WO2019218634A1 - 激光器的控制方法、电子控制装置、激光器、激光打孔设备以及存储介质 - Google Patents

激光器的控制方法、电子控制装置、激光器、激光打孔设备以及存储介质 Download PDF

Info

Publication number
WO2019218634A1
WO2019218634A1 PCT/CN2018/117484 CN2018117484W WO2019218634A1 WO 2019218634 A1 WO2019218634 A1 WO 2019218634A1 CN 2018117484 W CN2018117484 W CN 2018117484W WO 2019218634 A1 WO2019218634 A1 WO 2019218634A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
timing
signal
laser pulse
period
Prior art date
Application number
PCT/CN2018/117484
Other languages
English (en)
French (fr)
Inventor
何高锋
黎永坚
蒋峰
Original Assignee
深圳市创鑫激光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市创鑫激光股份有限公司 filed Critical 深圳市创鑫激光股份有限公司
Publication of WO2019218634A1 publication Critical patent/WO2019218634A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • H01S3/10046Pulse repetition rate control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators

Definitions

  • the technical solution disclosed in the embodiments of the present application relates to the field of laser technologies, and in particular, to a laser control method, an electronic control device, a laser, a laser drilling device, and a storage medium.
  • the power of various lasers is getting larger and larger, and has been widely used in military, medical, industrial manufacturing and other fields.
  • the laser outputs a laser pulse based on the received control signal.
  • the inventors have found that the laser pulse of the prior art laser is determined by the received control signal, and the minimum period and the maximum period of the laser pulse cannot be limited, so that the working performance of the laser is difficult to guarantee and there is safety. Hidden dangers.
  • the laser control method, electronic control device, laser, laser drilling device, and storage medium disclosed herein can be used to limit the minimum period and maximum period of the laser pulse.
  • One or more embodiments of the present application disclose a method of controlling a laser, comprising: acquiring a rising edge or a falling edge of a control signal to form a capture signal; outputting a laser pulse according to the capture signal; starting when outputting a laser pulse Timing, allowing the output of the next laser pulse when the time obtained by the timing reaches the minimum period of the laser pulse, stops outputting the next laser pulse when the time obtained by the timing exceeds the maximum period of the laser pulse.
  • the point in time at which the laser pulse is output follows the point in time at which the rising or falling edge is captured on the capture signal.
  • the timing is simultaneously formed with a minimum period timing signal, the phase of the minimum period timing signal when the timing is stopped is opposite to the phase at the beginning of the timing; forming a signal opposite to the minimum period timing signal
  • the minimum period limit signal of the phase allows the next laser pulse to be output when the phase of the minimum period limit signal changes after the start of timing.
  • the timing is simultaneously formed with a maximum period timing signal, the phase of the maximum period timing signal when the timing is stopped is opposite to the phase at the beginning of the timing; forming a signal opposite to the maximum period timing signal
  • the maximum period limit signal of the phase stops outputting the next laser pulse when the phase of the maximum period limit signal changes after starting timing.
  • the operating time of the pump source is started when a laser pulse is output, and the laser turns off the pump source when the working time reaches the maximum working time.
  • shutting off the pump source can be achieved by turning off the operating current of the pump source.
  • One or more embodiments of the present application also disclose an electronic control device for a laser, including: a micro control unit (MCU), a field editable logic gate array (FPGA), one or more digital to analog converters, and a control interface;
  • the micro control unit and the field editable logic gate array communicate with each other;
  • the field editable logic gate array is digital-to-analog converted by the one or more digital-to-analog converters, and is controlled by the control interface and the application device
  • the card and the host computer communicate;
  • the electronic control device of the laser is used to control: acquiring a rising edge or a falling edge of the control signal to form a capture signal; outputting a laser pulse according to the capture signal; starting when outputting a laser pulse Timing, allowing the output of the next laser pulse when the time obtained by the timing reaches the minimum period of the laser pulse, stops outputting the next laser pulse when the time obtained by the timing exceeds the maximum period of the laser pulse.
  • the electronic control device of the laser is further configured to control realize that a time point at which the laser pulse is output follows a time point at which a rising edge or a falling edge is captured on the captured signal.
