WO2019220628A1 - ズームレンズ、光学機器及びズームレンズの製造方法 - Google Patents

ズームレンズ、光学機器及びズームレンズの製造方法 Download PDF

Info

Publication number
WO2019220628A1
WO2019220628A1 PCT/JP2018/019321 JP2018019321W WO2019220628A1 WO 2019220628 A1 WO2019220628 A1 WO 2019220628A1 JP 2018019321 W JP2018019321 W JP 2018019321W WO 2019220628 A1 WO2019220628 A1 WO 2019220628A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
zoom lens
conditional expression
end state
Prior art date
Application number
PCT/JP2018/019321
Other languages
English (en)
French (fr)
Inventor
村山 徳雄
隼佑 長谷
俊之 嶋田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2020518928A priority Critical patent/JP7031739B2/ja
Priority to PCT/JP2018/019321 priority patent/WO2019220628A1/ja
Publication of WO2019220628A1 publication Critical patent/WO2019220628A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to a zoom lens, an optical apparatus using the zoom lens, and a method for manufacturing the zoom lens.
  • a zoom lens that includes a fourth lens group and a fifth lens group having a positive refractive power, and performs zooming by moving each lens group (see, for example, Patent Document 1). In the conventional zoom lens, further higher zooming is required.
  • the zoom lens according to the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, which are arranged in order from the object side. And a fourth lens group having a negative refractive power and a fifth lens group having a positive refractive power, and the distance between adjacent lens groups changes upon zooming, and satisfies the following conditional expression: .
  • the optical device according to the present invention is configured by mounting the zoom lens according to the present invention.
  • the zoom lens manufacturing method includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power, which are arranged in order from the object side.
  • a lens group, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power are disposed in the lens barrel, and the distance between adjacent lens groups changes during zooming. And it is constituted so as to satisfy the following conditional expression.
  • FIG. 2 is a cross-sectional view illustrating a lens configuration of a zoom lens according to Example 1, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIGS. 3A, 3B, and 3C are aberration diagrams of the zoom lens according to Example 1 in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is sectional drawing which shows the lens structure of the zoom lens which concerns on 2nd Example.
  • FIG. 1 is a cross-sectional view illustrating a lens configuration of a zoom lens according to Example 1, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIGS. 3A, 3B, and 3C are aberration diagrams of the zoom lens according to Example 1 in the wide-angle end state, the intermediate focal length state
  • FIG. 6 is a cross-sectional view illustrating a lens configuration of a zoom lens according to Example 2, wherein (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIGS. 6A, 6B, and 6C are aberration diagrams of the zoom lens according to Example 2 in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is sectional drawing which shows the lens structure of the zoom lens which concerns on 3rd Example.
  • FIG. 6 is a cross-sectional view illustrating a lens configuration of a zoom lens according to Example 3, wherein (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIGS. 9A, 9B, and 9C are graphs showing various aberrations of the zoom lens according to Example 3 in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is sectional drawing which shows the lens structure of the zoom lens which concerns on 4th Example.
  • FIGS. 12A, 12B, and 12C are aberration diagrams of the zoom lens according to Example 4 in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is sectional drawing which shows the lens structure of the zoom lens which concerns on 5th Example.
  • FIG. 12A, 12B, and 12C are aberration diagrams of the zoom lens according to Example 4 in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is sectional drawing which shows the lens structure of the zoom lens which concerns on 5th Example.
  • FIGS. 15A, 15B, and 15C are aberration diagrams of the zoom lens according to Example 5 in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is sectional drawing which shows the lens structure of the zoom lens which concerns on 6th Example.
  • FIG. 15A, 15B, and 15C are aberration diagrams of the zoom lens according to Example 5 in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is sectional drawing which shows the lens structure of the zoom lens which concerns on 6th Example.
  • FIGS. 18A, 18B, and 18C are graphs showing various aberrations of the zoom lens according to Example 6 in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is the schematic which shows the structure of the camera provided with the zoom lens which concerns on this embodiment.
  • 5 is a flowchart illustrating an outline of a method for manufacturing a zoom lens according to the present embodiment.
  • FIG. 1 A camera (optical apparatus) including the zoom lens ZL according to the present embodiment is shown in FIG.
  • the term “lens component” is sometimes used.
  • the lens component is used as a term meaning “single lens or cemented lens”.
  • the camera 1 is a digital camera provided with the zoom lens ZL according to the present embodiment as the photographing lens 2 as shown in FIG.
  • the camera 1 light from an object (subject) (not shown) is collected by the photographing lens 2 and reaches the image sensor 3. Thereby, the light from the subject is picked up by the image pickup device 3 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • This camera may be a mirrorless camera or a single-lens reflex camera having a quick return mirror.
  • the zoom lens ZL (1) as an example of the zoom lens ZL according to the present embodiment is arranged in order from the object side along the optical axis and has a first refractive power G1 having a positive refractive power.
  • a group G5 and the distance between adjacent lens groups changes during zooming.
  • the zoom lens ZL according to this embodiment includes the zoom lens ZL (2) shown in FIG. 4, the zoom lens ZL (3) shown in FIG. 7, the zoom lens ZL (4) shown in FIG. 10, and the zoom shown in FIG.
  • the lens ZL (5) or the zoom lens ZL (6) shown in FIG. 16 may be used.
  • the zoom lens ZL according to the present embodiment satisfies the following conditional expression (1) under the above-described configuration.
  • High zooming can be achieved by configuring the zoom lens ZL according to the present embodiment as described above.
  • the camera 1 including the zoom lens ZL according to the present embodiment as the photographing lens 2 it is possible to realize a camera having high optical performance while having a high magnification.
  • the conditional expression (1) is a conditional expression for reducing spherical aberration, astigmatism and chromatic aberration. If the lower limit of conditional expression (1) is not reached, it is not preferable because a large zoom ratio cannot be obtained. If the lower limit of conditional expression (1) is not reached, the focal length of the first lens group becomes relatively small, which is advantageous for downsizing, but it becomes difficult to correct spherical aberration and lateral chromatic aberration in the telephoto end state.
  • conditional expression (1) it is more preferable to set the lower limit value of conditional expression (1) to 1300.0, further 1350.0, 1400.0, 1500.0, 1600.0.
  • the upper limit value of the conditional expression (1) is 5000.0, further 4000.0, 3000.0, 2700.0, 2300.0.
  • the zoom lens ZL according to this embodiment preferably satisfies the following conditional expression (2). 13.00 ⁇ f1 / ( ⁇ f2) (2)
  • Conditional expression (2) is a conditional expression for reducing spherical aberration, astigmatism, and chromatic aberration.
  • the refractive power of the first lens group G1 becomes relatively large and falls below the lower limit value of the conditional expression (2), it is advantageous for downsizing, but it is difficult to correct spherical aberration and lateral chromatic aberration in the telephoto end state.
  • the refractive power of the second lens group G2 becomes relatively small and falls below the lower limit value of the conditional expression (2), the total length is increased in order to ensure a high zoom ratio.
  • the refractive power of the first lens group G1 must be increased, and the spherical aberration in the telephoto end state is deteriorated.
  • conditional expression (2) is 13.30, and further 13.60, 13.90, and 14.20.
  • the upper limit value of the conditional expression (2) is set to 23.00, further 23.00, 20.00, 19.00, 18.00, 17.00. Is more preferable. Satisfying conditional expression (2) provided with such an upper limit is preferable because spherical aberration, astigmatism, and chromatic aberration become smaller.
  • the zoom lens ZL according to this embodiment preferably satisfies the following conditional expression (3). 33.00 ⁇ f1 / fw ⁇ 50.00 (3)
  • Conditional expression (3) defines an appropriate range of the ratio between the focal length of the first lens group G1 and the focal length of the entire zoom lens system in the wide-angle end state.
  • the lower limit value of the conditional expression (3) is 33.50, further 34.00, 34.50, 35.00, 35.50, 36.00. Is more preferable.
  • the upper limit value of conditional expression (3) is 49.00, and further 48.00, 47.00, 46.00, 45.00, 43.00. Is more preferable.
  • the first lens group G1 moves toward the object side at least when zooming from the wide-angle end state to the telephoto end state.
  • the distance between the first lens group G1 and the second lens group G2 is increased at the time of zooming at least partly from the wide-angle end state to the telephoto end state, and the second lens group G2 It is preferable that the distance between the third lens group G3 is reduced and the distance between the third lens group G3 and the fourth lens group G4 is increased. With this configuration, a small size and high magnification can be achieved.
  • the first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens group G4 move along the optical axis during zooming. With this configuration, a small size and high magnification can be achieved.
  • the fifth lens group G5 moves along the optical axis during zooming. With this configuration, a small size and high magnification can be achieved.
  • At least one lens surface of the third lens group G3 has an aspherical surface.
  • the first lens group G1 is composed of four lenses. With this configuration, it is small and various aberrations such as spherical aberration and coma can be favorably corrected.
  • the fourth lens group G4 is preferably composed of two or less lenses. With this configuration, it is small and various aberrations such as spherical aberration and coma can be favorably corrected.
  • the fifth lens group G5 includes two or less lenses. With this configuration, it is small and various aberrations such as spherical aberration and coma can be favorably corrected.
  • At least one lens surface of the fifth lens group G5 has an aspherical surface.
  • the fourth lens group G4 moves along the optical axis during focusing.
  • variations in various aberrations such as spherical aberration and coma during focusing can be reduced.
  • at the time of focusing at least a part of the fourth lens group G4 may move along the optical axis.
  • the third lens group G3 has at least a part of an anti-vibration lens group movable so as to have a displacement component in a direction perpendicular to the optical axis.
  • the anti-vibration lens group may be the entire third lens group G3, or any lens constituting the third lens group G3, or a combination thereof.
  • the positive lens closest to the object side of the third lens group G3 or the cemented lens closest to the image side of the third lens group G3 may constitute an anti-vibration lens group.
  • the zoom lens ZL according to this embodiment preferably satisfies the following conditional expression (4). 10.00 ⁇ Dt12 / ( ⁇ f2) (4)
  • Dt12 Distance on the optical axis from the image side surface of the first lens group G1 to the object side surface of the second lens group G2 in the telephoto end state
  • Conditional expression (4) is a conditional expression for reducing spherical aberration, lateral chromatic aberration, and longitudinal chromatic aberration and ensuring good optical performance.
  • conditional expression (4) When the lower limit value of conditional expression (4) is not reached, the distance between the first lens group G1 and the second lens group G2 in the telephoto end state is remarkably reduced, so that the first lens group G1 and the second lens group G2 are refracted. Power becomes too big.
  • the refractive power of the first lens group G1 is increased, it becomes difficult to correct spherical aberration and lateral chromatic aberration particularly in the telephoto end state.
  • the refractive power of the second lens group G2 When the refractive power of the second lens group G2 is increased, it is difficult to correct axial chromatic aberration.
  • conditional expression (4) is 10.30, further 10.50, 10.80, 11.00, 11.30, 11.50, 11. 80 is more preferable.
  • the upper limit value of conditional expression (4) is 20.00, and further 18.00, 16.00, and 14.00.
  • the zoom lens ZL according to this embodiment preferably satisfies the following conditional expression (5). 33.00 ⁇ ft / ( ⁇ f2) ⁇ 60.00 (5)
  • Conditional expression (5) defines an appropriate range of the ratio between the focal length of the entire zoom lens system in the telephoto end state and the focal length of the second lens group G2.
  • various aberrations such as lateral chromatic aberration, coma aberration, and astigmatism deteriorate, which is not preferable.
  • conditional expression (5) is set to 34.00, and further to 35.00, 36.00, 37.00, 38.00, and 39.00. Is more preferable.
  • the upper limit value of conditional expression (5) is set to 59.00, and further to 58.00, 57.00, 56.00, 53.00 and 51.00. Is more preferable.
  • the zoom lens ZL according to this embodiment preferably satisfies the following conditional expression (6). 65.00 ⁇ ( ⁇ 2t ⁇ ⁇ 3t) / ( ⁇ 2w ⁇ ⁇ 3w) ⁇ 120.00 (6) ⁇ 2t: magnification of the second lens group G2 in the telephoto end state ⁇ 3t: magnification of the third lens group G3 in the telephoto end state ⁇ 2w: magnification of the second lens group G2 in the wide-angle end state ⁇ 3w: third lens in the wide-angle end state Group G3 magnification
  • Conditional expression (6) defines an appropriate range of the product of the zoom ratios of the second lens group G2 and the third lens group G3.
  • conditional expression (6) defines an appropriate range of the product of the zoom ratios of the second lens group G2 and the third lens group G3.
  • conditional expression (6) is set to 66.00, and further to 67.00, 68.00, 69.00, 70.00, and 75.00. Is more preferable.
  • the upper limit value of conditional expression (6) is set to 118.00, and further to 116.00, 114.00, 112.00, 110.00, and 107.00. Is more preferable.
  • the zoom lens ZL according to this embodiment preferably satisfies the following conditional expression (7). 18.00 ⁇ ft / f3 ⁇ 33.00 (7)
  • f3 focal length of the third lens group G3
  • Conditional expression (7) defines an appropriate range of the ratio between the focal length of the entire zoom lens system in the telephoto end state and the focal length of the third lens group G3.
