WO2012090345A1 - Refrigerant compressor - Google Patents

Refrigerant compressor Download PDF

Info

Publication number
WO2012090345A1
WO2012090345A1 PCT/JP2011/003903 JP2011003903W WO2012090345A1 WO 2012090345 A1 WO2012090345 A1 WO 2012090345A1 JP 2011003903 W JP2011003903 W JP 2011003903W WO 2012090345 A1 WO2012090345 A1 WO 2012090345A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
refrigerant
compression mechanism
sealed container
refrigerant compressor
Prior art date
Application number
PCT/JP2011/003903
Other languages
French (fr)
Japanese (ja)
Inventor
雷人 河村
哲英 横山
英明 前山
白藤 好範
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012550671A priority Critical patent/JP5506953B2/en
Publication of WO2012090345A1 publication Critical patent/WO2012090345A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0238Hermetic compressors with oil distribution channels
    • F04B39/0246Hermetic compressors with oil distribution channels in the rotating shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump

Definitions

  • the present invention relates to a refrigerant compressor, and more particularly to a cooling structure for lubricating oil supplied to a sliding portion of a refrigerant compressor, a bearing portion of a drive shaft, and the like.
  • a vapor compression refrigeration cycle using a rotary compressor has been used in a refrigeration and air-conditioning apparatus such as a refrigerator-freezer, an air conditioner, or a heat pump type water heater.
  • a refrigeration and air-conditioning apparatus such as a refrigerator-freezer, an air conditioner, or a heat pump type water heater.
  • a compression mechanism that compresses sucked refrigerant from a low pressure to a high pressure, a motor that drives the compression mechanism, and high-temperature lubricating oil stored in the bottom of the sealed container are contained in a high-pressure sealed container.
  • the stored lubricating oil is supplied to each drive section through a lubricating oil suction port provided at the lower end of the driving shaft of the compression mechanism, and flows out into the cylinder internal space of the compression mechanism.
  • cooling the lubricating oil supplied to the compression mechanism has the effect of reducing the heating loss and improving the compressor efficiency.
  • Patent Document 1 an oil guide / cooling pipe for circulating / cooling lubricating oil is installed outside a sealed container, and one end is a bearing sliding part and the other end is a lubricating oil storage part in the sealed container. It describes a refrigerant compressor adapted to communicate. In the refrigerant compressor having such a configuration, the lubricating oil is supplied to the bearing sliding portion via the oil guide / cooling pipe outside the sealed container. For this reason, the lubricating oil supplied to the bearing sliding portion can be cooled to reduce the heating loss and improve the compressor efficiency.
  • Patent Document 2 in an oil separator / collector attached to the downstream side of the refrigerant compressor, a heat dissipating fin is installed on the outer wall of the oil reservoir of the hermetic container, and oil is returned to the refrigerant compressor by the differential pressure.
  • positions the partition member for flowing lubricating oil along the inner wall of an airtight container in an oil sump part is described.
  • This partition member is formed by bending a flat plate into a U-shaped cross section.
  • the lubricating oil returned to the refrigerant compressor flows along the inner wall of the sealed container having the heat dissipating fins on the outside, so that the cooling effect of the lubricating oil can be enhanced. it can.
  • Patent Document 3 proposes an injection-compatible two-stage compression rotary compressor.
  • This two-stage compressor is provided with means for promoting heat exchange between the intermediate pressure injection refrigerant and the inside or the outer surface of the sealed container so that the intermediate pressure injection refrigerant absorbs heat.
  • the injection refrigerant absorbs the heat of the discharge gas of the high-stage compression mechanism and the heat loss due to the sliding loss and motor loss generated in the compressor, so that the entire compressor can be cooled. Has been.
  • Patent Document 1 In the refrigerant compressor described in Patent Document 1, it is necessary to once install an oil guide / cooling pipe that communicates between the lubricating oil reservoir in the sealed container and the bearing sliding part, outside the sealed container. . Therefore, the refrigerant compressor having such a configuration has a problem that the structure is complicated and is not suitable for space saving.
  • Patent Document 2 does not relate to a lubricating oil supply structure in the refrigerant compressor. In the two-stage compressor, in order to expand the injection operation range, it is necessary to uniformly mix the refrigerant discharged from the low-stage compression mechanism and the injection refrigerant so that the refrigerant does not get wet.
  • the present invention has been made in view of the problems as described above. By reducing the temperature of the lubricating oil supplied to the compression mechanism with a simple structure, the heating loss is reduced and the compressor efficiency is improved.
  • the purpose is to provide a refrigerant compressor. It is another object of the present invention to provide a refrigerant compressor having a simple lubricating oil cooling structure that can be applied to a two-stage compressor.
  • a refrigerant compressor includes a sealed container, a motor, a compression mechanism driven by a drive shaft, a lubricating oil suction port provided at a lower end of the drive shaft, A lubricating oil reservoir provided at the bottom of the sealed container, The lubricating oil stored in the lubricating oil reservoir is provided inside the drive shaft so that the lubricating oil is supplied from the lubricating oil suction port to the sliding portion of the compression mechanism and the bearing portion of the drive shaft.
  • a refrigerant compressor comprising a lubricating oil flow path, Installing a partition member that divides the lubricating oil reservoir into a space along the inner wall of the sealed container and a space other than the space;
  • the oil supply path to the lubricating oil suction port is formed by a gap sandwiched between the partition member and the inner wall of the bottom of the sealed container.
  • the partition member has a temperature distribution in the space along the inner wall of the lubricant and the other space by the partition member, and the lubricant outside the partition member toward the lubricant inlet is radiated from the sealed container. It can be cooled by actively using. For this reason, it is possible to reduce the temperature of the lubricating oil supplied to the compression mechanism with a space-saving and simple structure, thereby reducing the heating loss and improving the compressor efficiency.
  • FIG. 9 is a cross-sectional view taken along the line AA in FIG. It is a figure which shows how to wind the heat insulating material of the refrigerant compressor which concerns on Embodiment 8 of this invention. It is sectional drawing which shows the whole structure of the refrigerant compressor which concerns on Embodiment 9 of this invention. It is sectional drawing which shows the whole structure of the refrigerant compressor which concerns on Embodiment 10 of this invention.
  • FIG. 1 is a cross-sectional view showing a configuration of a refrigerant compressor 1 according to Embodiment 1 of the present invention.
  • the black arrows in the figure indicate the flow of the refrigerant, and the white arrows indicate the flow of the lubricating oil 60.
  • a refrigerant compressor 1 according to Embodiment 1 compresses a refrigerant to a high temperature and a high pressure, and includes a sealed container 2 that is a high pressure container.
  • an upper compression mechanism unit 10 Inside the sealed container 2, an upper compression mechanism unit 10, a lower compression mechanism unit 20, an intermediate partition member 30, an upper support member 40, a lower support member 50, an upper discharge muffler container 42, a lower discharge muffler container 52, Lubricating oil 60, drive shaft 7, and motor 9 are provided.
  • Lower discharge muffler container 52, lower support member 50, lower compression mechanism part 20, intermediate partition member 30, upper compression mechanism part 10, upper support member 40, upper discharge muffler container 42, motor 9 are stacked in order from the lower side in the axial direction of the drive shaft 7.
  • Each of the upper support member 40 and the lower support member 50 includes an upper bearing portion 41 and a lower bearing portion 51 that rotatably support the drive shaft 7.
  • a lubricating oil reservoir 65 for storing the lubricating oil 60 is provided at the bottom of the hermetic container 2, and the lubricating oil 60 is disposed at the lower end of the drive shaft 7 at each sliding portion of the compression mechanism and the upper bearing of the drive shaft 7.
  • Lubricating oil intake port 8 for supplying to part 41 and lower bearing part 51 is provided.
  • the lubricating oil supply flow path includes a lubricating oil suction port 8, a lubricating oil flow channel 77 extending in the axial direction from the lubricating oil suction port 8 through the drive shaft 7, and a radial direction extending from the lubricating oil flow channel 77.
  • a communication port 78 communicating with each sliding portion of the mechanism portion and the upper bearing portion 41 and the lower bearing portion 51 of the drive shaft 7 is provided.
  • the sealed container 2 has a vertical shape having end plates on the upper and lower surfaces of the cylindrical body.
  • the lower part of the hermetic container 2 is fixed to a bottom plate 82 of the outdoor unit via a support leg 80 and an anti-vibration rubber 81.
  • the refrigerant compressor 1 is entirely surrounded by a heat insulating enclosure 85, and the refrigerant suction pipe 3 and the discharge pipe 4 protrude from the heat insulating enclosure 85.
  • a fan 101 that forcibly circulates air in the external space is provided outside the heat insulating enclosure 85.
  • the upper compression mechanism unit 10 and the lower compression mechanism unit 20 are provided with cylinders 11 and 21 and rotary pistons 12 and 22, respectively.
  • the upper compression mechanism unit 10 is stacked such that the cylinder 11 is sandwiched between the upper support member 40 and the intermediate partition member 30.
  • the lower compression mechanism unit 20 is stacked such that the cylinder 21 is sandwiched between the lower support member 50 and the intermediate partition member 30.
  • the rotary pistons 12 and 22 are respectively mounted on the eccentric portions of the drive shaft 7, and perform eccentric rotational motion by rotation of the drive shaft 7 driven to rotate by the motor 9 inside the corresponding cylinders 11 and 21, respectively. As a result, the refrigerant is sucked, and the sucked refrigerant is compressed and discharged. The refrigerant is sucked into the respective cylinders 11 and 21 from the suction pipe 3 via the suction muffler 5 and the cylinder suction pipe 6.
  • the refrigerant compressed by the upper compression mechanism unit 10 is discharged from the upper discharge port 44 into the upper discharge muffler container 42 by opening the upper discharge valve 43, and is further sealed from an opening 45 provided in the upper discharge muffler container 42. 2 is discharged into the upper space. Further, the refrigerant compressed by the lower compression mechanism unit 20 is discharged from the lower discharge port 54 into the lower discharge muffler container 52 by opening the lower discharge valve 53, and further, the lower support member 50, the intermediate partition The refrigerant is discharged into the upper discharge muffler container 42 through the connection flow path 31 penetrating the member 30 and the upper support member 40, and merged with the discharge refrigerant discharged from the upper compression mechanism unit 10 through the opening 45 in the sealed container 2. It is discharged into the upper space.
  • the refrigerant compressor 1 further includes a partition member 71 that divides the lubricating oil 60 stored at the bottom of the hermetic container 2 into an inner space 61 and an outer space 62.
  • the shape of the partition member 71 is not particularly limited, but it is preferable to form the partition member 71 in a cup shape having a through hole at the bottom.
  • the main flow of the oil supply path toward the lubricating oil intake port 8 is formed by a gap sandwiched between the sealed container 2 and the partition member 71.
  • the partition member 71 and the lower discharge muffler container 52 are provided with through holes 71a and 52a communicating with the lubricating oil suction port 8, respectively.
  • the refrigerant discharged to the inside of the sealed container 2 is discharged from the discharge pipe 4 to the outside of the sealed container 2 through the gaps of the motor 9 (between the rotor and the stator and between the stator and the sealed container 2).
  • the refrigerant discharged from the refrigerant compressor 1 passes through a condenser, an expansion mechanism, and an evaporator (not shown) and is again sucked into the refrigerant compressor 1 from the suction pipe 3.
  • a refrigerating cycle is formed by refrigerant compressor 1, a condenser, an expansion mechanism, and an evaporator.
  • the lubricating oil 60 stored at the bottom of the sealed container 2 flows to the lubricating oil suction port 8 through a gap sandwiched between the sealed container 2 and the partition member 71, and the drive shaft is driven by the lubricating oil suction port 8. 7 is taken into the lubricating oil flow path 77 from the lower end of 7. Thereafter, oil is supplied to each sliding portion of the compression mechanism portion by the differential pressure, and flows out into the internal space of the cylinders 11 and 21. Further, the lubricating oil 60 is also supplied to the upper bearing portion 41 and the lower bearing portion 51 of the drive shaft 7, thereby preventing problems such as seizure of the compression mechanism portion and the bearing portion. A part of the lubricating oil 60 supplied to the lubricating oil flow path 77 is discharged to the outside of the apparatus together with the refrigerant, but the remaining part is collected in the lubricating oil storage unit 65.
  • the lubricating oil 60 directed to the lubricating oil suction port 8 flows along the inner wall of the sealed container 2, it is cooled by actively utilizing the heat radiation of the sealed container 2. Thereby, temperature distribution is made in the inner space 61 and the outer space 62 of the lubricating oil 60, and only the lubricating oil 60 heading toward the lubricating oil suction port 8 is preferentially cooled. Therefore, in the refrigerant compressor 1 according to Embodiment 1, it is possible to reduce the heating loss and improve the compressor efficiency.
  • the minute gap 100 is provided between the partition member 71 and the lower discharge muffler container 52. Accordingly, the lubricating oil 60 in the inner space 61 flows out to the outer space 62 through the gap 100.
  • the lubricating oil 60 accumulated in the inner space 61 flows out to the outer space 62 through the gap 100, so that the lubricating oil 60 in the outer space 62 is depleted. Can be prevented.
  • the lubricating oil 60 that flows out from the gap 100 has a higher temperature than the lubricating oil 60 that is cooled through the flow path sandwiched between the sealed container 2 and the partition member 71. Therefore, if the flow rate of the lubricating oil 60 flowing out from the gap 100 is large, the cooling effect of the lubricating oil 60 supplied from the lubricating oil suction port 8 is impaired, so the flow rate needs to be limited.
  • the gap 100 is a flow path for limiting the flow rate of the lubricating oil 60 flowing out from the inner space 61 to the outer space 62 to a small amount. Therefore, while the refrigerant compressor 1 is in operation, the lubricating oil 60 is supplied to the oil supply path little by little from the gap (flow path) 100, but this does not impair the cooling effect of the lubricating oil 60. Further, if the partition member 71 is cup-shaped, the lubricating oil 60 can be stored inside, so this action can be performed effectively, and therefore, the lubricating oil 60 is prevented from being depleted in the oil supply path. In addition, the lubricating oil 60 can be cooled.
  • the gap (flow path) 100 is provided between the partition member 71 and the lower discharge muffler container 52 in the first embodiment, but one compression mechanism section without the lower compression mechanism section 20 is provided. When it has, it is provided between the partition member 71 and the drive shaft 7.
  • FIG. FIG. 2 is a cross-sectional view illustrating a configuration of the refrigerant compressor 1 according to Embodiment 2.
  • the configuration of the refrigerant compressor 1 shown in FIG. 2 will be described mainly with respect to the differences from the refrigerant compressor 1 shown in FIG.
  • the outer space 62 divided by the partition member 71 is connected to the vane back pressure chamber 14 of the upper compression mechanism unit 10 and the lower compression mechanism unit 20 via the connection channel 72. 24 is in communication.
  • the connecting flow path 72 communicates from the outer space 62 to the vane back pressure chamber 24 of the lower compression mechanism portion 20, and further passes through the intermediate partition member 30 from the vane back pressure chamber 24 to the upper compression mechanism portion 10. It is formed by an independent flow path communicating with the vane back pressure chamber 14. Further, the opening portions of the vane back pressure chambers 14, 24 communicating with the vane back pressure chambers 14, 24 and the inside of the sealed container 2 are closed by sealing materials 17, 27. Furthermore, a heat radiating fin 91 is provided on the outer wall surface of the lubricating oil reservoir 65 of the sealed container 2. In the figure, 15 and 25 are vanes, and 16 and 26 are springs.
  • the lubricating oil supplied to the sliding portions of the vanes 15 and 25 is also cooled. Further, the heat radiation of the lubricating oil 60 is further promoted by the heat radiation fins 91 installed on the outer wall surface of the lubricating oil reservoir 65 of the sealed container 2. Therefore, according to the second embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating a configuration of the refrigerant compressor 1 according to Embodiment 3.
  • a hollow shape 92 is provided at the bottom of the sealed container 2 in the vicinity of the lubricating oil inlet 8.
  • the lower end portion of the drive shaft 7 is disposed inside the hollow shape 92.
  • the refrigerant compressor 1 is surrounded by a heat insulating enclosure 86 so as to avoid the hollow shape 92. That is, the hollow shape 92 is exposed to the outside from the heat insulating enclosure 86.
  • the lubricating oil suction port 8 at the lower end of the drive shaft 7 is provided with an oil cap 89 that assists the centrifugal pump action of sucking up the lubricating oil 60 using the rotation of the drive shaft 7, and the oil cap 89 is surrounded by a hollow shape 92. It is arranged so that it is located in the space.
  • a communication port 78 that communicates with the internal space of the sealed container 2 is provided at the upper end of the lubricating oil passage 77 of the drive shaft 7 that is hollow. Of the lubricating oil 60 sucked up by the oil cap 89, most of the lubricating oil 60 that has not been supplied with differential pressure to each sliding portion is returned again to the lubricating oil reservoir 65 of the sealed container 2 through the communication port 78.
  • the concave shape 92 is exposed outside the heat insulating enclosure 86 that is forced convection by the fan 101, so that the lubricating oil 60 accumulated in the concave shape 92 is effectively removed. Cooling. Further, the installation of the oil cap 89 increases the flow rate of the lubricating oil 60 toward the lubricating oil suction port 8, so that the heat transfer of the lubricating oil 60 is promoted. Therefore, according to the third embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
  • a plurality of lubricating oil relief holes 74 that communicate the inner space 61 and the outer space 62 in the radial direction are provided in the lower part of the side surface of the partition member 73 formed in a cup shape.
  • the cross-sectional area and the number of the lubricating oil relief holes 74 are determined so that the flow resistance at the lubricating oil relief holes 74 is sufficiently larger than the resistance of the flow path sandwiched between the partition member 73 and the sealed container 2. It is assumed that the flow rate of the lubricating oil 60 passing through the lubricating oil relief hole 74 is limited.
