WO2019220884A1 - 運転支援装置 - Google Patents

運転支援装置 Download PDF

Info

Publication number
WO2019220884A1
WO2019220884A1 PCT/JP2019/017167 JP2019017167W WO2019220884A1 WO 2019220884 A1 WO2019220884 A1 WO 2019220884A1 JP 2019017167 W JP2019017167 W JP 2019017167W WO 2019220884 A1 WO2019220884 A1 WO 2019220884A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
sensing range
display
map
traveling
Prior art date
Application number
PCT/JP2019/017167
Other languages
English (en)
French (fr)
Inventor
祐司 太田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019220884A1 publication Critical patent/WO2019220884A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • This disclosure relates to driving support for vehicles.
  • a driving support device that is communicably connected to a sensor that detects a situation around the vehicle and a display device that is mounted on the vehicle, and is mounted on the vehicle.
  • the driving support apparatus includes: a sensing range acquisition unit that acquires a sensing range of the sensor; a driving condition specifying unit that specifies a driving condition of the vehicle; and map information acquisition that acquires a map including a planned driving path of the vehicle And a control unit that superimposes a sensing range image, which is an image showing the sensing range, on the map in association with the current position of the vehicle and displays the image on the display device.
  • the said control part displays the said sensing range image on the said display apparatus with the display mode according to the specified said driving
  • the sensing range image is displayed on the display device in a display mode corresponding to the specified traveling situation, so that the sensing range can be appropriately presented and can contribute to driving support.
  • the present disclosure can be realized in various forms other than the driving support device.
  • the present invention can be realized in the form of a vehicle including a driving support device, a driving support method, a computer program for realizing the method, a storage medium storing the computer program, and the like.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a driving support device as an embodiment of the present disclosure.
  • FIG. 2 is an explanatory diagram schematically showing an example of a sensing range image.
  • FIG. 3 is a flowchart showing a processing procedure of sensing range display processing.
  • FIG. 4 is an explanatory view schematically showing an example of a sensing range display image at the time of straight traveling at high speed.
  • FIG. 5 is an explanatory diagram schematically showing an example of a sensing range display image at the time of straight traveling at low speed.
  • FIG. 6 is an explanatory diagram schematically showing an example of a sensing range display image at the time of turning left and right at an intersection.
  • FIG. 7 is a flowchart showing a processing procedure of sensing range display processing in the second embodiment.
  • FIG. 8 is an explanatory diagram schematically showing an example of a sensing range display image at the time of turning left and right at an intersection.
  • FIG. 9 is an explanatory diagram schematically showing an example of a sensing range display image at the time of turning left and right at an intersection.
  • FIG. 10 is an explanatory diagram schematically showing an example of a sensing range display image at the time of turning left and right at an intersection.
  • FIG. 11 is an explanatory diagram schematically illustrating an example of a sensing range display image according to another embodiment 1.
  • FIG. 12 is an explanatory diagram schematically illustrating an example of a sensing range display image according to another embodiment 2.
  • FIG. 13 is an explanatory diagram schematically illustrating an example of a sensing range display image
  • the above-mentioned “driving assistance” means that the engine control, the brake control, and the steering control of the vehicle 100 are automatically executed on behalf of the driver, or are executed so as to support the control by the driver. To do.
  • the driving support ECU 10 includes a CPU 20, a memory 12, and an input / output interface 11.
  • the CPU 20, the memory 12, and the input / output interface 11 are connected via a bus 15 so as to be capable of bidirectional communication.
  • the vehicle 100 includes a sensor unit 30, a detection unit 40, an actuator group 50, a display device 60, an input unit 70, and a wireless communication unit 80 in addition to the driving support ECU 10.
  • the sensor unit 30 detects a situation around the vehicle 100 by detecting an object existing around the vehicle 100 or refusing measurement.
  • the sensor unit 30 includes a millimeter wave radar 31 and a camera 32.
  • Millimeter wave radar 31 detects the position and distance of an object by emitting a millimeter wave and receiving a reflected wave reflected by the object.
  • the “object” detected by the millimeter wave radar 31 is more accurately a set of a plurality of detection points (targets).
  • the millimeter wave radar 31 includes the center of a front bumper (not shown) of the vehicle 100, the left and right sides of the front bumper in the traveling direction of the vehicle 100, the center of the left side of the vehicle 100, the center of the right side of the vehicle 100, and There are a total of 6 locations in the center of the rear bumper.
  • the detection signal output from each millimeter wave radar 31 is a signal composed of a sequence of points indicating a plurality of representative positions of the object, (x, y, z) coordinate information as position information, and relative detection points to the vehicle 100. Contains speed information.
  • the sensor unit 30 may include a rider (LIDAR: laser radar) or an ultrasonic sensor instead of the millimeter wave radar 31 or in addition to the millimeter wave radar 31.
  • the camera 32 is attached in front of the vehicle interior of the vehicle 100 and images an object or road equipment (lane, intersection, traffic light, etc.) existing in front of the vehicle 100.
  • an object or road equipment lane, intersection, traffic light, etc.
  • a monocular camera or a stereo camera can be used as the camera 32.
  • the detection unit 40 detects the traveling state of the vehicle 100.
  • the detection unit 40 includes a vehicle speed detection unit 41 and a position detection unit 42.
  • the vehicle speed detection unit 41 detects the speed of the vehicle 100 using the rotational speed of the drive wheels of the vehicle 100.
  • the position detection unit 42 detects the current position of the vehicle 100 based on radio waves received from an artificial satellite that constitutes a GNSS (Global Navigation Satellite System).
  • the detection unit 40 may include a sensor capable of detecting an acceleration, a yaw rate (rotational angular velocity), a steering angle (steering hall steering angle), etc., in addition to the speed and current position of the vehicle 100.
  • the actuator group 50 is an actuator for operating the vehicle 100.
  • the actuator group 50 includes, for example, a steering device (not shown), a braking device, a driving device, and an actuator for operating a power device mounted on the vehicle 100.
  • the display device 60 is a device that displays various types of information using images for the passengers (mainly drivers) of the vehicle 100.
  • the display device 60 may employ, for example, a display screen of a HUD (Head Up Display), a display device provided in an instrument panel, or a navigation device.
  • HUD Head Up Display
  • the input unit 70 is a device for acquiring the occupant's decision making from the occupant of the vehicle 100.
  • the input unit 70 includes, for example, a handle, a lever, a button, a pedal, and a voice input device.
  • the input unit 70 accepts at least instructions for canceling the automatic driving operation and executing a right turn operation.
  • the wireless communication unit 80 performs wireless communication between the vehicle 100 and the information center 500 and acquires various information from the information center 500. For example, the wireless communication unit 80 acquires traffic information, weather information, accident information, obstacle information, and traffic regulation information from the information center 500. Note that the wireless communication unit 80 replaces the information center 500 with at least some of these by vehicle-to-vehicle communication from other vehicles different from the vehicle 100, or from roadside devices provided at various locations on the road. May be obtained.
  • the input / output interface 11 of the driving assistance ECU 10 is controlled by the millimeter wave radar 31, the camera 32, the vehicle speed detection unit 41, the position detection unit 42, the actuator group 50, the display device 60, the input unit 70, and the wireless communication unit 80, respectively. Connected via signal line. Detection results by the millimeter wave radar 31, the camera 32, the vehicle speed detection unit 41, the position detection unit 42, and the input unit 70 are input to the CPU 20 via the input / output interface 11. A drive control signal is output to the actuator group 50 and the display device 60 via the input / output interface 11 based on an instruction from the CPU 20.
  • the CPU 20 includes a path formulation unit 22, a travel condition specifying unit 23, a sensing range acquisition unit 24, a distance calculation unit 25, a map information acquisition unit 26, a vehicle driving unit 27, and a control unit 21.
  • the functions of the path formulation unit 22, the traveling state identification unit 23, the sensing range acquisition unit 24, the distance calculation unit 25, the map information acquisition unit 26, the vehicle driving unit 27, and the control unit 21 are all included in the CPU 20 in the memory 12 This is realized by executing the control program stored in the.
  • the memory 12 includes a ROM and a RAM.
  • the memory 12 stores a road information DB.
  • the road information DB includes, for example, information such as road type, number of lanes, speed limit, presence / absence of a pedestrian crossing, presence / absence of a signal, presence / absence of a temporary stop line for each intersection and each road.
  • the road information DB may be acquired sequentially from the information center 500 via the wireless communication unit 80 as the vehicle 100 moves.
  • the path formulation unit 22 searches for a route to the destination designated by the occupant based on the road information DB stored in the memory 12, and formulates a path along which the vehicle 100 travels.
  • the “pass” means a travel path on which the vehicle 100 actually travels on the searched route (hereinafter referred to as “travel planned travel path”).
  • the path formulation unit 22 is acquired from the information center 500 via the current position of the vehicle 100 detected by the position detection unit 42, the surrounding environment and targets of the vehicle 100 detected by the sensor unit 30, and the wireless communication unit 80. In accordance with the reason that occurs according to the obstacle information or the like, a path is sequentially formulated during the automatic traveling of the vehicle 100, and a driving operation for traveling the vehicle 100 along the formulated path is determined.
  • Such driving operations include, for example, operations such as steering to the right, steering to the left, acceleration, deceleration, back, and stop.
  • the reasons why these driving operations are performed include, for example, right turn, left turn, straight ahead at the intersection, lane change, merging, overtaking, emergency stop, and obstacle avoidance.
  • the traveling state identifying unit 23 identifies the traveling state of the vehicle 100 using the detection results of the sensor unit 30 and the detecting unit 40.
  • the “traveling situation” means a situation derived from a situation relating to the surrounding environment of the vehicle 100 and a situation relating to the running condition of the vehicle 100.
  • the driving situation for example, a situation where the vehicle travels straight at a low speed, a situation where the intersection turns left, a situation where the vehicle stops in front of the pedestrian crossing, and a vehicle following the vehicle in front of the vehicle 100 This situation applies.
  • a situation in which the vehicle 100 is traveling at a low speed and a situation in which the vehicle turns right or left at the intersection are specified as the traveling situation.
  • the traveling state specifying unit 23 acquires detection results such as the vehicle speed, acceleration, and steering angle of the vehicle 100 from the detection unit 40 via the input / output interface 11.
  • the traveling state identification unit 23 acquires information related to the driving operation of the vehicle 100 from the path formulation unit 22.
  • specification part 23 specifies a driving
  • the sensing range acquisition unit 24 acquires the sensing range of the sensor unit 30.
  • the “sensing range” means a range sensed by each sensor included in the sensor unit 30. In the present embodiment, it means a sensing range sensed by the millimeter wave radar 31.
  • the sensing range acquisition unit 24 acquires the detection result of the millimeter wave radar 31 via the input / output interface 11. Thereafter, the sensing range acquisition unit 24 acquires, as a sensing range, an area obtained by connecting point sequences indicating a plurality of representative positions of the object indicated by the detection result of the millimeter wave radar 31 with an envelope.
  • the sensing range acquisition unit 24 may acquire a captured image of the camera 32 and acquire a region obtained by connecting points constituting the outline of the object indicated by the captured image with line segments as a sensing range.
  • the area along the contour of the object may be acquired as the sensing range, or the area obtained by connecting the points of the center of gravity of the plurality of objects shown in the captured image with line segments may be acquired as the sensing range. Good.
  • the distance calculation unit 25 is a distance from the current position of the vehicle 100 to the intersection when there is a specific portion of a predetermined road, for example, an intersection, within a predetermined distance range from the current position on the planned traveling road. Is calculated.
  • the distance calculating unit 25 refers to the road information DB, identifies the position of the intersection, and calculates the distance between the identified position of the intersection and the current position of the vehicle 100.
  • part may be a site
  • the map information acquisition unit 26 acquires a map indicating the planned travel route of the vehicle 100 from the information center 500 via the wireless communication unit 80.
  • the map information acquisition unit 26 uses the map acquired from the information center 500 to generate a map including the current position accompanying travel of the vehicle 100 in a timely manner.
  • the generated map is used when a sensing range image is displayed in a sensing range display process described later.
  • the map information acquisition unit 26 may acquire a map from a navigation device mounted on the vehicle 100 instead of the information center 500, or store the map in the memory 12 in advance, and store the map from the memory 12. You may get it.
