufactured by Suga Test Instruments).
  • Table 2 shows the evaluation results for each item.
  • Example 1 good results were obtained in all points of reflectance, glare, and transmitted image definition.
  • Example 2 having a composition excluding the epoxy ester 3000A from Example 1, similar to Example 1, good results were obtained in all of the points of reflectance, glare, and transmitted image sharpness.
  • Example 3 in which the ratio of pentaerythritol triacrylate and epoxy acrylate 3000A was changed, good film characteristics were obtained although the film was slightly inferior to Example 1.
  • Example 4 and Example 5 in which the amount of polystyrene particles was changed, good results were obtained in terms of reflectance and glare.
  • Example 6 in which the kind of silica was changed, Example 7 in which the kind of epoxy acrylate was changed, Examples 8 and 9 in which the particle diameter of the polystyrene particles was changed, and polyfunctional acrylate from pentaerythritol triacrylate to dipentaerythritol Example 10 which was changed to hexaacrylate was also good in terms of glare and the like.
  • Comparative Example 1 the internal haze and the surface haze are greatly lowered by changing the polystyrene particles from 1.595 to 1.525, which is good in terms of glare, but the reflectance is higher than that in Example 1. It was inferior as an antiglare film.
  • Comparative Example 2 the composition obtained by removing SS-50F from Example 3 was inferior in terms of glare due to changes in the formation of irregularities on the surface.
  • Comparative Example 3 by changing from pentaerythritol triacrylate to dipentaerythritol hexaacrylate and excluding the epoxy acrylate 3000A and SS-50F, the composition was greatly inferior to that of Example 1 in terms of glare and the reflectivity was also implemented. The result was inferior to that of Example 1.
  • the photosensitive resin composition for an antiglare film of the present invention has a composition containing a polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups, a photopolymerization initiator, polystyrene particles, and silica.
  • a dazzling film can be obtained.
  • the antiglare film of the present invention can provide antiglare properties by being bonded to an image display device such as a cathode ray tube display device, a plasma display panel, a liquid crystal display, or organic electroluminescence. Has the above applicability.
  • the antiglare film of the present invention provides good visibility, glare suppression, scratch resistance, scratch resistance, and / or pencil hardness. Give visibility.

Abstract

The present invention relates to a photosensitive resin composition for an antiglare film, comprising (A) a multifunctional (meth)acrylate having at least three or more (meth)acryloyl groups in the molecule, (C) a photopolymerization initiator, (D) polystyrene particles, and (E) silica, and also relates to an antiglare film provided by the cure of the photosensitive resin composition.