  • the lubricating oil relief hole 74 is provided in the lower part of the side surface of the cup-shaped partition member 73, so that even when the oil level height of the lubricating oil 60 is lowered, the internal space 61 is provided. Since the lubricating oil 60 is accumulated, the lubricating oil 60 in the outer space 62 can be prevented from being depleted. Further, even when the internal space 61 and the external space 62 are communicated with each other by the lubricating oil escape hole 74 as described above, the lubricating oil relief hole 74 is disposed sufficiently away from the lubricating oil suction port 8, and the lubricating oil escape is performed.
  • the cooling effect of the lubricating oil 60 is hardly lowered. Therefore, according to the third embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
  • FIG. 4 is a cross-sectional view illustrating a configuration of the refrigerant compressor 1 according to Embodiment 4.
  • the configuration of the refrigerant compressor 1 shown in FIG. 4 will be mainly described with respect to portions different from the refrigerant compressor 1 shown in FIG.
  • the heat radiation fins 93 are provided on the outer wall surface of the recess 92.
  • the cooling effect of the lubricating oil 60 accumulated in the hollow shape 92 is further promoted by providing the heat sink fins 93 in the hollow shape 92. Therefore, according to the fourth embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the third embodiment.
  • FIG. 5 is a cross-sectional view showing the configuration of the refrigerant compressor 1 according to the fifth embodiment.
  • the configuration of the refrigerant compressor 1 shown in FIG. 5 will be mainly described with respect to the differences from the refrigerant compressor 1 shown in FIG.
  • the support leg 83 is in close contact with the bottom of the hermetic container 2 so as to cover the vicinity of the lubricating oil inlet 8, and the heat radiation fin 84 is provided at the tip of the support leg 83. Further, the heat dissipating fins 84 are disposed outside the heat insulating enclosure 87.
  • the sealed container 2 is composed of two members, an upper container 2a and a lower container 2b.
  • FIG. 6 is an enlarged view of the vicinity of the bottom of the lower container 2b of FIG.
  • the inner wall of the lower container 2b has an uneven shape.
  • the lubricating oil 60 in the vicinity of the lubricating oil inlet 8 is used by utilizing heat transfer to the support legs 83 provided with the heat dissipating fins 84 disposed outside the heat insulating enclosure 87. Is further cooled. Furthermore, the inner wall surface of the lower container 2b of the oil supply path to the lubricating oil suction port 8 is formed into an uneven shape, thereby promoting the turbulent flow of the lubricating oil 60 and promoting heat transfer. Therefore, according to the fifth embodiment, it is possible to further reduce the heat loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
  • such a cup-shaped lower container 2b is manufactured by drawing, and is welded and fixed to the upper container 2a by welding. Therefore, as in the refrigerant compressor 1 according to the fifth embodiment, in order to make the inner wall of the lower container 2b have an uneven shape, for example, a drawing process may be performed using a plate material whose surface has an uneven shape in advance.
  • FIG. 7 is a cross-sectional view illustrating a configuration of the refrigerant compressor 1 according to Embodiment 6.
  • the configuration of the refrigerant compressor 1 shown in FIG. 7 will be mainly described with respect to portions different from the refrigerant compressor 1 shown in FIG.
  • a heat radiating fin 88 is installed at the bottom of the sealed container 2.
  • the refrigerant compressor 1 is surrounded by a heat insulating enclosure 86 so as to avoid the heat radiation fins 88.
  • the lubricating oil 60 in the vicinity of the lubricating oil inlet 8 is further cooled by the heat dissipating fins 88 exposed to the outside of the heat insulating enclosure 86 that is forced convection by the fan 101. . Therefore, according to the sixth embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
  • FIG. FIG. 8 is a cross-sectional view illustrating a configuration of the refrigerant compressor 1 according to Embodiment 7.
  • the configuration of the refrigerant compressor 1 shown in FIG. 8 will be described mainly with respect to the differences from the refrigerant compressor 1 shown in FIG.
  • the upper end of the partition member 76 has a height near the oil level of the lubricating oil 60.
  • the height of the oil level of the lubricating oil 60 is controlled by a control device (not shown) controlling the compressor inflow amount of the lubricating oil 60 based on a detection signal from an oil level gauge (not shown).
  • FIG. 9 is a cross-sectional view of the AA cross section of the refrigerant compressor 1 shown in FIG.
  • the clearance between the cylinder 21 and the sealed container 2 is reduced by the circumferential range 95 in the vicinity of the vane 25 storage portion and the suction port 28, and the other circumferential range.
  • the gap is increased.
  • the cup-shaped partition member 76 has a shape that avoids the circumferential range 95 so as not to interfere with the arrangement of the compression mechanism portion. That is, the part of the partition member 76 in the range 95 is cut off. For this reason, the vane back pressure chamber 24 communicates with the outer space 62.
  • the upper compression mechanism unit 10 has the same configuration.
  • a plurality of lubricating oil relief holes 74 that communicate the inner space 61 and the outer space 62 in the radial direction are provided in the lower part of the side surface of the partition member 73.
  • the lubricating oil supplied to the sliding portions of the vanes 15 and 25 is also cooled. Furthermore, since the upper end of the partition member 76 is set to a height near the oil level of the lubricating oil 60, heat transfer from the outer space 62 to the inner space 61 is suppressed, and transmission through the oil supply path to the lubricating oil suction port 8 is suppressed. The heat area can be increased. For this reason, the cooling effect of the lubricating oil 60 is increased. Therefore, according to the seventh embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
  • FIG. 10 is a cross-sectional view illustrating a configuration of the refrigerant compressor 1 according to Embodiment 8.
  • the configuration of the refrigerant compressor 1 shown in FIG. 10 will be mainly described with respect to portions different from the refrigerant compressor 1 shown in FIG.
  • a heat insulating material 97 such as a quinol carbon fiber is wound around the entire body of the compressor for heat insulation.
  • the heat insulating material 97 is wound only around the upper region 98 and the suction muffler 5 of the hermetic container 1 and corresponds to the periphery of the partition member 71 (lubricating oil reservoir 65).
  • the heat insulating material 97 is not wound around the lower region 99.
  • the lubricating oil 60 in the vicinity of the lubricating oil suction port 8 is cooled by promoting heat dissipation in the lower region 99 while maintaining heat insulation in the upper region 98. Therefore, according to the eighth embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
  • the cooling effect of the lubricating oil 60 can be increased.
  • a material having high thermal conductivity is used for the sealed container 2
  • the cooling effect of the lubricating oil 60 can be increased.
  • a material having low thermal conductivity is used for the partition members 71, 73, 76
  • heat transfer from the inner space 61 to the outer space 62 in the lubricating oil 60 can be suppressed.
  • the cooling effect of 60 can be increased.
  • the two-cylinder compressor has been described.
  • the same effect can be obtained in various refrigerant compressors having different compression mechanisms such as a single cylinder compressor and a two-stage compressor.
  • the rotary piston type refrigerant compressor has been described.
  • the same effect can be obtained in various refrigerant compressors having different compression types, such as a swing piston type and a sliding vane type.
  • FIG. 11 is a cross-sectional view showing a configuration of the refrigerant compressor 1 according to Embodiment 9 of the present invention.
  • the refrigerant compressor 1 according to Embodiment 9 includes a sealed container 2 that is a high-pressure container. Inside the hermetic container 2, a low-stage compression mechanism 110, a high-stage compression mechanism 120, an intermediate partition member 130, a low-stage support member 140, a high-stage support member 150, a low-stage discharge muffler outer container 146, a low-stage discharge A muffler inner container 147, a high-stage discharge muffler container 152, a lubricating oil 60, a drive shaft 7, and a motor 9 are provided.
  • the member 150, the high-stage discharge muffler container 152, and the motor 9 are stacked in order from the lower side in the axial direction of the drive shaft 7.
  • Each of the low-stage support member 140 and the high-stage support member 150 includes a low-stage bearing portion 141 and a high-stage bearing portion 151 that rotatably support the drive shaft 7.
  • a lubricating oil reservoir 65 for storing the lubricating oil 60 is provided at the bottom of the hermetic container 2, and the lubricating oil 60 is disposed at the lower end of the driving shaft 7 at each sliding portion of the compression mechanism and the lower stage of the driving shaft 7.
  • a lubricating oil suction port 8 is provided to supply to the bearing portion 141 and the high stage bearing portion 151.
  • the lubricating oil supply flow path includes a lubricating oil suction port 8, a lubricating oil flow channel 77 extending in the axial direction from the lubricating oil suction port 8 through the drive shaft 7, and a radial direction extending from the lubricating oil flow channel 77.
  • a communication port 78 communicating with each sliding portion of the mechanism portion and the upper bearing portion 41 and the lower bearing portion 51 of the drive shaft 7 is provided.
  • the sealed container 2 has a vertical shape having end plates on the upper and lower surfaces of the cylindrical body.
  • the lower part of the hermetic container 2 is fixed to a bottom plate 82 of the outdoor unit via a support leg 80 and an anti-vibration rubber 81.
  • the refrigerant compressor 1 is entirely surrounded by a heat insulating enclosure 85, and the refrigerant suction pipe 3 and the discharge pipe 4 protrude from the heat insulating enclosure 85.
  • a fan 101 that forcibly circulates air in the external space is provided outside the heat insulating enclosure 85.
  • the low-stage compression mechanism 110 and the high-stage compression mechanism 120 are provided with cylinders 111 and 121 and rotary pistons 112 and 122, respectively.
  • the low-stage compression mechanism 110 is stacked such that the cylinder 111 is sandwiched between the low-stage support member 140 and the intermediate partition member 130.
  • the high-stage compression mechanism 120 is stacked such that the cylinder 121 is sandwiched between the high-stage support member 150 and the intermediate partition member 130.
  • the rotary pistons 112 and 122 are respectively attached to the eccentric portions of the drive shaft 7, and perform eccentric rotational motion by the rotation of the drive shaft 7 driven to rotate by the motor 9 inside the corresponding cylinders 11 and 21, respectively. As a result, the refrigerant is sucked, and the sucked refrigerant is compressed and discharged.
  • the low stage discharge muffler outer container 146 is provided with an injection inlet 160 for introducing an injection refrigerant.
  • the injection refrigerant introduction pipe passes through the sealed container 2 and is connected to the low-stage discharge muffler outer container 146.
  • the low-stage discharge muffler inner container 147 is provided with a communication port 145 for introducing an injection refrigerant therein.
  • the flow of the refrigerant will be described.
  • the low-pressure refrigerant sucked from the suction pipe 3 is first sucked into the cylinder 111 of the low-stage compression mechanism 110 via the suction muffler 5 and the cylinder suction pipe 6.
  • the refrigerant compressed to the intermediate pressure by the low-stage compression mechanism 110 is discharged from the low-stage discharge port 144 into the low-stage discharge muffler inner container 147 by opening the low-stage discharge valve 143.
  • the refrigerant that has flowed in from the injection inlet 160 passes through the gap space 148 between the low-stage discharge muffler outer container 146 and the low-stage discharge muffler inner container 147 and heads for the communication port 145.
  • the injection refrigerant is heated by the oil accumulated in the inner space 61 via the low-stage discharge muffler outer container 147.
  • the heated injection refrigerant flows into the low-stage discharge muffler inner container 147 through the communication port 145.
  • the refrigerant flowing in from the communication port 145 and the refrigerant compressed by the low-stage compression mechanism 110 and discharged from the low-stage discharge port 144 are mixed in the low-stage discharge muffler inner container 147, and the low-stage support member 140, the high-stage compression mechanism 120 is sucked through the intermediate connection flow path 131 that penetrates the low-stage cylinder 111 and the intermediate partition member 130.
  • the refrigerant compressed to a high pressure by the high-stage compression mechanism 120 is discharged from the high-stage discharge port 154 into the high-stage discharge muffler container 152 by opening the high-stage discharge valve 153, and from the communication port 155 to the inside of the sealed container 2. It is discharged into the upper space.
  • the refrigerant compressor 1 further includes a partition member 71 that divides the lubricating oil 60 stored at the bottom of the hermetic container 2 into an inner space 61 and an outer space 62.
  • the shape of the partition member 71 is not particularly limited, but it is preferable to form the partition member 71 in a cup shape having a through hole at the bottom.
  • the main flow of the oil supply path toward the lubricating oil intake port 8 is formed by a gap sandwiched between the sealed container 2 and the partition member 71.
  • the partition member 71 is provided with a through hole 71 a that communicates with the lubricating oil suction port 8.
  • the operation of the refrigerant compressor 1 according to the ninth embodiment will be described.
  • electric power is supplied to the motor 9 and the motor 9 is driven.
  • the drive shaft 7 rotates, and the refrigerant passes through the suction muffler 5 from the suction pipe 3 and is sucked into the low-stage compression mechanism 110.
  • the refrigerant sucked into the low-stage compression mechanism unit 110 is compressed from a low pressure to an intermediate pressure and mixed with the refrigerant flowing in from the injection inlet 160, and then the mixed refrigerant passes through the intermediate connection flow path 131 and then the high-stage compression mechanism unit. 120 is inhaled.
  • the refrigerant sucked into the high-stage compression mechanism 120 is compressed from an intermediate pressure to a high pressure and is discharged into the sealed container 2.
  • the refrigerant discharged to the inside of the sealed container 2 is discharged from the discharge pipe 4 to the outside of the sealed container 2 through the gaps of the motor 9 (between the rotor and the stator and between the stator and the sealed container 2).
  • the lubricating oil 60 stored at the bottom of the sealed container 2 flows to the lubricating oil suction port 8 through a gap sandwiched between the sealed container 2 and the partition member 71, and the drive shaft is driven by the lubricating oil suction port 8. 7 is taken into the lubricating oil flow path 77 from the lower end of 7. Thereafter, oil is supplied to each sliding portion of the compression mechanism portion by the differential pressure, and flows out into the internal space of the cylinders 111 and 121. Further, the lubricating oil 60 is also supplied to the low-stage bearing portion 141 and the high-stage bearing portion 151 of the drive shaft 7 to prevent the occurrence of problems such as seizure of the compression mechanism portion and the bearing portion. A part of the lubricating oil 60 supplied to the lubricating oil flow path 77 is discharged to the outside of the apparatus together with the refrigerant, but the remaining part is collected in the lubricating oil storage unit 65.
  • the refrigerant compressor 1 according to Embodiment 9 can reduce the heating loss and improve the compressor efficiency in the same manner as the refrigerant compressor 1 according to Embodiment 1.
  • a temperature distribution is generated in the inner space 61 and the outer space 62 of the lubricating oil 60, and the temperature of the lubricating oil 60 is higher in the inner space 61 than in the outer space 62. .
  • the lubricating oil 60 in the inner space 61 can effectively heat the injection refrigerant flowing in the gap space 148 between the low-stage discharge muffler outer container 146 and the low-stage discharge muffler inner container 147.
  • the dryness of the injection refrigerant increases, it becomes easy to uniformly mix the injection refrigerant and the refrigerant compressed by the low stage compression mechanism unit 110 without getting wet, and the injection operation range can be expanded.
  • a two-stage compressor having a configuration in which the low-stage compression mechanism unit is disposed below the high-stage compression mechanism unit has been described.
  • a two-stage compressor having a configuration in which a low-stage compression mechanism section is arranged on the upper side of a high-stage compression mechanism section will be described.
  • FIG. FIG. 12 is a cross-sectional view showing the configuration of the refrigerant compressor 1 according to Embodiment 10 of the present invention.
  • the refrigerant compressor 1 according to Embodiment 10 includes a sealed container 2 that is a high-pressure container. Inside the hermetic container 2, a low-stage compression mechanism 110, a high-stage compression mechanism 120, an intermediate partition member 130, a low-stage support member 140, a high-stage support member 150, a low-stage discharge muffler container 142, and a high-stage discharge muffler A container 152, a lubricating oil 60, a drive shaft 7, and a motor 9 are provided.
  • the refrigerant compressor 1 according to the tenth embodiment includes a high-stage discharge muffler container 152, a high-stage support member 150, a high-stage compression mechanism 120, an intermediate partition member 130, and a low-stage compression.
  • the mechanism unit 110, the low stage support member 140, the low stage discharge muffler container 142, and the motor 9 are stacked in order from the lower side in the axial direction of the drive shaft 7.
  • the injection inlet 160 for introducing the injection refrigerant is provided in the low-stage discharge muffler container 142.
  • the injection refrigerant introduction pipe passes through the sealed container 2 and is connected to the low-stage discharge muffler container 142.
  • a second connection channel 132 is provided through the high stage support member 150, the high stage cylinder 121, the intermediate partition member 130, the low stage cylinder 111, and the low stage support member 140. Therefore, the high-pressure refrigerant compressed by the high-stage compression mechanism 120 is discharged into the high-stage muffler container 152 and then discharged into the upper space of the sealed container 2 through the second connection flow path 132. .
  • the high-stage compression mechanism 120 is disposed below the low-stage compression mechanism 110.
  • the high-temperature and high-pressure refrigerant in the high-stage discharge muffler container 152 is configured to heat the lubricating oil 60.
  • the lubricating oil 60 is partitioned into the inner space 61 and the outer space 62 by the partition member 71, the refrigerant in the high-stage discharge muffler container 152 is changed to the lubricating oil 60 in the outer space 62 toward the lubricating oil suction port 8. The effect of suppressing heat transfer is obtained. Therefore, in the refrigerant compressor 1 according to Embodiment 10, it is possible to reduce the heating loss and improve the compressor efficiency.
  • Embodiments 9 and 10 have described the refrigerant compressor having a configuration in which the intermediate connection channel 131 that communicates the low-stage compression mechanism 110 and the high-stage compression mechanism 120 is inside the hermetic container 2. However, for example, the same effect can be obtained when the intermediate connection channel passes outside the sealed container.
  • Embodiments 1 to 10 the rotary piston type refrigerant compressor has been described. However, for example, the same effect can be obtained in various refrigerant compressors having different compression types, such as a swing piston type and a sliding vane type.