  • the electronic control device of the laser is further configured to control to realize: simultaneously forming a minimum period timing signal, the phase of the minimum period timing signal at the start of timing stop and timing start The phase is reversed; a minimum period limit signal that is inverted from the minimum period timing signal is formed, and the next laser pulse is allowed to be output when the phase of the minimum period limit signal changes after the start of timing.
  • the electronic control device of the laser is further configured to control to realize: simultaneously forming a maximum period timing signal, the phase of the maximum period timing signal at the start of timing stop and timing start The phase is reversed; a maximum period limit signal that is inverted from the maximum period timing signal is formed, and when the phase of the maximum period limit signal changes after the start of timing, the output of the next laser pulse is stopped.
  • the electronic control device of the laser is further configured to control: start counting the working time of the pump source when outputting a laser pulse, and reach a maximum working time during the working time.
  • the laser turns off the pump source.
  • the shutdown of the pump source can be achieved by shutting down the operating current of the pump source.
  • One or more embodiments of the present application also disclose a laser including an optical path module and a circuit module that applies the control method of any of the above lasers.
  • One or more embodiments of the present application also disclose a laser drilling apparatus for punching a hole in a solar cell film, the laser drilling apparatus comprising: a laser, an optical system, a work platform, and a control board; a control board for controlling the laser and/or the optical system and/or the working platform; the laser beam generated by the laser is focused by the optical system to a solar cell film on the working platform, The solar cell film is perforated.
  • the laser in the laser drilling apparatus applies the control method of any of the above lasers.
  • One or more embodiments of the present application also disclose a non-transitory computer readable storage medium having stored therein computer instructions adapted to be loaded by a processor to A control method for realizing any of the above lasers.
  • the timing is started by outputting a laser pulse, and the next laser pulse is allowed to be output only when the time obtained by the timing reaches the minimum period of the laser pulse, so the period of the laser pulse is not less than the minimum period. That is, the frequency of the laser pulse does not exceed the set maximum frequency.
  • the output of the next laser pulse is stopped when the time obtained by the timing exceeds the maximum period of the laser pulse, so the period of the laser pulse does not exceed the maximum period, that is, the frequency of the laser pulse is not less than the set minimum frequency.
  • the period of the control signal has an uncertainty.
  • control method of the laser in the embodiment can output the laser pulse following the control signal, and on the other hand, the period of the laser pulse can be limited between the minimum period and the maximum period. It is beneficial to ensure the working performance of the laser and reduce safety hazards.
  • FIG. 1 is a schematic diagram of a method of controlling a laser in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a control signal, a capture signal, and a laser pulse in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a control signal, a capture signal, a minimum period timing signal, and a minimum period limit signal according to an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a control signal, a capture signal, a minimum period timing signal, and a minimum period limit signal according to an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a control signal, a capture signal, a maximum period timing signal, and a maximum period limit signal according to an embodiment of the present application;
  • FIG. 6 is a schematic diagram of a control signal, a capture signal, a maximum period timing signal, and a maximum period limit signal according to an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a control signal, a capture signal, and a maximum working time in an embodiment of the present application
  • FIG. 8 is a schematic diagram of an electronic control device for a laser according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a control device for a laser according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a control device for a laser according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a laser in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a laser drilling device according to an embodiment of the present application.
  • FIG. 13 is a view showing the effect of the prior art laser drilling device after punching a hole in a solar cell film
  • Fig. 14 is a view showing the effect of the laser drilling apparatus in the present application after punching a hole in a solar cell film.
  • An embodiment of the present application discloses a laser control method applied to a fiber laser, but the control method of the laser disclosed in the present application is not limited to application to a fiber laser.
  • the technical solutions in this embodiment will be described below with reference to the accompanying drawings.
  • the control method of the lasers involved in the specific embodiments is only a preferred embodiment, and is not all possible embodiments of the present application.
  • FIG. 1 is a schematic diagram of a method for controlling a laser in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a control signal, a capture signal, and a laser pulse according to an embodiment of the present application.
  • the control method of the laser includes:
  • Step 1 Acquire a rising or falling edge of the control signal to form a capture signal.