  • the vehicle driving unit 27 drives the actuator group 50 based on an instruction from the control unit 21 to automatically drive the vehicle 100.
  • autonomous driving means automatic driving at level 1 or higher, preferably level 2 or higher, determined by the US Department of Transportation Road Traffic Safety Administration (NHTSA).
  • the control unit 21 performs integrated control of the units 22 to 27. Further, the control unit 21 causes the vehicle driving unit 27 to control the vehicle 100 based on the driving operation determined by the path formulation unit 22. At this time, the control unit 21 displays an image indicating the sensing range (hereinafter referred to as “sensing range image”) together with a map indicating the vicinity of the current position of the vehicle 100 by executing a sensing range display process described later. It is displayed on the device 60.
  • sensing range image an image indicating the sensing range
  • FIG. 2 shows the sensing range image SRImg on the upper left, the map image MPImg on the upper right, and the sensing range display image CImg on the lower.
  • the sensing range image SRImg is an image schematically showing the sensing range SR of the sensor unit 30.
  • the control unit 21 does not display each sensing range of each of the sensors 31 and 32 constituting the sensor unit 30 as a sensing range, but instead forms each sensing range of each of the sensors 31 and 32 as one integrated region. Display.
  • the control unit 21 may display a single area obtained by connecting representative points of a plurality of targets detected by each millimeter wave radar 31 with line segments as a sensing range.
  • the representative point of the target may be, for example, a point farthest from the millimeter wave radar 31 or a point at the center of gravity of the target.
  • a range that can be sensed by the sensor unit 30 may be displayed as a sensing range.
  • the map image MPImg is an image showing a map including the planned travel path Ln of the vehicle 100.
  • the planned traveling road Ln is a lane on the left side of the lane marking at the center of the road.
  • a vehicle such as the vehicle 100 will be described as performing left-hand traffic.
  • the map image MPImg is an image generated by the map information acquisition unit 26 in a timely manner so as to include the current position of the vehicle 100 as the vehicle 100 travels.
  • the sensing range display image CImg is a display image displayed on the display device 60 in a sensing range display process described later.
  • the sensing range display image CImg includes a sensing range image SRImg and a map image MPImg.
  • the control unit 21 displays the sensing range display image CImg on the display device 60 by displaying the sensing range image SRImg superimposed on the map image MPImg. At this time, the control unit 21 displays the sensing range image SRImg on the display device 60 in a display mode corresponding to the traveling state of the vehicle 100.
  • the display mode of the sensing range image SRImg varies depending on the vehicle speed of the vehicle 100 and the situation in which the vehicle 100 turns right or left at the intersection.
  • the sensor unit 30 corresponds to a subordinate concept of a sensor in the claims.
  • Sensing range display processing The sensing range display process shown in FIG. 3 is started when the destination of the vehicle 100 is set and the vehicle 100 starts traveling toward the destination.
  • the control unit 21 determines whether or not the vehicle 100 is automatically driven (step S100). When it is determined that the vehicle 100 is not automatically driven (step S100: NO), that is, when the occupant is driving the vehicle 100, the control unit 21 causes the display device 60 to display the map image MPImg. (Step S160). In step S160, only the map MP is displayed, and the sensing range SR is not displayed. In step S160, the control unit 21 displays the map MP without enlarging or reducing the map MP in either the vertical direction or the horizontal direction. In the following description, the map MP displayed in step S160 may be referred to as a reference map MP.
  • step S100 when it is determined that the vehicle 100 is automatically driven (step S100: YES), the traveling state specifying unit 23 specifies the traveling state of the vehicle 100 (step S105). Specifically, the traveling state specifying unit 23 acquires the speed of the vehicle 100 from the vehicle speed detecting unit 41 via the input / output interface 11. In addition, the traveling state specifying unit 23 acquires a driving operation to be executed next from the path formulation unit 22.
  • the traveling state specifying unit 23 determines whether or not the vehicle 100 is executing a lane trace from the acquired driving operation (step S110).
  • lane trace means traveling in which steering is controlled so that the vehicle 100 travels along a planned traveling path Ln.
  • step S110 it is specified whether or not the vehicle 100 is executing a lane trace using the driving operation acquired in step S110.
  • the traveling state specifying unit 23 determines whether or not the vehicle 100 is traveling at a low speed (step S145). Specifically, the traveling state specifying unit 23 acquires the type of traveling road on which the vehicle 100 is traveling from the path formulation unit 22, and the vehicle 100 travels on any of the highway and the general road. Identify whether it is inside. When the vehicle 100 is traveling on a general road and the vehicle speed acquired in step S105 described above is 40 kilometers per hour (km / h) or less, the traveling state specifying unit 23 indicates that the vehicle 100 is traveling at a low speed. Is determined.
  • the traveling state specifying unit 23 It is determined that the vehicle 100 is not traveling at a low speed.
  • step S145 When it is determined in step S145 described above that the vehicle 100 is not traveling at a low speed (step S145: NO), the control unit 21 executes a process of displaying the sensing range display image CImg in a straight-ahead high-speed display (step S155). ).
  • the control unit 21 displays a map MP1 and a sensing range SR1 as the sensing range display image CImg1.
  • the control unit 21 acquires the current position of the vehicle 100 from the position detection unit 42 via the input / output interface 11, and displays the sensing range SR1 in association with the acquired current position. Further, as described above, the control unit 21 causes the sensing range SR1 to be displayed superimposed on the map MP1. At this time, the control part 21 displays the image which shows the vehicle 100 in the position on map MP1 corresponding to the acquired present position.
  • FIG. 4 shows the vehicle 100 traveling from the lower side to the upper side in FIG.
  • the control unit 21 displays the sensing range display image CImg1 in a display mode suitable for straight-ahead high-speed travel. Specifically, the control unit 21 displays a map MP1 obtained by enlarging / reducing the reference map MP at a predetermined enlargement ratio with respect to the traveling direction of the vehicle 100 (the vertical direction in FIG. 4).
  • the “predetermined enlargement ratio” in step S155 means 50% when the enlargement ratio of the reference map MP is 100%. That is, the map MP1 is a map obtained by reducing the reference map MP to 50% in the vertical direction.
  • the map MP1 is displayed in a reduced size in the traveling direction of the vehicle 100 because the vehicle 100 is traveling at a high speed, so that the driver of the vehicle 100 can visually recognize the planned traveling path Ln1 farther in the traveling direction of the vehicle 100. This is because of the reason.
  • the control unit 21 does not reduce the map MP1 in the left-right direction of the vehicle 100 (left-right direction in FIG. 4). Note that the above-described enlargement ratio may be set to any other value instead of 50%.
  • the control unit 21 may display a scale display Sc1, which is information for specifying the scale of the map MP1.
  • a scale display Sc1 is information for specifying the scale of the map MP1.
  • the method of displaying the sensing range SR1 in association with the current position of the vehicle 100 includes a method of displaying the position of the vehicle 100 in the sensing range display image CImg1 and displaying the sensing range SR1 in association with the position. It is.
  • step S145 when it is determined in step S145 described above that the vehicle 100 is traveling at a low speed (step S145: YES), the control unit 21 displays the sensing range display image CImg as a straight traveling low speed display. Is executed (step S150).
  • the control unit 21 causes the display device 60 to display the map MP2 and the sensing range SR1 as the sensing range display image CImg2.
  • the sensing range SR1 is the same as the sensing range at the time of the straight traveling high speed shown in FIG.
  • the control unit 21 displays the sensing range display image CImg2 in a display mode suitable for straight traveling low speed running. Specifically, the control unit 21 determines the reference map MP in advance in the traveling direction of the vehicle 100 (up and down direction in FIG. 5) and the direction perpendicular to the traveling direction of the vehicle 100 (left and right direction in FIG. 5).
  • the map MP2 enlarged / reduced by the enlargement ratio is displayed.
  • the “predetermined enlargement ratio” in step S150 means 200% when the enlargement ratio of the reference map MP is 100%. That is, the map MP2 is a map obtained by enlarging the reference map MP to 200% in both the vertical direction and the horizontal direction.
  • the map MP2 is enlarged and displayed in the straight-ahead low-speed display process compared to the straight-ahead high speed display process.
  • the above-described predetermined enlargement ratio may be set to any other value instead of 200%.
  • the driver of the vehicle 100 adds the map MP2 to the left and right directions of the vehicle 100 in addition to the traveling direction of the vehicle 100. This is because the situation in the left-right direction can be accurately recognized.
  • the control unit 21 may display a scale display Sc2 indicating information for specifying the scale of the map MP2, similarly to the straight-ahead high-speed display process.
  • step S110 when it is determined in step S110 described above that the vehicle 100 is executing a lane trace (step S110: YES), the traveling state specifying unit 23 is positioned via the input / output interface 11. Using the current position of the vehicle 100 acquired from the detection unit 42 and the path formulated by the path formulation unit 22, it is determined whether or not the vehicle 100 travels near the intersection (step S115). When it is determined that the vehicle does not travel near the intersection (step S115: NO), the above-described step S145 is executed.
  • step S115 When it is determined in step S115 described above that the vehicle travels in the vicinity of the intersection (step S115: YES), the traveling state specifying unit 23 acquires the next driving operation to be executed from the path formulation unit 22, and the vehicle 100 is in the intersection. Whether to turn right or left is determined (step S120). When it is determined not to turn right or left (step S120: NO), the above-described step S145 is executed. On the other hand, when it determines with turning right or left (step S120: YES), the control part 21 performs the process which displays the sensing range display image CImg by intersection left-right display (step S125).
  • the control unit 21 causes the display device 60 to display a map MP3 and a sensing range SR1 as the sensing range display image CImg3.
  • the sensing range SR1 is the same as the sensing range shown in FIG. 4 and FIG.
  • the vehicle 100 travels on the traveling road Ln2 to the intersection CR, and then turns right at the intersection CR as indicated by the dashed arrow to travel on the scheduled traveling path Ln3.
  • the control unit 21 displays the sensing range display image CImg3 in a display mode suitable for traveling at the intersection right / left turn. Specifically, similarly to the straight-ahead low-speed display process, the control unit 21 performs the traveling direction of the vehicle 100 (up and down direction in FIG. 6) and the direction perpendicular to the traveling direction of the vehicle 100 (left and right direction in FIG. 6).
  • the map MP3 obtained by enlarging the reference map MP at a predetermined enlargement rate (200%) is displayed. For this reason, the driver
  • the control part 21 may display scale display Sc3 which shows the information which specifies the scale of map MP3. Further, the enlargement ratio may be different between the intersection right / left turn display processing and the straight traveling low speed display processing.
  • the vehicle driving unit 27 determines whether or not an occupant of the vehicle 100 is permitted to perform a right / left turn (step S ⁇ b> 130).
  • “permission of execution of right / left turn” means that execution of right turn or left turn of the vehicle 100 by automatic driving is permitted. That is, if an occupant of vehicle 100 is permitted to perform a right or left turn, vehicle 100 performs a right turn or a left turn by automatic driving. On the other hand, if an occupant of vehicle 100 is not permitted to perform a right or left turn, vehicle 100 performs a right turn or a left turn by manual driving by the driver.
  • sensing range SR ⁇ b> 1 is smaller in the left-right direction of vehicle 100 than in the traveling direction of vehicle 100. Therefore, in the left-right direction of vehicle 100, the range that can be visually recognized by the driver may be wider between sensing range SR1 and the range that can be visually recognized by the driver.
  • the safety check around the vehicle 100 is performed using the sensing range SR1, so the driver of the vehicle 100 turns right or left by automatic driving. It is determined whether or not it may be executed. Note that when the sensing range SR1 is relatively wide, step S130 may be omitted.
  • step S130 When it is determined that the execution of the right / left turn is permitted (step S130: YES), the vehicle driving unit 27 continues the automatic driving (step S135). That is, the vehicle driving unit 27 causes the vehicle 100 to perform a right / left turn at an intersection by automatic traveling.
  • step S140 If it is determined in step S130 described above that the execution of the right or left turn is not permitted (step S130: NO), the control unit 21 displays a permission prompt display (step S140).
  • the “permission prompting display” means a notification display for prompting the above-mentioned “permission of right / left turn execution”.
  • control unit 21 determines whether or not traveling of vehicle 100 is to be terminated. (Step S165). When vehicle 100 continues to travel (step S165: NO), the process returns to step S100 described above. On the other hand, when vehicle 100 ends traveling (step S165: YES), control unit 21 ends the sensing range display process.
  • the sensing range image SRImg is displayed on the display device 60 in a display mode corresponding to the specified traveling situation, so that the sensing ranges SR and SR1 are appropriately presented. It can contribute to driving support.
