WO2023188888A1 - Mobile body air-conditioning device - Google Patents

Mobile body air-conditioning device Download PDF

Info

Publication number
WO2023188888A1
WO2023188888A1 PCT/JP2023/004851 JP2023004851W WO2023188888A1 WO 2023188888 A1 WO2023188888 A1 WO 2023188888A1 JP 2023004851 W JP2023004851 W JP 2023004851W WO 2023188888 A1 WO2023188888 A1 WO 2023188888A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
evaporator
housing
condenser
flow path
Prior art date
Application number
PCT/JP2023/004851
Other languages
French (fr)
Japanese (ja)
Inventor
山本真也
熊澤伸吾
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2023188888A1 publication Critical patent/WO2023188888A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to an air conditioner for a mobile body.
  • Patent Document 1 A conventional vehicle air conditioner is disclosed in Patent Document 1.
  • This vehicle air conditioner includes a heat pump device including an electric compressor, a condenser, and an evaporator.
  • the electric compressor has a cylindrically extending housing, a compression mechanism and an electric motor provided within the housing.
  • the compression mechanism compresses the sucked refrigerant and discharges it.
  • An electric motor operates the compression mechanism.
  • the condenser exchanges heat with the high-temperature, high-pressure refrigerant compressed by the compression mechanism and the heating liquid.
  • the evaporator exchanges heat with the heating liquid and the refrigerant, which is reduced in pressure and has a low temperature and pressure, and the cooling liquid.
  • the heating liquid heated by the condenser can heat the interior of the vehicle, and the cooling liquid cooled by the evaporator can cool the interior of the vehicle.
  • the evaporator is integrated in the axial direction with the housing of the electric compressor, and the condenser is integrated in the radial direction.
  • the present invention has been made in view of the above-mentioned conventional circumstances, and is a moving body capable of cooling the interior of a moving body and cooling mounted parts such as a battery, and which is excellent in being easily mounted on a moving body.
  • the problem to be solved is to provide an air conditioner for use.
  • the air conditioner for a mobile object of the present invention includes a housing, an inlet provided in the housing for sucking refrigerant, an outlet provided in the housing for discharging refrigerant, and provided in the housing, an electric compressor including a compression mechanism that compresses refrigerant sucked in from the suction port and discharges it from the discharge port; and an electric motor that is provided in the housing and operates the compression mechanism; a condenser that exchanges heat between the refrigerant and the heating liquid; Equipped with an evaporator that exchanges heat between the refrigerant and the cooling liquid,
  • the condenser has a first inlet that allows the refrigerant discharged from the outlet to flow in, and a first outlet that allows the refrigerant to flow out toward the evaporator.
  • the evaporator is a heat pump device having a second inlet into which the refrigerant flowing out from the first outflow port flows, and a second outflow port into which the refrigerant flows out toward the suction port,
  • the electric compressor is disposed between the condenser and the evaporator, and the condenser, the electric compressor, and the evaporator are integrated,
  • the heat pump device wherein the discharge port is located closer to the condenser than the suction port, and the suction port is located closer to the evaporator than the discharge port; an indoor heat exchanger that is connected to the heat pump device and performs heat exchange with air sent into the room of the moving body; a branch passageway branching from a circulation channel that communicates the first outlet and the second inlet; a merging passageway that joins a suction passageway that communicates the second outflow port and the suction port;
  • the indoor heat exchanger is characterized in that it is connected to the branch passage and the merging passage.
  • the heat pump device in the mobile air conditioner of the present invention includes an electric compressor, a condenser, and an evaporator.
  • An electric compressor is disposed between the condenser and the evaporator, and the condenser, electric compressor, and evaporator are integrated in line in this order.
  • the discharge port is located closer to the condenser than the suction port, and the suction port is located closer to the evaporator than the discharge port.
  • the refrigerant discharged from the discharge port reaches the first inlet of the condenser.
  • the distance can be shortened.
  • the distance that the refrigerant flowing out from the second outlet of the evaporator reaches the suction port can also be shortened.
  • the installation site can be appropriately selected depending on the mounting space in the moving body in which the heat pump device for a moving body of the present invention is mounted.
  • the mobile air conditioner of the present invention has an indoor heat exchanger in addition to the evaporator integrated into the heat pump device, for example, the cooling liquid cooled by the evaporator integrated into the heat pump device It is possible to cool mounted components such as batteries mounted on the moving object, and also to cool the indoor space of the moving object by cooling the air sent into the room of the moving object using the indoor heat exchanger.
  • the air conditioner for a moving body of the present invention can cool the interior of a moving body and also cool mounted components such as batteries, and is also excellent in mountability to a moving body.
  • the circulation flow path is provided with a first gas-liquid separator and a first expansion valve disposed on the downstream side of the first gas-liquid separator in the flow direction of the refrigerant.
  • the branch passage is connected to the upstream side of the first gas-liquid separator in the refrigerant flow direction of the circulation flow path, and the branch passage is connected to the second gas-liquid separator and the refrigerant flow direction of the second gas-liquid separator. It is preferable that a second expansion valve disposed on the downstream side of the second expansion valve is provided.
  • the refrigerant flowing out of the condenser is sent to the first gas-liquid separator and the second gas-liquid separator.
  • the first gas-liquid separator separates the refrigerant into gas and liquid, causes a portion of the separated liquid-phase refrigerant to flow downstream, and stores the remaining liquid-phase refrigerant as surplus refrigerant.
  • the liquid phase refrigerant flowing out from the first gas-liquid separator is sent to the first expansion valve.
  • the first expansion valve reduces the pressure of the liquid phase refrigerant and adjusts the flow rate of the refrigerant sent to the evaporator of the downstream heat pump device.
  • the second gas-liquid separator separates the refrigerant into gas and liquid, causes a portion of the separated liquid refrigerant to flow downstream, and stores the remaining liquid refrigerant as surplus refrigerant.
  • the liquid phase refrigerant flowing out from the second gas-liquid separator is sent to the second expansion valve.
  • the second expansion valve reduces the pressure of the liquid phase refrigerant and adjusts the flow rate of the refrigerant sent to the indoor heat exchanger on the downstream side.
  • the suction flow path is provided with a pressure adjustment valve that adjusts the refrigerant evaporation pressure of the evaporator, and that the merging passage joins the pressure adjustment valve in the suction flow path on the downstream side in the flow direction of the refrigerant.
  • the circulation flow path is provided through the housing.
  • the circulation flow path can be integrated with the heat pump device for a moving object, improving the ease of mounting on the moving object.
  • the evaporator includes a plurality of heat exchange plates, and each heat exchange plate has a refrigerant flow path through which the refrigerant flows and a cooling liquid flow path through which the cooling liquid flows. It is preferable to have two spacers and a fastening member for fastening the heat exchange plates and spacers stacked alternately to the housing.
  • the heat exchange plates and spacers stacked alternately can be fastened to each other by the fastening member, and these heat exchange plates and spacers can be fastened to the housing. Further, there is no need to braze the heat exchange plate and the spacer. Therefore, it can contribute to simplifying the manufacturing process and reducing manufacturing costs.
  • the electric motor is preferably placed between the compression mechanism and the evaporator. In this case, by refrigerating the electric motor with the low-temperature refrigerant in the evaporator, the durability of the electric motor can be improved.
  • the air conditioner for a mobile body of the present invention can cool the interior of a mobile body and also cool mounted components such as batteries, and is also excellent in mountability to a mobile body.
  • FIG. 1 is a front view of a heat pump device for a moving body according to an embodiment.
  • FIG. 2 is a circuit diagram of a heat pump device for a moving body according to an embodiment.
  • FIG. 3 is an exploded perspective view schematically showing a plate heat exchanger used in the heat pump device for a moving object according to the example.
  • FIG. 4 is a plan view of a heat exchange plate of a plate heat exchanger used in the heat pump device for a moving body according to an example.
  • FIG. 5 is a plan view of a spacer of a plate heat exchanger used in the heat pump device for a mobile body according to an example.
  • FIG. 6 is a partially enlarged cross-sectional view showing a part of the plate heat exchanger used in the heat pump device for a moving body according to the example.
  • the mobile air conditioner 10 of the embodiment is installed in a battery-equipped vehicle such as an electric vehicle.
  • a battery-equipped vehicle corresponds to a moving object.
  • the mobile air conditioner 10 includes a heat pump device 20 and an indoor heat exchanger 30.
  • the heat pump device 20 includes an electric compressor 1, an evaporator 3, and a condenser 5.
  • the electric compressor 1 has a housing 7 that extends in a cylindrical shape in the axial direction D1.
  • D1A one side of the housing 7 in the axial direction D1
  • D1B the other side of the housing 7 in the axial direction D1
  • the housing 7 consists of a motor housing 11 placed on the D1A side and a compressor housing 13 placed on the D1B side.
  • a cooling side housing 9 is arranged on the D1A side of the motor housing 11.
  • a heating side housing 15 and a receiver housing 17 are arranged on the D1B side of the compressor housing 13.
  • the cooling side housing 9, the motor housing 11, the compressor housing 13, the heating side housing 15, and the receiver housing 17 are integrated by fastening adjacent housings with bolts (not shown).
  • the evaporator 3 is arranged on the D1A side of the cooling side housing 9, and the condenser 5 is arranged on the D1B side of the receiver housing 17. That is, the evaporator 3, the cooling side housing 9, the motor housing 11, the compressor housing 13, the heating side housing 15, the receiver housing 17, and the condenser 5 are arranged in the axial direction D1 in order from D1A to D1B. Thereby, the electric compressor 1 is disposed between the evaporator 3 and the condenser 5, and the evaporator 3, electric compressor 1, and condenser 5 are integrated.
  • the electric compressor 1 includes an inverter circuit 19 housed in a cooling side housing 9, an electric motor 21 housed in a motor housing 11, and a compression mechanism 23 housed in a compressor housing 13. .
  • the inverter circuit 19 is connected to a battery power source (not shown) mounted on a battery-equipped vehicle. Inverter circuit 19 drives and controls electric motor 21 . Electric motor 21 operates compression mechanism 23 .
  • the compression mechanism 23 has an inlet 23a located on the cooling side housing 9 side and an outlet 23b located on the heating side housing 15 side. That is, in the housing 7, the D1A side is the suction side, and the D1B side is the discharge side. Thereby, the discharge port 23b is arranged closer to the condenser 5 than the suction port 23a, and the suction port 23a is arranged closer to the evaporator 3 than the discharge port 23b.
  • the compression mechanism 23 is a scroll type compression mechanism that has a compression chamber that reduces the volume.
  • the compression mechanism 23 sucks refrigerant through an inlet 23a, compresses it, and discharges it through an outlet 23b.
  • the cooling side housing 9 is formed with a cooling liquid inlet 9a through which the cooling coolant Lc flows, and a cooling liquid outlet 9b through which the cooling coolant Lc flows out.
  • the cooling coolant Lc corresponds to the cooling liquid.
  • the cooling liquid inlet 9a and the cooling liquid outlet 9b communicate with the outside via piping (not shown).
  • the cooling side housing 9 includes a cooling liquid inlet passage 9c that communicates a cooling liquid inlet 9a with a cooling liquid inlet 3a, which will be described later, and a cooling liquid inlet 9c, which communicates a cooling liquid outlet 3b with a cooling liquid outlet 9b, which will discuss later.
  • a cooling liquid outflow path 9d is formed.
  • the evaporator 3 is composed of a plate heat exchanger. As shown in FIGS. 3 to 6, the evaporator 3 includes a plurality of heat exchange plates 80, a plurality of spacers 83, a pair of end plates 84 and 85, and six bolts 86.
  • the outer periphery of each heat exchange plate 80, each spacer 83, and each end plate 84, 85 coincides with the cooling side housing 9. That is, the outer peripheries of the evaporator 3 and the cooling side housing 9 coincide with each other.
  • FIG. 6 is an enlarged cross-sectional view of portion P in FIG.
  • the heat exchange plate 80 is a substantially rectangular plate made of aluminum alloy or stainless steel.
  • the heat exchange plate 80 is provided with an uneven portion 81 .
  • a first opening 81a, a second opening 81b, a third opening 81c, and a fourth opening 81d are provided around the uneven portion 81.
  • the first opening 81a to the fourth opening 81d are all circular holes having the same diameter.
  • each spacer 83 has a plate shape with the heat exchange plate 80 sandwiched therebetween.
  • each spacer 83 consists of a plate-shaped stainless steel spacer body 83B and rubber sealing layers 83S, 83S formed on both sides of the spacer body 83B. According to the spacer 83 having the seal layers 83S, 83S on both sides of the spacer body 83B, sealing performance can be ensured between the spacer 83 and the heat exchange plates 80 which are alternately stacked and fastened.
  • Each spacer 83 has a frame portion 83a whose outer periphery coincides with that of the heat exchange plate 80, and a communication port 83b formed within the frame portion 83a.
  • Each spacer 83 uses two of the first openings 81a to 4th openings 81d around the uneven portion 81 of the heat exchange plate 80 and the uneven portion 81 to form a low-temperature refrigerant flow path 34, which will be described later, through which the refrigerant flows through the uneven portion 81.
  • a cooling liquid flow path 33 which will be described later, is selectively formed in the uneven portion 81 with respect to the heat exchange plate 80.
  • a total of six bolt holes 80f, 83f, 84f, and 85f are provided through the four corners and the center of each long side of each heat exchange plate 80, each spacer 83, and each end plate 84, 85.
  • the bolt holes 80f, 83f, 84f, and 85f are all circular holes with the same diameter, and are aligned in the axial direction D1.
  • a female thread 9e is recessed in the cooling side housing 9, and each bolt hole 80f, 83f, 84f, 85f is aligned with the female thread 9e of the cooling side housing 9.
  • spacers 83 and heat exchange plates 80 are stacked alternately, such as spacer 83, heat exchange plate 80, spacer 83, heat exchange plate 80, ..., spacer 83. . At this time, the spacers 83 and the heat exchange plates 80 are alternately reversed.