  • Step 2 Output a laser pulse according to the capture signal.
  • Step 3 Start timing when a laser pulse is output.
  • Step 4 Allow the next laser pulse to be output when the time obtained by the timing reaches the minimum period of the laser pulse, and stop outputting the next laser pulse when the time obtained by the timing exceeds the maximum period of the laser pulse.
  • the point in time at which the laser pulse is output follows the point in time at which the rising or falling edge is captured on the captured signal.
  • the period of the laser pulse is not less than the minimum period, that is, the frequency of the laser pulse is not Will exceed the set maximum frequency.
  • the output of the next laser pulse is stopped when the time obtained by the timing exceeds the maximum period of the laser pulse, so the period of the laser pulse does not exceed the maximum period, that is, the frequency of the laser pulse is not less than the set minimum frequency.
  • the period of the control signal has an uncertainty.
  • the control method of the laser in the embodiment can output the laser pulse following the control signal, and on the other hand, the period of the laser pulse can be limited between the minimum period and the maximum period. It is beneficial to ensure the working performance of the laser and reduce safety hazards.
  • the minimum period of the laser pulse is limited by the minimum period timing signal and the minimum period limit signal.
  • a minimum period timing signal is formed while timing in step 3, the phase of the minimum period timing signal being opposite when the timing is stopped is opposite to the phase at the beginning of the timing.
  • the high level indicates that the time from the start of the timing to the stop of the timing
  • the duration of the high level is the minimum period of the set laser pulse, which is converted from the high level to the low level after the timer is stopped.
  • a minimum period limit signal which is inverted from the minimum period timing signal is formed, and when the phase of the minimum period limit signal changes after the start of timing, the next laser pulse is allowed to be output.
  • the minimum period limit signal is low when the minimum period timing signal is high, and the minimum period limit signal is high when the minimum period timing signal is low, and the output is allowed when the minimum period limit signal is high.
  • the next laser pulse The timing will be restarted when the next laser pulse is output, that is, the timing from the output of the last laser pulse will be cleared, and the timing will be counted again from the output of the next laser pulse.
  • FIG. 3 is a schematic diagram of a control signal a, a capture signal a, a minimum period timing signal, and a minimum period limit signal according to an embodiment of the present application
  • FIG. 4 is a control signal according to an embodiment of the present application.
  • b Schematic diagram of the capture signal b, the minimum period timing signal, and the minimum period limit signal.
  • the two rising edges on the control signal a are captured at the time points t1 and t2 on the capture signal a, and the interval between the time points t1 and t2 is greater than the minimum period timing signal representation.
  • the minimum period Tmin It can be seen from step 4 that the next laser pulse is allowed to be output when the time obtained by the timing reaches the minimum period of the laser pulse.
  • the interval time between the time points t1 and t2 in FIG. 3 is greater than the minimum period Tmin.
  • the minimum period limit signal is converted from the low level to the high level, and the rising edge of the control signal a is collected. The next laser pulse will be output.
  • the three rising edges on the control signal b are captured at the time points t1, t2, and t3 on the capture signal b, and the interval between the time points t1 and t2 is less than the minimum period Tmin. It can be seen from step 4 that the next laser pulse is allowed to be output when the time obtained by the timing reaches the minimum period of the laser pulse, so that the next laser pulse cannot be output when the time obtained by the timing is less than the minimum period of the laser pulse.
  • the interval between time points t1 and t2 in FIG. 4 is less than the minimum period Tmin.
  • the minimum period limit signal is still at a low level, so the acquisition of the rising edge of the capture signal b will not be possible.
  • the next laser pulse is output.
  • the interval time between the time points t1 and t3 in FIG. 4 is greater than the minimum period Tmin.
  • the minimum period limit signal is at a high level, so the rising edge of the capture signal b is acquired at the time point t3.
  • the next laser pulse can be output.
  • the maximum period of the laser pulse is limited by the maximum period timing signal and the maximum period limit signal.
  • a maximum period timing signal is formed which is opposite in phase to the start of timing when the timing is stopped.
  • the high level indicates that the time from the start of the timing to the stop of the timing
  • the duration of the high level is the maximum period of the set laser pulse, which is converted from the high level to the low level after the timer is stopped.