  • the speed of the vehicle 100 is specified as the traveling state, and the sensing ranges display images CImg1, CImg2, and CImg3 are displayed on the display device 60 in accordance with the specified speed, so that the sensing ranges SR, SR1 are displayed. Can be presented according to the driving situation.
  • the map MP2 is enlarged and displayed as compared with a case where the vehicle 100 is not traveling at a low speed, and when the vehicle 100 turns right or left at the intersection CR, when the intersection CR does not turn right and left Since the map MP3 is enlarged and displayed on the display device 60, the driver of the vehicle 100 can easily check the safety of the planned travel paths Ln, Ln1, and Ln3 of the vehicle 100.
  • Second embodiment Since the driving assistance ECU 10 in the second embodiment is the same as the driving assistance ECU 10 in the first embodiment shown in FIG. 1, detailed description thereof will be omitted.
  • the sensing range display process in the second embodiment shown in FIG. 7 is the same as the sensing range display process in the first embodiment in that step S121 is added and executed, and step S125a is executed instead of step S125.
  • step S121 is added and executed
  • step S125a is executed instead of step S125.
  • other procedures of the sensing range display process of the second embodiment are the same as the sensing range display process of the first embodiment, the same procedures are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the display of the sensing range display image is switched according to the distance from the current position to the intersection CR where the vehicle 100 is scheduled to travel. Specifically, as shown in FIG. 7, when it is determined that the vehicle 100 travels in the vicinity of the intersection CR (step S115: YES), and it is determined that the intersection CR is to turn right or left (step S120: YES), distance calculation is performed.
  • the unit 25 calculates the distance from the current position to the intersection CR (step S121). Specifically, the distance calculation unit 25 acquires the current position of the vehicle 100 from the position detection unit 42 via the input / output interface 11. Further, the distance calculation unit 25 identifies the position of the intersection CR using the path formulated by the path formulation unit 22. And the distance calculation part 25 calculates the distance between the acquired present position and the position of the specified intersection CR.
  • the control unit 21 executes a process of displaying the sensing range display image CImg3 in an intersection right / left turn display (step S125a). Specifically, first, the control unit 21 determines in which range the distance to the intersection CR calculated in step S121 described above is within a predetermined range of three distances. Identify. In the present embodiment, the “predetermined three-step distance range” means that the distance to the intersection CR is 150 to 200 meters, the distance to the intersection CR is 80 to 150 meters, And the distance to the intersection CR means a distance of up to 80 meters. And the control part 21 displays sensing range display image CImg3 by the display mode according to the specified stage.
  • the image display when the distance to the intersection CR is a distance from 150 meters to 200 meters will be described with reference to FIG.
  • the controller 21 causes the display device 60 to display the map MP3a and the sensing range SR1 as the sensing range display image CImg3a.
  • the sensing range SR1 is the same as the sensing range in the intersection right / left turn display in the first embodiment shown in FIG.
  • the control unit 21 displays a map MP3a obtained by reducing the reference map MP at a predetermined enlargement rate (for example, 50%) with respect to the traveling direction of the vehicle 100 (the vertical direction in FIG. 8). In this way, the map Mp3a is reduced and displayed in the traveling direction of the vehicle 100 so that the driver of the vehicle 100 can recognize a farther region including the intersection CR existing further ahead of the planned traveling route Ln2. It is to make it.
  • the image display when the distance to the intersection CR is a distance from 80 meters to 150 meters will be described with reference to FIG.
  • the control unit 21 displays the map MP3b and the sensing range SR1 on the display device 60 as the sensing range display image CImg3b.
  • the sensing range SR1 is the same as the sensing range shown in FIG.
  • the control unit 21 displays the map MP3b that does not enlarge or reduce the reference map MP in any of the traveling direction of the vehicle 100 (up and down direction in FIG. 9) and the left and right direction of the vehicle 100 (left and right direction in FIG. 9).
  • the image display when the distance to the intersection CR is up to 80 meters will be described with reference to FIG.
  • the control unit 21 causes the display device 60 to display the map MP3c and the sensing range SR1 as the sensing range display image CImg3c. Since the sensing range SR1 is the same as the sensing range shown in FIGS. 8 and 9, detailed description thereof is omitted.
  • the control unit 21 sets the reference map MP at a predetermined magnification (for example, 200%) with respect to the traveling direction of the vehicle 100 (vertical direction in FIG. 10) and the horizontal direction of the vehicle 100 (horizontal direction in FIG.
  • the enlarged map MP3c is displayed.
  • the map Mp3c is enlarged and displayed in the traveling direction and the left-right direction of the vehicle 100 so that the driver of the vehicle 100 can accurately recognize the situation of the intersection CR where the vehicle 100 is about to make a right / left turn. It is to make it.
  • the same effects as those of the first embodiment can be obtained.
  • the sensing range image SRImg is displayed on the display device 60 in a different manner depending on the distance from the current position of the vehicle 100 to the intersection CR, the sensing ranges SR, SR1 are displayed in accordance with the traveling state of the vehicle 100. Can be displayed appropriately.
  • control unit 21 may display a sensing possible range in addition to the sensing range SR1.
  • sensing range means a sensing range that is predetermined as a product specification of the sensor unit 30.
  • the sensing range display image CImg4 displays a sensing range SR1 and a sensing possible range KR.
  • FIG. 11 shows an example in which the sensing range KR is further displayed on the sensing range display image CImg3 shown in FIG. In FIG. 11, the scale display Sc3 is not shown.
  • the sensing range SR1 is a region smaller than the sensing possible range KR. This is because when an object (target) is detected within the sensing possible range KR, the millimeter wave emitted from the millimeter wave radar 31 is shielded by the detected object, and can be sensed from the detected object.
  • the sensing range acquisition unit 24 does not detect the range from the detected object to the outer edge of the detectable range KR as the sensing range SR1. .
  • the sensing possible range KR displays a range that can be sensed by the sensor unit 30 regardless of the presence or absence of a target around the vehicle 100.
  • the sensing range SR1 and the sensing possible range KR substantially coincide with each other.
  • the sensible range KR is also displayed on the display device 60, so that the occupant of the vehicle 100 can detect the range SR1 that the sensor unit 30 senses and the range KR that the sensor unit 30 can sense. , Both can be easily recognized. Even in such a configuration, the same effects as those of the above embodiments can be obtained.
  • control unit 21 may fill and display a range that cannot be sensed.
  • the sensing range display image CImg5 the areas Ar1 and Ar2 excluding the scheduled traveling path Ln1 and the sensing range SR1 are displayed in a different color from the sensing range SR1.
  • FIG. 12 shows a state where the areas Ar1 and Ar2 are filled by hatching the areas Ar1 and Ar2.
  • the areas Ar1 and Ar2 are areas where the vehicle 100 does not travel and are areas where the sensor unit 30 cannot sense.
  • the sensing range SR1 can be displayed conspicuously by painting and displaying the areas Ar1 and Ar2 that cannot be sensed. Therefore, an occupant of vehicle 100 can easily recognize sensing range SR1 and a range that cannot be sensed.
  • the areas Ar1 and Ar2 may be displayed in a blurred manner instead of or in addition to the method in which the areas Ar1 and Ar2 are displayed in a different color from the sensing range SR1, or the brightness of the sensing range SR1
  • the brightness may be displayed higher than the brightness of Ar1 and Ar2, or the sensing range SR1 may be displayed blinking.
  • the region of the planned travel route Ln1 that is not included in the sensing range SR1 may be displayed in a different color from the sensing range SR1, similarly to the regions Ar1 and Ar2. Even in such a configuration, the same effects as those of the above embodiments can be obtained.
  • control part 21 may display typically the range which cannot be sensed.
  • the sensing range display image CImg6 ranges MR1 and MR2 that cannot be sensed are displayed.
  • the sensing range SR1 is not shown. Ranges MR1 and MR2 that cannot be sensed are simply displayed. For this reason, the driver of the vehicle 100 can intuitively recognize the ranges MR1 and MR2 that cannot be sensed.
  • the control unit 21 may display a notification display that prompts the safety confirmation of the ranges MR1 and MR2 that cannot be sensed. The driver of the vehicle 100 can easily recognize that the safety check should be performed by himself and the range where the safety check should be performed. Even in such a configuration, the same effects as those of the other embodiments 1 and 2 described above can be obtained.
  • the control unit 21 switches the display mode of the sensing range display image CImg in accordance with a predetermined three-step distance.
  • the predetermined three-step distance is not limited to the above example, and a plurality of steps may be set for each other arbitrary distance. Further, for example, it may be set to one stage instead of three stages. In such a configuration, the display mode may be switched only immediately before the intersection CR (for example, 80 meters). Further, for example, a configuration may be adopted in which the occupant of the vehicle 100 can set the stage and distance via the input unit 70. Further, for example, it may be set steplessly.
  • the display mode of the sensing range display image CImg may be switched by increasing the enlargement rate of the reference map MP and displaying the map MP3 as the vehicle 100 approaches the intersection CR. Thereby, the display mode of the sensing range display image CImg3 can be varied continuously and smoothly. Even in such a configuration, the same effects as those of the second embodiment can be obtained.
  • the control unit 21 enlarges the maps MP2 and MP3 when the vehicle 100 is traveling at a low speed and the vehicle 100 is turning right or left at the intersection CR.
  • the map MP2 may be enlarged and displayed only in a situation where the vehicle 100 is traveling at a low speed.
  • the map MP3 may be enlarged and displayed only in a situation where the vehicle 100 turns right or left at the intersection CR. That is, in general, the map MP2 and the map MP3 are enlarged and displayed in at least one of a situation where the vehicle 100 is traveling at a low speed and a situation where the vehicle 100 turns right or left at the intersection CR. Also good. Even in such a configuration, the same effects as those of the first and second embodiments can be obtained.
  • the map MP2 and the map MP3 are enlarged in at least one of the situation where the vehicle 100 is traveling at a low speed and the situation where the vehicle 100 turns right or left at the intersection CR.
  • the present disclosure is not limited to this.
  • the map MP1 may be enlarged and displayed.
  • the map MP3 may be enlarged and displayed.
  • the maps MP2 and MP3 may not be displayed in an enlarged manner. Even in such a configuration, the same effects as those of the other embodiment 5 can be obtained.
  • control unit 21 may switch the display mode of the sensing range display image according to any other type of travel situation, not limited to the speed of the vehicle 100 and the distance to the intersection CR.
  • the display of the sensing range display image may be switched according to the type of the running road. Specifically, when the vehicle 100 is traveling on a highway, a sensing range display image is displayed by the straight-ahead high-speed display process, and when the vehicle 100 is traveling on a general road, the sensing range is displayed by a straight-ahead low-speed display. A display image may be displayed.
  • a sensing range display image by a straight traveling high speed display process may be displayed.
  • the sensing range display image by the straight traveling low speed display process may be displayed.
  • the sensing range image may be displayed in a display mode corresponding to the traveling state of the vehicle 100. Even in such a configuration, the same effects as those of the above embodiments can be obtained.
  • the control part 21 is 1 when the speed of the vehicle 100 is below a predetermined value (40 kilometers per hour), and when the speed of the vehicle 100 is larger than a predetermined value (40 kilometers per hour).
  • the sensing range display images CImg1 and CImg2 are displayed in different stages at the stage, the present disclosure is not limited to this.
  • the display mode of the sensing range display image may be switched and displayed for each multi-stage vehicle speed.
  • the sensing range display image may be switched and displayed for each stepless vehicle speed.
  • the sensing range display image may be displayed by decreasing the enlargement rate of the reference map MP as the speed of the vehicle 100 increases. By doing in this way, the display mode of the sensing range display image can be switched continuously and smoothly according to the vehicle speed. Even in such a configuration, the same effects as those of the first embodiment can be obtained.
  • Computer-readable recording medium is not limited to a portable recording medium such as a flexible disk or CD-ROM, but is also fixed to an internal storage device in a computer such as various types of RAM and ROM, or a computer such as a hard disk. It also includes an external storage device. That is, the “computer-readable recording medium” has a broad meaning including an arbitrary recording medium capable of fixing a data packet instead of temporarily.
  • the present disclosure is not limited to the above-described embodiment, and can be realized with various configurations without departing from the spirit of the present disclosure.
  • the technical features in the embodiments corresponding to the technical features in each embodiment described in the summary section of the invention are intended to solve part or all of the above-described problems, or one of the above-described effects. In order to achieve part or all, replacement or combination can be appropriately performed. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