  • the lower limit value of the conditional expression (7) is 18.30, and further 18.60, 18.90, 19.20, 19.50, 19.80, 20. More preferably, it is 00.
  • the upper limit value of conditional expression (7) is set to 32.00, further 31.00, 30.00, 29.00, 28.00, 27.00. Is more preferable.
  • the zoom lens ZL according to this embodiment preferably satisfies the following conditional expression (8). 10.00 ⁇ ft / X2 ⁇ 20.00 (8)
  • X2 distance by which the second lens group G2 moves in the image plane direction with respect to the imaging position when zooming from the wide-angle end state to the telephoto end state
  • Conditional expression (8) defines an appropriate range of the ratio of the distance that the second lens group G2 moves during zooming from the wide-angle end state to the telephoto end state and the focal length of the entire zoom lens system in the telephoto end state. ing.
  • conditional expression (8) defines an appropriate range of the ratio of the distance that the second lens group G2 moves during zooming from the wide-angle end state to the telephoto end state and the focal length of the entire zoom lens system in the telephoto end state. ing.
  • conditional expression (8) is 10.20, further 10.40, 10.60, 10.80, 11.00.
  • upper limit value of the conditional expression (8) is 19.00, further 18.00, 17.00, 16.50.
  • the zoom lens ZL according to the present embodiment preferably has an aperture stop S between the second lens group G2 and the fourth lens group G4. With this configuration, it is small and various aberrations such as spherical aberration, coma aberration, and field curvature can be favorably corrected.
  • the zoom lens ZL according to the present embodiment preferably has an aperture stop S between the second lens group G2 and the third lens group G3. With this configuration, it is small and various aberrations such as spherical aberration, coma aberration, and field curvature can be favorably corrected.
  • the zoom lens ZL according to this embodiment preferably satisfies the following conditional expression (9). 0.10 ° ⁇ t ⁇ 4.00 ° (9) Where ⁇ t: half angle of view in telephoto end state
  • Conditional expression (9) is a conditional expression that prescribes the optimum value of the angle of view in the telephoto end state. By satisfying this conditional expression (9), various aberrations such as coma, distortion, and curvature of field can be favorably corrected.
  • conditional expression (9) is 0.20 °, further 0.25 °, 0.30 °, and 0.33 °. In order to ensure the effect of the present embodiment, it is more preferable to set the upper limit value of conditional expression (9) to 3.00 °, further 2.00 °, and 1.00 °.
  • the zoom lens ZL according to this embodiment preferably satisfies the following conditional expression (10). 25.00 ° ⁇ w ⁇ 80.00 ° (10) Where ⁇ w is the half angle of view in the wide-angle end state
  • Conditional expression (10) is a conditional expression that prescribes an optimum value of the angle of view in the wide-angle end state. By satisfying this conditional expression (10), various aberrations such as coma, distortion, and field curvature can be favorably corrected.
  • conditional expression (10) it is more preferable to set the lower limit of conditional expression (10) to 30.00 °, further 35.00 °, 40.00 °. In order to ensure the effect of the present embodiment, it is more preferable to set the upper limit value of conditional expression (10) to 70.00 °, further 60.00 °, 50.00 °.
  • a method for manufacturing the zoom lens ZL according to the present embodiment will be outlined with reference to FIG.
  • a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, and a negative refractive power are arranged side by side in the lens barrel (step ST1).
  • the interval between adjacent lens groups is changed (step ST2). Further, it is configured to satisfy the conditional expression (1) (step ST3).
  • the manufacturing method of the zoom lens ZL according to the present embodiment it is possible to manufacture a zoom lens having good optical performance while being highly variable.
  • FIG. 1 FIG. 4, FIG. 7, FIG. 10, FIG. 13 and FIG. 16 are cross-sectional views showing the configuration of the zoom lenses ZL ⁇ ZL (1) to ZL (6) ⁇ according to the first to sixth examples. is there.
  • the arrows shown in the lower part of these drawings indicate the moving directions of the first to fifth lens groups G1 to G5 and the aperture stop S when zooming (zooming operation) from the wide-angle end state to the telephoto end state.
  • the entire fourth lens group G4 constitutes a focusing lens group, and the entire fourth lens group G4 extends in the image plane direction.
  • the moving direction when the focusing lens group focuses on an object at a short distance from infinity is indicated by an arrow together with the symbol “ ⁇ ”.
  • the third lens group G3 constitutes an anti-vibration lens group that can move in a direction perpendicular to the optical axis, and thus a camera shake. The displacement of the image formation position (image blur on the image plane I) due to the above is corrected.
  • each lens group is represented by a combination of symbol G and a number
  • each lens is represented by a combination of symbol L and a number.
  • the lens groups and the like are represented using combinations of codes and numbers independently for each embodiment. For this reason, even if the combination of the same code
  • Tables 1 to 6 are shown below, and are tables showing each specification data in the first to sixth examples.
  • the surface number indicates the order of the optical surfaces from the object side along the light traveling direction
  • R is the radius of curvature of each optical surface (the surface whose curvature center is located on the image side)
  • D is a positive value
  • D is a surface interval which is a distance on the optical axis from each optical surface to the next optical surface
  • nd is a refractive index with respect to d-line (wavelength 587.6 nm) of the material of the optical member
  • ⁇ d is an optical
  • the Abbe numbers based on the d-line of the material of the member are shown respectively.
  • the surface number indicates the order of the lens surfaces from the object side along the traveling direction of the light beam.
  • the surface number is marked with * and the radius of curvature R column indicates the paraxial radius of curvature.
  • the table of [Overall specifications] shows the specifications of the entire zoom lens, f is the focal length of the entire lens system, Fno is the F number, ⁇ is the half angle of view (maximum incident angle, unit is “° (degree)”. ), Y indicates the image height.
  • BF indicates the distance (back focus) from the final lens surface to the image plane I on the optical axis at the time of focusing on infinity, and TL is the total lens length, from the front lens surface to the final lens surface on the optical axis. The distance obtained by adding BF to the distance is shown. These values are shown for each zooming state in the wide-angle end state (Wide), the intermediate focal length (Middle), and the telephoto end state (Tele).
  • the [variable distance data] table shows the surface distance Di to the next surface in the surface number i where the surface distance is “variable” in the table showing [lens specifications].
  • surface intervals D7, D16, D24, D27, and D30 at surface numbers 7, 16, 24, 27, and 30 are shown.
  • f indicates the focal length of the entire zoom lens system.
  • mm is generally used for the focal length f, curvature radius R, surface distance D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this.
  • FIG. 1 is a diagram illustrating a lens configuration of a zoom lens ZL (1) according to the first example.
  • the zoom lens ZL (1) includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refraction arranged in order from the object side along the optical axis.
  • the third lens group G3 having power, the fourth lens group G4 having negative refractive power, and the fifth lens group G5 having positive refractive power are configured.
  • the sign (+) or ( ⁇ ) attached to each lens group symbol indicates the refractive power of each lens group.
  • Filters FL1 and FL2 are provided closer to the image plane I on the image side than the fifth lens group G5.
  • the filters FL1 and FL2 are composed of a low-pass filter, an infrared cut filter, or the like.
  • An aperture stop S is disposed on the object side of the third lens group G3.
  • the aperture stop S is configured independently of the third lens group G3, but moves in the optical axis direction together with the third lens group G3.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface (first surface) toward the object side and a biconvex positive lens L12, and an object side. And a positive meniscus lens L14 having a convex surface facing the object side, and a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface toward the object side, a biconcave negative lens L22, a biconvex positive lens L23,
  • the lens includes a biconcave negative lens L24 and a cemented lens of a positive meniscus lens L25 having a convex surface facing the object side.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a convex surface on the object side, and a negative meniscus having a convex surface on the object side. It is composed of a lens L33 and a cemented lens of a biconvex positive lens L34. Note that both side surfaces of the positive lens L31 are aspheric surfaces.
  • the fourth lens group G4 includes a cemented lens of a biconvex positive lens L41 and a biconcave negative lens L42.
  • the fifth lens group G5 includes a cemented lens including a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface directed toward the object side.
  • the object side surface of the positive lens L51 is an aspherical surface.
  • the zoom lens ZL (1) the first to fifth lens groups G1 to G5 each move in the axial direction as indicated by arrows in FIG. 1 when zooming from the wide-angle end state to the telephoto state.
  • the zoom lens ZL (1) indicates the position of each lens group in the wide-angle end state (W), the intermediate focal length state (M), and the telephoto end state (T).
  • the first lens group G1 moves to the object side and the second lens group G2 moves to the image plane side, and the distance between the first lens group G1 and the second lens group G2 Is enlarged, the third lens group G3 is moved to the object side, the distance between the second lens group G2 and the third lens group G3 is reduced, and the fourth lens group G4 is moved to the object side to move the third lens group G3.
  • the fourth lens group G4 are enlarged, the fifth lens group G5 is moved to the image plane side, and the gap between the fourth lens group G4 and the fifth lens group G5 is enlarged.
  • Table 1 below lists values of specifications of the optical system according to the first example.
  • the zoom lens ZL (1) according to Example 1 shown in FIG. 1 satisfies all the conditional expressions (1) to (10).
  • FIGS. 3A, 3B, and 3C show infinite focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens ZL (1) according to the first example, respectively.
  • FIG. As can be seen from the various aberration diagrams, the zoom lens ZL (1) according to the first example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. Understand. Note that distortion can be corrected by image processing after imaging, and optical correction is not required.
  • FNO indicates an F number
  • A indicates a half angle of view (unit: “°”) for each image height.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane aberration. This description is the same in all aberration diagrams of the following examples, and a duplicate description is omitted below.
  • FIG. 4 is a diagram illustrating a lens configuration of the zoom lens ZL (2) according to the second example.
  • the zoom lens ZL (2) includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refraction arranged in order from the object side along the optical axis.
  • the third lens group G3 having power, the fourth lens group G4 having negative refractive power, and the fifth lens group G5 having positive refractive power are configured.
  • Filters FL1 and FL2 are provided closer to the image plane I on the image side than the fifth lens group G5.
  • the filters FL1 and FL2 are composed of a low-pass filter, an infrared cut filter, or the like.
  • An aperture stop S is disposed on the object side of the third lens group G3.
  • the aperture stop S is configured independently of the third lens group G3, but moves in the optical axis direction together with the third lens group G3.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface (first surface) toward the object side and a biconvex positive lens L12, and an object side. And a positive meniscus lens L14 having a convex surface facing the object side, and a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, It is composed of a cemented lens of a biconcave negative lens L24 and a biconvex positive lens L25.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a convex surface on the object side, and a negative meniscus having a convex surface on the object side.
  • a lens L33 and a cemented lens of a biconvex positive lens L34 are configured. Note that both side surfaces of the positive lens L31 are aspheric surfaces.
  • the fourth lens group G4 includes a cemented lens of a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave negative lens L42.
  • the fifth lens group G5 includes a cemented lens of a negative meniscus lens L51 having a convex surface directed toward the object side and a biconvex positive lens L52.
  • the image side surface of the positive lens L52 is an aspherical surface.
  • the zoom lens ZL (2) In the zoom lens ZL (2), the first to fifth lens groups G1 to G5 each move in the axial direction as indicated by arrows in FIG. 4 when zooming from the wide-angle end state to the telephoto state. As shown in FIG. 5, the zoom lens ZL (2) indicates the position of each lens group in the wide-angle end state (W), the intermediate focal length state (M), and the telephoto end state (T).
  • the first lens group G1 moves to the object side and the second lens group G2 moves to the image plane side, and the distance between the first lens group G1 and the second lens group G2 Is enlarged, the third lens group G3 is moved to the object side, the distance between the second lens group G2 and the third lens group G3 is reduced, and the fourth lens group G4 is moved to the object side to move the third lens group G3.
  • the fourth lens group G4 are enlarged, the fifth lens group G5 is moved to the image plane side, and the gap between the fourth lens group G4 and the fifth lens group G5 is enlarged.
  • Table 2 below lists values of specifications of the optical system according to the second example.
  • the zoom lens ZL (2) according to the second example shown in FIG. 4 satisfies all the conditional expressions (1) to (10).
  • FIGS. 6A, 6B, and 6C are infinitely focused in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens ZL (2) according to the second example, respectively.
  • FIG. As can be seen from the various aberration diagrams, the zoom lens ZL (2) according to the second example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. Understand.
  • FIG. 7 is a diagram illustrating a lens configuration of the zoom lens ZL (3) according to the third example.