  • a maximum period limit signal inverted from the maximum period timing signal is formed, and when the phase of the maximum period limit signal changes after the start of timing, the output of the next laser pulse is stopped.
  • the maximum period timing signal when the maximum period timing signal is high, the maximum period limit signal is low, and when the maximum period timing signal is low, the maximum period limit signal is high, and when the maximum period limit signal is high, the output is stopped.
  • the next laser pulse In a possible implementation manner, after the maximum period limit signal is high and the next laser pulse is stopped, if the laser receives a new control signal, steps 1 to 4 are re-executed, and the process will restart.
  • the timing that is, the timing from the output of the last laser pulse will be cleared, and the time will be counted again from the time the next laser pulse is output.
  • FIG. 5 is a schematic diagram of a control signal c, a capture signal c, a maximum period timing signal, and a maximum period limit signal according to an embodiment of the present application
  • FIG. 6 is a control signal according to an embodiment of the present application.
  • d Schematic diagram of the capture signal d, the maximum period timing signal, and the maximum period limit signal.
  • two rising edges on the control signal c are captured at time points t1 and t2 on the capture signal c, and the interval between time points t1 and t2 is less than the maximum period timing signal representation.
  • the maximum period Tmax It can be seen from step 4 that the output of the next laser pulse is stopped when the time obtained by the timing exceeds the maximum period of the laser pulse, so that the next laser pulse is output when the time obtained by the timing does not exceed the maximum period of the laser pulse.
  • the interval between time points t1 and t2 in Fig. 5 is smaller than the maximum period Tmax, so at the time point t2 on the capture signal c, the minimum period limit signal is still at the high level, and the maximum period limit signal is still at the low level.
  • the two rising edges on the control signal d are captured at the time points t1 and t2 on the capture signal d, and the interval between the time points t1 and t2 is greater than the maximum period timing signal representation.
  • the maximum period Tmax It can be seen from step 4 that the output of the next laser pulse is stopped when the time obtained by the timing exceeds the maximum period of the laser pulse.
  • the interval between time points t1 and t2 in Fig. 6 is greater than the maximum period Tmax, so at the time point t2 on the capture signal d, the minimum period limit signal is converted to a low level, and the maximum period limit signal is converted to a high level.
  • the working time of the pump source is started when a laser pulse is output, and the laser turns off the pump source when the working time reaches the maximum working time.
  • FIG. 7 a schematic diagram of control signal e, capture signal e, and maximum operating time in an embodiment of the present application.
  • the operating time of the pump source is started when a laser pulse is output, if the working time exceeds the maximum working time ⁇ , the laser will turn off the pump source.
  • the laser can stop the pump source by turning off the operating current of the pump source.
  • An embodiment of the present application discloses an electronic control device for a laser.
  • the electronic control device 300 of the laser includes a micro control unit (MCU) 301, a field editable logic gate array (FPGA) 302, one or more digital to analog converters 303, and a control interface 304.
  • the micro control unit 301 and the field editable logic gate array 302 communicate with each other.
  • the field editable logic gate array 302 performs digital-to-analog conversion by the one or more digital-to-analog converters 303, and communicates with the application device control board 400 and the host computer 500 through the control interface 304.
  • the field editable logic gate array 302 can output control signals through the one or more digital to analog converters 303 to control the operating current of the pump source.
  • the field editable logic gate array 302 can also send control commands to the acousto-optic control board of the laser.
  • the control interface 304 can be a DB25 control interface.
  • the application device control board 400 is installed in other laser application equipment such as a laser marking device.
  • the electronic control device 300 of the laser is configured to control to: acquire a rising edge or a falling edge of the control signal to form a capture signal; output a laser pulse according to the capture signal; start timing when outputting a laser pulse, and obtain time at timing
  • the next laser pulse is allowed to be output when the minimum period of the laser pulse is reached, and the next laser pulse is stopped when the time obtained by the timing exceeds the maximum period of the laser pulse.
  • the electronic control device 300 of the laser is further configured to control: a time point at which the laser pulse is output follows a time point at which a rising edge or a falling edge is captured on the captured signal.
