WO2019218877A1 - 货物分拣系统及方法 - Google Patents

货物分拣系统及方法 Download PDF

Info

Publication number
WO2019218877A1
WO2019218877A1 PCT/CN2019/085231 CN2019085231W WO2019218877A1 WO 2019218877 A1 WO2019218877 A1 WO 2019218877A1 CN 2019085231 W CN2019085231 W CN 2019085231W WO 2019218877 A1 WO2019218877 A1 WO 2019218877A1
Authority
WO
WIPO (PCT)
Prior art keywords
delivery
robot
collection container
goods
transport
Prior art date
Application number
PCT/CN2019/085231
Other languages
English (en)
French (fr)
Inventor
刘凯
于繁迪
Original Assignee
北京极智嘉科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810480980.8A external-priority patent/CN108672308B/zh
Priority claimed from CN201811419175.0A external-priority patent/CN109351643B/zh
Application filed by 北京极智嘉科技有限公司 filed Critical 北京极智嘉科技有限公司
Priority to AU2019268423A priority Critical patent/AU2019268423A1/en
Priority to US16/755,857 priority patent/US11194337B2/en
Priority to JP2020542331A priority patent/JP6849864B2/ja
Priority to EP19803183.3A priority patent/EP3795263B1/en
Publication of WO2019218877A1 publication Critical patent/WO2019218877A1/zh
Priority to AU2022100195A priority patent/AU2022100195A4/en
Priority to AU2022204398A priority patent/AU2022204398A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0297Fleet control by controlling means in a control room
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C3/00Sorting according to destination
    • B07C3/02Apparatus characterised by the means used for distribution
    • B07C3/08Apparatus characterised by the means used for distribution using arrangements of conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C3/00Sorting according to destination
    • B07C3/10Apparatus characterised by the means used for detection ofthe destination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C3/00Sorting according to destination
    • B07C3/18Devices or arrangements for indicating destination, e.g. by code marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C2501/00Sorting according to a characteristic or feature of the articles or material to be sorted
    • B07C2501/0063Using robots