  • the zoom lens ZL (3) includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refraction arranged in order from the object side along the optical axis.
  • the third lens group G3 having power, the fourth lens group G4 having negative refractive power, and the fifth lens group G5 having positive refractive power are configured.
  • Filters FL1 and FL2 are provided closer to the image plane I on the image side than the fifth lens group G5.
  • the filters FL1 and FL2 are composed of a low-pass filter, an infrared cut filter, or the like.
  • An aperture stop S is disposed on the object side of the third lens group G3.
  • the aperture stop S is configured independently of the third lens group G3, but moves in the optical axis direction together with the third lens group G3.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface (first surface) toward the object side and a biconvex positive lens L12, and an object side. And a positive meniscus lens L14 having a convex surface facing the object side, and a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, It comprises a biconcave negative lens L24.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a convex surface on the object side, and a negative meniscus having a convex surface on the object side.
  • a lens L33 and a cemented lens of a biconvex positive lens L34 are configured. Note that both side surfaces of the positive lens L31 are aspheric surfaces.
  • the fourth lens group G4 includes a cemented lens of a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave negative lens L42.
  • the fifth lens group G5 includes a cemented lens of a negative meniscus lens L51 having a convex surface directed toward the object side and a biconvex positive lens L52.
  • the image side surface of the positive lens L52 is an aspherical surface.
  • the zoom lens ZL (3) the first to fifth lens groups G1 to G5 each move in the axial direction as indicated by arrows in FIG. 7 when zooming from the wide-angle end state to the telephoto state.
  • the zoom lens ZL (3) indicates the position of each lens group in the wide-angle end state (W), the intermediate focal length state (M), and the telephoto end state (T).
  • the first lens group G1 moves to the object side and the second lens group G2 moves to the image plane side, and the distance between the first lens group G1 and the second lens group G2 Is enlarged, the third lens group G3 is moved to the object side, the distance between the second lens group G2 and the third lens group G3 is reduced, and the fourth lens group G4 is moved to the object side to move the third lens group G3.
  • the fourth lens group G4 are enlarged, the fifth lens group G5 is moved to the image plane side, and the gap between the fourth lens group G4 and the fifth lens group G5 is enlarged.
  • Table 3 lists the values of the specifications of the optical system according to the third example.
  • the zoom lens ZL (3) according to the third example shown in FIG. 7 satisfies all the conditional expressions (1) to (10).
  • FIGS. 9A, 9B, and 9C respectively show infinite focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens ZL (3) according to the third example.
  • FIG. As can be seen from the various aberration diagrams, the zoom lens ZL (3) according to the third example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. Understand.
  • FIG. 10 is a diagram illustrating a lens configuration of a zoom lens ZL (4) according to the fourth example.
  • the zoom lens ZL (4) includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refraction arranged in order from the object side along the optical axis.
  • the third lens group G3 having power, the fourth lens group G4 having negative refractive power, and the fifth lens group G5 having positive refractive power are configured.
  • Filters FL1 and FL2 are provided closer to the image plane I on the image side than the fifth lens group G5.
  • the filters FL1 and FL2 are composed of a low-pass filter, an infrared cut filter, or the like.
  • An aperture stop S is disposed on the object side of the third lens group G3.
  • the aperture stop S is configured independently of the third lens group G3, but moves in the optical axis direction together with the third lens group G3.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface (first surface) toward the object side and a biconvex positive lens L12, and an object side. And a positive meniscus lens L14 having a convex surface facing the object side, and a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, It comprises a biconcave negative lens L24.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a convex surface on the object side, and a negative meniscus having a convex surface on the object side.
  • a lens L33 and a cemented lens of a biconvex positive lens L34 are configured. Note that both side surfaces of the positive lens L31 are aspheric surfaces.
  • the fourth lens group G4 includes a cemented lens of a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave negative lens L42.
  • the fifth lens group G5 includes a cemented lens of a negative meniscus lens L51 having a convex surface directed toward the object side and a biconvex positive lens L52.
  • the image side surface of the positive lens L52 is an aspherical surface.
  • the zoom lens ZL (4) indicates the position of each lens group in the wide-angle end state (W), the intermediate focal length state (M), and the telephoto end state (T).
  • the first lens group G1 moves to the object side and the second lens group G2 moves to the image plane side, and the distance between the first lens group G1 and the second lens group G2 Is enlarged, the third lens group G3 is moved to the object side, the distance between the second lens group G2 and the third lens group G3 is reduced, and the fourth lens group G4 is moved to the object side to move the third lens group G3.
  • the fourth lens group G4 are enlarged, the fifth lens group G5 is moved to the image plane side, and the gap between the fourth lens group G4 and the fifth lens group G5 is enlarged.
  • Table 4 lists values of specifications of the optical system according to the fourth example.
  • the zoom lens ZL (4) according to the fourth example shown in FIG. 10 satisfies all of the conditional expressions (1) to (10).
  • FIGS. 12A, 12B, and 12C are infinitely focused in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens ZL (4) according to the fourth example, respectively.
  • FIG. As can be seen from the various aberration diagrams, the zoom lens ZL (4) according to Example 4 has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state. Understand.
  • FIG. 13 is a diagram illustrating a lens configuration of a zoom lens ZL (5) according to the fifth example.
  • the zoom lens ZL (5) includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refraction arranged in order from the object side along the optical axis.
  • the third lens group G3 having power, the fourth lens group G4 having negative refractive power, and the fifth lens group G5 having positive refractive power are configured.
  • Filters FL1 and FL2 are provided closer to the image plane I on the image side than the fifth lens group G5.
  • the filters FL1 and FL2 are composed of a low-pass filter, an infrared cut filter, or the like.
  • An aperture stop S is disposed on the object side of the third lens group G3.
  • the aperture stop S is configured independently of the third lens group G3, but moves in the optical axis direction together with the third lens group G3.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface (first surface) toward the object side and a biconvex positive lens L12, and an object side. And a positive meniscus lens L14 having a convex surface facing the object side, and a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface toward the object side, a biconcave negative lens L22, a biconvex positive lens L23,
  • the lens includes a biconcave negative lens L24 and a cemented lens of a positive meniscus lens L25 having a convex surface facing the object side.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a convex surface on the object side, and a negative meniscus having a convex surface on the object side.
  • a lens L33 and a cemented lens of a biconvex positive lens L34 are configured. Note that both side surfaces of the positive lens L31 are aspheric surfaces.
  • the fourth lens group G4 includes a cemented lens of a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave negative lens L42.
  • the fifth lens group G5 includes a cemented lens of a negative meniscus lens L51 having a convex surface directed toward the object side and a biconvex positive lens L52.
  • the image side surface of the positive lens L52 is an aspherical surface.
  • the zoom lens ZL (5) In the zoom lens ZL (5), the first to fifth lens groups G1 to G5 each move in the axial direction as indicated by arrows in FIG. 13 when zooming from the wide-angle end state to the telephoto state. As shown in FIG. 14, the zoom lens ZL (5) indicates the position of each lens group in the wide-angle end state (W), the intermediate focal length state (M), and the telephoto end state (T).
  • the first lens group G1 moves to the object side and the second lens group G2 moves to the image plane side, and the distance between the first lens group G1 and the second lens group G2 Is enlarged, the third lens group G3 is moved to the object side, the distance between the second lens group G2 and the third lens group G3 is reduced, and the fourth lens group G4 is moved to the object side to move the third lens group G3.
  • the fourth lens group G4 are enlarged, the fifth lens group G5 is moved to the image plane side, and the gap between the fourth lens group G4 and the fifth lens group G5 is enlarged.
  • Table 5 lists values of specifications of the optical system according to the fifth example.
  • the zoom lens ZL (5) according to the fifth example shown in FIG. 13 satisfies all of the conditional expressions (1) to (10).
  • FIGS. 15A, 15B, and 15C respectively show infinite focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens ZL (5) according to the fifth example.
  • FIG. As can be seen from the various aberration diagrams, the zoom lens ZL (5) according to Example 5 has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state. Understand.
  • FIG. 16 is a diagram illustrating a lens configuration of a zoom lens ZL (6) according to the sixth example.
  • the zoom lens ZL (6) includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refraction arranged in order from the object side along the optical axis.
  • the third lens group G3 having power, the fourth lens group G4 having negative refractive power, and the fifth lens group G5 having positive refractive power are configured.
  • Filters FL1 and FL2 are provided closer to the image plane I on the image side than the fifth lens group G5.
  • the filters FL1 and FL2 are composed of a low-pass filter, an infrared cut filter, or the like.
  • An aperture stop S is disposed on the object side of the third lens group G3.
  • the aperture stop S is configured independently of the third lens group G3, but moves in the optical axis direction together with the third lens group G3.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface (first surface) toward the object side and a biconvex positive lens L12, and an object side. And a positive meniscus lens L14 having a convex surface facing the object side, and a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface toward the object side, a biconcave negative lens L22, a biconvex positive lens L23,
  • the lens includes a biconcave negative lens L24 and a cemented lens of a positive meniscus lens L25 having a convex surface facing the object side.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a convex surface on the object side, and a negative meniscus having a convex surface on the object side.
  • a lens L33 and a cemented lens of a biconvex positive lens L34 are configured. Note that both side surfaces of the positive lens L31 are aspheric surfaces.
  • the fourth lens group G4 includes a cemented lens of a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave negative lens L42.
  • the fifth lens group G5 includes a cemented lens of a negative meniscus lens L51 having a convex surface directed toward the object side and a biconvex positive lens L52.
  • the image side surface of the positive lens L52 is an aspherical surface.
  • the zoom lens ZL (6) when zooming from the wide-angle end state to the telephoto state, the first to fifth lens groups G1 to G5 each move in the axial direction as indicated by arrows in FIG. As shown in FIG. 17, the zoom lens ZL (6) indicates the position of each lens group in the wide-angle end state (W), the intermediate focal length state (M), and the telephoto end state (T).
  • the first lens group G1 moves to the object side and the second lens group G2 moves to the image plane side, and the distance between the first lens group G1 and the second lens group G2 Is enlarged, the third lens group G3 is moved to the object side, the distance between the second lens group G2 and the third lens group G3 is reduced, and the fourth lens group G4 is moved to the object side to move the third lens group G3.
  • the fourth lens group G4 increase, the fifth lens group G5 moves to the image plane side, and the interval between the fourth lens group G4 and the fifth lens group G5 increases.
  • Table 6 below lists values of specifications of the optical system according to the sixth example.
  • the zoom lens ZL (6) according to Example 6 shown in FIG. 16 satisfies all the conditional expressions (1) to (10).
  • FIGS. 18A, 18B, and 18C respectively show infinite focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom lens ZL (6) according to the sixth example.
  • FIG. As can be seen from the various aberration diagrams, the zoom lens ZL (6) according to the sixth example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. Understand.
  • the present application is not limited to this, and a zoom lens having another group configuration (for example, six groups) can also be configured.
  • a configuration in which a lens or a lens group is added to the most object side or the most image plane side of the zoom lens of the present embodiment may be used.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
  • a focusing lens group that performs focusing from an object at infinity to a short distance object by moving a single lens group, a plurality of lens groups, or a partial lens group in the optical axis direction may be used.
  • the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).
  • the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or rotated (swinged) in the in-plane direction including the optical axis to correct image blur caused by camera shake.
  • An anti-vibration lens group may be used.
  • the lens surface may be formed of a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Either is fine.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • the aperture stop is preferably arranged in the vicinity of or in the third lens group, but the role of the aperture stop may be substituted by a lens frame without providing a member as an aperture stop.
  • Each lens surface may be provided with an antireflection film having high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high contrast optical performance.
  • G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group FL1, FL2 Filter I Image surface S Aperture stop