Abstract

A refrigerant compressor is provided with a hermetically sealed container (2) and is also provided, within the hermetically sealed container (2), with a motor (9), compression mechanisms (10, 20) which are driven by a drive shaft (7), a lubricating oil suction opening (8) which is provided at the lower end of the drive shaft (7), and a lubricating oil storage section (65) which is provided at the bottom of the hermetically sealed container (2). The refrigerant compressor is further provided with lubricating oil flow paths (77, 78) provided inside the drive shaft so that the lubricating oil (60) stored in the lubricating oil storage section (65) is supplied from the lubrication oil suction opening (8) to the slide sections of the compression mechanisms and to the bearing sections of the drive shaft. The refrigerant compressor is also provided with a partition member (71) for partitioning the lubricating oil storage section (65) into a space along the inner wall of the hermetically sealed container and a space other than the space along the inner wall. An oil supply path leading to the lubricating oil suction opening is formed by the gap between the partition member (71) and the inner wall of the bottom of the hermetically sealed container (2).

Description

冷媒圧縮機Refrigerant compressor
 本発明は、冷媒圧縮機に関し、特に、冷媒圧縮機の摺動部や駆動軸の軸受部等に供給する潤滑油の冷却構造に関するものである。 The present invention relates to a refrigerant compressor, and more particularly to a cooling structure for lubricating oil supplied to a sliding portion of a refrigerant compressor, a bearing portion of a drive shaft, and the like.
 従来より、冷凍冷蔵庫、空気調和機、ヒートポンプ式給湯機等の冷凍空調装置には、回転式圧縮機を用いた蒸気圧縮式冷凍サイクルが用いられている。また一方では、地球温暖化防止を図る観点等から、蒸気圧縮式冷凍サイクルの省エネルギー化と効率化とが要求されている。 Conventionally, a vapor compression refrigeration cycle using a rotary compressor has been used in a refrigeration and air-conditioning apparatus such as a refrigerator-freezer, an air conditioner, or a heat pump type water heater. On the other hand, from the viewpoint of preventing global warming, there is a demand for energy saving and efficiency improvement of the vapor compression refrigeration cycle.
 従来の冷媒圧縮機は、高圧の密閉容器の内部に、吸入した冷媒を低圧から高圧まで圧縮する圧縮機構と、圧縮機構を駆動するモーターと、密閉容器の底部に貯留された高温の潤滑油を備える。貯留された潤滑油は、圧縮機の駆動に伴って圧縮機構の駆動軸下端に設けた潤滑油吸入口を通って各駆動部へと差圧給油され、圧縮機構のシリンダー内部空間へと流出する。 In a conventional refrigerant compressor, a compression mechanism that compresses sucked refrigerant from a low pressure to a high pressure, a motor that drives the compression mechanism, and high-temperature lubricating oil stored in the bottom of the sealed container are contained in a high-pressure sealed container. Prepare. As the compressor is driven, the stored lubricating oil is supplied to each drive section through a lubricating oil suction port provided at the lower end of the driving shaft of the compression mechanism, and flows out into the cylinder internal space of the compression mechanism. .
 このとき、高温の潤滑油がシリンダー内部空間の冷媒と混合することで、シリンダー内部の冷媒を加熱するため、加熱損失が生じて圧縮機効率が低下する問題がある。 At this time, since the high-temperature lubricating oil is mixed with the refrigerant in the internal space of the cylinder to heat the refrigerant in the cylinder, there is a problem in that heating loss occurs and the compressor efficiency decreases.
 逆に、圧縮機構へ給油される潤滑油を冷却することで、加熱損失を低減して圧縮機効率を改善する効果がある。 Conversely, cooling the lubricating oil supplied to the compression mechanism has the effect of reducing the heating loss and improving the compressor efficiency.
 このような潤滑油の冷却に関する従来技術としては、以下に示すようなものがある。
 例えば、特許文献1には、潤滑油を流通・冷却させる導油兼冷却管を密閉容器の外部に設置して、一端を軸受摺動部へ、他端を密閉容器内の潤滑油貯留部に連通させるようにした冷媒圧縮機について記載されている。
 このような構成の冷媒圧縮機では、潤滑油は密閉容器外部の導油兼冷却管を経由して軸受摺動部へ給油されている。このため、軸受摺動部へ給油される潤滑油を冷却して、加熱損失を低減して圧縮機効率を改善することができる。
Examples of conventional techniques relating to such cooling of the lubricating oil include the following.
For example, in Patent Document 1, an oil guide / cooling pipe for circulating / cooling lubricating oil is installed outside a sealed container, and one end is a bearing sliding part and the other end is a lubricating oil storage part in the sealed container. It describes a refrigerant compressor adapted to communicate.
In the refrigerant compressor having such a configuration, the lubricating oil is supplied to the bearing sliding portion via the oil guide / cooling pipe outside the sealed container. For this reason, the lubricating oil supplied to the bearing sliding portion can be cooled to reduce the heating loss and improve the compressor efficiency.
 特許文献2には、冷媒圧縮機の下流側に付設された油分離回収器において、密閉容器の油溜め部の外壁に放熱用フィンを設置し、かつ、差圧により冷媒圧縮機へ返油される潤滑油を、密閉容器の内壁に沿って流すための仕切り部材を油溜め部内に配置する構成について記載されている。この仕切り部材は平板を断面U字形に折曲して形成されている。
 このような構成の油分離回収器では、冷媒圧縮機へ返油される潤滑油が、外側に放熱用フィンを設置した密閉容器の内壁に沿って流れるため、潤滑油の冷却効果を高めることができる。
In Patent Document 2, in an oil separator / collector attached to the downstream side of the refrigerant compressor, a heat dissipating fin is installed on the outer wall of the oil reservoir of the hermetic container, and oil is returned to the refrigerant compressor by the differential pressure. The structure which arrange | positions the partition member for flowing lubricating oil along the inner wall of an airtight container in an oil sump part is described. This partition member is formed by bending a flat plate into a U-shaped cross section.
In the oil separator / collector having such a configuration, the lubricating oil returned to the refrigerant compressor flows along the inner wall of the sealed container having the heat dissipating fins on the outside, so that the cooling effect of the lubricating oil can be enhanced. it can.
 また、特許文献3には、インジェクション対応二段圧縮ロータリ圧縮機が提案されている。この二段圧縮機は、中間圧インジェクション冷媒と密閉容器の内部または外面部との間において、中間圧インジェクション冷媒が吸熱する熱交換を促進する手段を備えるものである。
 この構成によれば、インジェクション冷媒によって、高段側圧縮機構部の吐出ガスの熱および圧縮機内で発生する摺動損失やモータ損失による損失熱を吸熱するため、圧縮機全体を冷却することできるとされている。
Patent Document 3 proposes an injection-compatible two-stage compression rotary compressor. This two-stage compressor is provided with means for promoting heat exchange between the intermediate pressure injection refrigerant and the inside or the outer surface of the sealed container so that the intermediate pressure injection refrigerant absorbs heat.
According to this configuration, the injection refrigerant absorbs the heat of the discharge gas of the high-stage compression mechanism and the heat loss due to the sliding loss and motor loss generated in the compressor, so that the entire compressor can be cooled. Has been.
特開平3-175171号公報(第6図)Japanese Patent Laid-Open No. 3-175171 (FIG. 6) 特開平10-220380号公報(図6)Japanese Patent Laid-Open No. 10-220380 (FIG. 6) 特開2008-248865号公報(図8)Japanese Patent Laying-Open No. 2008-248865 (FIG. 8)
 特許文献1に記載された冷媒圧縮機では、密閉容器内の潤滑油貯留部と軸受摺動部とを連通する導油兼冷却管を、一旦、密閉容器の外部へ引き出して設置する必要がある。従って、このような構成の冷媒圧縮機では、構造が複雑化して、かつ、省スペースに適さない問題がある。一方、特許文献2は冷媒圧縮機内の潤滑油の供給構造に関するものではない。また、二段圧縮機では、インジェクション運転範囲を拡大するために、冷媒が湿らないように低段側圧縮機構部から吐出された冷媒とインジェクション冷媒とを均一に混合することが必要になる。しかし、特許文献3に記載された二段圧縮機では、二相状態のインジェクション冷媒を直接、低段側吐出マフラー室に注入するため、冷媒が湿らないように低段側圧縮機構部から吐出された冷媒とインジェクション冷媒とを均一に混合させるには問題がある。 In the refrigerant compressor described in Patent Document 1, it is necessary to once install an oil guide / cooling pipe that communicates between the lubricating oil reservoir in the sealed container and the bearing sliding part, outside the sealed container. . Therefore, the refrigerant compressor having such a configuration has a problem that the structure is complicated and is not suitable for space saving. On the other hand, Patent Document 2 does not relate to a lubricating oil supply structure in the refrigerant compressor. In the two-stage compressor, in order to expand the injection operation range, it is necessary to uniformly mix the refrigerant discharged from the low-stage compression mechanism and the injection refrigerant so that the refrigerant does not get wet. However, in the two-stage compressor described in Patent Document 3, since the two-phase injection refrigerant is directly injected into the low-stage discharge muffler chamber, the refrigerant is discharged from the low-stage compression mechanism so that the refrigerant does not get wet. There is a problem in uniformly mixing the refrigerant and the injection refrigerant.
 本発明は、上記のような課題に鑑みてなされたもので、簡易な構造で、圧縮機構部へ給油される潤滑油の温度を下げることで、加熱損失を低減して圧縮機効率の改善を図った冷媒圧縮機を提供することにある。
 また、二段圧縮機にも適用できる簡単な潤滑油冷却構造を有する冷媒圧縮機を提供することを目的としている。
The present invention has been made in view of the problems as described above. By reducing the temperature of the lubricating oil supplied to the compression mechanism with a simple structure, the heating loss is reduced and the compressor efficiency is improved. The purpose is to provide a refrigerant compressor.
It is another object of the present invention to provide a refrigerant compressor having a simple lubricating oil cooling structure that can be applied to a two-stage compressor.
 本発明に係る冷媒圧縮機は、密閉容器と、この密閉容器の内部に、モーターと、駆動軸によって駆動される圧縮機構部と、前記駆動軸の下端に設けられた潤滑油吸入口と、前記密閉容器の底部に設けられた潤滑油貯留部とを備え、
 前記潤滑油貯留部に貯留される潤滑油が、前記潤滑油吸入口から前記圧縮機構部の摺動部および前記駆動軸の軸受部に供給されるように、前記駆動軸の内部に設けられた潤滑油流路とを備える冷媒圧縮機において、
 前記潤滑油貯留部を前記密閉容器の内壁に沿った空間とそれ以外の空間とに区分する仕切り部材を設置し、
 前記潤滑油吸入口への給油経路は、前記仕切り部材と前記密閉容器の底部の内壁とで挟まれた隙間によって形成されていることを特徴とするものである。
A refrigerant compressor according to the present invention includes a sealed container, a motor, a compression mechanism driven by a drive shaft, a lubricating oil suction port provided at a lower end of the drive shaft, A lubricating oil reservoir provided at the bottom of the sealed container,
The lubricating oil stored in the lubricating oil reservoir is provided inside the drive shaft so that the lubricating oil is supplied from the lubricating oil suction port to the sliding portion of the compression mechanism and the bearing portion of the drive shaft. In a refrigerant compressor comprising a lubricating oil flow path,
Installing a partition member that divides the lubricating oil reservoir into a space along the inner wall of the sealed container and a space other than the space;
The oil supply path to the lubricating oil suction port is formed by a gap sandwiched between the partition member and the inner wall of the bottom of the sealed container.
 本発明に係る冷媒圧縮機は、仕切り部材によって潤滑油中の内壁に沿った空間とそれ以外の空間とで温度分布をもたせ、潤滑油吸入口へ向かう仕切り部材外側の潤滑油を密閉容器の放熱を積極的に利用することで冷却することができる。このため、省スペースで、かつ簡易な構造で、圧縮機構へ給油される潤滑油の温度を下げることができ、加熱損失を低減して圧縮機効率を改善できる。 In the refrigerant compressor according to the present invention, the partition member has a temperature distribution in the space along the inner wall of the lubricant and the other space by the partition member, and the lubricant outside the partition member toward the lubricant inlet is radiated from the sealed container. It can be cooled by actively using. For this reason, it is possible to reduce the temperature of the lubricating oil supplied to the compression mechanism with a space-saving and simple structure, thereby reducing the heating loss and improving the compressor efficiency.
本発明の実施の形態1に係る冷媒圧縮機の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the refrigerant compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷媒圧縮機の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the refrigerant compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷媒圧縮機の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the refrigerant compressor which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷媒圧縮機の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the refrigerant compressor which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る冷媒圧縮機の密閉容器の底部近傍の拡大図である。It is an enlarged view of the bottom part vicinity of the airtight container of the refrigerant compressor which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る冷媒圧縮機の設置方法に関する説明図である。It is explanatory drawing regarding the installation method of the refrigerant compressor which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る冷媒圧縮機の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the refrigerant compressor which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る冷媒圧縮機の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the refrigerant compressor which concerns on Embodiment 7 of this invention. 図8のA-A断面図である。FIG. 9 is a cross-sectional view taken along the line AA in FIG. 本発明の実施の形態8に係る冷媒圧縮機の断熱材の巻き方を示す図である。It is a figure which shows how to wind the heat insulating material of the refrigerant compressor which concerns on Embodiment 8 of this invention. 本発明の実施の形態9に係る冷媒圧縮機の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the refrigerant compressor which concerns on Embodiment 9 of this invention. 本発明の実施の形態10に係る冷媒圧縮機の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the refrigerant compressor which concerns on Embodiment 10 of this invention.
 以下、図面に基づき、本発明の実施の形態について説明する。ここでは、冷媒圧縮機として、上側圧縮機構部と下側圧縮機構部の上下2つの圧縮機構部を有する二気筒圧縮機を例にあげて説明するが、本発明はこれに限られるものでないことはいうまでもない。また、参照符号については、図1~図12において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは、明細書の全文において共通することである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, as a refrigerant compressor, a two-cylinder compressor having two upper and lower compression mechanism portions, that is, an upper compression mechanism portion and a lower compression mechanism portion will be described as an example, but the present invention is not limited to this. Needless to say. 1 to 12, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification.
実施の形態1.
 図1は、本発明の実施の形態1に係る冷媒圧縮機1の構成を示す断面図である。図中の黒塗りの矢印は冷媒の流れを、白抜きの矢印は潤滑油60の流れを示す。
 実施の形態1に係る冷媒圧縮機1は、冷媒を高温高圧に圧縮するものであり、高圧容器である密閉容器2を備えている。この密閉容器2の内部に、上側圧縮機構部10、下側圧縮機構部20、中間仕切り部材30、上側支持部材40、下側支持部材50、上側吐出マフラー容器42、下側吐出マフラー容器52、潤滑油60、駆動軸7、モーター9、を備えている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a configuration of a refrigerant compressor 1 according to Embodiment 1 of the present invention. The black arrows in the figure indicate the flow of the refrigerant, and the white arrows indicate the flow of the lubricating oil 60.
A refrigerant compressor 1 according to Embodiment 1 compresses a refrigerant to a high temperature and a high pressure, and includes a sealed container 2 that is a high pressure container. Inside the sealed container 2, an upper compression mechanism unit 10, a lower compression mechanism unit 20, an intermediate partition member 30, an upper support member 40, a lower support member 50, an upper discharge muffler container 42, a lower discharge muffler container 52, Lubricating oil 60, drive shaft 7, and motor 9 are provided.
 下側吐出マフラー容器52と、下側支持部材50と、下側圧縮機構部20と、中間仕切り部材30と、上側圧縮機構部10と、上側支持部材40と、上側吐出マフラー容器42と、モーター9とが、駆動軸7の軸方向の下側から順に積層されている。上側支持部材40と下側支持部材50とはそれぞれ、駆動軸7を回転自在に軸支する上側軸受部41、下側軸受部51を有する。また、密閉容器2の底部に潤滑油60が貯留される潤滑油貯留部65を備え、駆動軸7の下端には、潤滑油60を圧縮機構部の各摺動部および駆動軸7の上側軸受部41、下側軸受部51に供給する潤滑油吸入口8を備えている。潤滑油供給流路は、潤滑油吸入口8と、潤滑油吸入口8から駆動軸7の中を軸長方向に延びる潤滑油流路77と、潤滑油流路77から半径方向に延び、圧縮機構部の各摺動部および駆動軸7の上側軸受部41、下側軸受部51等にそれぞれ連通する連通口78と、を備えている。 Lower discharge muffler container 52, lower support member 50, lower compression mechanism part 20, intermediate partition member 30, upper compression mechanism part 10, upper support member 40, upper discharge muffler container 42, motor 9 are stacked in order from the lower side in the axial direction of the drive shaft 7. Each of the upper support member 40 and the lower support member 50 includes an upper bearing portion 41 and a lower bearing portion 51 that rotatably support the drive shaft 7. Further, a lubricating oil reservoir 65 for storing the lubricating oil 60 is provided at the bottom of the hermetic container 2, and the lubricating oil 60 is disposed at the lower end of the drive shaft 7 at each sliding portion of the compression mechanism and the upper bearing of the drive shaft 7. Lubricating oil intake port 8 for supplying to part 41 and lower bearing part 51 is provided. The lubricating oil supply flow path includes a lubricating oil suction port 8, a lubricating oil flow channel 77 extending in the axial direction from the lubricating oil suction port 8 through the drive shaft 7, and a radial direction extending from the lubricating oil flow channel 77. A communication port 78 communicating with each sliding portion of the mechanism portion and the upper bearing portion 41 and the lower bearing portion 51 of the drive shaft 7 is provided.
 密閉容器2は、筒状胴体の上下面に鏡板を備えた縦型の形状となっている。密閉容器2の下部は支持脚80と防振ゴム81を介して室外機の底板82に固定されている。また、冷媒圧縮機1は全体を断熱囲い85によって囲まれており、冷媒の吸入管3と吐出管4は断熱囲い85から突出している。断熱囲い85の外部には、外部空間での空気を強制的に循環させるファン101を備えている。 The sealed container 2 has a vertical shape having end plates on the upper and lower surfaces of the cylindrical body. The lower part of the hermetic container 2 is fixed to a bottom plate 82 of the outdoor unit via a support leg 80 and an anti-vibration rubber 81. The refrigerant compressor 1 is entirely surrounded by a heat insulating enclosure 85, and the refrigerant suction pipe 3 and the discharge pipe 4 protrude from the heat insulating enclosure 85. A fan 101 that forcibly circulates air in the external space is provided outside the heat insulating enclosure 85.
 上側圧縮機構部10、下側圧縮機構部20にはそれぞれ、シリンダー11、21、回転ピストン12、22が設けられている。
 上側圧縮機構部10は、シリンダー11が上側支持部材40と中間仕切り部材30との間に挟まれるように積層されている。下側圧縮機構部20は、シリンダー21が下側支持部材50と中間仕切り部材30との間に挟まれるように積層されている。
 回転ピストン12、22はそれぞれ、駆動軸7の偏心部に装着されており、それぞれ対応するシリンダー11、21の内部で、モーター9によって回転駆動される駆動軸7の回転により偏心回転運動を行い、これにより冷媒を吸入し、さらに吸入された冷媒を圧縮して吐出するようになっている。冷媒は、吸入管3から吸入マフラー5、シリンダー吸入管6を経由してそれぞれのシリンダー11、21に吸入される。
The upper compression mechanism unit 10 and the lower compression mechanism unit 20 are provided with cylinders 11 and 21 and rotary pistons 12 and 22, respectively.