Definitions

  • Embodiments of the present disclosure relate to robotics, such as to a cargo sorting system and method.
  • the cargo sorting system in the related art includes a cross belt sorting system and a robot steel platform sorting system.
  • the cross-belt sorting system is connected by a main drive belt conveyor and a trolley carrying a small belt conveyor.
  • the belt is rotated to deliver the package to the delivery.
  • sliding down the chute to the cargo container located below the delivery port manually collecting and buffering the goods to be delivered in one or more cargo containers.
  • the robot steel platform sorting system comprises: a control server, a delivery robot, a steel platform and a cargo container, wherein the steel platform is set at a certain height from the ground, a plurality of delivery ports are arranged on the steel platform, and the control server controls the delivery robot to be delivered. After the goods are dropped from the delivery port, they fall down the chute to the cargo container located below the delivery port, and the goods to be delivered are collected and cached manually in one or more cargo containers.
  • the number of delivery ports is determined, and it is difficult to expand again; in the "chain-type" serial working mode, a problem in one link may cause the entire sorting system to be paralyzed, affecting normal production operations.
  • the parcel container after sorting by the cross-belt sorting system is manually transported twice, which has low efficiency and high labor cost.
  • the steel platform in the robot steel platform sorting system has high construction cost, complicated construction, and poor flexibility in relocation and expansion, and the robot has high density, waiting for each other more, stopping at the time of delivery, and the efficiency is affected.
  • the parcel container is still collected twice and transported to the delivery port or truck loading position by line. The labor demand is large and the labor cost is high.
  • the goods to be delivered are collected and cached manually in one or more cargo containers.
  • the quantity of goods to be delivered is very large, not only is the sorting efficiency of the goods low, but the sorting accuracy of the goods is also low.
  • Embodiments of the present disclosure provide a cargo sorting system and method for at least partially improving the sorting efficiency of goods, reducing labor costs, improving the expansion flexibility of the sorting system, and improving the accuracy of sorting of goods.
  • an embodiment of the present disclosure provides a cargo sorting system, including: a control server, a plurality of delivery robots, and a plurality of first handling robots, wherein the control server and the plurality of delivery robots respectively The plurality of first handling robots are in communication connection; wherein
  • the control server is configured to determine a delivery port according to the direction of the goods to be delivered, allocate the delivery robot to the to-be-delivered goods, and plan a travel path for the delivery robot to generate a delivery instruction corresponding to the to-be-delivered goods,
  • the delivery instruction is sent to the delivery robot, and the delivery instruction includes a travel path of the delivery robot;
  • the delivery robot is configured to, in response to the delivery instruction, proceed to the delivery port according to a travel path of the delivery robot, and deliver the to-be-delivered goods to the delivery port;
  • the control server is further configured to allocate the first handling robot to the target collection container if the quantity of the goods collected in the target collection container below the delivery port is greater than or equal to a preset threshold Planning a travel route for the first transport robot, generating a transport command corresponding to the target collection container, and transmitting the transport command to the first transport robot, the transport command including the first transport robot a travel path, the target collection container is disposed on the ground of the site, one of the target collection containers corresponds to at least one road direction, and an opening of the target collection container is the delivery port;
  • the first conveyance robot is configured to, in response to the conveyance command, proceed to the target collection container according to a travel path of the first transfer robot, and transport the target collection container to a cargo collection station.
  • an embodiment of the present disclosure further provides a cargo sorting method, including:
  • the control server determines a delivery port according to the direction of the goods to be delivered, allocates a delivery robot to the to-be-delivered goods, and plans a travel path for the delivery robot, generates a delivery instruction corresponding to the to-be-delivered goods, and sends the delivery instruction to The delivery robot, the delivery instruction including a travel path of the delivery robot;
  • the delivery robot proceeds to the delivery port according to the travel path of the delivery robot, and delivers the to-be-delivered goods to the delivery port and returns to the first designated position, the delivery The robot runs on the ground of the field;
  • the control server allocates the first handling robot to the target collection container and is the first handling
  • the robot plans a travel route, generates a transport command corresponding to the target collection container, and transmits the transport command to the first transport robot, the transport command including a travel path of the first transport robot, the target
  • the collection container is disposed on the ground of the site, one of the target collection containers corresponds to at least one way, and the opening of the target collection container is the delivery opening;
  • the first transport robot travels to the target collection container according to the travel path of the first transfer robot in response to the transport instruction, and transports the target collection container to a cargo collection station, the first A handling robot runs on the ground of the field.
  • an embodiment of the present disclosure provides a cargo sorting method, including:
  • the control server determines a delivery port according to the direction of the goods to be delivered, allocates a delivery robot to the to-be-delivered goods, and plans a travel path for the delivery robot, generates a delivery instruction corresponding to the to-be-delivered goods, and sends the delivery instruction to The delivery robot, the delivery instruction including a travel path of the delivery robot;
  • the control server allocates the first handling robot to the target collection container and is the first handling
  • the robot plans a travel route, generates a transport command corresponding to the target collection container, and transmits the transport command to the first transport robot, wherein the transport command includes a travel path of the first transport robot;
  • the delivery robot and the first handling robot both run on the ground of the site, the target collection container is disposed on the ground of the site, and one of the target collection containers corresponds to at least one direction, the target collection container
  • the opening is the delivery port.
  • an embodiment of the present disclosure provides a server, including:
  • One or more processors are One or more processors;
  • a memory set to store one or more programs
  • the one or more programs are executed by the one or more processors such that the one or more processors implement the method described above for server side execution.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, implementing the server side execution method.
  • FIG. 1 is a schematic structural view of a cargo sorting system in Embodiment 1 of the present disclosure
  • FIG. 2a is a schematic layout view of a component sorting system in Embodiment 2 of the present disclosure
  • FIG. 2b is a schematic layout view of a component sorting system in Embodiment 2 of the present disclosure
  • FIG. 3 is a schematic structural view of a delivery robot and a handling robot in Embodiment 3 of the present disclosure
  • FIG. 4 is a schematic diagram of a delivery robot moving delivery goods in Embodiment 3 of the present disclosure.
  • FIG. 5 is a flow chart of a cargo sorting method in Embodiment 4 of the present disclosure.
  • FIG. 6 is a schematic structural view of a cargo sorting system in Embodiment 5 of the present disclosure.
  • FIG. 7 is a schematic structural view of a cargo sorting system in Embodiment 6 of the present disclosure.
  • Figure 8 is a schematic view showing the layout of the sorting system in the seventh embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a sorting system layout in Embodiment 7 of the present disclosure.
  • Figure 10 is a flow chart of the cargo sorting method in the eighth embodiment of the present disclosure.
  • FIG. 11 is a flow chart of a cargo sorting method in Embodiment 9 of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a server in Embodiment 10 of the present disclosure.
  • the cargo sorting system includes: a control server 101, a plurality of delivery robots 102, and a plurality of The robot 103 is transported.
  • the plurality of delivery robots 102 and the plurality of handling robots 103 all run on the ground of the site, the target collection container is disposed on the ground of the site, one target collection container corresponds to at least one way, and the opening of the target collection container is a delivery opening.
  • control server 101 establishes a communication connection with the plurality of delivery robots 102 and the plurality of handling robots 103, respectively, and is configured to implement control and scheduling of the entire cargo sorting system.
  • control server 101 refers to a software system having data storage and information processing capabilities that can be connected to the delivery robot 102, the transport robot 103, and other hardware input systems or software systems in the system by wire or wirelessly.
  • the control server 101 can issue tasks to the delivery robot 102 and the transfer robot 103, transmit information to the workers, count the conditions of the goods to be delivered in the target container, issue control commands to the delivery robot 102 and the transfer robot 103, and the like.
  • the control server 101 is configured to determine a target collection container corresponding to the way direction in the direction information according to the way direction information of the goods to be delivered, allocate the delivery robot 102 for the goods to be delivered, and plan a delivery path for the delivery robot 102 according to the position of the target collection container. And generating a delivery instruction corresponding to the to-be-delivered goods, and transmitting the delivery instruction to the delivery robot 102, where the delivery instruction includes a delivery path of the delivery robot 102.
  • the direction information of the goods to be delivered refers to the city to which the delivery address of the goods is to be delivered.
  • the way direction can be understood as the receiving address of the goods to be delivered.
  • the delivered goods are sorted and sorted according to the way information of the goods to be delivered.
  • the road direction information of the to-be-delivered goods includes a target collection container corresponding to the road direction, and the control server 101 pre-stores the correspondence relationship between the road direction and the target collection container, and after the control server 101 acquires the direction information of the goods to be delivered, according to the direction of the goods to be delivered A query is made in the database of the control server 101 to determine the target collection container corresponding to the direction of the goods to be delivered.
  • the number of delivery robots 102 that the control server 101 allocates for the goods to be delivered is one or more, and the number of delivery robots 102 that the control server 101 allocates for the goods to be delivered is related to the quantity of goods to be delivered.
  • a delivery robot 102 delivers a shipment to be delivered.
  • one delivery robot 102 delivers two items to be delivered.
  • the direction information is obtained by scanning the two-dimensional code or barcode of the goods by the scanning device of the supply station, and transmits it to the control server 101.
  • the goods are delivered to the worker through the chute of the transfer line, and after the worker obtains the goods, the goods are placed on the delivery robot 102.
  • the delivery robot 102 travels in an arc in an area near the supply station. Therefore, the worker can place the goods in the delivery robot 102 located in the left, right, and front directions of the supply table. After the delivery robot enters the supply station, it will continue to drive after slowing down or stopping for a preset time. In this way, it is convenient for the worker to place the goods on the delivery robot while avoiding the blocking path.
  • the delivery robot 102 carrying the goods continues to travel, and the direction information of the goods is obtained by scanning the QR code of the goods or the barcode through the scanning device of the supply station.
  • the scanning device does not obtain the direction information of the goods
  • the delivery robot 102 returns the goods to the abnormality target collection container and returns to the supply station to queue.
  • the delivery robot 102 is arranged to travel to the target collection container according to the delivery route in response to the delivery instruction, and deliver the goods to be delivered to the target collection container by the delivery mechanism.
  • the target collection container may be a common container for accommodating goods to be delivered, such as a common cage car or the like.
  • the target collection container is typically set to carry items with common attributes.
  • the target collection container may be a delivery item to be delivered to the Haidian District of Beijing.
  • the delivery robot 102 after the delivery robot 102 delivers the goods to be delivered to the target collection container, the delivery robot 102 returns to the supply station to continue performing the next delivery task.
  • the control server 101 is further configured to lock the target collection container when the goods collected in the target collection container satisfy the collection condition, assign the transfer robot 103 to the target collection container, and transfer the robot according to the position of the target collection container. 103.
  • the conveyance route is planned, a conveyance command corresponding to the target collection container is generated, and the conveyance command is transmitted to the conveyance robot 103, and the conveyance command includes the conveyance path of the conveyance robot 103.
  • the collection condition means that the target collection container is full and cannot carry excess goods.
  • This embodiment provides three implementations for acquiring the collected goods in the target collection container to satisfy the collection condition.
  • the delivery robot 102 sends the control server 101 the information that the target collection container is full.
  • control server 101 estimates the volume of the goods in the target collection container according to the volume of each cargo and the quantity of the goods in the target collection container, according to the volume of the goods in the target collection container and the target collection. The volume of the container is compared. If the volume of the cargo in the target container is larger than the volume of the target container, the goods collected in the target container satisfy the collection condition.
  • an outer red sensor and a wireless module are installed on the upper edge of the target collection container, and when the infrared sensor detects that the target collection container is full, the information that the target collection container is full passes through the wireless module. Send to the control server 101.
  • the number of handling robots 103 assigned by the control server 101 is one or more.
  • the number of transport robots 103 assigned by the control server 101 is related to the number of target collection containers to be transported.
  • a handling robot 103 carries a target collection container.
  • the control server 101 After receiving the information that the target collection container is full, the control server 101 locks the target collection container and prohibits the delivery robot 102 from delivering the shipment to the target collection container.
  • the control server 101 allocates the transfer robot 103 to the target collection container, acquires the position information of the target collection container, and plans a conveyance path for the transfer robot 103 based on the position of the target collection container, and generates a conveyance command corresponding to the target collection container.
  • the conveyance command is transmitted to the conveyance robot 103, and the conveyance command includes the conveyance path of the conveyance robot 103.
  • the transport robot 103 is provided to travel to the target container at the transport path of the transport robot 103 in response to the transport command, and transport the target container to the cargo collection station.
  • the transport robot 103 can own an intelligent system, can communicate with the control server 101, and receive the transport command transmitted by the control server 101.
  • the handling instruction includes at least: a location of the target collection container and path navigation information. The transport robot 103, in response to the transport instruction corresponding to the one or more target collection containers, transports the to-be-delivered goods in the target collection container from the position of the target collection container to the corresponding cargo collection station according to the route navigation information.
  • the control server 101 simultaneously assigns another transport robot to transport an empty container to the corresponding target in order to prevent the goods to be delivered from falling on the ground.
  • Container container Allocating a transport robot to the empty container, and planning a travel route for the transport robot according to the current position of the empty container and the position of the original target container, generating a transport instruction corresponding to the empty container, and sending the transport instruction to In another transport robot, the transport command includes the travel path of another transport robot.
  • the path that the control server 101 plans for the robot is a circular path.
  • the robot includes the delivery robot 102 and the transport robot 103. That is, the travel path of the delivery robot 102 is a circular path, and the travel path of the transport robot 103 is also a circular path. In an embodiment, the turn of the annular path is curved.
  • the annular delivery path of the delivery robot 102 and the circular transportation path of the transport robot 103 are both composed of a straight path and an arcuate path.
  • the curved path means that the robot travels in an arc path when turning, which can realize that the robot does not stop when turning, saving the running time of the robot.
  • control server 101 is configured to control the delivery robot 102 and/or the transport robot by using the inertial navigation as the primary and the visual navigation as the auxiliary when the delivery robot 102 and/or the transport robot 103 are traveling on a straight path. 103 straight travel.
  • the control server 101 is configured to control the delivery robot 102 and/or the transport robot 103 to travel in a curved manner by the two-wheel differential drive when the delivery robot 102 and/or the transport robot 103 travel on an arcuate path.
  • the robot when the robot is traveling straight, the robot adopts a dual-fusion positioning mode, and the control server 101 controls the robot to travel straight by using inertial navigation as the main and visual navigation as a supplement, and the working area has a positioning at intervals.
  • Landmark the distance between the landmark and the landmark
  • the robot uses inertial navigation to locate, and uses the positioning standard to determine the position, and correct the error caused by the inertial navigation positioning to ensure straight travel.
  • the robot includes a delivery robot 102 and a handling robot 103.
  • the control server 101 controls the delivery robot 102 and/or the transport robot 103 to travel in a curved manner by means of two-wheel differential driving.
  • the robot adopts two-wheel differential driving mode, that is, the two left and right wheels of the robot adopt two driving motors, and the left and right motor differential driving can change the heading of the robot.
  • the difference between the left and right two motors of the robot can be controlled by the control server 101 according to the working area.
  • the size, the size of the robot, and the turning radius of the robot are calculated.
  • the cargo sorting system includes a control server, a delivery robot, and a collection container group; the collection container group includes a plurality of collection container groups, and the plurality of collection container groups are distributed in an array in the field.
  • the transverse channel and the longitudinal channel formed by the array gap are the driving path of the robot, and the delivery robot includes a robot body and a delivery mechanism disposed on the robot body; first, determining a road direction corresponding target in the road direction information according to the road direction information of the goods to be delivered
  • the collection container allocates a delivery robot for the goods to be delivered, and plans a delivery route for the delivery robot according to the position of the target collection container, generates a delivery instruction corresponding to the goods to be delivered, and sends the delivery instruction to the delivery robot; and then the delivery robot according to the delivery
  • the route travels to the target collection container, and the delivery goods are delivered to the target collection container by the delivery mechanism.
  • FIG. 2a is a schematic view showing the layout of a component sorting system in the second embodiment of the present disclosure.
  • the cargo sorting system further includes a collection container group; the collection container group includes a plurality of collection container groups, and one collection container group includes at least one target collection container, and multiple collection containers
  • the groups are distributed in the field in an array, the lateral channels (or gaps) formed by the array gaps and the longitudinal channels are the driving lanes of the robot, one target collection container corresponding to at least one way direction, and the opening of the target collection container is the goods to be delivered Delivery port.
  • the robot travels in at least one set of work areas, each set of work areas including a first column sub-area 201, a second column sub-area 202, a third column sub-area 203, a fourth column sub-area 204, and a fifth.
  • Column sub-region 205 and sixth column sub-region 206 The width of the first column sub-region 201, the second column sub-region 202, the fifth column sub-region 205, and the sixth column sub-region 206 is greater than the width of the third column sub-region 203 and the fourth column sub-region 204; the second column sub-region 202 and the fifth column
  • the area 205 is set to place the target collection container.
  • the work area layout of the one-component sorting system includes a supply station, a cargo collection station, a collection container group, and a path planned by the control server.
  • the one-component sorting system provided in this embodiment includes two supply stations 212, a cargo collection station 210 and six collection container groups, and each collection container group includes three target collection containers 207.
  • the number of target collection containers in each collection container group can be flexibly set to a minimum of one.
  • Figure 2a shows only one sorting system consisting of two supply stations 212, one cargo collection station 210 and six collection container groups. In practical applications, the number of supply stations and the cargo collection station
  • the quantity, the number of collection container groups, and the number of target collection containers in each collection container group can be designed as required.
  • the multi-component sorting system can also be set up according to the actual situation throughout the work area.
  • each of the two collection container groups is a pair, and the channel width between any two pairs of collection container groups is greater than the channel width between the two collection container groups in any one pair of collection container groups.
  • the passage between any two pairs of collection container groups is the travel path of the handling robot.
  • the cells of the second column sub-area 202 and the fifth column sub-area 205 of the target collection container 207 may be set according to the size of the target collection container.
  • the target container 207 is 900 mm x 900 mm
  • the cells of the second column sub-region 202 and the fifth column sub-region 205 may relate to 1 m x 1 m.
  • a safety margin of 100 mm can be present between the two rows of target collection containers 207.
  • the safety margin between the two pairs of container groups can be flexibly set according to the accuracy of the robot operation.
  • a control server configured to plan a circular delivery path 208 for the delivery robot 211 in the first column sub-region 201 and the third column sub-region 203 or in the fourth column sub-region 204 and the sixth column sub-region; the control server is further set to be in the first column
  • An annular handling path 209 is planned for the handling robot (not shown) in the area 201 and the sixth column sub-area 206.
  • the delivery path 208 and the transport path 209 are formed by an annular channel formed by a lateral channel and a longitudinal channel around the target container 207, the annular delivery path 208 of the delivery robot and the ring of the handling robot.
  • the transport path 209 has a straight path and an arc path.
  • the curved path means that the robot travels on an arc path when turning, which can realize that the robot does not stop when turning, saving the running time of the robot.
  • the circular delivery path 208 of the delivery robot and the circular conveyance path 209 of the transfer robot are in a straight path, they pass through the center position of the cell.