Abstract

ズームレンズZLは、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを有し、変倍時に、隣り合う各レンズ群の間隔が変化し、下記の条件式を満足する。 1250.0<-(ft/fw)/(f2/f1) 但し、fw:広角端状態におけるズームレンズ全系の焦点距離 ft:望遠端状態におけるズームレンズ全系の焦点距離 f1:前記第1レンズ群の焦点距離 f2:前記第2レンズ群の焦点距離

Description

ズームレンズ、光学機器及びズームレンズの製造方法
 本発明は、ズームレンズ、これを用いた光学機器及びこのズームレンズの製造方法に関する。
 従来、光軸に沿って物体側から順に、正の屈折力の第1レンズ群と、負の屈折力の第2レンズ群と、正の屈折力の第3レンズ群と、負の屈折力の第4レンズ群と、正の屈折力の第5レンズ群とから構成され、各レンズ群を移動させて変倍を行うズームレンズが提案されている(例えば、特許文献1を参照)。従来のズームレンズにおいては、更なる高変倍化が求められている。
特開2013‐164455号公報
 本発明に係るズームレンズは、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有し、変倍時に、隣り合う各レンズ群の間隔が変化し、下記の条件式を満足する。
 1250.0<-(ft/fw)/(f2/f1)
 但し、fw:広角端状態における前記ズームレンズ全系の焦点距離
    ft:望遠端状態における前記ズームレンズ全系の焦点距離
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
 本発明に係る光学機器は、上記本発明に係るズームレンズを搭載して構成される。
 本発明に係るズームレンズの製造方法は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを鏡筒内に配置し、変倍時に、隣り合う各レンズ群の間隔が変化し、且つ下記の条件式を満足するように構成する。
 1250.0<-(ft/fw)/(f2/f1)
 但し、fw:広角端状態における前記ズームレンズ全系の焦点距離
    ft:望遠端状態における前記ズームレンズ全系の焦点距離
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
第1実施例に係るズームレンズのレンズ構成を示す断面図である。 第1実施例に係るズームレンズのレンズ構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 図3(A)、図3(B)および図3(C)はそれぞれ、第1実施例に係るズームレンズの広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。 第2実施例に係るズームレンズのレンズ構成を示す断面図である。 第2実施例に係るズームレンズのレンズ構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 図6(A)、図6(B)および図6(C)はそれぞれ、第2実施例に係るズームレンズの広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。 第3実施例に係るズームレンズのレンズ構成を示す断面図である。 第3実施例に係るズームレンズのレンズ構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 図9(A)、図9(B)および図9(C)はそれぞれ、第3実施例に係るズームレンズの広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。 第4実施例に係るズームレンズのレンズ構成を示す断面図である。 第4実施例に係るズームレンズのレンズ構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 図12(A)、図12(B)および図12(C)はそれぞれ、第4実施例に係るズームレンズの広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。 第5実施例に係るズームレンズのレンズ構成を示す断面図である。 第5実施例に係るズームレンズのレンズ構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 図15(A)、図15(B)および図15(C)はそれぞれ、第5実施例に係るズームレンズの広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。 第6実施例に係るズームレンズのレンズ構成を示す断面図である。 第6実施例に係るズームレンズのレンズ構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 図18(A)、図18(B)および図18(C)はそれぞれ、第6実施例に係るズームレンズの広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。 本実施形態に係るズームレンズを備えたカメラの構成を示す概略図である。 本実施形態に係るズームレンズの製造方法の概略を示すフローチャートである。
 以下、本実施形態について図を参照して説明する。本実施形態に係るズームレンズZLを備えたカメラ(光学機器)を図19に示している。なお、本明細書において「レンズ成分」という用語を用いることがあるが、この場合、レンズ成分とは、「単レンズまたは接合レンズ」を意味する用語として用いている。
 カメラ1は、図19に示すように、撮影レンズ2として本実施形態に係るズームレンズZLを備えたデジタルカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。
 本実施形態に係るズームレンズZLの一例としてのズームレンズZL(1)は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを有し、変倍時に、隣り合う各レンズ群の間隔が変化する。
 なお、本実施形態に係るズームレンズZLは、図4に示すズームレンズZL(2)、図7に示すズームレンズZL(3)、図10に示すズームレンズZL(4)、図13に示すズームレンズZL(5)、図16に示すズームレンズZL(6)でも良い。
 本実施形態に係るズームレンズZLは、上記のような構成の下、下記の条件式(1)を満足する。
 1250.0<-(ft/fw)/(f2/f1) ・・・(1)
 但し、fw:広角端状態におけるズームレンズ全系の焦点距離
    ft:望遠端状態におけるズームレンズ全系の焦点距離
    f1:第1レンズ群G1の焦点距離
    f2:第2レンズ群G2の焦点距離
 本実施形態に係るズームレンズZLを上述のように構成することにより、高変倍化を達成することができる。本実施形態に係るズームレンズZLを撮影レンズ2として備えた上記カメラ1によれば、高倍率でありながら、良好な光学性能を有するカメラを実現することができる。
 上記条件式(1)は、球面収差、非点収差および色収差を小さくするための条件式である。この条件式(1)の下限値を下回る場合、変倍比(ズーム比)を大きく取ることができないため、好ましくない。また、条件式(1)の下限値を下回る場合、第1レンズ群の焦点距離が相対的に小さくなり小型化には有利だが、望遠端状態における球面収差や倍率色収差の補正が困難になる。
 本実施形態の効果を確実なものとするために、条件式(1)の下限値を1300.0、更に1350.0、1400.0、1500.0、1600.0とすることがより好ましい。本実施形態の効果を確実なものとするために、条件式(1)の上限値を5000.0、更に4000.0、3000.0、2700.0、2300.0とすることがより好ましい。このような上限値を設けた条件式(1)を満足することで、小型でありながら高い変倍比を確保することができる。
 本実施形態に係るズームレンズZLは、下記の条件式(2)を満足することが好ましい。
 13.00<f1/(-f2) ・・・(2)
 条件式(2)は、球面収差、非点収差および色収差を小さくするための条件式である。第1レンズ群G1の屈折力が相対的に大きくなり過ぎて、条件式(2)の下限値を下回る場合、小型化には有利だが、望遠端状態における球面収差や倍率色収差の補正が困難になる。また、第2レンズ群G2の屈折力が相対的に小さくなり過ぎて、条件式(2)の下限値を下回る場合、高い変倍比を確保するためには全長が大型化する。ここで、光学系の小型化を維持するためには、第1レンズ群G1の屈折力を大きくしなければならず、望遠端状態における球面収差が悪化する。
 本実施形態の効果を確実なものとするために、条件式(2)の下限値を13.30、更に13.60、13.90、14.20とすることがより好ましい。本実施形態の効果を確実なものとするために、条件式(2)の上限値を25.00、更に23.00、20.00、19.00、18.00、17.00とすることがより好ましい。このような上限値を設けた条件式(2)を満足することで、球面収差、非点収差および色収差がより小さくなり好ましい。
 本実施形態に係るズームレンズZLは、下記の条件式(3)を満足することが好ましい。
 33.00<f1/fw<50.00 ・・・(3)
 条件式(3)は、第1レンズ群G1の焦点距離と、広角端状態におけるズームレンズ全系の焦点距離との比の適正範囲を規定している。この条件式(3)の上限値を上回る場合、下限値を下回る場合共に、歪曲収差、非点収差、コマ収差等の諸収差が悪化するため、好ましくない。
 本実施形態の効果を確実なものとするために、条件式(3)の下限値を33.50、更に34.00、34.50、35.00、35.50、36.00とすることがより好ましい。本実施形態の効果を確実なものとするために、条件式(3)の上限値を49.00、更に48.00、47.00、46.00、45.00、43.00とすることがより好ましい。
 本実施形態に係るズームレンズZLは、広角端状態から望遠端状態への少なくとも一部の変倍時に、第1レンズ群G1が物体側へ移動することが好ましい。この構成により、小型で、高倍率化を達成することができる。
 本実施形態に係るズームレンズZLは、広角端状態から望遠端状態への少なくとも一部の変倍時に、第1レンズ群G1と第2レンズ群G2の間隔が拡大し、第2レンズ群G2と第3レンズ群G3の間隔が縮小し、第3レンズ群G3と第4レンズ群G4の間隔が拡大することが好ましい。この構成により、小型で、高倍率化を達成することができる。
 本実施形態に係るズームレンズZLは、変倍時に、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3および第4レンズ群G4が光軸に沿って移動することが好ましい。この構成により、小型で、高倍率化を達成することができる。
 本実施形態に係るズームレンズZLは、変倍時に、第5レンズ群G5が光軸に沿って移動することが好ましい。この構成により、小型で、高倍率化を達成することができる。
 本実施形態に係るズームレンズZLは、第3レンズ群G3の少なくとも1つのレンズ面は、非球面を有することが好ましい。この構成により、小型で、球面収差、コマ収差等の諸収差を良好に補正することができる。
 本実施形態に係るズームレンズZLは、第1レンズ群G1が4枚のレンズで構成されることが好ましい。この構成により、小型で、球面収差、コマ収差等の諸収差を良好に補正することができる。
 本実施形態に係るズームレンズZLは、第4レンズ群G4が2枚以下のレンズで構成されることが好ましい。この構成により、小型で、球面収差、コマ収差等の諸収差を良好に補正することができる。
 本実施形態に係るズームレンズZLは、第5レンズ群G5が2枚以下のレンズで構成されることが好ましい。この構成により、小型で、球面収差、コマ収差等の諸収差を良好に補正することができる。
 本実施形態に係るズームレンズZLは、第5レンズ群G5の少なくとも1つのレンズ面は、非球面を有することが好ましい。この構成により、小型で、球面収差、コマ収差等の諸収差を良好に補正することができる。
 本実施形態に係るズームレンズZLは、合焦の際に、第4レンズ群G4が光軸に沿って移動することが好ましい。この構成により、合焦時における球面収差、コマ収差等の諸収差の変動を小さくすることができる。なお、合焦の際に、第4レンズ群G4の少なくとも一部が光軸に沿って移動する構成としてもよい。
 本実施形態に係るズームレンズZLは、第3レンズ群G3は、光軸と垂直な方向の変位成分を有するように移動可能な防振レンズ群を少なくとも一部に有することが好ましい。この構成により、手振れ補正時におけるコマ収差等の諸収差の変動を小さくすることができる。なお、防振レンズ群は、第3レンズ群G3全体であっても、第3レンズ群G3を構成するいずれかのレンズもしくはこれらの組み合わせであっても良い。例えば、第3レンズ群G3の最も物体側の正レンズ、もしくは第3レンズ群G3の最も像側の接合レンズが防振レンズ群を構成するようにしてもよい。
 本実施形態に係るズームレンズZLは、下記の条件式(4)を満足することが好ましい。
 10.00<Dt12/(-f2) ・・・(4)
 但し、Dt12:望遠端状態における第1レンズ群G1の像側面から第2レンズ群G2の物体側面までの光軸上の距離
 条件式(4)は、球面収差、倍率色収差および軸上色収差を小さくし、良好な光学性能を確保するための条件式である。この条件式(4)の下限値を下回る場合、望遠端状態における第1レンズ群G1と第2レンズ群G2との間隔が著しく小さくなるため、第1レンズ群G1,第2レンズ群G2の屈折力が大きくなり過ぎる。第1レンズ群G1の屈折力が大きくなると、特に、望遠端状態における球面収差、倍率色収差の補正が困難になる。第2レンズ群G2の屈折力が大きくなると、軸上色収差の補正が困難になる。
 本実施形態の効果を確実なものとするために、条件式(4)の下限値を10.30、更に10.50、10.80、11.00、11.30、11.50、11.80とすることがより好ましい。本実施形態の効果を確実なものとするために、条件式(4)の上限値を20.00、更に18.00、16.00、14.00とすることがより好ましい。
 本実施形態に係るズームレンズZLは、下記の条件式(5)を満足することが好ましい。
 33.00<ft/(-f2)<60.00 ・・・(5)
 条件式(5)は、望遠端状態におけるズームレンズ全系の焦点距離と、第2レンズ群G2の焦点距離との比の適正範囲を規定している。この条件式(5)の上限値を上回る場合、下限値を下回る場合共に、倍率色収差、コマ収差、非点収差等の諸収差が悪化するため、好ましくない。
 本実施形態の効果を確実なものとするために、条件式(5)の下限値を34.00、更に35.00、36.00、37.00、38.00、39.00とすることがより好ましい。本実施形態の効果を確実なものとするために、条件式(5)の上限値を59.00、更に58.00、57.00、56.00、53.00、51.00とすることがより好ましい。
 本実施形態に係るズームレンズZLは、下記の条件式(6)を満足することが好ましい。
 65.00<(β2t・β3t)/(β2w・β3w)<120.00 ・・・(6)
 但し、β2t:望遠端状態における第2レンズ群G2の倍率
    β3t:望遠端状態における第3レンズ群G3の倍率
    β2w:広角端状態における第2レンズ群G2の倍率
    β3w:広角端状態における第3レンズ群G3の倍率
 条件式(6)は、第2レンズ群G2と第3レンズ群G3の変倍比の積の適正範囲を規定している。この条件式(6)の上限値を上回る場合、下限値を下回る場合共に、球面収差、コマ収差等の諸収差が悪化するため、好ましくない。
 本実施形態の効果を確実なものとするために、条件式(6)の下限値を66.00、更に67.00、68.00、69.00、70.00、75.00とすることがより好ましい。本実施形態の効果を確実なものとするために、条件式(6)の上限値を118.00、更に116.00、114.00、112.00、110.00、107.00とすることがより好ましい。
 本実施形態に係るズームレンズZLは、下記の条件式(7)を満足することが好ましい。
 18.00<ft/f3<33.00 ・・・(7)
 但し、f3:第3レンズ群G3の焦点距離
 条件式(7)は、望遠端状態におけるズームレンズ全系の焦点距離と、第3レンズ群G3の焦点距離との比の適正範囲を規定している。この条件式(7)の上限値を上回る場合、下限値を下回る場合共に、コマ収差等の諸収差が悪化するため、好ましくない。
 本実施形態の効果を確実なものとするために、条件式(7)の下限値を18.30、更に18.60、18.90、19.20、19.50、19.80、20.00とすることがより好ましい。本実施形態の効果を確実なものとするために、条件式(7)の上限値を32.00、更に31.00、30.00、29.00、28.00、27.00とすることがより好ましい。
 本実施形態に係るズームレンズZLは、下記の条件式(8)を満足することが好ましい。
 10.00<ft/X2<20.00 ・・・(8)
 但し、X2:広角端状態から望遠端状態への変倍に際し、結像位置に対して第2レンズ群G2が像面方向に移動する距離
 条件式(8)は、広角端状態から望遠端状態への変倍に際して第2レンズ群G2が移動する距離と、望遠端状態におけるズームレンズ全系の焦点距離との比の適正範囲を規定している。この条件式(8)の上限値を上回る場合、下限値を下回る場合共に、コマ収差等の諸収差が悪化するため、好ましくない。
 本実施形態の効果を確実なものとするために、条件式(8)の下限値を10.20、更に10.40、10.60、10.80、11.00とすることがより好ましい。本実施形態の効果を確実なものとするために、条件式(8)の上限値を19.00、更に18.00、17.00、16.50とすることがより好ましい。
 本実施形態に係るズームレンズZLは、第2レンズ群G2と第4レンズ群G4との間に、開口絞りSを有することが好ましい。この構成により、小型で、球面収差、コマ収差、像面湾曲等の諸収差を良好に補正することができる。
 本実施形態に係るズームレンズZLは、第2レンズ群G2と第3レンズ群G3との間に、開口絞りSを有することが好ましい。この構成により、小型で、球面収差、コマ収差、像面湾曲等の諸収差を良好に補正することができる。
 本実施形態に係るズームレンズZLは、下記の条件式(9)を満足することが好ましい。
 0.10°<ωt<4.00° ・・・(9)
 但し、ωt:望遠端状態における半画角
 条件式(9)は、望遠端状態における画角の最適な値を規定する条件式である。この条件式(9)を満足することにより、コマ収差、歪曲収差、像面湾曲等の諸収差を良好に補正することができる。
 本実施形態の効果を確実なものとするために、条件式(9)の下限値を0.20°、更に0.25°、0.30°、0.33°とすることがより好ましい。本実施形態の効果を確実なものとするために、条件式(9)の上限値を3.00°、更に2.00°、1.00°とすることがより好ましい。
 本実施形態に係るズームレンズZLは、下記の条件式(10)を満足することが好ましい。
 25.00°<ωw<80.00° ・・・(10)
 但し、ωw:広角端状態における半画角
 条件式(10)は、広角端状態における画角の最適な値を規定する条件式である。この条件式(10)を満足することにより、コマ収差、歪曲収差、像面湾曲等の諸収差を良好に補正することができる。
 本実施形態の効果を確実なものとするために、条件式(10)の下限値を30.00°、更に35.00°、40.00°とすることがより好ましい。本実施形態の効果を確実なものとするために、条件式(10)の上限値を70.00°、更に60.00°、50.00°とすることがより好ましい。
 続いて、図20を参照しながら、本実施形態に係るズームレンズZLの製造方法について概説する。まず、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを、鏡筒内に並べて配置する(ステップST1)。次に、変倍時に、隣り合う各レンズ群の間隔を変化させるように構成する(ステップST2)。さらに、上記条件式(1)を満足するように構成する(ステップST3)。
 本実施形態に係るズームレンズZLの製造方法によれば、高変倍でありながら、良好な光学性能を有するズームレンズを製造することができる。
 以下、本実施形態の実施例に係るズームレンズZLを図面に基づいて説明する。図1、図4、図7、図10、図13、図16は、第1~第6実施例に係るズームレンズZL{ZL(1)~ZL(6)}の構成等を示す断面図である。これらの図の下部に示す矢印は、広角端状態から望遠端状態にズーミング(変倍動作)するときにおける第1~第5レンズ群G1~G5および開口絞りSの移動方向を示している。
 なお、第1~第6実施例に係るズームレンズZL(1)~(6)では、第4レンズ群G4の全体が合焦レンズ群を構成し、第4レンズ群G4の全体を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。各図において、この合焦レンズ群が無限遠から近距離物体に合焦する際の移動方向を「∞」という記号とともに矢印で示している。また、第1~第6実施例に係るズームレンズZL(1)~(6)では、第3レンズ群G3が、光軸と垂直な方向へ移動可能な防振レンズ群を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。
 これらの図において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表6を示すが、これは第1~第6実施例における各諸元データを示す表である。
 [レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面までの光軸上の距離である面間隔、ndは光学部材の材質のd線(波長587.6nm)に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数を、それぞれ示す。面番号は、光線の進行する方向に沿った物体側からのレンズ面の順序を示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSを、それぞれ示す。空気の屈折率nd=1.00000の記載は省略している。レンズ面が非球面である場合には面番号に*印を付して曲率半径Rの欄には近軸曲率半径を示している。
 [全体諸元]の表にはズームレンズ全体の諸元を示し、fはレンズ全系の焦点距離、FnoはFナンバー、ωは半画角(最大入射角、単位は「°(度)」)、Yは像高を示す。BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示し、TLはレンズ全長で、光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示す。なお、これらの値は、広角端状態(Wide)、中間焦点距離(Middle)、望遠端状態(Tele)の各変倍状態におけるそれぞれについて示している。
 [非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(ザグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10 ・・・(a)
 [可変間隔データ]の表は、[レンズ諸元]を示す表において面間隔が「可変」となっている面番号iにおける次の面までの面間隔Diを示す。例えば、第1実施例では、面番号7,16,24,27,30での面間隔D7,D16,D24,D27,D30を示す。fはズームレンズ全系の焦点距離を示す。
 [レンズ群データ]の表においては、第1~第5レンズ群G1~G5における群初面(最も物体側の面)の面番号と、各群の焦点距離を示す。
 [条件式対応値]の表には、上記の条件式(1)~(10)に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 以上、全ての実施例に共通する事項の説明であり、以下における各実施例での重複する説明は省略する。
(第1実施例)
 第1実施例について、図1~図3および表1を用いて説明する。図1は、第1実施例に係るズームレンズZL(1)のレンズ構成を示す図である。このズームレンズZL(1)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを有して構成される。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示す。第5レンズ群G5より像側で像面Iに近接して、フィルターFL1,FL2が設けられている。フィルターFL1,FL2は、ローパスフィルタや赤外線カットフィルタ等から構成される。なお、第3レンズ群G3の物体側に位置して開口絞りSが配置されている。この開口絞りSは、第3レンズ群G3とは独立して構成されているが、第3レンズ群G3と一緒に光軸方向に移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面(第1面)を向けた負メニスカスレンズL11および両凸形状の正レンズL12の接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24および物体側に凸面を向けた正メニスカスレンズL25の接合レンズとから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と、物体側に凸面を向けた負メニスカスレンズL33および両凸形状の正レンズL34の接合レンズとから構成される。なお、正レンズL31の両側面が非球面である。
 第4レンズ群G4は、両凸形状の正レンズL41および両凹形状の負レンズL42の接合レンズから構成される。
 第5レンズ群G5は、両凸形状の正レンズL51および物体側に凹面を向けた負メニスカスレンズL52の接合レンズから構成される。なお、正レンズL51の物体側の面が非球面である。
 ズームレンズZL(1)は、広角端状態から望遠状態への変倍時に、第1~第5レンズ群G1~G5が、図1において矢印で示すように、それぞれ軸方向に移動する。図2にズームレンズZL(1)の広角端状態(W)、中間焦点距離状態(M)、望遠端状態(T)における各レンズ群の位置を示すように、ズームレンズZL(1)は、広角端状態から望遠状態への変倍時に、第1レンズ群G1が物体側へ移動するとともに第2レンズ群G2が像面側へ移動して第1レンズ群G1と第2レンズ群G2の間隔が拡大し、第3レンズ群G3が物体側へ移動して第2レンズ群G2と第3レンズ群G3の間隔が縮小し、第4レンズ群G4が物体側へ移動して第3レンズ群G3と第4レンズ群G4の間隔が拡大し、第5レンズ群G5が像面側へ移動して第4レンズ群G4と第5レンズ群G5の間隔が拡大する。このように、ズームレンズZL(1)は、広角端状態から望遠状態への変倍時に、第1~第5レンズ群G1~G5の全てが光軸上を移動する。このため、これらの面間隔D7,D16,D24,D27,D30が可変であり、その値を[可変間隔データ]の表に示している。
 以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。
(表1)
[レンズデータ]       
面番号    R         D         nd        νd
1      1125.7508     2.900   1.80400         46.60
2      116.6970      7.800   1.43700         95.00
3      -403.2629     0.100                 
4      120.4777      6.300   1.49782         82.57
5      5896.3575     0.100                 
6      131.5232      4.700   1.49782         82.57
7      706.2992      D7(可変)                    
8      101.6165      1.300   1.83481         42.72
9      14.7585       7.000                 
10     -37.1514      1.200   1.83481         42.72
11     67.0205       0.100                 
12     28.0710       3.800   1.80518         25.45
13     -55.3977      1.600                 
14     -23.0138      1.000   1.71300         53.96
15     34.9690       1.800   1.92286         20.88
16     101.4240      D16(可変)                   
17     ∞            1.706              (絞りS)
18*    13.0051       4.100   1.49710         81.49
19*    -82.2128      2.800                 
20     26.3046       1.200   1.91082         35.25
21     11.9450       2.000                 
22     14.9394       1.200   1.77250         49.62
23     11.8012       3.600   1.49782         82.57
24     -37.9553      D24(可変)                   
25     99.5442       1.200   1.53172         48.78
26     -33.2270      0.700   1.49700         81.61
27     16.8349       D27(可変)                   
28*    26.3305       2.000   1.58913         61.15
29     -25.7210      0.600   1.75520         27.57
30     -63.6099      D30(可変)                   
31     ∞            0.400   1.51680         63.88
32     ∞            0.700                 
33     ∞            0.500   1.51680         63.88
34     ∞            BF                    
 