The upper compression mechanism unit 10 is stacked such that the cylinder 11 is sandwiched between the upper support member 40 and the intermediate partition member 30. The lower compression mechanism unit 20 is stacked such that the cylinder 21 is sandwiched between the lower support member 50 and the intermediate partition member 30.
The rotary pistons 12 and 22 are respectively mounted on the eccentric portions of the drive shaft 7, and perform eccentric rotational motion by rotation of the drive shaft 7 driven to rotate by the motor 9 inside the corresponding cylinders 11 and 21, respectively. As a result, the refrigerant is sucked, and the sucked refrigerant is compressed and discharged. The refrigerant is sucked into the respective cylinders 11 and 21 from the suction pipe 3 via the suction muffler 5 and the cylinder suction pipe 6.
 上側圧縮機構部10にて圧縮された冷媒は、上側吐出口44から上側吐出バルブ43を開いて上側吐出マフラー容器42内に吐出され、さらに上側吐出マフラー容器42に設けられた開口45から密閉容器2内の上部空間に吐出される。
 また、下側圧縮機構部20にて圧縮された冷媒は、下側吐出口54から下側吐出バルブ53を開いて下側吐出マフラー容器52内に吐出され、さらに下側支持部材50、中間仕切り部材30、上側支持部材40を貫通する連結流路31を通って上側吐出マフラー容器42内に吐出され、上側圧縮機構部10から吐出される吐出冷媒と合流して上記開口45から密閉容器2内の上部空間に吐出される。
The refrigerant compressed by the upper compression mechanism unit 10 is discharged from the upper discharge port 44 into the upper discharge muffler container 42 by opening the upper discharge valve 43, and is further sealed from an opening 45 provided in the upper discharge muffler container 42. 2 is discharged into the upper space.
Further, the refrigerant compressed by the lower compression mechanism unit 20 is discharged from the lower discharge port 54 into the lower discharge muffler container 52 by opening the lower discharge valve 53, and further, the lower support member 50, the intermediate partition The refrigerant is discharged into the upper discharge muffler container 42 through the connection flow path 31 penetrating the member 30 and the upper support member 40, and merged with the discharge refrigerant discharged from the upper compression mechanism unit 10 through the opening 45 in the sealed container 2. It is discharged into the upper space.
 そしてさらに、この冷媒圧縮機1は、密閉容器2の底部に貯留された潤滑油60中を内側空間61と外側空間62とに区分するような仕切り部材71を備えている。仕切り部材71の形状は特に限定するものではないが、底部に貫通穴を有するカップ形状に形成することが望ましい。ここで、潤滑油吸入口8へ向かう給油経路の主流は、密閉容器2と仕切り部材71とに挟まれた隙間によって形成されている。なお、仕切り部材71および下側吐出マフラー容器52には潤滑油吸入口8に連通する貫通穴71a、52aがそれぞれ設けられている。 The refrigerant compressor 1 further includes a partition member 71 that divides the lubricating oil 60 stored at the bottom of the hermetic container 2 into an inner space 61 and an outer space 62. The shape of the partition member 71 is not particularly limited, but it is preferable to form the partition member 71 in a cup shape having a through hole at the bottom. Here, the main flow of the oil supply path toward the lubricating oil intake port 8 is formed by a gap sandwiched between the sealed container 2 and the partition member 71. The partition member 71 and the lower discharge muffler container 52 are provided with through holes 71a and 52a communicating with the lubricating oil suction port 8, respectively.
 次に、実施の形態1の冷媒圧縮機1の動作について説明する。
 まず、電力がモーター9に供給され、モーター9が駆動される。これにより、駆動軸7が回転し、冷媒が吸入管3から吸入マフラー5を通過して上側圧縮機構部10と下側圧縮機構部20に吸入される。上側圧縮機構部10と下側圧縮機構部20に吸入された冷媒は低圧から高圧まで圧縮され、密閉容器2の内部に吐出される。密閉容器2の内部に吐出された冷媒は、モーター9の隙間(ローターとステーター間およびステーターと密閉容器2間の隙間)を通って吐出管4から密閉容器2の外部に吐出される。冷媒圧縮機1から吐出された冷媒は、図示しない凝縮器、膨張機構、蒸発器を経て、再び吸入管3から冷媒圧縮機1に吸入される。これにより、冷媒圧縮機1、凝縮器、膨張機構、蒸発器により冷凍サイクルが形成される。
Next, operation | movement of the refrigerant compressor 1 of Embodiment 1 is demonstrated.
First, electric power is supplied to the motor 9 and the motor 9 is driven. As a result, the drive shaft 7 rotates, and the refrigerant passes through the suction muffler 5 from the suction pipe 3 and is sucked into the upper compression mechanism unit 10 and the lower compression mechanism unit 20. The refrigerant sucked into the upper compression mechanism unit 10 and the lower compression mechanism unit 20 is compressed from a low pressure to a high pressure and is discharged into the sealed container 2. The refrigerant discharged to the inside of the sealed container 2 is discharged from the discharge pipe 4 to the outside of the sealed container 2 through the gaps of the motor 9 (between the rotor and the stator and between the stator and the sealed container 2). The refrigerant discharged from the refrigerant compressor 1 passes through a condenser, an expansion mechanism, and an evaporator (not shown) and is again sucked into the refrigerant compressor 1 from the suction pipe 3. Thereby, a refrigerating cycle is formed by refrigerant compressor 1, a condenser, an expansion mechanism, and an evaporator.
 この動作中、密閉容器2の底部に貯留された潤滑油60は、密閉容器2と仕切り部材71に挟まれた隙間を通って潤滑油吸入口8へと流れ、潤滑油吸入口8によって駆動軸7の下端から潤滑油流路77に取り込まれる。その後、差圧によって圧縮機構部の各摺動部に給油され、シリンダー11、21の内部空間へと流出する。また、潤滑油60は駆動軸7の上側軸受部41、下側軸受部51にも給油され、圧縮機構部や軸受部の焼き付きなどの不具合が発生するのを防ぐ。また、潤滑油流路77に供給された潤滑油60の一部は冷媒と共に機外に排出されるが、残りの部分は潤滑油貯留部65に回収される。 During this operation, the lubricating oil 60 stored at the bottom of the sealed container 2 flows to the lubricating oil suction port 8 through a gap sandwiched between the sealed container 2 and the partition member 71, and the drive shaft is driven by the lubricating oil suction port 8. 7 is taken into the lubricating oil flow path 77 from the lower end of 7. Thereafter, oil is supplied to each sliding portion of the compression mechanism portion by the differential pressure, and flows out into the internal space of the cylinders 11 and 21. Further, the lubricating oil 60 is also supplied to the upper bearing portion 41 and the lower bearing portion 51 of the drive shaft 7, thereby preventing problems such as seizure of the compression mechanism portion and the bearing portion. A part of the lubricating oil 60 supplied to the lubricating oil flow path 77 is discharged to the outside of the apparatus together with the refrigerant, but the remaining part is collected in the lubricating oil storage unit 65.
 このように、潤滑油吸入口8へ向かう潤滑油60は、密閉容器2の内壁に沿って流れるため、密閉容器2の放熱を積極的に利用して冷却する。これにより、潤滑油60の内側空間61と外側空間62で温度分布ができ、潤滑油吸入口8へ向かう潤滑油60だけを優先的に冷却する。従って、実施の形態1に係る冷媒圧縮機1では、加熱損失を低減して圧縮機効率を改善することができる。 Thus, since the lubricating oil 60 directed to the lubricating oil suction port 8 flows along the inner wall of the sealed container 2, it is cooled by actively utilizing the heat radiation of the sealed container 2. Thereby, temperature distribution is made in the inner space 61 and the outer space 62 of the lubricating oil 60, and only the lubricating oil 60 heading toward the lubricating oil suction port 8 is preferentially cooled. Therefore, in the refrigerant compressor 1 according to Embodiment 1, it is possible to reduce the heating loss and improve the compressor efficiency.
 また、実施の形態1に係る冷媒圧縮機1では、仕切り部材71と下側吐出マフラー容器52との間に微小な隙間100を備えている。従って、この隙間100を通って、内側空間61の潤滑油60が外側空間62へ流れ出す。 In the refrigerant compressor 1 according to the first embodiment, the minute gap 100 is provided between the partition member 71 and the lower discharge muffler container 52. Accordingly, the lubricating oil 60 in the inner space 61 flows out to the outer space 62 through the gap 100.
 このため、潤滑油60の油面高さが下がった場合でも、内側空間61に溜まった潤滑油60が隙間100を通って外側空間62へ流れ出すため、外側空間62の潤滑油60が枯渇するのを防止することができる。しかし、隙間100から流れ出す潤滑油60は、密閉容器2と仕切り部材71で挟まれた流路を通って冷却された潤滑油60に比べて高温となる。従って、隙間100から流れ出す潤滑油60の流量が大きいと、潤滑油吸入口8から給油される潤滑油60の冷却効果が損なわれるため、流量を制限する必要がある。つまり、隙間100は内側空間61から外側空間62へ流れ出す潤滑油60の流量を少量に制限するための流路である。従って、冷媒圧縮機1の動作中は、この隙間(流路)100から潤滑油60が少量ずつ給油径路に供給されるが、そのことにより潤滑油60の冷却効果が損なわれることはない。また、仕切り部材71がカップ形状であれば、内側に潤滑油60を溜めておくことができるので、この作用を効果的に行うことができ、従って、給油径路における潤滑油60の枯渇を防止しつつ潤滑油60の冷却を行うことができる。なお、この隙間(流路)100は、実施の形態1では仕切り部材71と下側吐出マフラー容器52との間に設けられているが、下側圧縮機構部20が無い一つの圧縮機構部を有する場合には、仕切り部材71と駆動軸7との間に設けられる。 For this reason, even when the oil surface height of the lubricating oil 60 decreases, the lubricating oil 60 accumulated in the inner space 61 flows out to the outer space 62 through the gap 100, so that the lubricating oil 60 in the outer space 62 is depleted. Can be prevented. However, the lubricating oil 60 that flows out from the gap 100 has a higher temperature than the lubricating oil 60 that is cooled through the flow path sandwiched between the sealed container 2 and the partition member 71. Therefore, if the flow rate of the lubricating oil 60 flowing out from the gap 100 is large, the cooling effect of the lubricating oil 60 supplied from the lubricating oil suction port 8 is impaired, so the flow rate needs to be limited. That is, the gap 100 is a flow path for limiting the flow rate of the lubricating oil 60 flowing out from the inner space 61 to the outer space 62 to a small amount. Therefore, while the refrigerant compressor 1 is in operation, the lubricating oil 60 is supplied to the oil supply path little by little from the gap (flow path) 100, but this does not impair the cooling effect of the lubricating oil 60. Further, if the partition member 71 is cup-shaped, the lubricating oil 60 can be stored inside, so this action can be performed effectively, and therefore, the lubricating oil 60 is prevented from being depleted in the oil supply path. In addition, the lubricating oil 60 can be cooled. The gap (flow path) 100 is provided between the partition member 71 and the lower discharge muffler container 52 in the first embodiment, but one compression mechanism section without the lower compression mechanism section 20 is provided. When it has, it is provided between the partition member 71 and the drive shaft 7.
実施の形態2.
 図2は、実施の形態2に係る冷媒圧縮機1の構成を示す断面図である。
 以下においては、図2に示す冷媒圧縮機1の構成について、図1に示す冷媒圧縮機1と異なる部分について主として説明する。
 実施の形態2に係る冷媒圧縮機1では、仕切り部材71によって区分された外側空間62は、連結流路72を介して上側圧縮機構部10と下側圧縮機構部20のベーン背圧室14、24と連通している。すなわち、連結流路72は、外側空間62から下側圧縮機構部20のベーン背圧室24に連通し、さらにこのベーン背圧室24から中間仕切り部材30を貫通して上側圧縮機構部10のベーン背圧室14に連通する独立した流路により形成されている。また、ベーン背圧室14、24と密閉容器2内部に通じるベーン背圧室14、24の開口部は封止材17、27によって閉じられている。さらに、密閉容器2の潤滑油貯留部65の外側壁面には放熱用フィン91を備えている。なお、図中、15、25はベーン、16、26はばねである。
Embodiment 2. FIG.
FIG. 2 is a cross-sectional view illustrating a configuration of the refrigerant compressor 1 according to Embodiment 2.
In the following, the configuration of the refrigerant compressor 1 shown in FIG. 2 will be described mainly with respect to the differences from the refrigerant compressor 1 shown in FIG.
In the refrigerant compressor 1 according to the second embodiment, the outer space 62 divided by the partition member 71 is connected to the vane back pressure chamber 14 of the upper compression mechanism unit 10 and the lower compression mechanism unit 20 via the connection channel 72. 24 is in communication. That is, the connecting flow path 72 communicates from the outer space 62 to the vane back pressure chamber 24 of the lower compression mechanism portion 20, and further passes through the intermediate partition member 30 from the vane back pressure chamber 24 to the upper compression mechanism portion 10. It is formed by an independent flow path communicating with the vane back pressure chamber 14. Further, the opening portions of the vane back pressure chambers 14, 24 communicating with the vane back pressure chambers 14, 24 and the inside of the sealed container 2 are closed by sealing materials 17, 27. Furthermore, a heat radiating fin 91 is provided on the outer wall surface of the lubricating oil reservoir 65 of the sealed container 2. In the figure, 15 and 25 are vanes, and 16 and 26 are springs.
 実施の形態2に係る冷媒圧縮機1では、潤滑油吸入口8へ向かう潤滑油60に加えて、ベーン15、25の摺動部へ給油される潤滑油も冷却する。さらに、密閉容器2の潤滑油貯留部65外側壁面に設置した放熱用フィン91によって、潤滑油60の放熱をより一層促進する。
 従って、実施の形態2によれば、実施の形態1に係る冷媒圧縮機1よりもさらに加熱損失を低減して圧縮機効率を改善することができる。
In the refrigerant compressor 1 according to the second embodiment, in addition to the lubricating oil 60 directed to the lubricating oil suction port 8, the lubricating oil supplied to the sliding portions of the vanes 15 and 25 is also cooled. Further, the heat radiation of the lubricating oil 60 is further promoted by the heat radiation fins 91 installed on the outer wall surface of the lubricating oil reservoir 65 of the sealed container 2.
Therefore, according to the second embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
実施の形態3.
 図3は、実施の形態3に係る冷媒圧縮機1の構成を示す断面図である。
 以下においては、図3に示す冷媒圧縮機1の構成について、図1に示す冷媒圧縮機1と異なる部分について主として説明する。
 実施の形態3に係る冷媒圧縮機1では、潤滑油吸入口8近傍の密閉容器2の底部に窪み形状92を備えている。この窪み形状92の内側に駆動軸7の下端部が配設されている。さらに、冷媒圧縮機1は断熱囲い86によって、窪み形状92を避けるように囲まれている。つまり、窪み形状92は断熱囲い86より外部に露出している。
Embodiment 3 FIG.
FIG. 3 is a cross-sectional view illustrating a configuration of the refrigerant compressor 1 according to Embodiment 3.
In the following, the configuration of the refrigerant compressor 1 shown in FIG. 3 will be described mainly with respect to the differences from the refrigerant compressor 1 shown in FIG.
In the refrigerant compressor 1 according to the third embodiment, a hollow shape 92 is provided at the bottom of the sealed container 2 in the vicinity of the lubricating oil inlet 8. The lower end portion of the drive shaft 7 is disposed inside the hollow shape 92. Further, the refrigerant compressor 1 is surrounded by a heat insulating enclosure 86 so as to avoid the hollow shape 92. That is, the hollow shape 92 is exposed to the outside from the heat insulating enclosure 86.
 また、駆動軸7下端の潤滑油吸入口8には、駆動軸7の回転を利用して潤滑油60を吸い上げる遠心ポンプ作用を補助するオイルキャップ89を備え、オイルキャップ89が窪み形状92で囲まれた空間に位置するように配置されている。中空となっている駆動軸7の潤滑油流路77の上端には、密閉容器2の内部空間と連通する連通口78がある。オイルキャップ89によって吸い上げられた潤滑油60のうち、各摺動部に差圧給油されなかった潤滑油60の大部分は、連通口78より再び密閉容器2の潤滑油貯留部65に戻される。
 このため、オイルキャップ89の動力によって、冷媒圧縮機1での潤滑油60の循環量が増える。これによって、潤滑油吸入口8へ向かう潤滑油60の流速が大きくなる。
The lubricating oil suction port 8 at the lower end of the drive shaft 7 is provided with an oil cap 89 that assists the centrifugal pump action of sucking up the lubricating oil 60 using the rotation of the drive shaft 7, and the oil cap 89 is surrounded by a hollow shape 92. It is arranged so that it is located in the space. A communication port 78 that communicates with the internal space of the sealed container 2 is provided at the upper end of the lubricating oil passage 77 of the drive shaft 7 that is hollow. Of the lubricating oil 60 sucked up by the oil cap 89, most of the lubricating oil 60 that has not been supplied with differential pressure to each sliding portion is returned again to the lubricating oil reservoir 65 of the sealed container 2 through the communication port 78.
For this reason, the circulation amount of the lubricating oil 60 in the refrigerant compressor 1 is increased by the power of the oil cap 89. As a result, the flow velocity of the lubricating oil 60 toward the lubricating oil suction port 8 increases.
 実施の形態3に係る冷媒圧縮機1では、ファン101によって強制対流となっている断熱囲い86の外側に窪み形状92が露出することで、窪み形状92に溜まっている潤滑油60を効果的に冷却する。また、オイルキャップ89の設置により潤滑油吸入口8へ向かう潤滑油60の流速が大きくなることで、潤滑油60の熱伝達が促進される。
 従って、実施の形態3によれば、実施の形態1に係る冷媒圧縮機1よりもさらに加熱損失を低減して圧縮機効率を改善することができる。
In the refrigerant compressor 1 according to the third embodiment, the concave shape 92 is exposed outside the heat insulating enclosure 86 that is forced convection by the fan 101, so that the lubricating oil 60 accumulated in the concave shape 92 is effectively removed. Cooling. Further, the installation of the oil cap 89 increases the flow rate of the lubricating oil 60 toward the lubricating oil suction port 8, so that the heat transfer of the lubricating oil 60 is promoted.
Therefore, according to the third embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
 また、実施の形態3に係る冷媒圧縮機1では、カップ形状に形成された仕切り部材73の側面下部に、半径方向に内側空間61と外側空間62を連通する潤滑油逃がし穴74を複数備えている。さらに、潤滑油逃がし穴74での流路抵抗が仕切り部材73と密閉容器2で挟まれた流路の抵抗よりも十分に大きくなるように、潤滑油逃がし穴74の断面積と数を定め、潤滑油逃がし穴74を通る潤滑油60の流量を制限するものとする。 In the refrigerant compressor 1 according to Embodiment 3, a plurality of lubricating oil relief holes 74 that communicate the inner space 61 and the outer space 62 in the radial direction are provided in the lower part of the side surface of the partition member 73 formed in a cup shape. Yes. Further, the cross-sectional area and the number of the lubricating oil relief holes 74 are determined so that the flow resistance at the lubricating oil relief holes 74 is sufficiently larger than the resistance of the flow path sandwiched between the partition member 73 and the sealed container 2. It is assumed that the flow rate of the lubricating oil 60 passing through the lubricating oil relief hole 74 is limited.
 実施の形態3に係る冷媒圧縮機1では、カップ形状の仕切り部材73の側面下部に潤滑油逃がし穴74を設けることで、潤滑油60の油面高さが下がった場合でも、内部空間61には潤滑油60が溜まっているので、外側空間62の潤滑油60が枯渇するのを防止することができる。また、このように、潤滑油逃がし穴74によって内部空間61と外部空間62とを連通した場合でも、潤滑油逃がし穴74を潤滑油吸入口8から十分に離して配置し、かつ、潤滑油逃がし穴74を通る潤滑油60の流量を制限することで、潤滑油60の冷却効果はほとんど低下しない。
 従って、実施の形態3によれば、実施の形態1に係る冷媒圧縮機1よりもさらに加熱損失を低減して圧縮機効率を改善することができる。
In the refrigerant compressor 1 according to the third embodiment, the lubricating oil relief hole 74 is provided in the lower part of the side surface of the cup-shaped partition member 73, so that even when the oil level height of the lubricating oil 60 is lowered, the internal space 61 is provided. Since the lubricating oil 60 is accumulated, the lubricating oil 60 in the outer space 62 can be prevented from being depleted. Further, even when the internal space 61 and the external space 62 are communicated with each other by the lubricating oil escape hole 74 as described above, the lubricating oil relief hole 74 is disposed sufficiently away from the lubricating oil suction port 8, and the lubricating oil escape is performed. By limiting the flow rate of the lubricating oil 60 through the hole 74, the cooling effect of the lubricating oil 60 is hardly lowered.
