WO2019220923A1 - Refrigeration cycle device - Google Patents
Refrigeration cycle device Download PDFInfo
- Publication number
- WO2019220923A1 WO2019220923A1 PCT/JP2019/017772 JP2019017772W WO2019220923A1 WO 2019220923 A1 WO2019220923 A1 WO 2019220923A1 JP 2019017772 W JP2019017772 W JP 2019017772W WO 2019220923 A1 WO2019220923 A1 WO 2019220923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- refrigeration cycle
- pressure
- decompression device
- compressor housing
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
Definitions
- the present disclosure relates to a vapor compression refrigeration cycle apparatus.
- a refrigeration cycle including a compressor, an evaporator, a condenser, a capillary tube, and a blower are installed on a support provided inside the casing.
- a refrigeration cycle including a compressor, an evaporator, a condenser, a capillary tube, and a blower are installed on a support provided inside the casing.
- this Patent Document 1 does not describe any connection mode of the compressor, the evaporator, and the condenser in the refrigeration cycle, the compressor, the evaporator, and the condenser are each connected by a refrigerant pipe in consideration of the drawings. It is understood that it has been.
- a compressor, an evaporator, and a condenser are sequentially connected by a refrigerant pipe. It acts on the refrigerant piping which is long and difficult to ensure durability. In particular, stress due to pressure pulsation or mechanical vibration accompanying the operation of the compressor tends to concentrate on the refrigerant piping connected to the compressor. When stress acts on the refrigerant pipe connected to the compressor in this way, deterioration over time due to fatigue failure or the like is difficult to avoid, and the durability of the entire refrigeration cycle apparatus is reduced.
- An object of this indication is to provide the refrigerating-cycle apparatus which can ensure durability.
- a vapor compression refrigeration cycle apparatus includes: A compressor that compresses and discharges the refrigerant; A radiator that dissipates the refrigerant discharged from the compressor; A decompression device that decompresses the refrigerant that has passed through the radiator; An evaporator that evaporates the refrigerant decompressed by the decompression device,
- the radiator has a high-pressure introduction part for introducing the refrigerant discharged from the compressor into the inside,
- the evaporator has a low pressure outlet for leading the refrigerant that has passed through the compressor to the compressor side
- the compressor includes a compression mechanism portion that compresses the refrigerant, and a compressor housing that houses the compression mechanism portion.
- the compressor housing is provided with a refrigerant discharge portion that is directly connected so that the high-pressure introduction portion is not exposed to the outside, and a refrigerant suction portion that is directly connected so that the low-pressure outlet portion is not exposed to the outside.
- the stress caused by the pressure pulsation and mechanical vibration of the compressor is large and durable, such as the radiator and the evaporator among the cycle components. Acts directly on the equipment it has. For this reason, durability of a refrigerating cycle device can be secured compared with the conventional structure where a compressor, a radiator, and an evaporator are connected via refrigerant piping.
- the refrigerant pipe is exposed to the outside, so heat loss due to heat exchange with the surrounding environment is inevitable.
- the high pressure introduction portion of the radiator is directly connected to the refrigerant discharge portion of the compressor housing so as not to be exposed to the outside, and the low pressure outlet portion of the evaporator is not exposed to the outside. It is directly connected to the refrigerant suction part of the compressor housing. According to this, heat loss due to heat exchange with the surrounding environment can be suppressed.
- FIG. 2 is a sectional view taken along the line II-II in FIG. It is a typical side view of the refrigerating cycle device seen from the direction shown by arrow III in FIG. It is explanatory drawing for demonstrating an example of the connection method of the heat radiator with respect to a compressor housing.
- FIG. 5 is a VV cross-sectional view of FIG. 1. It is the typical side view of the refrigerating-cycle apparatus seen from the direction shown by the arrow VI of FIG. It is explanatory drawing for demonstrating the flow etc. of the refrigerant
- FIG. 9 is a sectional view taken along line IX-IX in FIG. 8.
- FIG. 9 is a sectional view taken along line XX in FIG. 8.
- FIG. 12 is a sectional view taken along line XII-XII in FIG.
- FIG. 14 is a cross-sectional view taken along the line XIV-XIV in FIG. 13.
- FIG. 14 is a sectional view taken along line XV-XV in FIG. 13. It is a schematic diagram of the refrigeration cycle apparatus which concerns on 5th Embodiment.
- FIG. It is XVII-XVII sectional drawing of FIG. It is a schematic diagram of the refrigeration cycle apparatus which concerns on 6th Embodiment. It is XIX-XIX sectional drawing of FIG. It is a schematic diagram of the refrigeration cycle apparatus according to the seventh embodiment. It is XXI-XXI sectional drawing of FIG. It is a schematic diagram of the refrigeration cycle apparatus according to the eighth embodiment.
- the seat air conditioner is an air conditioner that is disposed inside the seat and air-conditions the vicinity of the seat.
- the refrigeration cycle apparatus 1 of the present embodiment has a horizontal structure in which the compressor 2, the radiator 3, the decompression device 4, the evaporator 5, and the blower 6 are arranged side by side in a horizontal direction orthogonal to the z direction.
- x, y, and z indicate three directions orthogonal to each other.
- the x direction is one direction parallel to the horizontal direction when the vehicle is mounted
- the y direction is parallel to the horizontal direction and orthogonal to the x direction
- the z direction is orthogonal to the horizontal direction (that is, vertical) Direction).
- the compressor 2 is composed of a fluid pump that sucks refrigerant and compresses and discharges the sucked refrigerant.
- the compressor 2 has a compressor housing 20 that houses a compression mechanism section 24 and an electric motor 25 described later.
- the compressor housing 20 has a convex three-dimensional shape with a substantially central portion in the x direction protruding in the y direction. Inside the compressor housing 20, an accommodation space 200 for accommodating a later-described compression mechanism portion 24 and an electric motor 25 is formed at a substantially central portion in the x direction.
- the compressor housing 20 is formed with a suction flow path 202 for introducing a refrigerant into the accommodation space 200 and a discharge flow path 204 for leading the refrigerant from the accommodation space 200.
- the suction flow path 202 and the discharge flow path 204 are formed at portions facing each other across the accommodation space 200 in the compressor housing 20.
- the suction flow path 202 is a flow path that communicates with the accommodation space 200 inside the compressor housing 20.
- the suction flow path 202 is configured by a flow path bent in an L shape formed by a through hole 202a extending in the x direction and a bottomed hole 202b extending in the y direction.
- the through hole 202a extending in the x direction forming the suction flow path 202 has an opening 202c that opens to the outside closed by a columnar blocking member 202d.
- a refrigerant suction portion 203 that is directly connected so that a low pressure outlet 52 of the evaporator 5 described later is not exposed to the outside.
- the refrigerant suction part 203 is provided to introduce the refrigerant into the suction flow path 202.
- the refrigerant suction portion 203 is an opening that opens at the end of the bottomed hole 202b that forms the suction flow path 202, and has a size that allows a low-pressure outlet 52 of the evaporator 5 to be described later to be fitted therein. ing.
- directly connected means a state in which the members are directly connected without being separated from each other, and can be understood as a state in which the members are connected to each other without passing through the refrigerant pipe.
- the discharge flow path 204 is a flow path communicating with the accommodation space 200 inside the compressor housing 20.
- the discharge flow path 204 is a flow path bent in an L shape formed by a through hole 204a extending in the x direction and a bottomed hole 204b extending in the y direction.
- an opening 204c that opens to the outside is closed by a columnar closing member 204d.
- a refrigerant discharge portion 205 that is directly connected so that a high-pressure introduction portion 31 of the radiator 3 to be described later is not exposed to the outside is provided at the end of the discharge flow passage 204 on the downstream side of the refrigerant flow.
- the refrigerant discharge unit 205 is provided to lead the refrigerant flowing through the discharge flow path 204 to the outside of the compressor housing 20.
- the refrigerant discharge part 205 is an opening that opens at the end of the bottomed hole 204b that forms the discharge flow path 204, and has a size that allows the high-pressure introduction part 31 of the radiator 3 to be described later to be fitted therein. ing.
- the compressor housing 20 is a sealed container configured by a plurality of metal members being combined in an airtight manner.
- the compressor housing 20 includes a main housing part 21 in which a suction flow path 202 and a discharge flow path 204 are formed, a plate-shaped sub housing part 22 that closes an opening formed in the main housing part 21, and An internal housing portion 23 is included.
- the main housing portion 21 is formed with a bottomed cylindrical hole for forming the above-described accommodation space 200 at a substantially central portion in the x direction.
- the main housing portion 21 includes a bottom wall portion 211 that forms the bottom surface of the housing space 200, a side wall portion 212 that forms the side surface of the housing space 200, and a bulging portion 213 that protrudes in the y direction at the side wall portion 212. .
- the bottom wall portion 211, the side wall portion 212, and the bulging portion 213 are configured as an integral structure.
- the suction channel 202 and the discharge channel 204 are formed in the side wall portion 212.
- a step portion 212a is formed so that the cross-sectional area gradually increases from the bottom wall portion 211 toward the opening side.
- the step portion 212 a is formed over the entire inner periphery of the side wall portion 212.
- the bulging portion 213 protrudes in the y direction from a portion that forms the accommodation space 200 in the side wall portion 212.
- the bulging portion 213 is a portion of the compressor housing 20 that overlaps a part of the radiator 3 and a part of the evaporator 5 in the x direction.
- the bulging portion 213 is formed with a through hole 213a penetrating along the x direction.
- the through hole 213a has a small cross-sectional area at a substantially central portion in the x direction so that the decompression action of the refrigerant is exhibited.
- the decompression device 4 is configured by a part of the through hole 213 a provided in the bulging portion 213. The details of the decompression device 4 will be described later.
- the bulging portion 213 is formed with an intermediate introduction portion 206 that is directly connected to a portion facing the radiator 3 so that a high-voltage outlet portion 32 of the radiator 3 to be described later is not exposed to the outside.
- the intermediate introduction unit 206 is provided to guide the refrigerant that has passed through the radiator 3 to the decompression device 4.
- the intermediate introduction part 206 is an opening part opened to one end side of the through hole 213a, and has a size capable of fitting a high voltage lead-out part 32 of the radiator 3 described later.
- the bulging portion 213 is formed with an intermediate lead-out portion 207 that is directly connected to a portion facing the evaporator 5 so that a low-pressure introduction portion 51 of the evaporator 5 described later is not exposed to the outside.
- the intermediate deriving unit 207 is provided to guide the refrigerant that has passed through the decompression device 4 to the evaporator 5.
- the intermediate lead-out portion 207 is an opening that opens to the other end side of the through hole 213a, and has a size that allows a low-pressure introduction portion 51 of the evaporator 5 to be described later to be fitted therein.
- the storage space 200, the suction flow path 202, and the discharge flow path 204 constitute a refrigerant flow path from the refrigerant suction section 203 to the refrigerant discharge section 205 via the compression mechanism section 24.
- the through hole 213a constitutes a refrigerant flow path from the intermediate introduction part 206 to the intermediate lead-out part 207 via the decompression device 4.
- the sub-housing portion 22 is composed of a plate-like member having a size capable of airtightly closing the opening of the main housing portion 21.
- the compressor housing 20 is formed with an accommodation space 200 for accommodating the compression mechanism portion 24 and the electric motor 25 by the airtight combination of the main housing portion 21 and the sub housing portion 22.
- a seal member made of a gasket, an O-ring, or the like is disposed between the main housing portion 21 and the sub housing portion 22.
- the main housing portion 21 and the sub housing portion 22 constitute an outer shell forming portion.
- the inner housing portion 23 functions as a support member that supports the compression mechanism portion 24 and the electric motor 25 in the compressor housing 20.
- the inner housing portion 23 includes a cylindrical tubular portion 231 through which the main shaft 26 is inserted, and an annular flange portion 232 that is continuous with the tubular portion 231 and extends radially outward of the main shaft 26. .
- the cylindrical portion 231 and the flange portion 232 are configured as an integral structure.
- the direction extending along the axis CLm of the main shaft 26 is defined as the axial direction DRa
- the direction orthogonal to the axial direction DRa is defined as the radial direction DRr.
- the cylindrical portion 231 is formed with an insertion hole 231a through which the main shaft 26 is inserted.
- the insertion hole 231a is a through hole penetrating in the axial direction DRa.
- the insertion hole 231a is provided with an inner protrusion 231b for restricting the position of the first bearing portion 263 and the second bearing portion 264 that support the main shaft 26 in the axial direction DRa.
- the cylindrical portion 231 includes a first cylindrical portion 233 protruding from the compression mechanism portion 24 side toward the bottom wall portion 211 of the main housing portion 21, and a second protruding from the electric motor 25 side toward the sub housing portion 22.
- a cylindrical portion 234 is included.
- the first tube portion 233 is a support portion that supports the electric motor 25.
- the second cylinder portion 234 is a support portion that supports the compression mechanism portion 24.
- the flange portion 232 protrudes outward in the radial direction DRr from the tubular portion 231 so as to face the end surface of the step portion 212a of the main housing portion 21.
- the flange portion 232 has a plurality of through holes 232a through which the fastening bolts 27 are inserted with respect to the outer portion thereof. Further, the flange portion 232 is formed with a groove 232 b into which the rotation prevention pin P is fitted at a portion facing the orbiting scroll 242.
- the internal housing portion 23 configured as described above is connected to the main housing portion 21 via the buffer member 28.
- the inner housing part 23 is connected to the main housing part 21 by the fastening bolts 27 with the buffer member 28 interposed between the flange part 232 and the end surface of the step part 212a of the main housing part 21. ing.
- the buffer member 28 is formed of an elastic body that blocks communication between the suction space 200A and the discharge space 200B and can attenuate vibrations of the compression mechanism 24 and the electric motor 25.
- the elastic body has an annular shape having a size capable of covering the end surface of the step portion 212a.
- the elastic body is made of, for example, a rubber material having excellent gas barrier properties and heat resistance.
- the electric motor 25 is a so-called outer rotor motor. That is, the electric motor 25 includes a stator 251 that generates a rotating magnetic field, and a rotor 252 that rotates outside the stator 251 by the rotating magnetic field generated by the stator 251.
- the stator 251 includes a cylindrical stator core 251a formed of a metal magnetic material, and a stator coil 251b wound around the stator core 251a.
- the stator 251 is fixed to the outside of the first tube portion 233 of the inner housing portion 23 by a fixing method such as press fitting.
- the rotor 252 includes a cylindrical rotor main body portion 252a, an end plate portion 252b that closes one opening of the rotor main body portion 252a, and a plurality of magnets 252c embedded inside the rotor main body portion 252a.
- a plurality of magnets 252c are embedded in the rotor body 252a at predetermined intervals in the circumferential direction.
- a through hole for receiving the motor side end portion 261 of the main shaft 26 is formed in a substantially central portion.
- the electric motor side end 261 is an end closer to the electric motor 25 than the compression mechanism 24 in the main shaft 26.
- the rotor 252 is coupled to the main shaft 26 by a coupling mechanism 29 in a state where a minute gap is formed between the magnet 252c and the stator core 251a.
- the connection mechanism 29 between the rotor 252 and the main shaft 26 is configured by a screw groove 291 formed in the motor-side end 261, a connection bolt 292 screwed into the screw groove 291, and the like.
- the main shaft 26 is a transmission member that transmits the rotational power of the electric motor 25 to the compression mechanism 24.
- the main shaft 26 has an electric motor side end portion 261 provided with the above-described coupling mechanism 29 and a compression side end portion 262 which is an end portion on the opposite side of the electric motor side end portion 261 in the axial direction DRa.
- the motor-side end portion 261 of the main shaft 26 is configured to be exposed to the outside from the insertion hole 231a when the main shaft 26 is inserted into the insertion hole 231a of the cylindrical portion 231. That is, the dimension of the axial direction DRa is set so that the motor-side end 261 is exposed to the outside of the insertion hole 231a when the main shaft 26 is inserted into the insertion hole 231a of the cylindrical portion 231.
- the main shaft 26 is rotatably supported by the first bearing portion 263 and the second bearing portion 264.
- the 1st bearing part 263 supports the site
- the 2nd bearing part 264 supports the site
- Each of the first bearing portion 263 and the second bearing portion 264 is installed inside the cylindrical portion 231 of the inner housing portion 23.
- the first bearing portion 263 is disposed so as to overlap the stator 251 in the radial direction DRr. That is, the 1st bearing part 263 is installed inside the site
- FIG. Thereby, the compressor 2 has a small physique in the axial direction DRa.
- An eccentric shaft portion 265 that is eccentric with respect to the axial center CLm of the main shaft 26 is connected to the compression side end portion 262 of the main shaft 26.
- the eccentric shaft portion 265 has a shaft center CLs that is offset from the shaft center CLm of the main shaft 26 in the radial direction DRr of the main shaft 26.
- the eccentric shaft portion 265 is connected to the compression mechanism portion 24 via the third bearing portion 266.
- the outer peripheral side of the eccentric shaft portion 265 is connected to the orbiting scroll 242 of the compression mechanism portion 24 via the third bearing portion 266.
- the third bearing portion 266 is fixed inside a boss portion 242c of the orbiting scroll 242 described later by means such as press fitting.
- the eccentric shaft portion 265 when the eccentric shaft portion 265 is connected to the main shaft 26, the centrifugal force of the eccentric shaft portion 265, the third bearing portion 266, and the orbiting scroll 242 acts on the main shaft 26. For this reason, the eccentric shaft portion 265 is provided with a weight balance 267 for suppressing the centrifugal force acting on the main shaft 26.
- the compression mechanism unit 24 is a scroll that compresses the refrigerant sucked from the outside of the orbiting scroll 242 by rotating the orbiting scroll 242 with respect to the fixed scroll 241 while the fixed tooth portion 241b and the orbiting tooth portion 242b are engaged with each other. It consists of a compression mechanism part of the mold.
- the fixed scroll 241 has a fixed substrate portion 241a fixed inside the second cylindrical portion 234 of the inner housing portion 23, and a spiral fixed tooth portion 241b protruding from the fixed substrate portion 241a.
- a refrigerant discharge port 241c that discharges the refrigerant compressed by the compression mechanism unit 24 is formed at a substantially central portion of the fixed substrate unit 241a.
- the fixed substrate portion 241 a is provided with a reed valve 241 d for preventing the refrigerant from flowing backward from the refrigerant discharge port 241 c to the compression mechanism portion 24.
- the orbiting scroll 242 has a spiral substrate portion 242a disposed facing the surface of the fixed substrate portion 241a on which the fixed tooth portion 241b is formed, and a spiral shape protruding from the orbiting substrate portion 242a toward the fixed substrate portion 241a.
- a swivel tooth portion 242b is provided.
- a boss portion 242c that receives the eccentric shaft portion 265 and the third bearing portion 266 is formed at a substantially central portion of the turning substrate portion 242a.
- a circular pin receiving hole H constituting a rotation prevention mechanism of the turning scroll 242 is formed in the turning substrate portion 242a together with the rotation prevention pin P.
- a compression chamber for compressing the refrigerant is formed between the fixed tooth portion 241 b and the orbiting tooth portion 242 b by meshing the fixed tooth portion 241 b and the orbiting tooth portion 242 b.
- a refrigerant introduction space for introducing a refrigerant into the compression chamber is formed outside the orbiting scroll 242.
- the compressor 2 configured in this way, for example, after connecting an assembly in which the compression mechanism portion 24 and the electric motor 25 are assembled to the internal housing portion 23 to the main housing portion 21, opens the opening of the main housing portion 21. It is obtained by closing with the sub housing part 22.
- the heat radiator 3 is a heat exchanger that dissipates the high-pressure refrigerant discharged from the compressor 2 by heat exchange with air supplied by a first air blower 6A of the air blower 6 described later.
- the radiator 3 is installed directly with respect to the compressor housing 20.
- the radiator 3 is provided with a high-pressure introduction part 31 for introducing the refrigerant discharged from the compressor 2 into the interior.
- the high-pressure introducing portion 31 is configured by a tubular member that protrudes toward the compressor housing 20 along the y direction.
- the radiator 3 is provided with a high-pressure derivation unit 32 for deriving the refrigerant that has passed through the radiator 3 to the decompression device 4 side.
- the high pressure lead-out part 32 is configured by a cylindrical member that protrudes toward the compressor housing 20 along the x direction.
- the radiator 3 is connected to the heat exchange core portion 33 composed of a plurality of tubes 34 and fins 35, and the longitudinal ends of the plurality of tubes 34.
- the heat exchanger includes a first high-pressure tank 36 and a second high-pressure tank 37.
- the radiator 3 is configured such that the refrigerant flowing into a part of the heat exchange core portion 33 from the first high pressure tank 36 flows into the first high pressure tank 36 via the second high pressure tank 37 and the remaining portion of the heat exchange core portion 33. Has been.
- the radiator 3 configured as described above is installed with respect to the main housing portion 21 so that the first high-pressure tank 36 is in contact with both the side wall portion 212 and the bulging portion 213 of the main housing portion 21.
- a high pressure introducing portion 31 is provided at a portion of the first high pressure tank 36 that faces the refrigerant discharge portion 205 of the compressor housing 20.
- a high pressure outlet 32 is provided at a portion of the first high pressure tank 36 that faces the intermediate inlet 206 of the compressor housing 20.
- the radiator 3 is rotated around the high-pressure deriving unit 32 in a state where the high-pressure deriving unit 32 is fitted to the intermediate introducing unit 206, and the high-pressure introducing unit 31 is fitted to the refrigerant discharge unit 205.
- the compressor housing 20 can be connected.
- the decompression device 4 decompresses the refrigerant that has passed through the radiator 3.
- the decompression device 4 of the present embodiment is formed inside the compressor housing 20.
- the decompression device 4 according to the present embodiment is configured by a fixed throttle formed in a through hole 213 a provided in the bulging portion 213 of the compressor housing 20.
- the intermediate introduction portion 206 and the intermediate lead-out portion 207 in the through hole 213 a there is a reduction portion 213 b having a smaller cross-sectional area than the intermediate introduction portion 206 and the intermediate lead-out portion 207. Is formed.
- the fixed aperture constituting the decompression device 4 is configured by a reduced portion 213b of the through hole 213a.
- the evaporator 5 is a heat exchanger that evaporates the low-pressure refrigerant decompressed by the decompression device 4 by heat exchange with air supplied by a second air blower 6B of the blower 6 described later.
- the evaporator 5 is installed directly with respect to the compressor housing 20 similarly to the radiator 3.
- the radiator 3 and the evaporator 5 of this embodiment are installed with respect to the compressor housing 20 so as to face each other via the bulging portion 213 of the compressor housing 20.
- the evaporator 5 is provided with a low-pressure introduction part 51 for introducing the refrigerant decompressed by the decompression device 4 into the interior.
- the low-pressure introduction part 51 is configured by a cylindrical member that protrudes toward the compressor housing 20 along the y direction.
- the evaporator 5 is provided with a low-pressure deriving unit 52 for deriving the refrigerant that has passed through the evaporator 5 to the compressor 2 side.
- the low pressure lead-out portion 52 is configured by a tubular member that protrudes toward the compressor housing 20 along the x direction.
- the evaporator 5 includes a heat exchange core portion 53 composed of a plurality of tubes 54 and fins 55, and a first end connected to the longitudinal ends of the plurality of tubes 54.
- the heat exchanger includes a first low pressure tank 56 and a second low pressure tank 57.
- the evaporator 5 is configured such that the refrigerant that has flowed into the heat exchange core portion 53 from the first low pressure tank 56 flows into the first low pressure tank 56 via the second low pressure tank 57 and the remainder of the heat exchange core portion 53. Has been.
- the evaporator 5 configured as described above is installed with respect to the main housing portion 21 so that the first low-pressure tank 56 is in contact with both the side wall portion 212 and the bulging portion 213 of the main housing portion 21.
- a low pressure introduction part 51 is provided in a portion of the first low pressure tank 56 that faces the intermediate outlet part 207 of the compressor housing 20.
- a low pressure outlet 52 is provided at a portion of the first low pressure tank 56 that faces the refrigerant suction portion 203 of the compressor housing 20.
- the evaporator 5 and the compressor housing 20 can be connected by a method similar to the method of connecting the radiator 3 and the compressor housing 20. That is, the evaporator 5 rotates around the low-pressure introduction part 51 in a state where the low-pressure introduction part 51 is fitted to the intermediate lead-out part 207 and fits the low-pressure lead-out part 52 to the refrigerant suction part 203. It can be connected to the housing 20.
- the blower 6 supplies air to the radiator 3 and the evaporator 5. As shown in FIG. 1, the blower 6 is disposed between the radiator 3 and the evaporator 5.
- the blower 6 includes a first blower 6 ⁇ / b> A that supplies air to the radiator 3 and a second blower 6 ⁇ / b> B that supplies air to the evaporator 5.
- the first air blower 6A includes a warm air case 61A through which warm air heated by the radiator 3 circulates, a warm air fan 62A accommodated in the warm air case 61A, and a fan motor 63A that drives the warm air fan 62A.
- the hot air case 61A is connected to a hot air blowing duct that blows hot air near the seat or a hot air exhaust duct that exhausts hot air to a space other than the vicinity of the seat.
- the second air blower 6B includes a cold air case 61B through which the cold air cooled by the evaporator 5 flows, a cold air fan 62B accommodated in the cold air case 61B, and a fan motor 63B that drives the cold air fan 62B.
- the cold air case 61B is connected to a cold air outlet duct that blows out cold air in the vicinity of the seat or a cold air exhaust duct that exhausts the cold air to a space other than the vicinity of the seat.
- the operation of the refrigeration cycle apparatus 1 of the present embodiment will be described with reference to FIG.
- power is supplied from a battery mounted on the vehicle to the stator 251 of the electric motor 25 and the fan motors 63A and 63B of the blower 6.
- the refrigerant circulates in the cycle of the refrigeration cycle apparatus 1 by driving the compression mechanism unit 24 by the electric motor 25.
- the hot air fan 62A and the cold air fan 62B are driven by the fan motors 63A and 63B, so that an airflow passing through the radiator 3 and an airflow passing through the evaporator 5 are generated.
- the refrigerant discharged from the compression mechanism portion 24 into the discharge space 200B flows into the radiator 3 via the discharge flow path 204 and the refrigerant discharge portion 205 as shown by an arrow Fc1 in FIG.
- the refrigerant flowing into the radiator 3 is in the order of the first high pressure tank 36 ⁇ the heat exchange core portion 33 ⁇ the second high pressure tank 37 ⁇ the heat exchange core portion 33 ⁇ the first high pressure tank 36. After flowing, it flows into the decompression device 4 side through the intermediate introduction part 206.
- the refrigerant that has flowed into the radiator 3 passes through the heat exchange core portion 33, the refrigerant exchanges heat with the air supplied by the first air blowing portion 6 ⁇ / b> A to radiate heat.
- the air supplied by the first blower 6A is heated by the refrigerant flowing through the radiator 3 and then blown into a desired space, as indicated by an arrow Fa1 in FIG.
- the refrigerant that has flowed into the decompression device 4 is decompressed when passing through the reduced portion 213b of the through hole 213a constituting the fixed throttle.
- the refrigerant decompressed by the decompression device 4 flows into the evaporator 5 through the intermediate outlet 207.
- the refrigerant flowing into the evaporator 5 is in the order of the first low pressure tank 56 ⁇ the heat exchange core portion 53 ⁇ the second low pressure tank 57 ⁇ the heat exchange core portion 53 ⁇ the first low pressure tank 56.
- the refrigerant flows into the compressor 2 through the refrigerant suction portion 203.
- the refrigerant flowing into the evaporator 5 evaporates by exchanging heat with the air supplied by the second blower 6B when passing through the heat exchange core 53.
- the air supplied by the second blower 6B is cooled by the endothermic action at the time of evaporation of the refrigerant flowing through the evaporator 5, and then blown into a desired space.
- the refrigerant sucked into the compressor 2 flows into the accommodation space 200 (specifically, the suction space 200A) through the suction flow path 202 as indicated by an arrow Fc4 in FIG. Thereafter, the refrigerant in the suction space 200 ⁇ / b> A is sucked into the compression mechanism unit 24, and the sucked refrigerant is compressed by the compression mechanism unit 24.
- the refrigeration cycle apparatus 1 described above includes a refrigerant discharge unit 205 that is directly connected to the compressor housing 20 so that the high-pressure introduction part 31 of the radiator 3 is not exposed to the outside, and a low-pressure derivation part 52 of the evaporator 5.
- a refrigerant suction portion 203 that is directly connected so as not to be exposed to the outside is provided.
- the pressure pulsation of the compressor 2 and the stress due to mechanical vibration cause the radiator 3 and the evaporator 5 in the cycle constituent devices. It acts directly on such a large and durable device. For this reason, the durability of the refrigeration cycle apparatus 1 can be ensured as compared with the conventional structure in which the compressor 2, the radiator 3, and the evaporator 5 are connected via the refrigerant pipe.