  • a pair of end plates 84 and 85 sandwich each heat exchange plate 80 and each spacer 83. Then, the six bolts 86 are inserted through the bolt holes 80f, 83f, 84f, and 85f, and are screwed into the female threads 9e of the cooling side housing 9.
  • the evaporator 3 is integrated with the housing 7 on the D1A side by fastening the end plate 84, each heat exchange plate 80, each spacer 83, and the end plate 85 to the cooling side housing 9 with the bolts 86.
  • Each bolt 86 corresponds to a fastening member.
  • the evaporator 3 has a cooling liquid inlet 3a that allows the cooling coolant Lc to flow into the evaporator 3, and a cooling liquid outlet 3b that allows the cooling coolant Lc to flow out of the evaporator 3.
  • a cooling liquid flow path 33 through which cooling coolant Lc flows is formed in the evaporator 3.
  • the cooling liquid flow path 33 communicates the cooling liquid inlet 3a and the cooling liquid outlet 3b.
  • the evaporator 3 includes a second inlet 3c through which refrigerant flows out from a first outlet 5d (described later) of the condenser 5, and a second outlet through which the refrigerant flows out toward an inlet 23a of the compression mechanism 23. 3d is formed. Further, the evaporator 3 is formed with a low-temperature refrigerant flow path 34 through which refrigerant cooled by the condenser 5 and reduced in pressure by the first expansion valve 27 flows therethrough. The low temperature refrigerant flow path 34 communicates the second inlet 3c and the second outlet 3d.
  • the heating side housing 15 is formed with a heating liquid inlet 15a through which the heating coolant Lh flows, and a heating liquid outlet 15b through which the heating coolant Lh flows out.
  • the heating coolant Lh corresponds to the heating liquid.
  • the heating liquid inlet 15a and the heating liquid outlet 15b communicate with the outside via piping (not shown).
  • a first receiver 25 and a first expansion valve 27 are housed within the receiver housing 17.
  • the first receiver 25 separates the refrigerant from the condenser 5 into gas and liquid, sends the liquid refrigerant to the evaporator 3 side, and stores excess liquid refrigerant.
  • the first expansion valve 27 appropriately adjusts the pressure and flow rate of the refrigerant sent to the evaporator 3.
  • the first receiver 25 corresponds to a first gas-liquid separator.
  • the heating side housing 15 and the receiver housing 17 include a heating liquid inflow path 41 that communicates the heating liquid inlet 15a with a heating liquid inlet 5a, which will be described later, and a heating liquid outlet 5b and a heating liquid outlet, which will be described later.
  • a heating liquid outflow path 43 communicating with the heating liquid 15b is formed.
  • a discharge passage 71 is formed in the compressor housing 13, the heating side housing 15, and the receiver housing 17, which communicates the discharge port 23b of the compression mechanism 23 with a first inlet 5c of the condenser 5, which will be described later.
  • the condenser 5, like the evaporator 3, is composed of a plate heat exchanger.
  • the heat exchange plate in the condenser 5 is formed with an uneven portion, and first to fourth openings are provided around the uneven portion.
  • Each spacer has two of the first to fourth openings of the heat exchange plate and the uneven portion, and a high-temperature refrigerant flow path 53 (described later) that allows refrigerant to flow through the uneven portion, and a heating liquid flow path 51 (described later) in the uneven portion. selectively formed with respect to the heat exchange plate.
  • the pair of end plates, each heat exchange plate, and each spacer in the condenser 5 are provided with six matching bolt holes. Similar to the cooling-side housing 9, the receiver housing 17 is recessed with internal threads that match these bolt holes.
  • the condenser 5 is integrated with the housing 7 on the D1B side by fastening the pair of end plates, each heat exchange plate, and each spacer to the receiver housing 17 with bolts 86.
  • the condenser 5, the receiver housing 17, and the heating side housing 15 have the same outer circumference.
  • the condenser 5 has a heating liquid inlet 5a that allows the heating coolant Lh to flow into the condenser 5, and a heating liquid outlet 5b that allows the heating coolant Lh to flow out of the condenser 5.
  • a heating liquid flow path 51 through which heating coolant Lh flows is formed in the condenser 5 .
  • the heating liquid flow path 51 communicates the heating liquid inlet 5a and the heating liquid outlet 5b.
  • the condenser 5 is formed with a first inlet 5c that allows the refrigerant discharged from the outlet 23b of the compression mechanism 23 to flow in, and a first outlet 5d that allows the refrigerant to flow out toward the evaporator 3. Further, the condenser 5 is formed with a high-temperature refrigerant flow path 53 through which the refrigerant compressed by the compression mechanism 23 and heated to a high temperature flows. The high temperature refrigerant flow path 53 communicates the first inlet 5c and the first outlet 5d.
  • a circulation passage 61 is formed in the receiver housing 17, the heating side housing 15, the compressor housing 13, the motor housing 11, and the cooling side housing 9, passing through these housings. That is, the circulation flow path 61 extends through the receiver housing 17 , the heating side housing 15 , the compressor housing 13 , the motor housing 11 , and the cooling side housing 9 .
  • the circulation flow path 61 communicates the first outlet 5d of the condenser 5 with the second inlet 3c of the evaporator 3.
  • the circulation flow path 61 is provided with a first receiver 25 and a first expansion valve 27.
  • the first receiver 25 and the first expansion valve 27 are arranged downstream of a branch 63 in the circulation flow path 61, which will be described later, in the flow direction of the refrigerant.
  • the first expansion valve 27 is arranged downstream of the first receiver 25 in the flow direction of the refrigerant.
  • a suction passage 65 is formed in the cooling side housing 9, the motor housing 11, and the compressor housing 13.
  • the suction flow path 65 communicates the second outlet 3d of the evaporator 3 with the suction port 23a of the compression mechanism 23.
  • a pressure regulating valve 67 is provided in the suction flow path 65.
  • the pressure regulating valve 67 is disposed on the upstream side in the refrigerant flow direction of a merging portion 69 of the suction passage 65 with a merging passage 75, which will be described later.
  • the pressure adjustment valve 67 adjusts the refrigerant evaporation pressure (temperature) of the evaporator 3, thereby adjusting the refrigerating capacity of the evaporator 3.
  • a branch portion 63 is provided in the circulation flow path 61 between the first outlet 5d and the first receiver 25.
  • a branch passage 73 is connected to this branch portion 63.
  • a confluence portion 69 is provided in the suction passage 65 between the pressure regulating valve 67 and the suction port 23a of the compression mechanism 23.
  • a merging passage 75 is connected to this merging portion 69 .
  • An indoor heat exchanger 30 is connected to the branch passage 73 and the merging passage 75. Indoor heat exchanger 30 is arranged inside vehicle compartment 31 .
  • the indoor heat exchanger 30 exchanges heat between the refrigerant flowing within the indoor heat exchanger 30 and the air within the vehicle interior 31 .
  • the indoor heat exchanger 30 has a refrigerant inlet 30a into which the refrigerant flows, and a refrigerant outlet 30b through which the refrigerant flows out.
  • a branch passage 73 is connected to the refrigerant inlet 30a, and a merging passage 75 is connected to the refrigerant outlet 30b. That is, the branch passage 73 connects the branch part 63 of the circulation flow path 61 and the refrigerant inlet 30a of the indoor heat exchanger 30.
  • the branch passage 73 is connected to the upstream side of the first receiver 25 in the flow direction of the refrigerant in the circulation passage 61 .
  • the merging passage 75 communicates the refrigerant outlet 30b of the indoor heat exchanger 30 with the merging portion 69 of the suction passage 65.
  • the merging passage 75 joins the suction passage 65 on the downstream side of the pressure regulating valve 67 in the refrigerant flow direction.
  • a second receiver 77 and a second expansion valve 79 are provided in the branch passage 73.
  • the second expansion valve 79 is arranged downstream of the second receiver 77 in the flow direction of the refrigerant.
  • the second expansion valve 79 appropriately adjusts the pressure and flow rate of the refrigerant sent to the indoor heat exchanger 30.
  • the second receiver 77 corresponds to a second gas-liquid separator.
  • the electric compressor 1 is configured such that the electric motor 21 operates the compression mechanism 23, and the compression mechanism 23 sucks and compresses refrigerant through the compression chamber. Exhale.
  • the condenser 5 is connected to the electric compressor 1 on the downstream side of the refrigerant, and performs heat exchange between the refrigerant and the heating coolant Lh.
  • the evaporator 3 is connected to the electric compressor 1 on the upstream side of the refrigerant, and performs heat exchange between the refrigerant and the cooling coolant Lc.
  • a part of the refrigerant flowing out from the first outlet 5d of the condenser 5 passes through the circulation channel 61, passes through the branch part 63, and flows into the first receiver 25, where the gas and liquid flow into the first receiver 25. Separated.
  • the refrigerant flowing out from the first receiver 25 passes through the circulation channel 61, reaches the first expansion valve 27, is depressurized by the first expansion valve 27, and then flows into the evaporator 3 from the second inlet 3c.
  • the remainder of the refrigerant flowing out from the first outlet 5d of the condenser 5 passes through the circulation channel 61, branches into a branch passage 73 at the branch part 63, flows into the second receiver 77, and is converted into gas and liquid at the second receiver 77. Separated.
  • the refrigerant flowing out from the second receiver 77 passes through the branch passage 73, reaches the second expansion valve 79, is depressurized by the second expansion valve 79, and then flows into the indoor heat exchanger 30 from the refrigerant inlet 30a.
  • the low-temperature refrigerant flowing in the low-temperature refrigerant flow path 34 and the cooling coolant Lc flowing in the cooling liquid flow path 33 exchange heat.
  • the refrigerating capacity of the evaporator 3 can be made lower than the refrigerating capacity of the indoor heat exchanger 30.
  • the cooling coolant Lc cooled by the evaporator 3 can be used, for example, to cool an in-vehicle battery.
  • the indoor heat exchanger 30 heat is exchanged between the low-temperature refrigerant flowing through the indoor heat exchanger 30 and the air inside the vehicle compartment 31 flowing through the indoor heat exchanger 30. Thereby, the inside of the vehicle compartment 31 can be cooled.
  • the condenser 5 heat is exchanged between the high temperature refrigerant flowing in the high temperature refrigerant flow path 53 and the heating coolant Lh flowing in the heating liquid flow path 51.
  • the heating coolant Lh heated by the condenser 5 can be used, for example, to heat the interior of the vehicle.
  • the condenser 5 is integrated with the housing 7 of the electric compressor 1 on the D1B side in the axial direction D1, and the condenser 5 is integrated on the D1A side in the axial direction D1.
  • An evaporator 3 is integrated. In these integrated structures, the housing 7 is not enlarged in the radial direction.
  • the vertical mounting space is more likely to be restricted than the horizontal mounting space.
  • the heat pump device 20 is not enlarged in the radial direction, it is less likely to be subject to restrictions on installation space in a battery-equipped vehicle, and by making the axial direction D1 of the housing 7 horizontal, etc., it is easy to install in the vehicle. is excellent.
  • the discharge port 23b is disposed closer to the condenser 5 in the axial direction D1 than the suction port 23a.
  • the suction port 23a is provided on the D1B side and the discharge port 23b is provided on the D1A side, so that the discharge port 23b is farther from the condenser 5 in the axial direction D1 than the suction port 23a.
  • the discharge flow path 71 can be made shorter than the configuration arranged in the heat pump device 20.
  • the suction port 23a and the evaporator 3 are both placed on the D1A side of the housing 7, the suction port 23a is placed closer to the evaporator 3 than the discharge port 23b. Therefore, the suction flow path 65 can also be shortened. These prevent the heat pump device 20 from increasing in size as a whole.
  • both the first expansion valve 27 and the pressure regulating valve 67 are provided within the heat pump device 20.
  • this air conditioner 10 for a mobile body is capable of cooling and cooling multiple locations using a plurality of evaporators (evaporator 3 and indoor heat exchanger 30), and has excellent mountability on a mobile body.
  • both the evaporator 3 and the condenser 5 are constructed of plate heat exchangers, and the evaporator 3 and the condenser 5 are connected by bolts 86 that fasten each heat exchange plate 80 and each spacer 83 in a stacked state. It is integrated with the housing 7 in the axial direction D1. Therefore, it can contribute to simplifying the manufacturing process and reducing manufacturing costs.
  • the durability of the electric motor 21 can be improved by cooling the electric motor 21 with the low-temperature refrigerant in the evaporator 3.
  • the circulation flow path 61 that connects the condenser 5 and the evaporator 3, the suction flow path 65 that connects the evaporator 3 and the compression mechanism 23, and the discharge flow path 71 that connects the compression mechanism 23 and the condenser 5. is also provided within the heat pump device 20. Therefore, compared to the case where these flow paths are provided outside the device, mountability on a vehicle is improved.
  • the evaporator 3 and condenser 5 are configured with plate heat exchangers, but other heat exchangers may be used.
  • the heating liquid inlet 5a, the heating liquid outlet 5b, the cooling liquid inlet 3a, and the cooling liquid outlet 3b may be provided in the housing 7. Further, the heating liquid inlet 15a and the heating liquid outlet 15b may be provided in the condenser 5, and the cooling liquid inlet 9a and the cooling liquid outlet 9b may be provided in the evaporator 3.
  • the motor housing 11 and the compressor housing 13 may be integrated. Furthermore, the cooling side housing 9, the heating side housing 15, and the receiver housing 17 may also be integrated with the housing 7.
  • the installation location of the pressure regulating valve 67 within the heat pump device 20 can be changed as appropriate, and may be installed within the compressor housing 13, for example.
  • the installation locations of the first receiver 25 and the first expansion valve 27 within the heat pump device 20 can be changed as appropriate; for example, they may be provided in the housing 7. Also, an accumulator and a fixed throttle may be used instead of the receiver and expansion valve.
  • the present invention can be used for air conditioning, system heating and cooling devices, etc. in moving bodies such as electric vehicles.
  • Air conditioner for mobile body 20 Heat pump device 21 Electric motor 23 Compression mechanism 23a Suction port 23b Discharge port 25 First receiver (first gas-liquid separator) 27 First expansion valve 30 Indoor heat exchanger 33 Cooling liquid flow path 34 Low temperature refrigerant flow path (refrigerant flow path) 61 Circulation channel 63 Branch section 65 Suction channel 67 Pressure adjustment valve 73 Branch channel 75 Merging channel 77 Second receiver (second gas-liquid separator) 79 Second expansion valve 80 Heat exchange plate 83 Spacer 86 Bolt (fastening member)