車両100の周囲の状況を検出するセンサ30および該車両に搭載された表示装置60と通信可能に接続され、該車両に搭載される運転支援装置10は、センサがセンシングするセンシング範囲を取得するセンシング範囲取得部24と、車両の走行状況を特定する走行状況特定部23と、車両の走行予定走路を含んだ地図を取得する地図情報取得部26と、センシング範囲を示す画像であるセンシング範囲画像を、車両の現在位置に対応づけて地図に重畳して表示装置に表示させる制御部21と、を備え、制御部は、特定された走行状況に応じた表示態様でセンシング範囲画像を表示装置に表示させる。

Description

運転支援装置 関連出願の相互参照
 本願は、その全ての開示が参照によりここに組み込まれる、2018年5月14日に出願された、日本国特許出願 出願番号2018-93020に基づく優先権を主張する。
 本開示は、車両の運転支援に関する。
 従来、車両の運転者に対して様々な情報を提供する技術が提案されている。例えば、特開2012-38138号公報には、車両の周囲の状況を運転者に提示する技術として、車両の現在位置付近を示す地図上に、車両に搭載されたレーダ装置のセンシング範囲を重畳して表示させる技術が提案されている。
 しかしながら、特許文献1に記載の技術では、レーダ装置のセンシング範囲は、単に地図に重ねて表示されているに過ぎない。車両の運転支援では、様々な走行状況の下で運転者の運転を支援しようとする。したがって、車両に搭載されたセンサのセンシング範囲を運転支援の観点から提示する技術が望まれている。
 本開示は、以下の形態として実現することが可能である。
 本開示の一実施形態によれば、車両の周囲の状況を検出するセンサおよび該車両に搭載された表示装置と通信可能に接続され、該車両に搭載される運転支援装置が提供される。この運転支援装置は、前記センサのセンシング範囲を取得するセンシング範囲取得部と;前記車両の走行状況を特定する走行状況特定部と;前記車両の走行予定走路を含んだ地図を取得する地図情報取得部と;前記センシング範囲を示す画像であるセンシング範囲画像を、前記車両の現在位置に対応づけて前記地図に重畳して前記表示装置に表示させる制御部と;を備える。ここで、前記制御部は、特定された前記走行状況に応じた表示態様で前記センシング範囲画像を前記表示装置に表示させる。
 この形態の運転支援装置によれば、特定された走行状況に応じた表示態様でセンシング範囲画像を表示装置に表示させるので、センシング範囲を適切に提示でき、運転支援に資することができる。
 本開示は、運転支援装置以外の種々の形態で実現することも可能である。例えば、運転支援装置を備えた車両、運転支援方法、かかる方法を実現するためのコンピュータプログラム、かかるコンピュータプログラムを記憶した記憶媒体等の形態で実現することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示における一実施形態としての運転支援装置の概略構成を示すブロック図であり、 図2は、センシング範囲画像の一例を模式的に示す説明図であり、 図3は、センシング範囲表示処理の処理手順を示すフローチャートであり、 図4は、直進高速時におけるセンシング範囲表示画像の一例を模式的に示す説明図であり、 図5は、直進低速時におけるセンシング範囲表示画像の一例を模式的に示す説明図であり、 図6は、交差点右左折時におけるセンシング範囲表示画像の一例を模式的に示す説明図であり、 図7は、第2実施形態におけるセンシング範囲表示処理の処理手順を示すフローチャートであり、 図8は、交差点右左折時におけるセンシング範囲表示画像の一例を模式的に示す説明図であり、 図9は、交差点右左折時におけるセンシング範囲表示画像の一例を模式的に示す説明図であり、 図10は、交差点右左折時におけるセンシング範囲表示画像の一例を模式的に示す説明図であり、 図11は、他の実施形態1におけるセンシング範囲表示画像の一例を模式的に示す説明図であり、 図12は、他の実施形態2におけるセンシング範囲表示画像の一例を模式的に示す説明図であり、 図13は、他の実施形態3におけるセンシング範囲表示画像の一例を模式的に示す説明図である。
A.第1実施形態:
A1.装置構成:
 図1に示すように、本開示の「運転支援装置」に相当する運転支援ECU(Electronic Control Unit)10は、車両100に搭載され、車両100の運転を支援する。上述の「運転の支援」とは、車両100のエンジン制御とブレーキ制御と操舵制御とを運転者に代わって自動的に実行すること、或いは運転者による制御を支援するように実行することを意味する。
 運転支援ECU10は、CPU20と、メモリ12と、入出力インターフェース11とを備える。CPU20、メモリ12、および入出力インターフェース11は、バス15を介して双方向に通信可能に接続されている。
 車両100は、運転支援ECU10のほか、センサ部30と、検出部40と、アクチュエータ群50と、表示装置60と、入力部70と、無線通信部80と、を備える。
 センサ部30は、車両100の周囲に存在する物体の検出や測拒を行うことにより、車両100の周囲の状況を検出する。センサ部30は、ミリ波レーダ31と、カメラ32とを備える。
 ミリ波レーダ31は、ミリ波を射出し、物体によって反射された反射波を受信することによって物体の位置および距離を検出する。なお、ミリ波レーダ31が検出する「物体」とは、より正確には、複数の検出点(物標)の集合である。本実施形態において、ミリ波レーダ31は、車両100の図示しないフロントバンパの中央、フロントバンパにおける車両100の進行方向左側および右側、車両100の左側側面中央部、車両100の右側側面中央部、およびリアバンパの中央の合計6箇所に配置されている。各ミリ波レーダ31から出力される検出信号は、物体の複数の代表位置を示す点列からなる信号であり、位置情報としての(x、y、z)座標情報、車両100に対する検出点の相対速度情報が含まれる。なお、センサ部30は、ミリ波レーダ31に代えて、または、ミリ波レーダ31に加えて、ライダー(LIDAR:レーザレーダ)や、超音波センサを備えていてもよい。
 カメラ32は、車両100の車室内の前方に取り付けられ、車両100の前方に存在する物体や道路設備(車線、交差点および信号機等)等を撮像する。カメラ32として、単眼カメラやステレオカメラが使用可能である。
 検出部40は、車両100の走行状態を検出する。検出部40は、車速検出部41および位置検出部42により構成されている。車速検出部41は、車両100の駆動輪の回転速度を用いて、車両100の速度を検出する。位置検出部42は、GNSS(Global Navigation Satellite System)を構成する人工衛星から受信する電波に基づき、車両100の現在位置を検出する。なお、検出部40は、車両100の速度および現在位置のほか、加速度、ヨーレート(回転角速度)、操舵角(ステアリングホール舵角)等を検出可能なセンサを含んでいてもよい。
 アクチュエータ群50は、車両100の運転を行うためのアクチュエータである。アクチュエータ群50は、例えば、車両100に搭載された図示しない操舵装置、制動装置、駆動装置、および動力装置を動作させるためのアクチュエータを含む。
 表示装置60は、車両100の乗員(主に運転者)に対して、画像を用いて各種の情報を表示する装置である。表示装置60は、液晶パネル等を用いたディスプレイの他、例えば、HUD(Head Up Display)や、インストルメントパネルに設けられた表示装置、ナビゲーション装置の表示画面を採用してもよい。
 入力部70は、車両100の乗員から乗員の意思決定を取得するための装置である。入力部70は、例えば、ハンドル、レバー、ボタン、ペダル、音声入力装置を含む。本実施形態において、入力部70は、少なくとも自動運転操作の取消および右折動作の実行等の指示を受け付ける。
 無線通信部80は、車両100と情報センター500との間で無線通信を行って、情報センター500から種々の情報を取得する。無線通信部80は、例えば、情報センター500から、交通情報、天気情報、事故情報、障害物情報、交通規制情報を取得する。なお、無線通信部80は、情報センター500に代えて、車両100とは異なる他車両から車車間通信により、あるいは、道路の各所に設けられた路側機から路車間通信により、これらの少なくとも一部の情報を取得してもよい。
 運転支援ECU10の入出力インターフェース11は、上述したミリ波レーダ31、カメラ32、車速検出部41、位置検出部42、アクチュエータ群50、表示装置60、入力部70、および無線通信部80にそれぞれ制御信号線を介して接続されている。ミリ波レーダ31、カメラ32、車速検出部41、位置検出部42、および入力部70による検出結果は、入出力インターフェース11を介してCPU20に入力される。アクチュエータ群50、および表示装置60に対しては、CPU20の指示に基づいて入出力インターフェース11を介して駆動制御信号が出力される。
 CPU20は、パス策定部22と、走行状況特定部23と、センシング範囲取得部24と、距離算出部25と、地図情報取得部26と、車両運転部27と、制御部21とを備える。パス策定部22、走行状況特定部23、センシング範囲取得部24、距離算出部25、地図情報取得部26、車両運転部27、および制御部21としての機能は、いずれも、CPU20が、メモリ12に格納されている制御プログラムを実行することにより実現される。
 メモリ12は、ROMとRAMとを含んでいる。メモリ12には、道路情報DBが格納されている。道路情報DBには、例えば、各交差点および各道路について、道路種別、車線数、制限速度、横断歩道の有無、信号の有無、一時停止線の有無などの情報が含まれている。なお、道路情報DBは、車両100の移動に伴い、情報センター500から無線通信部80を介して逐次取得されてもよい。
 パス策定部22は、メモリ12に格納された道路情報DBに基づき、乗員によって指定された目的地までの経路を探索するとともに、車両100が進行するパスを策定する。本実施形態において、「パス」とは、探索された経路上、実際に車両100が走行する走路(以下、「走行予定走路」と呼ぶ)を意味する。パス策定部22は、位置検出部42によって検出される車両100の現在位置、センサ部30によって検出される車両100の周辺環境および物標、および無線通信部80を介して情報センター500から取得される障害物情報などに応じて発生する理由に従い、車両100の自動走行中に逐次パスを策定し、車両100が策定されたパスを走行するための運転操作を決定する。かかる運転操作には、例えば、右方向への操舵、左方向への操舵、加速、減速、バック、停止、といった操作が含まれる。また、これらの運転操作が行われる理由には、例えば、右折、左折、交差点直進、車線変更、合流、追い越し、緊急停止、障害物回避などがある。