- the refrigeration cycle apparatus 1 can be simplified and downsized.
- the pressure loss of the refrigerant in the cycle increases as the refrigerant flow path becomes longer, and decreases as the refrigerant flow path becomes shorter. For this reason, if it is set as the structure where the heat radiator 3 and the evaporator 5 are directly connected to the compressor housing 20, compared with the conventional structure where the compressor 2, the heat radiator 3, and the evaporator 5 are connected via refrigerant
- the compressor 2 the radiator 3, and the evaporator 5 are connected via the refrigerant pipe
- the refrigerant pipe is exposed to the outside, so heat loss due to heat exchange with the surrounding environment is inevitable.
- the high pressure introduction part 31 of the radiator 3 is directly connected to the refrigerant discharge part 205 so as not to be exposed to the outside, and the low pressure derivation part 52 of the evaporator 5 is exposed to the outside. It is directly connected to the refrigerant suction part 203 so as not to occur. According to this, heat loss due to heat exchange with the surrounding environment can be suppressed.
- the decompression device 4 is provided inside the compressor housing 20.
- the compressor housing 20 is directly connected so that the high pressure lead-out portion 32 of the radiator 3 is directly connected so as not to be exposed to the outside, and the low pressure introduction portion 51 of the evaporator 5 is not exposed to the outside.
- An intermediate derivation unit 207 is provided.
- the refrigeration cycle apparatus 1 is compared with the conventional structure in which the radiator 3, the decompression device 4, and the evaporator 5 are connected via the refrigerant pipe. It is possible to ensure durability.
- the refrigeration cycle apparatus 1 can be simplified as compared with the case where a separate decompression device 4 is installed outside the compressor housing 20. Can do.
- the refrigeration cycle apparatus 1 has a structure in which a portion of the compressor housing 20 constituting the decompression device 4 is directly connected to the radiator 3 and the evaporator 5.
- the refrigeration cycle apparatus 1 is simplified and miniaturized. Can be achieved.
- the decompression device 4 of the present embodiment is configured by a fixed throttle formed in a through hole 213 a inside the compressor housing 20. If the decompression device 4 is configured with a fixed throttle formed in the compressor housing 20 as described above, the number of parts is reduced as compared with a configuration in which the decompression device 4 includes a variable throttle mechanism, and thus the refrigeration cycle apparatus 1 Can be simplified and downsized.
- the compression mechanism unit 24 of the compressor 2 is configured by a scroll type compression mechanism unit. Since the scroll-type compression mechanism section does not require a movable member that moves in the axial direction DRa unlike the reciprocating-type compression mechanism section, the physique of the axial direction DRa can be reduced in size as the compression mechanism section 24 as a whole. For this reason, if a scroll type compression mechanism part is employ
- the compressor 2 of the present embodiment is configured such that the compression mechanism portion 24 and the electric motor 25 are supported by the inner housing portion 23 accommodated in the main housing portion 21 and the sub housing portion 22 that form the outer shell.
- the internal housing portion 23 is connected to the main housing portion 21 via a buffer member 28 for attenuating vibrations of the compression mechanism portion 24 and the electric motor 25.
- the vibration generated in the compression mechanism portion 24 and the electric motor 25 is attenuated by the buffer member 28, so that the vibration of the compression mechanism portion 24 and the electric motor 25 occurs in the main housing portion 21 and the sub housing portion 22 of the compressor housing 20. It becomes difficult to be transmitted.
- the vibration applied to the main housing portion 21 in which the refrigerant discharge portion 205 and the refrigerant suction portion 203 are formed is suppressed, thereby suppressing the stress applied to the connecting portion between the compressor housing 20, the radiator 3 and the evaporator 5. Can do. This greatly contributes to improving the durability of the refrigeration cycle apparatus 1.
- the sub housing is attached to the main housing portion 21. It is obtained by connecting the parts 22. According to this, if the compression mechanism part 24, the electric motor 25, and the internal housing part 23 are unitized, the assembling property at the time of manufacture of the compressor 2 can be improved.
- the high-pressure side reservoir 215 is provided to store excess liquid refrigerant in the cycle. As shown in FIG. 8, the high-pressure side reservoir 215 is provided for the bulging portion 213 of the main housing portion 21 in the compressor housing 20. More specifically, the high-pressure side reservoir 215 is provided between the intermediate introduction part 206 and the reduction part 213 b constituting the decompression device 4 in the through hole 213 a formed in the bulging part 213. That is, the high-pressure side reservoir 215 is provided on the upstream side of the refrigerant flow with respect to the reduced portion 213b in the through hole 213a.
- the high-pressure side reservoir 215 includes a bottomed hole 215a extending in the vertical direction (that is, the z direction) and a closing plate 215b that closes the opening of the bottomed hole 215a. ing.
- the bottomed hole 215a is formed with an upstream opening 215c through which the refrigerant from the intermediate introduction section 206 flows and a downstream opening 215d through which the refrigerant stored inside flows out to the reduction section 213b, which is the decompression device 4.
- the downstream opening 215d is formed on the lower side in the vertical direction than the upstream opening 215c so that the liquid refrigerant stored in the high-pressure reservoir 215 flows toward the reducing portion 213b.
- the decompression device 4 and the high-pressure side storage portion 215 are formed inside the compressor housing 20, the refrigerant flowing through the decompression device 4 or the liquid refrigerant stored in the high-pressure side storage portion 215 and the compression mechanism portion 24 are sucked. Heat exchange with the refrigerant and the refrigerant discharged from the compression mechanism 24. In particular, when the liquid refrigerant stored in the high-pressure side storage unit 215 and the refrigerant discharged from the compression mechanism unit 24 exchange heat, there is a concern that the liquid refrigerant stored in the high-pressure side storage unit 215 evaporates.
- a heat exchange suppression unit 216 is provided for the compressor housing 20.
- the heat exchange suppression unit 216 includes an intermediate deriving unit from the intermediate introduction unit 206 through the refrigerant flow path extending from the refrigerant suction unit 203 to the refrigerant discharge unit 205 via the compression mechanism unit 24 and the decompression device 4.
- the groove 216 a is provided between the refrigerant flow path reaching 207.
- the groove 216a is formed in a slit shape.
- the refrigeration cycle apparatus 1 of the present embodiment described above has the same configuration as that of the first embodiment. For this reason, the refrigerating cycle apparatus 1 of this embodiment can obtain the effect produced from the same configuration as that of the first embodiment, similarly to the first embodiment. The same applies to the following embodiments.
- the refrigeration cycle apparatus 1 of the present embodiment is provided with a high-pressure side reservoir 215 that can store liquid refrigerant in the compressor housing 20.
- a high-pressure side reservoir 215 that can store liquid refrigerant in the compressor housing 20.
- the high-pressure side reservoir 215 is formed with an upstream opening 215c that allows the refrigerant from the intermediate introduction portion 206 to flow therein, and a downstream opening 215d that allows the refrigerant stored therein to flow out to the decompression device 4 side.
- the downstream opening 215d is formed on the lower side in the vertical direction than the upstream opening 215c.
- the liquid refrigerant stored in the high-pressure side storage unit 215 easily flows to the decompression device 4 side. That is, a liquid refrigerant with a small enthalpy tends to flow on the decompression device 4 side. As a result, the difference in enthalpy before and after the evaporator 5 can be secured, and the heat absorption capability of the evaporator 5 can be improved.
- the “vertical direction” means a direction perpendicular to the horizontal plane, and can be interpreted to mean a direction in which gravity acts.
- the compressor housing 20 the refrigerant flow from the refrigerant suction part 203 to the refrigerant discharge part 205 via the compression mechanism part 24 and the refrigerant flow from the intermediate introduction part 206 to the intermediate lead-out part 207 via the decompression device 4.
- a heat exchange suppression unit 216 is provided for thermally dividing the path.
- the downstream opening 215d of the high-pressure side reservoir 215 is formed on the lower side in the vertical direction than the upstream opening 215c is described, but the present invention is not limited to this.
- the high-pressure side reservoir 215 may be formed at a position where the downstream opening 215d is equivalent to the upstream opening 215c in the vertical direction.
- the refrigeration cycle apparatus 1 may have a configuration in which the heat exchange suppression unit 216 in the compressor housing 20 is omitted.
- the refrigeration cycle apparatus 1 may have a configuration in which the high-pressure side reservoir 215 in the compressor housing 20 is omitted.
- the heat exchange suppression unit 216 may be formed of a thermal buffer made of a material having a higher thermal resistance than the compressor housing 20.
- the high-pressure side reservoir 215 is provided in the compressor housing 20 of the refrigeration cycle apparatus 1 having a horizontal structure
- the configuration in which the high pressure side reservoir 215 is provided in the compressor housing 20 is a refrigeration cycle apparatus having a vertical structure in which the radiator 3, the decompression device 4, the evaporator 5, and the blower 6 are installed above the compressor 2. 1 is also applicable.
- the high-pressure side storage unit 215 may include a bottomed hole 215a extending in the vertical direction (that is, the z direction) so that the liquid refrigerant can be stored.
- the present embodiment is different from the first embodiment in that the decompression device 4 is disposed outside the compressor housing 20.
- portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
- the compressor housing 20 of the present embodiment has a rectangular parallelepiped outer shape in which a substantially central portion in the x direction does not protrude in the y direction. That is, the compressor housing 20 of the present embodiment is not provided with a configuration corresponding to the bulging portion 213 in the first embodiment.
- the decompression device 4 of the present embodiment is disposed outside the compressor housing 20. Specifically, the decompression device 4 is disposed between the radiator 3 and the evaporator 5 so as to be sandwiched between the first high-pressure tank 36 of the radiator 3 and the first low-pressure tank 56 of the evaporator 5. Yes.
- the decompression device 4 includes a valve main body 41 constituting an outer shell, and a throttle mechanism portion 42 provided inside the valve main body 41.
- the valve body 41 is composed of a metal block body.
- the valve body 41 is formed with a through hole 411 penetrating along the x direction. Inside the through hole 411, a throttle mechanism portion 42 that exerts a pressure reducing action of the refrigerant is disposed.
- the throttle mechanism section 42 is configured by a cylindrical orifice 421 in which a throttle channel 421a is formed.
- the valve main body 41 is formed with a valve introduction portion 412 that is directly connected to a portion facing the radiator 3 so that the high-pressure outlet portion 32 of the radiator 3 is not exposed to the outside.
- the valve introduction part 412 is an opening that opens to one end side of the through hole 411 of the valve main body 41, and has a size that allows the high pressure lead-out part 32 of the radiator 3 to be fitted therein.
- the valve main body 41 is formed with a valve lead-out portion 413 that is directly connected to a portion facing the evaporator 5 so that the low-pressure introduction portion 51 of the evaporator 5 is not exposed to the outside.
- the valve lead-out portion 413 is an opening that opens to the other end side of the through hole 411 of the valve body 41 and has a size that allows the low-pressure introduction portion 51 of the evaporator 5 to be fitted therein.
- the refrigeration cycle apparatus 1 of the present embodiment has a structure in which a decompression device 4 provided outside the compressor housing 20 is directly connected to the radiator 3 and the evaporator 5. According to this, since the number of parts is reduced as compared with the conventional structure in which the radiator 3, the decompression device 4, and the evaporator 5 are connected via the refrigerant pipe, the refrigeration cycle apparatus 1 is simplified and downsized. be able to.
- FIGS. (Fourth embodiment) Next, a fourth embodiment will be described with reference to FIGS.
- the present embodiment is different from the third embodiment in that a high-pressure side reservoir 415 is provided in the valve body 41 of the decompression device 4.
- a high-pressure side reservoir 415 is provided in the valve body 41 of the decompression device 4.
- portions different from the third embodiment will be mainly described, and description of portions similar to the third embodiment may be omitted.
- the valve main body 41 has a reduction portion 414 having a smaller cross-sectional area than the valve introduction portion 412 and the valve lead-out portion 413 between the valve introduction portion 412 and the valve lead-out portion 413 in the through hole 411. Is provided.
- the reduction unit 414 functions as a throttle mechanism unit that exerts a decompression action of the refrigerant.
- valve main body 41 is provided with a high-pressure side storage section 415 for storing a liquid refrigerant that is excessive in the cycle.
- the high-pressure side reservoir 415 is provided between the valve introduction part 412 and the reduction part 414 constituting the throttle mechanism part 42 in the through hole 411 formed in the valve main body 41.
- the high-pressure side reservoir 415 is provided on the upstream side of the refrigerant flow with respect to the reduced portion 414 in the through hole 411.
- the high-pressure side reservoir 415 includes a bottomed hole 415a extending in the z direction and a closing plate 415b that closes the opening of the bottomed hole 415a.
- the bottomed hole 415a has an upstream opening 415c through which the refrigerant from the valve introduction portion 412 flows, and a downstream opening 415d through which the refrigerant stored inside flows out to the reducing portion 414 constituting the throttle mechanism. Is formed.
- the high-pressure side reservoir 415 has a downstream opening 415d on the lower side in the vertical direction (that is, the z direction) than the upstream opening 415c so that the liquid refrigerant stored in the high-pressure reservoir 415 flows toward the reducing portion 414. Is formed.
- the heat reducing unit 416 is provided between the decompression device 4 configured in this manner and the compressor housing 20.
- the heat exchange suppression unit 416 includes a valve introduction unit via a refrigerant flow path from the refrigerant suction unit 203 to the refrigerant discharge unit 205 via the compression mechanism unit 24 and a reduction unit 414 which is a throttle mechanism unit. It is comprised by the space
- the through hole 411 formed in the valve body 41 constitutes a refrigerant flow path from the valve introduction part 412 to the valve lead-out part 413 via the reduction part 414.
- the refrigeration cycle apparatus 1 of the present embodiment described above has the same configuration as that of the third embodiment. For this reason, the refrigeration cycle apparatus 1 of the present embodiment can obtain the operational effects produced from the configuration common to the third embodiment, similarly to the third embodiment.
- a high-pressure side storage unit 415 capable of storing liquid refrigerant is provided between the valve introduction unit 412 and the reduction unit 414 functioning as the decompression device 4 in the through hole 411 of the valve body 41. ing.
- the liquid refrigerant which becomes the excess in a cycle can be temporarily stored in the high pressure side storage part 215. Sometimes a shortage of refrigerant in the cycle can be avoided.
- the high-pressure side storage section 415 has an upstream opening 415c that allows the refrigerant from the valve introduction section 412 to flow therein, and the downstream that discharges the refrigerant stored therein to the reduction section 414 that is the throttle mechanism section 42.
- a side opening 415d is formed.
- the downstream opening 415d is formed on the lower side in the vertical direction than the upstream opening 415c.
- the liquid refrigerant stored in the high-pressure side storage unit 415 easily flows to the reduction unit 414 side. That is, a liquid refrigerant having a small enthalpy is likely to flow on the reducing portion 414 side. As a result, the difference in enthalpy before and after the evaporator 5 can be secured, and the heat absorption capability of the evaporator 5 can be improved.
- a refrigerant flow path from the refrigerant suction part 203 to the refrigerant discharge part 205 and a refrigerant flow path from the valve introduction part 412 to the valve lead-out part 413 are thermally connected.
- a heat exchange suppressing unit 416 for dividing is provided. According to this, unnecessary heat exchange between the refrigerant flowing through the reduction unit 414 and the liquid refrigerant stored in the high-pressure side storage unit 415 and the refrigerant sucked into the compression mechanism unit 24 and the refrigerant discharged from the compression mechanism unit 24 is performed. Can be suppressed.
- the refrigeration cycle apparatus 1 may have a configuration in which the heat exchange suppression unit 216 is omitted.
- the refrigeration cycle apparatus 1 may have a configuration in which the high-pressure side reservoir 415 in the valve body 41 is omitted.
- the heat exchange suppression unit 416 may be formed of a thermal buffer made of a material having a higher thermal resistance than the valve body 41 and the compressor housing 20.
- the throttle mechanism unit 42 is configured by the reduction unit 414 formed in the valve body 41
- the present invention is not limited to this.
- the aperture mechanism unit 42 may be configured by the orifice 421 described in the third embodiment, for example.
- the high-pressure side reservoir 415 is provided in the valve main body 41 of the refrigeration cycle apparatus 1 having a horizontal structure, but is not limited thereto.
- the configuration in which the valve main body 41 is provided with the high-pressure side reservoir 415 is a refrigeration cycle apparatus 1 having a vertical structure in which the radiator 3, the decompression device 4, the evaporator 5, and the blower 6 are installed above the compressor 2. It is applicable to.
- the high-pressure side reservoir 415 may include a bottomed hole 415a extending in the vertical direction (that is, the z direction) so that the liquid refrigerant can be stored.
- the low-pressure side reservoir 217 is provided to store excess liquid refrigerant in the cycle.
- the low-pressure side reservoir 217 is provided for a portion of the compressor housing 20 that constitutes the suction flow path 202. More specifically, the low-pressure side reservoir 217 is provided between the refrigerant suction part 203 and the accommodation space 200 in the compressor housing 20.
- the low-pressure side reservoir 417 includes a bottomed hole 217a extending in the z direction and a closing plate 217b that closes the opening of the bottomed hole 217a.
- the bottomed hole 217a is formed with an upstream opening 217c through which the refrigerant from the refrigerant suction portion 203 flows and a downstream opening 217d through which the refrigerant stored inside flows out to the storage space 200 side.
- the downstream opening 217d is formed at a position closer to the closing plate 217b than the bottom surface of the bottomed hole 217a in the vertical direction so that the liquid refrigerant stored inside does not easily flow to the accommodation space 200 side.
- the upstream opening 217c is formed at a position equivalent to the downstream opening 217d in the vertical direction.
- a low-pressure side storage unit 217 capable of storing a liquid refrigerant is provided in an intake passage 202 formed in the compressor housing 20. If the low pressure side reservoir 417 is provided in the suction flow path 202 in this way, the low pressure side reservoir 217 can temporarily store excess liquid refrigerant in the cycle. Insufficient amount of refrigerant in the cycle can be avoided.
- the low-pressure side reservoir 217 has a structure in which the liquid refrigerant stored in the low-pressure side reservoir 217 does not easily flow to the accommodation space 200 side. According to this, it can suppress that a liquid refrigerant is compressed by the compression mechanism part 24 (namely, liquid back).
- the example in which the configuration in which the low-pressure side reservoir 217 is provided in the compressor housing 20 is applied to the configuration based on the refrigeration cycle apparatus 1 of the first embodiment has been described. It is not limited. The configuration in which the low pressure side reservoir 217 is provided in the compressor housing 20 can also be applied to the refrigeration cycle apparatus 1 of the embodiments other than the first embodiment.
- a storage space 218 for storing the low-pressure side storage section 219 is formed at a site constituting the suction flow path 202.
- the storage space 218 is formed by a bottomed hole 218a formed in the compressor housing 20 and a closing member 218b that closes the bottomed hole 218a.
- the bottomed hole 218a extends along the vertical direction.
- the low pressure side reservoir 219 is configured separately from the compressor housing 20.
- the low-pressure side reservoir 219 is formed of a bottomed cylindrical member capable of storing liquid refrigerant.
- the low-pressure side storage section 219 includes a bottomed cylindrical storage section 219 a and a connection section 219 b for connecting the storage section 219 a to the compressor housing 20.
- the reservoir 219a has an upper surface that is open, and the opening constitutes an upstream opening 219c through which the refrigerant from the refrigerant suction portion 203 flows. Further, a downstream opening 219e is formed with respect to the side wall 219d of the reservoir 219a to allow the refrigerant stored inside the reservoir 219a to flow out to the storage space 200 side. The downstream opening 219e is formed at a position closer to the upstream opening 219c than the bottom wall 219f of the reservoir 219a.
- the low-pressure side storage unit 219 is arranged in the storage space 218 so that the gas refrigerant sucked into the compression mechanism unit 24 flows between the bottomed hole 218a which is a wall surface forming the storage space 218. Specifically, in the low-pressure side reservoir 219, the reservoir 219a is separated from the bottomed hole 218a so that a refrigerant channel 218c through which a gas refrigerant flows is formed between the reservoir 219a and the bottomed hole 218a. ing.
- the refrigeration cycle apparatus 1 of the present embodiment has the same configuration as that of the fifth embodiment, and the effects obtained from the configuration common to the fifth embodiment can be obtained similarly to the fifth embodiment.
- the refrigeration cycle apparatus 1 of the present embodiment has a structure in which a low-temperature refrigerant sucked into the compression mechanism portion 24 flows between the low-pressure side storage portion 219 and the wall surface forming the storage space 218 inside the compressor housing 20. ing.
- This makes it difficult for the heat of the compressor housing 20 to be transmitted to the liquid refrigerant stored in the low-pressure side storage unit 219. That is, evaporation of the liquid refrigerant stored in the low-pressure side storage unit 219 can be suppressed by the heat of the compressor housing 20. Thereby, it is possible to avoid a shortage of the refrigerant amount in the cycle at the time of cycle load fluctuation.
- the refrigeration cycle apparatus 1 has a vertical structure in which a radiator 3, a decompression device 4, an evaporator 5, and a blower 6 are installed above a compressor 2. That is, in the refrigeration cycle apparatus 1 of the present embodiment, the radiator 3, the decompression device 4, the evaporator 5, and the blower 6 are arranged so as to overlap with the compressor 2 in the vertical direction (that is, the z direction).
- a cylindrical storage space 218 extending in the vertical direction (that is, the z direction) with respect to the compressor housing 20 is formed. Is done.
- a storage portion 219a extending in the vertical direction is stored.
- the refrigeration cycle apparatus 1 of the present embodiment has the same configuration as that of the sixth embodiment, and the effects obtained from the configuration common to the sixth embodiment can be obtained similarly to the seventh embodiment.
- the present embodiment is different from the first embodiment in that the decompression device 4 is configured by a capillary tube 43.
- the decompression device 4 is configured by a capillary tube 43.
- portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
- the decompression device 4 includes a capillary tube 43.
- the capillary tube 43 is an elongated pipe that is disposed outside the compressor housing 20 and exhibits a pressure reducing action.
- the capillary tube 43 is provided with an upstream side connection portion 431 for directly connecting the high pressure outlet portion 32 of the radiator 3 so as not to be exposed to the outside at one end portion on the upstream side of the refrigerant flow.
- the capillary tube 43 is provided with a downstream connecting portion 432 for directly connecting the low pressure introduction portion 51 of the evaporator 5 so as not to be exposed to the outside at one end portion on the downstream side of the refrigerant flow.
- the high pressure outlet 32 of the radiator 3 is directly connected to one end of the capillary tube 43 that constitutes the decompression device 4 so as not to be exposed to the outside.
- the low-pressure introduction part 51 of the evaporator 5 is directly connected to the other end of the capillary tube 43 constituting the decompression device 4 so as not to be exposed to the outside. In this way, when the capillary tube 43 constituting the decompression device 4 is directly connected to the radiator 3 and the evaporator 5, the radiator 3, the decompression device 4, and the evaporator 5 are connected via the refrigerant pipe. Compared to, the number of parts is reduced. For this reason, simplification and size reduction of the refrigeration cycle apparatus 1 can be achieved.
- the specific arrangement form of the compressor 2, the radiator 3, the decompression device 4, the evaporator 5, and the blower 6 is exemplified, but the present invention is not limited to this.
- the arrangement form of the compressor 2, the radiator 3, the decompression device 4, and the evaporator 5 may be an arrangement form other than the above-described arrangement form.
- the example in which the internal housing portion 23 of the compressor 2 is connected to the main housing portion 21 via the buffer member 28 for damping the vibration of the compression mechanism portion 24 and the electric motor 25 has been described. It is not limited to.
- the compressor 2 may be configured such that the inner housing portion 23 is connected to the main housing portion 21 without the buffer member 28 interposed therebetween.
- the compression mechanism unit 24 of the compressor 2 is configured by a scroll-type compression mechanism unit, but the present invention is not limited to this.
- the compression mechanism unit 24 may be constituted by, for example, a reciprocating type compression mechanism unit or a rolling piston type compression mechanism unit.
- the electric motor 25 of the compressor 2 is configured by the outer rotor motor has been described, but the present invention is not limited to this.
- the electric motor 25 may be composed of, for example, an inner rotor motor.
- the compressor 2 is configured by an electric compressor in which the electric motor 25 drives the compression mechanism unit 24 has been described, but the present invention is not limited to this.
- the compressor 2 may be comprised by what drives the compression mechanism part 24 using an internal combustion engine, for example.
- the radiator 3 is configured by the heat exchanger including the plurality of tubes 34, the fins 35, the first high-pressure tank 36, and the second high-pressure tank 37 has been described, but is not limited thereto.
- the radiator 3 may be configured by, for example, a tankless heat exchanger including a tube bent in a serpentine shape and a plate fin.
- the decompression device 4 may be constituted by, for example, a variable throttle type expansion valve capable of changing the throttle opening.
- the example in which the evaporator 5 is configured by the heat exchanger including the plurality of tubes 54, the fins 55, the first low-pressure tank 56, and the second low-pressure tank 57 has been described, but is not limited thereto.
- the evaporator 5 may be composed of, for example, a tankless heat exchanger including a tube bent in a serpentine shape and a plate fin.
- blower 6 may be configured such that the hot air fan 62A and the cold air fan 62B are driven by a single fan motor.
- the refrigeration cycle apparatus 1 of the present disclosure is not limited to an air conditioner mounted on a vehicle, but can be widely applied to, for example, an indoor air conditioner such as a house, and a device temperature controller.
- the refrigeration cycle apparatus includes a refrigerant discharge portion in which a high pressure introduction portion of a radiator is directly connected to a compressor housing, and a low pressure of an evaporator.
- a refrigerant suction part to which the outlet part is directly connected is provided.
- the compressor housing of the refrigeration cycle apparatus is provided with a low-pressure side reservoir that can store liquid refrigerant in an intake passage extending from the refrigerant intake to the compression mechanism.
- the radiator and evaporator are connected directly to the compressor housing (that is, a pipe-less structure), the refrigerant charge amount in the cycle is reduced due to the absence of refrigerant piping, and the cycle is subject to fluctuations in the cycle load. There is a concern that the amount of refrigerant will be insufficient.
- the liquid refrigerant that is excessive in the cycle can be temporarily stored in the low pressure side reservoir, so that when the cycle load fluctuates, Insufficient amount of refrigerant in the cycle can be avoided.
- the compressor housing of the refrigeration cycle apparatus has a storage space for storing the low-pressure side storage section in the suction flow path.
- the low-pressure side storage part is comprised with a bottomed cylindrical member, and is arrange
- the temperature of the compressor housing is likely to be increased by receiving heat from the refrigerant compressed by the compression mechanism. For this reason, if the low-pressure side reservoir is simply provided for the compressor housing, the liquid refrigerant stored in the low-pressure side reservoir may evaporate due to the heat of the compressor housing.
- the refrigerant is stored in the low-pressure side reservoir. It becomes difficult for the heat of the compressor housing to be transferred to the liquid refrigerant. That is, the evaporation of the liquid refrigerant stored in the low-pressure side storage unit due to the heat of the compressor housing can be suppressed. Thereby, since the liquid refrigerant is appropriately stored in the low-pressure side storage section, it is possible to avoid a shortage of the refrigerant amount in the cycle when the load of the cycle changes.
- the radiator of the refrigeration cycle apparatus has a high-pressure derivation unit for deriving the refrigerant that has passed through the refrigeration cycle apparatus to the decompression device side.
- the evaporator has a low pressure introduction part for introducing the refrigerant decompressed by the decompression device.
- the decompression device is provided inside the compressor housing.
- the compressor housing is provided with an intermediate introduction portion that guides the refrigerant that has passed through the radiator to the decompression device and an intermediate lead-out portion that guides the refrigerant that has passed through the decompression device to the evaporator.
- the high pressure lead-out part is directly connected to the intermediate introduction part so as not to be exposed to the outside.
- the low pressure introduction part is directly connected to the intermediate lead-out part so as not to be exposed to the outside.
- the decompression device is provided inside the compressor housing in this way, the refrigeration cycle apparatus can be simplified compared to the case where a separate decompression device is installed outside the compressor housing.
- the refrigeration cycle apparatus of the present disclosure has a structure in which a portion of the compressor housing that constitutes the decompression device is directly connected to the radiator and the evaporator.
- the refrigeration cycle apparatus can be simplified and downsized. .
- the decompression device of the refrigeration cycle apparatus is composed of a fixed throttle formed in a through hole inside the compressor housing. If the decompression device is configured with a fixed throttle formed in the compressor housing in this way, the number of parts is reduced compared to the case where the decompression device is configured to include a variable throttle mechanism, and thus the refrigeration cycle apparatus is simplified In addition, the size can be reduced.
- the refrigerant flow path from the refrigerant suction portion to the refrigerant discharge portion via the compression mechanism portion and the intermediate introduction portion to the intermediate lead-out portion via the decompression device are provided.