  • the electronic control device 300 of the laser is further configured to control to realize: simultaneously forming a minimum period timing signal, the phase of the minimum period timing signal when the timing is stopped is opposite to the phase at the beginning of the timing;
  • the minimum period limit signal in which the minimum period timing signal is inverted is allowed to output the next laser pulse when the phase of the minimum period limit signal changes after starting timing.
  • the electronic control device 300 of the laser is further configured to control to realize: simultaneously forming a maximum period timing signal, the phase of the maximum period timing signal when the timing is stopped is opposite to the phase at the beginning of the timing;
  • the maximum period limit signal in which the maximum period timing signal is inverted starts to output the next laser pulse when the phase of the maximum period limit signal changes.
  • the electronic control device 300 of the laser is further configured to control to start timing the working time of the pump source when a laser pulse is output, and the laser turns off the pump source when the working time reaches the maximum working time.
  • the electronic control device of the laser in each of the above embodiments is advantageous for ensuring the working performance of the laser and reducing the safety hazard.
  • An embodiment of the present application discloses a control device for a laser.
  • FIG. 9 a schematic diagram of a control device for a laser in an embodiment of the present application.
  • the control device of the laser includes an acquisition module 101, a pulse control module 102, and a cycle timing module 103.
  • the acquisition module 101 is configured to acquire a rising edge or a falling edge of the control signal to form a capture signal.
  • the pulse control module 102 is configured to output a laser pulse according to the capture signal;
  • the cycle timing module 103 is configured to start timing when a laser pulse is output, and the pulse control module 102 allows when the time obtained by the timing reaches a minimum period of the laser pulse.
  • the next laser pulse is output, and the pulse control module 102 stops outputting the next laser pulse when the time obtained by the timing exceeds the maximum period of the laser pulse.
  • the point in time at which the pulse control module 102 outputs the laser pulse follows a point in time at which the rising or falling edge is captured on the capture signal.
  • An embodiment of the present application discloses another control device for a laser.
  • FIG. 10 a schematic diagram of a control device for a laser in another embodiment of the present application.
  • the control device of the laser includes an acquisition module 201, a pulse control module 202, a cycle timing module 203, a restriction module 204, and a working time timing module 205.
  • the acquisition module 201 is configured to acquire a rising edge or a falling edge of the control signal to form a capture signal.
  • the pulse control module 202 is configured to output a laser pulse according to the capture signal.
  • the period timing module 203 is configured to start timing when a laser pulse is output, and the pulse control module 102 allows the output of the next laser pulse when the time obtained by the timing reaches the minimum period of the laser pulse, and the time obtained in the timing exceeds the maximum of the laser pulse.
  • the pulse control module 102 stops outputting the next laser pulse during the cycle.
  • the period timing module 203 simultaneously counts the minimum period timing signal, and the phase of the minimum period timing signal when the timing is stopped is opposite to the phase at the beginning of the timing.
  • the period timing module 203 simultaneously counts a maximum period timing signal, and the phase of the maximum period timing signal when the timing is stopped is opposite to the phase at the beginning of the timing.
  • the limit module 204 is configured to form a minimum period limit signal that is inverted from the minimum period timing signal.
  • the pulse control module 202 allows the next laser pulse to be output when the phase of the minimum period limit signal changes after the start of timing.
  • the working time timing module 205 begins timing the operating time of the pump source when a laser pulse is output, and the laser turns off the pump source when the working time reaches the maximum operating time.
  • the control device of the laser in each of the above embodiments can output the laser pulse following the control signal on the one hand, and can limit the period of the laser pulse between the minimum period and the maximum period on the other hand, thereby ensuring the performance of the laser and reducing the performance. Security risks.
  • An embodiment of the present application discloses a laser.
  • FIG. 11 a schematic diagram of a laser in an embodiment of the present application.
  • the laser includes an optical path module 10 and a circuit module 20.
  • the optical path module 10 includes one or more pump sources 11, one or more resonant cavities 12, one or more photodetectors 15, one or more optical fiber amplifiers 13, and a laser output head 14 disposed in sequence.