Description

感光性樹脂組成物及び防眩性フィルムPhotosensitive resin composition and antiglare film
 本発明は、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、冷陰極管表示装置(CRT)等の画像表示装置に適用されうる、新規な防眩性(anti-glare)フィルム用の感光性樹脂組成物及び、当該感光性樹脂組成物を硬化した防眩性フィルム、さらには防眩性フィルムを有する偏光板等の光学部材及び画像表示装置に関するものである。 The present invention is a novel anti-glare that can be applied to image display devices such as a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), and a cold cathode tube display (CRT). The present invention relates to a photosensitive resin composition for a film, an antiglare film obtained by curing the photosensitive resin composition, and an optical member such as a polarizing plate having an antiglare film, and an image display device.
 近年においては、液晶ディスプレイ、プラズマディスプレイ、エレクトロルミネッセンスディスプレイなどの画像表示装置の大型化・高精細化が進んでいる。これらのディスプレイは高画質であるため、その表示画面部への光や物体の映りこみが画像の見栄えに与える影響が大きい。 In recent years, image display devices such as liquid crystal displays, plasma displays, and electroluminescence displays have been increasing in size and definition. Since these displays have high image quality, the reflection of light and objects on the display screen has a great influence on the appearance of the image.
 表示画面部の映り込み防止の方法としては、感光性樹脂中に無機フィラーや有機フィラーを分散させたものをフィルム上にコーティングし、表面に凹凸をつけて防眩性を出す方法があり、外光より入射する光を散乱させ、ディスプレイの視認性の低下を防ぐことが可能となる。 As a method for preventing the reflection of the display screen part, there is a method in which an inorganic filler or an organic filler is dispersed in a photosensitive resin and coated on a film to provide an antiglare property by making the surface uneven. It becomes possible to scatter incident light from light and prevent a decrease in visibility of the display.
 しかしながら画像表示装置の高精細化によって、防眩性フィルム表面の凹凸形状が干渉し、輝度分布が発生する現象が問題となっている。輝度分布により画面にギラツキ(sparkling)が生じることで視認性の低下を引き起こす。感光性樹脂とフィラーとの間に屈折率差を設けて内部ヘイズにより光を散乱させギラツキを抑える試みもあるが、防眩性、像鮮明度、コントラストなど全ての要求を満たすものはなかった。 However, due to the high definition of the image display device, the uneven shape on the surface of the antiglare film interferes with the phenomenon of generating a luminance distribution. The brightness distribution causes a sparkling on the screen, resulting in a decrease in visibility. Although there is an attempt to suppress glare by providing a refractive index difference between the photosensitive resin and the filler to scatter light by internal haze, none of them satisfy all the requirements such as antiglare property, image definition, and contrast.
 特許文献1では、透明プラスチックフィルム又はシート基材に第1ハードコート層としてクリア硬化樹脂層を設け、さらに第2ハードコート層として無機又は有機微粒子を含有する硬化樹脂の薄膜を設けた防眩性ハードコートフィルムが記載されている。 In Patent Document 1, a clear cured resin layer is provided as a first hard coat layer on a transparent plastic film or sheet substrate, and further a thin film of a cured resin containing inorganic or organic fine particles is provided as a second hard coat layer. A hard coat film is described.
 特許文献2では、透明プラスチックフィルムの少なくとも片面に、1層以上の防眩ハードコート層を設けた防眩ハードコートフィルムにおいて、内部ヘイズが0.5%以下、かつ表面ヘイズ/内部ヘイズが2.0以上とした防眩ハードコート層に関して記載されている。 In Patent Document 2, in an antiglare hard coat film in which one or more antiglare hard coat layers are provided on at least one surface of a transparent plastic film, the internal haze is 0.5% or less and the surface haze / internal haze is 2. It describes the antiglare hard coat layer having a value of 0 or more.
 特許文献3では、防眩層のヘイズが5%以下であること、防眩層表面の十点平均高さが0.15μm以上1.0μm以下であること、防眩層の粒子が存在する凸部と、粒子がなくバインダマトリックスのみの凹部の凹凸表面を備え、凹凸の平均間隔が10μm以上150μm以下であること、防眩層がバインダマトリックス中に粒子を含み、且つ、粒子の屈折率(nA)とバインダマトリックスの屈折率(nM)の屈折率差(|nA-nM|)が0.00以上0.04以下である防眩フィルムが記載されている。 In Patent Document 3, the haze of the antiglare layer is 5% or less, the ten-point average height of the surface of the antiglare layer is 0.15 μm or more and 1.0 μm or less, and convexity where particles of the antiglare layer are present. And a concave-convex surface of a concave portion having only a binder matrix without particles, the average interval of the concave-convex is 10 μm or more and 150 μm or less, the antiglare layer contains particles in the binder matrix, and the refractive index of the particles (nA ) And the refractive index difference (| nA−nM |) of the refractive index (nM) of the binder matrix is 0.00 to 0.04.
 特許文献4では、透明基材フィルムと防眩層を積層してなり、防眩層は透光性樹脂中に、粒子径が0.5~2.0μm、透光性樹脂との屈折率の差が0.04~0.20である第1の透光性微粒子、及び、透光性樹脂との屈折率の差が0.3以下で防眩層の表面より0.1~0.3μm突出している第2の透光性微粒子を配合して構成される防眩フィルムについて記載されている。 In Patent Document 4, a transparent base film and an antiglare layer are laminated, and the antiglare layer has a particle diameter of 0.5 to 2.0 μm and a refractive index of the translucent resin in the translucent resin. The difference in refractive index between the first light-transmitting fine particles having a difference of 0.04 to 0.20 and the light-transmitting resin is 0.3 or less and 0.1 to 0.3 μm from the surface of the antiglare layer. It describes an antiglare film constituted by blending protruding second light-transmitting fine particles.
 特許文献5では、有機樹脂材料と有機樹脂材料に対して非相溶性の材料とを混合し、塗工液を調製する第1工程と、塗工液を塗布し有機樹脂材料と非相溶性の材料とが相分離した相分離構造を有する塗膜を形成する第2工程と、塗膜に硬化処理を施し有機樹脂材料を硬化させて相分離構造を固定化した後、硬化処理を施した塗膜中から非相溶性の材料を除去し、表面凹凸構造を有する硬化樹脂層を形成する第3工程からなる表面凹凸シートの製造方法に関して記載されている。 In Patent Document 5, an organic resin material and a material incompatible with the organic resin material are mixed to prepare a coating liquid, and the coating liquid is applied to be incompatible with the organic resin material. A second step of forming a coating film having a phase-separated structure in which the material is phase-separated, and a coating process in which the coating film is subjected to a curing process to cure the organic resin material to fix the phase-separated structure, It describes about the manufacturing method of the surface uneven | corrugated sheet | seat which consists of a 3rd process which removes an incompatible material from a film | membrane, and forms the cured resin layer which has a surface uneven | corrugated structure.
 特許文献6では、透明基板の少なくとも片面に、表面に微細凹凸形状を有する樹脂皮膜層からなる光拡散層が形成されている光拡散性シートにおいて、光拡散性シートのヘイズ値が40%以上であって、かつJIS K7105における0.5mm幅の光学くしで測定した像鮮明性が35以上の光拡散性シートに関して記載されている。 In Patent Document 6, in a light diffusive sheet in which a light diffusing layer composed of a resin film layer having fine irregularities on the surface is formed on at least one surface of a transparent substrate, the haze value of the light diffusive sheet is 40% or more. In addition, it describes a light diffusive sheet having an image sharpness of 35 or more measured by an optical comb having a width of 0.5 mm in JIS K7105.
特開2000-912号公報JP 2000-912 A 特開2007-58204号公報JP 2007-58204 A 特開2011-59481号公報JP 2011-59481 A 特開2000-121809号公報JP 2000-121809 A 特開2006-116533号公報JP 2006-116533 A 特開2002-107512号公報JP 2002-107512 A
 本発明の課題は、液晶ディスプレイ、プラズマディスプレイ、エレクトロルミネッセンスディスプレイ、冷陰極管表示装置等の画像表示装置に適用されうる、新規な防眩性フィルム用の感光性樹脂組成物、及び、当該感光性樹脂組成物を硬化した防眩性フィルム、さらには当該防眩性フィルムを有する偏光板等の光学部材及び画像表示装置を提供することを目的とする。 An object of the present invention is to provide a novel photosensitive resin composition for an antiglare film that can be applied to an image display device such as a liquid crystal display, a plasma display, an electroluminescence display, a cold cathode tube display device, and the like. An object is to provide an antiglare film obtained by curing a resin composition, an optical member such as a polarizing plate having the antiglare film, and an image display device.
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、以下の構成を有する感光性樹脂組成物により、前記目的を達成できることを見出し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above object can be achieved by a photosensitive resin composition having the following constitution, and completed the present invention.
 本発明は、以下に関する。
[発明1]分子内に少なくとも3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート(A)、光重合開始剤(C)、ポリスチレン粒子(D)、及びシリカ(E)を含有する防眩性フィルム用感光性樹脂組成物。
[発明2]感光性樹脂組成物の樹脂成分の合計量を100重量%とした時、A成分が10~95重量%、C成分が0.5~10重量%であり、感光性樹脂組成物の樹脂成分の合計量に対してD成分が1~30重量%、E成分が0.1~10重量%である、発明1に記載の感光性樹脂組成物。
[発明3]D成分の平均粒子径が、1μmから5μmである、発明1又は2に記載の感光性樹脂組成物。
[発明4]A成分の屈折率と、D成分の屈折率の差が0.05から1.5である、発明1~3のいずれか一項に記載の感光性樹脂組成物。
[発明5]E成分の平均粒子径が、1μmから5μmである、発明1~4のいずれか一項に記載の感光性樹脂組成物。
[発明6]感光性樹脂組成物を硬化した防眩性フィルムの全ヘイズが15%から35%である、発明1~5のいずれか一項に記載の感光性樹脂組成物。
[発明7]感光性樹脂組成物を硬化した防眩性フィルムの内部ヘイズが10%以上である、発明1~6のいずれか一項に記載の感光性樹脂組成物。
[発明8]発明1~7のいずれか一項に記載の該感光性樹脂組成物を硬化した防眩性フィルム。
[発明9]発明1~7のいずれか一項に記載の感光性樹脂組成物を硬化した層を有する光学部材。
[発明10]発明1~7のいずれか一項に記載の感光性樹脂組成物を硬化した層を有する偏光板。
[発明11]発明1~7のいずれか一項に記載の感光性樹脂組成物を硬化した層を有する画像表示装置。
The present invention relates to the following.
[Invention 1] Containing polyfunctional (meth) acrylate (A) having at least three (meth) acryloyl groups in the molecule, photopolymerization initiator (C), polystyrene particles (D), and silica (E) A photosensitive resin composition for an antiglare film.
[Invention 2] When the total amount of the resin components of the photosensitive resin composition is 100% by weight, the component A is 10 to 95% by weight and the component C is 0.5 to 10% by weight. The photosensitive resin composition according to invention 1, wherein the D component is 1 to 30% by weight and the E component is 0.1 to 10% by weight with respect to the total amount of the resin components.
[Invention 3] The photosensitive resin composition according to Invention 1 or 2, wherein the average particle size of the component D is 1 μm to 5 μm.
[Invention 4] The photosensitive resin composition according to any one of Inventions 1 to 3, wherein the difference between the refractive index of the A component and the refractive index of the D component is 0.05 to 1.5.
[Invention 5] The photosensitive resin composition according to any one of Inventions 1 to 4, wherein the E component has an average particle size of 1 μm to 5 μm.
[Invention 6] The photosensitive resin composition according to any one of Inventions 1 to 5, wherein the total haze of the antiglare film obtained by curing the photosensitive resin composition is 15% to 35%.
[Invention 7] The photosensitive resin composition according to any one of Inventions 1 to 6, wherein the anti-glare film obtained by curing the photosensitive resin composition has an internal haze of 10% or more.
[Invention 8] An antiglare film obtained by curing the photosensitive resin composition according to any one of Inventions 1 to 7.
[Invention 9] An optical member having a layer obtained by curing the photosensitive resin composition according to any one of Inventions 1 to 7.
[Invention 10] A polarizing plate having a layer obtained by curing the photosensitive resin composition according to any one of Inventions 1 to 7.
[Invention 11] An image display device having a layer obtained by curing the photosensitive resin composition according to any one of Inventions 1 to 7.
 本発明によれば、新規な防眩性フィルムを提供することができる。一態様において、本発明の防眩性フィルムは良好な視認性、ギラツキ抑制、傷防止性、耐擦傷性、及び/又は、鉛筆硬度を与える。また本発明の感光性樹脂組成物を硬化した層を画像表示装置等に適用することで、画像表示装置等に防眩性を有するという利点がある。一態様において、本発明の画像表示装置等は良好な視認性を有する。一態様において、本発明の画像表示装置等は良好な視認性を有し、及び/又は、ギラツキの発生が抑えられている。一態様において、本発明の防眩性フィルムは、入射光を散乱させるための表面凹凸形状と、主に光の内部散乱を担う領域とを同時に形成することができる。 According to the present invention, a novel antiglare film can be provided. In one embodiment, the antiglare film of the present invention provides good visibility, glare suppression, scratch resistance, scratch resistance, and / or pencil hardness. Moreover, there exists an advantage that an image display apparatus etc. has anti-glare property by applying the layer which hardened | cured the photosensitive resin composition of this invention to an image display apparatus etc. In one embodiment, the image display device of the present invention has good visibility. In one embodiment, the image display device of the present invention has good visibility and / or generation of glare is suppressed. In one embodiment, the antiglare film of the present invention can simultaneously form an uneven surface shape for scattering incident light and a region mainly responsible for internal scattering of light.
 本発明の防眩性フィルム用感光性樹脂組成物は、分子内に少なくとも3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート(A)、光重合開始剤(C)、ポリスチレン粒子(D)、及びシリカ(E)を含有することを特徴とする。 The photosensitive resin composition for an antiglare film of the present invention comprises a polyfunctional (meth) acrylate (A) having at least three (meth) acryloyl groups in the molecule, a photopolymerization initiator (C), and polystyrene particles. It contains (D) and silica (E).
 本発明において「感光性樹脂組成物の樹脂成分の合計量」とは、前記のA成分及びC成分の2者の合計量をいう。さらにB成分として他の熱重合性又は光重合性モノマーを含む場合は、前記のA成分、C成分、及びB成分の3者の合計量をいう。また、「感光性樹脂組成物の樹脂成分の合計量に対して」ということは、当該合計量を100重量%としたときの、重量%をいう。例えば、A成分、B成分、及びC成分の合計量が、100重量部である場合に、A成分、B成分、及びC成分以外の成分が、感光性樹脂組成物の樹脂成分の合計量に対して10重量%とは、10重量部のことであり、感光性樹脂組成物の全体量は、110重量部ということになる。 In the present invention, the “total amount of the resin components of the photosensitive resin composition” refers to the total amount of the two components, the A component and the C component. Furthermore, when other thermopolymerizable or photopolymerizable monomers are included as the B component, the total amount of the three components of the A component, the C component, and the B component is referred to. Further, “relative to the total amount of the resin components of the photosensitive resin composition” means weight% when the total amount is 100% by weight. For example, when the total amount of component A, component B, and component C is 100 parts by weight, components other than component A, component B, and component C are added to the total amount of resin components in the photosensitive resin composition. On the other hand, 10% by weight means 10 parts by weight, and the total amount of the photosensitive resin composition is 110 parts by weight.