  • the passage between the two collection container groups in any one of the pair of collection container groups is the travel path of the delivery robot.
  • the third column sub-area 203 and the fourth column sub-area 204 between the two collection container groups in the pair of container groups are only the traveling path of the delivery robot, and are not used as the traveling path of the transport robot. Therefore, we can set the widths of the third column sub-region 203 and the fourth column sub-region 204 to be smaller than the widths of the first column sub-region 201, the second column sub-region 202, the fifth column sub-region 205, and the sixth column sub-region 206. This allows more target collection containers to be placed in a smaller work area, and the same number of target collection containers can be implemented in a smaller space, saving space.
  • the delivery path and the transport path are in the same direction, that is, both the transport path and the delivery path are clockwise or both are counterclockwise.
  • the delivery path 208 and the transport path 209 coincide, that is, the delivery robot and the transport robot use the same travel path.
  • FIG. 2b is a layout diagram of a component sorting system in the second embodiment of the present disclosure.
  • each set of work areas includes a first column sub-area 2011, a second column sub-area 2012, a third column sub-area 2013, a fourth column sub-area 2014, a fifth column sub-area 2015, and a sixth column sub-area 2016.
  • the widths of all the sub-areas are the same, and the advantage of this arrangement is that the cargo collection station 2110 near the worker position in the third column sub-area 2013 and the fourth column sub-area 2014 can also place the target goods for loading the goods. container.
  • the layout of the sorting system of Figure 2b differs only in the width of the third column sub-region 2013 and the fourth column sub-region 2014 and the widths of the third column sub-region 203 and the fourth column sub-region 204 in Figure 2a.
  • the layout scheme of other areas in FIG. 2b such as the first column sub-area 2011, the second column sub-area 2012, the fifth column sub-area 2015, the sixth column sub-area 2016, the location of the supply station, the worker work area, the delivery path, the transportation path, and the like , are the same as the layout scheme in Figure 2a.
  • the same layout scheme as in Figure 2a is not shown in Figure 2b.
  • the landmark in the travel path of the transport robot is located at the center position of the cell, and the landmark in the travel path of the delivery robot is located near the delivery port of the cell.
  • a landmark for positioning is provided in each cell, and the landmarks of the first column sub-region 201 and the sixth column sub-region 206 are located at the center position of the corresponding cell, and the third The landmarks of the column sub-region 203 and the fourth column sub-region 204 are located near the delivery port of the cell.
  • the landmark may be placed at the center of each cell, the mechanism chute may be designed on the cage, or the cage may be placed closer to the delivery route.
  • the delivery mechanism is designed as an everted structure so that the package can be delivered to the cage in a very accurate manner.
  • Embodiments of the present disclosure also provide an embodiment to increase the delivery speed of the delivery of the mechanism, and ensure that the package can pass the gap between the delivery mechanism and the cage to achieve accurate delivery.
  • the landmark positions of the third column sub-region 203 and the fourth column sub-region 204 are set at the center position of the corresponding cell, and the target collection container is placed near the third column sub-region 203 and the fourth. The position of the column sub-region 204 is located.
  • the supply station 212 is provided with a working position of the supply worker, wherein the supply station 212 is disposed at one side of the site, and the cargo collection station 210 is disposed at the supply station 212. side.
  • the supplier can stand directly on the ground, below the ground level, or above the ground by means of a raised height. Set up the cage parking area for unsorted goods in front of the supply station, and set at least two cell cage parking areas near each supply station.
  • the travel path of the delivery robot 102 near the supply station 212 is not limited. In an embodiment, the delivery robot 102 travels in an arc in an area near the supply station.
  • the cargo collection station sets the working position of the pick-up worker. After the handling robot arrives at the cargo collection station, the words are arranged in a row, so that the pick-up worker can take the target collection container and place the empty collection container on the handling robot.
  • the empty collection container is bound to the road direction information by the scanning device of the cargo collection station, and the circular path of the handling robot is planned, and the empty collection container is transported to its corresponding target container.
  • an empty container area and a full container area are provided at the cargo collection station.
  • a fixing device may be provided on the handling robot to fix the target container. Or set a fixture in the cell where the cargo collection station is located to fix the target container.
  • any one of the directions is respectively bound to at least one target collection container, and is bound to at least two target collection containers in one way.
  • the at least two target collection containers belong to different collection container groups.
  • the control server may set a plurality of target collection containers corresponding to the same road direction information, and the plurality of target collection containers are distributed in different delivery loops. This can reduce the shuttle of the delivery robot in the loop.
  • the delivery robot can deliver the goods to the target collection container of the same path information.
  • the server can set the direction of the goods to a higher heat direction, and arrange the high heat direction on the delivery port closer to the supply station, so that the delivery can be shortened. The distance traveled by the robot, which in turn shortens the delivery time.
  • the widths of the third column sub-region and the fourth column sub-region are set to be smaller than the widths of the first column sub-region, the second column sub-region, the fifth column sub-region, and the sixth column sub-region. This allows more target collection containers to be placed in a smaller work area, and the same number of target collection containers can be implemented in a smaller space, saving space.
  • the control server may set the plurality of target collection containers to correspond to the same direction, and the plurality of delivery ports are distributed in different delivery rings. In the road, this can reduce the shuttle of the delivery robot in the loop.
  • FIG. 3 is a schematic structural view of a delivery robot and a handling robot in Embodiment 3 of the present disclosure.
  • the delivery robot includes a delivery robot body 302 and a delivery mechanism 301 disposed on the delivery robot body.
  • the delivery robot includes a lift-up device 303 and a transport robot body 304.
  • the delivery robot is provided with a delivery mechanism 301.
  • the height of the upper surface of the delivery mechanism 301 from the ground is greater than or equal to the height of the upper surface of the target collection container 305 from the ground, and the lifting robot is provided with a jack-up device 303.
  • the height of the upper surface of the robot jacking device 303 is smaller than the height of the lower surface of the target container from the ground.
  • the delivery mechanism 301 delivers the goods by belt transfer, flap delivery or push.
  • the delivery mechanism 301 and the delivery robot body 302 rotate at the same rotational speed in the same direction; when the transport robot is traveling in an arc path, the jack-up device 303 and the transport robot body 304 are opposite each other. Rotate.
  • the delivery mechanism 301 and the delivery robot body 302 rotate together without causing relative rotation.
  • the jack-up device 303 and the transport robot body 304 are relatively rotated to keep the target container from rotating relative to the ground.
  • the delivery robot is equipped with a sensor, and the sensor probe is directed to the upper edge of the target collection container, and is set to detect whether the target collection container is full of goods; when the target collection container is full of goods, send to the control server The message that the target collection container is full.
  • the sensor can be an infrared detector. If the cargo emerges from the target container (ie, the target container is already full), the infrared will be signaled on the cargo, and the robot will know the target. The container is full, and if there is no signal feedback, it is not full.
  • the server can also estimate whether the target container is full according to the size of each delivered item and the capacity of the target container. In order to improve the detection accuracy, the present invention can also be combined with the above two methods for detection.
  • the senor is mounted on the lower edge of the delivery mechanism 301.
  • the delivery robot passes one or more cages, it can detect whether there is a package that exceeds the upper edge of the cage.
  • the sensor detects that there is a package over the cage
  • the car is on the upper edge, it is considered that the package volume collected by the cage reaches the maximum capacity of the target container, and the cage is full.
  • the control server When the control server receives the information that the target collection container is full, the control server locks the target collection container, that is, the delivery robot no longer delivers the goods to the target collection container.
  • the control server looks up the target collection container with the same way direction information, re-plans the delivery path, and causes the delivery robot to deliver the goods to the delivery port with the same direction. If the delivery port having the same road direction is not found, the delivery robot is controlled to continue to travel around the circular path in the work area. After the handling robot transports the empty container to the original target container, the control server releases the locking of the target container, and the delivery robot travels to the delivery port to perform the delivery task.
  • the delivery robot is configured to travel to the target collection container according to the delivery route in response to the delivery instruction, and deliver the goods to be delivered to the target collection container by the delivery mechanism during the running.
  • 4 is a schematic diagram of the delivery robot moving delivery goods in the third embodiment of the present disclosure.
  • the delivery robot keeps driving and starts executing.
  • the delivery action the delivery of the goods to be delivered to the target collection container corresponding to the delivery port; when the delivery robot second boundary 402 coincides with the second boundary of the delivery port 404, the driving is maintained and the delivery action is terminated.
  • the boundary 405 refers to the position of the second boundary of the delivery robot when the first boundary 401 of the delivery robot coincides with the first boundary 403 of the delivery port; the boundary 406 refers to the second boundary 402 and the delivery port 404 of the delivery robot.
  • the safe range of robot delivery is L.
  • the delivery robot is provided with a delivery mechanism, and the height of the upper surface of the delivery mechanism from the ground is greater than or equal to the height of the upper surface of the target collection container from the ground, so that the delivery mechanism can deliver the goods to the target collection container, which is not easy. Dropped.
  • the delivery robot continues to travel to the delivery port according to the circular delivery route, and returns the to-delivered goods to the delivery port after traveling within the delivery range of the delivery port.
  • the delivery robot continues to drive during the delivery process, which can reduce the delivery time of the robot and improve work efficiency.
  • FIG. 5 is a flow chart of a cargo sorting method in Embodiment 4 of the present disclosure.
  • the present embodiment is applicable to the case of sorting goods.
  • the method is performed by a cargo sorting system, as shown in FIG.
  • the sorting method includes S510 to S540.
  • the control server determines, according to the road direction information of the goods to be delivered, a target collection container corresponding to the way direction in the direction information, allocates a delivery robot for the goods to be delivered, and plans a delivery path according to the location of the target collection container to generate a delivery path. And a delivery instruction corresponding to the to-be-delivered goods, the delivery instruction is sent to the delivery robot, and the delivery instruction includes a delivery path of the delivery robot.
  • the delivery robot in response to the delivery instruction, travels to the target collection container according to the delivery path of the delivery robot, and delivers the to-delivered goods to the target collection container;
  • the target collection container is any one of the collection container groups, the collection container group includes a plurality of collection container groups, and one collection container group includes at least one target collection container.
  • the plurality of collection container groups are distributed in the array in an array manner, the lateral passages and the longitudinal passages formed by the array gaps are the driving passages of the robot, and one target collection container corresponds to at least one way direction, and the opening of the target collection container is the goods. Delivery port.
  • the control server determines whether the collected goods in the target collection container meet the collection condition.
  • the control server locks the target collection container, allocates a handling robot to the target collection container, and collects the goods according to the target.
  • Position of the container The transport robot plans a transport route, generates a transport command corresponding to the target container, and transmits the transport command to the transport robot, and the transport command includes a transport path of the transport robot.
  • the conveyance robot continues to travel to the target collection container according to the conveyance path of the conveyance robot in response to the conveyance command, and conveys the target collection container to a cargo collection station.
  • the path planned by the control server for the robot is a circular path.
  • the turn of the annular path is curved.
  • the delivery robot travels to the target collection container according to the delivery route in response to the delivery instruction, and delivers the to-be-delivered goods to the target collection through the delivery mechanism.
  • Containers including:
  • the delivery robot travels to the target collection container according to the delivery path of the delivery robot in response to the delivery instruction, and delivers the to-be-delivered goods to the target through the delivery mechanism during driving In the collection container.
  • any one of the directions is respectively bound to at least one of the target collection containers, in one direction and at least two target sets.
  • the at least two target collection containers belong to different collection container groups.
  • the determining, by the control server, whether the collected goods in the target collection container meets the collection condition comprises:
  • the delivery robot detects, by the sensor, whether the target collection container is full of goods, and when the target collection container is full of goods, sends a message that the target collection container is full to the control server;
  • the control server estimates whether the target collection container is full of goods according to the volume of the target collection container and the size of the goods to be delivered.
  • the cargo sorting method firstly determines a target collection container corresponding to the way direction in the direction information according to the road direction information of the goods to be delivered, and allocates a delivery robot for the goods to be delivered, and according to the position of the target collection container Dedicating a delivery route for the delivery robot, generating a delivery instruction corresponding to the to-be-delivered goods, and transmitting the delivery instruction to the delivery robot; then the delivery robot travels to the target collection container according to the delivery route, and delivers the to-delivered goods to the target set through the delivery mechanism a cargo container, wherein the target collection container is any collection container in a collection container group, the collection container group includes a plurality of collection container groups, and one collection container group includes at least one target set
  • the cargo container, the plurality of collection container groups are distributed in the array in an array manner, the lateral passage and the longitudinal passage formed by the array gap are the driving passages of the robot, and one target collection container corresponds to at least one road direction, and the opening of the target
  • the cargo sorting system includes: a control server 601, a plurality of delivery robots 602, and a plurality of The first transfer robot 603 is communicably connected to the plurality of delivery robots and the plurality of first transfer robots.
  • control server 601 establishes a communication connection with the plurality of delivery robots 602 and the plurality of first handling robots 603, respectively, and is configured to control and schedule the entire cargo sorting system.
  • control server 601 refers to a software system having data storage and information processing capabilities that can be connected by wired or wireless to the delivery robot 602, the first handling robot 603, and other hardware input systems or software systems in the system.
  • the control server 601 can issue a task to the delivery robot 602 and the first handling robot 603, transmit information to the worker, count the situation of the goods to be delivered in the target container, issue control commands to the delivery robot 602 and the first handling robot 603, and the like.
  • the plurality of delivery robots 602 and the plurality of first handling robots 603 are both running on the ground of the site, the target collection container is disposed on the ground of the site, and one target collection container corresponds to at least one direction, the target collection container The opening is the delivery port.
  • the control server 601 is configured to determine a delivery port according to the direction of the goods to be delivered, allocate a delivery robot 602 for the goods to be delivered, and plan a travel path for the delivery robot 602, generate a delivery instruction corresponding to the goods to be delivered, and send the delivery instruction to the delivery robot 602.
  • the delivery instruction includes the travel path of the delivery robot 602.
  • the direction of the goods to be delivered can be understood as the receiving address of the goods to be delivered, and the receiving address means that the plurality of goods to be delivered have their own independent receiving addresses.
  • the recipient address is the final flow address of the goods to be delivered.
  • the delivered goods are sorted and sorted according to the delivery address of the goods to be delivered.
  • the number of delivery robots 602 may be one or more, and the number of delivery robots 602 that the control server 601 allocates for the goods to be delivered is at least one.
  • the number of delivery robots 602 that the control server 601 allocates for the goods to be delivered is related to the quantity of goods to be delivered.
  • a delivery robot 602 delivers a shipment to be delivered.
  • one delivery robot 602 delivers two items to be delivered.
  • the receiving address of the goods to be delivered corresponds to different delivery ports
  • the control server 601 pre-stores the correspondence between the receiving address and the delivery port, and after the control server 601 obtains the receiving address of the goods to be delivered, according to the waiting
  • the delivery address of the delivery goods is queried in the database of the control server 601 to determine the delivery port corresponding to the delivery address of the goods to be delivered.
  • the delivery robot 602 is configured to travel to the delivery port according to the travel path of the delivery robot 602 in response to the delivery instruction, and return the goods to be delivered to the delivery port after returning to the first designated position.
  • a target collection container is disposed at a position below the delivery port below the delivery port, and the delivery port is bound to a target collection container carrying a specific delivery address, so as to receive the goods to be delivered at the specific delivery address.
  • the first designated position refers to a position at which the delivery robot 602 stops after the delivery robot 602 completes the delivery.
  • the supply station within the venue is used as the first designated location, ie the delivery robot 602 waits for the control server to reassign tasks for it near the supply station.
  • the target collection container may be a common container for accommodating goods to be delivered, such as a common cage car, a parcel bag, and the like.
  • the target collection container is generally arranged to carry items having common attributes.
  • the target collection container may be a delivery item carrying a specific delivery address.
  • the target collection container may be a bearer sent to Beijing. The goods to be delivered in Haidian District.
  • the control server 601 is further configured to allocate the first handling robot 603 to the target collection container and plan the travel for the first handling robot 603 when the quantity of the goods collected in the target collection container below the delivery port is greater than or equal to a preset threshold.
  • the route generates a conveyance command corresponding to the target collection container, and transmits a conveyance command to the first conveyance robot 603, and the conveyance command includes a travel route of the first conveyance robot 603.
  • the number of first handling robots 603 assigned by the control server 601 is one or more.
  • the number of first handling robots 603 assigned by the control server 601 is related to the number of target collection containers to be handled.
  • a first handling robot 603 carries a target collection container.
  • a detecting device is provided at the delivery port, and the detecting device can detect the waiting to fall into the target collection container The quantity of goods delivered.
  • the embodiment further provides another embodiment.
  • the control server 601 In order to enable the control server 601 to count the quantity of goods to be delivered collected in the target collection container within a preset time, the control server 601 completes the delivery instruction to the delivery robot 602 according to the target collection. The corresponding recipient address of the container is accumulated.
  • the embodiment further provides another embodiment for counting whether the to-be-delivered goods in the target collection container meet the preset capacity within a preset time.
  • the detecting device is set as the depth detecting device at the delivery port, and it is determined whether the plane of the goods to be delivered in the target container meets the preset condition, thereby determining whether the target container is full.
  • the control server 601 acquires the position of the target collection container, and acquires the collection unit corresponding to the cargo container.
  • the first transport robot 603 is allocated to the target container, and the travel path is planned for the first transport robot 603, and a transport command corresponding to the target container is generated, and the transport command is transmitted to the first transport robot 603.
  • the first transfer robot 603 is arranged to travel to the target container according to the travel path of the first transfer robot 603 in response to the conveyance command, and transport the target container to the second collection position after transporting the target container to the cargo collection station.
  • the first transport robot 603 can own the intelligent system, can communicate with the control server 601, and receive the transport command sent by the control server 601.
  • the transport command includes at least: the location of the cargo container, Handling address and path navigation information.
  • the second designated position is a position at which the transport robot stops after the transport robot completes the transport.
  • the area near the cargo collection station within the site is taken as the second designated location, ie the handling robot waits for the control server to reassign tasks for it near the supply station.
  • the embodiment of the present disclosure proposes a cargo sorting system.
  • the control server determines a delivery port according to the receiving address of the goods to be delivered, allocates a delivery robot for the goods to be delivered, and plans a travel path for the delivery robot to generate a delivery instruction corresponding to the goods to be delivered.
  • the delivery instruction includes a travel path of the delivery robot; the delivery robot proceeds to the delivery port according to the delivery route in response to the delivery instruction, and delivers the goods to be delivered to the delivery port and returns to the first designated position;
  • the control server allocates the first handling robot to the target collection container and plans a travel path for the first handling robot to generate and target the goods.