  • the first cavity combiner 121, the high mirror 122, the gain fiber 123, the low reflectance fiber grating 124, and the acousto-optic switch 125 are disposed in the resonant cavity 12.
  • the high reflection mirror 122 can also be replaced by a high inverse grating.
  • the fiber amplifier 13 is provided with a second combiner 131 and a pump laser 132.
  • the circuit module 20 includes an acousto-optic control circuit 21, an output control circuit 22, a pump drive circuit 23, and a protection circuit 24.
  • the laser applies a control method of any of the above lasers to limit the period of the laser pulse between a minimum period and a maximum period.
  • FIG. 12 it is a schematic diagram of a laser drilling apparatus according to an embodiment of the present application.
  • the laser drilling apparatus includes a laser 30, an optical system 40, a work platform 50, and a control board 60.
  • the work platform 50 is used to mount and fix a solar cell film so that the laser beam emitted from the optical system 40 can accurately perforate the solar cell film.
  • the control board 60 is used to control the laser 30 and/or the optical system 40 and/or the work platform 50.
  • the laser beam generated by the laser 30 is focused by the optical system 40 onto a solar cell film on the work platform 50 to infiltrate the solar cell film.
  • the laser 30 in the laser drilling apparatus applies the control method of any of the above lasers to limit the period of the laser pulse between the minimum period and the maximum period. After the laser drilling device in the above embodiment punches the solar cell film, a circular hole having uniform size and uniform spacing will be formed on the solar cell film, and the laser drilling device has excellent working performance.
  • FIG. 13 is an effect view of the prior art laser drilling device after punching a hole in the solar cell film
  • FIG. 14 is a laser drilling device in the present application punching a hole in the solar cell film.
  • the area of the wafer in Fig. 13 is a hole-shaped area Sp formed by the prior art laser drilling apparatus after perforating the solar cell film.
  • the white circle in Fig. 14 is a hole-shaped area Sp formed by the laser drilling apparatus of the present application after perforating the solar cell film.
  • the plurality of hole-shaped regions Sp in FIG. 13 are irregularly distributed and cannot meet the technical requirements. Therefore, the prior art laser drilling device has a poor effect of punching holes in the solar cell film.
  • a plurality of hole-shaped regions Sp are distributed in a matrix in FIG.
  • the plurality of hole-shaped regions Sp in Fig. 14 are uniform in size and uniform in pitch. It will be understood by those skilled in the art that the plurality of hole-shaped regions Sp of the matrix distribution in Fig. 14 reflect the excellent performance of the laser drilling apparatus in the present application. In addition, the laser drilling apparatus of the present application can also achieve the effect of FIG. 14 when punching aluminum foil and copper foil.
  • An embodiment of the present application discloses a non-transitory computer readable storage medium, wherein the non-transitory computer readable storage medium stores computer instructions, and the computer instructions are adapted to be loaded by a processor to implement any one of the foregoing Laser control method.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium can be any available media that can be stored by a computer.
  • the computer readable medium may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage device, or capable of carrying or storing in the form of an instruction or data structure.
  • any connection can suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, optical brazing, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial Cables, fiber optic cables, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the definition of the medium to which they belong.