 以下、これらの各成分について説明する。
 なお、本明細書に記載の(メタ)アクリレート、(メタ)アクリル酸、及び(メタ)アクリロイル基なる用語は、それぞれメタクリレート又はアクリレート、メタクリル酸又はアクリル酸、及びメタクリロイル基又はアクリロイル基を意味するものである。
Hereinafter, each of these components will be described.
The terms (meth) acrylate, (meth) acrylic acid, and (meth) acryloyl group described in this specification mean methacrylate or acrylate, methacrylic acid or acrylic acid, and methacryloyl group or acryloyl group, respectively. It is.
 本発明のA成分の多官能(メタ)アクリレートは、(メタ)アクリロイル基、好ましくはアクリロイル基を有する。当該(メタ)アクリロイル基は分子内に少なくとも3個以上、好ましくは3個から10個、より好ましくは3個から7個、さらに好ましくは3個から6個含まれる。当該多官能(メタ)アクリレートは、水酸基やアミノ基などの活性水素を有する官能基、ウレタン基、ハロゲンなどの官能基をさらに含有していてもよい。 The polyfunctional (meth) acrylate of component A of the present invention has a (meth) acryloyl group, preferably an acryloyl group. The (meth) acryloyl group is contained in the molecule at least 3 or more, preferably 3 to 10, more preferably 3 to 7, and further preferably 3 to 6. The polyfunctional (meth) acrylate may further contain a functional group having active hydrogen such as a hydroxyl group or an amino group, or a functional group such as a urethane group or halogen.
 当該多官能(メタ)アクリレートとしては、例えばペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート等のポリエステルアクリレート類;トリス(アクリロキシエチル)イソシアヌレート、エピクロルヒドリン(ECH)変性グリセロールトリ(メタ)アクリレート、エチレンオキシド(EO)変性グリセロールトリ(メタ)アクリレート、プロピレンオキシド(PO)変性グリセロールトリ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、シリコーンヘキサ(メタ)アクリレート、ジオールとポリイソシアネートと水酸基を有する多官能(メタ)アクリレートとの反応物であるポリウレタン多官能(メタ)アクリレート、活性水素(水酸基、アミノ基等)を有する多官能(メタ)アクリレートとポリイソシアネート化合物の反応物である多官能ウレタン(メタ)アクリレートなどが挙げられる。なお、これらは、単独又は2種以上を混合して使用しても良い。 Examples of the polyfunctional (meth) acrylate include pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol hepta ( Polyester acrylates such as (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane polyethoxytri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, tripentaerythritol octa (meth) acrylate; Roxyethyl) isocyanurate, epichlorohydrin (ECH) modified glycerol tri (meth) acrylate, ethyleneoxy (EO) modified glycerol tri (meth) acrylate, propylene oxide (PO) modified glycerol tri (meth) acrylate, EO modified phosphate tri (meth) acrylate, caprolactone modified trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane Tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, silicone hexa (meth) acrylate, diol, polyisocyanate and hydroxyl group Polyurethane polyfunctional (meth) acrylate, which is a reaction product with polyfunctional (meth) acrylate having polyamine, polyfunctional having active hydrogen (hydroxyl group, amino group, etc.) Such polyfunctional urethane (meth) acrylate which is a reaction product of capacity (meth) acrylate and a polyisocyanate compound. In addition, you may use these individually or in mixture of 2 or more types.
 本発明の多官能(メタ)アクリレートの好ましい例としては、分子内に3個から7個、好ましくは3個から6個の(メタ)アクリロイル基を有する多官能(メタ)アクリレート;分子内に3個から7個、好ましくは3個から6個のアクリロイル基を有する多官能アクリレート;分子内に3個から7個、好ましくは3個から6個の(メタ)アクリロイル基を有するポリエステル型の多官能(メタ)アクリレート;分子内に3個から7個、好ましくは3個から6個のアクリロイル基を有するポリエステル型の多官能アクリレートが挙げられる。 As a preferable example of the polyfunctional (meth) acrylate of the present invention, a polyfunctional (meth) acrylate having 3 to 7, preferably 3 to 6 (meth) acryloyl groups in the molecule; Polyfunctional acrylate having from 7 to 7, preferably from 3 to 6 acryloyl groups; polyester type polyfunctional having from 3 to 7, preferably from 3 to 6 (meth) acryloyl groups in the molecule (Meth) acrylate: Polyester type polyfunctional acrylate having 3 to 7, preferably 3 to 6 acryloyl groups in the molecule.
 前記の活性水素を有する多官能(メタ)アクリレートの例としては、水酸基やアミノ基を有する多官能(メタ)アクリレートが挙げられ、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート等のペンタエリスリトール類、トリメチロールプロパントリ(メタ)アクリレート等のメチロール類、ビスフェノールAジエポキシアクリレート等のエポキシアクリレート類等が挙げられる。中でも、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレートが好ましい。これらの活性水素を有する多官能(メタ)アクリレートは単独で用いても2種以上混合して用いてもよい。 Examples of the polyfunctional (meth) acrylate having active hydrogen include polyfunctional (meth) acrylates having a hydroxyl group or an amino group, such as pentaerythritol tri (meth) acrylate and dipentaerythritol hexa (meth). Pentaerythritols such as acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, methylols such as trimethylolpropane tri (meth) acrylate, bisphenol A di And epoxy acrylates such as epoxy acrylate. Of these, pentaerythritol triacrylate and dipentaerythritol pentaacrylate are preferable. These polyfunctional (meth) acrylates having active hydrogen may be used alone or in admixture of two or more.
 前記のポリイソシアネートとしては、鎖状脂肪族炭化水素、環状脂肪族炭化水素(脂環式)、又は芳香族炭化水素で構成されるポリイソシアネートを用いることができる。前記「脂肪族炭化水素」として、飽和及び不飽和脂肪族炭化水素が挙げられる。このようなポリイソシアネートとしては、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート等の鎖状飽和炭化水素ポリイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、水添ジフェニルメタンジイソシアネート、水添キシレンジイソシアネート、水添トルエンジイソシアネート等の環状飽和炭化水素(脂環式)ポリイソシアネート、2,4-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、p-フェニレンジイソシアネート、3,3’-ジメチル-4,4’-ジイソシアネート、6-イソプロピル-1,3-フェニルジイソシアネート、1,5-ナフタレンジイソシアネート等の芳香族ポリイソシアネートが挙げられる。中でも、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートが好ましい。これらポリイソシアネートは単独で用いても2種以上混合して用いてもよい。 As the polyisocyanate, a polyisocyanate composed of a chain aliphatic hydrocarbon, a cyclic aliphatic hydrocarbon (alicyclic), or an aromatic hydrocarbon can be used. Examples of the “aliphatic hydrocarbon” include saturated and unsaturated aliphatic hydrocarbons. Examples of such polyisocyanates include chain saturated hydrocarbon polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and methylenebis (4-cyclohexyl). Isocyanate), hydrogenated diphenylmethane diisocyanate, hydrogenated xylene diisocyanate, hydrogenated toluene diisocyanate, etc., cyclic saturated hydrocarbon (alicyclic) polyisocyanate, 2,4-tolylene diisocyanate, 1,3-xylylene diisocyanate, p-phenylene Diisocyanate, 3,3′-dimethyl-4,4′-diisocyanate, 6-isopropyl-1,3-phenyl diisocyanate Aromatic polyisocyanates such as 1,5-naphthalene diisocyanate. Of these, isophorone diisocyanate and hexamethylene diisocyanate are preferable. These polyisocyanates may be used alone or in combination of two or more.
 前記の多官能ウレタン(メタ)アクリレートは、例えば、前記の活性水素を有する多官能(メタ)アクリレートと前記のポリイソシアネートとを反応させて得られる。活性水素を有する多官能(メタ)アクリレート中の活性水素基1当量に対し、ポリイソシアネートの使用量は、そのイソシアネート基当量として通常0.1~50当量の範囲、好ましくは0.1~10当量の範囲である。反応温度は通常30~150℃、好ましくは50~100℃の範囲である。反応の終点は、例えば、残存イソシアネートを過剰のn-ブチルアミンで反応させ、1N塩酸にて逆滴定する方法により算出したポリイソシアネートが0.5重量%以下となった時点とすることができる。 The polyfunctional urethane (meth) acrylate is obtained, for example, by reacting the polyfunctional (meth) acrylate having active hydrogen with the polyisocyanate. The amount of polyisocyanate used is usually in the range of 0.1 to 50 equivalents, preferably 0.1 to 10 equivalents as the isocyanate group equivalent, relative to 1 equivalent of active hydrogen group in the polyfunctional (meth) acrylate having active hydrogen. Range. The reaction temperature is usually in the range of 30 to 150 ° C, preferably 50 to 100 ° C. The end point of the reaction can be, for example, the time when the polyisocyanate calculated by the method of reacting residual isocyanate with excess n-butylamine and back titrating with 1N hydrochloric acid becomes 0.5% by weight or less.
 前記の多官能ウレタン(メタ)アクリレートを製造するための反応時間を短縮する目的として、触媒を添加してもよい。該触媒としては塩基性触媒又は酸性触媒のいずれかが用いられる。該塩基性触媒としては、例えば、トリエチルアミン、ジエチルアミン、ジブチルアミン、アンモニア等のアミン類、トリブチルホスフィン、トリフェニルホスフィン等のホスフィン類、ピリジン、ピロール等が挙げられる。該酸性触媒としては、例えば、ナフテン酸銅、ナフテン酸コバルト、ナフテン酸亜鉛、トリブトキシアルミニウム、トリチタニウムテトラブトキシド、ジルコニウムテトラブトキシド等の金属塩類、塩化アルミニウム等のルイス酸類、2-エチルヘキサンスズ、オクチルスズトリラウリレート、ジブチルスズジラウリレート、オクチルスズジアセテート等のスズ化合物が挙げられる。これらの触媒を使用する場合、その添加量はポリイソシアネート100重量部に対して通常0.1~1重量部程度である。 A catalyst may be added for the purpose of shortening the reaction time for producing the polyfunctional urethane (meth) acrylate. As the catalyst, either a basic catalyst or an acidic catalyst is used. Examples of the basic catalyst include amines such as triethylamine, diethylamine, dibutylamine, and ammonia, phosphines such as tributylphosphine and triphenylphosphine, pyridine, pyrrole, and the like. Examples of the acidic catalyst include metal salts such as copper naphthenate, cobalt naphthenate, zinc naphthenate, tributoxyaluminum, trititanium tetrabutoxide, zirconium tetrabutoxide, Lewis acids such as aluminum chloride, 2-ethylhexanetin, Examples thereof include tin compounds such as octyltin trilaurate, dibutyltin dilaurate, and octyltin diacetate. When these catalysts are used, the amount added is usually about 0.1 to 1 part by weight per 100 parts by weight of the polyisocyanate.
 更に、反応に際しては反応中の重合を防止するために重合禁止剤(例えば、メトキノン、ハイドロキノン、メチルハイドロキノン、フェノチアジン等)を使用することが好ましい。その使用量は反応混合物に対して0.01~1重量%程度、好ましくは0.05~0.5重量%程度である。 Furthermore, in the reaction, it is preferable to use a polymerization inhibitor (for example, methoquinone, hydroquinone, methylhydroquinone, phenothiazine, etc.) in order to prevent polymerization during the reaction. The amount used is about 0.01 to 1% by weight, preferably about 0.05 to 0.5% by weight, based on the reaction mixture.
 前記反応の反応温度は60~150℃、好ましくは80~120℃である。 The reaction temperature of the reaction is 60 to 150 ° C., preferably 80 to 120 ° C.
 本発明の多官能(メタ)アクリレートとしては、市販品を使用することもできる。市販品としては、例えば、KAYARADPET30(日本化薬(株)製)、ライトアクリレートPE-3A、ライトアクリレートPE-4A、ライトアクリレートDPE-6A、ライトアクリレートTMP-A(以上、共栄社化学(株)製)、SR444、SR351S、SR350(以上、サートマー・ジャパン(株)製)などが挙げられる。 Commercially available products can also be used as the polyfunctional (meth) acrylate of the present invention. Examples of commercially available products include KAYARADPET30 (manufactured by Nippon Kayaku Co., Ltd.), light acrylate PE-3A, light acrylate PE-4A, light acrylate DPE-6A, light acrylate TMP-A (manufactured by Kyoeisha Chemical Co., Ltd.). ), SR444, SR351S, SR350 (above, manufactured by Sartomer Japan, Inc.), and the like.
 本発明において、多官能(メタ)アクリレート成分の使用量は、通常、本発明の感光性樹脂組成物の樹脂成分の合計量の10~95重量%であり、好ましくは30~90重量%、60~90重量%、30~80重量%、又は60~80重量%である。 In the present invention, the amount of the polyfunctional (meth) acrylate component used is usually 10 to 95% by weight, preferably 30 to 90% by weight, 60% of the total amount of the resin components of the photosensitive resin composition of the present invention. -90 wt%, 30-80 wt%, or 60-80 wt%.
 本発明においては、必要に応じて多官能(メタ)アクリレートの他に、他の熱重合性又は光重合性モノマー(B)を添加することができる。当該重合性モノマーの例としては、分子中に少なくとも2個又は1個の(メタ)アクリロイル基を有する(メタ)アクリレート、エポキシ基を1個又は2個以上有する(メタ)アクリレート等が挙げられる。 In the present invention, if necessary, in addition to the polyfunctional (meth) acrylate, other thermopolymerizable or photopolymerizable monomer (B) can be added. Examples of the polymerizable monomer include (meth) acrylate having at least 2 or 1 (meth) acryloyl group in the molecule, (meth) acrylate having 1 or 2 or more epoxy groups, and the like.
 上記の2個の(メタ)アクリロイル基を含有する二官能(メタ)アクリレートの具体例としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、1,2-プロピレングリコールジ(メタ)アクリレート、1,3-プロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2,2,4-トリメチル-1,6ヘキサンジオールジ(メタ)アクリレート、2,4,4-トリメチル-1,6-ヘキサンジオール(メタ)アクリレート、2,4-ジエチル-1,5-ペンタンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートなどが挙げられる。なお、これらは、単独又は2種以上を混合して使用しても良い。 Specific examples of the bifunctional (meth) acrylate containing the above two (meth) acryloyl groups include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetra Ethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, 1,2-propylene glycol di (meth) acrylate, 1,3-propylene glycol di (meth) acrylate, 1,3-butanediol di (meth) ) Acrylate, 1,4-butanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,8-octanediol di (meth) acrylate 1,9-No Didiol (meth) acrylate, 1,10-decanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, neopentyl glycol di (Meth) acrylate, 2,2,4-trimethyl-1,6 hexanediol di (meth) acrylate, 2,4,4-trimethyl-1,6-hexanediol (meth) acrylate, 2,4-diethyl-1 , 5-pentanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate and the like. In addition, you may use these individually or in mixture of 2 or more types.
 上記の1個の(メタ)アクリロイル基を含有する単官能(メタ)アクリレートの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、イソラウリル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、グリシジル(メタ)アクリレート、N,N-ジメチルアミノ(メタ)アクリレート、N,N-ジエチルアミノ(メタ)アクリレート、モルホリン(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、ブトキシトリエチレングリコール(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、4-ノニルフェノキシエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、シクロヘキシルメチル(メタ)アクリレート、シクロヘキシルエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニロキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、p-フェニルフェニル(メタ)アクリレート、o-フェニルフェニル(メタ)アクリレート、2-(p-フェニルフェノキシ)エチル(メタ)アクリレート、2-(o-フェニルフェノキシ)エチル(メタ)アクリレート、2-(2-(p-フェニルフェノキシ)エトキシ)エチル(メタ)アクリレート、2-(2-(o-フェニルフェノキシ)エトキシ)エチル(メタ)アクリレート、2-(2-(2-(p-フェニルフェノキシ)エトキシ)エトキシ)エチル(メタ)アクリレート、2-(2-(2-(o-フェニルフェノキシ)エトキシ)エトキシ)エチル(メタ)アクリレート、2-(2-(2-(2-(p-フェニルフェノキシ)エトキシ)エトキシ)エトキシ)エチル(メタ)アクリレート、2-(2-(2-(2-(o-フェニルフェノキシ)エトキシ)エトキシ)エトキシ)エチル(メタ)アクリレート等を挙げることができる。なお、これらは、単独又は2種以上を混合して使用しても良い。 Specific examples of the monofunctional (meth) acrylate containing one (meth) acryloyl group are methyl (meth) acrylate, ethyl (meth) acrylate, 2-propyl (meth) acrylate, n-butyl (meth) ) Acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-lauryl (meth) acrylate, isolauryl (Meth) acrylate, n-stearyl (meth) acrylate, isostearyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, glycidyl (meth) acrylate Relate, N, N-dimethylamino (meth) acrylate, N, N-diethylamino (meth) acrylate, morpholine (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxy Butyl (meth) acrylate, diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) acrylate, 2-methoxyethyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene Glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, 2-butoxyethyl (meth) acrylate, butoxytriethylene glycol (Meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2- (2-ethoxyethoxy) ethyl (meth) acrylate, ethoxypolyethylene glycol (meth) acrylate, 4-nonylphenoxyethylene glycol (meth) acrylate, tetrahydrofurfuryl ( (Meth) acrylate, caprolactone-modified tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, cyclohexylmethyl (meth) acrylate, cyclohexylethyl (meta) ) Acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, dicyclopentenyl (meth) a Acrylate, dicyclopentenyloxyethyl (meth) acrylate, p-phenylphenyl (meth) acrylate, o-phenylphenyl (meth) acrylate, 2- (p-phenylphenoxy) ethyl (meth) acrylate, 2- (o- Phenylphenoxy) ethyl (meth) acrylate, 2- (2- (p-phenylphenoxy) ethoxy) ethyl (meth) acrylate, 2- (2- (o-phenylphenoxy) ethoxy) ethyl (meth) acrylate, 2- ( 2- (2- (p-phenylphenoxy) ethoxy) ethoxy) ethyl (meth) acrylate, 2- (2- (2- (o-phenylphenoxy) ethoxy) ethoxy) ethyl (meth) acrylate, 2- (2- (2- (2- (p-phenylphenoxy) ethoxy) ethoxy) ethoxy It can be mentioned (meth) acrylate, a 2- (2- (2- (2- (o- phenyl) ethoxy) ethoxy) ethoxy) ethyl (meth) acrylate. In addition, you may use these individually or in mixture of 2 or more types.