  • the conveyance command corresponding to the container transmits a conveyance command to the first conveyance robot, and the conveyance command includes a travel route of the first conveyance robot; and the first conveyance robot advances to the target collection container according to the travel route in response to the conveyance command, and sets the target Cargo container handling to cargo collector After the bit returns to the second specified position. That is, in the technical solution proposed by the embodiment of the present disclosure, when the quantity of the goods to be delivered collected in the one or more target collection containers is greater than a preset threshold, the handling robot may according to the handling instruction sent by the controller. One or more items to be delivered in each target container are transported to the goods collection station, thereby avoiding the method of collecting the lead by manual means, which not only improves the efficiency of sorting, but also improves the goods. The accuracy of the pick.
  • FIG. 7 is a schematic structural diagram of a cargo sorting system in Embodiment 6 of the present disclosure.
  • the cargo sorting system includes: a control server 701, a plurality of delivery robots 702, a plurality of first transport robots 703, and A plurality of second transfer robots 704.
  • a plurality of second handling robots 704 are all running on the ground of the field.
  • the control server 701 is configured to determine a delivery port according to the direction of the goods to be delivered, allocate a delivery robot 702 for the goods to be delivered, and plan a travel path for the delivery robot 702, generate a delivery instruction corresponding to the goods to be delivered, and send the delivery instruction to the delivery robot 702.
  • the delivery instruction includes the travel path of the delivery robot 702.
  • the direction of the goods to be delivered corresponds to different delivery ports
  • the control server 701 pre-stores the correspondence between the receiving address and the delivery port
  • the control server 701 acquires the receiving address of the goods to be delivered. Then, the inquiry is made in the database of the control server 701 according to the receiving address of the goods to be delivered, and the delivery port corresponding to the receiving address of the goods to be delivered is determined.
  • the delivery robot 702 is arranged to travel to the delivery port according to the travel path of the delivery robot 702 in response to the delivery instruction, and deliver the goods to be delivered to the delivery port and return to the first designated position.
  • the position below the delivery port below the delivery port is set by the target collection container, and the delivery port is bound to the target collection container carrying the specific delivery address, so as to receive the goods to be delivered at the specific delivery address.
  • the first designated position refers to a position at which the delivery robot 702 stops after the delivery robot 702 completes delivery.
  • the supply station within the venue is used as the first designated location, i.e., the delivery robot 702 waits for the control server 701 to reassign tasks for it near the supply station.
  • the control server 701 is further configured to allocate the first handling robot 703 to the target collection container and plan the travel for the first handling robot 703 when the quantity of the goods collected in the target collection container below the delivery port is greater than or equal to a preset threshold.
  • the route generates a conveyance command corresponding to the target collection container, and transmits a conveyance command to the first conveyance robot 703, and the conveyance command includes a travel route of the first conveyance robot 703.
  • a detecting device is provided at the delivery port, and the detecting device can detect the waiting to fall into the target collection container The quantity of goods delivered.
  • the first transfer robot 703 is arranged to travel to the target collection container according to the travel path of the first transfer robot 703 in response to the conveyance command, and transport the target collection container to the cargo collection station and return to the second designated position.
  • the first transport robot 703 can own the intelligent system and can communicate with the control server 701 to receive the transport command sent by the control server 701.
  • the transport command includes at least: the location of the cargo container, Handling address and path navigation information.
  • the first handling robot 703 moves one or more items to be delivered in the target collection container from the position of the target collection container to the corresponding goods according to the path navigation information in response to the transportation instruction corresponding to the one or more delivery ports. Collect workstations.
  • the control server 701 is further configured to allocate the second transfer robot 704 to the empty collection container, plan a travel route for the second transfer robot 704, generate a transport instruction corresponding to the empty container, and transmit the transfer command to the second transfer robot 704.
  • the transport command includes a travel path of the second transport robot 704.
  • the control server simultaneously allocates a second transport robot 704 to transport an empty container to Corresponding delivery port.
  • the second transport robot 704 is allocated to the empty container, and the travel path is planned for the second transport robot 704 according to the current position of the empty container and the position of the delivery port, and a transport instruction corresponding to the empty container is generated, and the transport command is sent.
  • the transport command includes the travel path of the second transfer robot 704.
  • the number of second handling robots 704 assigned by the control server 701 is one or more.
  • the number of second handling robots 704 assigned by the control server 701 is related to the number of target collection containers to be handled.
  • a second handling robot 704 carries a target collection container.
  • the second transfer robot 704 is arranged to return the empty collection container to the target collection container in accordance with the travel path of the second transfer robot 704 in response to the conveyance command corresponding to the empty collection container, and return to the second designated position.
  • the first transfer robot 703 and the second transfer robot 704 are the same type of robot, and are divided into a first transfer robot 703 and a second transfer robot 704 according to different execution tasks thereof, and the first transfer robot 703
  • the second handling robot 704 is configured to carry the empty collection container.
  • the first transfer robot 703 can be used as the second transfer robot 704 depending on the transfer command.
  • the second transfer robot 704 can be used as the first transfer robot 703.
  • the second designated position is a position at which the transport robot stops after the transport robot completes the transport.
  • the area near the cargo collection station within the site is taken as the second designated location, ie the handling robot waits for the control server to reassign tasks for it near the supply station.
  • the delivery robot 702, the first handling robot 703, and the second handling robot 704 all run on the ground; the delivery port and the target collection container are bound by a binding instruction of the controller, and at least one target collection The container is placed on the ground.
  • two cargo containers or three cargo containers may be placed side by side to form a cargo container group.
  • the number of groups of cargo containers can be reasonably designed according to the size of the site.
  • the embodiment of the present disclosure proposes a cargo sorting system.
  • the control server determines a delivery port according to the receiving address of the goods to be delivered, allocates a delivery robot for the goods to be delivered, and plans a travel path for the delivery robot to generate a delivery instruction corresponding to the goods to be delivered.
  • the delivery instruction includes a travel path of the delivery robot; the delivery robot proceeds to the delivery port according to the delivery route in response to the delivery instruction, and delivers the goods to be delivered to the delivery port and returns to the first designated position;
  • the control server allocates the first handling robot to the target collection container and plans a travel path for the first handling robot to generate and target the goods.
  • the conveyance command corresponding to the container transmits a conveyance command to the first conveyance robot, and the conveyance command includes a travel route of the first conveyance robot; and the first conveyance robot advances to the target collection container according to the travel route in response to the conveyance command, and sets the target Cargo container handling to cargo collector After returning to the second specified position. That is, in the technical solution proposed by the embodiment of the present disclosure, when the quantity of the goods to be delivered collected in the one or more target collection containers is greater than a preset threshold, the handling robot may according to the handling instruction sent by the controller. One or more items to be delivered in each target container are transported to the goods collection station, thereby avoiding the method of manually collecting the lead, which not only improves the efficiency of sorting, but also improves the sorting of goods. The accuracy.
  • FIG. 8 is a schematic illustration of the layout of the sorting system in the seventh embodiment of the present disclosure. It can be seen from FIG. 8 that a plurality of target collection containers are arranged in a polygonal outline in the field, the supply table 801 is located in the polygonal outline, the cargo collection station 803 is located outside the polygonal outline, and the area within the polygonal outline constitutes the walking path of the delivery robot. The area outside the polygonal contour constitutes a walking path of the first handling robot and the second handling robot.
  • the polygonal outline is a rectangular outline; the polygonal outline has an opening locally.
  • the supply station 801 is disposed at the center of the site, and the target container 802 is disposed on one or more sides of the perimeter or periphery of the site.
  • the cargo collection station 803 is disposed outside the target collection container 802.
  • the cargo collection station 803 is where the cargo container is collected, that is, the handling robot transports the cargo container from the location of the target collection container 802 to the cargo collection station 803 for subsequent processing by the worker.
  • the small square 804 is a representation of gridding the map.
  • the supply station 801 includes at least a shelf for storing the goods to be delivered and a working position of the worker.
  • FIG. 9 is a schematic illustration of the layout of the sorting system in the seventh embodiment of the present disclosure.
  • at least one target container 902 is placed to form a collection container group, and at least one collection container group is arranged in an array in a field, and lateral channels and longitudinal channels between different collection container groups in the array.
  • the supply station 901 and the cargo collection station 903 are respectively located on both sides of the collection container array.
  • the supply end 901 is disposed at one side of the field, and the collection container group is disposed at the center of the field, wherein the three target collection containers 902 constitute a collection container group.
  • the goods collection station 903 is disposed on the side opposite to the supply station 901.
  • the cargo collection station 903 is where the target collection container is collected, that is, the handling robot transports the target collection container 902 from the position of the target collection container 902 to the cargo collection station 903 for subsequent processing by the worker.
  • the map is gridded, and the small cells after meshing are not shown in the figure.
  • the supply station 901 includes at least a shelf for storing the goods to be delivered and a working position of the worker.
  • the map is gridded.
  • the delivery port and the handling robot corresponding to the cargo container occupy 4 cells.
  • Each cargo container corresponds to the delivery address of one shipment.
  • Fig. 8 and Fig. 9 three collection containers are combined into one cargo container group, and the operation passages of the delivery robot and the transfer robot are reserved between the cargo containers.
  • This layout scheme can arrange the position of the delivery port and the cargo container as much as possible in a small area.
  • the direction marked by the arrow is the running channel of the carrying robot, and the middle cell is the running channel of the delivery robot.
  • both the handling robot and the delivery robot run in the running channel between the cage groups, and the same running channel is used in common.
  • the delivery robot is provided with a feeding device (ie, can be understood as a delivery mechanism); wherein the height of the feeding device from the ground is greater than the height of the delivery opening from the ground, and the feeding device is provided with a roller or a belt.
  • the roller or belt is arranged to deliver the to-be-delivered cargo to the target container by wheeling.
  • the delivery robot uses a belt to carry out the two-side delivery. When the delivery robot rotates locally, the belt maintains the same angle, which reduces the space occupied by the rotation.
  • Embodiments of the present disclosure provide an embodiment of cargo sorting.
  • the control server first generates a delivery instruction corresponding to each to-be-delivered item according to one or more receiving addresses of the goods to be delivered, and correspondingly each cargo to be delivered
  • the delivery instruction is sent to the delivery robot; the delivery robot delivers each to-be-delivered goods to the corresponding cargo container of each to-be-delivered goods in response to the delivery instruction corresponding to the goods to be delivered; and then collects the collected items in one or more cargo containers
  • the control server When the quantity of delivered goods is greater than a preset threshold, the control server generates a handling instruction corresponding to each cargo container according to the corresponding handling address of each cargo container; finally, the handling robot responds to each cargo in response to a handling instruction corresponding to one or more cargo containers.
  • One or more items to be delivered in the container are transported to a corresponding handling address. That is, in the technical solution proposed by the embodiment of the present disclosure, when the quantity of the goods to be delivered collected in one or more cargo containers is greater than a preset threshold, the handling robot may each according to a handling instruction sent by the controller. One or more goods to be delivered in the cargo container are transported to a designated location, thereby avoiding the method of manually collecting the lead, which not only improves the efficiency of sorting, but also improves the accuracy of sorting.
  • Fig. 10 is a flow chart showing the cargo sorting method in the eighth embodiment of the present disclosure.
  • the present embodiment is applicable to the case of sorting goods, and the method includes S1010 to S1040.
  • the control server determines a delivery port according to the direction of the goods to be delivered, allocates a delivery robot for the goods to be delivered, and plans a travel path for the delivery robot, generates a delivery instruction corresponding to the goods to be delivered, and sends the delivery instruction to the delivery robot, and the delivery instruction includes The travel path of the delivery robot.
  • the receiving address of the goods to be delivered corresponds to different delivery ports
  • the control server pre-stores the correspondence between the receiving address and the delivery port, and after the control server obtains the receiving address of the goods to be delivered, according to the goods to be delivered.
  • the receiving address is queried in the database of the control server to determine the delivery port corresponding to the receiving address of the goods to be delivered.
  • the delivery robot in response to the delivery instruction, travels to the delivery port according to the travel path of the delivery robot, and delivers the goods to be delivered to the delivery port.
  • the delivery robot returns the to-delivered goods to the delivery port and returns to the first designated position.
  • the delivery robot runs on the ground of the field.
  • a target collection container is disposed at a position below the delivery port below the delivery port, and the delivery port is bound to a target collection container carrying a specific delivery address, so as to receive the goods to be delivered at the specific delivery address.
  • the first designated position refers to the position at which the delivery robot stops after the delivery robot completes delivery.
  • the supply station in the venue is used as the first designated location, ie the robot waits for the control server to reassign tasks for it near the supply station.
  • the control server allocates the first handling robot to the target collection container and plans a travel path for the first handling robot to generate
  • the conveyance command corresponding to the target collection container transmits the conveyance command to the first conveyance robot, and the conveyance command includes the travel path of the first conveyance robot.
  • the target collection container is disposed on the ground of the site, and one target collection container corresponds to at least one way, and the opening of the target collection container is the delivery opening.
  • a detecting device is provided at the delivery port, and the detecting device can detect the waiting to fall into the target collection container The quantity of goods delivered.
  • the first transfer robot travels to the target collection container according to the travel path of the first transfer robot in response to the conveyance command, and transports the target collection container to the goods collection station.
  • the first handling robot returns the target container to the second designated position after transporting the target container to the cargo collection station.
  • the first handling robot runs on the ground of the field.
  • the first transport robot may have an intelligent system, and can communicate with the control server to receive the transport command sent by the control server.
  • the transport command includes at least: a location of the cargo container, a transport address, and Path navigation information.
  • the first handling robot moves one or more items to be delivered in the target collection container from the position of the target collection container to the corresponding collection of goods according to the path navigation information in response to the handling instruction corresponding to the one or more delivery ports. Station.
  • the cargo sorting method further includes: the control server assigns the second transfer robot to the empty collection container and plans a travel path for the second transfer robot, generates a transport instruction corresponding to the empty collection container, and sends the transport instruction To the second transport robot, the transport command includes the travel path of the second transport robot.
  • the second transfer robot returns the empty collection container to the target collection container and returns to the second designated position in response to the conveyance command corresponding to the empty collection container, according to the travel path of the second transfer robot.
  • the delivery robot, the first handling robot, and the second handling robot are all running on the ground; the delivery port and the target collection container are bound by a binding instruction of the controller, and at least one target collection container is set on the ground. on.
  • At least one target container is placed to form a collection container group, and at least one collection container group is arranged in an array in a field, and the horizontal channel and the vertical channel between the different cargo container groups in the array constitute delivery.
  • the supply station and the cargo collection station are located on either side of the array of collection containers.
  • the cargo container is arranged in a polygonal outline in the field, the supply station is located in the polygonal contour, the cargo collection station is located outside the polygonal contour, and the area within the polygonal contour constitutes the walking path of the delivery robot, outside the polygonal contour The area constitutes a walking path of the first transfer robot and the second transfer robot.
  • the polygonal outline is a rectangular outline; the polygonal outline has an opening locally.
  • the delivery robot delivers the to-be-delivered goods to the delivery port, including: using a roller or a belt to pass the to-be-delivered goods carried by the roller or belt through the delivery port Delivered to the target collection container;
  • the delivery robot is provided with a feeding device; the height of the feeding device from the ground is greater than the height of the delivery port from the ground, and the feeding device is provided with a roller or a belt.
  • the embodiment of the present disclosure proposes a cargo sorting method.
  • the control server first generates a delivery instruction corresponding to each to-be-delivered goods according to the one or more delivery addresses of the goods to be delivered, and delivers a delivery instruction corresponding to each to-be-delivered goods.
  • the delivery robot delivers each to-be-delivered goods to the corresponding cargo container of each to-be-delivered goods in response to the delivery instruction corresponding to the goods to be delivered; and then collects the goods to be delivered in one or more cargo containers
  • the control server When the quantity is greater than the preset threshold, the control server generates a transport instruction corresponding to each cargo container according to the corresponding transport address of each cargo container; finally, the transport robot responds to the transport instruction corresponding to one or more cargo containers into each cargo container.
  • One or more to-be-delivered goods are transported to their corresponding handling address.
  • the handling robot may each according to a handling instruction sent by the controller.
  • One or more goods to be delivered in the cargo container are transported at a designated location, thereby avoiding the method of manually collecting the lead, which not only improves the efficiency of sorting, but also improves the accuracy of sorting.
  • FIG. 11 is a flow chart of a cargo sorting method in Embodiment 9 of the present disclosure.
  • the present embodiment is applicable to the case of sorting goods, and the method includes S1110-S1120.
  • the control server determines a delivery port according to the direction of the goods to be delivered, allocates a delivery robot to the to-be-delivered goods, and plans a travel path for the delivery robot, generates a delivery instruction corresponding to the to-be-delivered goods, and sends the delivery instruction Sending to the delivery robot, the delivery instruction including a travel path of the delivery robot;
  • the control server allocates the first handling robot to the target collection container and is the first a transport robot planning a travel route, generating a transport command corresponding to the target cargo container, and transmitting the transport command to the first transport robot, the transport command including a travel path of the first transport robot;
  • the delivery robot and the first handling robot both run on the ground of the site, the target collection container is disposed on the ground of the site, and one of the target collection containers corresponds to at least one direction, the target collection container
  • the opening is the delivery port.
  • the method further includes:
  • the control server allocates a second transfer robot to the empty collection container, and plans a travel route for the second transfer robot, generates a transfer instruction corresponding to the empty collection container, and sends the transfer instruction to the first a transport robot, wherein the transport command includes a travel path of the second transport robot;
  • the second handling robot runs on the ground of the field.
  • This embodiment has the same concept as the above-mentioned embodiment, and the descriptions already described in the above embodiments are not described herein again.
  • FIG. 12 is a schematic structural diagram of a server in Embodiment 10 of the present disclosure.
  • the embodiment of the present disclosure further provides a server, including:
  • One or more processors 1210 are One or more processors 1210;
  • a memory 1220 configured to store one or more programs
  • the one or more programs are executed by the one or more processors 1210 such that the one or more processors 1210 implement the method described above for server side execution.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the method described above by the server side.
  • Storage medium any one or more types of memory devices or storage devices.
  • the foregoing storage medium may be a volatile memory, such as a random access memory (RAM), or a non-volatile memory, such as a read-only memory.
  • RAM random access memory
  • ROM Read-Only Memory
  • flash memory flash memory
  • HDD Hard Disk Drive
  • SSD Solid-State Drive
  • the storage medium may further include: a compact disc read-only memory (CD-ROM), a floppy disk or a magnetic tape device; a computer system memory or a random access memory such as a dynamic random access memory (Dynamic Random Access Memory, DRAM), (Double Data Rate Random Access Memory, DDR RAM), Static Random Access Memory (SRAM), Extended Data Output Random Access Memory (EDO RAM), Lan A Rambus Random Access Memory (Rambus RAM) or the like; a non-volatile memory such as a flash memory, a magnetic medium such as a hard disk or an optical storage; a register or other similar type of memory element or the like.
  • the storage medium may also include other types of memory or a combination thereof.
  • the processor may be an Application Specific Integrated Circuit (ASIC), a Digital Signal Processor (DSP), a Digital Signal Processing Device (DSPD), or a Programmable Logic Device (Programmable Logic). Device, PLD), at least one of a Field Programmable Gate Array (FPGA), a Central Processing Unit (CPU), a controller, a microcontroller, and a microprocessor.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • CPU Central Processing Unit
  • controller a controller
  • microcontroller a microcontroller