[全体諸元]
ズーム比      118.06 
    Wide   Middle  Tele
f      4.429   48.774  522.925
Fno    2.823   4.541     8.320
ω     43.328  4.633     0.436
Y      3.35    4.05    4.05
BF     0.539   0.535     0.545
TL     167.110  220.006  264.348
 
[非球面データ]                                   
面番号 κ          A4           A6            A8            A10   
18   1.0000   -3.34121E-05   -7.80290E-08   0.00000E+00   0.00000E+00
19   1.0000   2.89440E-05    -5.47491E-09   7.18776E-10   0.00000E+00
28   1.0000   -3.42328E-05   0.00000E+00    0.00000E+00   0.00000E+00
 
[可変間隔データ]
可変間隔   Wide       Middle     Tele
D7        0.750      96.945     143.215
D16       81.280     19.078     1.024
D24       2.275      19.965     22.135
D27       14.588     17.640     34.146
D30       5.272      3.437      0.876
 
[ズームレンズ群データ]      
群番号  群初面  群焦点距離     
G1       1     170.596
G2       8     -11.460
G3       17    23.195
G4       25    -43.614
G5       28    36.268
 
〔条件式対応値〕
条件式(1) -(ft/fw)/(f2/f1)=1757.42
条件式(2) f1/(-f2)=14.886
条件式(3) f1/fw=38.515
条件式(4) Dt12/(-f2)=12.431
条件式(5) ft/(-f2)=45.63
条件式(6) (β2t・β3t)/(β2w・β3w)=85.70
条件式(7) ft/f3=22.544
条件式(8) ft/X2=11.562
条件式(9)  ωt=0.436°
条件式(10) ωw=43.328°
 