Abstract

A heat pump device (20) integrates a condenser (5), an electric compressor (1), and an evaporator (3) such that the electric compressor (1) is between the condenser (5) and the evaporator (3). A discharge port (23b) of a compression mechanism (23) is closer to the condenser (5) than an intake port (23a), and the intake port (23a) is closer to the evaporator (3) than the discharge port (23b). An interior heat exchanger (30) is connected to the heat pump device (20) in addition to the evaporator (3). A mounted component, such as a battery, that is mounted on a mobile body is cooled by a cooling liquid cooled by the evaporator (3) integrated into the heat pump device (20), and air delivered into the interior of the mobile body is cooled by the interior heat exchanger (30) to air condition the interior of the mobile body.

Description

移動体用空調装置Mobile air conditioner
 本発明は移動体用空調装置に関する。 The present invention relates to an air conditioner for a mobile body.
 特許文献1に従来の車両用空調装置が開示されている。この車両用空調装置は、電動圧縮機と、凝縮器と、蒸発器とを備えたヒートポンプ装置を有している。 A conventional vehicle air conditioner is disclosed in Patent Document 1. This vehicle air conditioner includes a heat pump device including an electric compressor, a condenser, and an evaporator.
 電動圧縮機は、筒状に延びるハウジングと、ハウジング内に設けられた圧縮機構及び電動モータとを有する。圧縮機構は、吸入した冷媒を圧縮して吐出する。電動モータは圧縮機構を作動させる。 The electric compressor has a cylindrically extending housing, a compression mechanism and an electric motor provided within the housing. The compression mechanism compresses the sucked refrigerant and discharges it. An electric motor operates the compression mechanism.
 凝縮器は、圧縮機構で圧縮された高温高圧の冷媒と加熱用液体と熱交換させる。蒸発器は、加熱用液体と熱交換されるとともに減圧されて低温低圧となった冷媒と冷却用液体とを熱交換させる。凝縮器で加熱された加熱用液体によって車室内の暖房等を行うとともに、蒸発器で冷却された冷却用液体によって車室内の冷房等を行うことができる。 The condenser exchanges heat with the high-temperature, high-pressure refrigerant compressed by the compression mechanism and the heating liquid. The evaporator exchanges heat with the heating liquid and the refrigerant, which is reduced in pressure and has a low temperature and pressure, and the cooling liquid. The heating liquid heated by the condenser can heat the interior of the vehicle, and the cooling liquid cooled by the evaporator can cool the interior of the vehicle.
 この車両用ヒートポンプ装置は、電動圧縮機のハウジングに対して、蒸発器が軸方向で一体とされるとともに、凝縮器が径方向で一体とされている。 In this vehicle heat pump device, the evaporator is integrated in the axial direction with the housing of the electric compressor, and the condenser is integrated in the radial direction.
特開2014-28606号公報Japanese Patent Application Publication No. 2014-28606
 ところで、移動体にはヒートポンプ装置以外にも種々の機器が搭載されることから、ヒートポンプ装置を搭載するためのスペースを十分に確保することが難しい。そこで、このように搭載スペースが限られる場合であっても、ヒートポンプ装置は、移動体に容易に搭載し得ることが求められる。 By the way, since various devices other than the heat pump device are mounted on the moving body, it is difficult to secure enough space for mounting the heat pump device. Therefore, even if the mounting space is limited in this way, the heat pump device is required to be able to be easily mounted on a moving object.
 他方、電気自動車等の電池搭載車両においては、車室内を冷房するとともに、車載電池を冷却することが求められる。この場合、車室内冷房用の蒸発器と、電池冷却用の蒸発器とが必要になる。このため、蒸発器が増える分だけ装置全体が大型化し、移動体への搭載性が悪化してしまう。 On the other hand, in battery-equipped vehicles such as electric vehicles, it is required to cool the vehicle interior as well as the vehicle-mounted battery. In this case, an evaporator for cooling the vehicle interior and an evaporator for cooling the battery are required. For this reason, the overall size of the device increases as the number of evaporators increases, making it difficult to mount it on a moving body.
 本発明は、上記従来の実情に鑑みてなされたものであって、移動体の室内を冷房するとともに電池等の搭載部品を冷却することができ、しかも移動体への搭載性に優れた移動体用空調装置を提供することを解決すべき課題としている。 The present invention has been made in view of the above-mentioned conventional circumstances, and is a moving body capable of cooling the interior of a moving body and cooling mounted parts such as a battery, and which is excellent in being easily mounted on a moving body. The problem to be solved is to provide an air conditioner for use.
 本発明の移動体用空調装置は、ハウジングと、前記ハウジング内に設けられて冷媒を吸入する吸入口と、前記ハウジング内に設けられて冷媒を吐出する吐出口と、前記ハウジング内に設けられ、前記吸入口から吸入した冷媒を圧縮して前記吐出口から吐出させる圧縮機構と、前記ハウジング内に設けられて前記圧縮機構を作動させる電動モータとを有する電動圧縮機と、
 冷媒と加熱用液体とで熱交換を行う凝縮器と、
 冷媒と冷却用液体とで熱交換を行う蒸発器とを備え、
 前記凝縮器は、前記吐出口から吐出された冷媒を流入させる第1流入口と、前記蒸発器に向けて冷媒を流出させる第1流出口とを有し、
 前記蒸発器は、前記第1流出口から流出した冷媒を流入させる第2流入口と、前記吸入口に向けて冷媒を流出させる第2流出口とを有しているヒートポンプ装置であって、
 前記凝縮器と前記蒸発器との間に前記電動圧縮機が配置されつつ、前記凝縮器、前記電動圧縮機及び前記蒸発器が一体化され、
 前記吐出口は前記吸入口よりも前記凝縮器の近くに配置され、前記吸入口は前記吐出口よりも前記蒸発器の近くに配置されている前記ヒートポンプ装置と、
 前記ヒートポンプ装置と接続され、移動体の室内へ送られる空気との間で熱交換を行う室内熱交換器と、
 前記第1流出口と前記第2流入口とを連通する循環流路から分岐する分岐通路と、
 前記第2流出口と前記吸入口とを連通する吸入流路に合流する合流通路とを備え、
 前記室内熱交換器は、前記分岐通路と前記合流通路とに接続されていることを特徴とする。
The air conditioner for a mobile object of the present invention includes a housing, an inlet provided in the housing for sucking refrigerant, an outlet provided in the housing for discharging refrigerant, and provided in the housing, an electric compressor including a compression mechanism that compresses refrigerant sucked in from the suction port and discharges it from the discharge port; and an electric motor that is provided in the housing and operates the compression mechanism;
a condenser that exchanges heat between the refrigerant and the heating liquid;
Equipped with an evaporator that exchanges heat between the refrigerant and the cooling liquid,
The condenser has a first inlet that allows the refrigerant discharged from the outlet to flow in, and a first outlet that allows the refrigerant to flow out toward the evaporator.
The evaporator is a heat pump device having a second inlet into which the refrigerant flowing out from the first outflow port flows, and a second outflow port into which the refrigerant flows out toward the suction port,
The electric compressor is disposed between the condenser and the evaporator, and the condenser, the electric compressor, and the evaporator are integrated,
The heat pump device, wherein the discharge port is located closer to the condenser than the suction port, and the suction port is located closer to the evaporator than the discharge port;
an indoor heat exchanger that is connected to the heat pump device and performs heat exchange with air sent into the room of the moving body;
a branch passageway branching from a circulation channel that communicates the first outlet and the second inlet;
a merging passageway that joins a suction passageway that communicates the second outflow port and the suction port;
The indoor heat exchanger is characterized in that it is connected to the branch passage and the merging passage.
 本発明の移動体用空調装置におけるヒートポンプ装置は、電動圧縮機と、凝縮器と、蒸発器とを備える。そして、凝縮器と蒸発器との間に電動圧縮機が配置され、凝縮器、電動圧縮機及び蒸発器がこの順で並んで一体化されている。 The heat pump device in the mobile air conditioner of the present invention includes an electric compressor, a condenser, and an evaporator. An electric compressor is disposed between the condenser and the evaporator, and the condenser, electric compressor, and evaporator are integrated in line in this order.
 そして、本発明の移動体用ヒートポンプ装置では、吐出口が吸入口よりも凝縮器の近くに配置されており、吸入口が吐出口よりも蒸発器の近くに配置されている。このため、例えば、吐出口が吸入口よりも凝縮器から遠くに配置されている場合に比べて、このヒートポンプ装置では、吐出口から吐出された冷媒が凝縮器の第1流入口に至るまでの距離を短くすることができる。同様に、蒸発器の第2流出口から流出した冷媒が吸入口に至るまでの距離も短くすることができる。これにより、このヒートポンプ装置では全体としての大型化を抑制できる。 In the heat pump device for a mobile body of the present invention, the discharge port is located closer to the condenser than the suction port, and the suction port is located closer to the evaporator than the discharge port. For this reason, for example, compared to a case where the discharge port is located farther from the condenser than the suction port, in this heat pump device, the refrigerant discharged from the discharge port reaches the first inlet of the condenser. The distance can be shortened. Similarly, the distance that the refrigerant flowing out from the second outlet of the evaporator reaches the suction port can also be shortened. Thereby, this heat pump device can suppress the increase in size as a whole.
 室内熱交機器については、本発明の移動体用ヒートポンプ装置が搭載される移動体における搭載スペースに応じて設置部位を適宜選定することができる。 Regarding the indoor heat exchange equipment, the installation site can be appropriately selected depending on the mounting space in the moving body in which the heat pump device for a moving body of the present invention is mounted.
 また、本発明の移動体用空調装置は、ヒートポンプ装置に一体化された蒸発器の他に室内熱交換器を有するため、例えばヒートポンプ装置に一体化された蒸発器で冷却された冷却用液体により移動体に搭載された電池等の搭載部品を冷却することができるとともに、室内熱交換器で移動体の室内へ送られる空気を冷却して移動体の室内を冷房することができる。 Furthermore, since the mobile air conditioner of the present invention has an indoor heat exchanger in addition to the evaporator integrated into the heat pump device, for example, the cooling liquid cooled by the evaporator integrated into the heat pump device It is possible to cool mounted components such as batteries mounted on the moving object, and also to cool the indoor space of the moving object by cooling the air sent into the room of the moving object using the indoor heat exchanger.
 したがって、本発明の移動体用空調装置は、移動体の室内を冷房するとともに電池等の搭載部品を冷却することができ、しかも移動体への搭載性にも優れる。 Therefore, the air conditioner for a moving body of the present invention can cool the interior of a moving body and also cool mounted components such as batteries, and is also excellent in mountability to a moving body.
 循環流路には、第1気液分離器と、第1気液分離器の冷媒の流れ方向の下流側に配置される第1膨張弁とが設けられていることが好ましい。分岐通路は、循環流路における第1気液分離器の冷媒の流れ方向の上流側に接続され、分岐通路には、第2気液分離器と、第2気液分離器の冷媒の流れ方向の下流側に配置される第2膨張弁とが設けられていることが好ましい。 It is preferable that the circulation flow path is provided with a first gas-liquid separator and a first expansion valve disposed on the downstream side of the first gas-liquid separator in the flow direction of the refrigerant. The branch passage is connected to the upstream side of the first gas-liquid separator in the refrigerant flow direction of the circulation flow path, and the branch passage is connected to the second gas-liquid separator and the refrigerant flow direction of the second gas-liquid separator. It is preferable that a second expansion valve disposed on the downstream side of the second expansion valve is provided.
 この場合、凝縮器から流出した冷媒は、第1気液分離器及び第2気液分離器へ送られる。第1気液分離器は、冷媒の気液を分離し、分離した液相冷媒の一部を下流側に流出させ、残余の液相冷媒を余剰冷媒として蓄える。第1気液分離器から流出した液相冷媒は第1膨張弁に送られる。第1膨張弁は液相冷媒を減圧するとともに、下流側のヒートポンプ装置の蒸発器に送る冷媒の流量を調整する。同様に、第2気液分離器は、冷媒の気液を分離し、分離した液相冷媒の一部を下流側に流出させ、残余の液相冷媒を余剰冷媒として蓄える。第2気液分離器から流出した液相冷媒は第2膨張弁に送られる。第2膨張弁は液相冷媒を減圧するとともに、下流側の室内熱交換器へ送る冷媒の流量を調整する。 In this case, the refrigerant flowing out of the condenser is sent to the first gas-liquid separator and the second gas-liquid separator. The first gas-liquid separator separates the refrigerant into gas and liquid, causes a portion of the separated liquid-phase refrigerant to flow downstream, and stores the remaining liquid-phase refrigerant as surplus refrigerant. The liquid phase refrigerant flowing out from the first gas-liquid separator is sent to the first expansion valve. The first expansion valve reduces the pressure of the liquid phase refrigerant and adjusts the flow rate of the refrigerant sent to the evaporator of the downstream heat pump device. Similarly, the second gas-liquid separator separates the refrigerant into gas and liquid, causes a portion of the separated liquid refrigerant to flow downstream, and stores the remaining liquid refrigerant as surplus refrigerant. The liquid phase refrigerant flowing out from the second gas-liquid separator is sent to the second expansion valve. The second expansion valve reduces the pressure of the liquid phase refrigerant and adjusts the flow rate of the refrigerant sent to the indoor heat exchanger on the downstream side.
 こうして室内熱交換器及びヒートポンプ装置の蒸発器のそれぞれに対して、適正圧力に調整された冷媒を適正量だけ供給することができる。 In this way, an appropriate amount of refrigerant adjusted to an appropriate pressure can be supplied to each of the indoor heat exchanger and the evaporator of the heat pump device.
 吸入流路には、蒸発器の冷媒蒸発圧力を調整する圧力調整弁が設けられ、合流通路は、吸入流路における圧力調整弁の冷媒の流れ方向の下流側に合流することが好ましい。 It is preferable that the suction flow path is provided with a pressure adjustment valve that adjusts the refrigerant evaporation pressure of the evaporator, and that the merging passage joins the pressure adjustment valve in the suction flow path on the downstream side in the flow direction of the refrigerant.