Abstract

激光器(30)的控制方法、电子控制装置(300)、激光器(30)、激光打孔设备以及存储介质。激光器(30)的控制方法包括:采集控制信号的上升沿或者下降沿以形成捕捉信号;根据捕捉信号输出激光脉冲;在输出一个激光脉冲时开始计时,在计时获得的时间达到激光脉冲的最小周期时允许输出下一个激光脉冲,在计时获得的时间超过激光脉冲的最大周期时停止输出下一个激光脉冲。激光器(30)的控制方法、电子控制装置(300)、激光打孔设备以及激光器(30),一方面能够跟随控制信号输出激光脉冲,另一方面则能够将激光脉冲的周期限制在最小周期与最大周期之间,有利于保障激光器的工作性能,减少安全隐患。

Description

激光器的控制方法、电子控制装置、激光器、激光打孔设备以及存储介质 技术领域
本申请实施例公开的技术方案涉及激光器技术领域,尤其涉及激光器的控制方法、电子控制装置、激光器、激光打孔设备以及存储介质。
背景技术
目前,各种激光器的功率越来越大,在军事、医疗、工业制造等领域有着广泛的应用。通常激光器根据接收到的控制信号输出激光脉冲。
发明人在研究本申请的过程中发现,现有技术中的激光器的激光脉冲由收到的控制信号决定,不能限制激光脉冲的最小周期和最大周期,因而激光器的工作性能难以保障,并且存在安全隐患。
申请内容
本申请公开的激光器的控制方法、电子控制装置、激光器、激光打孔设备以及存储介质能够用于限制激光脉冲的最小周期和最大周期。
本申请的一个或者多个实施例公开了一种激光器的控制方法,包括:采集控制信号的上升沿或者下降沿以形成捕捉信号;根据所述捕捉信号输出激光脉冲;在输出一个激光脉冲时开始计时,在计时获得的时间达到激光脉冲的最小周期时允许输出下一个激光脉冲,在计时获得的时间超过激光脉冲的最大周期时停止输出下一个激光脉冲。
在本申请的一个或者多个实施例中,输出激光脉冲的时间点跟随所述捕捉信号上捕捉到上升沿或者下降沿的时间点。
在本申请的一个或者多个实施例中,计时的同时形成最小周期计时信号,所述最小周期计时信号在计时停止时的相位与计时开始时的相位相反;形成与所述最小周期计时信号反相的最小周期限制信号,开始计时后当所述最小周期限制信号的相位变化时允许输出下一个激光脉冲。
在本申请的一个或者多个实施例中,计时的同时形成最大周期计时信号,所述最大周期计时信号在计时停止时的相位与计时开始时的相位相反;形成与所述最大周期计时信号反相的最大周期限制信号,开始计时后当所述最大周期限制信号的相位变化时停止输出下一个激光脉冲。
进一步地,在输出一个激光脉冲时开始对泵浦源的工作时间计时,在所述工作时间达到最大工作时间时激光器关闭泵浦源。
进一步地,所述关闭泵浦源可通过关闭泵浦源的工作电流实现。
本申请的一个或者多个实施例还公开了激光器的电子控制装置,包括:微控制单元(MCU)、现场可编辑逻辑门阵列(FPGA)、一个或者多个数模转换器以及控制接口;所述微控制单元与所述现场可编辑逻辑门阵列相互进行通信;所述现场可编辑逻辑门阵列通过所述一个或者多个数模转换器进行数模转换,通过所述控制接口与应用设备控制板卡以及上位机进行通信;所述激光器的电子控制装置用于控制实现:采集控制信号的上升沿或者下降沿以形成捕捉信号;根据所述捕捉信号输出激光脉冲;在输出一个激光脉冲时开始计时,在计时获得的时间达到激光脉冲的最小周期时允许输出下一个激光脉冲,在计时获得的时间超过激光脉冲的最大周期时停止输出下一个激光脉冲。
在本申请的一个或者多个实施例中,所述激光器的电子控制装置还用于控制实现:输出激光脉冲的时间点跟随所述捕捉信号上捕捉到上升沿或者下降沿的时间点。
在本申请的一个或者多个实施例中,所述激光器的电子控制装置还用于控制实现:计时的同时形成最小周期计时信号,所述最小周期计时信号在计时停止时的相位与计时开始时的相位相反;形成与所述最小周期计时信号反相的最小周期限制信号,开始计时后当所述最小周期限制信号的相位变化时允许输出下一个激光脉冲。
在本申请的一个或者多个实施例中,所述激光器的电子控制装置还用于控制实现:计时的同时形成最大周期计时信号,所述最大周期计时信号在计时停 止时的相位与计时开始时的相位相反;形成与所述最大周期计时信号反相的最大周期限制信号,开始计时后当所述最大周期限制信号的相位变化时停止输出下一个激光脉冲。
在本申请的一个或者多个实施例中,所述激光器的电子控制装置还用于控制实现:在输出一个激光脉冲时开始对泵浦源的工作时间计时,在所述工作时间达到最大工作时间时激光器关闭泵浦源。