- a heat exchange suppression unit is provided for thermally dividing the refrigerant flow path that reaches.
- the decompression device is simply formed inside the compressor housing, unnecessary heat exchange may occur between the refrigerant flowing through the decompression device and the refrigerant sucked into the compression mechanism and the refrigerant discharged from the compression mechanism. Is done.
- a heat exchange suppression unit for thermally dividing the refrigerant flow path from the refrigerant suction section to the refrigerant discharge section and the refrigerant flow path from the intermediate introduction section to the intermediate discharge section with respect to the compressor housing. If it is set as the structure provided, the unnecessary heat exchange mentioned above can be suppressed.
- high-pressure side storage capable of storing liquid refrigerant between the intermediate introduction part and the decompression device in the refrigerant flow path from the intermediate introduction part to the intermediate outlet part.
- the liquid refrigerant that is excessive in the cycle can be temporarily stored in the high pressure side reservoir, so that the cycle can be changed when the cycle load changes. It is possible to avoid a shortage of the refrigerant amount inside.
- the high-pressure side reservoir of the refrigeration cycle apparatus has an upstream opening that allows the refrigerant from the intermediate introduction portion to flow therein, and a downstream side that causes the refrigerant stored therein to flow out to the decompression device side.
- An opening is formed.
- the downstream opening is formed on the lower side in the vertical direction than the upstream opening.
- the liquid refrigerant stored in the high-pressure side storage section can easily flow to the decompression mechanism side. That is, a liquid refrigerant having a small enthalpy easily flows to the decompression device side. As a result, the difference in enthalpy before and after the evaporator can be secured, and the heat absorption capability of the evaporator can be improved.
- the “vertical direction” means a direction perpendicular to the horizontal plane, and can be interpreted to mean a direction in which gravity acts.
- the radiator of the refrigeration cycle apparatus has a high-pressure deriving unit for deriving the refrigerant that has passed through the radiator to the decompression device side.
- the evaporator has a low pressure introduction part for introducing the refrigerant decompressed by the decompression device.
- the decompression device is disposed outside the compressor housing, and includes a valve body that forms an outer shell, and a throttle mechanism that is provided inside the valve body.
- the valve body is provided with a valve introduction part that guides the refrigerant that has passed through the radiator to the throttle mechanism part, and a valve lead-out part that guides the refrigerant that has passed through the throttle mechanism part to the evaporator.
- the high pressure lead-out portion is directly connected to the valve introduction portion so as not to be exposed to the outside.
- the low-pressure introduction part is directly connected to the valve lead-out part so as not to be exposed to the outside.
- the refrigeration cycle apparatus includes a refrigerant flow path extending from the refrigerant suction section to the refrigerant discharge section and a refrigerant flow path extending from the valve introduction section to the valve discharge section between the valve body and the compressor housing.
- a heat exchange suppression unit for thermally dividing is provided.
- the refrigerant flow path from the refrigerant suction section to the refrigerant discharge section and the refrigerant flow path from the intermediate introduction section to the intermediate outlet section are thermally separated. If it is set as the structure which provides a heat exchange suppression part, the unnecessary heat exchange mentioned above can be suppressed.
- liquid refrigerant that is excessive in the cycle is placed between the valve introduction part and the throttle mechanism part in the refrigerant flow path from the intermediate introduction part to the intermediate lead-out part in the valve body of the refrigeration cycle apparatus.
- a high-pressure side reservoir for storing is formed.
- the liquid refrigerant that is excessive in the cycle can be temporarily stored in the high-pressure side reservoir, so that the cycle time can be changed when the load of the cycle changes. Insufficient amount of refrigerant can be avoided.
- the high-pressure side storage section of the refrigeration cycle apparatus includes an upstream opening that allows the refrigerant from the valve introduction section to flow therein, and a downstream side that discharges the refrigerant stored therein to the throttle mechanism section.
- An opening is formed.
- the downstream opening is formed on the lower side in the vertical direction than the upstream opening.
- the liquid refrigerant stored in the high-pressure side storage section can easily flow to the decompression mechanism side. That is, a liquid refrigerant having a small enthalpy easily flows to the decompression device side. As a result, the difference in enthalpy before and after the evaporator can be secured, and the heat absorption capability of the evaporator can be improved.
- the radiator of the refrigeration cycle apparatus has a high-pressure derivation unit for deriving the refrigerant that has passed through the refrigeration cycle apparatus to the decompression device side.
- the evaporator has a low pressure introduction part for introducing the refrigerant decompressed by the decompression device.
- the decompression device is composed of a capillary tube that is disposed outside the compressor housing and exerts a decompression action.
- the high-pressure outlet is directly connected to one end of the capillary tube so as not to be exposed to the outside.
- the low pressure introduction part is directly connected to the other end of the capillary tube so as not to be exposed to the outside.
- the refrigeration cycle apparatus can be simplified and downsized.
- the compressor housing of the refrigeration cycle apparatus includes an outer shell forming portion that forms an outer shell, and a support member that supports the compression mechanism portion.
- the outer shell forming part is provided with at least a refrigerant discharge part and a refrigerant suction part.
- the support member is connected with the outer shell formation part via the buffer member for attenuating the vibration of a compression mechanism part.
- the vibration generated in the compression mechanism part is attenuated by the buffer member, so that the vibration of the compression mechanism part is hardly transmitted to the outer shell forming part of the compressor housing.
- the vibration of the outer shell forming portion is suppressed, the stress applied to the connecting portion of the compressor housing, the radiator and the evaporator can be suppressed, so that the durability of the refrigeration cycle apparatus can be ensured.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressor (AREA)
Abstract
A refrigeration cycle device (1) is provided with a compressor (2) which compresses a refrigerant and discharges the refrigerant, a heat dissipater (3) which dissipates the heat of the refrigerant having been discharged from the compressor, a pressure reduction device (4) which reduces the pressure of the refrigerant having flowed through the heat dissipater, and an evaporator (5) which evaporates the refrigerant having been subjected to pressure reduction by the pressure reduction device. The heat dissipater has a high-pressure inlet section (31) for introducing into the heat dissipater the refrigerant having been discharged from the compressor. The evaporator has a low-pressure outlet section (52) for delivering to the compressor side the refrigerant having flowed through the evaporator. The compressor is formed to include a compression mechanism section (24) which compresses a refrigerant, and a compressor housing (20) which contains the compression mechanism section. The compressor housing is provided with a refrigerant discharge section (205) to which the high-pressure inlet section is directly connected so as not to be exposed to the outside, and a refrigerant suction section (203) to which the low-pressure outlet section is directly connected so as to be exposed to the outside.
Description
本出願は、2018年5月14日に出願された日本特許出願番号2018-93091号に基づくもので、ここにその記載内容が参照により組み入れられる。
This application is based on Japanese Patent Application No. 2018-93091 filed on May 14, 2018, the description of which is incorporated herein by reference.
本開示は、蒸気圧縮式の冷凍サイクル装置に関する。
The present disclosure relates to a vapor compression refrigeration cycle apparatus.
従来、一体型の空気調和装置として、筐体の内側に設けた支持具に対して、圧縮機、蒸発器、凝縮器、キャピラリチューブからなる冷凍サイクル、および送風機が設置されたものが知られている(例えば、特許文献1参照)。この特許文献1には、冷凍サイクルにおける圧縮機、蒸発器、凝縮器の接続態様について何ら記載されていないが、図面などを参酌すれば、圧縮機、蒸発器、凝縮器それぞれが冷媒配管によって接続されていると解される。
Conventionally, as an integrated air conditioner, a refrigeration cycle including a compressor, an evaporator, a condenser, a capillary tube, and a blower are installed on a support provided inside the casing. (For example, refer to Patent Document 1). Although this Patent Document 1 does not describe any connection mode of the compressor, the evaporator, and the condenser in the refrigeration cycle, the compressor, the evaporator, and the condenser are each connected by a refrigerant pipe in consideration of the drawings. It is understood that it has been.
ところで、冷凍サイクル装置では、冷媒配管によって圧縮機、蒸発器、凝縮器が順次接続される構成になっているが、圧縮機の作動に伴う圧力脈動や機械振動による応力が、サイクル構成機器のうち細長く耐久性の確保が困難となる冷媒配管に対して作用する。特に、圧縮機の作動に伴う圧力脈動や機械振動による応力は、圧縮機に接続される冷媒配管に集中的に作用する傾向がある。このように圧縮機に接続される冷媒配管に対して応力が集中的に作用すると、疲労破壊等による経時的な劣化が回避し難く、冷凍サイクル装置全体としての耐久性が低下してしまう。
本開示は、耐久性を確保可能な冷凍サイクル装置を提供することを目的とする。 By the way, in the refrigeration cycle apparatus, a compressor, an evaporator, and a condenser are sequentially connected by a refrigerant pipe. It acts on the refrigerant piping which is long and difficult to ensure durability. In particular, stress due to pressure pulsation or mechanical vibration accompanying the operation of the compressor tends to concentrate on the refrigerant piping connected to the compressor. When stress acts on the refrigerant pipe connected to the compressor in this way, deterioration over time due to fatigue failure or the like is difficult to avoid, and the durability of the entire refrigeration cycle apparatus is reduced.
An object of this indication is to provide the refrigerating-cycle apparatus which can ensure durability.
本開示は、耐久性を確保可能な冷凍サイクル装置を提供することを目的とする。 By the way, in the refrigeration cycle apparatus, a compressor, an evaporator, and a condenser are sequentially connected by a refrigerant pipe. It acts on the refrigerant piping which is long and difficult to ensure durability. In particular, stress due to pressure pulsation or mechanical vibration accompanying the operation of the compressor tends to concentrate on the refrigerant piping connected to the compressor. When stress acts on the refrigerant pipe connected to the compressor in this way, deterioration over time due to fatigue failure or the like is difficult to avoid, and the durability of the entire refrigeration cycle apparatus is reduced.
An object of this indication is to provide the refrigerating-cycle apparatus which can ensure durability.
本開示の1つの観点によれば、蒸気圧縮式の冷凍サイクル装置は、
冷媒を圧縮して吐出する圧縮機と、
圧縮機から吐出された冷媒を放熱させる放熱器と、
放熱器を通過した冷媒を減圧する減圧機器と、
減圧機器で減圧された冷媒を蒸発させる蒸発器と、を備え、
放熱器は、圧縮機から吐出された冷媒を内部に導入するための高圧導入部を有しており、
蒸発器は、内部を通過した冷媒を圧縮機側に導出するための低圧導出部を有しており、
圧縮機は、冷媒を圧縮する圧縮機構部、圧縮機構部を収容する圧縮機ハウジングを含んで構成されており、
圧縮機ハウジングには、高圧導入部が外部に露出しないように直結される冷媒吐出部、および低圧導出部が外部に露出しないように直結される冷媒吸入部が設けられている。 According to one aspect of the present disclosure, a vapor compression refrigeration cycle apparatus includes:
A compressor that compresses and discharges the refrigerant;
A radiator that dissipates the refrigerant discharged from the compressor;
A decompression device that decompresses the refrigerant that has passed through the radiator;
An evaporator that evaporates the refrigerant decompressed by the decompression device,
The radiator has a high-pressure introduction part for introducing the refrigerant discharged from the compressor into the inside,
The evaporator has a low pressure outlet for leading the refrigerant that has passed through the compressor to the compressor side,
The compressor includes a compression mechanism portion that compresses the refrigerant, and a compressor housing that houses the compression mechanism portion.
The compressor housing is provided with a refrigerant discharge portion that is directly connected so that the high-pressure introduction portion is not exposed to the outside, and a refrigerant suction portion that is directly connected so that the low-pressure outlet portion is not exposed to the outside.
冷媒を圧縮して吐出する圧縮機と、
圧縮機から吐出された冷媒を放熱させる放熱器と、
放熱器を通過した冷媒を減圧する減圧機器と、
減圧機器で減圧された冷媒を蒸発させる蒸発器と、を備え、
放熱器は、圧縮機から吐出された冷媒を内部に導入するための高圧導入部を有しており、
蒸発器は、内部を通過した冷媒を圧縮機側に導出するための低圧導出部を有しており、
圧縮機は、冷媒を圧縮する圧縮機構部、圧縮機構部を収容する圧縮機ハウジングを含んで構成されており、
圧縮機ハウジングには、高圧導入部が外部に露出しないように直結される冷媒吐出部、および低圧導出部が外部に露出しないように直結される冷媒吸入部が設けられている。 According to one aspect of the present disclosure, a vapor compression refrigeration cycle apparatus includes:
A compressor that compresses and discharges the refrigerant;
A radiator that dissipates the refrigerant discharged from the compressor;
A decompression device that decompresses the refrigerant that has passed through the radiator;
An evaporator that evaporates the refrigerant decompressed by the decompression device,
The radiator has a high-pressure introduction part for introducing the refrigerant discharged from the compressor into the inside,
The evaporator has a low pressure outlet for leading the refrigerant that has passed through the compressor to the compressor side,
The compressor includes a compression mechanism portion that compresses the refrigerant, and a compressor housing that houses the compression mechanism portion.
The compressor housing is provided with a refrigerant discharge portion that is directly connected so that the high-pressure introduction portion is not exposed to the outside, and a refrigerant suction portion that is directly connected so that the low-pressure outlet portion is not exposed to the outside.
このように、放熱器および蒸発器が圧縮機ハウジングに直結される構造とすれば、圧縮機の圧力脈動や機械振動による応力が、サイクル構成機器のうち放熱器および蒸発器といった大型で耐久性を有する機器に対して直接的に作用する。このため、冷媒配管を介して圧縮機、放熱器、蒸発器が接続される従来の構造に比べて冷凍サイクル装置の耐久性を確保することができる。
As described above, if the radiator and the evaporator are directly connected to the compressor housing, the stress caused by the pressure pulsation and mechanical vibration of the compressor is large and durable, such as the radiator and the evaporator among the cycle components. Acts directly on the equipment it has. For this reason, durability of a refrigerating cycle device can be secured compared with the conventional structure where a compressor, a radiator, and an evaporator are connected via refrigerant piping.
また、冷媒配管を介して圧縮機、放熱器、蒸発器が接続される従来の構造では、冷媒配管が外部に露出するため、周囲環境との熱交換による熱損失が避けられない。
Also, in the conventional structure in which the compressor, radiator, and evaporator are connected via the refrigerant pipe, the refrigerant pipe is exposed to the outside, so heat loss due to heat exchange with the surrounding environment is inevitable.
これに対して、本開示の冷凍サイクル装置では、放熱器の高圧導入部が外部に露出しないように圧縮機ハウジングの冷媒吐出部に直結され、蒸発器の低圧導出部が外部に露出しないように圧縮機ハウジングの冷媒吸入部に直結されされている。これによると、周囲環境との熱交換による熱損失を抑制することができる。
On the other hand, in the refrigeration cycle apparatus of the present disclosure, the high pressure introduction portion of the radiator is directly connected to the refrigerant discharge portion of the compressor housing so as not to be exposed to the outside, and the low pressure outlet portion of the evaporator is not exposed to the outside. It is directly connected to the refrigerant suction part of the compressor housing. According to this, heat loss due to heat exchange with the surrounding environment can be suppressed.
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
Note that reference numerals with parentheses attached to each component and the like indicate an example of a correspondence relationship between the component and the like and specific components described in the embodiments described later.
以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts as those described in the preceding embodiments are denoted by the same reference numerals, and the description thereof may be omitted. Further, in the embodiment, when only a part of the constituent elements are described, the constituent elements described in the preceding embodiment can be applied to the other parts of the constituent elements. The following embodiments can be partially combined with each other even if they are not particularly specified as long as they do not cause any trouble in the combination.
(第1実施形態)
本実施形態について、図1~図7を参照して説明する。本実施形態では、車両に搭載されるシート空調装置に対して、本開示の蒸気圧縮式の冷凍サイクル装置1を適用した例について説明する。シート空調装置は、シートの内側に配置されてシート付近を空調する空調機器である。 (First embodiment)
This embodiment will be described with reference to FIGS. In the present embodiment, an example in which the vapor compressionrefrigeration cycle apparatus 1 of the present disclosure is applied to a seat air conditioner mounted on a vehicle will be described. The seat air conditioner is an air conditioner that is disposed inside the seat and air-conditions the vicinity of the seat.
本実施形態について、図1~図7を参照して説明する。本実施形態では、車両に搭載されるシート空調装置に対して、本開示の蒸気圧縮式の冷凍サイクル装置1を適用した例について説明する。シート空調装置は、シートの内側に配置されてシート付近を空調する空調機器である。 (First embodiment)
This embodiment will be described with reference to FIGS. In the present embodiment, an example in which the vapor compression
図1に示すように、冷凍サイクル装置1は、圧縮機2と、放熱器3と、減圧機器4と、蒸発器5と、送風機6と、を備える。冷凍サイクル装置1は、圧縮機2、放熱器3、減圧機器4、蒸発器5の順序で冷媒が流れるように構成されている。冷凍サイクル装置1に用いられる冷媒には、圧縮機2内部の摺動部位等を保護するための冷凍機油が含まれている。
As shown in FIG. 1, the refrigeration cycle apparatus 1 includes a compressor 2, a radiator 3, a decompression device 4, an evaporator 5, and a blower 6. The refrigeration cycle apparatus 1 is configured such that the refrigerant flows in the order of the compressor 2, the radiator 3, the decompression device 4, and the evaporator 5. The refrigerant used in the refrigeration cycle apparatus 1 includes refrigeration oil for protecting the sliding portion and the like inside the compressor 2.
本実施形態の冷凍サイクル装置1は、圧縮機2、放熱器3、減圧機器4、蒸発器5、および送風機6がz方向に直交する水平方向に並んで配置される横置型の構造になっている。なお、図中に示すx、y、zは、互いに直交する3つの方向を示すものである。本実施形態では、x方向が車載時における水平方向に平行な一方向、y方向が水平方向に平行であってx方向に直交する方向、z方向が水平方向に直交する垂直方向(すなわち、鉛直方向)を示している。
The refrigeration cycle apparatus 1 of the present embodiment has a horizontal structure in which the compressor 2, the radiator 3, the decompression device 4, the evaporator 5, and the blower 6 are arranged side by side in a horizontal direction orthogonal to the z direction. Yes. In the figure, x, y, and z indicate three directions orthogonal to each other. In the present embodiment, the x direction is one direction parallel to the horizontal direction when the vehicle is mounted, the y direction is parallel to the horizontal direction and orthogonal to the x direction, and the z direction is orthogonal to the horizontal direction (that is, vertical) Direction).
圧縮機2は、冷媒を吸入し、吸入した冷媒を圧縮して吐出する流体ポンプで構成されている。圧縮機2は、後述する圧縮機構部24および電動機25を収容する圧縮機ハウジング20を有している。
The compressor 2 is composed of a fluid pump that sucks refrigerant and compresses and discharges the sucked refrigerant. The compressor 2 has a compressor housing 20 that houses a compression mechanism section 24 and an electric motor 25 described later.
圧縮機ハウジング20は、x方向における略中央部分がy方向に突き出る凸状の立体形状を有している。圧縮機ハウジング20の内部には、x方向における略中央部分に後述する圧縮機構部24および電動機25を収容する収容空間200が形成されている。
The compressor housing 20 has a convex three-dimensional shape with a substantially central portion in the x direction protruding in the y direction. Inside the compressor housing 20, an accommodation space 200 for accommodating a later-described compression mechanism portion 24 and an electric motor 25 is formed at a substantially central portion in the x direction.
また、圧縮機ハウジング20には、収容空間200に対して冷媒を導入するための吸入流路202、収容空間200から冷媒を導出するための吐出流路204が形成されている。吸入流路202および吐出流路204は、圧縮機ハウジング20における収容空間200を挟んで互いに対向する部位に形成されている。
Also, the compressor housing 20 is formed with a suction flow path 202 for introducing a refrigerant into the accommodation space 200 and a discharge flow path 204 for leading the refrigerant from the accommodation space 200. The suction flow path 202 and the discharge flow path 204 are formed at portions facing each other across the accommodation space 200 in the compressor housing 20.
吸入流路202は、圧縮機ハウジング20の内部において収容空間200に連通する流路である。具体的には、吸入流路202は、x方向に延びる貫通穴202aとy方向に延びる有底穴202bとで形成されるL字状に曲がった流路で構成されている。吸入流路202を形成するx方向に延びる貫通穴202aは、外部に開口する開口部202cが柱状の閉塞部材202dによって閉塞されている。
The suction flow path 202 is a flow path that communicates with the accommodation space 200 inside the compressor housing 20. Specifically, the suction flow path 202 is configured by a flow path bent in an L shape formed by a through hole 202a extending in the x direction and a bottomed hole 202b extending in the y direction. The through hole 202a extending in the x direction forming the suction flow path 202 has an opening 202c that opens to the outside closed by a columnar blocking member 202d.
また、吸入流路202の冷媒流れ上流側の端部には、後述する蒸発器5の低圧導出部52が外部に露出しないように直結される冷媒吸入部203が設けられている。冷媒吸入部203は、吸入流路202に冷媒を導入するために設けられている。冷媒吸入部203は、吸入流路202を形成する有底穴202bの端部に開口する開口部であり、後述する蒸発器5の低圧導出部52を嵌め込むことが可能な大きさを有している。なお、「直結」とは、あいだを隔てないで直接に結びついた状態を意味するものであり、冷媒配管を介することなく部材同士が連結された状態と解することができる。
Also, at the end of the suction flow path 202 on the upstream side of the refrigerant flow, there is provided a refrigerant suction portion 203 that is directly connected so that a low pressure outlet 52 of the evaporator 5 described later is not exposed to the outside. The refrigerant suction part 203 is provided to introduce the refrigerant into the suction flow path 202. The refrigerant suction portion 203 is an opening that opens at the end of the bottomed hole 202b that forms the suction flow path 202, and has a size that allows a low-pressure outlet 52 of the evaporator 5 to be described later to be fitted therein. ing. Note that “directly connected” means a state in which the members are directly connected without being separated from each other, and can be understood as a state in which the members are connected to each other without passing through the refrigerant pipe.
吐出流路204は、圧縮機ハウジング20の内部において収容空間200に連通する流路である。具体的には、吐出流路204は、x方向に延びる貫通穴204aとy方向に延びる有底穴204bとで形成されるL字状に曲がった流路である。吐出流路204を形成するx方向に延びる貫通穴204aは、外部に開口する開口部204cが柱状の閉塞部材204dによって閉塞されている。
The discharge flow path 204 is a flow path communicating with the accommodation space 200 inside the compressor housing 20. Specifically, the discharge flow path 204 is a flow path bent in an L shape formed by a through hole 204a extending in the x direction and a bottomed hole 204b extending in the y direction. In the through hole 204a extending in the x direction forming the discharge flow path 204, an opening 204c that opens to the outside is closed by a columnar closing member 204d.
また、吐出流路204の冷媒流れ下流側の端部には、後述する放熱器3の高圧導入部31が外部に露出しないように直結される冷媒吐出部205が設けられている。冷媒吐出部205は、吐出流路204を流れる冷媒を圧縮機ハウジング20の外部に導出するために設けられている。冷媒吐出部205は、吐出流路204を形成する有底穴204bの端部に開口する開口部であり、後述する放熱器3の高圧導入部31を嵌め込むことが可能な大きさを有している。
Further, a refrigerant discharge portion 205 that is directly connected so that a high-pressure introduction portion 31 of the radiator 3 to be described later is not exposed to the outside is provided at the end of the discharge flow passage 204 on the downstream side of the refrigerant flow. The refrigerant discharge unit 205 is provided to lead the refrigerant flowing through the discharge flow path 204 to the outside of the compressor housing 20. The refrigerant discharge part 205 is an opening that opens at the end of the bottomed hole 204b that forms the discharge flow path 204, and has a size that allows the high-pressure introduction part 31 of the radiator 3 to be described later to be fitted therein. ing.
以下、本実施形態の圧縮機2の詳細について図2を参照して説明する。図2に示すように、圧縮機ハウジング20は、複数の金属製の部材が気密に組み合わされることによって構成される密閉容器である。具体的には、圧縮機ハウジング20は、吸入流路202および吐出流路204が形成されたメインハウジング部21、メインハウジング部21に形成された開口を閉塞する板状のサブハウジング部22、および内部ハウジング部23を含んで構成されている。
Hereinafter, details of the compressor 2 of the present embodiment will be described with reference to FIG. As shown in FIG. 2, the compressor housing 20 is a sealed container configured by a plurality of metal members being combined in an airtight manner. Specifically, the compressor housing 20 includes a main housing part 21 in which a suction flow path 202 and a discharge flow path 204 are formed, a plate-shaped sub housing part 22 that closes an opening formed in the main housing part 21, and An internal housing portion 23 is included.
メインハウジング部21は、x方向における略中央部分に前述の収容空間200を形成するための有底円柱状の穴が形成されている。メインハウジング部21は、収容空間200の底面を形成する底壁部211、収容空間200の側面を形成する側壁部212、側壁部212においてy方向に突き出る膨出部213を含んで構成されている。底壁部211、側壁部212、および膨出部213は、一体の構造物として構成されている。
The main housing portion 21 is formed with a bottomed cylindrical hole for forming the above-described accommodation space 200 at a substantially central portion in the x direction. The main housing portion 21 includes a bottom wall portion 211 that forms the bottom surface of the housing space 200, a side wall portion 212 that forms the side surface of the housing space 200, and a bulging portion 213 that protrudes in the y direction at the side wall portion 212. . The bottom wall portion 211, the side wall portion 212, and the bulging portion 213 are configured as an integral structure.
側壁部212には、吸入流路202および吐出流路204が形成されている。側壁部212の内側には、底壁部211から開口側に向かって段階的に断面積が大きくなるよう段部212aが形成されている。この段部212aは、側壁部212の内側の全周にわたって形成されている。
The suction channel 202 and the discharge channel 204 are formed in the side wall portion 212. On the inner side of the side wall portion 212, a step portion 212a is formed so that the cross-sectional area gradually increases from the bottom wall portion 211 toward the opening side. The step portion 212 a is formed over the entire inner periphery of the side wall portion 212.
膨出部213は、図1に示すように、側壁部212における収容空間200を形成する部位からy方向に突き出ている。膨出部213は、圧縮機ハウジング20のうちx方向において放熱器3の一部および蒸発器5の一部に重なり合う部位である。
As shown in FIG. 1, the bulging portion 213 protrudes in the y direction from a portion that forms the accommodation space 200 in the side wall portion 212. The bulging portion 213 is a portion of the compressor housing 20 that overlaps a part of the radiator 3 and a part of the evaporator 5 in the x direction.
膨出部213には、x方向に沿って貫通する貫通穴213aが形成されている。この貫通穴213aには、冷媒の減圧作用が発揮されるようにx方向における略中央部位に断面積が小さくなっている。本実施形態では、膨出部213に設けられた貫通穴213aの一部で減圧機器4が構成されている。なお、減圧機器4の詳細については後述する。
The bulging portion 213 is formed with a through hole 213a penetrating along the x direction. The through hole 213a has a small cross-sectional area at a substantially central portion in the x direction so that the decompression action of the refrigerant is exhibited. In the present embodiment, the decompression device 4 is configured by a part of the through hole 213 a provided in the bulging portion 213. The details of the decompression device 4 will be described later.
膨出部213には、放熱器3に対向する部位に後述する放熱器3の高圧導出部32が外部に露出しないように直結される中間導入部206が形成されている。中間導入部206は、放熱器3を通過した冷媒を減圧機器4に導くために設けられている。中間導入部206は、貫通穴213aの一端側に開口する開口部であり、後述する放熱器3の高圧導出部32を嵌め込むことが可能な大きさを有している。
The bulging portion 213 is formed with an intermediate introduction portion 206 that is directly connected to a portion facing the radiator 3 so that a high-voltage outlet portion 32 of the radiator 3 to be described later is not exposed to the outside. The intermediate introduction unit 206 is provided to guide the refrigerant that has passed through the radiator 3 to the decompression device 4. The intermediate introduction part 206 is an opening part opened to one end side of the through hole 213a, and has a size capable of fitting a high voltage lead-out part 32 of the radiator 3 described later.
また、膨出部213には、蒸発器5に対向する部位に後述する蒸発器5の低圧導入部51が外部に露出しないように直結される中間導出部207が形成されている。中間導出部207は、減圧機器4を通過した冷媒を蒸発器5に導くために設けられている。中間導出部207は、貫通穴213aの他端側に開口する開口部であり、後述する蒸発器5の低圧導入部51を嵌め込むことが可能な大きさを有している。
Further, the bulging portion 213 is formed with an intermediate lead-out portion 207 that is directly connected to a portion facing the evaporator 5 so that a low-pressure introduction portion 51 of the evaporator 5 described later is not exposed to the outside. The intermediate deriving unit 207 is provided to guide the refrigerant that has passed through the decompression device 4 to the evaporator 5. The intermediate lead-out portion 207 is an opening that opens to the other end side of the through hole 213a, and has a size that allows a low-pressure introduction portion 51 of the evaporator 5 to be described later to be fitted therein.