 走行状況特定部23は、センサ部30および検出部40の検出結果を利用して、車両100の走行状況を特定する。本実施形態において、「走行状況」とは、車両100の周辺環境に関する状況と、車両100の走行状態に関する状況と、から導かれる状況を意味する。走行状況としては、例えば、交差点を低速で直進する状況、交差点を左折する状況、横断歩道の手前で停止している状況、車両100の前方を走行している前方車両に追従して走行している状況等が該当する。本実施形態では、走行状況として、車両100が低速走行中である状況、および交差点を右折または左折する状況が特定される。走行状況特定部23は、入出力インターフェース11を介して検出部40から車両100の車速、加速度、操舵角等の検出結果をそれぞれ取得する。また、走行状況特定部23は、パス策定部22から車両100の運転操作に関する情報を取得する。そして、走行状況特定部23は、取得した検出結果および情報に基づき、走行状況を特定する。
 センシング範囲取得部24は、センサ部30のセンシング範囲を取得する。本実施形態において、「センシング範囲」とは、センサ部30が備える各センサがセンシングする範囲を意味する。本実施形態では、ミリ波レーダ31がセンシングするセンシング範囲を意味する。センシング範囲取得部24は、入出力インターフェース11を介してミリ波レーダ31の検出結果を取得する。その後、センシング範囲取得部24は、ミリ波レーダ31の検出結果に示される物体の複数の代表位置を示す点列を包絡線で結んで得られる領域をセンシング範囲として取得する。なお、センシング範囲取得部24は、カメラ32の撮像画像を取得して、撮像画像に示される物体の輪郭を構成する点を線分で結んで得られる領域をセンシング範囲として取得してもよいし、物体の輪郭に沿った領域をセンシング範囲として取得してもよいし、撮像画像に示される複数の物体の重心位置の点同士を線分で結んで得られる領域をセンシング範囲として取得してもよい。
 距離算出部25は、走行予定走路において現在位置から予め定められた距離の範囲内に、予め定めた道路の特定部位、例えば、交差点が存在する場合に、車両100の現在位置から交差点までの距離を算出する。距離算出部25は、道路情報DBを参照して交差点の位置を特定し、特定された交差点の位置と、車両100の現在位置と、の間の距離を算出する。なお、上述の特定部位は、交差点に代えて、または、交差点に加えて、信号機、横断歩道等の他の任意の道路設備が施されている部位であってもよい。
 地図情報取得部26は、無線通信部80を介して情報センター500から車両100の走行予定走路を示す地図を取得する。地図情報取得部26は、情報センター500から取得した地図を用いて、車両100の走行に伴う現在位置を含む地図を適時生成する。生成された地図は、後述のセンシング範囲表示処理において、センシング範囲画像を表示する際に用いられる。なお、地図情報取得部26は、情報センター500に代えて、車両100に搭載されたナビゲーション装置から地図を取得してもよいし、メモリ12に地図を予め格納しておき、メモリ12から地図を取得してもよい。
 車両運転部27は、制御部21からの指示に基づきアクチュエータ群50を駆動して、車両100を自動運転する。本実施形態において、「自動運転」とは、米国運輸省道路交通安全局(NHTSA)によって定められたレベル1以上、好ましくはレベル2以上の自動運転を意味する。
 制御部21は、各部22~27を統合制御する。また、制御部21は、パス策定部22によって決定された運転操作に基づき、車両運転部27に車両100の制御を実行させる。このとき、制御部21は、後述のセンシング範囲表示処理を実行することにより、センシング範囲を示す画像(以下、「センシング範囲画像」と呼ぶ)を、車両100の現在位置付近を示す地図とともに、表示装置60に表示させる。
 図2では、上段左にセンシング範囲画像SRImgを、上段右に地図画像MPImgを、下段にセンシング範囲表示画像CImgを、それぞれ示している。センシング範囲画像SRImgは、センサ部30のセンシング範囲SRを模式的に示す画像である。制御部21は、センサ部30を構成する各センサ31および32の各センシング範囲をそれぞれセンシング範囲として表示させるのではなく、各センサ31および32の各センシング範囲を全体で1つのまとまった領域になるようにして表示させる。例えば、制御部21は、各ミリ波レーダ31によって検出される複数の物標の代表点同士を線分で結んで得られる単一の領域をセンシング範囲として表示してもよい。物標の代表点としては、例えば、ミリ波レーダ31から最も遠い位置の点としてもよいし、物標の重心位置の点としてもよい。また、例えば、車両100の周囲に物標が存在しない場合には、センサ部30がセンシング可能な範囲をセンシング範囲として表示してもよい。
 地図画像MPImgは、車両100の走行予定走路Lnを含んだ地図を示す画像である。走行予定走路Lnは、道路中央の区画線よりも左側の車線である。本実施形態では、車両100などの車両は、左側通行を行うとして説明する。地図画像MPImgは、地図情報取得部26により、車両100の走行に伴い、車両100の現在位置を含むように適時生成される画像である。
 センシング範囲表示画像CImgは、後述のセンシング範囲表示処理において表示装置60に表示される表示画像である。センシング範囲表示画像CImgは、センシング範囲画像SRImgと、地図画像MPImgとにより構成される。制御部21は、センシング範囲画像SRImgを地図画像MPImgに重畳して表示させることにより、センシング範囲表示画像CImgを表示装置60に表示させる。このとき、制御部21は、車両100の走行状況に応じた表示態様でセンシング範囲画像SRImgを表示装置60に表示させる。本実施形態では、車両100の車速や、車両100が交差点を右折または左折する状況に応じて、センシング範囲画像SRImgの表示態様が異なる。
 本開示において、センサ部30は、請求項におけるセンサの下位概念に相当する。
A2.センシング範囲表示処理:
 図3に示すセンシング範囲表示処理は、車両100の目的地が設定されて、車両100が目的地に向かって走行を開始させると開始される。制御部21は、車両100が自動運転されているか否かを判定する(ステップS100)。車両100が自動運転されていないと判定された場合(ステップS100:NO)、すなわち、乗員が自ら車両100の運転を行っている場合、制御部21は、地図画像MPImgを表示装置60に表示させる(ステップS160)。ステップS160では、地図MPのみが表示され、センシング範囲SRは表示されない。また、ステップS160では、制御部21は、地図MPの縦方向、横方向のいずれに対しても拡大および縮小しないで、地図MPを表示させる。なお、以降の説明では、ステップS160で表示する地図MPを基準地図MPと呼ぶ場合がある。
 上述のステップS100において、車両100が自動運転されていると判定された場合(ステップS100:YES)、走行状況特定部23は、車両100の走行状況を特定する(ステップS105)。具体的には、走行状況特定部23は、入出力インターフェース11を介して車速検出部41から車両100の速度を取得する。また、走行状況特定部23は、パス策定部22から次に実行される運転操作を取得する。
 走行状況特定部23は、取得された運転操作から車両100がレーントレースを実行中であるか否かを判定する(ステップS110)。本実施形態において、「レーントレース」とは、車両100が走行予定走路Lnを道なりに走行するように操舵を制御する走行を意味する。ステップS110では、ステップS110において取得された運転操作を用いて、車両100がレーントレースを実行中であるか否かが特定される。
 車両100がレーントレースを実行中でないと判定された場合(ステップS110:NO)、走行状況特定部23は、車両100が低速走行中であるか否かを判定する(ステップS145)。具体的には、走行状況特定部23は、パス策定部22から車両100の走行中の走路の種別を取得して、車両100が高速道路と、一般道路と、のうちのいずれの道路を走行中であるかを特定する。車両100が一般道路を走行中であり、かつ、上述のステップS105において取得した車速が時速40キロメートル(km/h)以下である場合、走行状況特定部23は、車両100が低速走行中であると判定する。他方、車両100が高速道路を走行中である場合、または、車両100が一般道路を走行中であり、車速が時速40キロメートル(km/h)よりも大きい場合には、走行状況特定部23は、車両100が低速走行中でないと判定する。
 上述のステップS145において、車両100が低速走行中でないと判定された場合(ステップS145:NO)、制御部21は、センシング範囲表示画像CImgを直進高速時表示で表示させる処理を実行する(ステップS155)。
 図4を用いて、直進高速時表示処理における画像表示について説明する。図4に示すように、制御部21は、センシング範囲表示画像CImg1として、地図MP1と、センシング範囲SR1とを表示させる。制御部21は、入出力インターフェース11を介して位置検出部42から車両100の現在位置を取得し、取得された現在位置にセンシング範囲SR1を対応づけて表示させる。また、上述のように、制御部21は、センシング範囲SR1を地図MP1に重畳して表示させる。このとき、制御部21は、取得された現在位置に対応する地図MP1上の位置に、車両100を示す画像を表示させる。図4では、車両100が、図4の下方側から上方側に向かって走行している様子が示されている。
 直進高速時表示処理において、制御部21は、センシング範囲表示画像CImg1を直進高速走行に適した表示態様で表示させる。具体的には、制御部21は、車両100の進行方向(図4の上下方向)に対して、基準地図MPを予め定められた拡大率で拡縮した地図MP1を表示させる。本実施形態において、ステップS155における「予め定められた拡大率」とは、基準地図MPの拡大率を100%とした場合における50%を意味する。すなわち、地図MP1は、基準地図MPを縦方向に50%に縮小した地図である。地図MP1を車両100の進行方向に縮小して表示するのは、車両100が高速走行中であるので、車両100の運転者が、車両100の進行方向において走行予定走路Ln1をより遠くまで視認できるようにするためであるという理由からである。なお、直進高速時表示処理では、制御部21は、車両100の左右方向(図4の左右方向)に地図MP1を縮小しない。なお、上述の拡大率は、50%に代えて、他の任意の値を設定してもよい。
 図4に示すように、制御部21は、地図MP1のスケールを特定する情報であるスケール表示Sc1を表示してもよい。スケール表示Sc1を表示することにより、車両100の運転者は、地図MP1の縮尺を容易に理解できる。
 なお、センシング範囲SR1を車両100の現在位置に対応づけて表示する方法には、センシング範囲表示画像CImg1に車両100の位置を表示し、かかる位置に対応づけてセンシング範囲SR1を表示する方法が含まれる。
 図3に示すように、上述のステップS145において、車両100が低速走行中であると判定された場合(ステップS145:YES)、制御部21は、センシング範囲表示画像CImgを直進低速時表示で表示させる処理を実行する(ステップS150)。
 図5を用いて、直進低速時表示処理における画像表示について説明する。図5に示すように、制御部21は、センシング範囲表示画像CImg2として、地図MP2と、センシング範囲SR1とを表示装置60に表示させる。センシング範囲SR1は、図4に示す直進高速時におけるセンシング範囲と同じであるので、詳細な説明は省略する。