Abstract

一种货物分拣系统及方法,该系统包括:控制服务器(101),设置为根据待投递货物的路向确定投递口,分配投递机器人(102)并为投递机器人(102)规划行进路径,生成投递指令并发送至投递机器人(102),投递机器人(102),设置为行进到投递口处,将待投递货物投递至投递口;控制服务器(101),还设置为当投递口下方的目标集货容器收集到的货物数量大于或等于预设阈值时,分配第一搬运机器人(103)并为第一搬运机器人(103)规划行进路径,生成搬运指令并发送至第一搬运机器人(103);第一搬运机器人(103),设置为根据行进路径行进到目标集货容器处,将目标集货容器搬运至货物收集工位。还包括一种服务器和存储介质。

Description

货物分拣系统及方法
本申请要求在2018年05月18日提交中国专利局、申请号为201810480980.8的中国专利,以及在2018年11月26日提交中国专利局、申请号为201811419175.0的中国专利的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及机器人技术,例如涉及货物分拣系统及方法。
背景技术
随着产业分工和物联网的迅速发展,物流产业也高速发展,逐渐壮大,给人们的生活带来了便利,提高了人们的生活质量。越来越大的物流量给物流中心带来效益的同时也让货物分拣成为了关键问题,如果稍有不注意,就会造成分类错误,导致配送失误,降低配送效率。为了减少配送失误,提高配送效率,货物分拣系统应运而生。
相关技术中的货物分拣系统包括交叉带分拣系统和机器人钢平台分拣系统。交叉带式分拣系统,由主驱动带式输送机和载有小型带式输送机的台车联接在一起,当“小车”行驶到所规定的投递口时,转动皮带,将包裹投递至投递口内,沿着滑槽向下滑落到位于投递口下方的货物容器中,采用人工方式在一个或多个货物容器中收集和缓存待投递货物。机器人钢平台分拣系统包括:控制服务器、投递机器人、钢平台和货物容器,其中,钢平台架设在距离地面一定高度的位置,钢平台上设置多个投递口,控制服务器控制投递机器人将待投递货物从投递口投下后,沿着滑槽向下滑落到位于投递口下方的货物容器中,采用人工方式在一个或多个货物容器中收集和缓存待投递货物。
交叉带分拣系统设计完成之后,投递口数量就确定,再次扩展较难;“链条式”串行工作模式,一个环节出问题可能导致整个分拣系统瘫痪,影响正常的生产作业。同时交叉带分拣系统分拣完成后的包裹容器通过人工二次搬运,效率较低,人工成本高。机器人钢平台分拣系统中的钢平台建造成本高、施工 复杂、且搬迁和扩展灵活性差,且机器人密度高,相互的等待较多,投递时停止,效率受到影响。包裹容器仍然进行二次收集并分线路搬运到出货口或者卡车装载位置,人工需求量大,人力成本高。
采用人工方式在一个或多个货物容器中收集和缓存待投递货物,当待投递货物的数量很庞大时,不仅货物分拣效率较低,而且货物分拣准确性也较低。
发明内容
本公开实施例提供一种货物分拣系统及方法,至少部分地实现提高货物的分拣效率,降低人力成本,提高分拣系统的扩展灵活性,以及提高货物分拣的准确性。
在一实施例中,本公开实施例提供了一种货物分拣系统,包括:一控制服务器、多个投递机器人和多个第一搬运机器人,所述控制服务器分别与所述多个投递机器人和所述多个第一搬运机器人通信连接;其中,
所述控制服务器,设置为根据待投递货物的路向确定投递口,为所述待投递货物分配所述投递机器人并为所述投递机器人规划行进路径,生成所述待投递货物对应的投递指令,将所述投递指令发送至所述投递机器人,所述投递指令包含所述投递机器人的行进路径;
所述投递机器人,设置为响应于所述投递指令,根据所述投递机器人的行进路径行进到所述投递口处,将所述待投递货物投递至所述投递口;
所述控制服务器,还设置为在所述投递口下方的目标集货容器中收集到的货物数量大于或等于预设阈值的情况下,为所述目标集货容器分配所述第一搬运机器人并为所述第一搬运机器人规划行进路径,生成与所述目标集货容器对应的搬运指令,将所述搬运指令发送至所述第一搬运机器人,所述搬运指令包含所述第一搬运机器人的行进路径,所述目标集货容器设置在场地地面上,一个所述目标集货容器对应至少一个路向,所述目标集货容器的开口为所述投递口;
所述第一搬运机器人,设置为响应于所述搬运指令,根据所述第一搬运机器人的行进路径行进到所述目标集货容器处,将所述目标集货容器搬运至货物收集工位。
在一实施例中,本公开实施例还提供了一种货物分拣方法,包括:
控制服务器根据待投递货物的路向确定投递口,为所述待投递货物分配投递机器人并为所述投递机器人规划行进路径,生成与所述待投递货物对应的投递指令,将所述投递指令发送至所述投递机器人,所述投递指令包含所述投递机器人的行进路径;
所述投递机器人响应于所述投递指令,根据所述投递机器人的行进路径行进到所述投递口处,将所述待投递货物投递至所述投递口后返回至第一指定位置,所述投递机器人运行在场地地面上;
在所述投递口下方的目标集货容器中收集到的货物数量大于或等于预设阈值的情况下,所述控制服务器为所述目标集货容器分配第一搬运机器人并为所述第一搬运机器人规划行进路径,生成与所述目标集货容器对应的搬运指令,将所述搬运指令发送至所述第一搬运机器人,所述搬运指令包含所述第一搬运机器人的行进路径,所述目标集货容器设置在场地地面上,一个所述目标集货容器对应至少一个路向,所述目标集货容器的开口为所述投递口;
所述第一搬运机器人响应于所述搬运指令,根据所述第一搬运机器人的行进路径行进到所述目标集货容器处,将所述目标集货容器搬运至货物收集工位,所述第一搬运机器人运行在场地地面上。
在一实施例中,本公开实施例提供一种货物分拣方法,包括:
控制服务器根据待投递货物的路向确定投递口,为所述待投递货物分配投递机器人并为所述投递机器人规划行进路径,生成与所述待投递货物对应的投递指令,将所述投递指令发送至所述投递机器人,所述投递指令包含所述投递机器人的行进路径;
在所述投递口下方的目标集货容器中收集到的货物数量大于或等于预设阈值的情况下,所述控制服务器为所述目标集货容器分配第一搬运机器人并为所述第一搬运机器人规划行进路径,生成与所述目标集货容器对应的搬运指令,将所述搬运指令发送至所述第一搬运机器人,所述搬运指令包含所述第一搬运机器人的行进路径;
其中,所述投递机器人和所述第一搬运机器人均运行在场地地面上,所述 目标集货容器设置在场地地面上,一个所述目标集货容器对应至少一个路向,所述目标集货容器的开口为所述投递口。
在一实施例中,本公开实施例提供一种服务器,包括:
一个或多个处理器;
存储器,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述服务器侧执行的所述的方法。
在一实施例中,本公开实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述服务器侧执行的所述的方法。
附图说明
图1是本公开实施例一中的货物分拣系统的结构示意图;
图2a是本公开实施例二中的一组分拣系统的布局示意图;
图2b是本公开实施例二中的一组分拣系统的布局示意图;
图3是本公开实施例三中的投递机器人和搬运机器人的结构示意图;
图4是本公开实施例三中的投递机器人移动投递货物的示意图;
图5是本公开实施例四中的货物分拣方法的流程图;
图6是本公开实施例五中的货物分拣系统的结构示意图;
图7是本公开实施例六中的货物分拣系统的结构示意图;
图8是本公开实施例七中的分拣系统布局的示意图;
图9是本公开实施例七中的分拣系统布局的示意图;
图10是本公开实施例八中的货物分拣方法的流程图;
图11是本公开实施例九中的一种货物分拣方法的流程图;
图12是本公开实施例十中的一种服务器的结构示意图。
具体实施方式
下面结合附图和实施例对本公开进行说明。此处所描述的实施例仅仅用于解释本公开,而非对本公开的限定。为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
实施例一
图1是本公开实施例一中的货物分拣系统的结构示意图,本实施例可适用于分拣货物的情况,该货物分拣系统包括:一控制服务器101、多个投递机器人102和多个搬运机器人103。多个投递机器人102和多个搬运机器人103均运行在场地地面上,目标集货容器设置在场地地面上,一个目标集货容器对应至少一个路向,目标集货容器的开口为投递口。
在本实施例中,控制服务器101分别与多个投递机器人102和多个搬运机器人103建立通信连接,设置为实现整个货物分拣系统的控制和调度。在一实施例中,控制服务器101是指具有数据存储、信息处理能力的软件系统,可以通过有线或无线与投递机器人102、搬运机器人103以及系统中的其他硬件输入系统或软件系统连接。控制服务器101可以给投递机器人102和搬运机器人103发布任务,向工人传递信息、统计目标集货容器中的待投递货物的情况、向投递机器人102和搬运机器人103下达控制命令等。
控制服务器101,设置为根据待投递货物的路向信息确定路向信息中的路向对应的目标集货容器,为待投递货物分配投递机器人102,并依据目标集货容器的位置为投递机器人102规划投递路径,生成待投递货物对应的投递指令,将投递指令发送至投递机器人102,投递指令包含投递机器人102的投递路径。
在本实施例中,待投递货物的路向信息是指待投递货物收件地址的城市。路向可以理解为待投递货物的收件地址。在一实施例中,根据待投递货物的路向信息对待投递货物进行归类和分拣。待投递货物的路向信息中包含路向对应的目标集货容器,控制服务器101预先存储路向与目标集货容器的对应关系,控制服务器101获取到待投递货物的路向信息后,根据待投递货物的路向在控制服务器101的数据库中进行查询,确定待投递货物的路向对应的目标集货容器。在一实施例中,控制服务器101为待投递货物分配的投递机器人102的数量为一个或多个,控制服务器101为待投递货物分配的投递机器人102的数量与待投递货物的数量相关。在一实施例中,一个投递机器人102投递一个待投 递货物。在另一实施例中,一个投递机器人102投递两个待投递货物。
在本实施例中,路向信息由供货台的扫码设备扫描货物的二维码或者条形码获得,并发送至控制服务器101。在一实施例中,货物通过传输线的滑槽送到工人面前,工人获取货物之后,将货物放置在投递机器人102上。其中,投递机器人102在供货台附近的区域以弧线行驶。因此,工人可以在位于供货台左侧、右侧和前侧方向上的投递机器人102放置货物。投递机器人在进入供货台之后,降速行驶或者停止预设时间之后继续行驶。这样,在避免阻塞路径的同时,便于工人将货物放置在投递机器人上。承载货物的投递机器人102继续行驶,通过供货台的扫描设备,通过扫码设备扫描货物的二维码或者条形码获取货物的路向信息。在一实施例中,当扫描设备未获取到货物的路向信息时,投递机器人102将货物投递至异常目标集货容器之后返回供货台排队。
投递机器人102,设置为响应于投递指令,根据投递路径行驶到目标集货容器处,通过投递机构将待投递货物投递至目标集货容器。
在本实施例中,目标集货容器可以是常见的用于收纳待投递货物的容器,比如:常见的笼车等。目标集货容器通常设置为承载具有共同属性的物品。示例性的,目标集货容器可以是承载发送给北京市海淀区的待投递货物。
在一实施例中,投递机器人102将待投递货物投递至目标集货容器后,投递机器人102返回到供货台继续执行下次投递任务。
控制服务器101,还设置为当目标集货容器中收集到的货物满足收集条件时,锁住目标集货容器,为目标集货容器分配搬运机器人103,并根据目标集货容器的位置为搬运机器人103规划搬运路径,生成与目标集货容器对应的搬运指令,将搬运指令发送至搬运机器人103,搬运指令包含搬运机器人103的搬运路径。
在本实施例中,收集条件是指目标集货容器已满,不能承载多余的货物。本实施例提供三种获取目标集货容器中收集到的货物满足收集条件的实施方式,在一种实施方式中,投递机器人102向控制服务器101发送目标集货容器已满的信息。
在另一种实施方式中,控制服务器101根据每个货物的体积和目标集货容器内货物的数量,估算目标集货容器内货物的体积,根据目标集货容器内货物的体积与目标集货容器的容积进行比较,若目标集货容器内货物的体积大于目 标集货容器的容积,则目标集货容器中收集到的货物满足收集条件。
在又一种实施方式中,在目标集货容器的上沿安装一个外红传感器和无线模块,当红外传感器检测到目标集货容器已满以后,将目标集货容器已满的信息通过无线模块发送至控制服务器101。
在一实施例中,控制服务器101分配的搬运机器人103的数量为一个或多个。控制服务器101分配的搬运机器人103的数量与待搬运的目标集货容器的数量相关。在一实施例中,一个搬运机器人103搬运一个目标集货容器。
控制服务器101接收到目标集货容器已满的信息之后,锁住目标集货容器,禁止投递机器人102向该目标集货容器投递货物。控制服务器101为目标集货容器分配搬运机器人103,并获取目标集货容器的位置信息,根据目标集货容器的位置为搬运机器人103规划搬运路径,生成与目标集货容器对应的搬运指令,将搬运指令发送至搬运机器人103,搬运指令包含搬运机器人103的搬运路径。
搬运机器人103,设置为响应于搬运指令,根据搬运机器人103的搬运路径行驶到目标集货容器处,将目标集货容器搬运至货物收集工位。
在本实施例中,搬运机器人103可以自身拥有智能系统,能够与控制服务器101进行通信,接收控制服务器101发送的搬运指令。在一实施例中,搬运指令至少包括:目标集货容器的位置以及路径导航信息。搬运机器人103响应于一个或多个目标集货容器对应的搬运指令,根据其路径导航信息将目标集货容器中的待投递货物由目标集货容器的位置搬运至与其对应的货物收集工位。
在本实施例中,搬运机器人103将装满货物的目标集货容器搬运走之后,为了避免待投递货物落在地上,控制服务器101同时分配另外一个搬运机器人搬运一个空集货容器至对应的目标集货容器处。为空集货容器分配一个搬运机器人,根据空集货容器的当前位置以及原先的目标集货容器的位置为搬运机器人规划行进路径,生成空集货容器对应的搬运指令,并将搬运指令发送至另外一个搬运机器人,搬运指令包含另外一个搬运机器人的行进路径。
在一实施例中,控制服务器101为机器人规划的路径为环形路径。上述机器人包括投递机器人102和搬运机器人103,即投递机器人102的行走路径为环形路径,搬运机器人103的行走路径也为环形路径。在一实施例中,环形路径的转弯处为弧形。
在本实施例中,投递机器人102的环形投递路径和搬运机器人103的环形搬运路径,均有直线路径和弧形路径构成。其中,弧形路径是指机器人在转弯时采用弧形路径行驶,可以实现机器人在转弯时不停止,节省机器人的运行时间。
在一实施例中,控制服务器101,是设置为当投递机器人102和/或搬运机器人103在直线路径行驶时,采用惯性导航为主、视觉导航为辅的方式控制投递机器人102和/或搬运机器人103直线行驶。控制服务器101,是设置为当投递机器人102和/或搬运机器人103在弧形路径行驶时,通过双轮差动驱动的方式控制投递机器人102和/或搬运机器人103弧形行驶。
在本实施例中,当机器人直线行驶时,机器人采用双融合的定位方式,控制服务器101采用惯性导航为主、视觉导航为辅的方式控制机器人直线行驶,工作区域每隔一段距离设有一个定位地标,在地标与地标之间的距离,机器人采用惯性导航定位,并利用定位地标准确定位,以及纠正惯性导航定位带来的误差,以保证直线行驶。其中,机器人包括投递机器人102和搬运机器人103。
在本实施例中,当机器人在弧形路径行驶时,控制服务器101通过双轮差动驱动的方式控制投递机器人102和/或搬运机器人103弧形行驶。机器人采用双轮差动驱动方式,即机器人的左右两个轮子采用两个驱动电机,左右电机差速驱动可以改变机器人的航向,机器人左右两个电机的差速可以由控制服务器101根据工作区域的大小,机器人的体积以及机器人的转弯半径来计算。
本公开实施例提供的货物分拣系统,包括控制服务器、投递机器人和集货容器群组;集货容器群组包括多个集货容器组,多个集货容器组以阵列方式分布在场地中,阵列空隙形成的横向通道和纵向通道为机器人的行驶通道,投递机器人包括机器人本体以及设置在机器人本体上的投递机构;首先,通过根据待投递货物的路向信息确定路向信息中的路向对应的目标集货容器,为待投递货物分配投递机器人,并依据目标集货容器的位置为投递机器人规划投递路径,生成与待投递货物对应的投递指令,将投递指令发送至投递机器人;然后投递机器人根据投递路径行驶到目标集货容器处,通过投递机构将待投递货物投递至目标集货容器。本公开实施例提供的技术方案可以提高货物的分拣效率,降低人力成本,同时提高分拣系统的扩展灵活性。
实施例二
本实施例在上述实施例的基础上,优化了货物分拣系统。图2a是本公开实施例二中的一组分拣系统的布局示意图。
在本实施例中,货物分拣系统中还包括集货容器群组;集货容器群组包括多个集货容器组,一个集货容器组包括至少一个目标集货容器,多个集货容器组以阵列方式分布在场地中,阵列空隙形成的横向通道(或间隙)和纵向通道为机器人的行驶通道,一个目标集货容器对应至少一个路向,所述目标集货容器的开口为待投递货物的投递口。
如图2a所示,机器人行驶在至少一组工作区域中,每组工作区域包括依次排列的第一列子区域201、第二列子区域202、第三列子区域203、第四列子区域204、第五列子区域205和第六列子区域206。其中,第一列子区域201、第二列子区域202、第五列子区域205和第六列子区域206宽度大于第三列子区域203和第四列子区域204的宽度;第二列子区域202和第五列子区域205设置为放置目标集货容器。
在一实施例中,一组分拣系统的工作区域布局包括供货台、货物收集工位、集货容器群组和控制服务器规划的路径。在本实施例中提供的一组分拣系统中包括2个供货台212、货物收集工位210和6个集货容器组,每个集货容器组包括3个目标集货容器207。在一实施例中,每个集货容器组中的目标集货容器的个数可以灵活的设置,最少为1个。图2a仅仅示出了2个供货台212、一个货物收集工位210和6个集货容器组构成的一组分拣系统,在实际应用中,供货台的数量、货物收集工位的数量、集货容器组的数量以及每个集货容器组中目标集货容器的个数都可以根据要求进行设计。整个工作区域也可以根据实际情况设置多组分拣系统。
在一实施例中,每两个集货容器组为一对,任意两对集货容器组之间的通道宽度大于任意一对集货容器组内的两个集货容器组之间的通道宽度。
在一实施例中,任意两对集货容器组之间的通道为所述搬运机器人的行驶通道。
在一实施例中,放置目标集货容器207的第二列子区域202和第五列子区域205的单元格可以按照目标集货容器的尺寸来设置。示例性的,目标集货容 器207是900mm×900mm,那么,第二列子区域202和第五列子区域205的单元格可以涉及为1m×1m。这样,可以在两列目标集货容器207之间存在100mm的安全余量。两对集货容器组之间的安全余量可以根据机器人运行的精度进行灵活的设置。
控制服务器,设置为在第一列子区域201和第三列子区域203或者在第四列子区域204和第六列子区域中为投递机器人211规划环形投递路径208;控制服务器,还设置为在第一列子区域201和第六列子区域206中为搬运机器人(图中未示出)规划环形搬运路径209。