Therefore, according to the third embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
実施の形態4.
 図4は、実施の形態4に係る冷媒圧縮機1の構成を示す断面図である。
 以下においては、図4に示す冷媒圧縮機1の構成について、図3に示す冷媒圧縮機1と異なる部分について主として説明する。実施の形態4に係る冷媒圧縮機1では、窪み形状92の外側壁面に放熱用フィン93を備える。
Embodiment 4 FIG.
FIG. 4 is a cross-sectional view illustrating a configuration of the refrigerant compressor 1 according to Embodiment 4.
In the following, the configuration of the refrigerant compressor 1 shown in FIG. 4 will be mainly described with respect to portions different from the refrigerant compressor 1 shown in FIG. In the refrigerant compressor 1 according to the fourth embodiment, the heat radiation fins 93 are provided on the outer wall surface of the recess 92.
 実施の形態4に係る冷媒圧縮機1では、窪み形状92に放熱用フィン93を設けることで、窪み形状92に溜まっている潤滑油60の冷却効果をより促進する。
 従って、実施の形態4によれば、実施の形態3に係る冷媒圧縮機1よりもさらに加熱損失を低減して圧縮機効率を改善することができる。
In the refrigerant compressor 1 according to the fourth embodiment, the cooling effect of the lubricating oil 60 accumulated in the hollow shape 92 is further promoted by providing the heat sink fins 93 in the hollow shape 92.
Therefore, according to the fourth embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the third embodiment.
実施の形態5.
 図5は、実施の形態5に係る冷媒圧縮機1の構成を示す断面図である。
 以下においては、図5に示す冷媒圧縮機1の構成について、図1に示す冷媒圧縮機1と異なる部分について主として説明する。実施の形態5に係る冷媒圧縮機1では、支持脚83は潤滑油吸入口8近傍を覆うように密閉容器2の底部と密着しており、支持脚83の先端部には放熱用フィン84が設置され、さらに、放熱用フィン84は断熱囲い87の外側に配置されている。
Embodiment 5 FIG.
FIG. 5 is a cross-sectional view showing the configuration of the refrigerant compressor 1 according to the fifth embodiment.
In the following, the configuration of the refrigerant compressor 1 shown in FIG. 5 will be mainly described with respect to the differences from the refrigerant compressor 1 shown in FIG. In the refrigerant compressor 1 according to the fifth embodiment, the support leg 83 is in close contact with the bottom of the hermetic container 2 so as to cover the vicinity of the lubricating oil inlet 8, and the heat radiation fin 84 is provided at the tip of the support leg 83. Further, the heat dissipating fins 84 are disposed outside the heat insulating enclosure 87.
 また、実施の形態5に係る冷媒圧縮機1では、密閉容器2は上側容器2aと下側容器2bの2つの部材で構成されている。図6は、図5の下側容器2bの底部近傍の拡大図である。実施の形態5に係る冷媒圧縮機1では、下側容器2bの内壁を凹凸形状としている。 In the refrigerant compressor 1 according to the fifth embodiment, the sealed container 2 is composed of two members, an upper container 2a and a lower container 2b. FIG. 6 is an enlarged view of the vicinity of the bottom of the lower container 2b of FIG. In the refrigerant compressor 1 according to Embodiment 5, the inner wall of the lower container 2b has an uneven shape.
 実施の形態5に係る冷媒圧縮機1では、断熱囲い87の外側に配置した放熱用フィン84を備えた支持脚83への伝熱を利用することで、潤滑油吸入口8近傍の潤滑油60をより一層冷却する。さらに、潤滑油吸入口8への給油経路の下側容器2bの内側壁面を凹凸形状とすることで、潤滑油60流れの乱流を促して熱伝達を促進する。
 従って、実施の形態5によれば、実施の形態1に係る冷媒圧縮機1よりもさらに加熱損失を低減して圧縮機効率を改善することができる。
In the refrigerant compressor 1 according to the fifth embodiment, the lubricating oil 60 in the vicinity of the lubricating oil inlet 8 is used by utilizing heat transfer to the support legs 83 provided with the heat dissipating fins 84 disposed outside the heat insulating enclosure 87. Is further cooled. Furthermore, the inner wall surface of the lower container 2b of the oil supply path to the lubricating oil suction port 8 is formed into an uneven shape, thereby promoting the turbulent flow of the lubricating oil 60 and promoting heat transfer.
Therefore, according to the fifth embodiment, it is possible to further reduce the heat loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
 一般に、このようなカップ形状の下部容器2bは絞り加工によって製造され、上部容器2aと溶接によって溶着固定される。そのため、実施の形態5に係る冷媒圧縮機1のように、下部容器2bの内壁を凹凸形状とするためには、例えば、予め表面を凹凸形状とした板材を用いて絞り加工すればよい。 Generally, such a cup-shaped lower container 2b is manufactured by drawing, and is welded and fixed to the upper container 2a by welding. Therefore, as in the refrigerant compressor 1 according to the fifth embodiment, in order to make the inner wall of the lower container 2b have an uneven shape, for example, a drawing process may be performed using a plate material whose surface has an uneven shape in advance.
実施の形態6.
 図7は、実施の形態6に係る冷媒圧縮機1の構成を示す断面図である。
 以下においては、図7に示す冷媒圧縮機1の構成について、図1に示す冷媒圧縮機1と異なる部分について主として説明する。実施の形態6に係る冷媒圧縮機1では、密閉容器2の底部に放熱用フィン88を設置したものである。また、実施の形態3と同様にして、冷媒圧縮機1は断熱囲い86によって、放熱用フィン88を避けるように囲まれている。
Embodiment 6 FIG.
FIG. 7 is a cross-sectional view illustrating a configuration of the refrigerant compressor 1 according to Embodiment 6. In FIG.
In the following, the configuration of the refrigerant compressor 1 shown in FIG. 7 will be mainly described with respect to portions different from the refrigerant compressor 1 shown in FIG. In the refrigerant compressor 1 according to the sixth embodiment, a heat radiating fin 88 is installed at the bottom of the sealed container 2. Similarly to the third embodiment, the refrigerant compressor 1 is surrounded by a heat insulating enclosure 86 so as to avoid the heat radiation fins 88.
 実施の形態6に係る冷媒圧縮機1では、ファン101によって強制対流となっている断熱囲い86の外部に露出した放熱用フィン88によって、潤滑油吸入口8近傍の潤滑油60をより一層冷却する。
 従って、実施の形態6によれば、実施の形態1に係る冷媒圧縮機1よりもさらに加熱損失を低減して圧縮機効率を改善することができる。
In the refrigerant compressor 1 according to the sixth embodiment, the lubricating oil 60 in the vicinity of the lubricating oil inlet 8 is further cooled by the heat dissipating fins 88 exposed to the outside of the heat insulating enclosure 86 that is forced convection by the fan 101. .
Therefore, according to the sixth embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
実施の形態7.
 図8は、実施の形態7に係る冷媒圧縮機1の構成を示す断面図である。
 以下においては、図8に示す冷媒圧縮機1の構成について、図1に示す冷媒圧縮機1と異なる部分について主として説明する。実施の形態7に係る冷媒圧縮機1では、仕切り部材76の上側先端を潤滑油60の油面付近の高さとしたものである。なお、潤滑油60の油面の高さは油面計(図示せず)からの検出信号を基に制御装置(図示せず)が潤滑油60の圧縮機流入量を制御することでコントロールされる。
Embodiment 7 FIG.
FIG. 8 is a cross-sectional view illustrating a configuration of the refrigerant compressor 1 according to Embodiment 7. In FIG.
In the following, the configuration of the refrigerant compressor 1 shown in FIG. 8 will be described mainly with respect to the differences from the refrigerant compressor 1 shown in FIG. In the refrigerant compressor 1 according to Embodiment 7, the upper end of the partition member 76 has a height near the oil level of the lubricating oil 60. The height of the oil level of the lubricating oil 60 is controlled by a control device (not shown) controlling the compressor inflow amount of the lubricating oil 60 based on a detection signal from an oil level gauge (not shown). The
 また、図9は、図8に示す冷媒圧縮機1のA-A断面の断面図である。下側圧縮機構部20のシリンダー21において、ベーン25収納部や吸入口28近傍の円周方向範囲95だけ、シリンダー21と密閉容器2との間の隙間は小さくし、それ以外の円周方向範囲96では隙間は大きくしている。カップ形状の仕切り部材76は圧縮機構部の配置と干渉しないように、円周方向範囲95を避ける形状となっている。すなわち、この範囲95の仕切り部材76の部分は切除されている。このため、ベーン背圧室24は外側空間62と連通している。なお、上側圧縮機構部10も同様の構成となっている。 FIG. 9 is a cross-sectional view of the AA cross section of the refrigerant compressor 1 shown in FIG. In the cylinder 21 of the lower compression mechanism portion 20, the clearance between the cylinder 21 and the sealed container 2 is reduced by the circumferential range 95 in the vicinity of the vane 25 storage portion and the suction port 28, and the other circumferential range. In 96, the gap is increased. The cup-shaped partition member 76 has a shape that avoids the circumferential range 95 so as not to interfere with the arrangement of the compression mechanism portion. That is, the part of the partition member 76 in the range 95 is cut off. For this reason, the vane back pressure chamber 24 communicates with the outer space 62. The upper compression mechanism unit 10 has the same configuration.
 また、実施の形態3に係る冷媒圧縮機1と同様にして、仕切り部材73の側面下部に、半径方向に内側空間61と外側空間62を連通する潤滑油逃がし穴74を複数備えている。 Further, similarly to the refrigerant compressor 1 according to the third embodiment, a plurality of lubricating oil relief holes 74 that communicate the inner space 61 and the outer space 62 in the radial direction are provided in the lower part of the side surface of the partition member 73.
 実施の形態7に係る冷媒圧縮機1では、潤滑油吸入口8へ向かう潤滑油60に加えて、ベーン15、25の摺動部へ給油される潤滑油も冷却する。さらに、仕切り部材76の上部先端を潤滑油60の油面付近の高さとしたため、外側空間62から内側空間61への伝熱を抑制し、かつ、潤滑油吸入口8への給油経路での伝熱面積を大きくとることができる。このため、潤滑油60の冷却効果が大きくなる。
 従って、実施の形態7によれば、実施の形態1に係る冷媒圧縮機1よりもさらに加熱損失を低減して圧縮機効率を改善することができる。
In the refrigerant compressor 1 according to the seventh embodiment, in addition to the lubricating oil 60 directed to the lubricating oil suction port 8, the lubricating oil supplied to the sliding portions of the vanes 15 and 25 is also cooled. Furthermore, since the upper end of the partition member 76 is set to a height near the oil level of the lubricating oil 60, heat transfer from the outer space 62 to the inner space 61 is suppressed, and transmission through the oil supply path to the lubricating oil suction port 8 is suppressed. The heat area can be increased. For this reason, the cooling effect of the lubricating oil 60 is increased.
Therefore, according to the seventh embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
実施の形態8.
 図10は、実施の形態8に係る冷媒圧縮機1の構成を示す断面図である。
 以下においては、図10に示す冷媒圧縮機1の構成について、図1に示す冷媒圧縮機1と異なる部分について主として説明する。一般に、ヒートポンプ式温水器や空調機器に用いられる冷媒圧縮機では、断熱のために圧縮機の胴体全域に、例えばカイノール炭素繊維などの断熱材97を巻きつけている。
 これに対し、実施の形態8に係る冷媒圧縮機1では、密閉容器1の上側領域98および吸入マフラー5にのみ断熱材97を巻いて、仕切り部材71周辺(潤滑油貯留部65)に相当する下側領域99には断熱材97を巻かない構成としている。
Embodiment 8 FIG.
FIG. 10 is a cross-sectional view illustrating a configuration of the refrigerant compressor 1 according to Embodiment 8. In FIG.
In the following, the configuration of the refrigerant compressor 1 shown in FIG. 10 will be mainly described with respect to portions different from the refrigerant compressor 1 shown in FIG. In general, in a refrigerant compressor used in a heat pump water heater or an air conditioner, a heat insulating material 97 such as a quinol carbon fiber is wound around the entire body of the compressor for heat insulation.
On the other hand, in the refrigerant compressor 1 according to the eighth embodiment, the heat insulating material 97 is wound only around the upper region 98 and the suction muffler 5 of the hermetic container 1 and corresponds to the periphery of the partition member 71 (lubricating oil reservoir 65). The heat insulating material 97 is not wound around the lower region 99.
 実施の形態8に係る冷媒圧縮機1では、上側領域98での断熱性を保ちつつ、下側領域99の放熱を促進することで、潤滑油吸入口8近傍の潤滑油60を冷却する。
 従って、実施の形態8によれば、実施の形態1に係る冷媒圧縮機1よりもさらに加熱損失を低減して圧縮機効率を改善することができる。
In the refrigerant compressor 1 according to Embodiment 8, the lubricating oil 60 in the vicinity of the lubricating oil suction port 8 is cooled by promoting heat dissipation in the lower region 99 while maintaining heat insulation in the upper region 98.
Therefore, according to the eighth embodiment, it is possible to further reduce the heating loss and improve the compressor efficiency as compared with the refrigerant compressor 1 according to the first embodiment.
 以上の実施の形態において、密閉容器2に熱伝導率の高い材料を用いた場合、潤滑油60の冷却効果を大きくすることができる。同様に、仕切り部材71、73、76に熱伝導率の低い材料を用いた場合にも、潤滑油60中の内側空間61から外側空間62への伝熱を抑制することができるため、潤滑油60の冷却効果を大きくすることができる。 In the above embodiment, when a material having high thermal conductivity is used for the sealed container 2, the cooling effect of the lubricating oil 60 can be increased. Similarly, when a material having low thermal conductivity is used for the partition members 71, 73, 76, heat transfer from the inner space 61 to the outer space 62 in the lubricating oil 60 can be suppressed. The cooling effect of 60 can be increased.
 また、以上の実施の形態では、二気筒圧縮機について説明した。しかし、例えば、単気筒圧縮機や二段圧縮機など、圧縮機構の構成が異なる様々な冷媒圧縮機においても同様の効果が得られる。 In the above embodiment, the two-cylinder compressor has been described. However, the same effect can be obtained in various refrigerant compressors having different compression mechanisms such as a single cylinder compressor and a two-stage compressor.
 また、以上の実施の形態では、回転ピストン式の冷媒圧縮機について説明した。しかし、例えば、スイングピストン式、スライディングベーン式など、圧縮形式の異なる様々な冷媒圧縮機においても同様の効果が得られる。 In the above embodiment, the rotary piston type refrigerant compressor has been described. However, for example, the same effect can be obtained in various refrigerant compressors having different compression types, such as a swing piston type and a sliding vane type.
 さらに、二段圧縮機に本発明の潤滑油冷却構造を適用した場合では、実施の形態1~8で説明した効果に加えて、新たに二段圧縮機特有の改善効果を得ることができる。以下に説明する実施の形態9、10では、二段圧縮機に本発明の潤滑油冷却構造を適用した場合の改善効果について説明する。 Furthermore, when the lubricating oil cooling structure of the present invention is applied to a two-stage compressor, in addition to the effects described in Embodiments 1 to 8, a new improvement effect specific to the two-stage compressor can be obtained. In Embodiments 9 and 10 described below, an improvement effect when the lubricating oil cooling structure of the present invention is applied to a two-stage compressor will be described.
実施の形態9.
 図11は、本発明の実施の形態9に係る冷媒圧縮機1の構成を示す断面図である。
 実施の形態9に係る冷媒圧縮機1は、高圧容器である密閉容器2を備えている。この密閉容器2の内部に、低段圧縮機構部110、高段圧縮機構部120、中間仕切り部材130、低段支持部材140、高段支持部材150、低段吐出マフラー外側容器146、低段吐出マフラー内側容器147、高段吐出マフラー容器152、潤滑油60、駆動軸7、モーター9、を備えている。
Embodiment 9 FIG.
FIG. 11 is a cross-sectional view showing a configuration of the refrigerant compressor 1 according to Embodiment 9 of the present invention.
The refrigerant compressor 1 according to Embodiment 9 includes a sealed container 2 that is a high-pressure container. Inside the hermetic container 2, a low-stage compression mechanism 110, a high-stage compression mechanism 120, an intermediate partition member 130, a low-stage support member 140, a high-stage support member 150, a low-stage discharge muffler outer container 146, a low-stage discharge A muffler inner container 147, a high-stage discharge muffler container 152, a lubricating oil 60, a drive shaft 7, and a motor 9 are provided.
 低段吐出マフラー外側容器146と、低段吐出マフラー内側容器147と、低段支持部材140と、低段圧縮機構部110と、中間仕切り部材130と、高段圧縮機構部120と、高段支持部材150と、高段吐出マフラー容器152と、モーター9とが、駆動軸7の軸方向の下側から順に積層されている。低段支持部材140と高段支持部材150とはそれぞれ、駆動軸7を回転自在に軸支する低段軸受部141、高段軸受部151を有する。また、密閉容器2の底部に潤滑油60が貯留される潤滑油貯留部65を備え、駆動軸7の下端には、潤滑油60を圧縮機構部の各摺動部および駆動軸7の低段軸受部141、高段軸受部151に供給する潤滑油吸入口8を備えている。潤滑油供給流路は、潤滑油吸入口8と、潤滑油吸入口8から駆動軸7の中を軸長方向に延びる潤滑油流路77と、潤滑油流路77から半径方向に延び、圧縮機構部の各摺動部および駆動軸7の上側軸受部41、下側軸受部51等にそれぞれ連通する連通口78と、を備えている。 Low-stage discharge muffler outer container 146, low-stage discharge muffler inner container 147, low-stage support member 140, low-stage compression mechanism 110, intermediate partition member 130, high-stage compression mechanism 120, and high-stage support The member 150, the high-stage discharge muffler container 152, and the motor 9 are stacked in order from the lower side in the axial direction of the drive shaft 7. Each of the low-stage support member 140 and the high-stage support member 150 includes a low-stage bearing portion 141 and a high-stage bearing portion 151 that rotatably support the drive shaft 7. Further, a lubricating oil reservoir 65 for storing the lubricating oil 60 is provided at the bottom of the hermetic container 2, and the lubricating oil 60 is disposed at the lower end of the driving shaft 7 at each sliding portion of the compression mechanism and the lower stage of the driving shaft 7. A lubricating oil suction port 8 is provided to supply to the bearing portion 141 and the high stage bearing portion 151. The lubricating oil supply flow path includes a lubricating oil suction port 8, a lubricating oil flow channel 77 extending in the axial direction from the lubricating oil suction port 8 through the drive shaft 7, and a radial direction extending from the lubricating oil flow channel 77. A communication port 78 communicating with each sliding portion of the mechanism portion and the upper bearing portion 41 and the lower bearing portion 51 of the drive shaft 7 is provided.
 密閉容器2は、筒状胴体の上下面に鏡板を備えた縦型の形状となっている。密閉容器2の下部は支持脚80と防振ゴム81を介して室外機の底板82に固定されている。また、冷媒圧縮機1は全体を断熱囲い85によって囲まれており、冷媒の吸入管3と吐出管4は断熱囲い85から突出している。断熱囲い85の外部には、外部空間での空気を強制的に循環させるファン101を備えている。 The sealed container 2 has a vertical shape having end plates on the upper and lower surfaces of the cylindrical body. The lower part of the hermetic container 2 is fixed to a bottom plate 82 of the outdoor unit via a support leg 80 and an anti-vibration rubber 81. The refrigerant compressor 1 is entirely surrounded by a heat insulating enclosure 85, and the refrigerant suction pipe 3 and the discharge pipe 4 protrude from the heat insulating enclosure 85. A fan 101 that forcibly circulates air in the external space is provided outside the heat insulating enclosure 85.
 低段圧縮機構部110、高段圧縮機構部120にはそれぞれ、シリンダー111、121、回転ピストン112、122が設けられている。
 低段圧縮機構部110は、シリンダー111が低段支持部材140と中間仕切り部材130との間に挟まれるように積層されている。高段圧縮機構部120は、シリンダー121が高段支持部材150と中間仕切り部材130との間に挟まれるように積層されている。
 回転ピストン112、122はそれぞれ、駆動軸7の偏心部に装着されており、それぞれ対応するシリンダー11、21の内部で、モーター9によって回転駆動される駆動軸7の回転により偏心回転運動を行い、これにより冷媒を吸入し、さらに吸入された冷媒を圧縮して吐出するようになっている。
The low-stage compression mechanism 110 and the high-stage compression mechanism 120 are provided with cylinders 111 and 121 and rotary pistons 112 and 122, respectively.
The low-stage compression mechanism 110 is stacked such that the cylinder 111 is sandwiched between the low-stage support member 140 and the intermediate partition member 130. The high-stage compression mechanism 120 is stacked such that the cylinder 121 is sandwiched between the high-stage support member 150 and the intermediate partition member 130.
The rotary pistons 112 and 122 are respectively attached to the eccentric portions of the drive shaft 7, and perform eccentric rotational motion by the rotation of the drive shaft 7 driven to rotate by the motor 9 inside the corresponding cylinders 11 and 21, respectively. As a result, the refrigerant is sucked, and the sucked refrigerant is compressed and discharged.