 直進低速時表示処理において、制御部21は、センシング範囲表示画像CImg2を直進低速走行に適した表示態様で表示させる。具体的には、制御部21は、車両100の進行方向(図5の上下方向)および車両100の進行方向に垂直な方向(図5の左右方向)に対して、基準地図MPを予め定められた拡大率で拡縮した地図MP2を表示させる。本実施形態において、ステップS150における「予め定められた拡大率」とは、基準地図MPの拡大率を100%とした場合における200%を意味する。すなわち、地図MP2は、基準地図MPを縦方向および横方向のいずれに対しても200%に拡大した地図である。上述のように、直進高速時表示処理では基準地図MPが縮小して表示されるので、直進低速時表示処理において、地図MP2は、直進高速時に比べて拡大して表示される。なお、上述の予め定められた拡大率は、200%に代えて、他の任意の値を設定してもよい。
 直進低速時表示処理において、直進高速時表示処理とは異なり、車両100の左右方向に対しても地図MP2を拡大して表示するのは、車両100の運転者が、車両100の進行方向に加えて、左右方向の状況も精度よく視認できるようにするという理由からである。なお、図5に示すように、制御部21は、直進高速時表示処理と同様に、地図MP2のスケールを特定する情報を示すスケール表示Sc2を表示してもよい。
 図3に示すように、上述のステップS110において、車両100がレーントレースを実行中であると判定された場合(ステップS110:YES)、走行状況特定部23は、入出力インターフェース11を介して位置検出部42から取得した車両100の現在位置およびパス策定部22により策定されたパスを用いて、車両100が交差点付近を走行するか否かを判定する(ステップS115)。交差点付近を走行しないと判定された場合(ステップS115:NO)、上述のステップS145が実行される。
 上述のステップS115において、交差点付近を走行すると判定された場合(ステップS115:YES)、走行状況特定部23は、パス策定部22から次に実行される運転操作を取得して、車両100が交差点を右折または左折するか否かを判定する(ステップS120)。右左折しないと判定された場合(ステップS120:NO)、上述のステップS145が実行される。他方、右折または左折すると判定された場合(ステップS120:YES)、制御部21は、センシング範囲表示画像CImgを交差点右左折表示で表示させる処理を実行する(ステップS125)。
 図6を用いて、交差点右左折表示処理における画像表示について説明する。図6に示すように、制御部21は、センシング範囲表示画像CImg3として、地図MP3と、センシング範囲SR1とを表示装置60に表示させる。センシング範囲SR1は、図4および図5に示すセンシング範囲と同じであるので、詳細な説明は省略する。図6に示す例では、車両100は、走行中の走路Ln2を交差点CRまで走行した後、破線矢印に示すように交差点CRを右折して走行予定走路Ln3を走行しようとしている。
 交差点右左折表示処理において、制御部21は、センシング範囲表示画像CImg3を交差点右左折走行に適した表示態様で表示させる。具体的には、制御部21は、直進低速時表示処理と同様に、車両100の進行方向(図6の上下方向)および車両100の進行方向に垂直な方向(図6の左右方向)に対して、基準地図MPを所定の拡大率(200%)で拡大した地図MP3を表示させる。このため、車両100の運転者は、車両100が右折を実行しようとする交差点CRの状況を精度よく視認できる。なお、図6に示すように、制御部21は、地図MP3のスケールを特定する情報を示すスケール表示Sc3を表示してもよい。また、交差点右左折表示処理と直進低速時表示処理とで拡大率を異ならせてもよい。
 図3に示すように、車両運転部27は、車両100の乗員から右左折の実行を許可されたか否かを判定する(ステップS130)。本実施形態において、「右左折の実行の許可」とは、自動運転による車両100の右折または左折の実行を許可することを意味する。すなわち、車両100の乗員から右左折の実行が許可されれば、車両100は自動運転により右折または左折を実行する。他方、車両100の乗員から右左折の実行が許可されなければ、車両100は運転者による手動運転により右折または左折を実行する。
 車両100の乗員から右左折の実行の許可が得られたか否かを判定するのは、以下の理由からである。図4、図5および図6に示すように、センシング範囲SR1は、車両100の進行方向に比べて、車両100の左右方向において小さい。したがって、車両100の左右方向においては、センシング範囲SR1と、運転者が視認できる範囲とでは、運転者が視認できる範囲が広くなることがある。車両100が自動運転により右折または左折を実行する場合には、センシング範囲SR1を用いて車両100の周囲の安全確認が実行されるので、車両100の運転者に対して、自動運転により右折または左折を実行してもよいか否かを判定させている。なお、センシング範囲SR1が比較的広い場合には、ステップS130を省略してもよい。
 右左折の実行が許可されたと判定された場合(ステップS130:YES)、車両運転部27は、自動運転を継続する(ステップS135)。すなわち、車両運転部27は、車両100を自動走行により、交差点の右左折を実行させる。
 上述のステップS130において、右左折の実行が許可されていないと判定された場合(ステップS130:NO)、制御部21は、許可催促表示を表示させる(ステップS140)。本実施形態において、「許可催促表示」とは、上述の「右左折の実行の許可」を促すための報知表示を意味する。ステップS140の実行後、上述のステップS130に戻り、右左折の実行が許可されるまで、ステップS130およびステップS140が繰り返し実行される。
 上述のステップS135の実行後、または、ステップS150の実行後、または、ステップS155の実行後、または、ステップS160の実行後、制御部21は、車両100の走行を終了するか否かを判定する(ステップS165)。車両100が走行を継続する場合(ステップS165:NO)、上述のステップS100に戻る。他方、車両100が走行を終了する場合(ステップS165:YES)、制御部21は、センシング範囲表示処理を終了する。
 以上の構成を有する第1実施形態の運転支援ECU10によれば、特定された走行状況に応じた表示態様でセンシング範囲画像SRImgを表示装置60に表示させるので、センシング範囲SR、SR1を適切に提示でき、運転支援に資することができる。また、走行状況として車両100の速度を特定し、特定された速度に応じて、センシング範囲表示画像CImg1、CImg2およびCImg3の表示態様を異ならせて表示装置60に表示させるので、センシング範囲SR、SR1を走行状況に応じて提示できる。車両100が低速走行中である場合、低速走行中でない場合に比べて地図MP2を拡大して表示し、また、車両100が交差点CRを右折または左折する場合、交差点CRを右折および左折しない場合に比べて地図MP3を拡大して表示装置60に表示させるので、車両100の運転者は、車両100の走行予定走路Ln、Ln1、Ln3の安全確認を容易に実行できる。
B.第2実施形態:
 第2実施形態における運転支援ECU10は、図1に示す第1実施形態における運転支援ECU10と同様であるので、その詳細な説明は省略する。
 図7に示す第2実施形態におけるセンシング範囲表示処理は、ステップS121を追加して実行する点と、ステップS125に代えてステップS125aを実行する点とにおいて、第1実施形態におけるセンシング範囲表示処理と異なる。第2実施形態のセンシング範囲表示処理のその他の手順は、第1実施形態のセンシング範囲表示処理と同じであるので、同一の手順には同一の符号を付し、その詳細な説明は省略する。
 第2実施形態におけるセンシング範囲表示処理では、現在位置から車両100が走行予定の交差点CRまでの距離に応じて、センシング範囲表示画像の表示を切り替える。具体的には、図7に示すように、車両100が交差点CR付近を走行すると判定され(ステップS115:YES)、交差点CRを右折または左折すると判定された場合(ステップS120:YES)、距離算出部25は、現在位置から交差点CRまでの距離を算出する(ステップS121)。具体的には、距離算出部25は、入出力インターフェース11を介して位置検出部42から車両100の現在位置を取得する。また、距離算出部25は、パス策定部22により策定されたパスを用いて、交差点CRの位置を特定する。そして、距離算出部25は、取得された現在位置と、特定された交差点CRの位置と、の間の距離を算出する。
 制御部21は、センシング範囲表示画像CImg3を交差点右左折表示で表示させる処理を実行する(ステップS125a)。具体的には、まず、制御部21は、上述のステップS121において算出された交差点CRまでの距離が、予め定められた3段階の距離の範囲のうち、いずれの範囲内の距離であるかを特定する。本実施形態において、「予め定められた3段階の距離の範囲」とは、交差点CRまでの距離が150メートルから200メートルまでの距離、交差点CRまでの距離が80メートルから150メートルまでの距離、および交差点CRまでの距離が80メートルまでの距離を意味する。そして、制御部21は、特定された段階に応じた表示態様でセンシング範囲表示画像CImg3を表示させる。
 図8を用いて、交差点CRまでの距離が150メートルから200メートルまでの距離である場合における画像表示について説明する。制御部21は、センシング範囲表示画像CImg3aとして、地図MP3aと、センシング範囲SR1とを表示装置60に表示させる。センシング範囲SR1は、図6に示す第1実施形態における交差点右左折表示におけるセンシング範囲と同じであるので、詳細な説明は省略する。交差点CRまでの距離が150メートルから200メートルまでの距離である場合、車両100が交差点CRに接近しているタイミングである。したがって、制御部21は、基準地図MPを車両100の進行方向(図8の上下方向)に対して所定の拡大率(例えば、50%)で縮小した地図MP3aを表示させる。このように車両100の進行方向に地図Mp3aを縮小して表示するのは、走行予定走路Ln2の更に先に存在する交差点CRを含んだより遠くの領域を、車両100の運転者が認識できるようにするためである。
 図9を用いて、交差点CRまでの距離が80メートルから150メートルまでの距離である場合における画像表示について説明する。制御部21は、センシング範囲表示画像CImg3bとして、地図MP3bと、センシング範囲SR1とを表示装置60に表示させる。センシング範囲SR1は、図8に示すセンシング範囲と同じであるので、詳細な説明は省略する。交差点CRまでの距離が80メートルから150メートルまでの距離である場合、車両100の運転者に対して右左折のために減速開始を予告するタイミングである。したがって、制御部21は、基準地図MPを車両100の進行方向(図9の上下方向)および車両100の左右方向(図9の左右方向)のいずれに対しても拡大および縮小しない地図MP3bを表示させる。