 上記のエポキシ基を1個又は2個以上有する(メタ)アクリレートの例としては、1個又は2個以上のエポキシ基を有する化合物と(メタ)アクリル酸との反応により製造されるエポキシ(メタ)アクリレートが挙げられる。当該エポキシ(メタ)アクリレートは、特に構造が限定されるものではないが、エポキシ(メタ)アクリレートの製造原料となるエポキシ基を有する化合物により、ビスフェノールA型、ビスフェノールS型、ビスフェノールF型、エポキシ化油型、フェノールノボラック型、脂環型、又はこれらを変性したものなどが挙げられる。具体的な例としては、ビスフェノールAとエピクロルヒドリンの付加物にアクリル酸を反応させたアクリレート、フェノールノボラックにエピクロロヒドリンを反応させ、アクリル酸を反応させたアクリレート、ビスフェノールSとエピクロロヒドリンの付加物にアクリル酸を反応させたアクリレート、エポキシ化大豆油にアクリル酸を反応させたアクリレート等を挙げることができるがこれらに限定されるものではない。なお、これらは、単独又は2種以上を混合して使用しても良い。 As an example of (meth) acrylate having one or more epoxy groups, epoxy (meth) produced by reaction of a compound having one or more epoxy groups with (meth) acrylic acid An acrylate is mentioned. The epoxy (meth) acrylate is not particularly limited in structure, but it is a bisphenol A type, bisphenol S type, bisphenol F type, epoxidized depending on the compound having an epoxy group as a raw material for producing the epoxy (meth) acrylate. An oil type, a phenol novolak type, an alicyclic type, or a modified version thereof may be mentioned. Specific examples include an acrylate obtained by reacting an adduct of bisphenol A and epichlorohydrin with acrylic acid, an acrylate obtained by reacting phenol novolac with epichlorohydrin and reacting with acrylic acid, bisphenol S and epichlorohydrin. Examples include, but are not limited to, acrylates obtained by reacting an adduct with acrylic acid, and acrylates obtained by reacting epoxidized soybean oil with acrylic acid. In addition, you may use these individually or in mixture of 2 or more types.
 前記エポキシ(メタ)アクリレートの好ましい例としては、2個又は3個のエポキシ基を有する化合物と(メタ)アクリル酸とを反応させて製造されるエポキシ(メタ)アクリレート;エポキシ化ビスフェノールAと(メタ)アクリル酸とを反応させて製造されるビスフェノールA型エポキシ(メタ)アクリレート;エポキシ化ビスフェノールAとアクリル酸とを反応させて製造されるビスフェノールA型エポキシアクリレート;エポキシ化フェノールノボラックと(メタ)アクリル酸とを反応させて製造されるフェノールノボラック型エポキシ(メタ)アクリレート;エポキシ化フェノールノボラックとアクリル酸とを反応させて製造されるフェノールノボラック型エポキシアクリレートなどが挙げられる。 Preferred examples of the epoxy (meth) acrylate include epoxy (meth) acrylate produced by reacting a compound having two or three epoxy groups with (meth) acrylic acid; epoxidized bisphenol A and (meta ) Bisphenol A type epoxy (meth) acrylate produced by reacting acrylic acid; Bisphenol A type epoxy acrylate produced by reacting epoxidized bisphenol A and acrylic acid; Epoxidized phenol novolak and (meth) acrylic Phenol novolac type epoxy (meth) acrylate produced by reacting with acid; phenol novolak type epoxy acrylate produced by reacting epoxidized phenol novolak and acrylic acid, and the like.
 前記エポキシ(メタ)アクリレートとしては、市販品を使用することもできる。市販品としては、例えば、エポキシエステル3000A、エポキシエステルMK(以上、共栄社化学(株)製)、CN104、CN104NS、CN151(以上、サートマー・ジャパン(株)製)、ヒタロイド7851、ヒタロイド7663(以上、日立化成(株)製)などが挙げられる。 Commercially available products can also be used as the epoxy (meth) acrylate. Commercially available products include, for example, epoxy ester 3000A, epoxy ester MK (manufactured by Kyoeisha Chemical Co., Ltd.), CN104, CN104NS, CN151 (manufactured by Sartomer Japan Co., Ltd.), hyaloid 7851, hitaloid 7663 (more than, Hitachi Chemical Co., Ltd.).
 本発明において、B成分の使用量は、本発明の感光性樹脂組成物の樹脂成分の合計量の通常1~70重量%であり、好ましくは5~50重量%、より好ましくは5~30重量%、特に好ましくは10~30重量%である。 In the present invention, the amount of component B used is usually 1 to 70% by weight, preferably 5 to 50% by weight, more preferably 5 to 30% by weight of the total amount of the resin components of the photosensitive resin composition of the present invention. %, Particularly preferably 10 to 30% by weight.
 本発明において、光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテルなどのベンゾイン類;アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1-オンなどのアセトフェノン類;2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノンなどのアントラキノン類;2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントンなどのチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノンなどのベンゾフェノン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイドなどのホスフィンオキサイド類等が挙げられる。なお、これらは単独又は2種以上を混合して使用しても良い。 In the present invention, examples of the photopolymerization initiator include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; acetophenone, 2,2-diethoxy-2-phenylacetophenone, 1, 1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane Acetophenones such as 1-one; anthraquinones such as 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone and 2-amylanthraquinone; Thioxanthones such as n-tone, 2-isopropylthioxanthone and 2-chlorothioxanthone; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4′-bismethylaminobenzophenone Benzophenones such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide, phosphine oxides such as bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like. In addition, you may use these individually or in mixture of 2 or more types.
 前記光重合開始剤としては、市販品を使用することもできる。市販品としては、例えば、イルガキュア184(チバ・スペシャリティ・ケミカルズ(株)製)、BASF製のイルガキュア(Irgacure)907、369、379などが挙げられる。 Commercially available products can also be used as the photopolymerization initiator. Examples of commercially available products include Irgacure 184 (manufactured by Ciba Specialty Chemicals Co., Ltd.), Irgacure 907, 369, and 379 manufactured by BASF.
 本発明の感光性樹脂組成物において、光重合開始剤の使用量は、本発明の感光性樹脂組成物の樹脂成分の合計量の0.5~10重量%であり、好ましくは1~7重量%である。 In the photosensitive resin composition of the present invention, the amount of the photopolymerization initiator used is 0.5 to 10% by weight, preferably 1 to 7% by weight of the total amount of the resin components of the photosensitive resin composition of the present invention. %.
 本発明において、硬化促進剤を用いることもできる。用いうる硬化促進剤としては、例えばトリエタノールアミン、ジエタノールアミン、N-メチルジエタノールアミン、2-メチルアミノエチルベンゾエート、ジメチルアミノアセトフェノン、p-ジメチルアミノ安息香酸イソアミルエステル、EPAなどのアミン類、2-メルカプトベンゾチアゾールなどの水素供与体が挙げられる。これらの硬化促進剤の使用量は、本発明の樹脂組成物の固形分を100重量%とした場合、通常、0~5重量%である。 In the present invention, a curing accelerator can also be used. Examples of the curing accelerator that can be used include triethanolamine, diethanolamine, N-methyldiethanolamine, 2-methylaminoethylbenzoate, dimethylaminoacetophenone, p-dimethylaminobenzoic acid isoamyl ester, amines such as EPA, 2-mercaptobenzo And hydrogen donors such as thiazole. The amount of these curing accelerators used is usually 0 to 5% by weight when the solid content of the resin composition of the present invention is 100% by weight.
 本発明において、ポリスチレン粒子としては、非架橋ポリスチレン粒子、架橋ポリスチレン粒子、架橋メチルメタアクリレート-スチレン共重合体粒子、架橋アクリル-スチレン共重合体粒子などの透光性の粒子が挙げられる。また表面処理は特に必要ないが、表面処理された粒子であってもよい。ポリスチレン粒子の形状は特に限定されない。例えば、球状や円柱状等が挙げられる。この内、球状のものが好ましい。球状で形状が揃っているものが特に好ましい。 In the present invention, examples of the polystyrene particles include translucent particles such as non-crosslinked polystyrene particles, crosslinked polystyrene particles, crosslinked methyl methacrylate-styrene copolymer particles, and crosslinked acrylic-styrene copolymer particles. The surface treatment is not particularly required, but the surface-treated particles may be used. The shape of the polystyrene particles is not particularly limited. For example, a spherical shape or a cylindrical shape can be used. Of these, spherical ones are preferred. A spherical shape and a uniform shape are particularly preferable.
 前記ポリスチレン粒子は、平均粒子径が1~5μmが好ましく、市販品を使用することができる。市販品としては、例えば、綜研化学(株)製のSXシリーズ、積水化成品工業(株)製のテクポリマーシリーズ、(株)モリテックス製の3000シリーズ及び4000シリーズ及び2000シリーズなどが挙げられる。 The polystyrene particles preferably have an average particle diameter of 1 to 5 μm, and commercially available products can be used. Examples of commercially available products include SX series manufactured by Soken Chemical Co., Ltd., Techpolymer series manufactured by Sekisui Chemicals Co., Ltd., 3000 series, 4000 series and 2000 series manufactured by Moritex Corporation.
 平均粒子径は、例えば、静的光散乱法(光子相関法)を用いた粒度分布計(例えば、大塚電子(株)製のELSZ-2000)により測定される。 The average particle diameter is measured by, for example, a particle size distribution meter (for example, ELSZ-2000 manufactured by Otsuka Electronics Co., Ltd.) using a static light scattering method (photon correlation method).
 上記ポリスチレン粒子の平均粒子径は、好ましくは1~5μmであり、より好ましくは2~4μmである。1μm未満では十分な防眩性が得られない傾向にあり、5μmを超えると表面の凹凸によりギラツキが発生し易く、また透過性が低下する恐れがある。 The average particle size of the polystyrene particles is preferably 1 to 5 μm, more preferably 2 to 4 μm. If it is less than 1 μm, sufficient antiglare properties tend not to be obtained. If it exceeds 5 μm, glare is likely to occur due to surface irregularities, and the permeability may be lowered.
 本発明のポリスチレン粒子の屈折率に関し、上記の多官能(メタ)アクリレート又は、多官能(メタ)アクリレートとエポキシ(メタ)アクリレートの混合物の屈折率と、ポリスチレン粒子の屈折率の差が、0.05から1.5であることが好ましい。 Regarding the refractive index of the polystyrene particles of the present invention, the difference between the refractive index of the polyfunctional (meth) acrylate or the mixture of the polyfunctional (meth) acrylate and the epoxy (meth) acrylate and the refractive index of the polystyrene particles is 0. Preferably it is from 05 to 1.5.
 多官能(メタ)アクリレート又は、多官能(メタ)アクリレートとエポキシ(メタ)アクリレートの混合物の屈折率は、例えば、多波長アッベ屈折計(DR-M2、株式会社アタゴ製)で測定することができる。 The refractive index of polyfunctional (meth) acrylate or a mixture of polyfunctional (meth) acrylate and epoxy (meth) acrylate can be measured, for example, with a multiwavelength Abbe refractometer (DR-M2, manufactured by Atago Co., Ltd.). .
 例えば、ペンタエリスリトールトリアクリレートとエポキシアクリレートの混合物として屈折率1.482~1.493のものを用いることができる。ペンタエリスリトールトリアクリレートの屈折率は1.477である。 For example, a mixture of pentaerythritol triacrylate and epoxy acrylate having a refractive index of 1.482 to 1.493 can be used. The refractive index of pentaerythritol triacrylate is 1.477.
 ポリスチレン粒子の屈折率は、任意の方法で測定することができ、例えば、ヨウ化メチレン、1,2-ジブロモプロパン、n-ヘキサンから選ばれる任意の屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中に透光性粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定することもできる。 The refractive index of polystyrene particles can be measured by an arbitrary method. For example, the mixing ratio of two kinds of solvents having different refractive indexes selected from methylene iodide, 1,2-dibromopropane, and n-hexane is used. It is also possible to measure the turbidity by dispersing an equal amount of translucent particles in a solvent whose refractive index has been changed by changing the refractive index, and measuring the refractive index of the solvent when the turbidity is minimized with an Abbe refractometer. it can.
 本発明の感光性樹脂組成物において、ポリスチレン粒子の使用量は、感光性樹脂組成物の樹脂成分の合計量に対して1~30重量%が好ましく、より好ましくは5~25重量%である。 In the photosensitive resin composition of the present invention, the amount of polystyrene particles used is preferably 1 to 30% by weight, more preferably 5 to 25% by weight, based on the total amount of resin components of the photosensitive resin composition.
 本発明において、シリカの形状は特に限定されない。例えば、球状、又は、針状、凹凸状、楕円状、数珠状、マユ型、棒状、紡錘状などの非球状が挙げられる。シリカの例としては、東ソー・シリカ(株)製NIPSILシリーズ、(株)トクヤマ製エクセリカシリーズなどが挙げられる。また溶媒中に分散させた日産化学工業(株)製オルガノシリカゾルシリーズ、スノーテックスシリーズ、扶桑化学工業(株)製クォートロンPLシリーズ、(株)日本触媒製シーホスターKEシリーズ、日揮触媒化成工業(株)製OSCALシリーズなどでもよい。 In the present invention, the shape of silica is not particularly limited. For example, spherical or non-spherical shapes such as a needle shape, an uneven shape, an elliptical shape, a bead shape, a cocoon shape, a rod shape, and a spindle shape can be given. Examples of silica include the NIPSIL series manufactured by Tosoh Silica Co., Ltd., the Excelica series manufactured by Tokuyama Corporation, and the like. Also, dispersed in a solvent, organosilica sol series manufactured by Nissan Chemical Industries, Snowtex series, Quatron PL series manufactured by Fuso Chemical Industry Co., Ltd., Seahoster KE series manufactured by Nippon Shokubai Co., Ltd., JGC Catalysts & Chemicals Co., Ltd. The OSCAL series made may be used.
 上記シリカの平均粒子径は、1~5μmが好ましい。5μmを超えると表面の凹凸によりギラツキが発生し易く、また透過像鮮明度や透過性が低下するおそれがある。1.0μm未満では防眩性が得られ難く、防眩性に劣るおそれがある。 The average particle diameter of the silica is preferably 1 to 5 μm. If it exceeds 5 μm, glare is likely to occur due to surface irregularities, and the transmitted image definition and transparency may be lowered. If it is less than 1.0 μm, it is difficult to obtain antiglare properties, and the antiglare properties may be inferior.
 また、前記のポリスチレン粒子の平均粒子径と、シリカの平均粒子径は、それぞれ独立して選択することができるが、シリカの平均粒子径を小さくする方が好ましい。 The average particle size of the polystyrene particles and the average particle size of silica can be selected independently, but it is preferable to reduce the average particle size of silica.