ここで、本実施形態では、収容空間200、吸入流路202、および吐出流路204が、圧縮機構部24を介して冷媒吸入部203から冷媒吐出部205に至る冷媒流路を構成する。また、本実施形態では、貫通穴213aが、減圧機器4を介して中間導入部206から中間導出部207に至る冷媒流路を構成する。
Here, in the present embodiment, the storage space 200, the suction flow path 202, and the discharge flow path 204 constitute a refrigerant flow path from the refrigerant suction section 203 to the refrigerant discharge section 205 via the compression mechanism section 24. In the present embodiment, the through hole 213a constitutes a refrigerant flow path from the intermediate introduction part 206 to the intermediate lead-out part 207 via the decompression device 4.
サブハウジング部22は、図2に示すように、メインハウジング部21の開口を気密に閉塞可能な大きさを有する板状の部材で構成されている。圧縮機ハウジング20には、メインハウジング部21およびサブハウジング部22が気密に組み合わされることによって圧縮機構部24および電動機25を収容する収容空間200が形成される。図示しないが、メインハウジング部21とサブハウジング部22との間には、ガスケットやOリング等からなるシール部材が配設されている。本実施形態では、メインハウジング部21およびサブハウジング部22が外殻形成部を構成している。
As shown in FIG. 2, the sub-housing portion 22 is composed of a plate-like member having a size capable of airtightly closing the opening of the main housing portion 21. The compressor housing 20 is formed with an accommodation space 200 for accommodating the compression mechanism portion 24 and the electric motor 25 by the airtight combination of the main housing portion 21 and the sub housing portion 22. Although not shown, a seal member made of a gasket, an O-ring, or the like is disposed between the main housing portion 21 and the sub housing portion 22. In the present embodiment, the main housing portion 21 and the sub housing portion 22 constitute an outer shell forming portion.
内部ハウジング部23は、メインハウジング部21およびサブハウジング部22によって形成される収容空間200に収容されている。収容空間200は、内部ハウジング部23によって吸入空間200Aと吐出空間200Bとに分割されている。すなわち、内部ハウジング部23は、収容空間200を吸入空間200Aおよび吐出空間200Bに仕切る仕切部として機能する。
The inner housing part 23 is accommodated in an accommodation space 200 formed by the main housing part 21 and the sub-housing part 22. The storage space 200 is divided into a suction space 200A and a discharge space 200B by the inner housing portion 23. That is, the inner housing portion 23 functions as a partition portion that partitions the accommodation space 200 into the suction space 200A and the discharge space 200B.
また、内部ハウジング部23は、圧縮機ハウジング20において圧縮機構部24および電動機25を支持する支持部材として機能する。具体的には、内部ハウジング部23は、主軸26が挿通される円筒状の筒状部231、筒状部231に連なるとともに主軸26の径方向外側に延びる円環状のフランジ部232を備えている。筒状部231およびフランジ部232は、一体の構造物として構成されている。なお、本実施形態では、主軸26の軸心CLmに沿って延びる方向を軸方向DRaとし、当該軸方向DRaに直交する方向を径方向DRrとしている。
Further, the inner housing portion 23 functions as a support member that supports the compression mechanism portion 24 and the electric motor 25 in the compressor housing 20. Specifically, the inner housing portion 23 includes a cylindrical tubular portion 231 through which the main shaft 26 is inserted, and an annular flange portion 232 that is continuous with the tubular portion 231 and extends radially outward of the main shaft 26. . The cylindrical portion 231 and the flange portion 232 are configured as an integral structure. In the present embodiment, the direction extending along the axis CLm of the main shaft 26 is defined as the axial direction DRa, and the direction orthogonal to the axial direction DRa is defined as the radial direction DRr.
筒状部231は、主軸26が挿通される挿通穴231aが形成されている。この挿通穴231aは、軸方向DRaに貫通する貫通穴で構成されている。この挿通穴231aには、主軸26を支持する第1軸受部263および第2軸受部264の軸方向DRaの位置を規制するための内側突起部231bが設けられている。
The cylindrical portion 231 is formed with an insertion hole 231a through which the main shaft 26 is inserted. The insertion hole 231a is a through hole penetrating in the axial direction DRa. The insertion hole 231a is provided with an inner protrusion 231b for restricting the position of the first bearing portion 263 and the second bearing portion 264 that support the main shaft 26 in the axial direction DRa.
具体的には、筒状部231は、圧縮機構部24側からメインハウジング部21の底壁部211に向かって突き出る第1筒部233、電動機25側からサブハウジング部22に向かって突き出る第2筒部234を含んでいる。第1筒部233は、電動機25を支持する支持部である。また、第2筒部234は、圧縮機構部24を支持する支持部である。
Specifically, the cylindrical portion 231 includes a first cylindrical portion 233 protruding from the compression mechanism portion 24 side toward the bottom wall portion 211 of the main housing portion 21, and a second protruding from the electric motor 25 side toward the sub housing portion 22. A cylindrical portion 234 is included. The first tube portion 233 is a support portion that supports the electric motor 25. The second cylinder portion 234 is a support portion that supports the compression mechanism portion 24.
フランジ部232は、メインハウジング部21の段部212aの端面に対向するように、筒状部231から径方向DRrの外側に突き出ている。フランジ部232には、その外側部位に対して締結ボルト27が挿通される貫通穴232aが複数形成されている。また、フランジ部232には、旋回スクロール242に対向する部位に自転防止ピンPが嵌め込まれる溝232bが形成されている。
The flange portion 232 protrudes outward in the radial direction DRr from the tubular portion 231 so as to face the end surface of the step portion 212a of the main housing portion 21. The flange portion 232 has a plurality of through holes 232a through which the fastening bolts 27 are inserted with respect to the outer portion thereof. Further, the flange portion 232 is formed with a groove 232 b into which the rotation prevention pin P is fitted at a portion facing the orbiting scroll 242.
このように構成される内部ハウジング部23は、緩衝部材28を介してメインハウジング部21に連結されている。具体的には、内部ハウジング部23は、フランジ部232とメインハウジング部21の段部212aの端面との間に緩衝部材28が介在された状態で、締結ボルト27によってメインハウジング部21に連結されている。
The internal housing portion 23 configured as described above is connected to the main housing portion 21 via the buffer member 28. Specifically, the inner housing part 23 is connected to the main housing part 21 by the fastening bolts 27 with the buffer member 28 interposed between the flange part 232 and the end surface of the step part 212a of the main housing part 21. ing.
ここで、緩衝部材28は、吸入空間200Aと吐出空間200Bとの連通を遮断し、且つ、圧縮機構部24および電動機25の振動を減衰させることが可能な弾性体で構成されている。弾性体は、段部212aの端面を覆うことが可能な大きさを有する円環状の形状を有している。弾性体は、例えば、ガスバリア性および耐熱性に優れるゴム材料で構成されている。
Here, the buffer member 28 is formed of an elastic body that blocks communication between the suction space 200A and the discharge space 200B and can attenuate vibrations of the compression mechanism 24 and the electric motor 25. The elastic body has an annular shape having a size capable of covering the end surface of the step portion 212a. The elastic body is made of, for example, a rubber material having excellent gas barrier properties and heat resistance.
電動機25は、いわゆるアウタロータモータで構成されている。すなわち、電動機25は、回転磁界を生成するステータ251、ステータ251で生成された回転磁界によってステータ251の外側で回転するロータ252を含んで構成されている。
The electric motor 25 is a so-called outer rotor motor. That is, the electric motor 25 includes a stator 251 that generates a rotating magnetic field, and a rotor 252 that rotates outside the stator 251 by the rotating magnetic field generated by the stator 251.
ステータ251は、金属製の磁性材料で形成された円筒状のステータコア251a、およびステータコア251aに巻き付けられたステータコイル251bで構成されている。ステータ251は、圧入等の固定手法によって内部ハウジング部23の第1筒部233の外側に固定されている。
The stator 251 includes a cylindrical stator core 251a formed of a metal magnetic material, and a stator coil 251b wound around the stator core 251a. The stator 251 is fixed to the outside of the first tube portion 233 of the inner housing portion 23 by a fixing method such as press fitting.
ロータ252は、円筒状のロータ本体部252a、ロータ本体部252aの一方の開口を閉塞する端板部252b、ロータ本体部252aの内側に埋設された複数の磁石252cを含んで構成されている。
The rotor 252 includes a cylindrical rotor main body portion 252a, an end plate portion 252b that closes one opening of the rotor main body portion 252a, and a plurality of magnets 252c embedded inside the rotor main body portion 252a.
ロータ本体部252aには、複数の磁石252cがその周方向に所定の間隔をあけて埋設されている。端板部252bには、略中央部分に主軸26の電動機側端部261を受け入れるための貫通穴が形成されている。なお、電動機側端部261は、主軸26における圧縮機構部24よりも電動機25側に近い端部である。
A plurality of magnets 252c are embedded in the rotor body 252a at predetermined intervals in the circumferential direction. In the end plate portion 252b, a through hole for receiving the motor side end portion 261 of the main shaft 26 is formed in a substantially central portion. The electric motor side end 261 is an end closer to the electric motor 25 than the compression mechanism 24 in the main shaft 26.
ロータ252は、磁石252cとステータコア251aとの間に微小な隙間が形成された状態で、連結機構29によって主軸26に連結されている。ロータ252と主軸26との連結機構29は、電動機側端部261に形成されたネジ溝291、ネジ溝291に螺合する連結ボルト292等で構成されている。
The rotor 252 is coupled to the main shaft 26 by a coupling mechanism 29 in a state where a minute gap is formed between the magnet 252c and the stator core 251a. The connection mechanism 29 between the rotor 252 and the main shaft 26 is configured by a screw groove 291 formed in the motor-side end 261, a connection bolt 292 screwed into the screw groove 291, and the like.
主軸26は、電動機25の回転動力を圧縮機構部24に伝達する伝達部材である。主軸26は、上述の連結機構29が設けられた電動機側端部261、軸方向DRaにおける電動機側端部261の反対側の端部である圧縮側端部262を有している。
The main shaft 26 is a transmission member that transmits the rotational power of the electric motor 25 to the compression mechanism 24. The main shaft 26 has an electric motor side end portion 261 provided with the above-described coupling mechanism 29 and a compression side end portion 262 which is an end portion on the opposite side of the electric motor side end portion 261 in the axial direction DRa.
主軸26の電動機側端部261は、主軸26を筒状部231の挿通穴231aに挿通させた際に挿通穴231aから外部に露出するように構成されている。すなわち、主軸26は、筒状部231の挿通穴231aに挿通させた際に電動機側端部261が挿通穴231aの外部に露出するように軸方向DRaの寸法が設定されている。
The motor-side end portion 261 of the main shaft 26 is configured to be exposed to the outside from the insertion hole 231a when the main shaft 26 is inserted into the insertion hole 231a of the cylindrical portion 231. That is, the dimension of the axial direction DRa is set so that the motor-side end 261 is exposed to the outside of the insertion hole 231a when the main shaft 26 is inserted into the insertion hole 231a of the cylindrical portion 231.
主軸26は、第1軸受部263および第2軸受部264によって回転自在に支持されている。第1軸受部263は、主軸26のうち軸方向DRaにおいて電動機25側に近い部位を回転可能に支持するものである。第2軸受部264は、主軸26のうち軸方向DRaにおいて電動機25よりも圧縮機構部24に近い部位を回転可能に支持するものである。
The main shaft 26 is rotatably supported by the first bearing portion 263 and the second bearing portion 264. The 1st bearing part 263 supports the site | part close | similar to the electric motor 25 side in the axial direction DRa among the main shafts 26 so that rotation is possible. The 2nd bearing part 264 supports the site | part close | similar to the compression mechanism part 24 rather than the electric motor 25 in the axial direction DRa among the main shafts 26 so that rotation is possible.
第1軸受部263および第2軸受部264それぞれは、内部ハウジング部23の筒状部231の内側に設置されている。第1軸受部263および第2軸受部264のうち、第1軸受部263は、径方向DRrにおいて、ステータ251と重なり合うように配置されている。すなわち、第1軸受部263は、筒状部231のうち、ステータ251が固定された部位の内側に設置されている。これにより、圧縮機2は、その軸方向DRaにおける体格が小さくなっている。
Each of the first bearing portion 263 and the second bearing portion 264 is installed inside the cylindrical portion 231 of the inner housing portion 23. Of the first bearing portion 263 and the second bearing portion 264, the first bearing portion 263 is disposed so as to overlap the stator 251 in the radial direction DRr. That is, the 1st bearing part 263 is installed inside the site | part to which the stator 251 was fixed among the cylindrical parts 231. FIG. Thereby, the compressor 2 has a small physique in the axial direction DRa.
主軸26の圧縮側端部262には、主軸26の軸心CLmに対して偏心する偏心軸部265が接続されている。この偏心軸部265は、その軸心CLsが主軸26の軸心CLmに対して主軸26の径方向DRrにずれている。偏心軸部265は、第3軸受部266を介して圧縮機構部24に連結されている。具体的には、偏心軸部265の外周側は、第3軸受部266を介して圧縮機構部24の旋回スクロール242が連結されている。第3軸受部266は、後述する旋回スクロール242のボス部242cの内側に圧入等の手段で固定されている。
An eccentric shaft portion 265 that is eccentric with respect to the axial center CLm of the main shaft 26 is connected to the compression side end portion 262 of the main shaft 26. The eccentric shaft portion 265 has a shaft center CLs that is offset from the shaft center CLm of the main shaft 26 in the radial direction DRr of the main shaft 26. The eccentric shaft portion 265 is connected to the compression mechanism portion 24 via the third bearing portion 266. Specifically, the outer peripheral side of the eccentric shaft portion 265 is connected to the orbiting scroll 242 of the compression mechanism portion 24 via the third bearing portion 266. The third bearing portion 266 is fixed inside a boss portion 242c of the orbiting scroll 242 described later by means such as press fitting.
ここで、主軸26に対して偏心軸部265が接続されていると、主軸26に対して偏心軸部265、第3軸受部266、旋回スクロール242の遠心力が作用する。このため、偏心軸部265には、主軸26に作用する遠心力を抑制するためのウェイトバランス267が設けられている。
Here, when the eccentric shaft portion 265 is connected to the main shaft 26, the centrifugal force of the eccentric shaft portion 265, the third bearing portion 266, and the orbiting scroll 242 acts on the main shaft 26. For this reason, the eccentric shaft portion 265 is provided with a weight balance 267 for suppressing the centrifugal force acting on the main shaft 26.
圧縮機構部24は、固定歯部241bと旋回歯部242bとを噛み合わせた状態で、旋回スクロール242を固定スクロール241に対して旋回させることで旋回スクロール242の外側から吸い込んだ冷媒を圧縮するスクロール型の圧縮機構部で構成されている。
The compression mechanism unit 24 is a scroll that compresses the refrigerant sucked from the outside of the orbiting scroll 242 by rotating the orbiting scroll 242 with respect to the fixed scroll 241 while the fixed tooth portion 241b and the orbiting tooth portion 242b are engaged with each other. It consists of a compression mechanism part of the mold.
固定スクロール241は、内部ハウジング部23の第2筒部234の内側に固定された固定基板部241a、および固定基板部241aから突き出る渦巻き状の固定歯部241bを有する。固定基板部241aの略中央部分には、圧縮機構部24で圧縮された冷媒を吐出する冷媒吐出口241cが形成されている。また、固定基板部241aには、冷媒吐出口241cから圧縮機構部24への冷媒の逆流を防止するためのリード弁241dが設けられている。
The fixed scroll 241 has a fixed substrate portion 241a fixed inside the second cylindrical portion 234 of the inner housing portion 23, and a spiral fixed tooth portion 241b protruding from the fixed substrate portion 241a. A refrigerant discharge port 241c that discharges the refrigerant compressed by the compression mechanism unit 24 is formed at a substantially central portion of the fixed substrate unit 241a. The fixed substrate portion 241 a is provided with a reed valve 241 d for preventing the refrigerant from flowing backward from the refrigerant discharge port 241 c to the compression mechanism portion 24.
旋回スクロール242は、固定基板部241aのうち固定歯部241bが形成される面に対向して配置される旋回基板部242a、および旋回基板部242aから固定基板部241a側に向かって突き出る渦巻き状の旋回歯部242bを有する。
The orbiting scroll 242 has a spiral substrate portion 242a disposed facing the surface of the fixed substrate portion 241a on which the fixed tooth portion 241b is formed, and a spiral shape protruding from the orbiting substrate portion 242a toward the fixed substrate portion 241a. A swivel tooth portion 242b is provided.
旋回基板部242aには、その略中央部分に偏心軸部265および第3軸受部266を受け入れるボス部242cが形成されている。また、旋回基板部242aには、自転防止ピンPと共に、旋回スクロール242の自転防止機構を構成する円形状のピン受入穴Hが形成されている。
A boss portion 242c that receives the eccentric shaft portion 265 and the third bearing portion 266 is formed at a substantially central portion of the turning substrate portion 242a. In addition, a circular pin receiving hole H constituting a rotation prevention mechanism of the turning scroll 242 is formed in the turning substrate portion 242a together with the rotation prevention pin P.
固定スクロール241および旋回スクロール242は、固定歯部241bと旋回歯部242bとを噛み合わせることで、固定歯部241bと旋回歯部242bとの間に冷媒を圧縮する圧縮室が形成される。また、旋回スクロール242の外側には、圧縮室に冷媒を導入するための冷媒導入空間が形成される。
In the fixed scroll 241 and the orbiting scroll 242, a compression chamber for compressing the refrigerant is formed between the fixed tooth portion 241 b and the orbiting tooth portion 242 b by meshing the fixed tooth portion 241 b and the orbiting tooth portion 242 b. In addition, a refrigerant introduction space for introducing a refrigerant into the compression chamber is formed outside the orbiting scroll 242.
このように構成される圧縮機2は、例えば、内部ハウジング部23に対して圧縮機構部24および電動機25を組み付けた組付体をメインハウジング部21に連結した後、メインハウジング部21の開口をサブハウジング部22で閉塞することによって得られる。
The compressor 2 configured in this way, for example, after connecting an assembly in which the compression mechanism portion 24 and the electric motor 25 are assembled to the internal housing portion 23 to the main housing portion 21, opens the opening of the main housing portion 21. It is obtained by closing with the sub housing part 22.
続いて、冷凍サイクル装置1における圧縮機2以外の構成要素である放熱器3、減圧機器4、蒸発器5、送風機6について図1、図3~図6を参照して説明する。
Subsequently, the radiator 3, the decompression device 4, the evaporator 5, and the blower 6 that are components other than the compressor 2 in the refrigeration cycle apparatus 1 will be described with reference to FIGS. 1 and 3 to 6.
放熱器3は、圧縮機2から吐出された高圧冷媒を後述する送風機6の第1送風部6Aによって供給される空気との熱交換によって放熱させる熱交換器である。放熱器3は、圧縮機ハウジング20に対して直に設置されている。
The heat radiator 3 is a heat exchanger that dissipates the high-pressure refrigerant discharged from the compressor 2 by heat exchange with air supplied by a first air blower 6A of the air blower 6 described later. The radiator 3 is installed directly with respect to the compressor housing 20.
図1および図3に示すように、放熱器3は、圧縮機2から吐出された冷媒を内部に導入するための高圧導入部31が設けられている。この高圧導入部31は、y方向に沿って圧縮機ハウジング20側に突き出る筒形状の筒状部材で構成されている。また、放熱器3は、その内部を通過した冷媒を減圧機器4側に導出するための高圧導出部32が設けられている。この高圧導出部32は、x方向に沿って圧縮機ハウジング20側に突き出る筒形状の筒状部材で構成されている。
As shown in FIGS. 1 and 3, the radiator 3 is provided with a high-pressure introduction part 31 for introducing the refrigerant discharged from the compressor 2 into the interior. The high-pressure introducing portion 31 is configured by a tubular member that protrudes toward the compressor housing 20 along the y direction. Further, the radiator 3 is provided with a high-pressure derivation unit 32 for deriving the refrigerant that has passed through the radiator 3 to the decompression device 4 side. The high pressure lead-out part 32 is configured by a cylindrical member that protrudes toward the compressor housing 20 along the x direction.
具体的には、放熱器3は、図3に示すように、複数のチューブ34とフィン35とで構成される熱交換コア部33、複数のチューブ34の長手方向の端部に接続される第1高圧タンク36と第2高圧タンク37を備える熱交換器で構成されている。
Specifically, as shown in FIG. 3, the radiator 3 is connected to the heat exchange core portion 33 composed of a plurality of tubes 34 and fins 35, and the longitudinal ends of the plurality of tubes 34. The heat exchanger includes a first high-pressure tank 36 and a second high-pressure tank 37.
放熱器3は、第1高圧タンク36から熱交換コア部33の一部に流入した冷媒が第2高圧タンク37および熱交換コア部33の残部を介して第1高圧タンク36に流れるように構成されている。
The radiator 3 is configured such that the refrigerant flowing into a part of the heat exchange core portion 33 from the first high pressure tank 36 flows into the first high pressure tank 36 via the second high pressure tank 37 and the remaining portion of the heat exchange core portion 33. Has been.
このように構成される放熱器3は、第1高圧タンク36が、メインハウジング部21の側壁部212および膨出部213の双方に接するようにメインハウジング部21に対して設置されている。そして、第1高圧タンク36における圧縮機ハウジング20の冷媒吐出部205に対向する部位に高圧導入部31が設けられている。また、第1高圧タンク36における圧縮機ハウジング20の中間導入部206に対向する部位に高圧導出部32が設けられている。
The radiator 3 configured as described above is installed with respect to the main housing portion 21 so that the first high-pressure tank 36 is in contact with both the side wall portion 212 and the bulging portion 213 of the main housing portion 21. A high pressure introducing portion 31 is provided at a portion of the first high pressure tank 36 that faces the refrigerant discharge portion 205 of the compressor housing 20. In addition, a high pressure outlet 32 is provided at a portion of the first high pressure tank 36 that faces the intermediate inlet 206 of the compressor housing 20.
ここで、放熱器3と圧縮機ハウジング20との連結手法の一例について図4を参照して説明する。図4に示すように、放熱器3は、中間導入部206に高圧導出部32を嵌め合わせた状態で、高圧導出部32を中心に回転させて冷媒吐出部205に高圧導入部31を嵌め合わせることで、圧縮機ハウジング20に対して連結することができる。
Here, an example of a connection method between the radiator 3 and the compressor housing 20 will be described with reference to FIG. As shown in FIG. 4, the radiator 3 is rotated around the high-pressure deriving unit 32 in a state where the high-pressure deriving unit 32 is fitted to the intermediate introducing unit 206, and the high-pressure introducing unit 31 is fitted to the refrigerant discharge unit 205. Thus, the compressor housing 20 can be connected.
減圧機器4は、放熱器3を通過した冷媒を減圧するものである。前述したように本実施形態の減圧機器4は、圧縮機ハウジング20の内部に形成されている。本実施形態の減圧機器4は、圧縮機ハウジング20の膨出部213に設けられた貫通穴213aに形成された固定絞りで構成されている。
The decompression device 4 decompresses the refrigerant that has passed through the radiator 3. As described above, the decompression device 4 of the present embodiment is formed inside the compressor housing 20. The decompression device 4 according to the present embodiment is configured by a fixed throttle formed in a through hole 213 a provided in the bulging portion 213 of the compressor housing 20.
具体的には、図5に示すように、貫通穴213aにおける中間導入部206と中間導出部207との間には、中間導入部206および中間導出部207よりも断面積が小さい縮小部213bが形成されている。減圧機器4を構成する固定絞りは、貫通穴213aの縮小部213bによって構成されている。
Specifically, as shown in FIG. 5, between the intermediate introduction portion 206 and the intermediate lead-out portion 207 in the through hole 213 a, there is a reduction portion 213 b having a smaller cross-sectional area than the intermediate introduction portion 206 and the intermediate lead-out portion 207. Is formed. The fixed aperture constituting the decompression device 4 is configured by a reduced portion 213b of the through hole 213a.
蒸発器5は、減圧機器4で減圧された低圧冷媒を後述する送風機6の第2送風部6Bによって供給される空気との熱交換によって蒸発させる熱交換器である。蒸発器5は、放熱器3と同様に、圧縮機ハウジング20に対して直に設置されている。本実施形態の放熱器3および蒸発器5は、圧縮機ハウジング20の膨出部213を介して互いに対向するように、圧縮機ハウジング20に対して設置されている。
The evaporator 5 is a heat exchanger that evaporates the low-pressure refrigerant decompressed by the decompression device 4 by heat exchange with air supplied by a second air blower 6B of the blower 6 described later. The evaporator 5 is installed directly with respect to the compressor housing 20 similarly to the radiator 3. The radiator 3 and the evaporator 5 of this embodiment are installed with respect to the compressor housing 20 so as to face each other via the bulging portion 213 of the compressor housing 20.
図1および図6に示すように、蒸発器5は、減圧機器4で減圧された冷媒を内部に導入するための低圧導入部51が設けられている。この低圧導入部51は、y方向に沿って圧縮機ハウジング20側に突き出る筒形状の筒状部材で構成されている。また、蒸発器5は、その内部を通過した冷媒を圧縮機2側に導出するための低圧導出部52が設けられている。この低圧導出部52は、x方向に沿って圧縮機ハウジング20側に突き出る筒形状の筒状部材で構成されている。
As shown in FIGS. 1 and 6, the evaporator 5 is provided with a low-pressure introduction part 51 for introducing the refrigerant decompressed by the decompression device 4 into the interior. The low-pressure introduction part 51 is configured by a cylindrical member that protrudes toward the compressor housing 20 along the y direction. Further, the evaporator 5 is provided with a low-pressure deriving unit 52 for deriving the refrigerant that has passed through the evaporator 5 to the compressor 2 side. The low pressure lead-out portion 52 is configured by a tubular member that protrudes toward the compressor housing 20 along the x direction.
具体的には、蒸発器5は、図6に示すように、複数のチューブ54とフィン55とで構成される熱交換コア部53、複数のチューブ54の長手方向の端部に接続される第1低圧タンク56と第2低圧タンク57を備える熱交換器で構成されている。
Specifically, as shown in FIG. 6, the evaporator 5 includes a heat exchange core portion 53 composed of a plurality of tubes 54 and fins 55, and a first end connected to the longitudinal ends of the plurality of tubes 54. The heat exchanger includes a first low pressure tank 56 and a second low pressure tank 57.
蒸発器5は、第1低圧タンク56から熱交換コア部53の一部に流入した冷媒が第2低圧タンク57および熱交換コア部53の残部を介して第1低圧タンク56に流れるように構成されている。
The evaporator 5 is configured such that the refrigerant that has flowed into the heat exchange core portion 53 from the first low pressure tank 56 flows into the first low pressure tank 56 via the second low pressure tank 57 and the remainder of the heat exchange core portion 53. Has been.
このように構成される蒸発器5は、第1低圧タンク56が、メインハウジング部21の側壁部212および膨出部213の双方に接するようにメインハウジング部21に対して設置されている。そして、第1低圧タンク56における圧縮機ハウジング20の中間導出部207に対向する部位に低圧導入部51が設けられている。また、第1低圧タンク56における圧縮機ハウジング20の冷媒吸入部203に対向する部位に低圧導出部52が設けられている。
The evaporator 5 configured as described above is installed with respect to the main housing portion 21 so that the first low-pressure tank 56 is in contact with both the side wall portion 212 and the bulging portion 213 of the main housing portion 21. A low pressure introduction part 51 is provided in a portion of the first low pressure tank 56 that faces the intermediate outlet part 207 of the compressor housing 20. Further, a low pressure outlet 52 is provided at a portion of the first low pressure tank 56 that faces the refrigerant suction portion 203 of the compressor housing 20.
ここで、蒸発器5と圧縮機ハウジング20とは、放熱器3と圧縮機ハウジング20との連結手法と同様の手法によって連結することができる。すなわち、蒸発器5は、中間導出部207に低圧導入部51を嵌め合わせた状態で、低圧導入部51を中心に回転させて冷媒吸入部203に低圧導出部52を嵌め合わせることで、圧縮機ハウジング20に対して連結することができる。
Here, the evaporator 5 and the compressor housing 20 can be connected by a method similar to the method of connecting the radiator 3 and the compressor housing 20. That is, the evaporator 5 rotates around the low-pressure introduction part 51 in a state where the low-pressure introduction part 51 is fitted to the intermediate lead-out part 207 and fits the low-pressure lead-out part 52 to the refrigerant suction part 203. It can be connected to the housing 20.