在一实施例中,由图2a所示,投递路径208和搬运路径209是目标集货容器207周围的横向通道和纵向通道构成的环形通道构成,投递机器人的环形投递路径208和搬运机器人的环形搬运路径209,均有直线路径和弧形路径构成。其中,弧形路径是指机器人在转弯时采用弧线路径行驶,可以实现机器人在转弯时不停止,节省机器人的运行时间。投递机器人的环形投递路径208和搬运机器人的环形搬运路径209处于直线路径时,均从单元格的中心位置通过。
在一实施例中,所述任意一对集货容器组内的两个集货容器组之间的通道为所述投递机器人的行驶通道。
在本实施例中,一对集货容器组内两个集货容器组之间的第三列子区域203和第四列子区域204仅是投递机器人的行驶路径,不作为搬运机器人的行驶路径。因此,我们可以将第三列子区域203和第四列子区域204的宽度设置为小于第一列子区域201、第二列子区域202、第五列子区域205和第六列子区域206的宽度。这样可以在较小的工作区域中设置更多的目标集货容器,同样数量的目标集货容器在较小的场地中就可以实现,节省空间。在一实施例中,投递路径和搬运路径为同向路径,即搬运路径和投递路径均为顺时针行驶或者均为逆时针行驶。在一实施例中,第一列子区域201和第六列子区域206中,投递路径208和搬运路径209重合,即投递机器人和搬运机器人使用同一条行驶路径。
本实施例中,提供另外一种分拣系统的布局方案,图2b是本公开实施例二中的一组分拣系统的布局示意图。如图2b所示,每组工作区域包括依次排列的第一列子区域2011、第二列子区域2012、第三列子区域2013、第四列子区域2014、第五列子区域2015和第六列子区域2016。在本实施例中,所有子区域的 宽度均相同,这样设置的好处在于,第三列子区域2013、第四列子区域2014中靠近工人位置的货物收集工位2110也能够放置装载货物的目标集货容器。在一实施例中,图2b中的分拣系统的布局只有第三列子区域2013和第四列子区域2014的宽度和图2a中第三列子区域203和第四列子区域204的宽度不同。图2b中其他区域的布局方案,例如第一列子区域2011、第二列子区域2012、第五列子区域2015、第六列子区域2016、供货台的位置、工人工作区域、投递路径和搬运路径等,均与图2a中的布局方案相同。与图2a中相同的布局方案,图2b中未示出。
在本实施例中,所述搬运机器人的行驶通道中的地标位于单元格的中心位置处,所述投递机器人的行驶通道中的地标位于单元格的靠近投递口处。
如图2a所示,在一实施例中,在每个单元格中都设置有用于定位的地标,第一列子区域201和第六列子区域206的地标位于相应单元格的中心位置处,第三列子区域203和第四列子区域204的地标位于单元格的靠近投递口处。这样可以使得投递机器人与目标集货容器靠近,避免包裹掉在地上,提升投递的安全性。在一实施例中,为了达到增加投递可靠性的目的,也可以将地标设置在每个单元格的中心位置,在笼车上设计机构滑槽,或者将笼车放置在更靠近投递路线的位置,或者将投递机构设计成外翻结构,使得包裹可以很准确的投递到笼车中。本公开实施例还提供一种实施方式,增加机构投递的投递速度,保证包裹能越过投递机构与笼车之间的空隙,实现准确投递。
本实施例中提供另外一种实施方式,第三列子区域203和第四列子区域204的地标位设置在相应单元格的中心位置,而目标集货容器放置在靠近第三列子区域203和第四列子区域204的位置处。
在本实施例中,如图2a所示,供货台212设置供件工人的工作位置,其中,供货台212设在在场地的一侧,货物收集工位210设置在供货台212相对侧。在一实施例中,供货工人可以直接站在地面上、站地面以下或通过垫高的方式位于地面之上。在供货台前设置装载未分拣货物的笼车安放区,每个供货台附近设置至少两个单元格的笼车安放区。本实施例中,投递机器人102在供货台212附近的行驶路径不做限定。在一实施例中,投递机器人102在供货台附近的区域以弧形行驶。
在本实施例中,货物收集工位设置取件工人的工作位置。搬运机器人到达货物收集工位后一字排列,方便取件工人将目标集货容器取走,并放置空集货容器在搬运机器人上。通过货物收集工位的扫描装置将空集货容器与路向信息进行绑定,并规划搬运机器人的环形路径,将空集货容器搬运至其对应的目标容器出。在一实施例中,为了提高目标集货容器的使用效率,在货物收集工位设置空集货容器区和满集货容器区。
在本实施例中,为了避免取件工人在取走满目标集货容器或者放置空集货容器的过程中,目标集货容器偏离标准位置,通常采用相应的固定装置。在一实施例中,可以在搬运机器人上设置固定装置,固定目标集货容器。或者在货物收集工位所在的单元格内设置固定装置,固定目标集货容器。
在本实施例中,当目标集货容器的总数量大于所有路向的总数量时,任意一个路向分别与至少一个目标集货容器进行绑定,在一个路向与至少两个目标集货容器绑定的情况下,所述至少两个目标集货容器分别属于不同的集货容器组。
在一实施例中,当目标集货容器的总数量大于所有路向的总数量时,将任意一个待投递货物的路向分别与属于不同投递组的至少一个目标集货容器进行绑定。当工作区域中目标集货容器数量大于待投递货物路向的数量时,可以通过控制服务器设置多个目标集货容器对应相同的路向信息,且多个目标集货容器分布在不同的投递环路中,这样可以减少投递机器人在环路中的穿梭。此外,当一个目标集货容器已满,被锁定之后,投递机器人可以将货物投递至相同路径信息的目标集货容器中。
在一实施例中,由于投递机器人比搬运机器人行驶更加频繁,服务器可以将货物比较多的路向设置为高热度路向,将高热度路向布局在距离供货台较近的投递口,这样可以缩短投递机器人的行驶距离,进而缩短投递时间。
本公开实施例中,将第三列子区域和第四列子区域的宽度设置为小于第一列子区域、第二列子区域、第五列子区域和第六列子区域的宽度。这样可以在较小的工作区域中设置更多的目标集货容器,同样数量的目标集货容器在较小的场地中就可以实现,节省空间。当工作区域中目标集货容器的总数量大于待投递货物的所有路向的总数量时,可以通过控制服务器设置多个目标集货容器 对应相同的路向,且多个投递口分布在不同的投递环路中,这样可以减少投递机器人在环路中的穿梭。
实施例三
本实施例在上述实施例的基础上,优化了货物分拣系统。图3是本公开实施例三中的投递机器人和搬运机器人的结构示意图。
如图3所示,投递机器人包括投递机器人本体302以及设置在投递机器人本体上的投递机构301,搬运机器人包括顶升式装置303和搬运机器人本体304。在一实施例中,投递机器人上设置投递机构301,投递机构301上表面距离地面的高度大于或等于目标集货容器305的上表面距离地面的高度,搬运机器人上设置顶升式装置303,搬运机器人顶升式装置303上表面的高度小于目标集货容器下表面距离地面的高度。在一实施例中,所述投递机构301采用皮带传送方式、翻板投递方式或者推送方式投递货物。
在一实施例中,投递机器人在弧线路径行驶时,投递机构301和投递机器人本体302以相同方向相同转速转动;搬运机器人在弧形路径行驶时,顶升式装置303和搬运机器人本体304相对旋转。投递机器人在弧线路径行驶时,投递机构301和投递机器人本体302一起旋转,不产生相对旋转。搬运机器人在弧线路径行驶时,顶升式装置303和搬运机器人本体304相对旋转,保持目标集货容器相对于地面不旋转。
在本实施例中,投递机器人上安装有传感器,传感器探测头指向目标集货容器上沿,设置为检测目标集货容器是否装满货物;当目标集货容器装满货物时,向控制服务器发送目标集货容器已满的消息。例如,这个传感器可以是红外探测头,如果货物冒出目标集货容器(即,目标集货容器已经装满货物),红外线就会打在货物上会有信号反馈,机器人就会知道目标集货容器装满了,如果没有信号反馈,就说明没有装满。另外,服务器也可以根据每个投递的货物的尺寸以及目标集货容器的容量估算出目标集货容器是否装满。为提高检测准确度,本申请中也可以结合上述两种方式进行检测。
在一种可实现方式中,传感器安装在投递机构301的下沿,投递机器人经过一个或多个笼车时,可以探测到是否有包裹超过笼车的上沿,当传感器探测 到有包裹超过笼车的上沿时,则认为笼车收集的包裹体积达到目标集货容器的最大容量,笼车已满。
当控制服务器接收到目标集货容器已满的信息时,控制服务器将该目标集货容器锁定,即投递机器人不再向该目标集货容器投递货物。控制服务器查找具有相同路向信息的目标集货容器,重新规划投递路径,使投递机器人将货物投递至具有相同路向的投递口。若没有查找到具有相同路向的投递口,则控制投递机器人在工作区域内持续绕环形路径行驶。当搬运机器人将空集货容器搬运到原目标集货容器处后,控制服务器解除该目标集货容器的锁定,投递机器人行驶至该投递口执行投递任务。
投递机器人,是设置为响应于投递指令,根据投递路径行驶到目标集货容器处,且在行驶过程中通过投递机构将待投递货物投递至目标集货容器。图4是本公开实施例三中的投递机器人移动投递货物的示意图,如图4所示,当投递机器人的第一边界401与投递口的第一边界403重合时,投递机器人保持行驶并开始执行投递动作,待投递货物投递至投递口对应的目标集货容器;当投递机器人第二边界402与投递口404的第二边界重合时,保持行驶并终止投递动作。在一实施例中,边界405是指投递机器人的第一边界401与投递口的第一边界403重合时,投递机器人第二边界的位置;边界406是指投递机器人第二边界402与投递口404的第二边界重合时,投递机器人第一边界的位置。机器人投递的安全范围为L,当投递机器人的运行速度为V时,投递机构的投递动作必须在T时间内完成,其中,T=L/V。当投递机构的投递动作在T时间内没有完成时,停止投递动作,将待投递包裹投递至异常投递口。或者重新行驶一个环路之后再次进行投递。
本实施例中,投递机器人上设置投递机构,投递机构上表面距离地面的高度大于或等于目标集货容器的上表面距离地面的高度,可以使投递机构将货物投递至目标集货容器,不容易掉落。投递机器人根据环形投递路径持续行驶到投递口处,且在投递口的投递范围内行驶过程中将待投递货物投递至投递口后返回。投递机器人在投递的过程中持续行驶,可以减少机器人的投递时间,提高工作效率。
实施例四
图5是本公开实施例四中的一种货物分拣方法的流程图,本实施例可适用于分拣货物的情况,该方法由货物分拣系统来执行,如图5所示,该货物分拣方法包括S510至S540。
S510、控制服务器根据待投递货物的路向信息确定路向信息中的路向对应的目标集货容器,为待投递货物分配投递机器人,并依据所述目标集货容器的位置为投递机器人规划投递路径,生成与所述待投递货物对应的投递指令,将所述投递指令发送至所述投递机器人,所述投递指令包含所述投递机器人的投递路径。
S520、所述投递机器人响应于所述投递指令,根据所述投递机器人的投递路径行驶到所述目标集货容器处,将所述待投递货物投递至所述目标集货容器;
其中,所述目标集货容器为集货容器群组中的任意一个集货容器,所述集货容器群组包括多个集货容器组,一个集货容器组包括至少一个目标集货容器,多个集货容器组以阵列方式分布在场地中,阵列空隙形成的横向通道和纵向通道为机器人的行驶通道,一个目标集货容器对应至少一个路向,所述目标集货容器的开口为货物的投递口。
S530、控制服务器确定所述目标集货容器中收集到的货物是否满足收集条件。
S540、当所述目标集货容器中收集到的货物满足收集条件时,所述控制服务器锁住所述目标集货容器,为所述目标集货容器分配搬运机器人,并根据所述目标集货容器的位置所述搬运机器人规划搬运路径,生成与所述目标集货容器对应的搬运指令,将所述搬运指令发送至所述搬运机器人,所述搬运指令包含所述搬运机器人的搬运路径。
S550、所述搬运机器人响应于所述搬运指令,根据所述搬运机器人的搬运路径持续行驶到所述目标集货容器处,将所述目标集货容器搬运至货物收集工位。
在一实施例中,所述控制服务器为机器人规划的路径为环形路径。
在一实施例中,所述环形路径的转弯处为弧形。
在一实施例中,所述投递机器人响应于所述投递指令,根据所述投递路径行驶到所述目标集货容器处,通过所述投递机构将所述待投递货物投递至所述目标集货容器,包括:
所述投递机器人响应于所述投递指令,根据所述投递机器人的投递路径行驶到所述目标集货容器处,且在行驶过程中通过所述投递机构将所述待投递货物投递至所述目标集货容器中。
在一实施例中,当所述目标集货容器的总数量大于所有路向的总数量时,任意一个路向分别与至少一个所述目标集货容器进行绑定,在一个路向与至少两个目标集货容器绑定的情况下,所述至少两个目标集货容器分别属于不同的集货容器组。
在一实施例中,所述控制服务器确定所述目标集货容器中收集到的货物是否满足收集条件包括:
所述投递机器人通过传感器检测所述目标集货容器是否装满货物,当所述目标集货容器装满货物时,向所述控制服务器发送所述目标集货容器已满的消息;
或者,
所述控制服务器根据所述目标集货容器的容积以及所述待投递货物的尺寸预估所述目标集货容器是否装满货物。
本公开实施例提供的货物分拣方法,首先,通过根据待投递货物的路向信息确定路向信息中的路向对应的目标集货容器,为待投递货物分配投递机器人,并依据目标集货容器的位置为投递机器人规划投递路径,生成与待投递货物对应的投递指令,将投递指令发送至投递机器人;然后投递机器人根据投递路径行驶到目标集货容器处,通过投递机构将待投递货物投递至目标集货容器,其中,所述目标集货容器为集货容器群组中的任一集货容器,所述集货容器群组包括多个集货容器组,一个集货容器组包括至少一个目标集货容器,多个集货容器组以阵列方式分布在场地中,阵列空隙形成的横向通道和纵向通道为机器人的行驶通道,一个目标集货容器对应至少一个路向,所述目标集货容器的开口为货物的投递口。本公开实施例提供的技术方案可以实现提高货物的分拣效率,降低人力成本,同时提高分拣系统的扩展灵活性。
实施例五
图6是本公开实施例五中的货物分拣系统的结构示意图,本实施例可适用于货物分分拣的情况,该货物分拣系统包括:一控制服务器601、多个投递机器人602和多个第一搬运机器人603,所述控制服务器分别与所述多个投递机器人和所述多个第一搬运机器人通信连接。
在本实施例中,控制服务器601分别与多个投递机器人602和多个第一搬运机器人603建立通信连接,设置为对整个货物分拣系统进行控制和调度。在一实施例中,控制服务器601是指具有数据存储、信息处理能力的软件系统,可以通过有线或无线与投递机器人602、第一搬运机器人603以及系统中的其他硬件输入系统或软件系统连接。控制服务器601可以给投递机器人602和第一搬运机器人603发布任务,向工人传递信息、统计目标集货容器中的待投递货物的情况、向投递机器人602和第一搬运机器人603下达控制命令等。
在一实施例中,多个投递机器人602和多个第一搬运机器人603均运行在场地地面上,目标集货容器设置在场地地面上,一个目标集货容器对应至少一个路向,目标集货容器的开口为投递口。
控制服务器601,设置为根据待投递货物的路向确定投递口,为待投递货物分配投递机器人602并为投递机器人602规划行进路径,生成待投递货物对应的投递指令,将投递指令发送至投递机器人602,投递指令包含投递机器人602的行进路径。
在本实施例中,待投递货物的路向可以理解为待投递货物的收件地址,收件地址是指多个待投递货物分别具有各自独立的收件地址。收件地址是指待投递货物最终的流向地址。在一实施例中,根据待投递货物的收件地址对待投递货物进行归类和分拣。在一实施例中,投递机器人602的数量可以为一个或多个,控制服务器601为待投递货物分配的投递机器人602的数量为至少一个。控制服务器601为待投递货物分配的投递机器人602的数量与待投递货物的数量相关。在一实施例中,一个投递机器人602投递一个待投递货物。在另一实施例中,一个投递机器人602投递两个待投递货物。
在一实施例中,待投递货物的收件地址对应不同的投递口,控制服务器601预先存储收件地址与投递口的对应关系,控制服务器601获取到待投递货物的 收件地址后,根据待投递货物的收件地址在控制服务器601的数据库中进行查询,确定待投递货物的收件地址对应的投递口。
投递机器人602,设置为响应于投递指令,根据投递机器人602的行进路径行进到投递口处,将待投递货物投递至投递口后返回至第一指定位置。
在本实施例中,投递口下方低于投递口的位置设置有目标集货容器,投递口与承载具体收货地址的目标集货容器进行绑定,以便于接收具体收货地址的待投递货物。第一指定位置是指投递机器人602完成投递之后,投递机器人602停车的位置。在一实施例中,将场地内的供货台作为第一指定位置,即投递机器人602在供货台附近等待控制服务器为其再次分配任务。
目标集货容器可以是常见的用于收纳待投递货物的容器,比如:常见的笼车、包裹袋等。目标集货容器通常设置为承载具有共同属性的物品,在一实施例中,目标集货容器可以是承载具体收货地址的待投递货物,示例性的,目标集货容器可以是承载发送给北京市海淀区的待投递货物。
控制服务器601,还设置为当投递口下方的目标集货容器中收集到的货物数量大于或等于预设阈值时,为目标集货容器分配第一搬运机器人603并为第一搬运机器人603规划行进路径,生成与目标集货容器对应的搬运指令,将搬运指令发送至第一搬运机器人603,搬运指令包含第一搬运机器人603的行进路径。
在一实施例中,控制服务器601分配的第一搬运机器人603的数量为一个或多个。控制服务器601分配的第一搬运机器人603的数量与待搬运的目标集货容器的数量相关。在一实施例中,一个第一搬运机器人603搬运一个目标集货容器。
在本实施例中,为了使控制服务器能够统计预设时间内货物容器中收集到的待投递货物的数量,在投递口处设置检测装置,该检测装置能够检测落入目标集货容器中的待投递货物的数量。
本实施例还提供另一种实施方式,为了使控制服务器601能够统计预设时间内目标集货容器中收集到的待投递货物的数量,控制服务器601对投递机器人602完成投递指令按照目标集货容器对应的收件地址进行累加。
本实施例还提供又一种实施方式,统计预设时间内目标集货容器中的待待 投递货物的是否满足预设的容量。此时,在投递口处设置检测装置为深度检测装置,检测目标集货容器中待投递货物的平面是否满足预设的条件,进而确定目标集货容器是否装满。
在本实施例中,当其中一个目标集货容器中收集到的待投递货物的数量大于预设阈值时,控制服务器601获取该目标集货容器的位置,并获取货物容器对应的货物收集工位,为目标集货容器分配第一搬运机器人603并为第一搬运机器人603规划行进路径,生成与目标集货容器对应的搬运指令,将搬运指令发送至第一搬运机器人603。
第一搬运机器人603,设置为响应于搬运指令,根据第一搬运机器人603的行进路径行进到目标集货容器处,将目标集货容器搬运至货物收集工位后返回至第二指定位置。
在本实施例中,第一搬运机器人603可以自身拥有智能系统,能够与控制服务器601进行通信,接收控制服务器601发送的搬运指令,在一实施例中,搬运指令至少包括:货物容器的位置、搬运地址以及路径导航信息。第一搬运机器人603响应于一个或多个投递口对应的搬运指令,根据其路径导航信息将目标集货容器中的一个或多个待投递货物由目标集货容器的位置搬运至与其对应的货物收集工位。
第二指定位置是指搬运机器人完成搬运之后,搬运机器人停车的位置。在一实施例中,将场地内的货物收集工位附近的区域作为第二指定位置,即搬运机器人在供货台附近等待控制服务器为其再次分配任务。