 上記[条件式対応値]の表に示すように、図1に示す第1実施例に係るズームレンズZL(1)は、上記条件式(1)~(10)の全てを満たしている。
 図3(A)、図3(B)および図3(C)はそれぞれ、第1実施例に係るズームレンズZL(1)の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図から分かるように、第1実施例に係るズームレンズZL(1)は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。なお、歪曲収差は撮像後の画像処理により補正可能であり、光学的な補正は必要としない。
 図3において、FNOはFナンバー、Aは各像高に対する半画角(単位は「°」)をそれぞれ示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)における収差をそれぞれ示す。球面収差図、非点収差図およびコマ収差図において実線はサジタル像面、破線はメリディオナル像面の収差を示す。この説明については、以下の各実施例の収差図全て同様であり、以下における重複する説明は省略する。
(第2実施例)
 第2実施例について、図4~図6および表2を用いて説明する。図4は、第2実施例に係るズームレンズZL(2)のレンズ構成を示す図である。このズームレンズZL(2)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを有して構成される。第5レンズ群G5より像側で像面Iに近接して、フィルターFL1,FL2が設けられている。フィルターFL1,FL2は、ローパスフィルタや赤外線カットフィルタ等から構成される。なお、第3レンズ群G3の物体側に位置して開口絞りSが配置されている。この開口絞りSは、第3レンズ群G3とは独立して構成されているが、第3レンズ群G3と一緒に光軸方向に移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面(第1面)を向けた負メニスカスレンズL11および両凸形状の正レンズL12の接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24および両凸形状の正レンズL25の接合レンズとから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と、物体側に凸面を向けた負メニスカスレンズL33および両凸形状の正レンズL34の接合レンズとから構成される。なお、正レンズL31の両側面が非球面である。
 第4レンズ群G4は、物体側に凹面を向けた正メニスカスレンズL41および両凹形状の負レンズL42の接合レンズから構成される。
 第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL51および両凸形状の正レンズL52の接合レンズから構成される。なお、正レンズL52の像面側の面が非球面である。
 ズームレンズZL(2)は、広角端状態から望遠状態への変倍時に、第1~第5レンズ群G1~G5が、図4において矢印で示すように、それぞれ軸方向に移動する。図5にズームレンズZL(2)の広角端状態(W)、中間焦点距離状態(M)、望遠端状態(T)における各レンズ群の位置を示すように、ズームレンズZL(2)は、広角端状態から望遠状態への変倍時に、第1レンズ群G1が物体側へ移動するとともに第2レンズ群G2が像面側へ移動して第1レンズ群G1と第2レンズ群G2の間隔が拡大し、第3レンズ群G3が物体側へ移動して第2レンズ群G2と第3レンズ群G3の間隔が縮小し、第4レンズ群G4が物体側へ移動して第3レンズ群G3と第4レンズ群G4の間隔が拡大し、第5レンズ群G5が像面側へ移動して第4レンズ群G4と第5レンズ群G5の間隔が拡大する。このように、ズームレンズZL(2)は、広角端状態から望遠状態への変倍時に、第1~第5レンズ群G1~G5の全てが光軸上を移動する。このため、これらの面間隔D7,D16,D24,D27,D30が可変であり、その値を[可変間隔データ]の表に示している。
 以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。
(表2)
[レンズデータ]                                   
面番号    R         D         nd        νd
1      762.6435      2.300   1.80400         46.60
2      110.9325      7.800   1.43700         95.00
3      -702.7734     0.100                 
4      125.2419      6.300   1.49782         82.57
5      8413.3556     0.100                 
6      123.5962      5.400   1.49782         82.57
7      901.6298      D7(可変)                   
8      101.5677      1.000   1.83481         42.73
9      14.2925       6.200                 
10     -54.9983      1.000   1.83481         42.73
11     35.1945       0.100                 
12     24.4888       3.100   1.80518         25.45
13     -94.2125      1.500                 
14     -20.6130      1.000   1.69680         55.52
15     48.3780       2.000   1.92286         20.88
16     -1754.4585    D16(可変)                   
17     ∞            0.750               (絞りS)
18*    12.7263       3.400   1.49710         81.49
19*    -56.2349      2.300                
20     24.3889       1.000   1.91082         35.25  
21     13.2913       1.850                
22     17.3602       0.800   1.79500         45.31  
23     10.7471       3.600   1.49700         81.61  
24     -42.7734      D24(可変)                  
25     -300.0000     1.900   1.53172         48.78  
26     -15.0512      0.800   1.49700         81.61  
27     15.6517       D27(可変)                  
28     19.1974       0.800   1.75520         27.57  
29     11.3922       2.700   1.58913         61.15  
30*    -66.5570      D30(可変)                  
31     ∞            0.210   1.51680         63.88  
32     ∞            0.850                
33     ∞            0.500   1.51680         63.88  
34     ∞            BF
 
[全体諸元]                  
ズーム比      117.69        
    Wide    Middle   Tele
f      4.430    49.497    521.400
Fno    2.871    4.761     8.049
ω     43.237   4.555     0.437
Y      3.35     4.05      4.05
BF     0.397    0.441     0.400
TL     163.431  219.555   259.842
 
[非球面データ]                                   
面番号 κ           A4           A6            A8            A10
18   0.1222     8.96340E-06   4.55104E-08   0.00000E+00   0.00000E+00
19   -19.3455   1.37509E-05   -1.49016E-08  0.00000E+00   0.00000E+00
30   1.0000     5.96451E-05   0.00000E+00   0.00000E+00   0.00000E+00
 
[可変間隔データ]
可変間隔   Wide      Middle    Tele
D7       0.744     99.860    143.560
D16      81.494    21.450    1.698
D24      3.056     17.514    27.871
D27      13.217    17.943    26.436
D30      5.161     2.987     0.518
 
[ズームレンズ群データ]
群番号  群初面   群焦点距離
G1       1      171.549      
G2       8      -11.391      
G3       17     21.999       
G4       25     -31.974      
G5       28     29.995       
 
〔条件式対応値〕
条件式(1) -(ft/fw)/(f2/f1)=1772.40
条件式(2) f1/(-f2)=15.060
条件式(3) f1/fw=38.722
条件式(4) Dt12/(-f2)=12.537
条件式(5) ft/(-f2)=45.77
条件式(6) (β2t・β3t)/(β2w・β3w)=88.02
条件式(7) ft/f3=23.701
条件式(8) ft/X2=11.236
条件式(9) ωt=0.437°
条件式(10) ωw=43.23°
 
 上記[条件式対応値]の表に示すように、図4に示す第2実施例に係るズームレンズZL(2)は、上記条件式(1)~(10)の全てを満たしている。
 図6(A)、図6(B)および図6(C)はそれぞれ、第2実施例に係るズームレンズZL(2)の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図から分かるように、第2実施例に係るズームレンズZL(2)は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
(第3実施例)
 第3実施例について、図7~図9および表3を用いて説明する。図7は、第3実施例に係るズームレンズZL(3)のレンズ構成を示す図である。このズームレンズZL(3)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを有して構成される。第5レンズ群G5より像側で像面Iに近接して、フィルターFL1,FL2が設けられている。フィルターFL1,FL2は、ローパスフィルタや赤外線カットフィルタ等から構成される。なお、第3レンズ群G3の物体側に位置して開口絞りSが配置されている。この開口絞りSは、第3レンズ群G3とは独立して構成されているが、第3レンズ群G3と一緒に光軸方向に移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面(第1面)を向けた負メニスカスレンズL11および両凸形状の正レンズL12の接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と、物体側に凸面を向けた負メニスカスレンズL33および両凸形状の正レンズL34の接合レンズとから構成される。なお、正レンズL31の両側面が非球面である。
 第4レンズ群G4は、物体側に凹面を向けた正メニスカスレンズL41および両凹形状の負レンズL42の接合レンズから構成される。
 第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL51および両凸形状の正レンズL52の接合レンズから構成される。なお、正レンズL52の像面側の面が非球面である。
 ズームレンズZL(3)は、広角端状態から望遠状態への変倍時に、第1~第5レンズ群G1~G5が、図7において矢印で示すように、それぞれ軸方向に移動する。図8にズームレンズZL(3)の広角端状態(W)、中間焦点距離状態(M)、望遠端状態(T)における各レンズ群の位置を示すように、ズームレンズZL(3)は、広角端状態から望遠状態への変倍時に、第1レンズ群G1が物体側へ移動するとともに第2レンズ群G2が像面側へ移動して第1レンズ群G1と第2レンズ群G2の間隔が拡大し、第3レンズ群G3が物体側へ移動して第2レンズ群G2と第3レンズ群G3の間隔が縮小し、第4レンズ群G4が物体側へ移動して第3レンズ群G3と第4レンズ群G4の間隔が拡大し、第5レンズ群G5が像面側へ移動して第4レンズ群G4と第5レンズ群G5の間隔が拡大する。このように、ズームレンズZL(3)は、広角端状態から望遠状態への変倍時に、第1~第5レンズ群G1~G5の全てが光軸上を移動する。このため、これらの面間隔D7,D15,D23,D26,D29が可変であり、その値を[可変間隔データ]の表に示している。
 以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。
(表3)
[レンズデータ]                                   
面番号    R         D        nd          νd
1      825.7960      2.300   1.79500         45.31
2      98.3187       6.400   1.49700         81.61
3      -700.6704     0.100                 
4      108.1709      5.300   1.49700         81.61
5      10000.0000    0.100                 
6      119.8529      4.200   1.49700         81.61
7      438.9962      D7(可変)                    
8      120.0000      1.000   1.83481         42.73
9      12.6841       6.200                 
10     -27.7888      1.000   1.83481         42.73
11     68.4955       0.100                 
12     28.8219       3.200   1.92286         20.88
13     -60.7186      1.300                 
14     -22.0032      1.000   1.60300         65.44
15     432.8493      D15(可変)                   
16     ∞            0.750              (絞りS)
17*    12.5898       3.300   1.49710         81.49
18*    -55.5281      2.600                 
19     27.7261       1.000   1.91082         35.25
20     12.6137       1.650                 
21     16.3250       0.800   1.79500         45.31
22     12.0000       3.600   1.49700         81.61
23     -27.7139      D23(可変)                   
24     -170.4623     1.900   1.53172         48.78
25     -12.9096      0.800   1.49700         81.61
26     16.8533       D26(可変)                   
27     17.3060       0.800   1.84666         23.80
28     10.8145       2.500   1.58913         61.15
29*    -68.7620      D29(可変)                   
30     ∞            0.210   1.51680         63.88
31     ∞            0.850                 
32     ∞            0.500   1.51680         63.88
33     ∞            BF                    
 
[全体諸元]                  
ズーム比      94.17         
    Wide    Middle    Tele                 
f      4.429    42.877     417.100
Fno    2.828    4.815      7.736
ω     43.275   5.234      0.544
Y      3.35     4.05       4.05
BF     0.397    0.408      0.400
TL     142.450  192.358    240.824
 
[非球面データ]
面番号 κ          A4            A6            A8            A10
17   0.1145     9.29785E-06   1.52178E-07   5.00000E-10   0.00000E+00
18   -20.0000   2.20597E-05   8.60894E-08   0.00000E+00   0.00000E+00
29   1.0000     8.84720E-05   2.00000E-07   0.00000E+00   0.00000E+00
 
[可変間隔データ]
可変間隔   Wide    Middle   Tele
D7        0.750   83.314   132.108
D15       68.015  16.620   1.700
D23       3.473   19.505   28.160
D26       11.594  16.242   24.205
D29       4.760   2.810    0.792
 
[ズームレンズ群データ]
群番号  群初面   群焦点距離
G1       1      159.844      
G2       8      -10.650      
G3       16     20.841       
G4       24     -33.300      
G5       27     29.713       
 
〔条件式対応値〕
条件式(1) -(ft/fw)/(f2/f1)=1413.40
条件式(2) f1/(-f2)=15.009
条件式(3) f1/fw=36.090
条件式(4) Dt12/(-f2)=12.334
条件式(5) ft/(-f2)=39.16
条件式(6) (β2t・β3t)/(β2w・β3w)=71.67
条件式(7) ft/f3=20.014
条件式(8) ft/X2=12.646
条件式(9) ωt=0.544°
条件式(10) ωw=43.275°
 