 この場合、圧力調整弁によりヒートポンプ装置の蒸発器の冷媒蒸発圧力(温度)を上げることで、この蒸発器における冷凍能力を下げることができる。このため、ヒートポンプ装置の蒸発器と、室内熱交換器とで、冷凍能力を容易に異ならせることが可能になる。 In this case, by increasing the refrigerant evaporation pressure (temperature) of the evaporator of the heat pump device using the pressure regulating valve, the refrigerating capacity of this evaporator can be lowered. For this reason, it becomes possible to easily make the refrigerating capacity different between the evaporator of the heat pump device and the indoor heat exchanger.
 循環流路は、ハウジングに貫設されていることが好ましい。この場合、循環流路を移動体用ヒートポンプ装置と一体とすることができ、移動体への搭載性が向上する。 It is preferable that the circulation flow path is provided through the housing. In this case, the circulation flow path can be integrated with the heat pump device for a moving object, improving the ease of mounting on the moving object.
 蒸発器は、複数枚の熱交換プレートと、各熱交換プレートを間に挟み、冷媒を流通させる冷媒流通路と冷却用液体を流通させる冷却用液体流通路とを各熱交換プレートに形成する複数枚のスペーサと、交互に積層された各熱交換プレート及び各スペーサをハウジングに締結する締結部材とを有していることが好ましい。 The evaporator includes a plurality of heat exchange plates, and each heat exchange plate has a refrigerant flow path through which the refrigerant flows and a cooling liquid flow path through which the cooling liquid flows. It is preferable to have two spacers and a fastening member for fastening the heat exchange plates and spacers stacked alternately to the housing.
 この場合、締結部材により、交互に積層された熱交換プレート及びスペーサ同士を締結するとともに、これらの熱交換プレート及びスペーサをハウジングに対して締結することができる。また、熱交換プレートとスペーサとをろう付けする必要がない。このため、製造工程の簡略化と製造コストの低廉化に貢献し得る。 In this case, the heat exchange plates and spacers stacked alternately can be fastened to each other by the fastening member, and these heat exchange plates and spacers can be fastened to the housing. Further, there is no need to braze the heat exchange plate and the spacer. Therefore, it can contribute to simplifying the manufacturing process and reducing manufacturing costs.
 電動モータは、圧縮機構と蒸発器との間に配置されていることが好ましい。この場合、蒸発器内の低温冷媒によって電動モータを冷媒することで、電動モータの耐久性が向上させ得る。 The electric motor is preferably placed between the compression mechanism and the evaporator. In this case, by refrigerating the electric motor with the low-temperature refrigerant in the evaporator, the durability of the electric motor can be improved.
 本発明の移動体用空調装置は、移動体の室内を冷房するとともに電池等の搭載部品を冷却することができ、しかも移動体への搭載性にも優れる。 The air conditioner for a mobile body of the present invention can cool the interior of a mobile body and also cool mounted components such as batteries, and is also excellent in mountability to a mobile body.
図1は、実施例の移動体用ヒートポンプ装置の正面図である。FIG. 1 is a front view of a heat pump device for a moving body according to an embodiment. 図2は、実施例の移動体用ヒートポンプ装置の回路図であるFIG. 2 is a circuit diagram of a heat pump device for a moving body according to an embodiment. 図3は、実施例の移動体用ヒートポンプ装置に用いたプレート式熱交換器を模式的に示す分解斜視図である。FIG. 3 is an exploded perspective view schematically showing a plate heat exchanger used in the heat pump device for a moving object according to the example. 図4は、実施例の移動体用ヒートポンプ装置に用いたプレート式熱交換器の熱交換プレートの平面図である。FIG. 4 is a plan view of a heat exchange plate of a plate heat exchanger used in the heat pump device for a moving body according to an example. 図5は、実施例の移動体用ヒートポンプ装置に用いたプレート式熱交換器のスペーサの平面図である。FIG. 5 is a plan view of a spacer of a plate heat exchanger used in the heat pump device for a mobile body according to an example. 図6は、実施例の移動体用ヒートポンプ装置に用いたプレート式熱交換器の一部を示す部分拡大断面図である。FIG. 6 is a partially enlarged cross-sectional view showing a part of the plate heat exchanger used in the heat pump device for a moving body according to the example.
 以下、本発明を具体化した実施例を図面を参照しつつ説明する。実施例の移動体用空調装置10は、電気自動車等の電池搭載車両に搭載される。電池搭載車両は移動体に相当する。 Hereinafter, embodiments embodying the present invention will be described with reference to the drawings. The mobile air conditioner 10 of the embodiment is installed in a battery-equipped vehicle such as an electric vehicle. A battery-equipped vehicle corresponds to a moving object.
 図1及び図2に示すように、移動体用空調装置10は、ヒートポンプ装置20と、室内熱交換器30とを備えている。ヒートポンプ装置20は、電動圧縮機1と、蒸発器3と、凝縮器5とを備えている。 As shown in FIGS. 1 and 2, the mobile air conditioner 10 includes a heat pump device 20 and an indoor heat exchanger 30. The heat pump device 20 includes an electric compressor 1, an evaporator 3, and a condenser 5.
 電動圧縮機1は、軸方向D1に筒状に延びるハウジング7を有している。以下の説明では、図1等に矢印で示すように、ハウジング7の軸方向D1の一方をD1Aとし、ハウジング7の軸方向D1の他方をD1Bとする。 The electric compressor 1 has a housing 7 that extends in a cylindrical shape in the axial direction D1. In the following description, as shown by arrows in FIG. 1 and the like, one side of the housing 7 in the axial direction D1 is referred to as D1A, and the other side of the housing 7 in the axial direction D1 is referred to as D1B.
 ハウジング7は、D1A側に配置されたモータハウジング11と、D1B側に配置されたコンプレッサハウジング13とからなる。モータハウジング11のD1A側に冷却側ハウジング9が配置されている。コンプレッサハウジング13のD1B側には、加熱側ハウジング15と、レシーバハウジング17とが配置されている。冷却側ハウジング9、モータハウジング11、コンプレッサハウジング13、加熱側ハウジング15及びレシーバハウジング17は、隣接するハウジング同士が図示しないボルトで締結されて、一体化されている。 The housing 7 consists of a motor housing 11 placed on the D1A side and a compressor housing 13 placed on the D1B side. A cooling side housing 9 is arranged on the D1A side of the motor housing 11. A heating side housing 15 and a receiver housing 17 are arranged on the D1B side of the compressor housing 13. The cooling side housing 9, the motor housing 11, the compressor housing 13, the heating side housing 15, and the receiver housing 17 are integrated by fastening adjacent housings with bolts (not shown).
 さらに、冷却側ハウジング9のD1A側に蒸発器3が配置され、レシーバハウジング17のD1B側に凝縮器5が配置されている。すなわち、D1AからD1Bに向かって順に、蒸発器3、冷却側ハウジング9、モータハウジング11、コンプレッサハウジング13、加熱側ハウジング15、レシーバハウジング17、凝縮器5が軸方向D1に並んでいる。これにより、蒸発器3と凝縮器5との間に電動圧縮機1が配置されつつ、蒸発器3、電動圧縮機1及び凝縮器5が一体化されている。 Furthermore, the evaporator 3 is arranged on the D1A side of the cooling side housing 9, and the condenser 5 is arranged on the D1B side of the receiver housing 17. That is, the evaporator 3, the cooling side housing 9, the motor housing 11, the compressor housing 13, the heating side housing 15, the receiver housing 17, and the condenser 5 are arranged in the axial direction D1 in order from D1A to D1B. Thereby, the electric compressor 1 is disposed between the evaporator 3 and the condenser 5, and the evaporator 3, electric compressor 1, and condenser 5 are integrated.
 電動圧縮機1は、冷却側ハウジング9内に収容されたインバータ回路19と、モータハウジング11内に収容された電動モータ21と、コンプレッサハウジング13内に収容された圧縮機構23とを有している。 The electric compressor 1 includes an inverter circuit 19 housed in a cooling side housing 9, an electric motor 21 housed in a motor housing 11, and a compression mechanism 23 housed in a compressor housing 13. .
 インバータ回路19は、電池搭載車両に搭載された図示しないバッテリ電源に接続されている。インバータ回路19は、電動モータ21を駆動制御する。電動モータ21は圧縮機構23を作動させる。 The inverter circuit 19 is connected to a battery power source (not shown) mounted on a battery-equipped vehicle. Inverter circuit 19 drives and controls electric motor 21 . Electric motor 21 operates compression mechanism 23 .
 圧縮機構23は、図2に示すように、冷却側ハウジング9側に位置する吸入口23aと、加熱側ハウジング15側に位置する吐出口23bとを有する。すなわち、ハウジング7内においては、D1A側が吸入側となり、D1B側が吐出側となる。これにより、吐出口23bは吸入口23aよりも凝縮器5の近くに配置され、吸入口23aは吐出口23bよりも蒸発器3の近くに配置される。 As shown in FIG. 2, the compression mechanism 23 has an inlet 23a located on the cooling side housing 9 side and an outlet 23b located on the heating side housing 15 side. That is, in the housing 7, the D1A side is the suction side, and the D1B side is the discharge side. Thereby, the discharge port 23b is arranged closer to the condenser 5 than the suction port 23a, and the suction port 23a is arranged closer to the evaporator 3 than the discharge port 23b.
 圧縮機構23は、容積を縮小する圧縮室を有するスクロール式圧縮機構である。圧縮機構23は、吸入口23aから冷媒を吸入して圧縮し、吐出口23bから吐出する。 The compression mechanism 23 is a scroll type compression mechanism that has a compression chamber that reduces the volume. The compression mechanism 23 sucks refrigerant through an inlet 23a, compresses it, and discharges it through an outlet 23b.
 冷却側ハウジング9には、冷却用クーラントLcが流入する冷却用液体流入口9aと、冷却用クーラントLcが流出する冷却用液体流出口9bとが形成されている。冷却用クーラントLcが冷却用液体に相当する。冷却用液体流入口9a及び冷却用液体流出口9bは、図示しない配管を介して外部と連通している。 The cooling side housing 9 is formed with a cooling liquid inlet 9a through which the cooling coolant Lc flows, and a cooling liquid outlet 9b through which the cooling coolant Lc flows out. The cooling coolant Lc corresponds to the cooling liquid. The cooling liquid inlet 9a and the cooling liquid outlet 9b communicate with the outside via piping (not shown).
 冷却側ハウジング9には、冷却用液体流入口9aと後述する冷却用液体入口3aとを連通させる冷却用液体流入路9cと、後述する冷却用液体出口3bと冷却用液体流出口9bとを連通させる冷却用液体流出路9dとが形成されている。 The cooling side housing 9 includes a cooling liquid inlet passage 9c that communicates a cooling liquid inlet 9a with a cooling liquid inlet 3a, which will be described later, and a cooling liquid inlet 9c, which communicates a cooling liquid outlet 3b with a cooling liquid outlet 9b, which will discuss later. A cooling liquid outflow path 9d is formed.
 蒸発器3はプレート式熱交換器で構成されている。図3~図6に示すように、蒸発器3は、複数枚の熱交換プレート80と、複数枚のスペーサ83と、一対のエンドプレート84、85と、6本のボルト86とからなる。各熱交換プレート80、各スペーサ83及び各エンドプレート84、85は冷却側ハウジング9と外周が一致している。すなわち、蒸発器3と冷却側ハウジング9とは外周が一致している。なお、図6は図1におけるP部分を拡大した断面図である。 The evaporator 3 is composed of a plate heat exchanger. As shown in FIGS. 3 to 6, the evaporator 3 includes a plurality of heat exchange plates 80, a plurality of spacers 83, a pair of end plates 84 and 85, and six bolts 86. The outer periphery of each heat exchange plate 80, each spacer 83, and each end plate 84, 85 coincides with the cooling side housing 9. That is, the outer peripheries of the evaporator 3 and the cooling side housing 9 coincide with each other. Note that FIG. 6 is an enlarged cross-sectional view of portion P in FIG.
 図4に示すように、熱交換プレート80は、アルミニウム合金製又はステンレス製で、略矩形の板状体よりなる。熱交換プレート80には凹凸部81が設けられている。凹凸部81周りに第1開口81a、第2開口81b、第3開口81c、第4開口81dが貫設されている。第1開口81a~第4開口81dは全て同一径の円孔である。 As shown in FIG. 4, the heat exchange plate 80 is a substantially rectangular plate made of aluminum alloy or stainless steel. The heat exchange plate 80 is provided with an uneven portion 81 . A first opening 81a, a second opening 81b, a third opening 81c, and a fourth opening 81d are provided around the uneven portion 81. The first opening 81a to the fourth opening 81d are all circular holes having the same diameter.
 図5に示すように、各スペーサ83は、熱交換プレート80を間に挟む板状をなしている。図6に示すように、各スペーサ83は、板状をなすステンレス製のスペーサ本体83Bと、スペーサ本体83Bの両面に形成されたゴム製のシール層83S、83Sとからなる。スペーサ本体83Bの両面にシール層83S、83Sを有するスペーサ83によれば、スペーサ83と交互に積層されて締結される熱交換プレート80との間でシール性を確保することができる。 As shown in FIG. 5, each spacer 83 has a plate shape with the heat exchange plate 80 sandwiched therebetween. As shown in FIG. 6, each spacer 83 consists of a plate-shaped stainless steel spacer body 83B and rubber sealing layers 83S, 83S formed on both sides of the spacer body 83B. According to the spacer 83 having the seal layers 83S, 83S on both sides of the spacer body 83B, sealing performance can be ensured between the spacer 83 and the heat exchange plates 80 which are alternately stacked and fastened.
 各スペーサ83は、熱交換プレート80と外周が一致する枠部83aと、枠部83a内に形成された連通口83bとを有する。 Each spacer 83 has a frame portion 83a whose outer periphery coincides with that of the heat exchange plate 80, and a communication port 83b formed within the frame portion 83a.
 各スペーサ83は、熱交換プレート80の凹凸部81周りの第1開口81a~第4開口81dのうちの二つと凹凸部81とにより、凹凸部81に冷媒を流通させる後述する低温冷媒流通路34と、凹凸部81に後述する冷却用液体流通路33とを、熱交換プレート80に対して選択的に形成する。 Each spacer 83 uses two of the first openings 81a to 4th openings 81d around the uneven portion 81 of the heat exchange plate 80 and the uneven portion 81 to form a low-temperature refrigerant flow path 34, which will be described later, through which the refrigerant flows through the uneven portion 81. A cooling liquid flow path 33, which will be described later, is selectively formed in the uneven portion 81 with respect to the heat exchange plate 80.
 各熱交換プレート80、各スペーサ83及び各エンドプレート84、85の四隅と、各長辺の中央とには、計6個のボルト穴80f、83f、84f、85fが貫設されている。各ボルト穴80f、83f、84f、85fは全て同一径の円孔であり、整合しつつ軸方向D1に並んでいる。冷却側ハウジング9には雌ねじ9eが凹設され、各ボルト穴80f、83f、84f、85fは冷却側ハウジング9の雌ねじ9eと整合している。 A total of six bolt holes 80f, 83f, 84f, and 85f are provided through the four corners and the center of each long side of each heat exchange plate 80, each spacer 83, and each end plate 84, 85. The bolt holes 80f, 83f, 84f, and 85f are all circular holes with the same diameter, and are aligned in the axial direction D1. A female thread 9e is recessed in the cooling side housing 9, and each bolt hole 80f, 83f, 84f, 85f is aligned with the female thread 9e of the cooling side housing 9.