 また、本発明の感光性樹脂組成物において、シリカの使用量は、感光性樹脂組成物の樹脂成分の合計量に対して、通常、0.1~10重量%であり、好ましくは0.1~5重量%であり、より好ましくは0.1~2重量%であり、特に好ましくは0.3~2重量%である。 In the photosensitive resin composition of the present invention, the amount of silica used is usually 0.1 to 10% by weight, preferably 0.1%, based on the total amount of resin components of the photosensitive resin composition. Is 5 to 5% by weight, more preferably 0.1 to 2% by weight, and particularly preferably 0.3 to 2% by weight.
 更に、本発明の感光性樹脂組成物には、必要に応じてレベリング剤、消泡剤、紫外線吸収剤、光安定化剤などを添加し、それぞれ目的とする機能性を付与することも可能である。レベリング剤としてはフッ素系化合物、シリコーン系化合物、アクリル系化合物等が挙げられ、紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物等、光安定化剤としてはヒンダードアミン系化合物、ベンゾエート系化合物等が挙げられる。 Furthermore, a leveling agent, an antifoaming agent, an ultraviolet absorber, a light stabilizer, and the like can be added to the photosensitive resin composition of the present invention as necessary, and the respective functionalities can be imparted. is there. Examples of leveling agents include fluorine compounds, silicone compounds, acrylic compounds, UV absorbers include benzotriazole compounds, benzophenone compounds, triazine compounds, and light stabilizers include hindered amine compounds, Examples thereof include benzoate compounds.
 本発明の感光樹脂組成物には、希釈剤を使用することができる。使用しうる希釈剤の例としては、アルコール類(例えば、メタノール、エタノール、イソプロピルアルコール、ノルマルプロピルアルコール、イソブチルアルコール、n-ブチルアルコール等)、ラクトン類(例えば、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、γ-ヘプタラクトン、α-アセチル-γ-ブチロラクトン、ε-カプロラクトン等)、エーテル類(例えば、ジオキサン、1,2-ジメトキシメタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル等)、カーボネート類(例えば、エチレンカーボネート、プロピレンカーボネート等)、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ダイアセトンアルコール、アセトフェノン等)、フェノール類(例えば、フェノール、クレゾール、キシレノール等)、エステル類(例えば、酢酸エチル、酢酸プロピル、酢酸ブチル、乳酸エチル、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等)、炭化水素類(例えば、トルエン、キシレン、ジエチルベンゼン、シクロヘキサン等)、ハロゲン化炭化水素類(例えば、トリクロロエタン、テトラクロロエタン、モノクロロベンゼン等)、石油系溶剤等の有機溶剤類(例えば、石油エーテル、石油ナフサ等)、ハイドロフルオロエーテル類(例えば、2H,3H-テトラフルオロプロパノール等のフッ素系アルコール類、パーフルオロブチルメチルエーテル、パーフルオロブチルエチルエーテル等)が挙げられる。これらは、単独又は2種以上を混合して使用しても良い。 A diluent can be used in the photosensitive resin composition of the present invention. Examples of diluents that can be used include alcohols (eg, methanol, ethanol, isopropyl alcohol, normal propyl alcohol, isobutyl alcohol, n-butyl alcohol, etc.), lactones (eg, γ-butyrolactone, γ-valerolactone, γ-caprolactone, γ-heptalactone, α-acetyl-γ-butyrolactone, ε-caprolactone, etc.), ethers (eg, dioxane, 1,2-dimethoxymethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol) Monomethyl ether, propylene glycol monoethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, tetra Tylene glycol dimethyl ether, tetraethylene glycol diethyl ether, etc.), carbonates (eg, ethylene carbonate, propylene carbonate, etc.), ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol, acetophenone, etc.), phenols (Eg, phenol, cresol, xylenol, etc.), esters (eg, ethyl acetate, propyl acetate, butyl acetate, ethyl lactate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, Propylene glycol monoethyl ether acetate, etc.), hydrocarbons (eg, toluene) Xylene, diethylbenzene, cyclohexane, etc.), halogenated hydrocarbons (eg, trichloroethane, tetrachloroethane, monochlorobenzene, etc.), organic solvents such as petroleum solvents (eg, petroleum ether, petroleum naphtha, etc.), hydrofluoroethers ( Examples thereof include fluorine alcohols such as 2H, 3H-tetrafluoropropanol, perfluorobutyl methyl ether, perfluorobutyl ethyl ether, and the like. You may use these individually or in mixture of 2 or more types.
 本発明の感光性樹脂組成物において、希釈剤の使用量の例としては、本発明の感光性樹脂組成物の固形分(A~E成分の合計量)の濃度が、通常10~80重量%であり、好ましくは20~80重量%であり、より好ましくは20~60重量%であり、特に好ましくは30~60重量%となる量が挙げられる。 In the photosensitive resin composition of the present invention, as an example of the amount of the diluent used, the concentration of the solid content (total amount of components A to E) of the photosensitive resin composition of the present invention is usually 10 to 80% by weight. The amount is preferably 20 to 80% by weight, more preferably 20 to 60% by weight, and particularly preferably 30 to 60% by weight.
 本発明の防眩性フィルムの製造方法について説明する。
 本発明の防眩性フィルムは、基材フィルム上に、本発明の樹脂組成物を用いて塗膜層を形成し、次いでこの塗膜層に活性エネルギー線を照射して防眩性層を形成させることにより製造できる。活性エネルギー線は特に制限されないが、例えば、紫外線、電子線などが挙げられる。紫外線により硬化させる場合は、光源としてキセノンランプ、高圧水銀ランプ、メタルハライドランプの使用が好ましく、必要に応じて光量、光源の配置などが調整される。温度条件は特に制限されないが10~30℃が好ましく、15~25℃がより好ましい。照射時間は、防眩性層を充分に発揮する程度から基材フィルムを損傷させない程度が好ましく、5~30秒が好ましい。
The manufacturing method of the anti-glare film of this invention is demonstrated.
The antiglare film of the present invention forms a coating layer on the base film using the resin composition of the present invention, and then forms an antiglare layer by irradiating the coating layer with active energy rays. Can be manufactured. The active energy ray is not particularly limited, and examples thereof include ultraviolet rays and electron beams. In the case of curing with ultraviolet rays, it is preferable to use a xenon lamp, a high-pressure mercury lamp, or a metal halide lamp as the light source, and the amount of light, the arrangement of the light source, and the like are adjusted as necessary. The temperature condition is not particularly limited, but is preferably 10 to 30 ° C, more preferably 15 to 25 ° C. The irradiation time is preferably such that the base film is not damaged from the extent that the antiglare layer is sufficiently exhibited, and is preferably 5 to 30 seconds.
 硬化時の条件については、不活性ガス置換をした環境下で活性エネルギー線を照射し、硬化させることがより好ましい。酸素濃度としては1体積%以下が好ましく、0.5体積%以下がより好ましい。使用する該不活性ガスとしては窒素ガスが好ましい。 About the conditions at the time of hardening, it is more preferable to irradiate an active energy ray in the environment which substituted inert gas, and to harden. The oxygen concentration is preferably 1% by volume or less, and more preferably 0.5% by volume or less. Nitrogen gas is preferable as the inert gas used.
 使用する基材フィルムとしては、透明なフィルムであればよく、例えば、ポリエステル、ポリプロピレン、ポリエチレン、ポリアクリレート、ポリカーボネート、トリアセチルセルロース、ポリエーテルスルホン、シクロオレフィン系ポリマーなどが挙げられる。基材フィルムはある程度厚いシート状のものであっても良い。使用する基材フィルムは、色や易接着層を設けたもの、コロナ処理等の表面処理をしたものであっても良い。 The base film to be used may be a transparent film, and examples thereof include polyester, polypropylene, polyethylene, polyacrylate, polycarbonate, triacetylcellulose, polyethersulfone, and cycloolefin polymer. The base film may be a thick sheet. The base film to be used may be one provided with a color or an easy-adhesion layer or one subjected to surface treatment such as corona treatment.
 前記基材フィルムの厚さは、5~2000μm、好ましくは20~200μmの範囲から選択できる。 The thickness of the substrate film can be selected from the range of 5 to 2000 μm, preferably 20 to 200 μm.
 本発明の防眩性フィルムの厚さは、1.0~25.0μm未満の範囲にすることが必要で、好ましくは1.5~20μm、より好ましくは2.0~15.0μmである。防眩性フィルムの厚さが1.0μm未満では、防眩性フィルムの表面にポリスチレン粒子の凹凸が形成されギラツキが発生し易くなり、また耐擦傷性、鉛筆硬度等が劣る。厚さが25.0μm以上では、カールが発生し易くなる。また、表示装置の薄型化などに対応できない。 The thickness of the antiglare film of the present invention needs to be in the range of 1.0 to less than 25.0 μm, preferably 1.5 to 20 μm, more preferably 2.0 to 15.0 μm. If the thickness of the antiglare film is less than 1.0 μm, irregularities of polystyrene particles are formed on the surface of the antiglare film, and glare is likely to occur, and scratch resistance, pencil hardness, etc. are poor. When the thickness is 25.0 μm or more, curling tends to occur. In addition, the display device cannot be made thinner.
 上記の感光性樹脂組成物の塗布方法としては、例えば、バーコーター塗工、メイヤーバー塗工、エアナイフ塗工、グラビア塗工、リバースグラビア塗工、マイクログラビア塗工、リバースマイクログラビア塗工、ダイコーター塗工、バキュームダイ塗工、リップダイ塗工、ディップ塗工、フロー塗工、スピンコート塗工などが挙げられる。 Examples of the method for applying the photosensitive resin composition include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, micro gravure coating, reverse micro gravure coating, and die coating. Ter coating, vacuum die coating, lip die coating, dip coating, flow coating, spin coating coating and the like.
 本発明の防眩性フィルムでは、入射光を散乱させるための表面凹凸形状と、主に光の内部散乱を担う領域とを同時に形成するために、樹脂の組成、分散粒子の粒子径、屈折率、分散性をバランスさせて設計することが好ましい。 In the antiglare film of the present invention, the composition of the resin, the particle diameter of the dispersed particles, and the refractive index are formed simultaneously to form the surface irregularities for scattering incident light and the region mainly responsible for internal scattering of light. It is preferable to design the balance of dispersibility.
 本発明中の内部ヘイズ及び表面ヘイズは以下のようにして求める。
   内部ヘイズ=(表面ヘイズを0にした防眩性フィルムのヘイズ)-(基材フィルムのヘイズ)
   表面ヘイズ=(防眩性フィルムのヘイズ)-(表面ヘイズを0にした防眩性フィルムのヘイズ)
The internal haze and the surface haze in the present invention are determined as follows.
Internal haze = (Haze of anti-glare film with surface haze set to 0)-(Haze of base film)
Surface haze = (Haze of antiglare film) − (Haze of antiglare film with surface haze set to 0)
 なお、フィルムのヘイズ値の測定は以下のようにして行うことができる。
 即ち、JIS K7136に準じて、得られたフィルムの全ヘイズ値(全Hz)を測定する。測定装置としては、例えば、(株)村上色彩技術研究所製、ヘイズメーターHM-150を使用することができる。
In addition, the measurement of the haze value of a film can be performed as follows.
That is, the total haze value (total Hz) of the obtained film is measured according to JIS K7136. As the measuring device, for example, a haze meter HM-150 manufactured by Murakami Color Research Laboratory Co., Ltd. can be used.
 防眩性フィルムの全ヘイズは、15~35%が好ましい。全ヘイズが15%未満のフィルムを100ppi以上の高精細表示体に適用した場合、ギラツキが発生し易くなり、全ヘイズが35%を超える場合はギラツキは発生し難くなるが、透過率、色再現性、コントラストが低下することがある。 The total haze of the antiglare film is preferably 15 to 35%. When a film having a total haze of less than 15% is applied to a high-definition display of 100 ppi or more, glare is likely to occur. When the total haze exceeds 35%, glare is unlikely to occur, but the transmittance and color reproduction. And contrast may be reduced.
 防眩性フィルムの内部ヘイズは10%以上が好ましい。内部ヘイズが10%未満の場合は100ppi以上の高精細表示体に使用した場合、ギラツキが発生し易くなる。 The internal haze of the antiglare film is preferably 10% or more. When the internal haze is less than 10%, glare is likely to occur when used for a high-definition display of 100 ppi or more.
 防眩性フィルムの表面ヘイズは1~15%が好ましく、より好ましくは1~10%である。表面ヘイズが1%未満の場合は表面の凹凸構造による外光の防眩効果が小さく、視認性を高め難いという問題がある。表面ヘイズが15%を超えるフィルムを100ppi以上の高精細表示体に使用した場合、表面の凹凸構造によりギラツキが発生し易い問題がある。 The surface haze of the antiglare film is preferably 1 to 15%, more preferably 1 to 10%. When the surface haze is less than 1%, there is a problem that the antiglare effect of external light due to the uneven structure on the surface is small, and it is difficult to improve the visibility. When a film having a surface haze exceeding 15% is used for a high-definition display body of 100 ppi or more, there is a problem that glare is likely to occur due to the uneven structure of the surface.
 本発明においては、表面反射率低減のため、上記防眩性フィルムの上に反射防止層を形成することができる。反射防止層の形成材料は、防眩性フィルムよりも低い屈折率材料が用いられる。反射防止層を形成する材料としては、例えば、フッ素やシリコン等を分子内に含有した紫外線又は熱硬化型アクリル樹脂系材料、樹脂中にコロイダルシリカ等の無機微粒子を分散させたハイブリッド系材料、テトラエトキシシラン、チタンテトラエトキシド等の金属アルコキシドを用いたゾル-ゲル系材料が挙げられる。乾燥後膜厚が0.05~0.15μm(好ましくは、反射率の最小値を示す波長が500~700nmになるように、より好ましくは520~650nmになるように膜厚を設定する)になるように反射防止層の形成材料を塗布し、乾燥後、紫外線、電子線等の活性エネルギー線を照射して硬化皮膜を形成させることにより、反射防止層を得ることができる。 In the present invention, an antireflection layer can be formed on the antiglare film in order to reduce the surface reflectance. As a material for forming the antireflection layer, a refractive index material lower than that of the antiglare film is used. Examples of the material for forming the antireflection layer include ultraviolet or thermosetting acrylic resin materials containing fluorine or silicon in the molecule, hybrid materials in which inorganic fine particles such as colloidal silica are dispersed in the resin, tetra Examples thereof include sol-gel materials using metal alkoxides such as ethoxysilane and titanium tetraethoxide. The film thickness after drying is 0.05 to 0.15 μm (preferably, the film thickness is set so that the wavelength indicating the minimum reflectance is 500 to 700 nm, more preferably 520 to 650 nm). The antireflection layer can be obtained by applying a material for forming the antireflection layer so that it is dried and then irradiating active energy rays such as ultraviolet rays and electron beams to form a cured film.
 本発明の防眩性フィルムは、液晶ディスプレイ、プラズマディスプレイ、リアプロジェクションディスプレイ、有機ELディスプレイ、SED、フレキシブルディスプレイ、CRT等に代表される特に100ppi以上の高精細表示装置の表示面に設けることが好適である。また、本発明の防眩性フィルムは、偏光板等の光学部材に用いることも好適である。 The anti-glare film of the present invention is preferably provided on the display surface of a high-definition display device of 100 ppi or more typified by liquid crystal display, plasma display, rear projection display, organic EL display, SED, flexible display, CRT and the like. It is. The antiglare film of the present invention is also suitable for use in optical members such as polarizing plates.
 以下、実施例により本発明を更に具体的に説明するが、本発明はかかる実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to such examples.
実施例1 Example 1
 多官能(メタ)アクリレートとしてペンタエリスリトールトリアクリレート(日本化薬(株)製、KAYARADPET30)76重量部、エポキシ(メタ)アクリレートとしてエポキシアクリレート(共栄社化学(株)製、エポキシエステル3000A)19重量部、光重合開始剤としてイルガキュア184(チバ・スペシャリティ・ケミカルズ社製)5重量部、ポリスチレン粒子としてテクポリマーXX-01JH(積水化成品工業(株)製、ポリスチレン粒子、平均粒子径2.0μm、屈折率1.595)15重量部、シリカとしてNIPSIL SS-50F(東ソー・シリカ(株)製、平均粒子径1.1μm)0.575重量部を配合して感光性樹脂組成物とし、これを固形分濃度が50%となるようトルエンで希釈した。得られた感光性樹脂組成物の希釈液をトリアセチルセルロースフィルム(80μm)上に膜厚が約6μmになるように塗布し、80℃で乾燥後、紫外線照射機(UVコンベア装置、アイグラフィックス株式会社製)で120mJ/cm照射により硬化させ、防眩性フィルムを得た。 76 parts by weight of pentaerythritol triacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARADPET 30) as polyfunctional (meth) acrylate, 19 parts by weight of epoxy acrylate (manufactured by Kyoeisha Chemical Co., Ltd., epoxy ester 3000A) as epoxy (meth) acrylate, Irgacure 184 (manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator and 5 parts by weight of techpolymer XX-01JH (manufactured by Sekisui Plastics Co., Ltd., polystyrene particles, average particle diameter of 2.0 μm, refractive index) 1.595) 15 parts by weight and 0.575 parts by weight of NIPSIL SS-50F (manufactured by Tosoh Silica Co., Ltd., average particle size 1.1 μm) as silica are used to form a photosensitive resin composition, which is solid content Diluted with toluene to a concentration of 50%. The diluted solution of the obtained photosensitive resin composition was applied onto a triacetyl cellulose film (80 μm) so that the film thickness was about 6 μm, dried at 80 ° C., and then irradiated with an ultraviolet irradiator (UV conveyor device, eye graphics). Co., Ltd.) was cured by irradiation with 120 mJ / cm 2 to obtain an antiglare film.