 上記[条件式対応値]の表に示すように、図7に示す第3実施例に係るズームレンズZL(3)は、上記条件式(1)~(10)の全てを満たしている。
 図9(A)、図9(B)および図9(C)はそれぞれ、第3実施例に係るズームレンズZL(3)の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図から分かるように、第3実施例に係るズームレンズZL(3)は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
(第4実施例)
 第4実施例について、図10~図12および表4を用いて説明する。図10は、第4実施例に係るズームレンズZL(4)のレンズ構成を示す図である。このズームレンズZL(4)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを有して構成される。第5レンズ群G5より像側で像面Iに近接して、フィルターFL1,FL2が設けられている。フィルターFL1,FL2は、ローパスフィルタや赤外線カットフィルタ等から構成される。なお、第3レンズ群G3の物体側に位置して開口絞りSが配置されている。この開口絞りSは、第3レンズ群G3とは独立して構成されているが、第3レンズ群G3と一緒に光軸方向に移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面(第1面)を向けた負メニスカスレンズL11および両凸形状の正レンズL12の接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と、物体側に凸面を向けた負メニスカスレンズL33および両凸形状の正レンズL34の接合レンズとから構成される。なお、正レンズL31の両側面が非球面である。
 第4レンズ群G4は、物体側に凹面を向けた正メニスカスレンズL41および両凹形状の負レンズL42の接合レンズから構成される。
 第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL51および両凸形状の正レンズL52の接合レンズから構成される。なお、正レンズL52の像面側の面が非球面である。
 ズームレンズZL(4)は、広角端状態から望遠状態への変倍時に、第1~第5レンズ群G1~G5が、図10において矢印で示すように、それぞれ軸方向に移動する。図11にズームレンズZL(4)の広角端状態(W)、中間焦点距離状態(M)、望遠端状態(T)における各レンズ群の位置を示すように、ズームレンズZL(4)は、広角端状態から望遠状態への変倍時に、第1レンズ群G1が物体側へ移動するとともに第2レンズ群G2が像面側へ移動して第1レンズ群G1と第2レンズ群G2の間隔が拡大し、第3レンズ群G3が物体側へ移動して第2レンズ群G2と第3レンズ群G3の間隔が縮小し、第4レンズ群G4が物体側へ移動して第3レンズ群G3と第4レンズ群G4の間隔が拡大し、第5レンズ群G5が像面側へ移動して第4レンズ群G4と第5レンズ群G5の間隔が拡大する。このように、ズームレンズZL(4)は、広角端状態から望遠状態への変倍時に、第1~第5レンズ群G1~G5の全てが光軸上を移動する。このため、これらの面間隔D7,D15,D23,D26,D29が可変であり、その値を[可変間隔データ]の表に示している。
 以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。
(表4)
[レンズデータ]
面番号    R         D        nd         νd
1      670.6555      2.300   1.80400         46.60
2      104.1867      8.000   1.43700         95.00
3      -583.2028     0.100                 
4      111.9338      6.500   1.49782         82.57
5      10000.0000    0.100                 
6      123.1395      5.000   1.49782         82.57
7      619.6537      D7(可変)                    
8      100.0000      1.000   1.83481         42.73
9      12.5036       5.700                 
10     -25.7930      1.000   1.83481         42.73
11     140.7749      0.100                 
12     27.5761       3.200   1.92286         20.88
13     -54.7257      1.200                 
14     -22.7615      1.000   1.69680         55.52
15     121.4627      D15(可変)                   
16     ∞            0.750              (絞りS)
17*    12.6618       3.300   1.49710         81.49
18*    -47.4135      2.600                 
19     28.9431       1.000   1.91082         35.25
20     13.4878       1.650                 
21     16.9434       0.800   1.79500         45.31
22     11.1253       3.600   1.49700         81.61
23     -29.0967      D23(可変)                   
24     -158.4748     1.900   1.53172         48.78
25     -12.6410      0.800   1.49700         81.61
26     16.6596       D26(可変)                   
27     18.2350       0.800   1.84666         23.80
28     11.9152       2.500   1.58913         61.15
29*    -60.8073      D29(可変)                   
30     ∞            0.210   1.51680         63.88
31     ∞            0.850                 
32     ∞            0.500   1.51680         63.88
33     ∞            BF                    
 
[全体諸元]
ズーム比      117.72
    Wide   Middle   Tele                    
f      4.429    48.781    521.400
Fno    2.882    4.795     8.000
ω     43.280   4.604     0.435
Y      3.35     4.05      4.05
BF     0.399    0.411     0.399
TL     146.032    208.143   248.472
 
[非球面データ]       
面番号 κ          A4            A6            A8            A10
17   0.5728    -2.22053E-05   3.07926E-08   0.00000E+00   0.00000E+00
18   -20.0000  1.33553E-05    6.68554E-08   -3.00000E-10  0.00000E+00
29   1.0000    9.15167E-05    2.00000E-07   0.00000E+00   0.00000E+00
 
[可変間隔データ]
可変間隔  Wide      Middle   Tele
D7        0.750    96.046   137.411
D15       68.897   18.921   1.700
D23       3.275    17.429   21.030
D26       11.494   16.462   30.683
D29       4.757    2.415    0.789
 
[ズームレンズ群データ]      
群番号  群初面   群焦点距離
G1       1      162.824      
G2       8      -10.669      
G3       16     20.757       
G4       24     -32.719      
G5       27     29.103       
 
〔条件式対応値〕
条件式(1) -(ft/fw)/(f2/f1)=1796.55
条件式(2) f1/(-f2)=15.261
条件式(3) f1/fw=36.763
条件式(4) Dt12/(-f2)=12.809
条件式(5) ft/(-f2)=48.87
条件式(6) (β2t・β3t)/(β2w・β3w)=80.65
条件式(7) ft/f3=25.120
条件式(8) ft/X2=15.236
条件式(9) ωt=0.435°
条件式(10) ωw=43.280°
 
 上記[条件式対応値]の表に示すように、図10に示す第4実施例に係るズームレンズZL(4)は、上記条件式(1)~(10)の全てを満たしている。
 図12(A)、図12(B)および図12(C)はそれぞれ、第4実施例に係るズームレンズZL(4)の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図から分かるように、第4実施例に係るズームレンズZL(4)は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
(第5実施例)
 第5実施例について、図13~図15および表5を用いて説明する。図13は、第5実施例に係るズームレンズZL(5)のレンズ構成を示す図である。このズームレンズZL(5)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを有して構成される。第5レンズ群G5より像側で像面Iに近接して、フィルターFL1,FL2が設けられている。フィルターFL1,FL2は、ローパスフィルタや赤外線カットフィルタ等から構成される。なお、第3レンズ群G3の物体側に位置して開口絞りSが配置されている。この開口絞りSは、第3レンズ群G3とは独立して構成されているが、第3レンズ群G3と一緒に光軸方向に移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面(第1面)を向けた負メニスカスレンズL11および両凸形状の正レンズL12の接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24および物体側に凸面を向けた正メニスカスレンズL25の接合レンズとから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と、物体側に凸面を向けた負メニスカスレンズL33および両凸形状の正レンズL34の接合レンズとから構成される。なお、正レンズL31の両側面が非球面である。
 第4レンズ群G4は、物体側に凹面を向けた正メニスカスレンズL41および両凹形状の負レンズL42の接合レンズから構成される。
 第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL51および両凸形状の正レンズL52の接合レンズから構成される。なお、正レンズL52の像面側の面が非球面である。
 ズームレンズZL(5)は、広角端状態から望遠状態への変倍時に、第1~第5レンズ群G1~G5が、図13において矢印で示すように、それぞれ軸方向に移動する。図14にズームレンズZL(5)の広角端状態(W)、中間焦点距離状態(M)、望遠端状態(T)における各レンズ群の位置を示すように、ズームレンズZL(5)は、広角端状態から望遠状態への変倍時に、第1レンズ群G1が物体側へ移動するとともに第2レンズ群G2が像面側へ移動して第1レンズ群G1と第2レンズ群G2の間隔が拡大し、第3レンズ群G3が物体側へ移動して第2レンズ群G2と第3レンズ群G3の間隔が縮小し、第4レンズ群G4が物体側へ移動して第3レンズ群G3と第4レンズ群G4の間隔が拡大し、第5レンズ群G5が像面側へ移動して第4レンズ群G4と第5レンズ群G5の間隔が拡大する。このように、ズームレンズZL(5)は、広角端状態から望遠状態への変倍時に、第1~第5レンズ群G1~G5の全てが光軸上を移動する。このため、これらの面間隔D7,D16,D24,D27,D30が可変であり、その値を[可変間隔データ]の表に示している。
 以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。
(表5)
[レンズデータ]
面番号    R         D        nd         νd
1      1755.7589     2.300   1.80400         46.60
2      128.4835      7.800   1.43700         95.00
3      -428.3359     0.100                 
4      137.3981      6.300   1.49782         82.57
5      8413.3556     0.100                 
6      129.8677      5.400   1.49782         82.57
7      810.4701      D7(可変)                    
8      101.5677      1.000   1.83481         42.73
9      14.6453       6.200                 
10     -44.4343      1.000   1.83481         42.73
11     53.3734       0.100                 
12     29.0766       3.100   1.80518         25.45
13     -94.2125      1.500                 
14     -22.5108      1.000   1.69680         55.52
15     36.1975       2.000   1.92286         20.88
16     236.8685      D16(可変)                   
17     ∞            0.750              (絞りS)
18*    12.4947       3.400   1.49710         81.49
19*    -71.6510      2.300                 
20     22.6205       1.000   1.91082         35.25
21     11.9319       1.850                 
22     15.6310       0.800   1.79500         45.31
23     11.2452       3.600   1.49700         81.61
24     -43.9104      D24(可変)                   
25     -300.0000     1.900   1.53172         48.78
26     -14.5782      0.800   1.49700         81.61
27     15.1307       D27(可変)                   
28     17.9653       0.800   1.75520         27.57
29     10.8468       2.700   1.58913         61.15
30*    -64.5874      D30(可変)                   
31     ∞            0.210   1.51680         63.88
32     ∞            0.850                 
33     ∞            0.500   1.51680         63.88
34     ∞            BF                    
 
[全体諸元]
ズーム比      124.51
    Wide    Middle   Tele    
f      4.429    48.530    551.400
Fno    2.837    4.688     7.982
ω     43.258   4.639     0.413
Y      3.35     4.05      4.05
BF     0.400    0.400     0.400
TL     162.470  226.839   270.824
 
[非球面データ]                                   
面番号 κ          A4           A6             A8            A10    
18   0.1863  1.31660E-05  2.77665E-08  0.00000E+00  0.00000E+00
19   -10.0000 2.59102E-05  -8.17364E-08  0.00000E+00  0.00000E+00
30   1.0000  5.47520E-05  0.00000E+00  0.00000E+00  0.00000E+00
 
[可変間隔データ]
可変間隔  Wide   Middle   Tele
D7       0.747   106.517  154.353
D16      79.997  21.447   1.695
D24      3.232   17.690   28.047
D27      13.230  17.955   26.448
D30      5.505   3.470   0.522
 
[ズームレンズ群データ]
群番号  群初面   群焦点距離
G1       1      182.265      
G2       8      -11.421      
G3       17     22.002       
G4       25     -30.965      
G5       28     28.131       
 
〔条件式対応値〕
条件式(1) -(ft/fw)/(f2/f1)=1986.98
条件式(2) f1/(-f2)=15.959
条件式(3) f1/fw=41.156
条件式(4) Dt12/(-f2)=11.966
条件式(5) ft/(-f2)=48.28
条件式(6) (β2t・β3t)/(β2w・β3w)=91.42
条件式(7) ft/f3=25.062
条件式(8) ft/X2=16.113
条件式(9) ωt=0.413°
条件式(10) ωw=43.258°
 