本公开实施例提出了一种货物分拣系统,控制服务器根据待投递货物的收件地址确定投递口,为待投递货物分配投递机器人并为投递机器人规划行进路径,生成待投递货物对应的投递指令,将投递指令发送至投递机器人,投递指令包含投递机器人的行进路径;投递机器人响应于投递指令,根据行进路径行进到投递口处,将待投递货物投递至投递口后返回至第一指定位置;当投递口下方的目标集货容器中收集到的货物数量大于或等于预设阈值时,控制服务器为目标集货容器分配第一搬运机器人并为第一搬运机器人规划行进路径,生成与目标集货容器对应的搬运指令,将搬运指令发送至第一搬运机器人,搬运指令包含第一搬运机器人的行进路径;第一搬运机器人响应于搬运指令,根据行 进路径行进到目标集货容器处,将目标集货容器搬运至货物收集工位后返回至第二指定位置。也就是说,在本公开实施例提出的技术方案中,当一个或多个目标集货容器中收集到的待投递货物的数量大于预设阈值时,搬运机器人可以根据控制器发送的搬运指令将每个目标集货容器中的一个或多个待投递货物搬运至货物收集工位,从而避免了采用人工方式收集带头地获取的方法,不仅可以提高货物分拣的效率,而且还可以提高货物分拣的准确性。
实施例六
本实施例在上述实施例的基础上,优化了货物分拣系统。图7是本公开实施例六中的货物分拣系统的结构示意图,如图7所示,该货物分拣系统包括:一控制服务器701、多个投递机器人702、多个第一搬运机器人703和多个第二搬运机器人704。多个第二搬运机器人704均运行在场地地面上。
控制服务器701,设置为根据待投递货物的路向确定投递口,为待投递货物分配投递机器人702并为投递机器人702规划行进路径,生成待投递货物对应的投递指令,将投递指令发送至投递机器人702,投递指令包含投递机器人702的行进路径。
在本实施例中,待投递货物的路向(即收件地址)对应不同的投递口,控制服务器701预先存储收件地址与投递口的对应关系,控制服务器701获取到待投递货物的收件地址后,根据待投递货物的收件地址在控制服务器701的数据库中进行查询,确定待投递货物的收件地址对应的投递口。
投递机器人702,设置为响应于投递指令,根据投递机器人702的行进路径行进到投递口处,将待投递货物投递至投递口后返回至第一指定位置。
在本实施例中,投递口下方低于投递口的位置设置由目标集货容器,投递口与承载具体收货地址的目标集货容器进行绑定,以便于接收具体收货地址的待投递货物。第一指定位置是指投递机器人702完成投递之后,投递机器人702停车的位置。在一实施例中,将场地内的供货台作为第一指定位置,即投递机器人702在供货台附近等待控制服务器701为其再次分配任务。
控制服务器701,还设置为当投递口下方的目标集货容器中收集到的货物数 量大于或等于预设阈值时,为目标集货容器分配第一搬运机器人703并为第一搬运机器人703规划行进路径,生成与目标集货容器对应的搬运指令,将搬运指令发送至第一搬运机器人703,搬运指令包含第一搬运机器人703的行进路径。
在本实施例中,为了使控制服务器能够统计预设时间内货物容器中收集到的待投递货物的数量,在投递口处设置检测装置,该检测装置能够检测落入目标集货容器中的待投递货物的数量。
第一搬运机器人703,设置为响应于搬运指令,根据第一搬运机器人703的行进路径行进到目标集货容器处,将目标集货容器搬运至货物收集工位后返回至第二指定位置。
在本实施例中,第一搬运机器人703可以自身拥有智能系统,能够与控制服务器701进行通信,接收控制服务器701发送的搬运指令,在一实施例中,搬运指令至少包括:货物容器的位置、搬运地址以及路径导航信息。第一搬运机器人703响应于一个或多个投递口对应的搬运指令,根据其路径导航信息将目标集货容器中的一个或多个待投递货物由目标集货容器的位置搬运至与其对应的货物收集工位。
控制服务器701,还设置为为空集货容器分配第二搬运机器人704并为第二搬运机器人704规划行进路径,生成空集货容器对应的搬运指令,并将搬运指令发送至第二搬运机器人704,搬运指令包含第二搬运机器人704的行进路径。
在本实施例中,第一搬运机器人703将装满货物的目标集货容器搬运走之后,为了避免待投递货物落在地上,控制服务器同时分配一个第二搬运机器人704搬运一个空集货容器至对应的投递口处。为空集货容器分配第二搬运机器人704,根据空集货容器的当前位置和投递口的位置为第二搬运机器人704规划行进路径,生成空集货容器对应的搬运指令,并将搬运指令发送至第二搬运机器人704,搬运指令包含第二搬运机器人704的行进路径。
在一实施例中,控制服务器701分配的第二搬运机器人704的数量为一个或多个。控制服务器701分配的第二搬运机器人704的数量与待搬运的目标集货容器的数量相关。在一实施例中,一个第二搬运机器人704搬运一个目标集货容器。
第二搬运机器人704,设置为响应于与空集货容器对应的搬运指令,根据第 二搬运机器人704的行进路径将空集货容器搬运进至目标集货容器处后返回第二指定位置。
在本实施例中,第一搬运机器人703和第二搬运机器人704为同一类型的机器人,根据其执行任务的不同将其划分为第一搬运机器人703和第二搬运机器人704,第一搬运机器人703设置为搬运盛满货物的目标集货容器,第二搬运机器人704设置为搬运空集货容器。根据搬运指令的不同,第一搬运机器人703可以作为第二搬运机器人704使用,同样,第二搬运机器人704可以作为第一搬运机器人703使用。
第二指定位置是指搬运机器人完成搬运之后,搬运机器人停车的位置。在一实施例中,将场地内的货物收集工位附近的区域作为第二指定位置,即搬运机器人在供货台附近等待控制服务器为其再次分配任务。
在一实施例中,投递机器人702、第一搬运机器人703和第二搬运机器人704均运行在地面上;投递口和目标集货容器通过控制器的绑定指令进行绑定,至少一个目标集货容器设置在地面上。
在一实施例中,为了在有限的位置内放置更多的货物容器,可以将两个货物容器或者三个货物容器并列放置构成货物容器组。构成货物容器组的数量可以根据场地面积的大小进行合理的设计。
本公开实施例提出了一种货物分拣系统,控制服务器根据待投递货物的收件地址确定投递口,为待投递货物分配投递机器人并为投递机器人规划行进路径,生成待投递货物对应的投递指令,将投递指令发送至投递机器人,投递指令包含投递机器人的行进路径;投递机器人响应于投递指令,根据行进路径行进到投递口处,将待投递货物投递至投递口后返回至第一指定位置;当投递口下方的目标集货容器中收集到的货物数量大于或等于预设阈值时,控制服务器为目标集货容器分配第一搬运机器人并为第一搬运机器人规划行进路径,生成与目标集货容器对应的搬运指令,将搬运指令发送至第一搬运机器人,搬运指令包含第一搬运机器人的行进路径;第一搬运机器人响应于搬运指令,根据行进路径行进到目标集货容器处,将目标集货容器搬运至货物收集工位后返回至第二指定位置。也就是说,在本公开实施例提出的技术方案中,当一个或多个目标集货容器中收集到的待投递货物的数量大于预设阈值时,搬运机器人可以 根据控制器发送的搬运指令将每个目标集货容器中一个或多个待投递货物搬运至货物收集工位,从而避免了采用人工方式收集带头地获取的方法,不仅可以提高货物分拣的效率,而且还可以提高货物分拣的准确性。
实施例七
本实施例在上述实施例的基础上,优化了货物分拣系统。图8是本公开实施例七中的分拣系统布局的示意图。由图8可知,多个目标集货容器呈多边形轮廓排布在场地中,供货台801位于多边形轮廓内,货物收集工位803位于多边形轮廓外,多边形轮廓内的区域构成投递机器人的行走通道,多边形轮廓外的区域构成第一搬运机器人和第二搬运机器人的行走通道。多边形轮廓为矩形轮廓;多边形轮廓局部有开口。
供货台801设置在场地的中央,目标集货容器802设置在场地的四周或者四周的一侧或者多侧。货物收集工位803设置于目标集货容器802的外侧。货物收集工位803是货物容器收集的地方,即搬运机器人将货物容器由目标集货容器802的位置搬运至货物收集工位803以供工作人员进行后续处理。小方格804是将地图进行网格化的一种表示方法。供货台801至少包括存放待投递货物的货架以及工作人员的工作位置。
图9是本公开实施例七中的分拣系统布局的示意图。由图4可知,至少一个目标集货容器902放置构成一个集货容器组,至少一个集货容器组呈阵列排布在场地中,阵列中不同的集货容器组之间的横向通道和纵向通道构成投递机器人的行走通道以及第一搬运机器人和第二搬运机器人的行走通道。供货台901和货物收集工位903分别位于集货容器阵列的两侧。
供件端901设置在场地的一侧,集货容器组设置在场地中央,其中,三个目标集货容器902构成一个集货容器组。货物收集工位903设置在与供货台901相对的一侧。货物收集工位903是目标集货容器收集的地方,即搬运机器人将目标集货容器902由目标集货容器902的位置搬运至货物收集工位903以供工作人员进行后续处理。在分拣系统布局图采用将地图进行网格化的方式进行表示,图中未示出网格化之后的小单元格。供货台901至少包括存放待投递货物的货架以及工作人员的工作位置。
这两种布局方案中都是将地图进行网格化处理,当投递机器人占用一个最小的单元格时,与货物容器对应的投递口和搬运机器人占用4个单元格。每个货物容器对应一个货物投递的收件地址。在图8和图9中,将3个集货容器组成一个货物容器组,在货物容器之间预留出投递机器人和搬运机器人的运行通道。这种布局方案可以在很小的面积内尽可能多的安排投递口和货物容器的位置。
在图8所示的分拣系统布局方案中,箭头标注的方向为搬运机器人的运行通道,中间的单元格为投递机器人的运行通道。在图9所示的分拣系统布局方案中,搬运机器人和投递机器人都运行在笼车组之间的运行通道,共同使用同一个运行通道。
在一实施例中,投递机器人上放置有供件设备(即可以理解为投递机构);其中,供件设备距离地面的高度大于投递口距离地面的高度,供件设备上设置有滚轮或皮带,滚轮或皮带设置为将承载的待投递货物通过轮动投递到目标集货容器中。投递机器人的采用皮带的方式进行两侧投递,投递机器人本地旋转时,皮带保持角度不变,可减少旋转时空间的占用。
本公开实施例提出了一种货物分拣的实施例,控制服务器先根据一个或多个待投递货物的收件地址生成每个待投递货物对应的投递指令,并将每个待投递货物对应的投递指令发送至投递机器人;投递机器人响应于待投递货物对应的投递指令将每个待投递货物投递到每个待投递货物对应的货物容器中;然后当一个或多个货物容器中收集到的待投递货物的数量大于预设阈值时,控制服务器根据每个货物容器对应的搬运地址生成每个货物容器对应的搬运指令;最后搬运机器人响应于一个或多个货物容器对应的搬运指令将每个货物容器中一个或多个待投递货物搬运至与其对应的搬运地址。也就是说,在本公开实施例提出的技术方案中,当一个或多个货物容器中收集到的待投递货物的数量大于预设阈值时,搬运机器人可以根据控制器发送的搬运指令将每个货物容器中一个或多个待投递货物搬运指定位置,从而避免了采用人工方式收集带头地获取的方法,不仅可以提高货物分拣的效率,而且还可以提高货物分拣的准确性。
实施例八
图10是本公开实施例八中的货物分拣方法的流程图,本实施例可适用于货物分拣的情况,该方法包括S1010至S1040。
S1010、控制服务器根据待投递货物的路向确定投递口,为待投递货物分配投递机器人并为投递机器人规划行进路径,生成与待投递货物对应的投递指令,将投递指令发送至投递机器人,投递指令包含投递机器人的行进路径。
在本实施例中,待投递货物的收件地址对应不同的投递口,控制服务器预先存储收件地址与投递口的对应关系,控制服务器获取到待投递货物的收件地址后,根据待投递货物的收件地址在控制服务器的数据库中进行查询,确定待投递货物的收件地址对应的投递口。
S1020、投递机器人响应于投递指令,根据投递机器人的行进路径行进到投递口处,将待投递货物投递至投递口。
投递机器人将待投递货物投递至投递口后返回至第一指定位置。投递机器人运行在场地地面上。
在本实施例中,投递口下方低于投递口的位置设置有目标集货容器,投递口与承载具体收货地址的目标集货容器进行绑定,以便于接收具体收货地址的待投递货物。第一指定位置是指投递机器人完成投递之后,投递机器人停车的位置。在一实施例中,将场地内的供货台作为第一指定位置,即机器人在供货台附近等待控制服务器为其再次分配任务。
S1030、在投递口下方的目标集货容器中收集到的货物数量大于或等于预设阈值的情况下,控制服务器为目标集货容器分配第一搬运机器人并为第一搬运机器人规划行进路径,生成与目标集货容器对应的搬运指令,将搬运指令发送至第一搬运机器人,搬运指令包含第一搬运机器人的行进路径。
目标集货容器设置在场地地面上,一个目标集货容器对应至少一个路向,目标集货容器的开口为所述投递口。
在本实施例中,为了使控制服务器能够统计预设时间内货物容器中收集到的待投递货物的数量,在投递口处设置检测装置,该检测装置能够检测落入目标集货容器中的待投递货物的数量。
S1040、第一搬运机器人响应于搬运指令,根据第一搬运机器人的行进路径 行进到目标集货容器处,将目标集货容器搬运至货物收集工位。
第一搬运机器人将目标集货容器搬运至货物收集工位后返回至第二指定位置。第一搬运机器人运行在场地地面上。
在本实施例中,第一搬运机器人可以自身拥有智能系统,能够与控制服务器进行通信,接收控制服务器发送的搬运指令,在一实施例中,搬运指令至少包括:货物容器的位置、搬运地址以及路径导航信息。第一搬运机器人响应于一个或多个投递口对应的搬运指令,根据其路径导航信息将目标集货容器中的一个或多个待投递货物由目标集货容器的位置搬运至与其对应的货物收集工位。
在一实施例中,货物分拣方法还包括:控制服务器为空集货容器分配第二搬运机器人并为第二搬运机器人规划行进路径,生成空集货容器对应的搬运指令,并将搬运指令发送至第二搬运机器人,搬运指令包含第二搬运机器人的行进路径。
第二搬运机器人响应于空集货容器对应的搬运指令,根据第二搬运机器人的行进路径将空集货容器搬运进至目标集货容器处后返回第二指定位置。
在于实施例中,投递机器人、第一搬运机器人和第二搬运机器人均运行在地面上;投递口和目标集货容器通过控制器的绑定指令进行绑定,至少一个目标集货容器设置在地面上。
在一实施例中,至少一个目标集货容器放置构成一个集货容器组,至少一个集货容器组呈阵列排布在场地中,阵列中不同货物容器组之间的横向通道和纵向通道构成投递机器人的行走通道以及第一搬运机器人和第二搬运机器人的行走通道。在一实施例中,供货台和货物收集工位分别位于集货容器阵列的两侧。
在一实施例中,货物容器呈多边形轮廓排布在场地中,供货台位于多边形轮廓内,货物收集工位位于多边形轮廓外,多边形轮廓内的区域构成投递机器人的行走通道,多边形轮廓外的区域构成第一搬运机器人和第二搬运机器人的行走通道。多边形轮廓为矩形轮廓;多边形轮廓局部有开口。
在一实施例中,所述投递机器人将所述待投递货物投递至所述投递口,包括:利用滚轮或皮带将所述滚轮或皮带承载的所述待投递货物通过轮动经过所 述投递口投递到所述目标集货容器中;
其中,投递机器人上放置有供件设备;供件设备距离地面的高度大于投递口距离地面的高度,供件设备上设置有滚轮或皮带。
本公开实施例提出了一种货物分拣方法,控制服务器先根据一个或多个待投递货物的收件地址生成每个待投递货物对应的投递指令,并将每个待投递货物对应的投递指令发送至投递机器人;投递机器人响应于待投递货物对应的投递指令将每个待投递货物投递到每个待投递货物对应的货物容器中;然后当一个或多个货物容器中收集到的待投递货物的数量大于预设阈值时,控制服务器根据每个货物容器对应的搬运地址生成每个货物容器对应的搬运指令;最后搬运机器人响应于一个或多个货物容器对应的搬运指令将每个货物容器中一个或多个待投递货物搬运至与其对应的搬运地址。也就是说,在本公开实施例提出的技术方案中,当一个或多个货物容器中收集到的待投递货物的数量大于预设阈值时,搬运机器人可以根据控制器发送的搬运指令将每个货物容器中一个或多个个待投递货物搬运指定位置,从而避免了采用人工方式收集带头地获取的方法,不仅可以提高货物分拣的效率,而且还可以提高货物分拣的准确性。
实施例九
图11是本公开实施例九中的一种货物分拣方法的流程图,本实施例可适用于货物分拣的情况,该方法包括S1110-S1120。
S1110,控制服务器根据待投递货物的路向确定投递口,为所述待投递货物分配投递机器人并为所述投递机器人规划行进路径,生成与所述待投递货物对应的投递指令,将所述投递指令发送至所述投递机器人,所述投递指令包含所述投递机器人的行进路径;
S1120,在所述投递口下方的目标集货容器中收集到的货物数量大于或等于预设阈值的情况下,所述控制服务器为所述目标集货容器分配第一搬运机器人并为所述第一搬运机器人规划行进路径,生成与所述目标集货容器对应的搬运指令,将所述搬运指令发送至所述第一搬运机器人,所述搬运指令包含所述第一搬运机器人的行进路径;
其中,所述投递机器人和所述第一搬运机器人均运行在场地地面上,所述目标集货容器设置在场地地面上,一个所述目标集货容器对应至少一个路向,所述目标集货容器的开口为所述投递口。
在一实施例中,该方法还包括:
所述控制服务器为空集货容器分配第二搬运机器人并为所述第二搬运机器人规划行进路径,生成与所述空集货容器对应的搬运指令,并将所述搬运指令发送至所述第二搬运机器人,所述搬运指令包含所述第二搬运机器人的行进路径;
其中,所述第二搬运机器人运行在场地地面上。
本实施例与上述实施例具有相同的构思,在上述实施例中已经描述过的在此不再赘述。
实施例十
图12是本公开实施例十中的一种服务器的结构示意图,本公开实施例还提供一种服务器,包括:
一个或多个处理器1210;
存储器1220,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器1210执行,使得所述一个或多个处理器1210实现上述服务器侧执行的所述的方法。
本公开实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述服务器侧执行的所述的方法。
存储介质——任何的一种或多种类型的存储器设备或存储设备。在实际应用中,上述的存储介质可以是易失性存储器(volatile memory),例如随机存取存储器(Random-Access Memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(Read-Only Memory,ROM),快闪存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD); 或者上述种类的存储器的组合,并向处理器提供指令和数据。
上述存储介质还可以包括:光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、软盘或磁带装置;计算机系统存储器或随机存取存储器,诸如动态随机存取存储器(Dynamic Random Access Memory,DRAM)、(Double Data Rate Random Access Memory,DDR RAM)、静态随机存取存储器(Static Random-Access Memory,SRAM)、扩展数据输出随机存取存储器(Extended Data Output Random Access Memory,EDO RAM),兰巴斯随机存取存储器(Rambus Random Access Memory,Rambus RAM)等;非易失性存储器,诸如闪存、磁介质(例如硬盘或光存储);寄存器或其它相似类型的存储器元件等。存储介质可以还包括其它类型的存储器或其组合。
上述处理器可以为特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(Programmable Logic Device,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器中的至少一种。