送風機6は、放熱器3および蒸発器5に対して空気を供給するものである。図1に示すように、送風機6は、放熱器3および蒸発器5との間に配置されている。送風機6は、放熱器3に対して空気を供給する第1送風部6Aおよび蒸発器5に対して空気を供給する第2送風部6Bを備えている。
The blower 6 supplies air to the radiator 3 and the evaporator 5. As shown in FIG. 1, the blower 6 is disposed between the radiator 3 and the evaporator 5. The blower 6 includes a first blower 6 </ b> A that supplies air to the radiator 3 and a second blower 6 </ b> B that supplies air to the evaporator 5.
第1送風部6Aは、放熱器3にて加熱された温風が流通する温風ケース61A、温風ケース61Aに収容される温風ファン62A、および温風ファン62Aを駆動するファンモータ63Aを備えている。図示しないが、温風ケース61Aは、シート付近に温風を吹き出す温風吹出ダクト、または、温風をシート付近以外の空間に排気する温風排気ダクトに接続されている。
The first air blower 6A includes a warm air case 61A through which warm air heated by the radiator 3 circulates, a warm air fan 62A accommodated in the warm air case 61A, and a fan motor 63A that drives the warm air fan 62A. I have. Although not shown, the hot air case 61A is connected to a hot air blowing duct that blows hot air near the seat or a hot air exhaust duct that exhausts hot air to a space other than the vicinity of the seat.
また、第2送風部6Bは、蒸発器5にて冷却された冷風が流通する冷風ケース61B、冷風ケース61Bに収容される冷風ファン62B、および冷風ファン62Bを駆動するファンモータ63Bを備えている。図示しないが、冷風ケース61Bは、シート付近に冷風を吹き出す冷風吹出ダクト、または、冷風をシート付近以外の空間に排気する冷風排気ダクトに接続されている。
The second air blower 6B includes a cold air case 61B through which the cold air cooled by the evaporator 5 flows, a cold air fan 62B accommodated in the cold air case 61B, and a fan motor 63B that drives the cold air fan 62B. . Although not shown, the cold air case 61B is connected to a cold air outlet duct that blows out cold air in the vicinity of the seat or a cold air exhaust duct that exhausts the cold air to a space other than the vicinity of the seat.
次に、本実施形態の冷凍サイクル装置1の作動について図7を参照して説明する。シート付近の空調が開始される場合、車両に搭載されたバッテリから電動機25のステータ251、送風機6の各ファンモータ63A、63Bに対して給電される。これにより、電動機25によって圧縮機構部24が駆動されることで冷凍サイクル装置1のサイクル内を冷媒が循環する。また、各ファンモータ63A、63Bによって温風ファン62Aおよび冷風ファン62Bが駆動されることで、放熱器3を通過する気流および蒸発器5を通過する気流が発生する。
Next, the operation of the refrigeration cycle apparatus 1 of the present embodiment will be described with reference to FIG. When air conditioning in the vicinity of the seat is started, power is supplied from a battery mounted on the vehicle to the stator 251 of the electric motor 25 and the fan motors 63A and 63B of the blower 6. Accordingly, the refrigerant circulates in the cycle of the refrigeration cycle apparatus 1 by driving the compression mechanism unit 24 by the electric motor 25. Further, the hot air fan 62A and the cold air fan 62B are driven by the fan motors 63A and 63B, so that an airflow passing through the radiator 3 and an airflow passing through the evaporator 5 are generated.
具体的には、圧縮機構部24から吐出空間200Bに吐出された冷媒は、図7の矢印Fc1に示すように、吐出流路204および冷媒吐出部205を介して放熱器3に流入する。放熱器3に流入した冷媒は、図7の矢印Fc2に示すように、第1高圧タンク36→熱交換コア部33→第2高圧タンク37→熱交換コア部33→第1高圧タンク36の順に流れた後、中間導入部206を介して減圧機器4側に流入する。放熱器3に流入した冷媒は、熱交換コア部33を通過する際に、第1送風部6Aによって供給される空気と熱交換して放熱する。第1送風部6Aによって供給される空気は、図7の矢印Fa1に示すように、放熱器3を流れる冷媒によって加熱された後、所望の空間に吹き出される。
Specifically, the refrigerant discharged from the compression mechanism portion 24 into the discharge space 200B flows into the radiator 3 via the discharge flow path 204 and the refrigerant discharge portion 205 as shown by an arrow Fc1 in FIG. As shown by the arrow Fc2 in FIG. 7, the refrigerant flowing into the radiator 3 is in the order of the first high pressure tank 36 → the heat exchange core portion 33 → the second high pressure tank 37 → the heat exchange core portion 33 → the first high pressure tank 36. After flowing, it flows into the decompression device 4 side through the intermediate introduction part 206. When the refrigerant that has flowed into the radiator 3 passes through the heat exchange core portion 33, the refrigerant exchanges heat with the air supplied by the first air blowing portion 6 </ b> A to radiate heat. The air supplied by the first blower 6A is heated by the refrigerant flowing through the radiator 3 and then blown into a desired space, as indicated by an arrow Fa1 in FIG.
減圧機器4に流入した冷媒は、固定絞りを構成する貫通穴213aの縮小部213bを通過する際に減圧される。減圧機器4にて減圧された冷媒は、中間導出部207を介して蒸発器5に流入する。
The refrigerant that has flowed into the decompression device 4 is decompressed when passing through the reduced portion 213b of the through hole 213a constituting the fixed throttle. The refrigerant decompressed by the decompression device 4 flows into the evaporator 5 through the intermediate outlet 207.
蒸発器5に流入した冷媒は、図7の矢印Fc3に示すように、第1低圧タンク56→熱交換コア部53→第2低圧タンク57→熱交換コア部53→第1低圧タンク56の順に流れた後、冷媒吸入部203を介して圧縮機2に流入する。蒸発器5に流入した冷媒は、熱交換コア部53を通過する際に、第2送風部6Bによって供給される空気と熱交換して蒸発する。第2送風部6Bによって供給される空気は、図7の矢印Fa2に示すように、蒸発器5を流れる冷媒の蒸発時の吸熱作用によって冷却された後、所望の空間に吹き出される。
As shown by an arrow Fc3 in FIG. 7, the refrigerant flowing into the evaporator 5 is in the order of the first low pressure tank 56 → the heat exchange core portion 53 → the second low pressure tank 57 → the heat exchange core portion 53 → the first low pressure tank 56. After flowing, the refrigerant flows into the compressor 2 through the refrigerant suction portion 203. The refrigerant flowing into the evaporator 5 evaporates by exchanging heat with the air supplied by the second blower 6B when passing through the heat exchange core 53. As shown by an arrow Fa2 in FIG. 7, the air supplied by the second blower 6B is cooled by the endothermic action at the time of evaporation of the refrigerant flowing through the evaporator 5, and then blown into a desired space.
圧縮機2に吸入された冷媒は、図7の矢印Fc4に示すように、吸入流路202を介して収容空間200(具体的には、吸入空間200A)に流れる。その後、吸入空間200Aの冷媒が圧縮機構部24に吸入され、吸入された冷媒が圧縮機構部24で圧縮される。
The refrigerant sucked into the compressor 2 flows into the accommodation space 200 (specifically, the suction space 200A) through the suction flow path 202 as indicated by an arrow Fc4 in FIG. Thereafter, the refrigerant in the suction space 200 </ b> A is sucked into the compression mechanism unit 24, and the sucked refrigerant is compressed by the compression mechanism unit 24.
以上説明した冷凍サイクル装置1は、圧縮機ハウジング20に対して、放熱器3の高圧導入部31が外部に露出しないように直結される冷媒吐出部205、および蒸発器5の低圧導出部52が外部に露出しないように直結される冷媒吸入部203が設けられている。
The refrigeration cycle apparatus 1 described above includes a refrigerant discharge unit 205 that is directly connected to the compressor housing 20 so that the high-pressure introduction part 31 of the radiator 3 is not exposed to the outside, and a low-pressure derivation part 52 of the evaporator 5. A refrigerant suction portion 203 that is directly connected so as not to be exposed to the outside is provided.
このように、放熱器3および蒸発器5が圧縮機ハウジング20に直結される構造とすれば、圧縮機2の圧力脈動や機械振動による応力が、サイクル構成機器のうち放熱器3および蒸発器5といった大型で耐久性を有する機器に対して直接的に作用する。このため、冷媒配管を介して圧縮機2、放熱器3、蒸発器5が接続される従来の構造に比べて冷凍サイクル装置1の耐久性を確保することができる。
As described above, when the radiator 3 and the evaporator 5 are directly connected to the compressor housing 20, the pressure pulsation of the compressor 2 and the stress due to mechanical vibration cause the radiator 3 and the evaporator 5 in the cycle constituent devices. It acts directly on such a large and durable device. For this reason, the durability of the refrigeration cycle apparatus 1 can be ensured as compared with the conventional structure in which the compressor 2, the radiator 3, and the evaporator 5 are connected via the refrigerant pipe.
また、放熱器3および蒸発器5が圧縮機ハウジング20に直結される構造では、冷媒配管を介して圧縮機2、放熱器3、蒸発器5が接続される従来の構造に比べて、部品点数が少なくなるので、冷凍サイクル装置1の簡素化並びに小型化を図ることができる。
Further, in the structure in which the radiator 3 and the evaporator 5 are directly connected to the compressor housing 20, the number of parts is larger than that in the conventional structure in which the compressor 2, the radiator 3, and the evaporator 5 are connected via the refrigerant pipe. Therefore, the refrigeration cycle apparatus 1 can be simplified and downsized.
ところで、サイクル内の冷媒の圧力損失は、冷媒流路が長いほど大きくなり、冷媒流路が短いほど小さくなる。このため、放熱器3および蒸発器5が圧縮機ハウジング20に直結される構造とすれば、冷媒配管を介して圧縮機2、放熱器3、蒸発器5が接続される従来の構造に比べて冷媒流路が短縮されるのでサイクル内における冷媒の圧力損失を抑制することが可能となる。
By the way, the pressure loss of the refrigerant in the cycle increases as the refrigerant flow path becomes longer, and decreases as the refrigerant flow path becomes shorter. For this reason, if it is set as the structure where the heat radiator 3 and the evaporator 5 are directly connected to the compressor housing 20, compared with the conventional structure where the compressor 2, the heat radiator 3, and the evaporator 5 are connected via refrigerant | coolant piping. Since the refrigerant flow path is shortened, the pressure loss of the refrigerant in the cycle can be suppressed.
また、冷媒配管を介して圧縮機2、放熱器3、蒸発器5が接続される従来の構造では、冷媒配管が外部に露出するため、周囲環境との熱交換による熱損失が避けられない。
Further, in the conventional structure in which the compressor 2, the radiator 3, and the evaporator 5 are connected via the refrigerant pipe, the refrigerant pipe is exposed to the outside, so heat loss due to heat exchange with the surrounding environment is inevitable.
これに対して、本実施形態の冷凍サイクル装置1では、放熱器3の高圧導入部31が外部に露出しないように冷媒吐出部205に直結され、蒸発器5の低圧導出部52が外部に露出しないように冷媒吸入部203に直結されている。これによると、周囲環境との熱交換による熱損失を抑制することができる。
On the other hand, in the refrigeration cycle apparatus 1 of the present embodiment, the high pressure introduction part 31 of the radiator 3 is directly connected to the refrigerant discharge part 205 so as not to be exposed to the outside, and the low pressure derivation part 52 of the evaporator 5 is exposed to the outside. It is directly connected to the refrigerant suction part 203 so as not to occur. According to this, heat loss due to heat exchange with the surrounding environment can be suppressed.
加えて、本実施形態の冷凍サイクル装置1は、減圧機器4が圧縮機ハウジング20の内部に設けられている。そして、圧縮機ハウジング20に対して、放熱器3の高圧導出部32が外部に露出しないように直結される中間導入部206、および蒸発器5の低圧導入部51が外部に露出しないように直結される中間導出部207が設けられている。
In addition, in the refrigeration cycle apparatus 1 of the present embodiment, the decompression device 4 is provided inside the compressor housing 20. The compressor housing 20 is directly connected so that the high pressure lead-out portion 32 of the radiator 3 is directly connected so as not to be exposed to the outside, and the low pressure introduction portion 51 of the evaporator 5 is not exposed to the outside. An intermediate derivation unit 207 is provided.
このように圧縮機ハウジング20の内部に減圧機器4を設ける構成とすれば、冷媒配管を介して放熱器3、減圧機器4、蒸発器5が接続される従来の構造に比べて冷凍サイクル装置1の耐久性を確保することができる。
When the decompression device 4 is provided inside the compressor housing 20 as described above, the refrigeration cycle apparatus 1 is compared with the conventional structure in which the radiator 3, the decompression device 4, and the evaporator 5 are connected via the refrigerant pipe. It is possible to ensure durability.
また、圧縮機ハウジング20の内部に減圧機器4を設ける構成とすれば、圧縮機ハウジング20の外部に別体の減圧機器4を設置する場合に比べて、冷凍サイクル装置1の簡素化を図ることができる。
Further, if the decompression device 4 is provided inside the compressor housing 20, the refrigeration cycle apparatus 1 can be simplified as compared with the case where a separate decompression device 4 is installed outside the compressor housing 20. Can do.
また、本実施形態の冷凍サイクル装置1は、圧縮機ハウジング20のうち減圧機器4を構成する部位が放熱器3および蒸発器5に直結される構造になっている。このような構造では、冷媒配管を介して放熱器3、減圧機器4、蒸発器5が接続される従来の構造に比べて、部品点数が少なくなるので、冷凍サイクル装置1の簡素化並びに小型化を図ることができる。
Further, the refrigeration cycle apparatus 1 according to the present embodiment has a structure in which a portion of the compressor housing 20 constituting the decompression device 4 is directly connected to the radiator 3 and the evaporator 5. In such a structure, since the number of parts is reduced as compared with the conventional structure in which the radiator 3, the decompression device 4, and the evaporator 5 are connected via the refrigerant pipe, the refrigeration cycle apparatus 1 is simplified and miniaturized. Can be achieved.
具体的には、本実施形態の減圧機器4は、圧縮機ハウジング20の内部の貫通穴213aに形成された固定絞りで構成されている。このように減圧機器4を圧縮機ハウジング20に形成した固定絞りで構成すれば、減圧機器4を可変絞り機構部を含む構成とする場合に比べて、部品点数が少なくなるので、冷凍サイクル装置1の簡素化並びに小型化を図ることができる。
Specifically, the decompression device 4 of the present embodiment is configured by a fixed throttle formed in a through hole 213 a inside the compressor housing 20. If the decompression device 4 is configured with a fixed throttle formed in the compressor housing 20 as described above, the number of parts is reduced as compared with a configuration in which the decompression device 4 includes a variable throttle mechanism, and thus the refrigeration cycle apparatus 1 Can be simplified and downsized.
また、本実施形態の冷凍サイクル装置1は、圧縮機2の圧縮機構部24がスクロール型の圧縮機構部で構成されている。スクロール型の圧縮機構部は、レシプロ型の圧縮機構部の如く軸方向DRaに可動する可動部材が必要ないので、圧縮機構部24全体として軸方向DRaの体格を小型化することができる。このため、圧縮機構部24としてスクロール型の圧縮機構部を採用すれば、圧縮機2全体としての軸方向DRaの体格を抑えることが可能となる。
Further, in the refrigeration cycle apparatus 1 of the present embodiment, the compression mechanism unit 24 of the compressor 2 is configured by a scroll type compression mechanism unit. Since the scroll-type compression mechanism section does not require a movable member that moves in the axial direction DRa unlike the reciprocating-type compression mechanism section, the physique of the axial direction DRa can be reduced in size as the compression mechanism section 24 as a whole. For this reason, if a scroll type compression mechanism part is employ | adopted as the compression mechanism part 24, it will become possible to suppress the physique of the axial direction DRa as the compressor 2 whole.
特に、本実施形態の圧縮機2は、外殻を形成するメインハウジング部21およびサブハウジング部22に収容される内部ハウジング部23によって圧縮機構部24および電動機25を支持される構成になっている。そして、内部ハウジング部23は、圧縮機構部24および電動機25の振動を減衰させるための緩衝部材28を介してメインハウジング部21に連結されている。
In particular, the compressor 2 of the present embodiment is configured such that the compression mechanism portion 24 and the electric motor 25 are supported by the inner housing portion 23 accommodated in the main housing portion 21 and the sub housing portion 22 that form the outer shell. . The internal housing portion 23 is connected to the main housing portion 21 via a buffer member 28 for attenuating vibrations of the compression mechanism portion 24 and the electric motor 25.
これによると、圧縮機構部24および電動機25に生ずる振動が緩衝部材28で減衰されることで、圧縮機ハウジング20のメインハウジング部21およびサブハウジング部22に圧縮機構部24および電動機25の振動が伝達され難くなる。これにより、冷媒吐出部205および冷媒吸入部203が形成されたメインハウジング部21の振動が抑制されることで、圧縮機ハウジング20と放熱器3および蒸発器5の連結部分に加わる応力の抑えることができる。このことは、冷凍サイクル装置1の耐久性の向上に大きく寄与する。
According to this, the vibration generated in the compression mechanism portion 24 and the electric motor 25 is attenuated by the buffer member 28, so that the vibration of the compression mechanism portion 24 and the electric motor 25 occurs in the main housing portion 21 and the sub housing portion 22 of the compressor housing 20. It becomes difficult to be transmitted. Thereby, the vibration applied to the main housing portion 21 in which the refrigerant discharge portion 205 and the refrigerant suction portion 203 are formed is suppressed, thereby suppressing the stress applied to the connecting portion between the compressor housing 20, the radiator 3 and the evaporator 5. Can do. This greatly contributes to improving the durability of the refrigeration cycle apparatus 1.
また、本実施形態の圧縮機2は、内部ハウジング部23に対して圧縮機構部24および電動機25を組み付けた組付体をメインハウジング部21に対して連結した後、メインハウジング部21にサブハウジング部22を連結することで得られる。これによると、圧縮機構部24、電動機25、および内部ハウジング部23をユニット化すれば、圧縮機2の製造時における組付性の向上を図ることができる。
Further, in the compressor 2 of the present embodiment, after the assembly body in which the compression mechanism portion 24 and the electric motor 25 are assembled to the internal housing portion 23 is connected to the main housing portion 21, the sub housing is attached to the main housing portion 21. It is obtained by connecting the parts 22. According to this, if the compression mechanism part 24, the electric motor 25, and the internal housing part 23 are unitized, the assembling property at the time of manufacture of the compressor 2 can be improved.
(第2実施形態)
次に、第2実施形態について、図8~図10を参照して説明する。本実施形態では、圧縮機ハウジング20に対して高圧側貯留部215が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. In this embodiment, the point by which the high voltage | pressureside storage part 215 is provided with respect to the compressor housing 20 is different from 1st Embodiment. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
次に、第2実施形態について、図8~図10を参照して説明する。本実施形態では、圧縮機ハウジング20に対して高圧側貯留部215が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. In this embodiment, the point by which the high voltage | pressure
高圧側貯留部215は、サイクル内における余剰となる液冷媒を貯留するために設けられている。図8に示すように、高圧側貯留部215は、圧縮機ハウジング20のうちメインハウジング部21の膨出部213に対して設けられている。より詳細には、高圧側貯留部215は、膨出部213に形成された貫通穴213aのうち、中間導入部206と減圧機器4を構成する縮小部213bとの間に設けられている。すなわち、高圧側貯留部215は、貫通穴213aにおける縮小部213bよりも冷媒流れ上流側に設けられている。
The high-pressure side reservoir 215 is provided to store excess liquid refrigerant in the cycle. As shown in FIG. 8, the high-pressure side reservoir 215 is provided for the bulging portion 213 of the main housing portion 21 in the compressor housing 20. More specifically, the high-pressure side reservoir 215 is provided between the intermediate introduction part 206 and the reduction part 213 b constituting the decompression device 4 in the through hole 213 a formed in the bulging part 213. That is, the high-pressure side reservoir 215 is provided on the upstream side of the refrigerant flow with respect to the reduced portion 213b in the through hole 213a.
具体的には、高圧側貯留部215は、図9に示すように、鉛直方向(すなわち、z方向)に延びる有底穴215aおよび有底穴215aの開口を閉塞する閉塞板部215bで構成されている。この有底穴215aには、中間導入部206からの冷媒を流入させる上流側開口部215cおよび内部に貯留された冷媒を減圧機器4である縮小部213b側に流出させる下流側開口部215dが形成されている。高圧側貯留部215は、その内部に貯留された液冷媒が縮小部213b側に流れるように、下流側開口部215dが上流側開口部215cよりも鉛直方向の下方側に形成されている。
Specifically, as shown in FIG. 9, the high-pressure side reservoir 215 includes a bottomed hole 215a extending in the vertical direction (that is, the z direction) and a closing plate 215b that closes the opening of the bottomed hole 215a. ing. The bottomed hole 215a is formed with an upstream opening 215c through which the refrigerant from the intermediate introduction section 206 flows and a downstream opening 215d through which the refrigerant stored inside flows out to the reduction section 213b, which is the decompression device 4. Has been. In the high-pressure side reservoir 215, the downstream opening 215d is formed on the lower side in the vertical direction than the upstream opening 215c so that the liquid refrigerant stored in the high-pressure reservoir 215 flows toward the reducing portion 213b.
ここで、減圧機器4および高圧側貯留部215を圧縮機ハウジング20の内部に形成すると、減圧機器4を流れる冷媒や高圧側貯留部215に貯留される液冷媒と、圧縮機構部24に吸入される冷媒や圧縮機構部24から吐出される冷媒とが熱交換してしまう。特に、高圧側貯留部215に貯留された液冷媒と圧縮機構部24から吐出される冷媒とが熱交換すると、高圧側貯留部215に貯留された液冷媒が蒸発することが懸念される。
Here, when the decompression device 4 and the high-pressure side storage portion 215 are formed inside the compressor housing 20, the refrigerant flowing through the decompression device 4 or the liquid refrigerant stored in the high-pressure side storage portion 215 and the compression mechanism portion 24 are sucked. Heat exchange with the refrigerant and the refrigerant discharged from the compression mechanism 24. In particular, when the liquid refrigerant stored in the high-pressure side storage unit 215 and the refrigerant discharged from the compression mechanism unit 24 exchange heat, there is a concern that the liquid refrigerant stored in the high-pressure side storage unit 215 evaporates.
そこで、本実施形態では、圧縮機ハウジング20に対して、熱交換抑制部216が設けられている。図10に示すように、熱交換抑制部216は、圧縮機構部24を介して冷媒吸入部203から冷媒吐出部205に至る冷媒流路と減圧機器4を介して中間導入部206から中間導出部207に至る冷媒流路との間に設けられた溝216aで構成されている。この溝216aは、スリット状に構成されている。この熱交換抑制部216によって、圧縮機構部24を介して冷媒吸入部203から冷媒吐出部205に至る冷媒流路と減圧機器4を介して中間導入部206から中間導出部207に至る冷媒流路とが熱的に分断される。
Therefore, in this embodiment, a heat exchange suppression unit 216 is provided for the compressor housing 20. As shown in FIG. 10, the heat exchange suppression unit 216 includes an intermediate deriving unit from the intermediate introduction unit 206 through the refrigerant flow path extending from the refrigerant suction unit 203 to the refrigerant discharge unit 205 via the compression mechanism unit 24 and the decompression device 4. The groove 216 a is provided between the refrigerant flow path reaching 207. The groove 216a is formed in a slit shape. By this heat exchange suppression unit 216, a refrigerant flow path from the refrigerant suction part 203 to the refrigerant discharge part 205 via the compression mechanism part 24 and a refrigerant flow path from the intermediate introduction part 206 to the intermediate lead-out part 207 via the decompression device 4 And is thermally divided.
以上説明した本実施形態の冷凍サイクル装置1は、第1実施形態と共通の構成を備えている。このため、本実施形態の冷凍サイクル装置1は、第1実施形態と共通の構成から奏される作用効果を第1実施形態と同様に得ることができる。このことは、以降の実施形態においても同様である。
The refrigeration cycle apparatus 1 of the present embodiment described above has the same configuration as that of the first embodiment. For this reason, the refrigerating cycle apparatus 1 of this embodiment can obtain the effect produced from the same configuration as that of the first embodiment, similarly to the first embodiment. The same applies to the following embodiments.
本実施形態の冷凍サイクル装置1は、圧縮機ハウジング20に対して液冷媒を貯留可能な高圧側貯留部215が設けられている。このように、圧縮機ハウジング20に対して高圧側貯留部215を設ける構成とすれば、高圧側貯留部215にサイクル内の余剰となる液冷媒を一時的に貯留可能となるので、サイクルの負荷変動時にサイクル内の冷媒量が不足することを避けることができる。
The refrigeration cycle apparatus 1 of the present embodiment is provided with a high-pressure side reservoir 215 that can store liquid refrigerant in the compressor housing 20. Thus, if the high pressure side storage part 215 is provided with respect to the compressor housing 20, since the liquid refrigerant which becomes the excess in a cycle can be temporarily stored in the high pressure side storage part 215, it is the load of a cycle. It is possible to avoid a shortage of the refrigerant amount in the cycle at the time of fluctuation.
加えて、高圧側貯留部215には、内部に中間導入部206からの冷媒を流入させる上流側開口部215c、内部に貯留された冷媒を減圧機器4側に流出させる下流側開口部215dが形成されている。そして、下流側開口部215dが、上流側開口部215cよりも鉛直方向の下方側に形成されている。
In addition, the high-pressure side reservoir 215 is formed with an upstream opening 215c that allows the refrigerant from the intermediate introduction portion 206 to flow therein, and a downstream opening 215d that allows the refrigerant stored therein to flow out to the decompression device 4 side. Has been. The downstream opening 215d is formed on the lower side in the vertical direction than the upstream opening 215c.
これによると、高圧側貯留部215に貯留された液冷媒が減圧機器4側に流れ易くなる。すなわち、減圧機器4側には、エンタルピが小さい液冷媒が流れ易くなる。この結果、蒸発器5の前後のエンタルピ差を確保して、蒸発器5における吸熱能力の向上を図ることができる。なお、「鉛直方向」とは、水平面に対して垂直な方向を意味しており、重力が作用する方向を意味すると解釈することができる。
According to this, the liquid refrigerant stored in the high-pressure side storage unit 215 easily flows to the decompression device 4 side. That is, a liquid refrigerant with a small enthalpy tends to flow on the decompression device 4 side. As a result, the difference in enthalpy before and after the evaporator 5 can be secured, and the heat absorption capability of the evaporator 5 can be improved. The “vertical direction” means a direction perpendicular to the horizontal plane, and can be interpreted to mean a direction in which gravity acts.
また、圧縮機ハウジング20には、圧縮機構部24を介して冷媒吸入部203から冷媒吐出部205に至る冷媒流路と減圧機器4を介して中間導入部206から中間導出部207に至る冷媒流路とが熱的に分断するための熱交換抑制部216が設けられている。
Further, in the compressor housing 20, the refrigerant flow from the refrigerant suction part 203 to the refrigerant discharge part 205 via the compression mechanism part 24 and the refrigerant flow from the intermediate introduction part 206 to the intermediate lead-out part 207 via the decompression device 4. A heat exchange suppression unit 216 is provided for thermally dividing the path.
これによると、減圧機器4を流れる冷媒や高圧側貯留部215に貯留される液冷媒と、圧縮機構部24に吸入される冷媒や圧縮機構部24から吐出される冷媒との不必要な熱交換を抑制することができる。
According to this, unnecessary heat exchange between the refrigerant flowing in the decompression device 4 or the liquid refrigerant stored in the high-pressure side storage section 215 and the refrigerant sucked into the compression mechanism section 24 or the refrigerant discharged from the compression mechanism section 24. Can be suppressed.
(第2実施形態の変形例)
上述の第2実施形態では、高圧側貯留部215の下流側開口部215dを上流側開口部215cよりも鉛直方向の下方側に形成される例について説明したが、これに限定されない。高圧側貯留部215は、例えば、下流側開口部215dが上流側開口部215cと鉛直方向において同等となる位置に形成されていてもよい。 (Modification of the second embodiment)
In the above-described second embodiment, the example in which thedownstream opening 215d of the high-pressure side reservoir 215 is formed on the lower side in the vertical direction than the upstream opening 215c is described, but the present invention is not limited to this. For example, the high-pressure side reservoir 215 may be formed at a position where the downstream opening 215d is equivalent to the upstream opening 215c in the vertical direction.
上述の第2実施形態では、高圧側貯留部215の下流側開口部215dを上流側開口部215cよりも鉛直方向の下方側に形成される例について説明したが、これに限定されない。高圧側貯留部215は、例えば、下流側開口部215dが上流側開口部215cと鉛直方向において同等となる位置に形成されていてもよい。 (Modification of the second embodiment)
In the above-described second embodiment, the example in which the
上述の第2実施形態では、圧縮機ハウジング20に対して熱交換抑制部216が設けられた例について説明したが、これに限定されない。冷凍サイクル装置1は、圧縮機ハウジング20における熱交換抑制部216が省略された構成になっていてもよい。
In the second embodiment described above, the example in which the heat exchange suppressing unit 216 is provided for the compressor housing 20 has been described, but the present invention is not limited to this. The refrigeration cycle apparatus 1 may have a configuration in which the heat exchange suppression unit 216 in the compressor housing 20 is omitted.