 また、低段吐出マフラー外側容器146には、インジェクション冷媒を導入するインジェクション流入口160が設けられている。インジェクション冷媒の導入管は密閉容器2を貫通して低段吐出マフラー外側容器146に接続されている。そして、低段吐出マフラー内側容器147には内部にインジェクション冷媒を導入する連通口145が設けられている。 Also, the low stage discharge muffler outer container 146 is provided with an injection inlet 160 for introducing an injection refrigerant. The injection refrigerant introduction pipe passes through the sealed container 2 and is connected to the low-stage discharge muffler outer container 146. The low-stage discharge muffler inner container 147 is provided with a communication port 145 for introducing an injection refrigerant therein.
 冷媒の流れについて説明する。
 吸入管3から吸入された低圧の冷媒は、吸入マフラー5、シリンダー吸入管6を経由して、初めに低段圧縮機構部110のシリンダー111に吸入される。
 そして、低段圧縮機構部110にて中間圧まで圧縮された冷媒は、低段吐出口144から低段吐出バルブ143を開いて低段吐出マフラー内側容器147内に吐出される。
The flow of the refrigerant will be described.
The low-pressure refrigerant sucked from the suction pipe 3 is first sucked into the cylinder 111 of the low-stage compression mechanism 110 via the suction muffler 5 and the cylinder suction pipe 6.
Then, the refrigerant compressed to the intermediate pressure by the low-stage compression mechanism 110 is discharged from the low-stage discharge port 144 into the low-stage discharge muffler inner container 147 by opening the low-stage discharge valve 143.
 一方、インジェクション流入口160から流入した冷媒は、低段吐出マフラー外側容器146と低段吐出マフラー内側容器147との隙間空間148を通って、連通口145に向かう。このとき、インジェクション冷媒は低段吐出マフラー外側容器147を介して内側空間61に溜まった油によって加熱される。加熱されたインジェクション冷媒は、連通口145を通って低段吐出マフラー内側容器147内に流入する。
 そして、連通口145から流入した冷媒と、低段圧縮機構部110にて圧縮され低段吐出口144から吐出された冷媒とが、低段吐出マフラー内側容器147内で混合し、低段支持部材140、低段シリンダー111、中間仕切り部材130を貫通する中間連結流路131を通って高段圧縮機構120に吸入される。
On the other hand, the refrigerant that has flowed in from the injection inlet 160 passes through the gap space 148 between the low-stage discharge muffler outer container 146 and the low-stage discharge muffler inner container 147 and heads for the communication port 145. At this time, the injection refrigerant is heated by the oil accumulated in the inner space 61 via the low-stage discharge muffler outer container 147. The heated injection refrigerant flows into the low-stage discharge muffler inner container 147 through the communication port 145.
The refrigerant flowing in from the communication port 145 and the refrigerant compressed by the low-stage compression mechanism 110 and discharged from the low-stage discharge port 144 are mixed in the low-stage discharge muffler inner container 147, and the low-stage support member 140, the high-stage compression mechanism 120 is sucked through the intermediate connection flow path 131 that penetrates the low-stage cylinder 111 and the intermediate partition member 130.
 高段圧縮機構部120にて高圧まで圧縮された冷媒は、高段吐出口154から高段吐出バルブ153を開いて高段吐出マフラー容器152内に吐出され、連通口155から密閉容器2内の上部空間に吐出される。 The refrigerant compressed to a high pressure by the high-stage compression mechanism 120 is discharged from the high-stage discharge port 154 into the high-stage discharge muffler container 152 by opening the high-stage discharge valve 153, and from the communication port 155 to the inside of the sealed container 2. It is discharged into the upper space.
 そしてさらに、この冷媒圧縮機1は、密閉容器2の底部に貯留された潤滑油60中を内側空間61と外側空間62とに区分するような仕切り部材71を備えている。仕切り部材71の形状は特に限定するものではないが、底部に貫通穴を有するカップ形状に形成することが望ましい。ここで、潤滑油吸入口8へ向かう給油経路の主流は、密閉容器2と仕切り部材71とに挟まれた隙間によって形成されている。なお、仕切り部材71には潤滑油吸入口8に連通する貫通穴71aが設けられている。 The refrigerant compressor 1 further includes a partition member 71 that divides the lubricating oil 60 stored at the bottom of the hermetic container 2 into an inner space 61 and an outer space 62. The shape of the partition member 71 is not particularly limited, but it is preferable to form the partition member 71 in a cup shape having a through hole at the bottom. Here, the main flow of the oil supply path toward the lubricating oil intake port 8 is formed by a gap sandwiched between the sealed container 2 and the partition member 71. The partition member 71 is provided with a through hole 71 a that communicates with the lubricating oil suction port 8.
 次に、実施の形態9の冷媒圧縮機1の動作について説明する。
 まず、電力がモーター9に供給され、モーター9が駆動される。これにより、駆動軸7が回転し、冷媒が吸入管3から吸入マフラー5を通過して低段圧縮機構部110に吸入される。低段圧縮機構部110に吸入された冷媒は低圧から中間圧まで圧縮され、インジェクション流入口160から流入した冷媒と混合した後、この混合冷媒が中間連結流路131を通って高段圧縮機構部120に吸入される。高段圧縮機構部120に吸入された冷媒は中間圧から高圧まで圧縮され、密閉容器2の内部に吐出される。密閉容器2の内部に吐出された冷媒は、モーター9の隙間(ローターとステーター間およびステーターと密閉容器2間の隙間)を通って吐出管4から密閉容器2の外部に吐出される。
Next, the operation of the refrigerant compressor 1 according to the ninth embodiment will be described.
First, electric power is supplied to the motor 9 and the motor 9 is driven. As a result, the drive shaft 7 rotates, and the refrigerant passes through the suction muffler 5 from the suction pipe 3 and is sucked into the low-stage compression mechanism 110. The refrigerant sucked into the low-stage compression mechanism unit 110 is compressed from a low pressure to an intermediate pressure and mixed with the refrigerant flowing in from the injection inlet 160, and then the mixed refrigerant passes through the intermediate connection flow path 131 and then the high-stage compression mechanism unit. 120 is inhaled. The refrigerant sucked into the high-stage compression mechanism 120 is compressed from an intermediate pressure to a high pressure and is discharged into the sealed container 2. The refrigerant discharged to the inside of the sealed container 2 is discharged from the discharge pipe 4 to the outside of the sealed container 2 through the gaps of the motor 9 (between the rotor and the stator and between the stator and the sealed container 2).
 この動作中、密閉容器2の底部に貯留された潤滑油60は、密閉容器2と仕切り部材71に挟まれた隙間を通って潤滑油吸入口8へと流れ、潤滑油吸入口8によって駆動軸7の下端から潤滑油流路77に取り込まれる。その後、差圧によって圧縮機構部の各摺動部に給油され、シリンダー111、121の内部空間へと流出する。また、潤滑油60は駆動軸7の低段軸受部141、高段軸受部151にも給油され、圧縮機構部や軸受部の焼き付きなどの不具合が発生するのを防ぐ。また、潤滑油流路77に供給された潤滑油60の一部は冷媒と共に機外に排出されるが、残りの部分は潤滑油貯留部65に回収される。 During this operation, the lubricating oil 60 stored at the bottom of the sealed container 2 flows to the lubricating oil suction port 8 through a gap sandwiched between the sealed container 2 and the partition member 71, and the drive shaft is driven by the lubricating oil suction port 8. 7 is taken into the lubricating oil flow path 77 from the lower end of 7. Thereafter, oil is supplied to each sliding portion of the compression mechanism portion by the differential pressure, and flows out into the internal space of the cylinders 111 and 121. Further, the lubricating oil 60 is also supplied to the low-stage bearing portion 141 and the high-stage bearing portion 151 of the drive shaft 7 to prevent the occurrence of problems such as seizure of the compression mechanism portion and the bearing portion. A part of the lubricating oil 60 supplied to the lubricating oil flow path 77 is discharged to the outside of the apparatus together with the refrigerant, but the remaining part is collected in the lubricating oil storage unit 65.
 このように、潤滑油吸入口8へ向かう潤滑油60は、密閉容器2の内壁に沿って流れるため、密閉容器2の放熱を積極的に利用して冷却する。これにより、潤滑油60の内側空間61と外側空間62で温度分布ができ、潤滑油吸入口8へ向かう潤滑油60だけを優先的に冷却する。従って、実施の形態9に係る冷媒圧縮機1では、実施の形態1に係る冷媒圧縮機1と同様にして、加熱損失を低減して圧縮機効率を改善することができる。 Thus, since the lubricating oil 60 directed to the lubricating oil suction port 8 flows along the inner wall of the sealed container 2, it is cooled by actively utilizing the heat radiation of the sealed container 2. Thereby, temperature distribution is made in the inner space 61 and the outer space 62 of the lubricating oil 60, and only the lubricating oil 60 heading toward the lubricating oil suction port 8 is preferentially cooled. Therefore, the refrigerant compressor 1 according to Embodiment 9 can reduce the heating loss and improve the compressor efficiency in the same manner as the refrigerant compressor 1 according to Embodiment 1.
 また、実施の形態9に係る冷媒圧縮機1では、潤滑油60の内側空間61と外側空間62とで温度分布ができ、内側空間61が外側空間62よりも潤滑油60の温度が高温になる。このため、内側空間61の潤滑油60が、低段吐出マフラー外側容器146と低段吐出マフラー内側容器147との隙間空間148を流れるインジェクション冷媒を効果的に加熱することができる。この結果、インジェクション冷媒の乾き度が大きくなるため、インジェクション冷媒と低段圧縮機構部110で圧縮された冷媒とを湿らないように均一に混合し易くなり、インジェクション運転範囲の拡大が可能となる。 In the refrigerant compressor 1 according to the ninth embodiment, a temperature distribution is generated in the inner space 61 and the outer space 62 of the lubricating oil 60, and the temperature of the lubricating oil 60 is higher in the inner space 61 than in the outer space 62. . For this reason, the lubricating oil 60 in the inner space 61 can effectively heat the injection refrigerant flowing in the gap space 148 between the low-stage discharge muffler outer container 146 and the low-stage discharge muffler inner container 147. As a result, since the dryness of the injection refrigerant increases, it becomes easy to uniformly mix the injection refrigerant and the refrigerant compressed by the low stage compression mechanism unit 110 without getting wet, and the injection operation range can be expanded.
 実施の形態9では、低段圧縮機構部を高段圧縮機構部の下側に配置した構成の二段圧縮機について説明した。実施の形態10では、低段圧縮機構部を高段圧縮機構部の上側に配置した構成の二段圧縮機について説明する。 In the ninth embodiment, a two-stage compressor having a configuration in which the low-stage compression mechanism unit is disposed below the high-stage compression mechanism unit has been described. In the tenth embodiment, a two-stage compressor having a configuration in which a low-stage compression mechanism section is arranged on the upper side of a high-stage compression mechanism section will be described.
実施の形態10.
 図12は、本発明の実施の形態10に係る冷媒圧縮機1の構成を示す断面図である。  実施の形態10に係る冷媒圧縮機1は、高圧容器である密閉容器2を備えている。この密閉容器2の内部に、低段圧縮機構部110、高段圧縮機構部120、中間仕切り部材130、低段支持部材140、高段支持部材150、低段吐出マフラー容器142、高段吐出マフラー容器152、潤滑油60、駆動軸7、モーター9、を備えている。
Embodiment 10 FIG.
FIG. 12 is a cross-sectional view showing the configuration of the refrigerant compressor 1 according to Embodiment 10 of the present invention. The refrigerant compressor 1 according to Embodiment 10 includes a sealed container 2 that is a high-pressure container. Inside the hermetic container 2, a low-stage compression mechanism 110, a high-stage compression mechanism 120, an intermediate partition member 130, a low-stage support member 140, a high-stage support member 150, a low-stage discharge muffler container 142, and a high-stage discharge muffler A container 152, a lubricating oil 60, a drive shaft 7, and a motor 9 are provided.
 実施の形態10に係る冷媒圧縮機1の構成について、実施の形態9に係る冷媒圧縮機1と異なる点について主として説明する。
 実施の形態10に係る冷媒圧縮機1は、密閉容器2内に、高段吐出マフラー容器152と、高段支持部材150と、高段圧縮機構部120と、中間仕切り部材130と、低段圧縮機構部110と、低段支持部材140と、低段吐出マフラー容器142と、モーター9とが、駆動軸7の軸方向の下側から順に積層されている。
Regarding the configuration of the refrigerant compressor 1 according to the tenth embodiment, differences from the refrigerant compressor 1 according to the ninth embodiment will be mainly described.
The refrigerant compressor 1 according to the tenth embodiment includes a high-stage discharge muffler container 152, a high-stage support member 150, a high-stage compression mechanism 120, an intermediate partition member 130, and a low-stage compression. The mechanism unit 110, the low stage support member 140, the low stage discharge muffler container 142, and the motor 9 are stacked in order from the lower side in the axial direction of the drive shaft 7.
 また、インジェクション冷媒を導入するインジェクション流入口160は低段吐出マフラー容器142に設けられている。インジェクション冷媒の導入管は密閉容器2を貫通して低段吐出マフラー容器142に接続されている。さらに、第2の連結流路132が高段支持部材150、高段シリンダー121、中間仕切り部材130、低段シリンダー111、低段支持部材140を貫通して設けられている。そのため、高段圧縮機構部120にて圧縮された高圧の冷媒は、高段マフラー容器152内に吐出されたのち、第2の連結流路132を通って密閉容器2の上部空間に吐出される。 The injection inlet 160 for introducing the injection refrigerant is provided in the low-stage discharge muffler container 142. The injection refrigerant introduction pipe passes through the sealed container 2 and is connected to the low-stage discharge muffler container 142. Further, a second connection channel 132 is provided through the high stage support member 150, the high stage cylinder 121, the intermediate partition member 130, the low stage cylinder 111, and the low stage support member 140. Therefore, the high-pressure refrigerant compressed by the high-stage compression mechanism 120 is discharged into the high-stage muffler container 152 and then discharged into the upper space of the sealed container 2 through the second connection flow path 132. .
 このように、実施の形態10に係る冷媒圧縮機1では、高段圧縮機構部120が低段圧縮機構部110の下側に配置されている。このため、高段吐出マフラー容器152内の高温高圧の冷媒が、潤滑油60を加熱する構成となっている。
 しかし、仕切り部材71によって潤滑油60が内側空間61と外側空間62とに仕切られることで、高段吐出マフラー容器152内の冷媒から、潤滑油吸入口8へ向かう外側空間62の潤滑油60への伝熱を抑制する効果が得られる。従って、実施の形態10に係る冷媒圧縮機1では、加熱損失を低減して圧縮機効率を改善することができる。
Thus, in the refrigerant compressor 1 according to Embodiment 10, the high-stage compression mechanism 120 is disposed below the low-stage compression mechanism 110. For this reason, the high-temperature and high-pressure refrigerant in the high-stage discharge muffler container 152 is configured to heat the lubricating oil 60.
However, since the lubricating oil 60 is partitioned into the inner space 61 and the outer space 62 by the partition member 71, the refrigerant in the high-stage discharge muffler container 152 is changed to the lubricating oil 60 in the outer space 62 toward the lubricating oil suction port 8. The effect of suppressing heat transfer is obtained. Therefore, in the refrigerant compressor 1 according to Embodiment 10, it is possible to reduce the heating loss and improve the compressor efficiency.
 実施の形態9、10は、低段圧縮機構部110と高段圧縮機構部120とを連通する中間連結流路131が密閉容器2の内側にある構成の冷媒圧縮機について説明した。しかし、例えば中間連結流路が密閉容器の外側を通る場合においても同様の効果が得られる。 Embodiments 9 and 10 have described the refrigerant compressor having a configuration in which the intermediate connection channel 131 that communicates the low-stage compression mechanism 110 and the high-stage compression mechanism 120 is inside the hermetic container 2. However, for example, the same effect can be obtained when the intermediate connection channel passes outside the sealed container.
 また、実施の形態1~10では、回転ピストン式の冷媒圧縮機について説明した。しかし、例えば、スイングピストン式、スライディングベーン式など、圧縮形式の異なる様々な冷媒圧縮機においても同様の効果が得られる。 In Embodiments 1 to 10, the rotary piston type refrigerant compressor has been described. However, for example, the same effect can be obtained in various refrigerant compressors having different compression types, such as a swing piston type and a sliding vane type.
 1 冷媒圧縮機、2 密閉容器、2a 上側容器、2b 下側容器、3 吸入管、4 吐出管、5 吸入マフラー、6 シリンダー吸入管、7 駆動軸、8 潤滑油吸入口、9 モーター、10 上側圧縮機構部、20 下側圧縮機構部、11、21 シリンダー、12、22 回転ピストン、14、24 ベーン背圧室、15、25 ベーン、16、26 ばね、17、27 封止材、28 吸入口、30 中間仕切り部材、31 連結流路、40 上側支持部材、41 上側軸受部、42 上側吐出マフラー容器、43 上側吐出バルブ、44 上側吐出口、45 開口、50 下側支持部材、51 下側軸受部、52 下側吐出マフラー容器、53 下側吐出バルブ、54 下側吐出口、60 潤滑油、61 内側空間、62 外側空間、65 潤滑油貯留部、71 仕切り部材、72 連結流路、73 仕切り部材、74 潤滑油逃がし穴、76 仕切り部材、77 潤滑油流路、78 連通口、80 支持脚、81 防振ゴム、82 底板、83 支持脚、84 放熱用フィン、85 断熱囲い、86 断熱囲い、87 断熱囲い、88 放熱用フィン、89 オイルキャップ、91 放熱用フィン、92 窪み形状、93 放熱用フィン、95 範囲、96 範囲、97 断熱材、98 上側領域、99 下側領域、100 隙間、101 ファン、110 低段圧縮機構部、120 高段圧縮機構部、111、121 シリンダー、112、122 回転ピストン、114、124 ベーン背圧室、115、125 ベーン、116、126 ばね、117、127 封止材、128 吸入口、130 中間仕切り部材、131 中間連結流路、132 第2の連結流路、140 低段支持部材、141 低段軸受部、142 低段吐出マフラー容器、143 低段吐出バルブ、144 低段吐出口、145 連通口、146 低段吐出マフラー外側容器、147 低段吐出マフラー内側容器、148 隙間空間、149 連通口、150 高段支持部材、151 高段軸受部、152 高段吐出マフラー容器、153 高段吐出バルブ、154 高段吐出口、160 インジェクション流入口。 1 refrigerant compressor, 2 sealed container, 2a upper container, 2b lower container, 3 suction pipe, 4 discharge pipe, 5 suction muffler, 6 cylinder suction pipe, 7 drive shaft, 8 lubricating oil suction port, 9 motor, 10 upper side Compression mechanism, 20 Lower compression mechanism, 11, 21 Cylinder, 12, 22 Rotating piston, 14, 24 Vane back pressure chamber, 15, 25 Vane, 16, 26 Spring, 17, 27 Sealing material, 28 Inlet , 30 Intermediate partition member, 31 Connecting flow path, 40 Upper support member, 41 Upper bearing portion, 42 Upper discharge muffler container, 43 Upper discharge valve, 44 Upper discharge port, 45 Opening, 50 Lower support member, 51 Lower bearing Part, 52 lower discharge muffler container, 53 lower discharge valve, 54 lower discharge port, 60 lubricating oil, 61 inner space, 62 outer 65, lubricating oil reservoir, 71 partition member, 72 connection channel, 73 partition member, 74 lubricant release hole, 76 partition member, 77 lubricant channel, 78 communication port, 80 support leg, 81 anti-vibration rubber, 82 bottom plate, 83 support legs, 84 heat radiation fin, 85 heat insulation enclosure, 86 heat insulation enclosure, 87 heat insulation enclosure, 88 heat radiation fin, 89 oil heat cap, 91 heat radiation fin, 92 hollow shape, 93 heat radiation fin, 95 range, 96 range, 97 heat insulating material, 98 upper region, 99 lower region, 100 gap, 101 fan, 110 low stage compression mechanism part, 120 high stage compression mechanism part, 111, 121 cylinder, 112, 122 rotating piston, 114, 124 Vane back pressure chamber, 115, 125 vane, 116, 126 spring, 117, 12 Sealing material, 128 inlet, 130 intermediate partition member, 131 intermediate connection channel, 132 second connection channel, 140 low stage support member, 141 low stage bearing, 142 low stage discharge muffler container, 143 low stage discharge Valve, 144 Low stage discharge port, 145 communication port, 146 Low stage discharge muffler outer container, 147 Low stage discharge muffler inner container, 148 clearance space, 149 communication port, 150 High stage support member, 151 High stage bearing part, 152 High Stage discharge muffler container, 153, high stage discharge valve, 154, high stage discharge port, 160 injection inlet.