 図3に示すように、蒸発器3は、スペーサ83、熱交換プレート80、スペーサ83、熱交換プレート80、…、スペーサ83というように、スペーサ83と熱交換プレート80とが交互に積層される。この際、スペーサ83及び熱交換プレート80は交互に反転される。 As shown in FIG. 3, in the evaporator 3, spacers 83 and heat exchange plates 80 are stacked alternately, such as spacer 83, heat exchange plate 80, spacer 83, heat exchange plate 80, ..., spacer 83. . At this time, the spacers 83 and the heat exchange plates 80 are alternately reversed.
 一対のエンドプレート84、85が各熱交換プレート80及び各スペーサ83を挟持する。そして、6本のボルト86がボルト穴80f、83f、84f、85fを挿通し、冷却側ハウジング9の雌ねじ9eに螺合される。 A pair of end plates 84 and 85 sandwich each heat exchange plate 80 and each spacer 83. Then, the six bolts 86 are inserted through the bolt holes 80f, 83f, 84f, and 85f, and are screwed into the female threads 9e of the cooling side housing 9.
 こうして、蒸発器3は、エンドプレート84、各熱交換プレート80、各スペーサ83及びエンドプレート85を冷却側ハウジング9にボルト86で締結することで、ハウジング7に対してD1A側に一体化される。各ボルト86が締結部材に相当する。 In this way, the evaporator 3 is integrated with the housing 7 on the D1A side by fastening the end plate 84, each heat exchange plate 80, each spacer 83, and the end plate 85 to the cooling side housing 9 with the bolts 86. . Each bolt 86 corresponds to a fastening member.
 蒸発器3は、冷却用クーラントLcを蒸発器3に流入させる冷却用液体入口3aと、冷却用クーラントLcを蒸発器3から流出させる冷却用液体出口3bとを有している。蒸発器3内には、冷却用クーラントLcを流通させる冷却用液体流通路33が形成されている。冷却用液体流通路33は、冷却用液体入口3aと冷却用液体出口3bとを連通している。 The evaporator 3 has a cooling liquid inlet 3a that allows the cooling coolant Lc to flow into the evaporator 3, and a cooling liquid outlet 3b that allows the cooling coolant Lc to flow out of the evaporator 3. A cooling liquid flow path 33 through which cooling coolant Lc flows is formed in the evaporator 3. The cooling liquid flow path 33 communicates the cooling liquid inlet 3a and the cooling liquid outlet 3b.
 蒸発器3には、凝縮器5の後述する第1流出口5dから流出された冷媒を流入させる第2流入口3cと、圧縮機構23の吸入口23aに向けて冷媒を流出させる第2流出口3dとが形成されている。また、蒸発器3には、凝縮器5で冷却されるとともに第1膨張弁27で減圧されて低温になった冷媒を流通させる低温冷媒流通路34が形成されている。低温冷媒流通路34は、第2流入口3cと第2流出口3dとを連通している。 The evaporator 3 includes a second inlet 3c through which refrigerant flows out from a first outlet 5d (described later) of the condenser 5, and a second outlet through which the refrigerant flows out toward an inlet 23a of the compression mechanism 23. 3d is formed. Further, the evaporator 3 is formed with a low-temperature refrigerant flow path 34 through which refrigerant cooled by the condenser 5 and reduced in pressure by the first expansion valve 27 flows therethrough. The low temperature refrigerant flow path 34 communicates the second inlet 3c and the second outlet 3d.
 加熱側ハウジング15には、加熱用クーラントLhが流入する加熱用液体流入口15aと、加熱用クーラントLhが流出する加熱用液体流出口15bとが形成されている。加熱用クーラントLhが加熱用液体に相当する。加熱用液体流入口15a及び加熱用液体流出口15bは、図示しない配管を介して外部と連通している。 The heating side housing 15 is formed with a heating liquid inlet 15a through which the heating coolant Lh flows, and a heating liquid outlet 15b through which the heating coolant Lh flows out. The heating coolant Lh corresponds to the heating liquid. The heating liquid inlet 15a and the heating liquid outlet 15b communicate with the outside via piping (not shown).
 レシーバハウジング17内には、第1レシーバ25と、第1膨張弁27とが収容されている。第1レシーバ25は、凝縮器5からの冷媒を気液分離して、液相冷媒を蒸発器3側に送るとともに、余剰の液相冷媒を蓄える。第1膨張弁27は、蒸発器3に送られる冷媒の圧力と流量を適切に調整する。第1レシーバ25は第1気液分離器に相当する。 A first receiver 25 and a first expansion valve 27 are housed within the receiver housing 17. The first receiver 25 separates the refrigerant from the condenser 5 into gas and liquid, sends the liquid refrigerant to the evaporator 3 side, and stores excess liquid refrigerant. The first expansion valve 27 appropriately adjusts the pressure and flow rate of the refrigerant sent to the evaporator 3. The first receiver 25 corresponds to a first gas-liquid separator.
 加熱側ハウジング15及びレシーバハウジング17には、加熱用液体流入口15aと後述する加熱用液体入口5aとを連通させる加熱用液体流入路41と、後述する加熱用液体出口5bと加熱用液体流出口15bとを連通させる加熱用液体流出路43とが形成されている。 The heating side housing 15 and the receiver housing 17 include a heating liquid inflow path 41 that communicates the heating liquid inlet 15a with a heating liquid inlet 5a, which will be described later, and a heating liquid outlet 5b and a heating liquid outlet, which will be described later. A heating liquid outflow path 43 communicating with the heating liquid 15b is formed.
 コンプレッサハウジング13、加熱側ハウジング15及びレシーバハウジング17には、圧縮機構23の吐出口23bと、凝縮器5の後述する第1流入口5cとを連通させる吐出流路71が形成されている。 A discharge passage 71 is formed in the compressor housing 13, the heating side housing 15, and the receiver housing 17, which communicates the discharge port 23b of the compression mechanism 23 with a first inlet 5c of the condenser 5, which will be described later.
 凝縮器5は、蒸発器3と同様、プレート式熱交換器で構成されている。凝縮器5における熱交換プレートには凹凸部が形成されるとともに、この凹凸部周りに第1~第4開口が貫設されている。各スペーサは、熱交換プレートの第1~4開口のうちの二つと凹凸部とにより、凹凸部に冷媒を流通させる後述する高温冷媒流通路53と、凹凸部に後述する加熱用液体流通路51とを、熱交換プレートに対して選択的に形成する。 The condenser 5, like the evaporator 3, is composed of a plate heat exchanger. The heat exchange plate in the condenser 5 is formed with an uneven portion, and first to fourth openings are provided around the uneven portion. Each spacer has two of the first to fourth openings of the heat exchange plate and the uneven portion, and a high-temperature refrigerant flow path 53 (described later) that allows refrigerant to flow through the uneven portion, and a heating liquid flow path 51 (described later) in the uneven portion. selectively formed with respect to the heat exchange plate.
 凝縮器5における一対のエンドプレート、各熱交換プレート及び各スペーサには、それぞれが整合するボルト穴が6個ずつ貫設されている。レシーバハウジング17には、冷却側ハウジング9と同様、これらのボルト穴に整合する雌ねじが凹設されている。 The pair of end plates, each heat exchange plate, and each spacer in the condenser 5 are provided with six matching bolt holes. Similar to the cooling-side housing 9, the receiver housing 17 is recessed with internal threads that match these bolt holes.
 凝縮器5は、一対のエンドプレート、各熱交換プレート及び各スペーサをレシーバハウジング17にボルト86で締結することで、ハウジング7に対してD1B側に一体化される。凝縮器5と、レシーバハウジング17と、加熱側ハウジング15とは外周が一致している。 The condenser 5 is integrated with the housing 7 on the D1B side by fastening the pair of end plates, each heat exchange plate, and each spacer to the receiver housing 17 with bolts 86. The condenser 5, the receiver housing 17, and the heating side housing 15 have the same outer circumference.
 凝縮器5は、加熱用クーラントLhを凝縮器5に流入させる加熱用液体入口5aと、加熱用クーラントLhを凝縮器5から流出させる加熱用液体出口5bとを有している。凝縮器5内には、加熱用クーラントLhを流通させる加熱用液体流通路51が形成されている。加熱用液体流通路51は、加熱用液体入口5aと加熱用液体出口5bとを連通している。 The condenser 5 has a heating liquid inlet 5a that allows the heating coolant Lh to flow into the condenser 5, and a heating liquid outlet 5b that allows the heating coolant Lh to flow out of the condenser 5. A heating liquid flow path 51 through which heating coolant Lh flows is formed in the condenser 5 . The heating liquid flow path 51 communicates the heating liquid inlet 5a and the heating liquid outlet 5b.
 凝縮器5には、圧縮機構23の吐出口23bから吐出された冷媒を流入させる第1流入口5cと、蒸発器3に向けて冷媒を流出させる第1流出口5dとが形成されている。また、凝縮器5には、圧縮機構23で圧縮されて高温になった冷媒を流通させる高温冷媒流通路53が形成されている。高温冷媒流通路53は、第1流入口5cと第1流出口5dとを連通している。 The condenser 5 is formed with a first inlet 5c that allows the refrigerant discharged from the outlet 23b of the compression mechanism 23 to flow in, and a first outlet 5d that allows the refrigerant to flow out toward the evaporator 3. Further, the condenser 5 is formed with a high-temperature refrigerant flow path 53 through which the refrigerant compressed by the compression mechanism 23 and heated to a high temperature flows. The high temperature refrigerant flow path 53 communicates the first inlet 5c and the first outlet 5d.
 レシーバハウジング17、加熱側ハウジング15、コンプレッサハウジング13、モータハウジング11及び冷却側ハウジング9には、これらのハウジングを貫通する循環流路61が形成されている。すなわち、循環流路61は、レシーバハウジング17、加熱側ハウジング15、コンプレッサハウジング13、モータハウジング11及び冷却側ハウジング9に貫設されている。循環流路61は、凝縮器5の第1流出口5dと、蒸発器3の第2流入口3cとを連通している。 A circulation passage 61 is formed in the receiver housing 17, the heating side housing 15, the compressor housing 13, the motor housing 11, and the cooling side housing 9, passing through these housings. That is, the circulation flow path 61 extends through the receiver housing 17 , the heating side housing 15 , the compressor housing 13 , the motor housing 11 , and the cooling side housing 9 . The circulation flow path 61 communicates the first outlet 5d of the condenser 5 with the second inlet 3c of the evaporator 3.
 循環流路61には、第1レシーバ25と、第1膨張弁27とが設けられている。第1レシーバ25及び第1膨張弁27は、循環流路61における後述する分岐部63よりも冷媒の流れ方向の下流側に配置されている。循環流路61において、第1膨張弁27は第1レシーバ25の冷媒の流れ方向の下流側に配置されている。 The circulation flow path 61 is provided with a first receiver 25 and a first expansion valve 27. The first receiver 25 and the first expansion valve 27 are arranged downstream of a branch 63 in the circulation flow path 61, which will be described later, in the flow direction of the refrigerant. In the circulation flow path 61, the first expansion valve 27 is arranged downstream of the first receiver 25 in the flow direction of the refrigerant.
 冷却側ハウジング9、モータハウジング11及びコンプレッサハウジング13には、吸入流路65が形成されている。吸入流路65は、蒸発器3の第2流出口3dと、圧縮機構23の吸入口23aとを連通している。 A suction passage 65 is formed in the cooling side housing 9, the motor housing 11, and the compressor housing 13. The suction flow path 65 communicates the second outlet 3d of the evaporator 3 with the suction port 23a of the compression mechanism 23.
 モータハウジング11内において、吸入流路65には圧力調整弁67が設けられている。圧力調整弁67は、吸入流路65における後述する合流通路75との合流部69よりも冷媒の流れ方向の上流側に配置されている。圧力調整弁67は、蒸発器3の冷媒蒸発圧力(温度)を調整し、これにより蒸発器3における冷凍能力を調整する。 Inside the motor housing 11, a pressure regulating valve 67 is provided in the suction flow path 65. The pressure regulating valve 67 is disposed on the upstream side in the refrigerant flow direction of a merging portion 69 of the suction passage 65 with a merging passage 75, which will be described later. The pressure adjustment valve 67 adjusts the refrigerant evaporation pressure (temperature) of the evaporator 3, thereby adjusting the refrigerating capacity of the evaporator 3.
 レシーバハウジング17内において、第1流出口5dと第1レシーバ25との間における循環流路61には分岐部63が設けられている。この分岐部63には分岐通路73が接続されている。また、コンプレッサハウジング13内において、圧力調整弁67と圧縮機構23の吸入口23aとの間における吸入流路65には合流部69が設けられている。この合流部69には合流通路75が接続されている。 In the receiver housing 17, a branch portion 63 is provided in the circulation flow path 61 between the first outlet 5d and the first receiver 25. A branch passage 73 is connected to this branch portion 63. Further, in the compressor housing 13, a confluence portion 69 is provided in the suction passage 65 between the pressure regulating valve 67 and the suction port 23a of the compression mechanism 23. A merging passage 75 is connected to this merging portion 69 .
 分岐通路73と合流通路75とには室内熱交換器30が接続されている。室内熱交換器30は車室31内に配置される。室内熱交換器30は、室内熱交換器30内を流れる冷媒と車室31内の空気とを熱交換させる。室内熱交換器30は、冷媒が流入する冷媒流入口30aと、冷媒を流出させる冷媒流出口30bとを有する。 An indoor heat exchanger 30 is connected to the branch passage 73 and the merging passage 75. Indoor heat exchanger 30 is arranged inside vehicle compartment 31 . The indoor heat exchanger 30 exchanges heat between the refrigerant flowing within the indoor heat exchanger 30 and the air within the vehicle interior 31 . The indoor heat exchanger 30 has a refrigerant inlet 30a into which the refrigerant flows, and a refrigerant outlet 30b through which the refrigerant flows out.
 冷媒流入口30aには分岐通路73が接続され、冷媒流出口30bには合流通路75が接続されている。すなわち、分岐通路73は、循環流路61の分岐部63と、室内熱交換器30の冷媒流入口30aとを連通させる。分岐通路73は、循環流路61における第1レシーバ25の冷媒の流れ方向の上流側に接続されている。 A branch passage 73 is connected to the refrigerant inlet 30a, and a merging passage 75 is connected to the refrigerant outlet 30b. That is, the branch passage 73 connects the branch part 63 of the circulation flow path 61 and the refrigerant inlet 30a of the indoor heat exchanger 30. The branch passage 73 is connected to the upstream side of the first receiver 25 in the flow direction of the refrigerant in the circulation passage 61 .
 合流通路75は、室内熱交換器30の冷媒流出口30bと、吸入流路65の合流部69とを連通させる。合流通路75は、吸入流路65における圧力調整弁67の冷媒の流れ方向の下流側に合流している。 The merging passage 75 communicates the refrigerant outlet 30b of the indoor heat exchanger 30 with the merging portion 69 of the suction passage 65. The merging passage 75 joins the suction passage 65 on the downstream side of the pressure regulating valve 67 in the refrigerant flow direction.
 分岐通路73には、第2レシーバ77と第2膨張弁79とが設けられている。分岐通路73において、第2膨張弁79は第2レシーバ77の冷媒の流れ方向の下流側に配置されている。第2膨張弁79は、室内熱交換器30に送られる冷媒の圧力と流量を適切に調整する。第2レシーバ77は第2気液分離器に相当する。 A second receiver 77 and a second expansion valve 79 are provided in the branch passage 73. In the branch passage 73, the second expansion valve 79 is arranged downstream of the second receiver 77 in the flow direction of the refrigerant. The second expansion valve 79 appropriately adjusts the pressure and flow rate of the refrigerant sent to the indoor heat exchanger 30. The second receiver 77 corresponds to a second gas-liquid separator.