 図10を用いて、交差点CRまでの距離が80メートルまでの距離である場合における画像表示について説明する。制御部21は、センシング範囲表示画像CImg3cとして、地図MP3cと、センシング範囲SR1とを表示装置60に表示させる。センシング範囲SR1は、図8および図9に示すセンシング範囲と同じであるので、詳細な説明は省略する。交差点CRまでの距離が80メートルまでの距離である場合、右左折のために減速を開始するタイミングである。したがって、制御部21は、基準地図MPを車両100の進行方向(図10の上下方向)および車両100の左右方向(図10の左右方向)に対して所定の拡大率(例えば、200%)で拡大した地図MP3cを表示させる。このように車両100の進行方向および左右方向に地図Mp3cを拡大して表示するのは、車両100が右左折を実行しようとする交差点CRの状況を、車両100の運転者が精度よく認識できるようにするためである。
 以上の構成を有する第2実施形態の運転支援ECU10によれば、第1実施形態と同様の効果を奏する。加えて、車両100の現在位置から交差点CRまでの距離に応じて、センシング範囲画像SRImgの表示態様を異ならせて表示装置60に表示させるので、車両100の走行状況に応じてセンシング範囲SR、SR1を適切に表示できる。
C.他の実施形態:
C1.他の実施形態1:
 上記各実施形態において、制御部21は、センシング範囲SR1に加えて、センシング可能範囲を表示してもよい。本実施形態において、「センシング可能範囲」とは、センサ部30の製品仕様として予め定められているセンシング可能な範囲を意味する。
 図11に示すように、センシング範囲表示画像CImg4には、センシング範囲SR1と、センシング可能範囲KRと、が表示されている。図11は、図6に示すセンシング範囲表示画像CImg3に対して、さらに、センシング可能範囲KRを表示した例を示している。なお、図11では、スケール表示Sc3の図示を省略している。図11に示す例では、センシング範囲SR1は、センシング可能範囲KRよりも小さな領域である。これは、センシング可能範囲KR内で物体(物標)が検出された場合、ミリ波レーダ31から射出されるミリ波が、検出された物体によって遮蔽されることにより、検出された物体からセンシング可能範囲KRの外縁までの範囲ではセンシングが精度よく実行されないおそれがあるので、センシング範囲取得部24が、検出された物体からセンシング可能範囲KRの外縁までの範囲をセンシング範囲SR1として検出しないという理由による。他方、センシング可能範囲KRは、車両100の周囲の物標の有無に関わらず、センサ部30がセンシングできる範囲が表示される。
 なお、車両100の周囲に物体が存在しない場合には、センシング範囲SR1とセンシング可能範囲KRとは略一致することになる。このように、センシング範囲SR1に加えて、センシング可能範囲KRも表示装置60に表示させることにより、車両100の乗員は、センサ部30がセンシングする範囲SR1と、センサ部30がセンシングできる範囲KRと、の両方を容易に認識できる。このような構成においても、上記各実施形態と同様な効果を奏する。
C2.他の実施形態2:
 上記各実施形態において、制御部21は、センシングできない範囲を塗りつぶして表示してもよい。
 図12に示すように、センシング範囲表示画像CImg5では、走行予定走路Ln1およびセンシング範囲SR1を除く領域Ar1、Ar2が、センシング範囲SR1とは異なる色で塗りつぶされて表示されている。図12では、領域Ar1およびAr2にハッチングを付すことにより、かかる領域Ar1、Ar2が塗りつぶされている様子を表している。領域Ar1およびAr2は、車両100が走行しない領域であり、また、センサ部30がセンシングできない領域である。このように、センシングできない領域Ar1、Ar2を塗りつぶして表示することにより、センシング範囲SR1を目立たせて表示できる。したがって、車両100の乗員は、センシング範囲SR1と、センシングできない範囲とを容易に認識できる。
 なお、領域Ar1およびAr2をセンシング範囲SR1とは異なる色で塗りつぶして表示する方法に代えて、または、加えて、領域Ar1およびAr2をぼかして表示してもよいし、センシング範囲SR1の輝度を領域Ar1およびAr2の輝度に比べて高くして表示してもよいし、センシング範囲SR1を点滅させて表示してもよい。また、走行予定走路Ln1のうちセンシング範囲SR1に含まれない部分の領域についても、領域Ar1およびAr2と同様に、センシング範囲SR1とは異なる色で塗りつぶして表示してもよい。このような構成においても、上記各実施形態と同様な効果を奏する。
C3.他の実施形態3:
 上記他の実施形態1および他の実施形態2において、制御部21は、センシングできない範囲を模式的に表示してもよい。
 図13に示すように、センシング範囲表示画像CImg6には、センシングできない範囲MR1およびMR2が表示されている。なお、図13では、センシング範囲SR1の図示を省略している。センシングできない範囲MR1およびMR2は、簡易的に表示されている。このため、車両100の運転者は、センシングできていない範囲MR1およびMR2を直感的に認識できる。かかる構成では、制御部21は、センシングできない範囲MR1およびMR2の安全確認を促す報知表示を表示してもよい。車両100の運転者は、自身で安全確認を実施すべきであることと、安全確認を行うべき範囲とを容易に認識できる。このような構成においても、上記他の実施形態1および他の実施形態2と同様な効果を奏する。
C4.他の実施形態4:
 上記第2実施形態において、交差点右左折表示処理において、制御部21は、予め定められた3段階の距離に応じてセンシング範囲表示画像CImgの表示態様を切り替えていたが、本開示はこれに限定されない。例えば、予め定められた3段階の距離は、上述の例に限られず、他の任意の距離ごとに複数の段階を設定してもよい。また、例えば、3段階に代えて1段階に設定してもよい。かかる構成では、交差点CRの直前(例えば、80メートル)でのみ表示態様を切り替えてもよい。また、例えば、段階や距離を車両100の乗員が入力部70を介して設定できる構成にしてもよい。また、例えば、無段階に設定してもよい。かかる構成では、車両100が交差点CRに近づくにつれて基準地図MPの拡大率を大きくして地図MP3を表示することにより、センシング範囲表示画像CImgの表示態様を切り替えてもよい。これにより、センシング範囲表示画像CImg3の表示態様を連続的かつ滑らかに異ならせることができる。このような構成においても、上記第2実施形態と同様な効果を奏する。
C5.他の実施形態5:
 上記第1実施形態および第2実施形態において、制御部21は、車両100が低速走行中である状況、および車両100が交差点CRを右折または左折する状況である場合に、地図MP2およびMP3を拡大して表示していたが、本開示はこれに限定されない。例えば、車両100が低速走行中である状況においてのみ地図MP2を拡大して表示してもよい。また、例えば、車両100が交差点CRを右折または左折する状況においてのみ地図MP3を拡大して表示してもよい。すなわち、一般には、車両100が低速走行中である状況と、車両100が交差点CRを右折または左折する状況と、のうちの少なくとも一方の場合に、地図MP2および地図MP3を拡大して表示してもよい。このような構成においても、上記第1実施形態および第2実施形態と同様な効果を奏する。
C6.他の実施形態6:
 上記他の実施形態5において、車両100が低速走行中である状況と、車両100が交差点CRを右折または左折する状況と、のうちの少なくとも一方の場合に、地図MP2および地図MP3を拡大して表示していたが、本開示はこれに限定されない。例えば、車両100が高速走行中である状況の場合に、地図MP1を拡大して表示してもよい。また、例えば、車両100が交差点CRを直進する状況の場合に、地図MP3を拡大して表示してもよい。また、例えば、車両100が低速走行中である状況の場合や、車両100が交差点CRを右折または左折する状況の場合に、地図MP2、MP3を拡大して表示しなくてもよい。このような構成においても、上記他の実施形態5と同様な効果を奏する。
C7.他の実施形態7:
 上記各実施形態では、左側通行におけるセンシング範囲表示処理について説明したが、右側通行においてもセンシング範囲表示処理は適用できる。
C8.他の実施形態8:
 上記各実施形態において、制御部21は、車両100の速度や、交差点CRまでの距離に限らず、他の任意の種類の走行状況に応じてセンシング範囲表示画像の表示態様を切り替えてもよい。例えば、走行中の走路の種別に応じてセンシング範囲表示画像の表示を切り替えてもよい。具体的には、車両100が高速道路を走行中である場合に直進高速時表示処理によるセンシング範囲表示画像を表示し、車両100が一般道路を走行中である場合に直進低速時表示によるセンシング範囲表示画像を表示してもよい。また、例えば、車両100が車線変更を行う状況である場合に、直進高速時表示処理によるセンシング範囲表示画像を表示してもよい。また、例えば、車両100が走行中の時間帯が夜間である場合や、車両100の現在位置における天気が降雨あるいは降雪である場合に、直進低速時表示処理によるセンシング範囲表示画像を表示してもよい。すなわち、一般には、車両100の走行状況に応じた表示態様でセンシング範囲画像を表示してもよい。このような構成においても、上記各実施形態と同様な効果を奏する。
C9.他の実施形態9:
 上記第1実施形態において、制御部21は、車両100の速度が所定値(時速40キロメートル)以下である場合と、車両100の速度が所定値(時速40キロメートル)よりも大きい場合と、の1段階でセンシング範囲表示画像CImg1、CImg2の表示態様を異ならせて表示していたが、本開示はこれに限定されない。例えば、多段階の車速ごとにセンシング範囲表示画像の表示態様を切り替えて表示してもよい。また、例えば、無段階の車速ごとにセンシング範囲表示画像の表示態様を切り替えて表示してもよい。かかる構成では、車両100の速度が大きくなるにつれて基準地図MPの拡大率を小さくしてセンシング範囲表示画像を表示してもよい。このようにすることで、センシング範囲表示画像の表示態様を車速に応じて連続的かつ滑らかに切り替えることができる。このような構成においても、上記第1実施形態と同様な効果を奏する。
C10.他の実施形態10:
 上記各実施形態において、ソフトウェアによって実現された機能及び処理の一部又は全部は、ハードウェアによって実現されてもよい。また、ハードウェアによって実現された機能及び処理の一部又は全部は、ソフトウェアによって実現されてもよい。ハードウェアとしては、例えば、集積回路、ディスクリート回路、または、それらの回路を組み合わせた回路モジュールなど、各種回路を用いてもよい。また、本開示の機能の一部または全部がソフトウェアで実現される場合には、そのソフトウェア(コンピュータプログラム)は、コンピュータ読み取り可能な記録媒体に格納された形で提供することができる。「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスクやCD-ROMのような携帯型の記録媒体に限らず、各種のRAMやROM等のコンピュータ内の内部記憶装置や、ハードディスク等のコンピュータに固定されている外部記憶装置も含んでいる。すなわち、「コンピュータ読み取り可能な記録媒体」とは、データパケットを一時的ではなく固定可能な任意の記録媒体を含む広い意味を有している。
 本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。