実施例2
 多官能(メタ)アクリレートとしてペンタエリスリトールトリアクリレート(日本化薬(株)製、KAYARADPET30)95重量部、光重合開始剤としてイルガキュア184(チバ・スペシャリティ・ケミカルズ社製)5重量部、ポリスチレン粒子としてテクポリマーXX-01JH(積水化成品工業(株)製、ポリスチレン粒子、平均粒子径2.0μm、屈折率1.595)15重量部、シリカとしてNIPSIL SS-50F(東ソー・シリカ(株)製、平均粒子径1.1μm)0.575重量部を配合して感光性樹脂組成物とし、これを固形分濃度が50%となるようトルエンで希釈した。得られた感光性樹脂組成物の希釈液をトリアセチルセルロースフィルム(80μm)上に膜厚が約6μmになるように塗布し、80℃で乾燥後、紫外線照射機(UVコンベア装置、アイグラフィックス株式会社製)で120mJ/cm照射により硬化させ、防眩性フィルムを得た。
Example 2
95 parts by weight of pentaerythritol triacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARADPET 30) as polyfunctional (meth) acrylate, 5 parts by weight of Irgacure 184 (manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and tech as polystyrene particles 15 parts by weight of polymer XX-01JH (manufactured by Sekisui Plastics Co., Ltd., polystyrene particles, average particle size 2.0 μm, refractive index 1.595), NIPSIL SS-50F (manufactured by Tosoh Silica Co., Ltd., average) A photosensitive resin composition was formulated by blending 0.575 parts by weight of (particle diameter 1.1 μm), and this was diluted with toluene so that the solid content concentration was 50%. The diluted solution of the obtained photosensitive resin composition was applied on a triacetyl cellulose film (80 μm) so as to have a film thickness of about 6 μm, dried at 80 ° C., and then irradiated with an ultraviolet irradiator (UV conveyor device, eye graphics). Co., Ltd.) was cured by irradiation with 120 mJ / cm 2 to obtain an antiglare film.
実施例3
 ペンタエリスリトールトリアクリレートとエポキシアクリレートの比率を表1に記載のとおり変更した以外は実施例1と同様にして塗布、フィルム硬化を行い、防眩性フィルムを得た。
Example 3
Except that the ratio of pentaerythritol triacrylate and epoxy acrylate was changed as shown in Table 1, coating and film curing were performed in the same manner as in Example 1 to obtain an antiglare film.
実施例4
 ペンタエリスリトールトリアクリレートとエポキシアクリレートの比率を表1に記載のとおり変更し、ポリスチレン粒子の量を15重量部から17重量部へ変更した以外は実施例1と同様にして塗布、フィルム硬化を行い、防眩性フィルムを得た。
Example 4
The ratio of pentaerythritol triacrylate and epoxy acrylate was changed as shown in Table 1, and coating and film curing were performed in the same manner as in Example 1 except that the amount of polystyrene particles was changed from 15 parts by weight to 17 parts by weight. An antiglare film was obtained.
実施例5
 ペンタエリスリトールトリアクリレートの配合量を表1に記載のとおり変更し、ポリスチレン粒子の量を15重量部から13重量部へ変更した以外は実施例2と同様にして塗布、フィルム硬化を行い、防眩性フィルムを得た。
Example 5
Coating and film curing were carried out in the same manner as in Example 2 except that the amount of pentaerythritol triacrylate was changed as shown in Table 1, and the amount of polystyrene particles was changed from 15 parts by weight to 13 parts by weight. A characteristic film was obtained.
実施例6
 シリカとして、実施例1のNIPSIL SS-50FをNIPSILSS-178B(東ソー・シリカ(株)製、平均粒子径2.9μm)に変更し、配合量を0.575重量部から0.375重量部とした以外は実施例1と同様にして塗布、フィルム硬化を行い、防眩性フィルムを得た。
Example 6
As silica, NIPSIL SS-50F of Example 1 was changed to NIPSILSS-178B (manufactured by Tosoh Silica Co., Ltd., average particle size 2.9 μm), and the blending amount was changed from 0.575 parts by weight to 0.375 parts by weight. Except that, application and film curing were performed in the same manner as in Example 1 to obtain an antiglare film.
実施例7
 エポキシアクリレートとして、実施例1に記載のエポキシエステル3000AをCN-104NS(サートマー・ジャパン(株)、エポキシアクリレート)に変更し、NIPSILSS-50Fの配合量を1.15重量部へ変更した以外は実施例1と同様にして塗布、フィルム硬化を行い、防眩性フィルムを得た。
Example 7
As the epoxy acrylate, except that the epoxy ester 3000A described in Example 1 was changed to CN-104NS (Sartomer Japan, Inc., epoxy acrylate), and the amount of NIPSILSS-50F was changed to 1.15 parts by weight. Coating and film curing were performed in the same manner as in Example 1 to obtain an antiglare film.
実施例8
 ポリスチレン粒子として、実施例1に記載のXX-01JHからXX-02JH(積水化成品工業(株)製、ポリスチレン粒子、平均粒子径3.0μm、屈折率1.595)に変更した以外は実施例1と同様にして塗布、フィルム硬化を行い、防眩性フィルムを得た。
Example 8
Except that the polystyrene particles were changed from XX-01JH described in Example 1 to XX-02JH (manufactured by Sekisui Plastics Co., Ltd., polystyrene particles, average particle diameter 3.0 μm, refractive index 1.595). Application | coating and film hardening were performed like 1 and the anti-glare film was obtained.
実施例9
 ペンタエリスリトールトリアクリレートの配合量を表1に記載のとおり変更し、ポリスチレン粒子をXX-01JHからXX-02JH(積水化成品工業(株)製)、配合量を15重量部から10重量部へ変更した以外は実施例2と同様にして塗布、フィルム硬化を行い、防眩性フィルムを得た。
Example 9
The amount of pentaerythritol triacrylate was changed as shown in Table 1, polystyrene particles were changed from XX-01JH to XX-02JH (manufactured by Sekisui Plastics Co., Ltd.), and the amount was changed from 15 parts by weight to 10 parts by weight. Except that, application and film curing were carried out in the same manner as in Example 2 to obtain an antiglare film.
実施例10
 実施例1に記載のペンタエリスリトールトリアクリレートを、ジペンタエリスリトールヘキサアクリレート(日本化薬(株)製)に変更した以外は実施例1と同様にして塗布、フィルム硬化を行い、防眩性フィルムを得た。
Example 10
Except for changing the pentaerythritol triacrylate described in Example 1 to dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.), coating and film curing were performed in the same manner as in Example 1 to obtain an antiglare film. Obtained.
比較例1
 ポリスチレン粒子を、実施例1に記載のXX-01JHからXX-05JH(積水化成品工業(株)製、ポリスチレン粒子、平均粒子径2.5μm、屈折率1.525)へ変更した以外は実施例1と同様にして塗布、フィルム硬化を行い、防眩性フィルムを得た。
Comparative Example 1
Example except that the polystyrene particles were changed from XX-01JH described in Example 1 to XX-05JH (manufactured by Sekisui Plastics Co., Ltd., polystyrene particles, average particle diameter 2.5 μm, refractive index 1.525). Application | coating and film hardening were performed like 1 and the anti-glare film was obtained.
比較例2
 実施例1に記載のペンタエリスリトールトリアクリレートを66.5重量部とし、エポキシエステル3000Aを28.5重量部配合し、シリカを入れなかった以外は実施例1と同様にして塗布、硬化を行い、防眩性フィルムを得た。
Comparative Example 2
Coating and curing were performed in the same manner as in Example 1 except that 66.5 parts by weight of pentaerythritol triacrylate described in Example 1 and 28.5 parts by weight of epoxy ester 3000A were blended and silica was not added. An antiglare film was obtained.
比較例3
 実施例8に記載のジペンタエリスリトールヘキサアクリレートを95重量部とし、エポキシエステル3000AとSS-50Fを入れなかった以外は実施例1と同様にして塗布、硬化を行い、防眩性フィルムを得た。
Comparative Example 3
Coating and curing were carried out in the same manner as in Example 1 except that 95 parts by weight of dipentaerythritol hexaacrylate described in Example 8 and epoxy ester 3000A and SS-50F were not added, to obtain an antiglare film. .
 実施例及び比較例の配合を表1に示す。 Table 1 shows the composition of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、「PET30」はペンタエリスリトールトリアクリレート(日本化薬(株)製、KAYARADPET30)を表し、「DPHA」はジペンタエリスリトールヘキサアクリレート(日本化薬(株)製)を表し、「3000A」はエポキシアクリレート(共栄社化学(株)製、エポキシエステル3000A)を表し、「CN-104NS」はエポキシアクリレート(サートマー・ジャパン(株)製、CN-104NS)を表し、「184D」は光重合開始剤(チバ・スペシャリティ・ケミカルズ社製、イルガキュア184)を表し、「XX-01JH」はポリスチレン粒子(積水化成品工業(株)製、テクポリマーXX-01JH、平均粒子径2.0μm、屈折率1.595)を表し、「XX-02JH」はポリスチレン粒子(積水化成品工業(株)製、XX-02JH、平均粒子径3.0μm、屈折率1.595)を表し、「XX-05JH」はポリスチレン粒子(積水化成品工業(株)製、XX-05JH、平均粒子径2.5μm、屈折率1.525)を表し、「SS-50F」はシリカ(東ソー・シリカ(株)製、NIPSIL SS-50F、平均粒子径1.1μm)を表し、「SS-178B」はシリカ(東ソー・シリカ(株)製、NIPSILSS-178B、平均粒子径2.9μm)を表す。 In Table 1, “PET30” represents pentaerythritol triacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARADPET30), “DPHA” represents dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.), and “3000A”. Represents an epoxy acrylate (manufactured by Kyoeisha Chemical Co., Ltd., epoxy ester 3000A), “CN-104NS” represents an epoxy acrylate (manufactured by Sartomer Japan, Inc., CN-104NS), and “184D” represents a photopolymerization initiator. (Igacure 184, manufactured by Ciba Specialty Chemicals Co., Ltd.), and “XX-01JH” is polystyrene particles (manufactured by Sekisui Plastics Co., Ltd., Techpolymer XX-01JH, average particle size 2.0 μm, refractive index 1. 595), and “XX-02JH” represents polystyrene particles (Sekisui XX-02JH, average particle size 3.0 μm, refractive index 1.595) manufactured by Seikoku Kogyo Co., Ltd., and “XX-05JH” is polystyrene particles (XX-05JH, Sekisui Plastics Co., Ltd., average) “SS-50F” represents silica (manufactured by Tosoh Silica Co., Ltd., NIPSIL SS-50F, average particle diameter 1.1 μm), and “SS-178B” represents a particle diameter of 2.5 μm and a refractive index of 1.525). "Represents silica (Tosoh Silica Co., Ltd., NIPSILSS-178B, average particle size 2.9 μm).
 全光線透過率(Tt)は、(株)村上色彩技術研究所製のヘイズメーターHM-150により測定された。 The total light transmittance (Tt) was measured with a haze meter HM-150 manufactured by Murakami Color Research Laboratory.
 全ヘイズ(全Hz)は、(株)村上色彩技術研究所製のヘイズメーターHM-150により測定された。
 内部ヘイズ(内部Hz)及び表面ヘイズ(表面Hz)は、防眩層形成面に粘着剤を介してガラスを貼合し、表面ヘイズをキャンセルした上で(株)村上色彩技術研究所製のヘイズメーターHM-150により測定された。
The total haze (total Hz) was measured with a haze meter HM-150 manufactured by Murakami Color Research Laboratory.
Internal haze (internal Hz) and surface haze (surface Hz) were bonded to the antiglare layer-forming surface via an adhesive to cancel the surface haze, and then the haze manufactured by Murakami Color Research Laboratory Co., Ltd. It was measured with a meter HM-150.
 反射率(Y)として、5°正反射が(株)日立製作所製の分光光度計U-4000により測定された。 As the reflectance (Y), 5 ° specular reflection was measured with a spectrophotometer U-4000 manufactured by Hitachi, Ltd.
 ギラツキについては、300LPIのロンキールーリングにより、ギラツキの発生度合を以下の基準で3人のパネラーにより目視評価し、統一見解を決定した。
◎:ギラツキがない状態。
○:ギラツキはあるが目立たない状態。
△:ギラツキがある状態。
×:ギラツキが非常に目立つ状態。
With regard to glare, the appearance of glare was visually evaluated by three panelists based on the 300 LPI Ronchi ruling, and a unified view was determined.
(Double-circle): The state without glare.
○: Glittering but not noticeable.
(Triangle | delta): A state with glare.
X: The state where glare is very conspicuous.
 透過像鮮明度は、写像性測定器ICM-1(スガ試験機製)により評価された。 The transmitted image definition was evaluated by a image clarity measuring instrument ICM-1 (manufactured by Suga Test Instruments).
 表2に各項目の評価結果を示す。 Table 2 shows the evaluation results for each item.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1においては、反射率、ギラツキ、透過像鮮明度のいずれの点でも良好な結果となった。実施例1からエポキシエステル3000Aを除いた組成とした実施例2では、実施例1と同様に、反射率、ギラツキ、透過像鮮明度のいずれの点でも良好な結果となった。ペンタエリスリトールトリアクリレートとエポキシアクリレート3000Aの比率を変更した実施例3では、実施例1に比べややギラツキの点で劣るものの良好な膜特性を得られた。ポリスチレン粒子の量を変更した実施例4と実施例5では、反射率、ギラツキの点で良好な結果となった。シリカの種類を変えた実施例6、エポキシアクリレートの種類を変えた実施例7、ポリスチレン粒子の粒子径を変えた実施例8と実施例9、及び多官能アクリレートをペンタエリスリトールトリアクリレートからジペンタエリスリトールヘキサアクリレートへ変えた実施例10でも、ギラツキなどの点で良好であった。 In Example 1, good results were obtained in all points of reflectance, glare, and transmitted image definition. In Example 2 having a composition excluding the epoxy ester 3000A from Example 1, similar to Example 1, good results were obtained in all of the points of reflectance, glare, and transmitted image sharpness. In Example 3 in which the ratio of pentaerythritol triacrylate and epoxy acrylate 3000A was changed, good film characteristics were obtained although the film was slightly inferior to Example 1. In Example 4 and Example 5 in which the amount of polystyrene particles was changed, good results were obtained in terms of reflectance and glare. Example 6 in which the kind of silica was changed, Example 7 in which the kind of epoxy acrylate was changed, Examples 8 and 9 in which the particle diameter of the polystyrene particles was changed, and polyfunctional acrylate from pentaerythritol triacrylate to dipentaerythritol Example 10 which was changed to hexaacrylate was also good in terms of glare and the like.
 比較例1ではポリスチレン粒子の屈折率1.595のものから1.525のものへ変更したことにより内部ヘイズ及び表面ヘイズが大きく下がり、ギラツキの点で良好なものの、反射率が実施例1に比べ劣り防眩性フィルムとして不適であった。比較例2では実施例3からSS-50Fを除いた組成としたことにより、表面の凹凸形成の変化によりギラツキの点で劣るものとなった。比較例3ではペンタエリスリトールトリアクリレートからジペンタエリスリトールヘキサアクリレートへ変えて、エポキシアクリレート3000AとSS-50Fを除いた組成としたことにより、ギラツキの点で実施例1と比べ大きく劣り、反射率も実施例1と比べて劣る結果であった。 In Comparative Example 1, the internal haze and the surface haze are greatly lowered by changing the polystyrene particles from 1.595 to 1.525, which is good in terms of glare, but the reflectance is higher than that in Example 1. It was inferior as an antiglare film. In Comparative Example 2, the composition obtained by removing SS-50F from Example 3 was inferior in terms of glare due to changes in the formation of irregularities on the surface. In Comparative Example 3, by changing from pentaerythritol triacrylate to dipentaerythritol hexaacrylate and excluding the epoxy acrylate 3000A and SS-50F, the composition was greatly inferior to that of Example 1 in terms of glare and the reflectivity was also implemented. The result was inferior to that of Example 1.
 本発明の防眩フィルム用感光性樹脂組成物は、3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート、光重合開始剤、ポリスチレン粒子、シリカを含有する組成とすることで防眩性フィルムとすることができる。 The photosensitive resin composition for an antiglare film of the present invention has a composition containing a polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups, a photopolymerization initiator, polystyrene particles, and silica. A dazzling film can be obtained.
 本発明の防眩性フィルムは、陰極管表示装置、プラズマディスプレイパネル、液晶ディスプレイ、有機エレクトロルミネッセンス等の画像表示装置に貼合することにより、防眩性を与えることができ、当該産業分野において産業上の利用可能性を有している。
 一態様において、本発明の防眩性フィルムは良好な視認性、ギラツキ抑制、傷防止性、耐擦傷性、及び/又は、鉛筆硬度を与える。視認性を与える。
 