 以上のように構成された移動体用空調装置10におけるヒートポンプ装置20では、電動圧縮機1は、電動モータ21が圧縮機構23を作動し、圧縮機構23が圧縮室によって冷媒を吸入、圧縮して吐出する。凝縮器5は、電動圧縮機1と冷媒の下流側で接続され、冷媒と加熱用クーラントLhにより熱交換を行う。蒸発器3は、電動圧縮機1と冷媒の上流側で接続され、冷媒と冷却用クーラントLcとにより熱交換を行う。 In the heat pump device 20 in the mobile air conditioner 10 configured as described above, the electric compressor 1 is configured such that the electric motor 21 operates the compression mechanism 23, and the compression mechanism 23 sucks and compresses refrigerant through the compression chamber. Exhale. The condenser 5 is connected to the electric compressor 1 on the downstream side of the refrigerant, and performs heat exchange between the refrigerant and the heating coolant Lh. The evaporator 3 is connected to the electric compressor 1 on the upstream side of the refrigerant, and performs heat exchange between the refrigerant and the cooling coolant Lc.
 この際、凝縮器5の第1流出口5dから流出した冷媒の一部は、循環流路61を通り、分岐部63を通過して第1レシーバ25に流入し、第1レシーバ25で気液分離される。第1レシーバ25から流出した冷媒は、循環流路61を通って、第1膨張弁27に至り、第1膨張弁27で減圧された後、第2流入口3cから蒸発器3に流入する。 At this time, a part of the refrigerant flowing out from the first outlet 5d of the condenser 5 passes through the circulation channel 61, passes through the branch part 63, and flows into the first receiver 25, where the gas and liquid flow into the first receiver 25. Separated. The refrigerant flowing out from the first receiver 25 passes through the circulation channel 61, reaches the first expansion valve 27, is depressurized by the first expansion valve 27, and then flows into the evaporator 3 from the second inlet 3c.
 凝縮器5の第1流出口5dから流出した冷媒の残部は、循環流路61を通り、分岐部63で分岐通路73に分岐して第2レシーバ77に流入し、第2レシーバ77で気液分離される。第2レシーバ77から流出した冷媒は、分岐通路73を通って、第2膨張弁79に至り、第2膨張弁79で減圧された後、冷媒流入口30aから室内熱交換器30に流入する。 The remainder of the refrigerant flowing out from the first outlet 5d of the condenser 5 passes through the circulation channel 61, branches into a branch passage 73 at the branch part 63, flows into the second receiver 77, and is converted into gas and liquid at the second receiver 77. Separated. The refrigerant flowing out from the second receiver 77 passes through the branch passage 73, reaches the second expansion valve 79, is depressurized by the second expansion valve 79, and then flows into the indoor heat exchanger 30 from the refrigerant inlet 30a.
 蒸発器3内では、低温冷媒流通路34内を流通する低温冷媒と、冷却用液体流通路33内を流通する冷却用クーラントLcとが熱交換する。特に、蒸発器3においては、圧力調整弁67の調整により冷媒蒸発温度を高めることで、蒸発器3の冷凍能力を室内熱交換器30の冷凍能力よりも下げることができる。蒸発器3で冷却された冷却用クーラントLcは、例えば車載電池の冷却に利用することができる。 In the evaporator 3, the low-temperature refrigerant flowing in the low-temperature refrigerant flow path 34 and the cooling coolant Lc flowing in the cooling liquid flow path 33 exchange heat. In particular, in the evaporator 3, by increasing the refrigerant evaporation temperature by adjusting the pressure regulating valve 67, the refrigerating capacity of the evaporator 3 can be made lower than the refrigerating capacity of the indoor heat exchanger 30. The cooling coolant Lc cooled by the evaporator 3 can be used, for example, to cool an in-vehicle battery.
 室内熱交換器30内では、室内熱交換器30内を流通する低温冷媒と、室内熱交換器30内を流通する車室31内の空気とが熱交換される。これにより、車室31内を冷房することができる。 In the indoor heat exchanger 30, heat is exchanged between the low-temperature refrigerant flowing through the indoor heat exchanger 30 and the air inside the vehicle compartment 31 flowing through the indoor heat exchanger 30. Thereby, the inside of the vehicle compartment 31 can be cooled.
 凝縮器5内では、高温冷媒流通路53内を流通する高温冷媒と、加熱用液体流通路51内を流通する加熱用クーラントLhとが熱交換される。凝縮器5で加熱された加熱用クーラントLhは、例えば車室内の暖房に利用することができる。 In the condenser 5, heat is exchanged between the high temperature refrigerant flowing in the high temperature refrigerant flow path 53 and the heating coolant Lh flowing in the heating liquid flow path 51. The heating coolant Lh heated by the condenser 5 can be used, for example, to heat the interior of the vehicle.
 この移動体用空調装置10におけるヒートポンプ装置20は、電動圧縮機1のハウジング7に対して、軸方向D1のD1B側に凝縮器5が一体化されており、かつ、軸方向D1のD1A側に蒸発器3が一体化されている。これらの一体化物においては、ハウジング7の径方向に大型化していない。 In the heat pump device 20 of this mobile air conditioner 10, the condenser 5 is integrated with the housing 7 of the electric compressor 1 on the D1B side in the axial direction D1, and the condenser 5 is integrated on the D1A side in the axial direction D1. An evaporator 3 is integrated. In these integrated structures, the housing 7 is not enlarged in the radial direction.
 ヒートポンプ装置等を車両に搭載する場合、水平方向の搭載スペースよりも鉛直方向の搭載スペースの方が制約を受けやすい。この点、このヒートポンプ装置20は、径方向に大型化していないので、電池搭載車両において搭載スペースの制約を受けにくく、ハウジング7の軸方向D1を水平方向等とすることにより、車両への搭載性が優れる。 When installing a heat pump device etc. on a vehicle, the vertical mounting space is more likely to be restricted than the horizontal mounting space. In this respect, since the heat pump device 20 is not enlarged in the radial direction, it is less likely to be subject to restrictions on installation space in a battery-equipped vehicle, and by making the axial direction D1 of the housing 7 horizontal, etc., it is easy to install in the vehicle. is excellent.
 また、吐出口23b及び凝縮器5が共にハウジング7のD1B側に配置されることにより、吐出口23bは、吸入口23aよりも軸方向D1で凝縮器5の近くに配置されている。このため、例えば、圧縮機構23において、吸入口23aがD1B側に設けられるとともに吐出口23bがD1A側に設けられることにより、吐出口23bが吸入口23aよりも軸方向D1で凝縮器5から遠くに配置される構成に比べて、このヒートポンプ装置20では、吐出流路71を短くすることが可能となっている。 Further, by disposing both the discharge port 23b and the condenser 5 on the D1B side of the housing 7, the discharge port 23b is disposed closer to the condenser 5 in the axial direction D1 than the suction port 23a. For this reason, for example, in the compression mechanism 23, the suction port 23a is provided on the D1B side and the discharge port 23b is provided on the D1A side, so that the discharge port 23b is farther from the condenser 5 in the axial direction D1 than the suction port 23a. In this heat pump device 20, the discharge flow path 71 can be made shorter than the configuration arranged in the heat pump device 20.
 また、吸入口23a及び蒸発器3が共にハウジング7のD1A側に配置されることにより、吸入口23aが吐出口23bよりも蒸発器3の近くに配置されている。このため、吸入流路65も短くすることが可能となっている。これらにより、このヒートポンプ装置20では全体としての大型化が抑制されている。 Furthermore, since the suction port 23a and the evaporator 3 are both placed on the D1A side of the housing 7, the suction port 23a is placed closer to the evaporator 3 than the discharge port 23b. Therefore, the suction flow path 65 can also be shortened. These prevent the heat pump device 20 from increasing in size as a whole.
 特に、このヒートポンプ装置20では、第1膨張弁27及び圧力調整弁67がいずれもヒートポンプ装置20内に設けられている。 In particular, in this heat pump device 20, both the first expansion valve 27 and the pressure regulating valve 67 are provided within the heat pump device 20.
 したがって、この移動体用空調装置10は、複数の蒸発装置(蒸発器3及び室内熱交換器30)により複数個所の冷却や冷房が可能で、しかも移動体への搭載性に優れる。 Therefore, this air conditioner 10 for a mobile body is capable of cooling and cooling multiple locations using a plurality of evaporators (evaporator 3 and indoor heat exchanger 30), and has excellent mountability on a mobile body.
 また、蒸発器3及び凝縮器5がともにプレート式熱交換器で構成されており、しかも蒸発器3及び凝縮器5は、各熱交換プレート80及び各スペーサ83を積層状態で締結するボルト86によってハウジング7に対して軸方向D1に一体化されている。このため、製造工程の簡略化と製造コストの低廉化に貢献し得る。 Further, both the evaporator 3 and the condenser 5 are constructed of plate heat exchangers, and the evaporator 3 and the condenser 5 are connected by bolts 86 that fasten each heat exchange plate 80 and each spacer 83 in a stacked state. It is integrated with the housing 7 in the axial direction D1. Therefore, it can contribute to simplifying the manufacturing process and reducing manufacturing costs.
 電動モータ21が圧縮機構23と蒸発器3との間に配置されているため、蒸発器3内の低温冷媒によって電動モータ21を冷却することで、電動モータ21の耐久性を向上させ得る。 Since the electric motor 21 is disposed between the compression mechanism 23 and the evaporator 3, the durability of the electric motor 21 can be improved by cooling the electric motor 21 with the low-temperature refrigerant in the evaporator 3.
 凝縮器5と蒸発器3とを接続する循環流路61、蒸発器3と圧縮機構23とを接続する吸入流路65、及び圧縮機構23と凝縮器5とを接続する吐出流路71がいずれもヒートポンプ装置20内に設けられている。このため、これらの流路を装置外に設ける場合と比較して、車両への搭載性が向上する。 The circulation flow path 61 that connects the condenser 5 and the evaporator 3, the suction flow path 65 that connects the evaporator 3 and the compression mechanism 23, and the discharge flow path 71 that connects the compression mechanism 23 and the condenser 5. is also provided within the heat pump device 20. Therefore, compared to the case where these flow paths are provided outside the device, mountability on a vehicle is improved.
 加熱用液体入口5a、加熱用液体出口5b、冷却用液体入口3a及び冷却用液体出口3bがヒートポンプ装置20内に設けられていることで、移動体への搭載性が向上する。 By providing the heating liquid inlet 5a, the heating liquid outlet 5b, the cooling liquid inlet 3a, and the cooling liquid outlet 3b in the heat pump device 20, mountability on a moving object is improved.
 以上において、本発明を実施例に即して説明したが、本発明は上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。 Although the present invention has been described above based on examples, it goes without saying that the present invention is not limited to the above-mentioned examples, and can be applied with appropriate changes without departing from the spirit thereof.
 実施例では、蒸発器3及び凝縮器5をプレート式熱交換器で構成したが、これ以外の熱交換器としてもよい。 In the embodiment, the evaporator 3 and condenser 5 are configured with plate heat exchangers, but other heat exchangers may be used.
 加熱用液体入口5a、加熱用液体出口5b、冷却用液体入口3a及び冷却用液体出口3bはハウジング7に設けてもよい。また、加熱用液体流入口15a及び加熱用液体流出口15bは凝縮器5に設けてもよいし、冷却用液体流入口9a及び冷却用液体流出口9bは蒸発器3に設けてもよい。 The heating liquid inlet 5a, the heating liquid outlet 5b, the cooling liquid inlet 3a, and the cooling liquid outlet 3b may be provided in the housing 7. Further, the heating liquid inlet 15a and the heating liquid outlet 15b may be provided in the condenser 5, and the cooling liquid inlet 9a and the cooling liquid outlet 9b may be provided in the evaporator 3.
 電動圧縮機1のハウジング7として、モータハウジング11とコンプレッサハウジング13とを一体化させてもよい。さらに、冷却側ハウジング9、加熱側ハウジング15及びレシーバハウジング17についてもハウジング7と一体化させてもよい。 As the housing 7 of the electric compressor 1, the motor housing 11 and the compressor housing 13 may be integrated. Furthermore, the cooling side housing 9, the heating side housing 15, and the receiver housing 17 may also be integrated with the housing 7.
 ヒートポンプ装置20内における圧力調整弁67の設置箇所は適宜変更可能であり、例えばコンプレッサハウジング13内に設けてもよい。 The installation location of the pressure regulating valve 67 within the heat pump device 20 can be changed as appropriate, and may be installed within the compressor housing 13, for example.
 ヒートポンプ装置20内における第1レシーバ25及び第1膨張弁27の設置箇所は適宜変更可能であり、例えばこれらをハウジング7に設けてもよい。また、レシーバと膨張弁の代わりにアキュムレータと固定絞りを採用してもよい。 The installation locations of the first receiver 25 and the first expansion valve 27 within the heat pump device 20 can be changed as appropriate; for example, they may be provided in the housing 7. Also, an accumulator and a fixed throttle may be used instead of the receiver and expansion valve.
 本発明は、電動車両等の移動体における空調及びシステム加熱冷却装置等に利用可能である。 The present invention can be used for air conditioning, system heating and cooling devices, etc. in moving bodies such as electric vehicles.
 1  電動圧縮機
 3  蒸発器
 3a  冷却用液体入口
 3b  冷却用液体出口
 3c  第2流入口
 3d  第2流出口
 5  凝縮器
 5a  加熱用液体入口
 5b  加熱液体出口
 5c  第1流入口
 5d  第1流出口
 7  ハウジング
 10  移動体用空調装置
 20  ヒートポンプ装置
 21  電動モータ
 23  圧縮機構
 23a  吸入口
 23b  吐出口
 25  第1レシーバ(第1気液分離器)
 27  第1膨張弁
 30  室内熱交換器
 33  冷却用液体流通路
 34  低温冷媒流通路(冷媒流通路)
 61  循環流路
 63  分岐部
 65  吸入流路
 67  圧力調整弁
 73  分岐通路
 75  合流通路
 77  第2レシーバ(第2気液分離器)
 79  第2膨張弁
 80  熱交換プレート
 83  スペーサ
 86  ボルト(締結部材)
1 Electric compressor 3 Evaporator 3a Cooling liquid inlet 3b Cooling liquid outlet 3c Second inlet 3d Second outlet 5 Condenser 5a Heating liquid inlet 5b Heating liquid outlet 5c First inlet 5d First outlet 7 Housing 10 Air conditioner for mobile body 20 Heat pump device 21 Electric motor 23 Compression mechanism 23a Suction port 23b Discharge port 25 First receiver (first gas-liquid separator)
27 First expansion valve 30 Indoor heat exchanger 33 Cooling liquid flow path 34 Low temperature refrigerant flow path (refrigerant flow path)
61 Circulation channel 63 Branch section 65 Suction channel 67 Pressure adjustment valve 73 Branch channel 75 Merging channel 77 Second receiver (second gas-liquid separator)
79 Second expansion valve 80 Heat exchange plate 83 Spacer 86 Bolt (fastening member)