 上記[条件式対応値]の表に示すように、図13に示す第5実施例に係るズームレンズZL(5)は、上記条件式(1)~(10)の全てを満たしている。
 図15(A)、図15(B)および図15(C)はそれぞれ、第5実施例に係るズームレンズZL(5)の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図から分かるように、第5実施例に係るズームレンズZL(5)は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
(第6実施例)
 第6実施例について、図16~図18および表6を用いて説明する。図16は、第6実施例に係るズームレンズZL(6)のレンズ構成を示す図である。このズームレンズZL(6)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを有して構成される。第5レンズ群G5より像側で像面Iに近接して、フィルターFL1,FL2が設けられている。フィルターFL1,FL2は、ローパスフィルタや赤外線カットフィルタ等から構成される。なお、第3レンズ群G3の物体側に位置して開口絞りSが配置されている。この開口絞りSは、第3レンズ群G3とは独立して構成されているが、第3レンズ群G3と一緒に光軸方向に移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面(第1面)を向けた負メニスカスレンズL11および両凸形状の正レンズL12の接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24および物体側に凸面を向けた正メニスカスレンズL25の接合レンズとから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と、物体側に凸面を向けた負メニスカスレンズL33および両凸形状の正レンズL34の接合レンズとから構成される。なお、正レンズL31の両側面が非球面である。
 第4レンズ群G4は、物体側に凹面を向けた正メニスカスレンズL41および両凹形状の負レンズL42の接合レンズから構成される。
 第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL51および両凸形状の正レンズL52の接合レンズから構成される。なお、正レンズL52の像面側の面が非球面である。
 ズームレンズZL(6)は、広角端状態から望遠状態への変倍時に、第1~第5レンズ群G1~G5が、図16において矢印で示すように、それぞれ軸方向に移動する。図17にズームレンズZL(6)の広角端状態(W)、中間焦点距離状態(M)、望遠端状態(T)における各レンズ群の位置を示すように、ズームレンズZL(6)は、広角端状態から望遠状態への変倍時に、第1レンズ群G1が物体側へ移動するとともに第2レンズ群G2が像面側へ移動して第1レンズ群G1と第2レンズ群G2の間隔が拡大し、第3レンズ群G3が物体側へ移動して第2レンズ群G2と第3レンズ群G3の間隔が縮小し、第4レンズ群G4が物体側へ移動して第3レンズ群G3と第4レンズ群G4の間隔が拡大し、第5レンズ群G5が像面側へ移動して第4レンズ群G4と第5レンズ群G5の間隔が拡大する。このように、ズームレンズZL(6)は、広角端状態から望遠状態への変倍時に、第1~第5レンズ群G1~G5の全てが光軸上を移動する。このため、これらの面間隔D7,D16,D24,D27,D30が可変であり、その値を[可変間隔データ]の表に示している。
 以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。
(表6)
[レンズデータ]
面番号    R         D        nd         νd
1      1983.8745     2.300   1.80400         46.60
2      140.4647      9.000   1.43700         95.00
3      -418.7198     0.100                 
4      142.7297      6.300   1.49782         82.57
5      8413.3556     0.100                 
6      146.0517      5.400   1.49782         82.57
7      664.6345      D7(可変)                    
8      101.5677      1.000   1.83481         42.73
9      13.6150       6.200                 
10     -44.4525      1.000   1.83481         42.73
11     50.6633       0.100                 
12     26.7472       3.100   1.80518         25.45
13     -94.2125      1.500                 
14     -22.6062      1.000   1.69680         55.52
15     40.1525       2.000   1.92286         20.88
16     380.6148      D16(可変)                   
17     ∞            0.750              (絞りS)
18*    12.5818       3.400   1.49710         81.49
19*    -62.1926      2.300                 
20     22.6772       1.000   1.91082         35.25
21     12.5702       1.850                 
22     15.7691       0.800   1.79500         45.31
23     10.1908       3.600   1.49700         81.61
24     -51.5490      D24(可変)                   
25     -300.0000     1.900   1.53172         48.78
26     -14.6434      0.800   1.49700         81.61
27     15.3423       D27(可変)                   
28     20.2943       0.800   1.75520         27.57
29     12.2152       2.700   1.58913         61.15
30*    -64.7065      D30(可変)                   
31     ∞            0.210   1.51680         63.88
32     ∞            0.850                 
33     ∞            0.500   1.51680         63.88
34     ∞            BF                    
 
[全体諸元]
ズーム比      141.11
    Wide     Middle    Tele
f      4.429     50.222     625.000
Fno    2.920     4.826      8.210
ω     43.299    4.482      0.365
Y      3.35      4.05       4.05
BF     0.400     0.400      0.400
TL     163.436  241.817  289.934
 
[非球面データ]
面番号 κ          A4            A6             A8            A10
18   0.1498   1.06103E-05   7.37832E-08   0.00000E+00  0.00000E+00
19   -10.0000 2.06381E-05  -1.53504E-08  0.00000E+00  0.00000E+00
30   1.0000   5.90152E-05  0.00000E+00    0.00000E+00  0.00000E+00
 
[可変間隔データ]
可変間隔 Wide   Middle  Tele
D7      0.750     120.124  172.500
D16     79.993  21.443  1.691
D24     3.006     17.464  27.821
D27     13.214  17.939  26.432
D30     5.513     3.886   0.530
 
[ズームレンズ群データ]
群番号  群初面   群焦点距離
G1       1      199.598      
G2       8      -11.253      
G3       17     21.949
G4       25     -31.396      
G5       28     30.837       
 
〔条件式対応値〕
条件式(1) -(ft/fw)/(f2/f1)=2502.87
条件式(2) f1/(-f2)=17.737
条件式(3) f1/fw=45.064
条件式(4) Dt12/(-f2)=15.263
条件式(5) ft/(-f2)=55.54
条件式(6) (β2t・β3t)/(β2w・β3w)=105.53
条件式(7) ft/f3=28.475
条件式(8) ft/X2=13.812
条件式(9) ωt=0.365°
条件式(10) ωw=43.299°
 
 上記[条件式対応値]の表に示すように、図16に示す第6実施例に係るズームレンズZL(6)は、上記条件式(1)~(10)の全てを満たしている。
 図18(A)、図18(B)および図18(C)はそれぞれ、第6実施例に係るズームレンズZL(6)の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図から分かるように、第6実施例に係るズームレンズZL(6)は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
 上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
 以下の内容は、本実施形態のズームレンズの光学性能を損なわない範囲で適宜採用することが可能である。
 本実施形態のズームレンズの実施例として5群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、6群等)のズームレンズを構成することもできる。具体的には、本実施形態のズームレンズの最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。
 レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としても良い。
 レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
 レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
 開口絞りは第3レンズ群近傍又は中に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。
 各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。
 G1 第1レンズ群          G2 第2レンズ群
 G3 第3レンズ群          G4 第4レンズ群
 G5 第5レンズ群          FL1,FL2 フィルター
 I 像面               S 開口絞り

Claims (25)

  1.  物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有し、変倍時に、隣り合う各レンズ群の間隔が変化し、
     下記の条件式を満足するズームレンズ。
     1250.0<-(ft/fw)/(f2/f1)
     但し、fw:広角端状態における前記ズームレンズ全系の焦点距離
        ft:望遠端状態における前記ズームレンズ全系の焦点距離
        f1:前記第1レンズ群の焦点距離
        f2:前記第2レンズ群の焦点距離
  2.  下記の条件式を満足する請求項1に記載のズームレンズ。
     13.00<f1/(-f2)
  3.  下記の条件式を満足する請求項1もしくは2に記載のズームレンズ。
     33.00<f1/fw<50.00
     但し、fw:広角端状態における前記ズームレンズ全系の焦点距離
  4.  広角状態から望遠状態への変倍時に、前記第1レンズ群が物体側へ移動する請求項1~3のいずれかに記載のズームレンズ。
  5.  広角状態から望遠状態への変倍時に、前記第1レンズ群と前記第2レンズ群の間隔が拡大し、前記第2レンズ群と前記第3レンズ群の間隔が縮小し、前記第3レンズ群と前記第4レンズ群の間隔が拡大する請求項1~4のいずれかに記載のズームレンズ。
  6.  変倍時に、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群および前記第4レンズ群が光軸に沿って移動する請求項1~5のいずれかに記載のズームレンズ。
  7.  変倍時に、前記第5レンズ群が光軸に沿って移動する請求項1~6のいずれかに記載のズームレンズ。
  8.  前記第3レンズ群の少なくとも1つのレンズ面は、非球面を有する請求項1~7のいずれかに記載のズームレンズ。
  9.  前記第1レンズ群が4枚のレンズで構成される請求項1~8のいずれかに記載のズームレンズ。
  10.  前記第4レンズ群が2枚以下のレンズで構成される請求項1~9のいずれかに記載のズームレンズ。
  11.  前記第5レンズ群が2枚以下のレンズで構成される請求項1~10のいずれかに記載のズームレンズ。
  12.  前記第5レンズ群の少なくとも1つのレンズ面は、非球面を有する請求項1~11のいずれかに記載のズームレンズ。
  13.  合焦の際に、前記第4レンズ群の少なくとも一部が光軸に沿って移動する請求項1~12のいずれかに記載のズームレンズ。
  14.  前記第3レンズ群は、光軸と垂直な方向の変位成分を有するように移動可能な防振レンズ群を少なくとも一部に有する請求項1~13のいずれかに記載のズームレンズ。
  15.  下記の条件式を満足する請求項1~14のいずれかに記載のズームレンズ。
     10.00<Dt12/(-f2)
     但し、Dt12:望遠端状態における前記第1レンズ群の像側面から前記第2レンズ群の物体側面までの光軸上の距離
  16.  下記の条件式を満足する請求項1~15のいずれかに記載のズームレンズ。
     33.00<ft/(-f2)<60.00
  17.  下記の条件式を満足する請求項1~16のいずれかに記載のズームレンズ。
     65.00<(β2t・β3t)/(β2w・β3w)<120.00
     但し、β2t:望遠端状態における前記第2レンズ群の倍率
        β3t:望遠端状態における前記第3レンズ群の倍率
        β2w:広角端状態における前記第2レンズ群の倍率
        β3w:広角端状態における前記第3レンズ群の倍率
  18.  下記の条件式を満足する請求項1~17のいずれかに記載のズームレンズ。
     18.00<ft/f3<33.00
     但し、f3:前記第3レンズ群の焦点距離
  19.  下記の条件式を満足する請求項1~18のいずれかに記載のズームレンズ。
     10.00<ft/X2<20.00
     但し、X2:広角端状態から望遠端状態への変倍に際し、結像位置に対して前記第2レンズ群が像面方向に移動する距離
  20.  前記第2レンズ群と前記第4レンズ群との間に、開口絞りを有する請求項1~19のいずれかに記載のズームレンズ。
  21.  前記第2レンズ群と前記第3レンズ群との間に、開口絞りを有する請求項1~20のいずれかに記載のズームレンズ。
  22.  下記の条件式を満足する請求項1~21のいずれかに記載のズームレンズ。
     0.10°<ωt<4.00°
     但し、ωt:望遠端状態における半画角
  23.  下記の条件式を満足する請求項1~22のいずれかに記載のズームレンズ。
     25.00°<ωw<80.00°
     但し、ωw:広角端状態における半画角
  24.  請求項1~23のいずれかに記載のズームレンズを搭載して構成される光学機器。
  25.   物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有し、変倍時に、隣り合う各レンズ群の間隔を変化させるズームレンズの製造方法であって、
     下記の条件式を満足するように、前記第1~第5レンズ群を鏡筒内に配置するズームレンズの製造方法。
     1250.0<-(ft/fw)/(f2/f1)
     但し、fw:広角端状態における前記ズームレンズ全系の焦点距離
        ft:望遠端状態における前記ズームレンズ全系の焦点距離
        f1:前記第1レンズ群の焦点距離
        f2:前記第2レンズ群の焦点距離
     
PCT/JP2018/019321 2018-05-18 2018-05-18 ズームレンズ、光学機器及びズームレンズの製造方法 WO2019220628A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020518928A JP7031739B2 (ja) 2018-05-18 2018-05-18 ズームレンズ及び光学機器
PCT/JP2018/019321 WO2019220628A1 (ja) 2018-05-18 2018-05-18 ズームレンズ、光学機器及びズームレンズの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019321 WO2019220628A1 (ja) 2018-05-18 2018-05-18 ズームレンズ、光学機器及びズームレンズの製造方法

Publications (1)

Publication Number Publication Date
WO2019220628A1 true WO2019220628A1 (ja) 2019-11-21

Family

ID=68540288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019321 WO2019220628A1 (ja) 2018-05-18 2018-05-18 ズームレンズ、光学機器及びズームレンズの製造方法

Country Status (2)

Country Link
JP (1) JP7031739B2 (ja)
WO (1) WO2019220628A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102803A (ja) * 2013-11-27 2015-06-04 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2017068155A (ja) * 2015-10-01 2017-04-06 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656895B2 (ja) 2012-02-09 2015-01-21 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102803A (ja) * 2013-11-27 2015-06-04 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2017068155A (ja) * 2015-10-01 2017-04-06 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Also Published As

Publication number Publication date
JP7031739B2 (ja) 2022-03-08
JPWO2019220628A1 (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
WO2009139253A1 (ja) 変倍光学系、この変倍光学系を備えた光学機器、及び、変倍光学系の製造方法
JP6946774B2 (ja) 変倍光学系および光学装置
WO2017099243A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2017156428A (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
WO2017057662A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2023083601A (ja) 変倍光学系、光学機器および変倍光学系の製造方法
WO2017099244A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6938841B2 (ja) ズームレンズ及び光学機器
JP6583420B2 (ja) ズームレンズおよび光学機器
WO2017131223A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5609386B2 (ja) 変倍光学系、光学装置
JP2017107065A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5906759B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2017156426A (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
JP7031739B2 (ja) ズームレンズ及び光学機器
JP7184081B2 (ja) ズームレンズ及び光学機器
JP7420200B2 (ja) 変倍光学系および光学機器
JP6119953B2 (ja) 変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法
JP5736651B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2020136744A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
WO2020136748A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
WO2020136746A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP2016156903A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2023073418A (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP6251947B2 (ja) 変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918758

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020518928

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918758

Country of ref document: EP

Kind code of ref document: A1