上述の第2実施形態では、圧縮機ハウジング20に対して高圧側貯留部215が設けられた例について説明したが、これに限定されない。冷凍サイクル装置1は、圧縮機ハウジング20における高圧側貯留部215が省略された構成になっていてもよい。
In the above-described second embodiment, the example in which the high-pressure side reservoir 215 is provided with respect to the compressor housing 20 has been described, but the present invention is not limited to this. The refrigeration cycle apparatus 1 may have a configuration in which the high-pressure side reservoir 215 in the compressor housing 20 is omitted.
上述の第2実施形態では、熱交換抑制部216が圧縮機ハウジング20に形成されたスリット状の溝216aで構成される例について説明したが、これに限定されない。熱交換抑制部216は、圧縮機ハウジング20よりも熱抵抗の高い材料で構成される熱緩衝体で構成されていてもよい。
In the above-described second embodiment, the example in which the heat exchange suppressing unit 216 is configured by the slit-like groove 216a formed in the compressor housing 20 has been described, but is not limited thereto. The heat exchange suppression unit 216 may be formed of a thermal buffer made of a material having a higher thermal resistance than the compressor housing 20.
上述の第2実施形態では、横置型の構造を有する冷凍サイクル装置1の圧縮機ハウジング20に高圧側貯留部215を設ける構成を適用する例について説明したが、これに限定されない。圧縮機ハウジング20に高圧側貯留部215を設ける構成は、圧縮機2の上方に、放熱器3、減圧機器4、蒸発器5、および送風機6が設置される縦置型の構造を有する冷凍サイクル装置1に対しても適用可能である。この場合、高圧側貯留部215は、液冷媒が貯留可能なように、鉛直方向(すなわち、z方向)に延びる有底穴215aを含む構成とすればよい。
In the above-described second embodiment, the example in which the configuration in which the high-pressure side reservoir 215 is provided in the compressor housing 20 of the refrigeration cycle apparatus 1 having a horizontal structure has been described, but the present invention is not limited to this. The configuration in which the high pressure side reservoir 215 is provided in the compressor housing 20 is a refrigeration cycle apparatus having a vertical structure in which the radiator 3, the decompression device 4, the evaporator 5, and the blower 6 are installed above the compressor 2. 1 is also applicable. In this case, the high-pressure side storage unit 215 may include a bottomed hole 215a extending in the vertical direction (that is, the z direction) so that the liquid refrigerant can be stored.
(第3実施形態)
次に、第3実施形態について、図11、図12を参照して説明する。本実施形態では、減圧機器4が圧縮機ハウジング20の外部に配置されている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Third embodiment)
Next, a third embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that thedecompression device 4 is disposed outside the compressor housing 20. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
次に、第3実施形態について、図11、図12を参照して説明する。本実施形態では、減圧機器4が圧縮機ハウジング20の外部に配置されている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Third embodiment)
Next, a third embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the
図11に示すように、本実施形態の圧縮機ハウジング20は、x方向における略中央部分がy方向に突き出ていない直方体状の外形状を有している。すなわち、本実施形態の圧縮機ハウジング20は、第1実施形態における膨出部213に相当する構成が設けられていない。
As shown in FIG. 11, the compressor housing 20 of the present embodiment has a rectangular parallelepiped outer shape in which a substantially central portion in the x direction does not protrude in the y direction. That is, the compressor housing 20 of the present embodiment is not provided with a configuration corresponding to the bulging portion 213 in the first embodiment.
本実施形態の減圧機器4は、圧縮機ハウジング20の外部に配置されている。具体的には、減圧機器4は、放熱器3の第1高圧タンク36と蒸発器5の第1低圧タンク56とで挟持されるように放熱器3と蒸発器5との間に配置されている。
The decompression device 4 of the present embodiment is disposed outside the compressor housing 20. Specifically, the decompression device 4 is disposed between the radiator 3 and the evaporator 5 so as to be sandwiched between the first high-pressure tank 36 of the radiator 3 and the first low-pressure tank 56 of the evaporator 5. Yes.
図12に示すように、減圧機器4は、外殻を構成するバルブ本体41、およびバルブ本体41の内部に設けられた絞り機構部42を含んで構成されている。バルブ本体41は、金属製のブロック体で構成されている。
As shown in FIG. 12, the decompression device 4 includes a valve main body 41 constituting an outer shell, and a throttle mechanism portion 42 provided inside the valve main body 41. The valve body 41 is composed of a metal block body.
バルブ本体41には、x方向に沿って貫通する貫通穴411が形成されている。この貫通穴411の内部には、冷媒の減圧作用を発揮する絞り機構部42が配置されている。絞り機構部42は、内部に絞り流路421aが形成された円筒形状のオリフィス421で構成されている。
The valve body 41 is formed with a through hole 411 penetrating along the x direction. Inside the through hole 411, a throttle mechanism portion 42 that exerts a pressure reducing action of the refrigerant is disposed. The throttle mechanism section 42 is configured by a cylindrical orifice 421 in which a throttle channel 421a is formed.
バルブ本体41には、放熱器3に対向する部位に放熱器3の高圧導出部32が外部に露出しないように直結されるバルブ導入部412が形成されている。バルブ導入部412は、バルブ本体41の貫通穴411の一端側に開口する開口部であり、放熱器3の高圧導出部32を嵌め込むことが可能な大きさを有している。
The valve main body 41 is formed with a valve introduction portion 412 that is directly connected to a portion facing the radiator 3 so that the high-pressure outlet portion 32 of the radiator 3 is not exposed to the outside. The valve introduction part 412 is an opening that opens to one end side of the through hole 411 of the valve main body 41, and has a size that allows the high pressure lead-out part 32 of the radiator 3 to be fitted therein.
バルブ本体41には、蒸発器5に対向する部位に蒸発器5の低圧導入部51が外部に露出しないように直結されるバルブ導出部413が形成されている。バルブ導出部413は、バルブ本体41の貫通穴411の他端側に開口する開口部であり、蒸発器5の低圧導入部51を嵌め込むことが可能な大きさを有している。
The valve main body 41 is formed with a valve lead-out portion 413 that is directly connected to a portion facing the evaporator 5 so that the low-pressure introduction portion 51 of the evaporator 5 is not exposed to the outside. The valve lead-out portion 413 is an opening that opens to the other end side of the through hole 411 of the valve body 41 and has a size that allows the low-pressure introduction portion 51 of the evaporator 5 to be fitted therein.
その他の構成は、第1実施形態と同様である。本実施形態の冷凍サイクル装置1は、圧縮機ハウジング20の外部に設けた減圧機器4が放熱器3および蒸発器5に直結される構造になっている。これによると、冷媒配管を介して放熱器3、減圧機器4、蒸発器5が接続される従来の構造に比べて、部品点数が少なくなるので、冷凍サイクル装置1の簡素化並びに小型化を図ることができる。
Other configurations are the same as those in the first embodiment. The refrigeration cycle apparatus 1 of the present embodiment has a structure in which a decompression device 4 provided outside the compressor housing 20 is directly connected to the radiator 3 and the evaporator 5. According to this, since the number of parts is reduced as compared with the conventional structure in which the radiator 3, the decompression device 4, and the evaporator 5 are connected via the refrigerant pipe, the refrigeration cycle apparatus 1 is simplified and downsized. be able to.
(第4実施形態)
次に、第4実施形態について、図13~図15を参照して説明する。本実施形態では、減圧機器4のバルブ本体41に高圧側貯留部415が設けられている点が第3実施形態と相違している。本実施形態では、第3実施形態と異なる部分について主に説明し、第3実施形態と同様の部分について説明を省略することがある。 (Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIGS. The present embodiment is different from the third embodiment in that a high-pressure side reservoir 415 is provided in the valve body 41 of the decompression device 4. In the present embodiment, portions different from the third embodiment will be mainly described, and description of portions similar to the third embodiment may be omitted.
次に、第4実施形態について、図13~図15を参照して説明する。本実施形態では、減圧機器4のバルブ本体41に高圧側貯留部415が設けられている点が第3実施形態と相違している。本実施形態では、第3実施形態と異なる部分について主に説明し、第3実施形態と同様の部分について説明を省略することがある。 (Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIGS. The present embodiment is different from the third embodiment in that a high-
図13に示すように、バルブ本体41には、貫通穴411におけるバルブ導入部412とバルブ導出部413との間に、バルブ導入部412とバルブ導出部413よりも断面積が小さい縮小部414が設けられている。この縮小部414は、冷媒の減圧作用を発揮する絞り機構部として機能する。
As shown in FIG. 13, the valve main body 41 has a reduction portion 414 having a smaller cross-sectional area than the valve introduction portion 412 and the valve lead-out portion 413 between the valve introduction portion 412 and the valve lead-out portion 413 in the through hole 411. Is provided. The reduction unit 414 functions as a throttle mechanism unit that exerts a decompression action of the refrigerant.
また、バルブ本体41には、サイクル内における余剰となる液冷媒を貯留するための高圧側貯留部415が設けられている。高圧側貯留部415は、バルブ本体41に形成された貫通穴411のうち、バルブ導入部412と絞り機構部42を構成する縮小部414との間に設けられている。すなわち、高圧側貯留部415は、貫通穴411における縮小部414よりも冷媒流れ上流側に設けられている。
Further, the valve main body 41 is provided with a high-pressure side storage section 415 for storing a liquid refrigerant that is excessive in the cycle. The high-pressure side reservoir 415 is provided between the valve introduction part 412 and the reduction part 414 constituting the throttle mechanism part 42 in the through hole 411 formed in the valve main body 41. In other words, the high-pressure side reservoir 415 is provided on the upstream side of the refrigerant flow with respect to the reduced portion 414 in the through hole 411.
具体的には、高圧側貯留部415は、図14に示すように、z方向に延びる有底穴415aおよび有底穴415aの開口を閉塞する閉塞板部415bで構成されている。この有底穴415aには、バルブ導入部412からの冷媒を流入させる上流側開口部415cおよび内部に貯留された冷媒を絞り機構部を構成する縮小部414側に流出させる下流側開口部415dが形成されている。高圧側貯留部415は、その内部に貯留された液冷媒が縮小部414側に流れるように、下流側開口部415dが上流側開口部415cよりも鉛直方向(すなわち、z方向)の下方側に形成されている。
Specifically, as shown in FIG. 14, the high-pressure side reservoir 415 includes a bottomed hole 415a extending in the z direction and a closing plate 415b that closes the opening of the bottomed hole 415a. The bottomed hole 415a has an upstream opening 415c through which the refrigerant from the valve introduction portion 412 flows, and a downstream opening 415d through which the refrigerant stored inside flows out to the reducing portion 414 constituting the throttle mechanism. Is formed. The high-pressure side reservoir 415 has a downstream opening 415d on the lower side in the vertical direction (that is, the z direction) than the upstream opening 415c so that the liquid refrigerant stored in the high-pressure reservoir 415 flows toward the reducing portion 414. Is formed.
このように構成される減圧機器4は、圧縮機ハウジング20との間に、熱交換抑制部416が設けられている。図15に示すように、熱交換抑制部416は、圧縮機構部24を介して冷媒吸入部203から冷媒吐出部205に至る冷媒流路と絞り機構部である縮小部414を介してバルブ導入部412からバルブ導出部413に至る冷媒流路との間の空隙で構成されている。この熱交換抑制部416によって、圧縮機構部24を介して冷媒吸入部203から冷媒吐出部205に至る冷媒流路と縮小部414を介してバルブ導入部412からバルブ導出部413に至る冷媒流路とが熱的に分断される。本実施形態では、バルブ本体41に形成された貫通穴411が、縮小部414を介してバルブ導入部412からバルブ導出部413に至る冷媒流路を構成している。
The heat reducing unit 416 is provided between the decompression device 4 configured in this manner and the compressor housing 20. As shown in FIG. 15, the heat exchange suppression unit 416 includes a valve introduction unit via a refrigerant flow path from the refrigerant suction unit 203 to the refrigerant discharge unit 205 via the compression mechanism unit 24 and a reduction unit 414 which is a throttle mechanism unit. It is comprised by the space | gap between the refrigerant | coolant flow paths from 412 to the valve derivation | leading-out part 413. FIG. By this heat exchange suppression unit 416, a refrigerant flow path from the refrigerant suction part 203 to the refrigerant discharge part 205 via the compression mechanism part 24 and a refrigerant flow path from the valve introduction part 412 to the valve lead-out part 413 via the reduction part 414 And is thermally divided. In the present embodiment, the through hole 411 formed in the valve body 41 constitutes a refrigerant flow path from the valve introduction part 412 to the valve lead-out part 413 via the reduction part 414.
以上説明した本実施形態の冷凍サイクル装置1は、第3実施形態と共通の構成を備えている。このため、本実施形態の冷凍サイクル装置1は、第3実施形態と共通の構成から奏される作用効果を第3実施形態と同様に得ることができる。
The refrigeration cycle apparatus 1 of the present embodiment described above has the same configuration as that of the third embodiment. For this reason, the refrigeration cycle apparatus 1 of the present embodiment can obtain the operational effects produced from the configuration common to the third embodiment, similarly to the third embodiment.
本実施形態の冷凍サイクル装置1は、バルブ本体41の貫通穴411のうちバルブ導入部412と減圧機器4として機能する縮小部414と間に液冷媒を貯留可能な高圧側貯留部415が設けられている。
In the refrigeration cycle apparatus 1 of the present embodiment, a high-pressure side storage unit 415 capable of storing liquid refrigerant is provided between the valve introduction unit 412 and the reduction unit 414 functioning as the decompression device 4 in the through hole 411 of the valve body 41. ing.
このように、バルブ本体41に対して高圧側貯留部415を設ける構成とすれば、高圧側貯留部215にサイクル内の余剰となる液冷媒を一時的に貯留可能となるので、サイクルの負荷変動時にサイクル内の冷媒量が不足することを避けることができる。
Thus, if the high pressure side storage part 415 is provided with respect to the valve main body 41, the liquid refrigerant which becomes the excess in a cycle can be temporarily stored in the high pressure side storage part 215. Sometimes a shortage of refrigerant in the cycle can be avoided.
加えて、高圧側貯留部415には、内部にバルブ導入部412からの冷媒を流入させる上流側開口部415c、内部に貯留された冷媒を絞り機構部42である縮小部414側に流出させる下流側開口部415dが形成されている。そして、下流側開口部415dが、上流側開口部415cよりも鉛直方向の下方側に形成されている。
In addition, the high-pressure side storage section 415 has an upstream opening 415c that allows the refrigerant from the valve introduction section 412 to flow therein, and the downstream that discharges the refrigerant stored therein to the reduction section 414 that is the throttle mechanism section 42. A side opening 415d is formed. The downstream opening 415d is formed on the lower side in the vertical direction than the upstream opening 415c.
これによると、高圧側貯留部415に貯留された液冷媒が縮小部414側に流れ易くなる。すなわち、縮小部414側には、エンタルピが小さい液冷媒が流れ易くなる。この結果、蒸発器5の前後のエンタルピ差を確保して、蒸発器5における吸熱能力の向上を図ることができる。
According to this, the liquid refrigerant stored in the high-pressure side storage unit 415 easily flows to the reduction unit 414 side. That is, a liquid refrigerant having a small enthalpy is likely to flow on the reducing portion 414 side. As a result, the difference in enthalpy before and after the evaporator 5 can be secured, and the heat absorption capability of the evaporator 5 can be improved.
また、バルブ本体41と圧縮機ハウジング20との間には、冷媒吸入部203から冷媒吐出部205に至る冷媒流路とバルブ導入部412からバルブ導出部413に至る冷媒流路とを熱的に分断する熱交換抑制部416が設けられている。これによると、縮小部414を流れる冷媒や高圧側貯留部415に貯留される液冷媒と、圧縮機構部24に吸入される冷媒や圧縮機構部24から吐出される冷媒との不必要な熱交換を抑制することができる。
Further, between the valve main body 41 and the compressor housing 20, a refrigerant flow path from the refrigerant suction part 203 to the refrigerant discharge part 205 and a refrigerant flow path from the valve introduction part 412 to the valve lead-out part 413 are thermally connected. A heat exchange suppressing unit 416 for dividing is provided. According to this, unnecessary heat exchange between the refrigerant flowing through the reduction unit 414 and the liquid refrigerant stored in the high-pressure side storage unit 415 and the refrigerant sucked into the compression mechanism unit 24 and the refrigerant discharged from the compression mechanism unit 24 is performed. Can be suppressed.
(第4実施形態の変形例)
上述の第4実施形態では、高圧側貯留部415の下流側開口部415dを上流側開口部415cよりも鉛直方向の下方側に配置されている例について説明したが、これに限定されない。高圧側貯留部415は、例えば、下流側開口部415dが上流側開口部415cと鉛直方向において同等となる位置に配置されていてもよい。 (Modification of the fourth embodiment)
In the above-described fourth embodiment, the example in which thedownstream opening 415d of the high-pressure side reservoir 415 is disposed on the lower side in the vertical direction than the upstream opening 415c is described, but the present invention is not limited to this. For example, the high-pressure side reservoir 415 may be disposed at a position where the downstream opening 415d is equivalent to the upstream opening 415c in the vertical direction.
上述の第4実施形態では、高圧側貯留部415の下流側開口部415dを上流側開口部415cよりも鉛直方向の下方側に配置されている例について説明したが、これに限定されない。高圧側貯留部415は、例えば、下流側開口部415dが上流側開口部415cと鉛直方向において同等となる位置に配置されていてもよい。 (Modification of the fourth embodiment)
In the above-described fourth embodiment, the example in which the
上述の第4実施形態では、バルブ本体41と圧縮機ハウジング20との間に熱交換抑制部416が設けられた例について説明したが、これに限定されない。冷凍サイクル装置1は、熱交換抑制部216が省略された構成になっていてもよい。
In the above-described fourth embodiment, the example in which the heat exchange suppression unit 416 is provided between the valve main body 41 and the compressor housing 20 has been described, but the present invention is not limited to this. The refrigeration cycle apparatus 1 may have a configuration in which the heat exchange suppression unit 216 is omitted.
上述の第4実施形態では、バルブ本体41に対して高圧側貯留部415が設けられた例について説明したが、これに限定されない。冷凍サイクル装置1は、バルブ本体41における高圧側貯留部415が省略された構成になっていてもよい。
In the above-described fourth embodiment, the example in which the high-pressure side reservoir 415 is provided with respect to the valve body 41 has been described, but the present invention is not limited to this. The refrigeration cycle apparatus 1 may have a configuration in which the high-pressure side reservoir 415 in the valve body 41 is omitted.
上述の第4実施形態では、熱交換抑制部416がバルブ本体41と圧縮機ハウジング20との間に設けられた空隙で構成される例について説明したが、これに限定されない。熱交換抑制部416は、バルブ本体41および圧縮機ハウジング20よりも熱抵抗の高い材料で構成される熱緩衝体で構成されていてもよい。
In the above-described fourth embodiment, the example in which the heat exchange suppression unit 416 is configured by the gap provided between the valve body 41 and the compressor housing 20 has been described, but is not limited thereto. The heat exchange suppression unit 416 may be formed of a thermal buffer made of a material having a higher thermal resistance than the valve body 41 and the compressor housing 20.
上述の第4実施形態では、絞り機構部42がバルブ本体41に形成された縮小部414で構成される例について説明したが、これに限定されない。絞り機構部42は、例えば、第3実施形態で説明したオリフィス421で構成されていてもよい。
In the above-described fourth embodiment, the example in which the throttle mechanism unit 42 is configured by the reduction unit 414 formed in the valve body 41 has been described, but the present invention is not limited to this. The aperture mechanism unit 42 may be configured by the orifice 421 described in the third embodiment, for example.
上述の第4実施形態では、横置型の構造を有する冷凍サイクル装置1のバルブ本体41に高圧側貯留部415を設ける構成を適用する例について説明したが、これに限定されない。バルブ本体41に高圧側貯留部415を設ける構成は、圧縮機2の上方に、放熱器3、減圧機器4、蒸発器5、および送風機6が設置される縦置型の構造を有する冷凍サイクル装置1に対しても適用可能である。この場合、高圧側貯留部415は、液冷媒が貯留可能なように、鉛直方向(すなわち、z方向)に延びる有底穴415aを含む構成とすればよい。
In the above-described fourth embodiment, the example in which the configuration in which the high-pressure side reservoir 415 is provided in the valve main body 41 of the refrigeration cycle apparatus 1 having a horizontal structure has been described, but is not limited thereto. The configuration in which the valve main body 41 is provided with the high-pressure side reservoir 415 is a refrigeration cycle apparatus 1 having a vertical structure in which the radiator 3, the decompression device 4, the evaporator 5, and the blower 6 are installed above the compressor 2. It is applicable to. In this case, the high-pressure side reservoir 415 may include a bottomed hole 415a extending in the vertical direction (that is, the z direction) so that the liquid refrigerant can be stored.
(第5実施形態)
次に、第5実施形態について、図16、図17を参照して説明する。本実施形態では、圧縮機ハウジング20に対して低圧側貯留部217が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIGS. In this embodiment, the point by which the low voltage | pressureside storage part 217 is provided with respect to the compressor housing 20 is different from 1st Embodiment. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
次に、第5実施形態について、図16、図17を参照して説明する。本実施形態では、圧縮機ハウジング20に対して低圧側貯留部217が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIGS. In this embodiment, the point by which the low voltage | pressure
図16に示すように、低圧側貯留部217は、サイクル内における余剰となる液冷媒を貯留するために設けられている。低圧側貯留部217は、圧縮機ハウジング20のうち吸入流路202を構成する部位に対して設けられている。より詳細には、低圧側貯留部217は、圧縮機ハウジング20のうち冷媒吸入部203と収容空間200との間に設けられている。
As shown in FIG. 16, the low-pressure side reservoir 217 is provided to store excess liquid refrigerant in the cycle. The low-pressure side reservoir 217 is provided for a portion of the compressor housing 20 that constitutes the suction flow path 202. More specifically, the low-pressure side reservoir 217 is provided between the refrigerant suction part 203 and the accommodation space 200 in the compressor housing 20.
具体的には、低圧側貯留部417は、図17に示すように、z方向に延びる有底穴217aおよび有底穴217aの開口を閉塞する閉塞板部217bで構成されている。この有底穴217aには、冷媒吸入部203からの冷媒を流入させる上流側開口部217cおよび内部に貯留された冷媒を収容空間200側に流出させる下流側開口部217dが形成されている。下流側開口部217dは、内部に貯留された液冷媒が収容空間200側に流れ難くなるように、鉛直方向において有底穴217aの底面よりも閉塞板部217bに近い位置に形成されている。なお、上流側開口部217cは、鉛直方向における下流側開口部217dと同等となる位置に形成されている。
Specifically, as shown in FIG. 17, the low-pressure side reservoir 417 includes a bottomed hole 217a extending in the z direction and a closing plate 217b that closes the opening of the bottomed hole 217a. The bottomed hole 217a is formed with an upstream opening 217c through which the refrigerant from the refrigerant suction portion 203 flows and a downstream opening 217d through which the refrigerant stored inside flows out to the storage space 200 side. The downstream opening 217d is formed at a position closer to the closing plate 217b than the bottom surface of the bottomed hole 217a in the vertical direction so that the liquid refrigerant stored inside does not easily flow to the accommodation space 200 side. The upstream opening 217c is formed at a position equivalent to the downstream opening 217d in the vertical direction.
その他の構成は、第1実施形態と同様である。本実施形態の冷凍サイクル装置1は、圧縮機ハウジング20に形成された吸入流路202に液冷媒を貯留可能な低圧側貯留部217が設けられている。このように、吸入流路202に低圧側貯留部417を設ける構成とすれば、低圧側貯留部217にサイクル内の余剰となる液冷媒を一時的に貯留可能となるので、サイクルの負荷変動時にサイクル内の冷媒量が不足することを避けることができる。
Other configurations are the same as those in the first embodiment. In the refrigeration cycle apparatus 1 of the present embodiment, a low-pressure side storage unit 217 capable of storing a liquid refrigerant is provided in an intake passage 202 formed in the compressor housing 20. If the low pressure side reservoir 417 is provided in the suction flow path 202 in this way, the low pressure side reservoir 217 can temporarily store excess liquid refrigerant in the cycle. Insufficient amount of refrigerant in the cycle can be avoided.
加えて、低圧側貯留部217は、その内部に貯留された液冷媒が収容空間200側に流れ難い構造になっている。これによると、圧縮機構部24で液冷媒が圧縮されること(すなわち、液バック)を抑制することができる。
In addition, the low-pressure side reservoir 217 has a structure in which the liquid refrigerant stored in the low-pressure side reservoir 217 does not easily flow to the accommodation space 200 side. According to this, it can suppress that a liquid refrigerant is compressed by the compression mechanism part 24 (namely, liquid back).
(第5実施形態の変形例)
上述の第5実施形態では、低圧側貯留部217の下流側開口部217dが上流側開口部217cと同等なる位置に形成される例について説明したが、これに限定されない。低圧側貯留部217は、例えば、下流側開口部217dが上流側開口部217cよりも鉛直方向の上方側に形成されていてもよい。 (Modification of the fifth embodiment)
In the fifth embodiment described above, the example in which thedownstream opening 217d of the low-pressure reservoir 217 is formed at a position equivalent to the upstream opening 217c is described, but the present invention is not limited to this. In the low-pressure side reservoir 217, for example, the downstream opening 217d may be formed above the upstream opening 217c in the vertical direction.
上述の第5実施形態では、低圧側貯留部217の下流側開口部217dが上流側開口部217cと同等なる位置に形成される例について説明したが、これに限定されない。低圧側貯留部217は、例えば、下流側開口部217dが上流側開口部217cよりも鉛直方向の上方側に形成されていてもよい。 (Modification of the fifth embodiment)
In the fifth embodiment described above, the example in which the
上述の第5実施形態では、第1実施形態の冷凍サイクル装置1を前提とする構成に対して、圧縮機ハウジング20に低圧側貯留部217を設ける構成を適用する例について説明したが、これに限定されない。圧縮機ハウジング20に低圧側貯留部217を設ける構成は、第1実施形態以外の実施形態の冷凍サイクル装置1においても適用可能である。
In the above-described fifth embodiment, the example in which the configuration in which the low-pressure side reservoir 217 is provided in the compressor housing 20 is applied to the configuration based on the refrigeration cycle apparatus 1 of the first embodiment has been described. It is not limited. The configuration in which the low pressure side reservoir 217 is provided in the compressor housing 20 can also be applied to the refrigeration cycle apparatus 1 of the embodiments other than the first embodiment.
(第6実施形態)
次に、第6実施形態について、図18、図19を参照して説明する。本実施形態では、低圧側貯留部219が圧縮機ハウジング20とは別体で構成されている点が第5実施形態と相違している。本実施形態では、第5実施形態と異なる部分について主に説明し、第5実施形態と同様の部分について説明を省略することがある。 (Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIGS. In this embodiment, the point by which the low voltage | pressureside storage part 219 is comprised separately from the compressor housing 20 differs from 5th Embodiment. In the present embodiment, portions that are different from the fifth embodiment will be mainly described, and description of portions that are the same as those of the fifth embodiment may be omitted.
次に、第6実施形態について、図18、図19を参照して説明する。本実施形態では、低圧側貯留部219が圧縮機ハウジング20とは別体で構成されている点が第5実施形態と相違している。本実施形態では、第5実施形態と異なる部分について主に説明し、第5実施形態と同様の部分について説明を省略することがある。 (Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIGS. In this embodiment, the point by which the low voltage | pressure
圧縮機ハウジング20には、吸入流路202を構成する部位に、低圧側貯留部219を収容するための貯留空間218が形成されている。この貯留空間218は、圧縮機ハウジング20に形成された有底穴218a、有底穴218aを閉塞する閉塞部材218bによって形成されている。有底穴218aは、鉛直方向に沿って延びている。
In the compressor housing 20, a storage space 218 for storing the low-pressure side storage section 219 is formed at a site constituting the suction flow path 202. The storage space 218 is formed by a bottomed hole 218a formed in the compressor housing 20 and a closing member 218b that closes the bottomed hole 218a. The bottomed hole 218a extends along the vertical direction.
低圧側貯留部219は、圧縮機ハウジング20とは別体で構成されている。低圧側貯留部219は、液冷媒を貯留可能な有底筒状の部材で構成されている。具体的には、低圧側貯留部219には、有底筒状の貯留部219a、貯留部219aを圧縮機ハウジング20に対して連結するための連結部219bを有している。
The low pressure side reservoir 219 is configured separately from the compressor housing 20. The low-pressure side reservoir 219 is formed of a bottomed cylindrical member capable of storing liquid refrigerant. Specifically, the low-pressure side storage section 219 includes a bottomed cylindrical storage section 219 a and a connection section 219 b for connecting the storage section 219 a to the compressor housing 20.