The antiglare film of the present invention can provide antiglare properties by being bonded to an image display device such as a cathode ray tube display device, a plasma display panel, a liquid crystal display, or organic electroluminescence. Has the above applicability.
In one embodiment, the antiglare film of the present invention provides good visibility, glare suppression, scratch resistance, scratch resistance, and / or pencil hardness. Give visibility.

Claims (11)

  1. 分子内に少なくとも3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート(A)、光重合開始剤(C)、ポリスチレン粒子(D)、及びシリカ(E)を含有する防眩性フィルム用感光性樹脂組成物。 Antiglare property containing polyfunctional (meth) acrylate (A) having at least three (meth) acryloyl groups in the molecule, photopolymerization initiator (C), polystyrene particles (D), and silica (E) Photosensitive resin composition for film.
  2. 感光性樹脂組成物の樹脂成分の合計量を100重量%とした時、A成分が10~95重量%、C成分が0.5~10重量%であり、感光性樹脂組成物の樹脂成分の合計量に対してD成分が1~30重量%、E成分が0.1~10重量%である、請求項1に記載の感光性樹脂組成物。 When the total amount of the resin components of the photosensitive resin composition is 100% by weight, the A component is 10 to 95% by weight, the C component is 0.5 to 10% by weight, and the resin component of the photosensitive resin composition The photosensitive resin composition according to claim 1, wherein the D component is 1 to 30% by weight and the E component is 0.1 to 10% by weight based on the total amount.
  3. D成分の平均粒子径が、1μmから5μmである、請求項1又は2に記載の感光性樹脂組成物。 The photosensitive resin composition of Claim 1 or 2 whose average particle diameter of D component is 1 micrometer to 5 micrometers.
  4. A成分の屈折率と、D成分の屈折率の差が0.05から1.5である、請求項1~3のいずれか一項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 3, wherein a difference between the refractive index of the A component and the refractive index of the D component is 0.05 to 1.5.
  5. E成分の平均粒子径が、1μmから5μmである、請求項1~4のいずれか一項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 4, wherein an average particle size of the E component is 1 to 5 µm.
  6. 感光性樹脂組成物を硬化した防眩性フィルムの全ヘイズが15%から35%である、請求項1~5のいずれか一項に記載の感光性樹脂組成物。 6. The photosensitive resin composition according to claim 1, wherein the anti-glare film obtained by curing the photosensitive resin composition has a total haze of 15% to 35%.
  7. 感光性樹脂組成物を硬化した防眩性フィルムの内部ヘイズが10%以上である、請求項1~6のいずれか一項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 6, wherein the anti-glare film obtained by curing the photosensitive resin composition has an internal haze of 10% or more.
  8. 請求項1~7のいずれか一項に記載の該感光性樹脂組成物を硬化した防眩性フィルム。 An antiglare film obtained by curing the photosensitive resin composition according to any one of claims 1 to 7.
  9. 請求項1~7のいずれか一項に記載の感光性樹脂組成物を硬化した層を有する光学部材。 An optical member having a layer obtained by curing the photosensitive resin composition according to any one of claims 1 to 7.
  10. 請求項1~7のいずれか一項に記載の感光性樹脂組成物を硬化した層を有する偏光板。 A polarizing plate having a layer obtained by curing the photosensitive resin composition according to any one of claims 1 to 7.
  11. 請求項1~7のいずれか一項に記載の感光性樹脂組成物を硬化した層を有する画像表示装置。
     