Claims (13)

  1.  密閉容器と、この密閉容器の内部に、モーターと、駆動軸によって駆動される圧縮機構部と、前記駆動軸の下端に設けられた潤滑油吸入口と、前記密閉容器の底部に設けられた潤滑油貯留部とを備え、
     前記潤滑油貯留部に貯留される潤滑油が、前記潤滑油吸入口から前記圧縮機構部の摺動部および前記駆動軸の軸受部に供給されるように、前記駆動軸の内部に設けられた潤滑油流路とを備える冷媒圧縮機において、
     前記潤滑油貯留部を前記密閉容器の内壁に沿った空間とそれ以外の空間とに区分する仕切り部材を設置し、
     前記潤滑油吸入口への給油経路は、前記仕切り部材と前記密閉容器の底部の内壁とで挟まれた隙間によって形成されていることを特徴とする冷媒圧縮機。
    A sealed container, a motor, a compression mechanism driven by a drive shaft, a lubricating oil inlet provided at the lower end of the drive shaft, and a lubrication provided at the bottom of the sealed container inside the sealed container An oil reservoir,
    The lubricating oil stored in the lubricating oil reservoir is provided inside the drive shaft so that the lubricating oil is supplied from the lubricating oil suction port to the sliding portion of the compression mechanism and the bearing portion of the drive shaft. In a refrigerant compressor comprising a lubricating oil flow path,
    Installing a partition member that divides the lubricating oil reservoir into a space along the inner wall of the sealed container and a space other than the space;
    An oil supply path to the lubricating oil suction port is formed by a gap sandwiched between the partition member and an inner wall of a bottom portion of the sealed container.
  2.  前記仕切り部材は、底部に前記潤滑油吸入口と略同軸上に設けられた貫通穴を有するカップ形状に形成されていることを特徴とする請求項1に記載の冷媒圧縮機。 The refrigerant compressor according to claim 1, wherein the partition member is formed in a cup shape having a through hole provided substantially coaxially with the lubricating oil suction port at the bottom.
  3.  前記密閉容器の潤滑油貯留部の外側に、放熱用フィンが設置されていることを特徴とする請求項1~2のいずれか一項に記載の冷媒圧縮機。 The refrigerant compressor according to any one of claims 1 to 2, wherein a heat dissipating fin is installed outside the lubricating oil reservoir of the sealed container.
  4.  前記潤滑油吸入口近傍の前記密閉容器の底部が窪み形状に形成されているとともに、前記駆動軸の下端部が前記窪み形状の内側に配設されていることを特徴とする請求項1~2のいずれか一項に記載の冷媒圧縮機。 The bottom portion of the sealed container in the vicinity of the lubricating oil suction port is formed in a recessed shape, and the lower end portion of the drive shaft is disposed inside the recessed shape. The refrigerant compressor as described in any one of these.
  5.  前記密閉容器の底部の窪み形状の外側に、放熱用フィンが設けられていることを特徴とする請求項4に記載の冷媒圧縮機。 The refrigerant compressor according to claim 4, wherein a heat radiation fin is provided outside the hollow shape at the bottom of the sealed container.
  6.  前記密閉容器は支持脚を備え、
     前記支持脚の先端部に、放熱用フィンが設けられていることを特徴とする請求項1~2のいずれか一項に記載の冷媒圧縮機。
    The sealed container includes support legs;
    The refrigerant compressor according to any one of claims 1 to 2, wherein a heat radiating fin is provided at a distal end portion of the support leg.
  7.  前記潤滑油吸入口への給油経路とベーン式圧縮機の圧縮機構部のベーン背圧室とは、独立した連結流路で連通していることを特徴とする請求項1~6のいずれか一項に記載の冷媒圧縮機。 The oil supply path to the lubricating oil suction port and the vane back pressure chamber of the compression mechanism portion of the vane compressor are communicated with each other through an independent connection channel. The refrigerant compressor according to item.
  8.  前記給油経路に対応する前記密閉容器の内壁部分が、凹凸形状に形成されていることを特徴とする請求項1~7のいずれか一項に記載の冷媒圧縮機。 The refrigerant compressor according to any one of claims 1 to 7, wherein an inner wall portion of the sealed container corresponding to the oil supply path is formed in an uneven shape.
  9.  前記潤滑油の流出量を少量に制限する潤滑油逃がし穴が、前記仕切り部材を形成するカップ形状の側面の下方に設けられていることを特徴とする請求項2~8のいずれか一項に記載の冷媒圧縮機。 The lubricating oil relief hole for limiting the amount of the lubricating oil flowing out to a small amount is provided below a cup-shaped side surface forming the partition member. The refrigerant compressor described.
  10.  前記密閉容器の周囲に断熱囲いが設置され、
     前記断熱囲いは、前記密閉容器の底部に形成された前記窪み形状、前記窪み形状に設けられた放熱用フィン、または、前記密閉容器の底部に設けられた放熱用フィンのうち少なくとも一つが外部に露出するように、開口されていることを特徴とする請求項1~5のいずれか一項に記載の冷媒圧縮機。
    An insulated enclosure is installed around the sealed container,
    The heat-insulating enclosure has at least one of the hollow shape formed at the bottom of the sealed container, the heat radiation fin provided at the hollow shape, or the heat radiation fin provided at the bottom of the sealed container. The refrigerant compressor according to any one of claims 1 to 5, wherein the refrigerant compressor is opened so as to be exposed.
  11.  前記密閉容器に巻き付ける断熱材が、前記密閉容器の上側領域にのみ巻き付けられており、前記潤滑油貯留部に相当する下側領域には巻き付けていない構成であることを特徴とする請求項1~10のいずれか一項に記載の冷媒圧縮機。 The heat insulating material to be wound around the sealed container is wound only on the upper region of the sealed container, and is not wound on the lower region corresponding to the lubricating oil reservoir. The refrigerant compressor according to any one of 10.
  12.  前記圧縮機構部は、冷媒を低圧から中間圧まで圧縮する低段圧縮機構部と、中間圧から高圧まで圧縮する高段圧縮機構部とを備え、
     前記低段圧縮機構部は、インジェクション冷媒の流入口を有する低段吐出マフラー外側容器と、流入したインジェクション冷媒と前記低段圧縮機構部から吐出する冷媒とを混合する低段吐出マフラー内側容器とを備え、
     前記混合した冷媒を前記高段圧縮機構部に導入する連結流路を備え、
     前記低段吐出マフラー外側容器は、前記仕切り部材によって仕切られた前記潤滑油貯留部の内側空間に設置されていることを特徴とする請求項1~11のいずれか一項に記載の冷媒圧縮機。
    The compression mechanism section includes a low-stage compression mechanism section that compresses the refrigerant from a low pressure to an intermediate pressure, and a high-stage compression mechanism section that compresses the refrigerant from an intermediate pressure to a high pressure.
    The low-stage compression mechanism section includes a low-stage discharge muffler outer container having an injection refrigerant inlet, and a low-stage discharge muffler inner container that mixes the injected injection refrigerant and the refrigerant discharged from the low-stage compression mechanism section. Prepared,
    A connection channel for introducing the mixed refrigerant into the high-stage compression mechanism,
    The refrigerant compressor according to any one of claims 1 to 11, wherein the low-stage discharge muffler outer container is installed in an inner space of the lubricating oil reservoir partitioned by the partition member. .
  13.  前記圧縮機構部は、冷媒を低圧から中間圧まで圧縮する低段圧縮機構部と、中間圧から高圧まで圧縮する高段圧縮機構部とを備え、
     前記低段圧縮機構部は、インジェクション冷媒の流入口を有し、流入したインジェクション冷媒と前記低段圧縮機構部から吐出する冷媒とを混合する低段吐出マフラー容器を備え、
     前記混合した冷媒を前記高段圧縮機構部に導入する連結流路と、前記高段圧縮機構部から吐出する冷媒を第2の連結流路を通じて前記密閉容器の上部空間に吐出する高段吐出マフラー容器とを備え、
     前記高段吐出マフラー容器は、前記仕切り部材によって仕切られた前記潤滑油貯留部の内側空間に設置されていることを特徴とする請求項1~11のいずれか一項に記載の冷媒圧縮機。
    The compression mechanism section includes a low-stage compression mechanism section that compresses the refrigerant from a low pressure to an intermediate pressure, and a high-stage compression mechanism section that compresses the refrigerant from an intermediate pressure to a high pressure.
    The low-stage compression mechanism section includes an injection refrigerant inlet, and includes a low-stage discharge muffler container that mixes the injected injection refrigerant and the refrigerant discharged from the low-stage compression mechanism section,
    A connecting flow path for introducing the mixed refrigerant into the high-stage compression mechanism, and a high-stage discharge muffler for discharging the refrigerant discharged from the high-stage compression mechanism to the upper space of the sealed container through a second connection flow path. A container,
    The refrigerant compressor according to any one of claims 1 to 11, wherein the high-stage discharge muffler container is installed in an inner space of the lubricating oil storage section partitioned by the partition member.
PCT/JP2011/003903 2010-12-27 2011-07-07 Refrigerant compressor WO2012090345A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012550671A JP5506953B2 (en) 2010-12-27 2011-07-07 Refrigerant compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010291224 2010-12-27
JP2010-291224 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090345A1 true WO2012090345A1 (en) 2012-07-05