貯留部219aは、その上面が開口しており、当該開口が冷媒吸入部203からの冷媒を流入させる上流側開口部219cを構成している。また、貯留部219aの側壁部219dに対して、貯留部219aの内部に貯留された冷媒を収容空間200側に流出させる下流側開口部219eが形成されている。この下流側開口部219eは、貯留部219aの底壁部219fよりも上流側開口部219cに近い位置に形成されている。
The reservoir 219a has an upper surface that is open, and the opening constitutes an upstream opening 219c through which the refrigerant from the refrigerant suction portion 203 flows. Further, a downstream opening 219e is formed with respect to the side wall 219d of the reservoir 219a to allow the refrigerant stored inside the reservoir 219a to flow out to the storage space 200 side. The downstream opening 219e is formed at a position closer to the upstream opening 219c than the bottom wall 219f of the reservoir 219a.
低圧側貯留部219は、貯留空間218を形成する壁面である有底穴218aとの間に圧縮機構部24に吸入されるガス冷媒が流れるように貯留空間218に配置されている。具体的には、低圧側貯留部219は、貯留部219aと有底穴218aとの間にガス冷媒が流れる冷媒流路218cが形成されるように、貯留部219aが有底穴218aから離間している。
The low-pressure side storage unit 219 is arranged in the storage space 218 so that the gas refrigerant sucked into the compression mechanism unit 24 flows between the bottomed hole 218a which is a wall surface forming the storage space 218. Specifically, in the low-pressure side reservoir 219, the reservoir 219a is separated from the bottomed hole 218a so that a refrigerant channel 218c through which a gas refrigerant flows is formed between the reservoir 219a and the bottomed hole 218a. ing.
その他の構成は、第5実施形態と同様である。本実施形態の冷凍サイクル装置1は、第5実施形態と共通の構成を備えており、第5実施形態と共通の構成から奏される作用効果を第5実施形態と同様に得ることができる。
Other configurations are the same as those in the fifth embodiment. The refrigeration cycle apparatus 1 of the present embodiment has the same configuration as that of the fifth embodiment, and the effects obtained from the configuration common to the fifth embodiment can be obtained similarly to the fifth embodiment.
本実施形態の冷凍サイクル装置1は、低圧側貯留部219と圧縮機ハウジング20の内部の貯留空間218を形成する壁面との間に圧縮機構部24に吸入される低温の冷媒が流れる構造になっている。これによると、低圧側貯留部219に貯留された液冷媒に圧縮機ハウジング20の熱が伝わり難くなる。すなわち、圧縮機ハウジング20の熱によって低圧側貯留部219に貯留された液冷媒の蒸発を抑制することができる。これにより、サイクルの負荷変動時にサイクル内の冷媒量が不足することを避けることができる。
The refrigeration cycle apparatus 1 of the present embodiment has a structure in which a low-temperature refrigerant sucked into the compression mechanism portion 24 flows between the low-pressure side storage portion 219 and the wall surface forming the storage space 218 inside the compressor housing 20. ing. This makes it difficult for the heat of the compressor housing 20 to be transmitted to the liquid refrigerant stored in the low-pressure side storage unit 219. That is, evaporation of the liquid refrigerant stored in the low-pressure side storage unit 219 can be suppressed by the heat of the compressor housing 20. Thereby, it is possible to avoid a shortage of the refrigerant amount in the cycle at the time of cycle load fluctuation.
(第7実施形態)
次に、第7実施形態について、図20、図21を参照して説明する。本実施形態では、冷凍サイクル装置1の圧縮機2の上方に放熱器3、減圧機器4、蒸発器5が設置されている点が第6実施形態と相違している。本実施形態では、第6実施形態と異なる部分について主に説明し、第6実施形態と同様の部分について説明を省略することがある。 (Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIGS. This embodiment is different from the sixth embodiment in that aradiator 3, a decompression device 4, and an evaporator 5 are installed above the compressor 2 of the refrigeration cycle apparatus 1. In the present embodiment, portions that are different from the sixth embodiment will be mainly described, and description of portions that are the same as the sixth embodiment may be omitted.
次に、第7実施形態について、図20、図21を参照して説明する。本実施形態では、冷凍サイクル装置1の圧縮機2の上方に放熱器3、減圧機器4、蒸発器5が設置されている点が第6実施形態と相違している。本実施形態では、第6実施形態と異なる部分について主に説明し、第6実施形態と同様の部分について説明を省略することがある。 (Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIGS. This embodiment is different from the sixth embodiment in that a
図20に示すように、冷凍サイクル装置1は、圧縮機2の上方に、放熱器3、減圧機器4、蒸発器5、および送風機6が設置される縦置型の構造になっている。すなわち、本実施形態の冷凍サイクル装置1は、放熱器3、減圧機器4、蒸発器5、送風機6が、鉛直方向(すなわち、z方向)において圧縮機2と重なり合うように配置されている。
As shown in FIG. 20, the refrigeration cycle apparatus 1 has a vertical structure in which a radiator 3, a decompression device 4, an evaporator 5, and a blower 6 are installed above a compressor 2. That is, in the refrigeration cycle apparatus 1 of the present embodiment, the radiator 3, the decompression device 4, the evaporator 5, and the blower 6 are arranged so as to overlap with the compressor 2 in the vertical direction (that is, the z direction).
このような縦置型の構造を有する冷凍サイクル装置1では、図20および図21に示すように、圧縮機ハウジング20に対して鉛直方向(すなわち、z方向)に延びる円柱状の貯留空間218が形成される。この貯留空間218に対して、鉛直方向に延びる貯留部219aが収容される構成になっている。これにより、縦置型の構造を有する冷凍サイクル装置1においても、低圧側貯留部219に対して液冷媒を貯留することが可能となる。
In the refrigeration cycle apparatus 1 having such a vertical structure, as shown in FIGS. 20 and 21, a cylindrical storage space 218 extending in the vertical direction (that is, the z direction) with respect to the compressor housing 20 is formed. Is done. In this storage space 218, a storage portion 219a extending in the vertical direction is stored. Thereby, even in the refrigeration cycle apparatus 1 having a vertical structure, the liquid refrigerant can be stored in the low-pressure side storage unit 219.
その他の構成は、第6実施形態と同様である。本実施形態の冷凍サイクル装置1は、第6実施形態と共通の構成を備えており、第6実施形態と共通の構成から奏される作用効果を第7実施形態と同様に得ることができる。
Other configurations are the same as in the sixth embodiment. The refrigeration cycle apparatus 1 of the present embodiment has the same configuration as that of the sixth embodiment, and the effects obtained from the configuration common to the sixth embodiment can be obtained similarly to the seventh embodiment.
(第8実施形態)
次に、第8実施形態について、図22を参照して説明する。本実施形態では、減圧機器4がキャピラリチューブ43で構成されている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Eighth embodiment)
Next, an eighth embodiment will be described with reference to FIG. The present embodiment is different from the first embodiment in that thedecompression device 4 is configured by a capillary tube 43. In the present embodiment, portions different from those in the first embodiment will be mainly described, and description of portions similar to those in the first embodiment may be omitted.
次に、第8実施形態について、図22を参照して説明する。本実施形態では、減圧機器4がキャピラリチューブ43で構成されている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。 (Eighth embodiment)
Next, an eighth embodiment will be described with reference to FIG. The present embodiment is different from the first embodiment in that the
図22に示すように、本実施形態の冷凍サイクル装置1は、減圧機器4がキャピラリチューブ43で構成されている。キャピラリチューブ43は、圧縮機ハウジング20の外部に配置されて減圧作用を発揮する細長い配管である。キャピラリチューブ43は、冷媒流れ上流側の一端部に放熱器3の高圧導出部32が外部に露出しないように直結するための上流側連結部431が設けられている。また、キャピラリチューブ43は、冷媒流れ下流側の一端部に蒸発器5の低圧導入部51が外部に露出しないように直結するための下流側連結部432が設けられている。
As shown in FIG. 22, in the refrigeration cycle apparatus 1 of the present embodiment, the decompression device 4 includes a capillary tube 43. The capillary tube 43 is an elongated pipe that is disposed outside the compressor housing 20 and exhibits a pressure reducing action. The capillary tube 43 is provided with an upstream side connection portion 431 for directly connecting the high pressure outlet portion 32 of the radiator 3 so as not to be exposed to the outside at one end portion on the upstream side of the refrigerant flow. Further, the capillary tube 43 is provided with a downstream connecting portion 432 for directly connecting the low pressure introduction portion 51 of the evaporator 5 so as not to be exposed to the outside at one end portion on the downstream side of the refrigerant flow.
その他の構成は、第1実施形態と同様である。本実施形態の冷凍サイクル装置1は、放熱器3の高圧導出部32が、外部に露出しないように減圧機器4を構成するキャピラリチューブ43の一端部に直結されている。また、冷凍サイクル装置1は、蒸発器5の低圧導入部51が、外部に露出しないように減圧機器4を構成するキャピラリチューブ43の他端部に直結されている。このように、減圧機器4を構成するキャピラリチューブ43を放熱器3および蒸発器5に直結する構造とすれば、冷媒配管を介して放熱器3、減圧機器4、蒸発器5が接続される構造に比べて、部品点数が少なくなる。このため、冷凍サイクル装置1の簡素化並びに小型化を図ることができる。
Other configurations are the same as those in the first embodiment. In the refrigeration cycle apparatus 1 of the present embodiment, the high pressure outlet 32 of the radiator 3 is directly connected to one end of the capillary tube 43 that constitutes the decompression device 4 so as not to be exposed to the outside. In the refrigeration cycle apparatus 1, the low-pressure introduction part 51 of the evaporator 5 is directly connected to the other end of the capillary tube 43 constituting the decompression device 4 so as not to be exposed to the outside. In this way, when the capillary tube 43 constituting the decompression device 4 is directly connected to the radiator 3 and the evaporator 5, the radiator 3, the decompression device 4, and the evaporator 5 are connected via the refrigerant pipe. Compared to, the number of parts is reduced. For this reason, simplification and size reduction of the refrigeration cycle apparatus 1 can be achieved.
(他の実施形態)
以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。 (Other embodiments)
As mentioned above, although typical embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, for example, can be variously changed as follows.
以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。 (Other embodiments)
As mentioned above, although typical embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, for example, can be variously changed as follows.
上述の実施形態では、圧縮機2、放熱器3、減圧機器4、蒸発器5、送風機6の具体的な配置形態について例示したが、これに限定されない。圧縮機2、放熱器3、減圧機器4、蒸発器5の配置形態は、上述の配置形態以外の他の配置形態になっていてもよい。
In the above-described embodiment, the specific arrangement form of the compressor 2, the radiator 3, the decompression device 4, the evaporator 5, and the blower 6 is exemplified, but the present invention is not limited to this. The arrangement form of the compressor 2, the radiator 3, the decompression device 4, and the evaporator 5 may be an arrangement form other than the above-described arrangement form.
上述の実施形態では、圧縮機2の内部ハウジング部23が圧縮機構部24および電動機25の振動を減衰させるための緩衝部材28を介してメインハウジング部21に連結される例について説明したが、これに限定されない。圧縮機2は、例えば、内部ハウジング部23が緩衝部材28を介さずにメインハウジング部21に連結される構成になっていてもよい。
In the above-described embodiment, the example in which the internal housing portion 23 of the compressor 2 is connected to the main housing portion 21 via the buffer member 28 for damping the vibration of the compression mechanism portion 24 and the electric motor 25 has been described. It is not limited to. For example, the compressor 2 may be configured such that the inner housing portion 23 is connected to the main housing portion 21 without the buffer member 28 interposed therebetween.
上述の実施形態では、圧縮機2の圧縮機構部24がスクロール型の圧縮機構部で構成される例について説明したが、これに限定されない。圧縮機構部24は、例えば、レシプロ型の圧縮機構部やローリングピストン型の圧縮機構部で構成されていてもよい。
In the above-described embodiment, an example in which the compression mechanism unit 24 of the compressor 2 is configured by a scroll-type compression mechanism unit has been described, but the present invention is not limited to this. The compression mechanism unit 24 may be constituted by, for example, a reciprocating type compression mechanism unit or a rolling piston type compression mechanism unit.
上述の実施形態では、圧縮機2の電動機25がアウタロータモータで構成される例について説明したが、これに限定されない。電動機25は、例えば、インナロータモータで構成されていてもよい。
In the above-described embodiment, the example in which the electric motor 25 of the compressor 2 is configured by the outer rotor motor has been described, but the present invention is not limited to this. The electric motor 25 may be composed of, for example, an inner rotor motor.
上述の実施形態では、圧縮機2が電動機25で圧縮機構部24を駆動する電動圧縮機で構成される例について説明したが、これに限定されない。圧縮機2は、例えば、内燃機関を用いて圧縮機構部24を駆動するもので構成されていてもよい。
In the above-described embodiment, the example in which the compressor 2 is configured by an electric compressor in which the electric motor 25 drives the compression mechanism unit 24 has been described, but the present invention is not limited to this. The compressor 2 may be comprised by what drives the compression mechanism part 24 using an internal combustion engine, for example.
上述の実施形態では、放熱器3が複数のチューブ34、フィン35、第1高圧タンク36、第2高圧タンク37を備える熱交換器で構成される例について説明したが、これに限定されない。放熱器3は、例えば、蛇行状に曲げられたチューブおよびプレートフィンを備えるタンクレス型の熱交換器で構成されていてもよい。
In the above-described embodiment, the example in which the radiator 3 is configured by the heat exchanger including the plurality of tubes 34, the fins 35, the first high-pressure tank 36, and the second high-pressure tank 37 has been described, but is not limited thereto. The radiator 3 may be configured by, for example, a tankless heat exchanger including a tube bent in a serpentine shape and a plate fin.
上述の実施形態では、減圧機器4が固定絞り等で構成される例について説明したが、これに限定されない。減圧機器4は、例えば、絞り開度を変更可能な可変絞り型の膨張弁で構成されていてもよい。
In the above-described embodiment, the example in which the decompression device 4 is configured by a fixed throttle or the like has been described, but the present invention is not limited to this. The decompression device 4 may be constituted by, for example, a variable throttle type expansion valve capable of changing the throttle opening.
上述の実施形態では、蒸発器5が複数のチューブ54、フィン55、第1低圧タンク56、第2低圧タンク57を備える熱交換器で構成される例について説明したが、これに限定されない。蒸発器5は、例えば、蛇行状に曲げられたチューブおよびプレートフィンを備えるタンクレス型の熱交換器で構成されていてもよい。
In the above-described embodiment, the example in which the evaporator 5 is configured by the heat exchanger including the plurality of tubes 54, the fins 55, the first low-pressure tank 56, and the second low-pressure tank 57 has been described, but is not limited thereto. The evaporator 5 may be composed of, for example, a tankless heat exchanger including a tube bent in a serpentine shape and a plate fin.
上述の実施形態では、送風機6の第1送風部6Aおよび第2送風部6Bそれぞれに対してファンモータ63A、63Bが設けられた例について説明したが、これに限定されない。送風機6は、単一のファンモータによって温風ファン62Aおよび冷風ファン62Bが駆動される構成になっていてもよい。
In the above-described embodiment, the example in which the fan motors 63A and 63B are provided for the first blower 6A and the second blower 6B of the blower 6 has been described, but the present invention is not limited thereto. The blower 6 may be configured such that the hot air fan 62A and the cold air fan 62B are driven by a single fan motor.
上述の実施形態では、本開示の冷凍サイクル装置1をシート空調装置に適用した例について説明したが、これに限定されない。本開示の冷凍サイクル装置1は、車載される空調装置に限らず、例えば、家屋などの室内空調装置や、機器温調装置に対しても広く適用可能である。
In the above-described embodiment, an example in which the refrigeration cycle apparatus 1 of the present disclosure is applied to a seat air conditioner has been described, but the present invention is not limited to this. The refrigeration cycle apparatus 1 of the present disclosure is not limited to an air conditioner mounted on a vehicle, but can be widely applied to, for example, an indoor air conditioner such as a house, and a device temperature controller.
上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
In the above-described embodiment, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered to be essential in principle.
上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
In the above-described embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is particularly limited to a specific number when clearly indicated as essential and in principle. Except in some cases, the number is not limited.
上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。
In the above embodiment, when referring to the shape, positional relationship, etc. of the component, etc., the shape, positional relationship, etc. unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to etc.
(まとめ)
上述の実施形態の一部または全部で示された第1の観点によれば、冷凍サイクル装置は、圧縮機ハウジングに、放熱器の高圧導入部が直結される冷媒吐出部、および蒸発器の低圧導出部が直結される冷媒吸入部が設けられている。 (Summary)
According to the first aspect shown in part or all of the above-described embodiments, the refrigeration cycle apparatus includes a refrigerant discharge portion in which a high pressure introduction portion of a radiator is directly connected to a compressor housing, and a low pressure of an evaporator. A refrigerant suction part to which the outlet part is directly connected is provided.
上述の実施形態の一部または全部で示された第1の観点によれば、冷凍サイクル装置は、圧縮機ハウジングに、放熱器の高圧導入部が直結される冷媒吐出部、および蒸発器の低圧導出部が直結される冷媒吸入部が設けられている。 (Summary)
According to the first aspect shown in part or all of the above-described embodiments, the refrigeration cycle apparatus includes a refrigerant discharge portion in which a high pressure introduction portion of a radiator is directly connected to a compressor housing, and a low pressure of an evaporator. A refrigerant suction part to which the outlet part is directly connected is provided.
第2の観点によれば、冷凍サイクル装置の圧縮機ハウジングには、冷媒吸入部から圧縮機構部に至る吸入流路に、液冷媒を貯留可能な低圧側貯留部が設けられている。
According to the second aspect, the compressor housing of the refrigeration cycle apparatus is provided with a low-pressure side reservoir that can store liquid refrigerant in an intake passage extending from the refrigerant intake to the compression mechanism.
単に、放熱器および蒸発器が圧縮機ハウジングに直結する構造(すなわち、配管レス構造)とすると、冷媒配管がないことでサイクル内への冷媒の充填量が少なくなり、サイクルの負荷変動時にサイクル内の冷媒量が不足してしまうことが懸念される。
If the radiator and evaporator are connected directly to the compressor housing (that is, a pipe-less structure), the refrigerant charge amount in the cycle is reduced due to the absence of refrigerant piping, and the cycle is subject to fluctuations in the cycle load. There is a concern that the amount of refrigerant will be insufficient.
これに対して、圧縮機ハウジングに対して低圧側貯留部を設ける構成とすれば、低圧側貯留部にサイクル内の余剰となる液冷媒を一時的に貯留可能となるので、サイクルの負荷変動時にサイクル内の冷媒量が不足することを避けることができる。
On the other hand, if the low pressure side reservoir is provided for the compressor housing, the liquid refrigerant that is excessive in the cycle can be temporarily stored in the low pressure side reservoir, so that when the cycle load fluctuates, Insufficient amount of refrigerant in the cycle can be avoided.
第3の観点によれば、冷凍サイクル装置の圧縮機ハウジングには、吸入流路に低圧側貯留部を収容するための貯留空間が形成されている。そして、低圧側貯留部は、有底筒状の部材で構成され、貯留空間を形成する壁面との間に圧縮機構部に吸入されるガス冷媒が流れるように貯留空間に配置されている。
According to the third aspect, the compressor housing of the refrigeration cycle apparatus has a storage space for storing the low-pressure side storage section in the suction flow path. And the low-pressure side storage part is comprised with a bottomed cylindrical member, and is arrange | positioned in the storage space so that the gas refrigerant suck | inhaled by a compression mechanism part may flow between the wall surfaces which form storage space.
圧縮機ハウジングは、圧縮機構部で圧縮された冷媒から受熱することで温度が高くなり易い。このため、単に、圧縮機ハウジングに対して低圧側貯留部を設けると、圧縮機ハウジングの熱によって低圧側貯留部に貯留された液冷媒が蒸発してしまう虞がある。
The temperature of the compressor housing is likely to be increased by receiving heat from the refrigerant compressed by the compression mechanism. For this reason, if the low-pressure side reservoir is simply provided for the compressor housing, the liquid refrigerant stored in the low-pressure side reservoir may evaporate due to the heat of the compressor housing.
これに対して、低圧側貯留部と圧縮機ハウジングの内部の貯留空間を形成する壁面との間に圧縮機構部に吸入される低温の冷媒が流れる構成とすれば、低圧側貯留部に貯留された液冷媒に圧縮機ハウジングの熱が伝わり難くなる。すなわち、圧縮機ハウジングの熱によって低圧側貯留部に貯留された液冷媒の蒸発を抑制することができる。これにより、低圧側貯留部に液冷媒が適切に貯留されるので、サイクルの負荷変動時にサイクル内の冷媒量が不足することを避けることができる。
On the other hand, if the low-temperature refrigerant sucked into the compression mechanism flows between the low-pressure side reservoir and the wall surface forming the storage space inside the compressor housing, the refrigerant is stored in the low-pressure side reservoir. It becomes difficult for the heat of the compressor housing to be transferred to the liquid refrigerant. That is, the evaporation of the liquid refrigerant stored in the low-pressure side storage unit due to the heat of the compressor housing can be suppressed. Thereby, since the liquid refrigerant is appropriately stored in the low-pressure side storage section, it is possible to avoid a shortage of the refrigerant amount in the cycle when the load of the cycle changes.
第4の観点によれば、冷凍サイクル装置の放熱器は、その内部を通過した冷媒を減圧機器側に導出するための高圧導出部を有している。また、蒸発器は、減圧機器で減圧された冷媒を内部に導入するための低圧導入部を有している。減圧機器は、圧縮機ハウジングの内部に設けられている。圧縮機ハウジングには、放熱器を通過した冷媒を減圧機器に導く中間導入部および減圧機器を通過した冷媒を蒸発器に導く中間導出部が設けられている。そして、高圧導出部は、外部に露出しないように中間導入部に直結されている。また、低圧導入部は、外部に露出しないように中間導出部に直結されている。
According to the fourth aspect, the radiator of the refrigeration cycle apparatus has a high-pressure derivation unit for deriving the refrigerant that has passed through the refrigeration cycle apparatus to the decompression device side. Moreover, the evaporator has a low pressure introduction part for introducing the refrigerant decompressed by the decompression device. The decompression device is provided inside the compressor housing. The compressor housing is provided with an intermediate introduction portion that guides the refrigerant that has passed through the radiator to the decompression device and an intermediate lead-out portion that guides the refrigerant that has passed through the decompression device to the evaporator. The high pressure lead-out part is directly connected to the intermediate introduction part so as not to be exposed to the outside. Further, the low pressure introduction part is directly connected to the intermediate lead-out part so as not to be exposed to the outside.
このように圧縮機ハウジングの内部に減圧機器を設ける構成とすれば、圧縮機ハウジングの外部に別体の減圧機器を設置する場合に比べて、冷凍サイクル装置の簡素化を図ることができる。
If the decompression device is provided inside the compressor housing in this way, the refrigeration cycle apparatus can be simplified compared to the case where a separate decompression device is installed outside the compressor housing.
加えて、本開示の冷凍サイクル装置は、圧縮機ハウジングのうち減圧機器を構成する部位が放熱器および蒸発器に直結される構造になっている。このような構造では、配管を介して放熱器、減圧機器、蒸発器が接続される従来の構造に比べて、部品点数が少なくなるので、冷凍サイクル装置の簡素化並びに小型化を図ることができる。
In addition, the refrigeration cycle apparatus of the present disclosure has a structure in which a portion of the compressor housing that constitutes the decompression device is directly connected to the radiator and the evaporator. In such a structure, since the number of parts is reduced as compared with the conventional structure in which a radiator, a decompression device, and an evaporator are connected via a pipe, the refrigeration cycle apparatus can be simplified and downsized. .
第5の観点によれば、冷凍サイクル装置の減圧機器は、圧縮機ハウジングの内部の貫通穴に形成される固定絞りで構成されている。このように減圧機器を圧縮機ハウジングに形成される固定絞りで構成すれば、減圧機器を可変絞り機構部を含む構成とする場合に比べて、部品点数が少なくなるので、冷凍サイクル装置の簡素化並びに小型化を図ることができる。
According to the fifth aspect, the decompression device of the refrigeration cycle apparatus is composed of a fixed throttle formed in a through hole inside the compressor housing. If the decompression device is configured with a fixed throttle formed in the compressor housing in this way, the number of parts is reduced compared to the case where the decompression device is configured to include a variable throttle mechanism, and thus the refrigeration cycle apparatus is simplified In addition, the size can be reduced.
第6の観点によれば、冷凍サイクル装置の圧縮機ハウジングには、圧縮機構部を介して冷媒吸入部から冷媒吐出部に至る冷媒流路と減圧機器を介して中間導入部から中間導出部に至る冷媒流路とを熱的に分断するための熱交換抑制部が設けられている。
According to the sixth aspect, in the compressor housing of the refrigeration cycle apparatus, the refrigerant flow path from the refrigerant suction portion to the refrigerant discharge portion via the compression mechanism portion and the intermediate introduction portion to the intermediate lead-out portion via the decompression device are provided. A heat exchange suppression unit is provided for thermally dividing the refrigerant flow path that reaches.
単に、減圧機器を圧縮機ハウジングの内部に形成すると、減圧機器を流れる冷媒と圧縮機構部に吸入される冷媒や圧縮機構部から吐出される冷媒との不必要な熱交換が行われることが懸念される。
If the decompression device is simply formed inside the compressor housing, unnecessary heat exchange may occur between the refrigerant flowing through the decompression device and the refrigerant sucked into the compression mechanism and the refrigerant discharged from the compression mechanism. Is done.
これに対して、圧縮機ハウジングに対して冷媒吸入部から冷媒吐出部に至る冷媒流路と中間導入部から中間導出部に至る冷媒流路とを熱的に分断するための熱交換抑制部を設ける構成とすれば、上述した不必要な熱交換を抑えることができる。
On the other hand, a heat exchange suppression unit for thermally dividing the refrigerant flow path from the refrigerant suction section to the refrigerant discharge section and the refrigerant flow path from the intermediate introduction section to the intermediate discharge section with respect to the compressor housing. If it is set as the structure provided, the unnecessary heat exchange mentioned above can be suppressed.
第7の観点によれば、冷凍サイクル装置の圧縮機ハウジングには、中間導入部から中間導出部に至る冷媒流路における中間導入部と減圧機器との間に液冷媒を貯留可能な高圧側貯留部が設けられている。
According to the seventh aspect, in the compressor housing of the refrigeration cycle apparatus, high-pressure side storage capable of storing liquid refrigerant between the intermediate introduction part and the decompression device in the refrigerant flow path from the intermediate introduction part to the intermediate outlet part. Is provided.
このように、圧縮機ハウジングに対して高圧側貯留部を設ける構成とすれば、高圧側貯留部にサイクル内の余剰となる液冷媒を一時的に貯留可能となるので、サイクルの負荷変動時にサイクル内の冷媒量が不足することを避けることができる。
In this way, if the high pressure side reservoir is provided for the compressor housing, the liquid refrigerant that is excessive in the cycle can be temporarily stored in the high pressure side reservoir, so that the cycle can be changed when the cycle load changes. It is possible to avoid a shortage of the refrigerant amount inside.
第8の観点によれば、冷凍サイクル装置の高圧側貯留部には、内部に中間導入部からの冷媒を流入させる上流側開口部、内部に貯留された冷媒を減圧機器側に流出させる下流側開口部が形成されている。そして、下流側開口部は、上流側開口部よりも鉛直方向の下方側に形成されている。
According to the eighth aspect, the high-pressure side reservoir of the refrigeration cycle apparatus has an upstream opening that allows the refrigerant from the intermediate introduction portion to flow therein, and a downstream side that causes the refrigerant stored therein to flow out to the decompression device side. An opening is formed. The downstream opening is formed on the lower side in the vertical direction than the upstream opening.
これによると、高圧側貯留部に貯留された液冷媒を減圧機構側に流れ易くなる。すなわち、減圧機器側には、エンタルピが小さい液冷媒が流れ易くなる。この結果、蒸発器の前後のエンタルピ差を確保して、蒸発器における吸熱能力の向上を図ることができる。なお、「鉛直方向」とは、水平面に対して垂直な方向を意味しており、重力が作用する方向を意味すると解釈することができる。
According to this, the liquid refrigerant stored in the high-pressure side storage section can easily flow to the decompression mechanism side. That is, a liquid refrigerant having a small enthalpy easily flows to the decompression device side. As a result, the difference in enthalpy before and after the evaporator can be secured, and the heat absorption capability of the evaporator can be improved. The “vertical direction” means a direction perpendicular to the horizontal plane, and can be interpreted to mean a direction in which gravity acts.