Claims (32)

  1. 一种货物分拣系统,包括:一控制服务器、多个投递机器人和多个第一搬运机器人,所述控制服务器分别与所述多个投递机器人和所述多个第一搬运机器人通信连接;其中,所述多个投递机器人和所述多个第一搬运机器人均运行在场地地面上;
    所述控制服务器,设置为根据待投递货物的路向确定投递口,为所述待投递货物分配投递机器人并为所述投递机器人规划行进路径,生成与所述待投递货物对应的投递指令,将所述投递指令发送至所述投递机器人,所述投递指令包含所述投递机器人的行进路径;
    所述投递机器人,设置为响应于所述投递指令,根据所述投递机器人的行进路径行进到所述投递口处,将所述待投递货物投递至所述投递口;
    所述控制服务器,还设置为在所述投递口下方的目标集货容器中收集到的货物数量大于或等于预设阈值的情况下,为所述目标集货容器分配第一搬运机器人,并为所述第一搬运机器人规划行进路径,生成与所述目标集货容器对应的搬运指令,将所述搬运指令发送至所述第一搬运机器人,所述搬运指令包含所述第一搬运机器人的行进路径,所述目标集货容器设置在场地地面上,一个所述目标集货容器对应至少一个路向,所述目标集货容器的开口为所述投递口;
    所述第一搬运机器人,设置为响应于所述搬运指令,根据所述第一搬运机器人的行进路径行进到所述目标集货容器处,将所述目标集货容器搬运至货物收集工位。
  2. 根据权利要求1所述的系统,还包括:多个第二搬运机器人;
    所述控制服务器,还设置为为空集货容器分配第二搬运机器人并为所述第二搬运机器人规划行进路径,生成与所述空集货容器对应的搬运指令,并将所述搬运指令发送至所述第二搬运机器人,所述搬运指令包含所述第二搬运机器人的行进路径;
    所述第二搬运机器人,设置为响应于与所述空集货容器对应的搬运指令,根据所述第二搬运机器人的行进路径将所述空集货容器搬运进至所述目标集货容器处;
    其中,所述多个第二搬运机器人均运行在场地地面上。
  3. 根据权利要求1或2所述的系统,其中,至少一个所述目标集货容器构成一个集货容器组,多个所述集货容器组呈阵列排布在场地中,所述阵列中不同的所述集货容器组之间的横向通道和纵向通道构成机器人的行走通道。
  4. 根据权利要求3所述的系统,还包括:供货台;所述供货台和所述货物收集工位分别位于集货容器阵列的两侧。
  5. 根据权利要求1或2所述的系统,其中,多个所述目标集货容器呈多边形轮廓排布在场地中,所述多边形轮廓内的区域构成所述多个投递机器人的行走通道,所述多边形轮廓外的区域构成所述多个第一搬运机器人和所述多个第二搬运机器人的行走通道。
  6. 根据权利要求5所述的系统,其中,所述多边形轮廓为矩形轮廓。
  7. 根据权利要求5所述的系统,其中,所述多边形轮廓局部有开口。
  8. 根据权利要求5-7任一项所述的系统,还包括:供货台,所述供货台位于所述多边形轮廓内,所述货物收集工位位于所述多边形轮廓外。
  9. 根据权利要求1所述的系统,其中,所述投递机器包括投递机器人本体以及设置在投递机器人本体上的投递设备;
    所述投递设备距离地面的高度大于所述投递口距离地面的高度。
  10. 根据权利要求9所述的系统,其中,所述投递设备上设置有滚轮、皮带或翻板,所述滚轮、皮带或翻板设置为将承载的所述待投递货物通过轮动投递到所述目标集货容器中。
  11. 根据权利要求9所述的系统,其中,
    所述投递机器人,是设置为响应于所述投递指令,根据所述投递路径行驶到所述目标集货容器处,通过所述投递设备将所述待投递货物投递至所述目标集货容器。
  12. 根据权利要求1所述的系统,其中,所述控制服务器为所述投递机器人规划的所述投递路径为环形路径。
  13. 根据权利要求12所述的系统,其中,所述环形路径的转弯处为弧形。
  14. 根据权利要求3所述的系统,其中,每两个所述集货容器组为一对, 任意两对所述集货容器组之间的通道宽度大于任意一对所述集货容器组内的两个所述集货容器组之间的通道宽度。
  15. 根据权利要求14所述的系统,其中,所述任意两对集货容器组之间的通道为搬运机器人的行驶通道,所述任意一对集货容器组内的两个所述集货容器组之间的通道为所述投递机器人的行驶通道。
  16. 根据权利要求10所述的系统,其中,所述投递设备采用皮带传送方式、翻板投递方式或者推送方式投递所述待投递货物。
  17. 根据权利要求9所述的系统,其中,所述投递机器人,设置为响应于所述投递指令,根据所述投递路径行驶到所述目标集货容器处,且在行驶过程中通过所述投递设备将所述待投递货物投递至所述目标集货容器。
  18. 根据权利要求1所述的系统,其中,在所述目标集货容器的总数量大于所有路向的总数量的情况下,任意一个所述路向与至少一个所述目标集货容器进行绑定;在一个所述路向与至少两个所述目标集货容器绑定的情况下,所述至少两个目标集货容器分别属于不同的集货容器组。
  19. 一种货物分拣方法,包括:
    控制服务器根据待投递货物的路向确定投递口,为所述待投递货物分配投递机器人并为所述投递机器人规划行进路径,生成与所述待投递货物对应的投递指令,将所述投递指令发送至所述投递机器人,所述投递指令包含所述投递机器人的行进路径;
    所述投递机器人响应于所述投递指令,根据所述投递机器人的行进路径行进到所述投递口处,将所述待投递货物投递至所述投递口,所述投递机器人运行在场地地面上;
    在所述投递口下方的目标集货容器中收集到的货物数量大于或等于预设阈值的情况下,所述控制服务器为所述目标集货容器分配第一搬运机器人并为所述第一搬运机器人规划行进路径,生成与所述目标集货容器对应的搬运指令,将所述搬运指令发送至所述第一搬运机器人,所述搬运指令包含所述第一搬运机器人的行进路径,所述目标集货容器设置在场地地面上,一个所述目标集货容器对应至少一个路向,所述目标集货容器的开口为所述投递口;
    所述第一搬运机器人响应于所述搬运指令,根据所述第一搬运机器人的行进路径行进到所述目标集货容器处,将所述目标集货容器搬运至货物收集工位,所述第一搬运机器人运行在场地地面上。
  20. 根据权利要求19所述的方法,还包括:
    所述控制服务器为空集货容器分配第二搬运机器人并为所述第二搬运机器人规划行进路径,生成与所述空集货容器对应的搬运指令,并将所述搬运指令发送至所述第二搬运机器人,所述搬运指令包含所述第二搬运机器人的行进路径;
    所述第二搬运机器人响应于所述空集货容器对应的搬运指令,根据所述第二搬运机器人的行进路径将所述空集货容器搬运进至所述目标集货容器处;
    其中,所述第二搬运机器人运行在场地地面上。
  21. 根据权利要求19或20所述的方法,其中,至少一个所述目标集货容器构成一个集货容器组,多个所述集货容器组呈阵列排布在场地中,所述阵列中不同的所述货物容器组之间的横向通道和纵向通道构成机器人的行走通道。
  22. 根据权利要求21所述的方法,其中,在所述系统还包括供货台的情况下,所述供货台和所述货物收集工位分别位于集货容器阵列的两侧。
  23. 根据权利要求19或20所述的方法,其中,多个所述目标集货容器呈多边形轮廓排布在场地中,所述多边形轮廓内的区域构成多个所述投递机器人的行走通道,所述多边形轮廓外的区域构成多个所述第一搬运机器人和多个所述第二搬运机器人的行走通道。
  24. 根据权利要求23所述的方法,其中,所述多边形轮廓为矩形轮廓.
  25. 根据权利要求23所述的方法,其中,所述多边形轮廓局部有开口。
  26. 根据权利要求23-25中任一项所述的方法,在所述系统还包括供货台的情况下,所述供货台位于所述多边形轮廓内,所述货物收集工位位于所述多边形轮廓外。
  27. 根据权利要求19所述的方法,其中,所述投递机器人将所述待投递货物投递至所述投递口,包括:利用滚轮、皮带或翻板将所述滚轮、皮带或翻板承载的所述待投递货物通过轮动经过所述投递口投递到所述目标集货容器中;
    其中,所述投递机器人上放置有投递设备;所述投递设备距离地面的高度大于所述投递口距离地面的高度,所述投递设备上设置有所述滚轮、皮带或翻板。
  28. 根据权利要求27所述的方法,其中,所述投递机器人响应于所述投递指令,根据所述投递机器人的行进路径行进到所述投递口处,将所述待投递货物投递至所述投递口,包括:
    所述投递机器人响应于所述投递指令,根据所述投递路径行驶到所述目标集货容器处,通过所述投递设备将所述待投递货物投递至所述目标集货容器。
  29. 一种货物分拣方法,包括:
    控制服务器根据待投递货物的路向确定投递口,为所述待投递货物分配投递机器人并为所述投递机器人规划行进路径,生成与所述待投递货物对应的投递指令,将所述投递指令发送至所述投递机器人,所述投递指令包含所述投递机器人的行进路径;
    在所述投递口下方的目标集货容器中收集到的货物数量大于或等于预设阈值的情况下,所述控制服务器为所述目标集货容器分配第一搬运机器人并为所述第一搬运机器人规划行进路径,生成与所述目标集货容器对应的搬运指令,将所述搬运指令发送至所述第一搬运机器人,所述搬运指令包含所述第一搬运机器人的行进路径;
    其中,所述投递机器人和所述第一搬运机器人均运行在场地地面上,所述目标集货容器设置在场地地面上,一个所述目标集货容器对应至少一个路向,所述目标集货容器的开口为所述投递口。
  30. 根据权利要求29所述的方法,还包括:
    所述控制服务器为空集货容器分配第二搬运机器人并为所述第二搬运机器人规划行进路径,生成与所述空集货容器对应的搬运指令,并将所述搬运指令发送至所述第二搬运机器人,所述搬运指令包含所述第二搬运机器人的行进路径;
    其中,所述第二搬运机器人运行在场地地面上。
  31. 一种服务器,包括:
    一个或多个处理器;
    存储器,设置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求29-30中任一项所述的方法。
  32. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求29-30中任一项所述的方法。
PCT/CN2019/085231 2018-05-18 2019-04-30 货物分拣系统及方法 WO2019218877A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2019268423A AU2019268423A1 (en) 2018-05-18 2019-04-30 Cargo sorting system and method
US16/755,857 US11194337B2 (en) 2018-05-18 2019-04-30 Cargo sorting system and method
JP2020542331A JP6849864B2 (ja) 2018-05-18 2019-04-30 荷物仕分けシステム及方法
EP19803183.3A EP3795263B1 (en) 2018-05-18 2019-04-30 Cargo sorting system and method
AU2022100195A AU2022100195A4 (en) 2018-05-18 2022-06-22 Cargo sorting system and method
AU2022204398A AU2022204398A1 (en) 2018-05-18 2022-06-22 Cargo sorting system and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810480980.8A CN108672308B (zh) 2018-05-18 2018-05-18 一种货物分拣系统及方法
CN201810480980.8 2018-05-18
CN201811419175.0A CN109351643B (zh) 2018-11-26 2018-11-26 货物分拣系统及方法
CN201811419175.0 2018-11-26

Publications (1)

Publication Number Publication Date
WO2019218877A1 true WO2019218877A1 (zh) 2019-11-21

Family

ID=68539448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085231 WO2019218877A1 (zh) 2018-05-18 2019-04-30 货物分拣系统及方法

Country Status (5)

Country Link
US (1) US11194337B2 (zh)
EP (1) EP3795263B1 (zh)
JP (1) JP6849864B2 (zh)
AU (3) AU2019268423A1 (zh)
WO (1) WO2019218877A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111015662A (zh) * 2019-12-25 2020-04-17 深圳蓝胖子机器人有限公司 一种动态抓取物体方法、系统、设备和动态抓取垃圾方法、系统、设备
CN113522755A (zh) * 2020-04-15 2021-10-22 北京旷视机器人技术有限公司 分拣调度方法、分拣运输方法、装置及分拣系统
WO2022078290A1 (zh) * 2020-10-15 2022-04-21 北京极智嘉科技股份有限公司 物品分拣系统和方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108806115A (zh) * 2018-08-21 2018-11-13 北京极智嘉科技有限公司 无人的自助式操作系统、方法和操作门
WO2020058522A2 (en) * 2018-09-21 2020-03-26 Octinion Bvba Mobile drive unit and method of operation
US11179849B1 (en) * 2021-04-25 2021-11-23 Elisha Ben-Ezra System and method for automated item dispersal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130134075A1 (en) * 2010-02-12 2013-05-30 Siemens Aktiengesellschaft Method and device for sorting objects by means of intermediate storage units
CN104525488A (zh) * 2015-01-13 2015-04-22 杭州亚美利嘉科技有限公司 包裹分捡方法及控制装置
CN107398426A (zh) * 2017-06-21 2017-11-28 烟台杰瑞石油装备技术有限公司 一种快递包裹分拣系统
CN107918802A (zh) * 2017-09-30 2018-04-17 北京极智嘉科技有限公司 物品分拣方法、区域布局、分拣系统及路径优化方法
CN108672308A (zh) * 2018-05-18 2018-10-19 北京极智嘉科技有限公司 一种货物分拣系统及方法
CN109351643A (zh) * 2018-11-26 2019-02-19 北京极智嘉科技有限公司 货物分拣系统及方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1894664A (en) * 1931-08-12 1933-01-17 Pennsylvania Railroad Co Container for stacked articles
US8220710B2 (en) * 2006-06-19 2012-07-17 Kiva Systems, Inc. System and method for positioning a mobile drive unit
US9463927B1 (en) * 2013-09-23 2016-10-11 Vecna Technologies, Inc. Transporting and/or sorting items with mobile robot(s)
CN104142682A (zh) 2013-11-15 2014-11-12 上海快仓智能科技有限公司 基于智能agv的商品分拣方法
US10453023B2 (en) 2014-05-28 2019-10-22 Fedex Corporate Services, Inc. Methods and node apparatus for adaptive node communication within a wireless node network
JP6770520B2 (ja) * 2014-10-14 2020-10-14 ハーベスト オートメーション インコーポレイテッド 保管材料ハンドリングシステム
JP6437813B2 (ja) 2014-12-18 2018-12-12 株式会社Apt 仕分け装置
US10423150B2 (en) 2015-02-12 2019-09-24 Fetch Robotics, Inc. System and method for order fulfillment using robots
CN105057219B (zh) * 2015-07-22 2018-11-27 杭州亚美利嘉科技有限公司 包裹分捡系统及方法
US9758305B2 (en) * 2015-07-31 2017-09-12 Locus Robotics Corp. Robotic navigation utilizing semantic mapping
US20170270466A1 (en) 2016-03-18 2017-09-21 Jusda International Logistics (TAIWAN) CO.,LTD Method and system using with automated guided vehicle
US9827683B1 (en) 2016-07-28 2017-11-28 X Development Llc Collaborative inventory monitoring
CN106475322A (zh) 2016-09-30 2017-03-08 顺丰科技有限公司 无线分拣提示系统及提示方法
CN106513328A (zh) 2016-12-09 2017-03-22 上海致研机电科技有限公司 一种结合自引导运输车的分拣系统及其工作流程
FR3061044B1 (fr) * 2016-12-23 2019-02-01 Solystic Equipement de traitement de colis avec des robots navettes qui deplacent des sacs ou analogues
CN206661696U (zh) 2017-02-16 2017-11-24 深圳市三维通机器人系统有限公司 一种双层agv分拣系统
CN106975611B (zh) 2017-02-21 2023-03-31 苏州金峰物联网技术有限公司 基于agv的物流分拣系统
WO2019047018A1 (zh) 2017-09-05 2019-03-14 深圳蓝胖子机器人有限公司 自动输送包裹的方法、系统、机器人及存储装置
US10315231B1 (en) * 2017-09-07 2019-06-11 Amazon Technologies, Inc. Attribute-based container selection for inventory
AU2017434612A1 (en) * 2017-09-30 2020-04-16 Beijing Geekplus Technology Co., Ltd. System, device, and method for item sorting and conveying
CN107943017B (zh) * 2017-09-30 2023-05-09 北京极智嘉科技股份有限公司 自动运输单元、运动控制方法和装置以及自动分拣系统
US11286122B2 (en) * 2017-09-30 2022-03-29 Beijing Geekplus Technology Co., Ltd. Automatic transfer system and method for items
US10974283B2 (en) * 2017-10-05 2021-04-13 United States Postal Service System and method of sorting and sequencing items
CN207576955U (zh) 2017-11-21 2018-07-06 北京京东尚科信息技术有限公司 包裹分拣系统
CN107878990B (zh) 2017-12-11 2023-08-01 上海诺亚木木机器人科技有限公司 一种货物配送管理方法、系统、服务器及送货机器人
US10800608B1 (en) * 2019-06-03 2020-10-13 Amazon Technologies, Inc. Optimized shipment transfer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130134075A1 (en) * 2010-02-12 2013-05-30 Siemens Aktiengesellschaft Method and device for sorting objects by means of intermediate storage units
CN104525488A (zh) * 2015-01-13 2015-04-22 杭州亚美利嘉科技有限公司 包裹分捡方法及控制装置
CN107398426A (zh) * 2017-06-21 2017-11-28 烟台杰瑞石油装备技术有限公司 一种快递包裹分拣系统
CN107918802A (zh) * 2017-09-30 2018-04-17 北京极智嘉科技有限公司 物品分拣方法、区域布局、分拣系统及路径优化方法
CN108672308A (zh) * 2018-05-18 2018-10-19 北京极智嘉科技有限公司 一种货物分拣系统及方法
CN109351643A (zh) * 2018-11-26 2019-02-19 北京极智嘉科技有限公司 货物分拣系统及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111015662A (zh) * 2019-12-25 2020-04-17 深圳蓝胖子机器人有限公司 一种动态抓取物体方法、系统、设备和动态抓取垃圾方法、系统、设备
CN111015662B (zh) * 2019-12-25 2021-09-07 深圳蓝胖子机器智能有限公司 一种动态抓取物体方法、系统、设备和动态抓取垃圾方法、系统、设备
CN113522755A (zh) * 2020-04-15 2021-10-22 北京旷视机器人技术有限公司 分拣调度方法、分拣运输方法、装置及分拣系统
WO2022078290A1 (zh) * 2020-10-15 2022-04-21 北京极智嘉科技股份有限公司 物品分拣系统和方法
GB2615011A (en) * 2020-10-15 2023-07-26 Beijing Geekplus Tech Co Ltd Item sorting system and method

Also Published As

Publication number Publication date
EP3795263B1 (en) 2023-10-04
JP6849864B2 (ja) 2021-03-31
US20210200227A1 (en) 2021-07-01
AU2022204398A1 (en) 2022-07-14
EP3795263A4 (en) 2022-02-16
EP3795263A1 (en) 2021-03-24
AU2019268423A1 (en) 2021-01-14
AU2022100195A4 (en) 2024-03-28
JP2021506703A (ja) 2021-02-22
US11194337B2 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2019218877A1 (zh) 货物分拣系统及方法
CN109351643B (zh) 货物分拣系统及方法
CN108672308B (zh) 一种货物分拣系统及方法
US10067501B2 (en) Method and system for transporting inventory items
US8538692B2 (en) System and method for generating a path for a mobile drive unit
US8068978B2 (en) System and method for managing mobile drive units
JP2019531887A (ja) 物品自動移送システムおよび方法
US20120143427A1 (en) System and Method for Positioning a Mobile Drive Unit
JP4853277B2 (ja) 自律移動装置群制御システム
US11691180B2 (en) Sorting system and method
CA2866664A1 (en) System and method for coordinating movement of mobile drive units
CN110356752A (zh) 货物流转系统及方法
CN111038892A (zh) 一种物流对象分拨系统及方法
AU2019284198B2 (en) Parcel sorting system and method
US20210031240A1 (en) Sorting system
CN106276016A (zh) 一种基于环形穿梭车的调度系统
CN106276017A (zh) 一种基于多台穿梭车的调度方法
WO2021012687A1 (zh) 分拣系统及机器人
US11254506B1 (en) Multi-story robotic drive package sortation
JP2020508946A (ja) 自動物流仕分けシステムおよび自動物流仕分け方法
WO2019062324A1 (zh) 物品运送设备
CN115629587A (zh) 轨道搬运小车的调度方法及装置
WO2021136407A1 (zh) 一种货物处理系统及货物处理的方法
CN112700183A (zh) 一种基于agv自动化分拣搬运方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019803183

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019803183

Country of ref document: EP

Effective date: 20201217

ENP Entry into the national phase

Ref document number: 2019268423

Country of ref document: AU

Date of ref document: 20190430

Kind code of ref document: A