Family

ID=46382492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003903 WO2012090345A1 (en) 2010-12-27 2011-07-07 Refrigerant compressor

Country Status (2)

Country Link
JP (1) JP5506953B2 (en)
WO (1) WO2012090345A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130115122A1 (en) * 2011-11-03 2013-05-09 Samsung Electronics Co., Ltd. Rotary compressor
JP2015025579A (en) * 2013-07-24 2015-02-05 三浦工業株式会社 Heat pump
EP2871366A4 (en) * 2012-07-09 2015-07-22 Panasonic Ip Man Co Ltd Rotary compressor
WO2016086396A1 (en) * 2014-12-04 2016-06-09 广东美芝制冷设备有限公司 Low-backpressure rotary compressor
CN109945324A (en) * 2019-03-31 2019-06-28 广东美的制冷设备有限公司 Compressor assembly and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050606U (en) * 1973-09-07 1975-05-17
JPS51148705U (en) * 1975-05-23 1976-11-29
JPS61277882A (en) * 1985-06-03 1986-12-08 Daikin Ind Ltd Helium compressor
JPH0932772A (en) * 1995-07-25 1997-02-04 Mitsubishi Electric Corp Scroll compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050606U (en) * 1973-09-07 1975-05-17
JPS51148705U (en) * 1975-05-23 1976-11-29
JPS61277882A (en) * 1985-06-03 1986-12-08 Daikin Ind Ltd Helium compressor
JPH0932772A (en) * 1995-07-25 1997-02-04 Mitsubishi Electric Corp Scroll compressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130115122A1 (en) * 2011-11-03 2013-05-09 Samsung Electronics Co., Ltd. Rotary compressor
US9206689B2 (en) * 2011-11-03 2015-12-08 Samsung Electronics Co., Ltd. Rotary compressor with vibration reduction and oil control
EP2871366A4 (en) * 2012-07-09 2015-07-22 Panasonic Ip Man Co Ltd Rotary compressor
US9695825B2 (en) 2012-07-09 2017-07-04 Panasonic Intellectual Property Management Co., Ltd. Rotary compressor
JP2015025579A (en) * 2013-07-24 2015-02-05 三浦工業株式会社 Heat pump
WO2016086396A1 (en) * 2014-12-04 2016-06-09 广东美芝制冷设备有限公司 Low-backpressure rotary compressor
US10458410B2 (en) 2014-12-04 2019-10-29 Guangdong Meizhi Compressor Co., Ltd. Low-backpressure rotary compressor
CN109945324A (en) * 2019-03-31 2019-06-28 广东美的制冷设备有限公司 Compressor assembly and air conditioner
CN109945324B (en) * 2019-03-31 2021-07-16 广东美的制冷设备有限公司 Compressor assembly and air conditioner

Also Published As

Publication number Publication date
JP5506953B2 (en) 2014-05-28
JPWO2012090345A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP4561326B2 (en) Fluid machinery
US8033135B2 (en) Rotary-type fluid machine and refrigeration cycle apparatus
JP4969648B2 (en) Expander-integrated compressor and refrigeration cycle apparatus including the same
WO2009096167A1 (en) Expander-integrated compressor and refrigeration cycle device using the same
JP5506953B2 (en) Refrigerant compressor
JP2011012630A (en) Scroll compressor
JP2008215212A (en) Expander integrated type compressor and refrigerating cycle device
KR20240017369A (en) Low pressure chamber rotary compressors and air conditioners
JP2012122452A (en) Two-stage compressor
KR100557373B1 (en) Closed and Rotary Type Compressor
JP4492284B2 (en) Fluid machinery
WO2023233838A1 (en) Compressor and refrigeration cycle device
WO2015010260A1 (en) Rotary compressor and refrigerating circulating apparatus having same
CN217813937U (en) Compressor and air conditioner
CN110848135B (en) Horizontal compressor and heat exchange working equipment
JP2009019591A (en) Expander-integrated compressor and refrigerating cycle device
JP2014238062A (en) Rotary compressor
JP2024048814A (en) Hermetic rotary compressor and refrigerator equipped with same
JP5927407B2 (en) Rotary compressor
JP2004084633A (en) Oil return control device for gas compressor
JP2012026319A (en) Refrigerant compressor
JP2005351233A (en) Gas compressor
JP2016130502A (en) Hermetic type compressor and refrigerator with hermetic type compressor
WO2016026155A1 (en) Rotary compressor
JP2014020224A (en) Hermetic compressor, and refrigerator having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550671

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854312

Country of ref document: EP

Kind code of ref document: A1