    An image display device having a layer obtained by curing the photosensitive resin composition according to any one of claims 1 to 7.
PCT/JP2019/018520 2018-05-15 2019-05-09 Photosensitive resin composition and antiglare film WO2019221000A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020519593A JPWO2019221000A1 (en) 2018-05-15 2019-05-09 Photosensitive resin composition and antiglare film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-093584 2018-05-15
JP2018093584 2018-05-15

Publications (1)

Publication Number Publication Date
WO2019221000A1 true WO2019221000A1 (en) 2019-11-21

Family

ID=68540236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018520 WO2019221000A1 (en) 2018-05-15 2019-05-09 Photosensitive resin composition and antiglare film

Country Status (3)

Country Link
JP (1) JPWO2019221000A1 (en)
TW (1) TW202003711A (en)
WO (1) WO2019221000A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152056A1 (en) * 2021-09-17 2023-03-22 BenQ Materials Corporation High-haze anti-glare film and high-haze anti-glare anti-reflection film
EP4152057A1 (en) * 2021-09-17 2023-03-22 BenQ Materials Corporation High-haze anti-glare film and high-haze anti-glare anti-reflection film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264327A (en) * 2003-01-22 2004-09-24 Fuji Photo Film Co Ltd Antireflection film, polarizing plate, and display device
JP2009036818A (en) * 2007-07-31 2009-02-19 Konica Minolta Opto Inc Antiglare film, antiglare antireflection film, polarizing plate and image display device
JP2009222968A (en) * 2008-03-17 2009-10-01 Toyo Ink Mfg Co Ltd Anti-glare member
WO2015145618A1 (en) * 2014-03-26 2015-10-01 リンテック株式会社 Anti-glare hard coat film
WO2015163328A1 (en) * 2014-04-23 2015-10-29 大日本印刷株式会社 Method for producing laminate, laminate, polarizing plate, image display device, and method for improving readability of image display device
WO2017141903A1 (en) * 2016-02-16 2017-08-24 株式会社トッパンTomoegawaオプティカルフィルム Optical laminate, polarizing plate, and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264327A (en) * 2003-01-22 2004-09-24 Fuji Photo Film Co Ltd Antireflection film, polarizing plate, and display device
JP2009036818A (en) * 2007-07-31 2009-02-19 Konica Minolta Opto Inc Antiglare film, antiglare antireflection film, polarizing plate and image display device
JP2009222968A (en) * 2008-03-17 2009-10-01 Toyo Ink Mfg Co Ltd Anti-glare member
WO2015145618A1 (en) * 2014-03-26 2015-10-01 リンテック株式会社 Anti-glare hard coat film
WO2015163328A1 (en) * 2014-04-23 2015-10-29 大日本印刷株式会社 Method for producing laminate, laminate, polarizing plate, image display device, and method for improving readability of image display device
WO2017141903A1 (en) * 2016-02-16 2017-08-24 株式会社トッパンTomoegawaオプティカルフィルム Optical laminate, polarizing plate, and display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152056A1 (en) * 2021-09-17 2023-03-22 BenQ Materials Corporation High-haze anti-glare film and high-haze anti-glare anti-reflection film
EP4152057A1 (en) * 2021-09-17 2023-03-22 BenQ Materials Corporation High-haze anti-glare film and high-haze anti-glare anti-reflection film
US11639445B2 (en) 2021-09-17 2023-05-02 Benq Materials Corporation High-haze anti-glare film and high-haze antiglare anti-reflection film

Also Published As

Publication number Publication date
JPWO2019221000A1 (en) 2021-07-08
TW202003711A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
CN109337106B (en) Hard coating optical film, polarizing plate and image display device
TWI534002B (en) Optical laminate and method for manufacturing optical laminate
KR102159687B1 (en) Optical laminate, polarizing plate and image display device
JP4623538B2 (en) Film having cured film of radiation curable resin composition
US8715784B2 (en) Method of producing optical layered body, optical layered body, polarizer and image display device
JP2009037046A (en) Antiglare film for liquid crystal display and liquid crystal display including the same
JP5290046B2 (en) Anti-glare hard coat film and polarizing plate using the same
JP5259334B2 (en) Anti-glare hard coat film and polarizing plate using the same
TWI667303B (en) Hard coating layered optical film , polarizer comprising the same, and image display comprising the hard coating layered optical film and/or the polarizer comprising the same
JP2007058204A (en) Anti-glare hard coat film and display device using the same
JP2021038386A (en) Active energy ray-curable antiglare hard coat agent, cured film, and laminate film
WO2019221000A1 (en) Photosensitive resin composition and antiglare film
JP5899663B2 (en) Hard coat layer composition, hard coat film, polarizing plate and image display device
JP5592671B2 (en) Anti-glare hard coat film and polarizing plate using the same
JP6057542B2 (en) Composition for forming low refractive index layer, and antireflection film, polarizing plate and display device using the same
JP4490622B2 (en) Anti-glare film
WO2014208748A1 (en) Uv-curable hard-coating resin composition
WO2019203155A1 (en) Anti-glare hard coat film and optical member using same
JP7140187B2 (en) Active energy ray-curable composition and film using the same
KR20100073365A (en) Antiglare film using silica sol and method for producing the same
US9606271B2 (en) Anti-glare film, method for producing anti-glare film, polarizer, and image display device having different size particles with impregnation layers
CN108351436B (en) Optical film, image display device, and method for producing optical film
JP4582305B2 (en) Method for producing antireflection film
CN114651197A (en) Anti-glare film, method for designing anti-glare film, method for manufacturing anti-glare film, optical member, and image display device
JP2024047835A (en) Active energy ray curable composition, cured product, and film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804110

Country of ref document: EP

Kind code of ref document: A1