Claims (6)

  1.  ハウジングと、前記ハウジング内に設けられて冷媒を吸入する吸入口と、前記ハウジング内に設けられて冷媒を吐出する吐出口と、前記ハウジング内に設けられ、前記吸入口から吸入した冷媒を圧縮して前記吐出口から吐出させる圧縮機構と、前記ハウジング内に設けられて前記圧縮機構を作動させる電動モータとを有する電動圧縮機と、
     冷媒と加熱用液体とで熱交換を行う凝縮器と、
     冷媒と冷却用液体とで熱交換を行う蒸発器とを備え、
     前記凝縮器は、前記吐出口から吐出された冷媒を流入させる第1流入口と、前記蒸発器に向けて冷媒を流出させる第1流出口とを有し、
     前記蒸発器は、前記第1流出口から流出した冷媒を流入させる第2流入口と、前記吸入口に向けて冷媒を流出させる第2流出口とを有しているヒートポンプ装置であって、
     前記凝縮器と前記蒸発器との間に前記電動圧縮機が配置されつつ、前記凝縮器、前記電動圧縮機及び前記蒸発器が一体化され、
     前記吐出口は前記吸入口よりも前記凝縮器の近くに配置され、前記吸入口は前記吐出口よりも前記蒸発器の近くに配置されている前記ヒートポンプ装置と、
     前記ヒートポンプ装置と接続され、移動体の室内へ送られる空気との間で熱交換を行う室内熱交換器と、
     前記第1流出口と前記第2流入口とを連通する循環流路から分岐する分岐通路と、
     前記第2流出口と前記吸入口とを連通する吸入流路に合流する合流通路とを備え、
     前記室内熱交換器は、前記分岐通路と前記合流通路とに接続されていることを特徴とする移動体用空調装置。
    a housing; a suction port provided in the housing for sucking refrigerant; a discharge port provided in the housing for discharging the refrigerant; and a discharge port provided in the housing for compressing the refrigerant drawn from the suction port. an electric compressor having a compression mechanism that causes the compressor to discharge from the discharge port; and an electric motor that is provided in the housing and operates the compression mechanism;
    a condenser that exchanges heat between the refrigerant and the heating liquid;
    Equipped with an evaporator that exchanges heat between the refrigerant and the cooling liquid,
    The condenser has a first inlet that allows the refrigerant discharged from the outlet to flow in, and a first outlet that allows the refrigerant to flow out toward the evaporator.
    The evaporator is a heat pump device having a second inlet into which the refrigerant flowing out from the first outflow port flows, and a second outflow port into which the refrigerant flows out toward the suction port,
    The electric compressor is disposed between the condenser and the evaporator, and the condenser, the electric compressor, and the evaporator are integrated,
    The heat pump device, wherein the discharge port is located closer to the condenser than the suction port, and the suction port is located closer to the evaporator than the discharge port;
    an indoor heat exchanger that is connected to the heat pump device and performs heat exchange with air sent into the room of the moving body;
    a branch passageway branching from a circulation channel that communicates the first outlet and the second inlet;
    a merging passageway that joins a suction passageway that communicates the second outflow port and the suction port;
    The air conditioner for a mobile body, wherein the indoor heat exchanger is connected to the branch passage and the merging passage.
  2.  前記循環流路には、第1気液分離器と、前記第1気液分離器の冷媒の流れ方向の下流側に配置される第1膨張弁とが設けられ、
     前記分岐通路は、前記循環流路における前記第1気液分離器の冷媒の流れ方向の上流側に接続され、
     前記分岐通路には、第2気液分離器と、前記第2気液分離器の冷媒の流れ方向の下流側に配置される第2膨張弁とが設けられている請求項1記載の移動体用空調装置。
    The circulation flow path is provided with a first gas-liquid separator and a first expansion valve disposed downstream of the first gas-liquid separator in the flow direction of the refrigerant,
    The branch passage is connected to the upstream side of the first gas-liquid separator in the flow direction of the refrigerant in the circulation passage,
    The moving body according to claim 1, wherein the branch passage is provided with a second gas-liquid separator and a second expansion valve disposed downstream of the second gas-liquid separator in the flow direction of the refrigerant. air conditioning equipment.
  3.  前記吸入流路には、前記蒸発器の冷媒蒸発圧力を調整する圧力調整弁が設けられ、
     前記合流通路は、前記吸入流路における前記圧力調整弁の冷媒の流れ方向の下流側に合流する請求項1又は2記載の移動体用空調装置。
    The suction flow path is provided with a pressure adjustment valve that adjusts the refrigerant evaporation pressure of the evaporator,
    The air conditioner for a mobile body according to claim 1 or 2, wherein the merging passage joins the suction passage on the downstream side of the pressure regulating valve in the flow direction of the refrigerant.
  4.  前記循環流路は、前記ハウジングに貫設されている請求項1乃至3のいずれか1項記載の移動体用空調装置。 The air conditioner for a mobile body according to any one of claims 1 to 3, wherein the circulation flow path extends through the housing.
  5.  前記蒸発器は、複数枚の熱交換プレートと、前記各熱交換プレートを間に挟み、冷媒を流通させる冷媒流通路と前記冷却用液体を流通させる冷却用液体流通路とを前記各熱交換プレートに形成する複数枚のスペーサと、交互に積層された前記各熱交換プレート及び前記各スペーサを前記ハウジングに締結する締結部材とを有している請求項1乃至4のいずれか1項記載の移動体用空調装置。 The evaporator includes a plurality of heat exchange plates, a refrigerant flow path through which the refrigerant flows, and a cooling liquid flow path through which the cooling liquid flows, with the heat exchange plates sandwiched between the heat exchange plates. The movement according to any one of claims 1 to 4, comprising a plurality of spacers formed on the housing, and a fastening member that fastens the heat exchange plates and the spacers stacked alternately to the housing. Body air conditioner.
  6.  前記電動モータは、前記圧縮機構と前記蒸発器との間に配置されている請求項1乃至5のいずれか1項記載の移動体用空調装置。 The air conditioner for a mobile body according to any one of claims 1 to 5, wherein the electric motor is disposed between the compression mechanism and the evaporator.
PCT/JP2023/004851 2022-03-30 2023-02-13 Mobile body air-conditioning device WO2023188888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022056934A JP2023148747A (en) 2022-03-30 2022-03-30 Air-conditioner for moving body
JP2022-056934 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023188888A1 true WO2023188888A1 (en) 2023-10-05