Claims (7)

  1.  車両(100)の周囲の状況を検出するセンサ(30)および該車両に搭載された表示装置(60)と通信可能に接続され、該車両に搭載される運転支援装置(10)であって、
     前記センサがセンシングするセンシング範囲を取得するセンシング範囲取得部(24)と、
     前記車両の走行状況を特定する走行状況特定部(23)と、
     前記車両の走行予定走路(Ln、Ln1、Ln2、Ln3)を含んだ地図(MP、MP1、MP2、MP3、MP3a、MP3b、MP3c)を取得する地図情報取得部(26)と、
     前記センシング範囲(SR、SR1)を示す画像であるセンシング範囲画像(SRImg)を、前記車両の現在位置に対応づけて前記地図に重畳して前記表示装置に表示させる制御部(21)と、
     を備え、
     前記制御部は、特定された前記走行状況に応じた表示態様で前記センシング範囲画像を前記表示装置に表示させる、
     運転支援装置。
  2.  請求項1に記載の運転支援装置であって、
     前記走行状況特定部は、前記走行状況として前記車両の速度を特定し、
     前記制御部は、特定された前記速度に応じて、前記センシング範囲画像の表示態様を異ならせて前記表示装置に表示させる、
     運転支援装置。
  3.  請求項1または請求項2に記載の運転支援装置であって、
     前記制御部は、特定された前記走行状況が予め定められている走行状況である場合に、特定された前記走行状況が該予め定められている走行状況でない場合に比べて、前記地図を拡大して前記表示装置に表示させる、
     運転支援装置。
  4.  請求項3に記載の運転支援装置であって、
     前記予め定められている走行状況は、前記車両が低速走行中である状況と、前記車両が交差点CRを右折または左折する状況と、のうちの少なくとも一方である、
     運転支援装置。
  5.  請求項1から請求項4までのいずれか一項に記載の運転支援装置であって、
     前記現在位置から前記車両の進行方向における予め定められた距離の範囲内に存在する交差点を検出し、前記現在位置から検出された該交差点までの距離を算出する距離算出部(25)を、さらに備え、
     前記制御部は、算出された前記距離に応じて、前記センシング範囲画像の表示態様を異ならせて前記表示装置に表示させる、
     運転支援装置。
  6.  請求項1から請求項5までのいずれか一項に記載の運転支援装置であって、
     前記センシング範囲取得部は、前記センシング範囲として、前記センサにより検出された物標の複数の代表位置を示す点列を包絡線で結んで得られる領域を取得し、
     前記制御部は、前記センシング範囲と、前記センサがセンシングできない範囲とで表示態様を異ならせて前記表示装置に表示させる、
     運転支援装置。
  7.  請求項1から請求項6までのいずれか一項に記載の運転支援装置であって、
     前記センシング範囲取得部は、前記センサのセンシング可能範囲を取得し、
     前記制御部は、前記センシング範囲に加えて、前記センシング可能範囲も前記表示装置に表示させる、
     運転支援装置。
PCT/JP2019/017167 2018-05-14 2019-04-23 運転支援装置 WO2019220884A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018093020A JP2019200461A (ja) 2018-05-14 2018-05-14 運転支援装置
JP2018-093020 2018-05-14

Publications (1)

Publication Number Publication Date
WO2019220884A1 true WO2019220884A1 (ja) 2019-11-21

Family

ID=68540209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017167 WO2019220884A1 (ja) 2018-05-14 2019-04-23 運転支援装置

Country Status (2)

Country Link
JP (1) JP2019200461A (ja)
WO (1) WO2019220884A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182683A (ja) * 1982-04-20 1983-10-25 本田技研工業株式会社 車両の走行位置表示装置の地図縮尺率切換方法
JPH07332993A (ja) * 1994-06-06 1995-12-22 Toyota Motor Corp ナビゲーション装置
JPH09269238A (ja) * 1997-01-31 1997-10-14 Sanyo Electric Co Ltd ナビゲーション装置
JP2007233770A (ja) * 2006-03-01 2007-09-13 Alpine Electronics Inc 車載周辺状況提示装置
JP2009086788A (ja) * 2007-09-28 2009-04-23 Hitachi Ltd 車両周辺監視装置
JP2012038138A (ja) * 2010-08-09 2012-02-23 Honda Motor Co Ltd 車両用表示装置
JP2015197706A (ja) * 2014-03-31 2015-11-09 株式会社デンソー 車両用表示制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690952B2 (ja) * 2016-01-25 2020-04-28 日立オートモティブシステムズ株式会社 車両走行制御システム、及び車両走行制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182683A (ja) * 1982-04-20 1983-10-25 本田技研工業株式会社 車両の走行位置表示装置の地図縮尺率切換方法
JPH07332993A (ja) * 1994-06-06 1995-12-22 Toyota Motor Corp ナビゲーション装置
JPH09269238A (ja) * 1997-01-31 1997-10-14 Sanyo Electric Co Ltd ナビゲーション装置
JP2007233770A (ja) * 2006-03-01 2007-09-13 Alpine Electronics Inc 車載周辺状況提示装置
JP2009086788A (ja) * 2007-09-28 2009-04-23 Hitachi Ltd 車両周辺監視装置
JP2012038138A (ja) * 2010-08-09 2012-02-23 Honda Motor Co Ltd 車両用表示装置
JP2015197706A (ja) * 2014-03-31 2015-11-09 株式会社デンソー 車両用表示制御装置

Also Published As

Publication number Publication date
JP2019200461A (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
US10293748B2 (en) Information presentation system
US11008016B2 (en) Display system, display method, and storage medium
CN107807634B (zh) 用于车辆的驾驶辅助装置
US9827907B2 (en) Drive assist device
US20160304126A1 (en) Vehicle control device
JP2020064402A (ja) 表示装置
US11105651B2 (en) Display system, display control method, and storage medium for facilitating display of a road shape based on detection of a change
US11200806B2 (en) Display device, display control method, and storage medium
JP6969509B2 (ja) 車両用表示制御装置、車両用表示制御方法、及び制御プログラム
US20200262349A1 (en) Display system, display method, and program
US11274934B2 (en) Information output device, output control method, and storage medium
WO2019239709A1 (ja) 移動体用表示制御装置、移動体用表示制御方法、及び制御プログラム
JP2024133244A (ja) 車両用表示装置、表示方法及びプログラム
US10854172B2 (en) Display system, display control method, and storage medium
CN110888432B (zh) 显示系统、显示控制方法及存储介质
JP2023112053A (ja) 画像処理装置
WO2022168540A1 (ja) 表示制御装置及び表示制御プログラム
WO2019220884A1 (ja) 運転支援装置
JP7342926B2 (ja) 表示制御装置及び表示制御プログラム
JP7294091B2 (ja) 表示制御装置および表示制御プログラム
JP7206867B2 (ja) 表示制御装置および表示制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803105

Country of ref document: EP

Kind code of ref document: A1