第9の観点によれば、冷凍サイクル装置の放熱器は、その内部を通過した冷媒を減圧機器側に導出するための高圧導出部を有している。また、蒸発器は、減圧機器で減圧された冷媒を内部に導入するための低圧導入部を有している。減圧機器は、圧縮機ハウジングの外部に配置され、外殻を構成するバルブ本体、およびバルブ本体の内部に設けられた絞り機構部を含んで構成されている。バルブ本体には、放熱器を通過した冷媒を絞り機構部に導くバルブ導入部、および絞り機構部を通過した冷媒を蒸発器に導くバルブ導出部が設けられている。そして、高圧導出部は、外部に露出しないようにバルブ導入部に直結されている。また、低圧導入部は、外部に露出しないようにバルブ導出部に直結されている。
According to the ninth aspect, the radiator of the refrigeration cycle apparatus has a high-pressure deriving unit for deriving the refrigerant that has passed through the radiator to the decompression device side. Moreover, the evaporator has a low pressure introduction part for introducing the refrigerant decompressed by the decompression device. The decompression device is disposed outside the compressor housing, and includes a valve body that forms an outer shell, and a throttle mechanism that is provided inside the valve body. The valve body is provided with a valve introduction part that guides the refrigerant that has passed through the radiator to the throttle mechanism part, and a valve lead-out part that guides the refrigerant that has passed through the throttle mechanism part to the evaporator. The high pressure lead-out portion is directly connected to the valve introduction portion so as not to be exposed to the outside. Further, the low-pressure introduction part is directly connected to the valve lead-out part so as not to be exposed to the outside.
このように、圧縮機ハウジングの外部に設けた減圧機器を放熱器および蒸発器に直結する構造とすれば、冷媒配管を介して放熱器、減圧機器、蒸発器が接続される構造に比べて、部品点数が少なくなる。このため、冷凍サイクル装置の簡素化並びに小型化を図ることができる。
In this way, if the decompression device provided outside the compressor housing is directly connected to the radiator and the evaporator, compared to the structure in which the radiator, the decompression device, and the evaporator are connected via the refrigerant pipe, The number of parts is reduced. For this reason, simplification and size reduction of the refrigeration cycle apparatus can be achieved.
第10の観点によれば、冷凍サイクル装置は、バルブ本体および圧縮機ハウジングの間に、冷媒吸入部から冷媒吐出部に至る冷媒流路とバルブ導入部からバルブ導出部に至る冷媒流路とを熱的に分断するための熱交換抑制部が設けられている。
According to the tenth aspect, the refrigeration cycle apparatus includes a refrigerant flow path extending from the refrigerant suction section to the refrigerant discharge section and a refrigerant flow path extending from the valve introduction section to the valve discharge section between the valve body and the compressor housing. A heat exchange suppression unit for thermally dividing is provided.
バルブ本体と圧縮機ハウジングとが密着していると、バルブ本体の内部を流れる冷媒と圧縮機構部に吸入される冷媒や圧縮機構部から吐出される冷媒との不必要な熱交換が行われることが懸念される。
When the valve body and the compressor housing are in close contact with each other, unnecessary heat exchange is performed between the refrigerant flowing inside the valve body and the refrigerant sucked into the compression mechanism section or the refrigerant discharged from the compression mechanism section. Is concerned.
これに対して、圧縮機ハウジングとバルブ本体部との間に冷媒吸入部から冷媒吐出部に至る冷媒流路と中間導入部から中間導出部に至る冷媒流路とを熱的に分断するための熱交換抑制部を設ける構成とすれば、上述した不必要な熱交換を抑えることができる。
On the other hand, between the compressor housing and the valve main body, the refrigerant flow path from the refrigerant suction section to the refrigerant discharge section and the refrigerant flow path from the intermediate introduction section to the intermediate outlet section are thermally separated. If it is set as the structure which provides a heat exchange suppression part, the unnecessary heat exchange mentioned above can be suppressed.
第11の観点によれば、冷凍サイクル装置のバルブ本体には、中間導入部から中間導出部に至る冷媒流路におけるバルブ導入部と絞り機構部との間にサイクル内の余剰となる液冷媒を貯留するための高圧側貯留部が形成されている。
According to the eleventh aspect, liquid refrigerant that is excessive in the cycle is placed between the valve introduction part and the throttle mechanism part in the refrigerant flow path from the intermediate introduction part to the intermediate lead-out part in the valve body of the refrigeration cycle apparatus. A high-pressure side reservoir for storing is formed.
このように、バルブ本体に対して高圧側貯留部を設ける構成とすれば、高圧側貯留部にサイクル内の余剰となる液冷媒を一時的に貯留可能となるので、サイクルの負荷変動時にサイクル内の冷媒量が不足することを避けることができる。
In this way, if the high-pressure side reservoir is provided for the valve body, the liquid refrigerant that is excessive in the cycle can be temporarily stored in the high-pressure side reservoir, so that the cycle time can be changed when the load of the cycle changes. Insufficient amount of refrigerant can be avoided.
第12の観点によれば、冷凍サイクル装置の高圧側貯留部は、内部にバルブ導入部からの冷媒を流入させる上流側開口部、内部に貯留された冷媒を絞り機構部側に流出させる下流側開口部が形成されている。そして、下流側開口部は、上流側開口部よりも鉛直方向の下方側に形成されている。
According to the twelfth aspect, the high-pressure side storage section of the refrigeration cycle apparatus includes an upstream opening that allows the refrigerant from the valve introduction section to flow therein, and a downstream side that discharges the refrigerant stored therein to the throttle mechanism section. An opening is formed. The downstream opening is formed on the lower side in the vertical direction than the upstream opening.
これによると、高圧側貯留部に貯留された液冷媒が減圧機構側に流れ易くなる。すなわち、減圧機器側には、エンタルピが小さい液冷媒が流れ易くなる。この結果、蒸発器の前後のエンタルピ差を確保して、蒸発器における吸熱能力の向上を図ることができる。
According to this, the liquid refrigerant stored in the high-pressure side storage section can easily flow to the decompression mechanism side. That is, a liquid refrigerant having a small enthalpy easily flows to the decompression device side. As a result, the difference in enthalpy before and after the evaporator can be secured, and the heat absorption capability of the evaporator can be improved.
第13の観点によれば、冷凍サイクル装置の放熱器は、その内部を通過した冷媒を減圧機器側に導出するための高圧導出部を有している。また、蒸発器は、減圧機器で減圧された冷媒を内部に導入するための低圧導入部を有している。減圧機器は、圧縮機ハウジングの外部に配置されて減圧作用を発揮するキャピラリチューブで構成されている。そして、高圧導出部は、外部に露出しないようにキャピラリチューブの一端部に直結されている。また、低圧導入部は、外部に露出しないようにキャピラリチューブの他端部に直結されている。
According to the thirteenth aspect, the radiator of the refrigeration cycle apparatus has a high-pressure derivation unit for deriving the refrigerant that has passed through the refrigeration cycle apparatus to the decompression device side. Moreover, the evaporator has a low pressure introduction part for introducing the refrigerant decompressed by the decompression device. The decompression device is composed of a capillary tube that is disposed outside the compressor housing and exerts a decompression action. The high-pressure outlet is directly connected to one end of the capillary tube so as not to be exposed to the outside. Further, the low pressure introduction part is directly connected to the other end of the capillary tube so as not to be exposed to the outside.
このように、減圧機器を構成するキャピラリチューブを放熱器および蒸発器に直結する構造とすれば、冷媒配管を介して放熱器、減圧機器、蒸発器が接続される構造に比べて、部品点数が少なくなるので、冷凍サイクル装置の簡素化並びに小型化を図ることができる。
In this way, if the capillary tube constituting the decompression device is directly connected to the radiator and the evaporator, the number of parts is smaller than the structure in which the radiator, the decompression device, and the evaporator are connected via the refrigerant pipe. Therefore, the refrigeration cycle apparatus can be simplified and downsized.
第14の観点によれば、冷凍サイクル装置の圧縮機ハウジングは、外殻を形成する外殻形成部、および圧縮機構部を支持する支持部材を含んで構成されている。外殻形成部には、少なくとも冷媒吐出部および冷媒吸入部が設けられている。そして、支持部材は、圧縮機構部の振動を減衰させるための緩衝部材を介して外殻形成部に連結されている。
According to the fourteenth aspect, the compressor housing of the refrigeration cycle apparatus includes an outer shell forming portion that forms an outer shell, and a support member that supports the compression mechanism portion. The outer shell forming part is provided with at least a refrigerant discharge part and a refrigerant suction part. And the support member is connected with the outer shell formation part via the buffer member for attenuating the vibration of a compression mechanism part.
これによると、圧縮機構部に生ずる振動が緩衝部材で減衰されることで、圧縮機ハウジングの外殻形成部に圧縮機構部の振動が伝達され難くなる。これにより、外殻形成部の振動が抑制されることで、圧縮機ハウジングと放熱器および蒸発器の連結部分に加わる応力の抑えることができるので、冷凍サイクル装置の耐久性を確保することができる。
According to this, the vibration generated in the compression mechanism part is attenuated by the buffer member, so that the vibration of the compression mechanism part is hardly transmitted to the outer shell forming part of the compressor housing. Thereby, since the vibration of the outer shell forming portion is suppressed, the stress applied to the connecting portion of the compressor housing, the radiator and the evaporator can be suppressed, so that the durability of the refrigeration cycle apparatus can be ensured. .
Claims (14)
- 蒸気圧縮式の冷凍サイクル装置であって、
冷媒を圧縮して吐出する圧縮機(2)と、
前記圧縮機から吐出された冷媒を放熱させる放熱器(3)と、
前記放熱器を通過した冷媒を減圧する減圧機器(4)と、
前記減圧機器で減圧された冷媒を蒸発させる蒸発器(5)と、を備え、
前記放熱器は、前記圧縮機から吐出された冷媒を内部に導入するための高圧導入部(31)を有しており、
前記蒸発器は、内部を通過した冷媒を前記圧縮機側に導出するための低圧導出部(52)を有しており、
前記圧縮機は、冷媒を圧縮する圧縮機構部(24)、前記圧縮機構部を収容する圧縮機ハウジング(20)を含んで構成されており、
前記圧縮機ハウジングには、前記高圧導入部が外部に露出しないように直結される冷媒吐出部(205)、および前記低圧導出部が外部に露出しないように直結される冷媒吸入部(203)が設けられている冷凍サイクル装置。 A vapor compression refrigeration cycle apparatus,
A compressor (2) for compressing and discharging the refrigerant;
A radiator (3) for dissipating heat from the refrigerant discharged from the compressor;
A decompression device (4) for decompressing the refrigerant that has passed through the radiator;
An evaporator (5) for evaporating the refrigerant decompressed by the decompression device,
The radiator has a high-pressure introduction part (31) for introducing the refrigerant discharged from the compressor into the inside,
The evaporator has a low pressure derivation section (52) for deriving the refrigerant that has passed through the interior to the compressor side,
The compressor includes a compression mechanism portion (24) for compressing a refrigerant, and a compressor housing (20) for housing the compression mechanism portion,
The compressor housing has a refrigerant discharge portion (205) directly connected so that the high-pressure introduction portion is not exposed to the outside, and a refrigerant suction portion (203) directly connected so that the low-pressure outlet portion is not exposed to the outside. A refrigeration cycle apparatus provided. - 前記圧縮機ハウジングには、前記冷媒吸入部から前記圧縮機構部に至る吸入流路(202)に、液冷媒を貯留可能な低圧側貯留部(217、219)が設けられている請求項1に記載の冷凍サイクル装置。 The compressor housing is provided with a low-pressure side storage section (217, 219) capable of storing liquid refrigerant in a suction flow path (202) extending from the refrigerant suction section to the compression mechanism section. The refrigeration cycle apparatus described.
- 前記圧縮機ハウジングには、前記吸入流路に前記低圧側貯留部(219)を収容するための貯留空間(218)が形成されており、
前記低圧側貯留部は、有底筒状の部材で構成され、前記貯留空間を形成する壁面との間に前記圧縮機構部に吸入されるガス冷媒が流れるように前記貯留空間に配置されている請求項2に記載の冷凍サイクル装置。 In the compressor housing, a storage space (218) for accommodating the low-pressure side storage part (219) is formed in the suction flow path,
The low-pressure side reservoir is composed of a bottomed cylindrical member, and is arranged in the reservoir space so that the gas refrigerant sucked into the compression mechanism flows between the wall surface forming the reservoir space. The refrigeration cycle apparatus according to claim 2. - 前記放熱器は、内部を通過した冷媒を前記減圧機器側に導出するための高圧導出部(32)を有しており、
前記蒸発器は、前記減圧機器で減圧された冷媒を内部に導入するための低圧導入部(51)を有しており、
前記減圧機器は、前記圧縮機ハウジングの内部に設けられており、
前記圧縮機ハウジングには、前記放熱器を通過した冷媒を前記減圧機器に導く中間導入部(206)および前記減圧機器を通過した冷媒を前記蒸発器に導く中間導出部(207)が設けられており、
前記高圧導出部は、外部に露出しないように前記中間導入部に直結されており、
前記低圧導入部は、外部に露出しないように前記中間導出部に直結されている請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。 The radiator has a high-pressure derivation section (32) for deriving the refrigerant that has passed through the interior to the decompression device side,
The evaporator has a low-pressure introduction part (51) for introducing the refrigerant decompressed by the decompression device into the interior,
The decompression device is provided inside the compressor housing,
The compressor housing is provided with an intermediate introduction portion (206) for guiding the refrigerant that has passed through the radiator to the decompression device and an intermediate lead-out portion (207) for guiding the refrigerant that has passed through the decompression device to the evaporator. And
The high-pressure outlet is directly connected to the intermediate inlet so as not to be exposed to the outside,
The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the low-pressure introduction part is directly connected to the intermediate lead-out part so as not to be exposed to the outside. - 前記減圧機器は、前記圧縮機ハウジングの内部の貫通穴(213a)に形成される固定絞りで構成されている請求項4に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 4, wherein the decompression device is constituted by a fixed throttle formed in a through hole (213a) inside the compressor housing.
- 前記圧縮機ハウジングには、前記圧縮機構部を介して前記冷媒吸入部から前記冷媒吐出部に至る冷媒流路(200、202、204)と前記減圧機器を介して前記中間導入部から前記中間導出部に至る冷媒流路(213a)とを熱的に分断するための熱交換抑制部(216)が設けられている請求項4または5に記載の冷凍サイクル装置。 The compressor housing has the refrigerant flow path (200, 202, 204) from the refrigerant suction section to the refrigerant discharge section through the compression mechanism section and the intermediate lead-out section from the intermediate introduction section through the decompression device. The refrigeration cycle apparatus according to claim 4 or 5, further comprising a heat exchange suppressing part (216) for thermally dividing the refrigerant flow path (213a) leading to the part.
- 前記圧縮機ハウジングには、前記減圧機器を介して前記中間導入部から前記中間導出部に至る冷媒流路における前記中間導入部と前記減圧機器との間に液冷媒を貯留可能な高圧側貯留部(215)が設けられている請求項6に記載の冷凍サイクル装置。 The compressor housing has a high-pressure side storage section capable of storing liquid refrigerant between the intermediate introduction section and the decompression apparatus in a refrigerant flow path from the intermediate introduction section to the intermediate outlet section via the decompression apparatus. The refrigeration cycle apparatus according to claim 6, wherein (215) is provided.
- 前記高圧側貯留部には、内部に前記中間導入部からの冷媒を流入させる上流側開口部(215c)、内部に貯留された冷媒を前記減圧機器側に流出させる下流側開口部(215d)が形成されており、
前記下流側開口部は、前記上流側開口部よりも鉛直方向の下方側に形成されている請求項7に記載の冷凍サイクル装置。 The high-pressure side reservoir has an upstream opening (215c) that allows the refrigerant from the intermediate introduction portion to flow therein, and a downstream opening (215d) that allows the refrigerant stored inside to flow out to the decompression device side. Formed,
The refrigeration cycle apparatus according to claim 7, wherein the downstream opening is formed on a lower side in the vertical direction than the upstream opening. - 前記放熱器は、内部を通過した冷媒を前記減圧機器側に導出するための高圧導出部(32)を有しており、
前記蒸発器は、前記減圧機器で減圧された冷媒を内部に導入するための低圧導入部(51)を有しており、
前記減圧機器は、前記圧縮機ハウジングの外部に配置され、外殻を構成するバルブ本体(41)、および前記バルブ本体の内部に設けられた絞り機構部(414、42)を含んで構成されており、
前記バルブ本体には、前記放熱器を通過した冷媒を前記絞り機構部に導くバルブ導入部(412)、および前記絞り機構部を通過した冷媒を前記蒸発器に導くバルブ導出部(413)が設けられており、
前記高圧導出部は、外部に露出しないように前記バルブ導入部に直結されており、
前記低圧導入部は、外部に露出しないように前記バルブ導出部に直結されている請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。 The radiator has a high-pressure derivation section (32) for deriving the refrigerant that has passed through the interior to the decompression device side,
The evaporator has a low pressure introduction part (51) for introducing the refrigerant decompressed by the decompression device into the interior,
The decompression device is disposed outside the compressor housing and includes a valve main body (41) constituting an outer shell, and a throttle mechanism (414, 42) provided inside the valve main body. And
The valve body is provided with a valve introduction part (412) for guiding the refrigerant that has passed through the radiator to the throttle mechanism part, and a valve lead-out part (413) for guiding the refrigerant that has passed through the throttle mechanism part to the evaporator. And
The high pressure outlet is directly connected to the valve inlet so as not to be exposed to the outside,
The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the low-pressure introduction part is directly connected to the valve lead-out part so as not to be exposed to the outside. - 前記バルブ本体と前記圧縮機ハウジングとの間には、前記圧縮機構部を介して前記冷媒吸入部から前記冷媒吐出部に至る冷媒流路(200、202、204)と前記絞り機構部を介して前記バルブ導入部から前記バルブ導出部に至る冷媒流路(411)とを熱的に分断するための熱交換抑制部(416)が設けられている請求項9に記載の冷凍サイクル装置。 Between the valve body and the compressor housing, the refrigerant flow path (200, 202, 204) from the refrigerant suction part to the refrigerant discharge part via the compression mechanism part and the throttle mechanism part are provided. The refrigeration cycle apparatus according to claim 9, further comprising a heat exchange suppression unit (416) for thermally dividing the refrigerant flow path (411) from the valve introduction unit to the valve lead-out unit.
- 前記バルブ本体には、前記絞り機構部を介して前記バルブ導入部から前記バルブ導出部に至る冷媒流路における前記バルブ導入部と前記絞り機構部との間にサイクル内の余剰となる液冷媒を貯留するための高圧側貯留部(415)が形成されている請求項9または10に記載の冷凍サイクル装置。 The valve main body is provided with a liquid refrigerant that is excessive in a cycle between the valve introduction part and the throttle mechanism part in the refrigerant flow path from the valve introduction part to the valve lead-out part via the throttle mechanism part. The refrigeration cycle apparatus according to claim 9 or 10, wherein a high-pressure side reservoir (415) for storing is formed.
- 前記高圧側貯留部は、内部に前記バルブ導入部からの冷媒を流入させる上流側開口部(415c)、内部に貯留された冷媒を前記絞り機構部側に流出させる下流側開口部(415d)が形成されており、
前記下流側開口部は、前記上流側開口部よりも鉛直方向の下方側に形成されている請求項11に記載の冷凍サイクル装置。 The high-pressure side reservoir has an upstream opening (415c) that allows the refrigerant from the valve introduction portion to flow inside, and a downstream opening (415d) that allows the refrigerant stored inside to flow out to the throttle mechanism portion. Formed,
The refrigeration cycle apparatus according to claim 11, wherein the downstream opening is formed on a lower side in the vertical direction than the upstream opening. - 前記放熱器は、内部を通過した冷媒を前記減圧機器側に導出するための高圧導出部(32)を有しており、
前記蒸発器は、前記減圧機器で減圧された冷媒を内部に導入するための低圧導入部(51)を有しており、
前記減圧機器は、前記圧縮機ハウジングの外部に配置されて減圧作用を発揮するキャピラリチューブ(43)で構成されており、
前記高圧導出部は、外部に露出しないように前記キャピラリチューブの一端部に直結されており、
前記低圧導入部は、外部に露出しないように前記キャピラリチューブの他端部に直結されている請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。 The radiator has a high-pressure derivation section (32) for deriving the refrigerant that has passed through the interior to the decompression device side,
The evaporator has a low pressure introduction part (51) for introducing the refrigerant decompressed by the decompression device into the interior,
The decompression device is configured by a capillary tube (43) that is disposed outside the compressor housing and exerts a decompression action,
The high-pressure outlet is directly connected to one end of the capillary tube so as not to be exposed to the outside,
The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the low-pressure introduction part is directly connected to the other end of the capillary tube so as not to be exposed to the outside. - 前記圧縮機ハウジングは、外殻を形成する外殻形成部(21、22)、および前記圧縮機構部を支持する支持部材(23)を含んで構成されており、
前記外殻形成部には、少なくとも前記冷媒吐出部(205)および前記冷媒吸入部(203)が設けられており、
前記支持部材は、前記圧縮機構部の振動を減衰させるための緩衝部材(28)を介して前記外殻形成部に連結されている請求項1ないし12のいずれか1つに記載の冷凍サイクル装置。 The compressor housing includes an outer shell forming portion (21, 22) that forms an outer shell, and a support member (23) that supports the compression mechanism portion,
The outer shell forming part is provided with at least the refrigerant discharge part (205) and the refrigerant suction part (203),
The refrigeration cycle apparatus according to any one of claims 1 to 12, wherein the support member is connected to the outer shell forming portion via a buffer member (28) for damping vibration of the compression mechanism portion. .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018093091A JP7099042B2 (en) | 2018-05-14 | 2018-05-14 | Refrigeration cycle device |
JP2018-093091 | 2018-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019220923A1 true WO2019220923A1 (en) | 2019-11-21 |
Family
ID=68539925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/017772 WO2019220923A1 (en) | 2018-05-14 | 2019-04-25 | Refrigeration cycle device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7099042B2 (en) |
WO (1) | WO2019220923A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022202306A1 (en) * | 2021-03-25 | 2022-09-29 | 株式会社デンソー | Refrigeration cycle device |
WO2023188883A1 (en) * | 2022-03-30 | 2023-10-05 | 株式会社豊田自動織機 | Heat pump device for mobile body |
WO2023188884A1 (en) * | 2022-03-30 | 2023-10-05 | 株式会社豊田自動織機 | Heat pump device for mobile object |
WO2023188882A1 (en) * | 2022-03-30 | 2023-10-05 | 株式会社豊田自動織機 | Heat pump device for moving body |
WO2023188888A1 (en) * | 2022-03-30 | 2023-10-05 | 株式会社豊田自動織機 | Mobile body air-conditioning device |
WO2023188887A1 (en) * | 2022-03-30 | 2023-10-05 | 株式会社豊田自動織機 | Heat pump device for mobile body |
DE102022213574A1 (en) | 2022-10-10 | 2024-04-11 | Vertiv Srl | HEAT PUMP WITH VIBRATION CONTROL DEVICE |
WO2024085066A1 (en) * | 2022-10-21 | 2024-04-25 | 株式会社デンソー | Electric compressor |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS539934Y2 (en) * | 1973-08-06 | 1978-03-16 | ||
JPS57167376U (en) * | 1981-04-15 | 1982-10-21 | ||
JPH0554025B2 (en) * | 1984-11-22 | 1993-08-11 | Hitachi Ltd | |
JPH07151399A (en) * | 1993-11-30 | 1995-06-13 | Sanyo Electric Co Ltd | Refrigerant circuit |
JPH08108739A (en) * | 1994-10-07 | 1996-04-30 | Nippondenso Co Ltd | Air conditioner for vehicle |
JPH11277167A (en) * | 1998-03-25 | 1999-10-12 | Showa Alum Corp | Roll bond panel and its manufacture |
JP2013203099A (en) * | 2012-03-27 | 2013-10-07 | Panasonic Corp | Air conditioning device for vehicle, and compression apparatus |
JP2014035176A (en) * | 2012-08-10 | 2014-02-24 | Calsonic Kansei Corp | Fixing structure of heat exchanger |
JP2014152703A (en) * | 2013-02-08 | 2014-08-25 | Kobe Steel Ltd | Compression equipment |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5034512B2 (en) | 2007-01-23 | 2012-09-26 | パナソニック株式会社 | Integrated air conditioner |
-
2018
- 2018-05-14 JP JP2018093091A patent/JP7099042B2/en active Active
-
2019
- 2019-04-25 WO PCT/JP2019/017772 patent/WO2019220923A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS539934Y2 (en) * | 1973-08-06 | 1978-03-16 | ||
JPS57167376U (en) * | 1981-04-15 | 1982-10-21 | ||
JPH0554025B2 (en) * | 1984-11-22 | 1993-08-11 | Hitachi Ltd | |
JPH07151399A (en) * | 1993-11-30 | 1995-06-13 | Sanyo Electric Co Ltd | Refrigerant circuit |
JPH08108739A (en) * | 1994-10-07 | 1996-04-30 | Nippondenso Co Ltd | Air conditioner for vehicle |
JPH11277167A (en) * | 1998-03-25 | 1999-10-12 | Showa Alum Corp | Roll bond panel and its manufacture |
JP2013203099A (en) * | 2012-03-27 | 2013-10-07 | Panasonic Corp | Air conditioning device for vehicle, and compression apparatus |
JP2014035176A (en) * | 2012-08-10 | 2014-02-24 | Calsonic Kansei Corp | Fixing structure of heat exchanger |
JP2014152703A (en) * | 2013-02-08 | 2014-08-25 | Kobe Steel Ltd | Compression equipment |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022202306A1 (en) * | 2021-03-25 | 2022-09-29 | 株式会社デンソー | Refrigeration cycle device |
WO2023188883A1 (en) * | 2022-03-30 | 2023-10-05 | 株式会社豊田自動織機 | Heat pump device for mobile body |
WO2023188884A1 (en) * | 2022-03-30 | 2023-10-05 | 株式会社豊田自動織機 | Heat pump device for mobile object |
WO2023188882A1 (en) * | 2022-03-30 | 2023-10-05 | 株式会社豊田自動織機 | Heat pump device for moving body |
WO2023188888A1 (en) * | 2022-03-30 | 2023-10-05 | 株式会社豊田自動織機 | Mobile body air-conditioning device |
WO2023188887A1 (en) * | 2022-03-30 | 2023-10-05 | 株式会社豊田自動織機 | Heat pump device for mobile body |
DE102022213574A1 (en) | 2022-10-10 | 2024-04-11 | Vertiv Srl | HEAT PUMP WITH VIBRATION CONTROL DEVICE |
WO2024085066A1 (en) * | 2022-10-21 | 2024-04-25 | 株式会社デンソー | Electric compressor |
Also Published As
Publication number | Publication date |
---|---|
JP2019199975A (en) | 2019-11-21 |
JP7099042B2 (en) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019220923A1 (en) | Refrigeration cycle device | |
KR100944147B1 (en) | Scroll compressor with vapor injection | |
CN108397387B (en) | Co-rotating compressor with multiple compression mechanisms and system with same | |
WO2012056728A1 (en) | Screw compressor | |
JP2005291207A (en) | Minimum flow recirculation system of scroll compressor | |
US11506201B2 (en) | Scroll compressor having intermediate pressure chamber to supply fluid to compression chambers via two supply passages and two injection ports to limit reduction in compression efficiency | |
JP2007224809A (en) | Electric compressor | |
WO2016206054A1 (en) | Rotary compressor and refrigerating cycle device having same | |
US20040211216A1 (en) | Refrigerant cycle apparatus | |
WO2022153364A1 (en) | Rotary heat pump, and air conditioner and automobile equipped with same | |
JP6204867B2 (en) | Electric compressor | |
WO2012090345A1 (en) | Refrigerant compressor | |
JP2008169816A (en) | Compressor | |
WO2019220924A1 (en) | Electrically driven compressor | |
US11371505B2 (en) | Scroll compressor with economizer injection | |
JP6271246B2 (en) | Cylinder rotary compressor | |
KR20180041018A (en) | Linear compressor | |
JP4606272B2 (en) | Cooling system electric compressor | |
JP6772934B2 (en) | Electric compressor | |
WO2020059096A1 (en) | Rotary compressor and refrigeration cycle device | |
JP7206929B2 (en) | electric compressor | |
JP7260804B2 (en) | Compressor with refrigerant introduction pipe | |
JP4556934B2 (en) | Compressor and refrigerant circuit device | |
JPWO2018163727A1 (en) | Refrigeration equipment | |
KR102443952B1 (en) | Electric compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19803418 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19803418 Country of ref document: EP Kind code of ref document: A1 |