Family

ID=88200975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004851 WO2023188888A1 (en) 2022-03-30 2023-02-13 Mobile body air-conditioning device

Country Status (2)

Country Link
JP (1) JP2023148747A (en)
WO (1) WO2023188888A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274549U (en) * 1975-12-02 1977-06-03
JPS60111831A (en) * 1983-11-19 1985-06-18 Katsumi Kataoka Cooling and heating room air conditioner which rotates main body thereof
JP2014055758A (en) * 2012-08-10 2014-03-27 Calsonic Kansei Corp Compound heat exchanger
JP2014125157A (en) * 2012-12-27 2014-07-07 Panasonic Corp Vehicle heat pump device
US20180106484A1 (en) * 2016-10-16 2018-04-19 Noria Technologies, Llc Air conditioner and an air conditioner housing
WO2019220923A1 (en) * 2018-05-14 2019-11-21 株式会社デンソー Refrigeration cycle device
JP2020165604A (en) * 2019-03-29 2020-10-08 株式会社デンソー Refrigeration cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274549U (en) * 1975-12-02 1977-06-03
JPS60111831A (en) * 1983-11-19 1985-06-18 Katsumi Kataoka Cooling and heating room air conditioner which rotates main body thereof
JP2014055758A (en) * 2012-08-10 2014-03-27 Calsonic Kansei Corp Compound heat exchanger
JP2014125157A (en) * 2012-12-27 2014-07-07 Panasonic Corp Vehicle heat pump device
US20180106484A1 (en) * 2016-10-16 2018-04-19 Noria Technologies, Llc Air conditioner and an air conditioner housing
WO2019220923A1 (en) * 2018-05-14 2019-11-21 株式会社デンソー Refrigeration cycle device
JP2020165604A (en) * 2019-03-29 2020-10-08 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP2023148747A (en) 2023-10-13

Similar Documents

Publication Publication Date Title
EP2054673B1 (en) Air conditioner
JP2002206823A (en) Accumulator module
US20240017593A1 (en) Valve group integration module and vehicle with the same
CN101403553A (en) Evaporator unit
US20230194136A1 (en) Vapor injection module and heat pump system using same
US20140110093A1 (en) Condenser for vehicle
KR20190002878A (en) Centralized energy module for vehicle
JP7330482B2 (en) heat pump system
JP2012042189A (en) Expansion valve and air conditioner for vehicle, which is equipped with the same
US20230271477A1 (en) Vapor injection module and heat pump system using same
KR20170113948A (en) Air conditining system for vehicle
WO2023188888A1 (en) Mobile body air-conditioning device
JP2011007463A (en) Cooling device
US20210231352A1 (en) Air conditioning apparatus
JP2010014353A (en) Evaporator unit for ejector refrigeration cycle
WO2023188887A1 (en) Heat pump device for mobile body
WO2023220467A1 (en) Integrated refrigerant control modules
JP6025716B2 (en) Air conditioner for vehicles
EP1864839B1 (en) Automotive air-conditioning system
WO2023188884A1 (en) Heat pump device for mobile object
CN108397573B (en) Air conditioning device and automobile air conditioner
KR20170036867A (en) Plate type heat exchanger
WO2024009578A1 (en) Heat exchange system for moving body
CN220227188U (en) Compressor and refrigeration equipment
US11364773B2 (en) Plate-type heat exchanger and air conditioning system for vehicle having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778922

Country of ref document: EP

Kind code of ref document: A1