所述关闭泵浦源可通过关闭泵浦源的工作电流实现。
本申请的一个或者多个实施例还公开了一种激光器,包括光路模组和电路模组,所述激光器应用上述任意一种激光器的控制方法。
本申请的一个或者多个实施例还公开了一种激光打孔设备,用于在太阳能电池膜上打孔,所述激光打孔设备包括:激光器、光学系统、工作平台以及控制板卡;所述控制板卡用于控制所述激光器和/或所述光学系统和/或所述工作平台;所述激光器产生的激光光束通过所述光学系统聚焦至所述工作平台上的太阳能电池膜,进而对所述太阳能电池膜打孔。所述激光打孔设备中的激光器应用上述任意一种激光器的控制方法。
本申请的一个或者多个实施例还公开了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质中存储有计算机指令,所述计算机指令适于处理器加载,以实现上述任意一种激光器的控制方法。
与现有技术相比,本申请公开的技术方案主要有以下有益效果:
在本申请的实施例中,通过在输出一个激光脉冲时开始计时,并且只有在计时获得的时间达到激光脉冲的最小周期时才允许输出下一个激光脉冲,因此激光脉冲的周期不会小于最小周期,也即激光脉冲的频率不会超过设定的最高频率。在计时获得的时间超过激光脉冲的最大周期时停止输出下一个激光脉冲,因此激光脉冲的周期不会超过最大周期,也即激光脉冲的频率不会小于设定的最低频率。控制信号的周期具有不确定性,通过本实施例中所述激光器的控制方法一方面能够跟随控制信号输出激光脉冲,另一方面则能够将激光脉冲的周 期限制在最小周期与最大周期之间,有利于保障激光器的工作性能,减少安全隐患。
附图说明
图1为本申请的一实施例中激光器的控制方法的示意图;
图2为本申请的一实施例中控制信号、捕捉信号以及激光脉冲的示意图;
图3为本申请的一实施例中控制信号、捕捉信号、最小周期计时信号以及最小周期限制信号的示意图;
图4为本申请的一实施例中控制信号、捕捉信号、最小周期计时信号以及最小周期限制信号的示意图;
图5为本申请的一实施例中控制信号、捕捉信号、最大周期计时信号以及最大周期限制信号的示意图;
图6为本申请的一实施例中控制信号、捕捉信号、最大周期计时信号以及最大周期限制信号的示意图;
图7为本申请的一实施例中控制信号、捕捉信号以及最大工作时间的示意图;
图8为本申请的一实施例中激光器的电子控制装置的示意图;
图9为本申请的一实施例中激光器的控制装置的示意图;
图10为本申请的另一实施例中激光器的控制装置的示意图;
图11为本申请的一实施例中激光器的示意图;
图12为本申请的一实施例中激光打孔设备的示意图;
图13为现有技术中的激光打孔设备在太阳能电池膜上打孔后的效果图;
图14为本申请中的激光打孔设备在太阳能电池膜上打孔后的效果图。
附图标记说明:101-采集模块、102-脉冲控制模块、103-周期计时模块、201-采集模块、202-脉冲控制模块、203-周期计时模块、204-限制模块、205-工作时间计时模块、300-激光器的电子控制装置、301-微控制单元、302-现场 可编辑逻辑门阵列、303-数模转换器、304-控制接口、400-应用设备控制板卡、500-上位机、10-光路模组、20-电路模组、11-泵浦源、12-谐振腔、13-光纤放大器、14-激光输出头、15-光电探测器、21-声光控制电路、22-输出控制电路、23-泵浦驱动电路、24-保护电路、121-第一合束器、122-高反射镜、123-增益光纤、124-低反射率光纤光栅、125-声光开关、131-第二合束器、132-泵浦激光器、30-激光器、40-光学系统、50-工作平台、60-控制板卡。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反的,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本申请的权利要求书、说明书以及说明书附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
本申请的一实施例公开一种激光器的控制方法,应用于光纤激光器,但本申请公开的激光器的控制方法并不仅限于应用在光纤激光器上。下面将结合附图对本实施例中的技术方案进行说明,具体实施方式中涉及到的激光器的控制方法只是较佳的实施例,并非本申请所有可能的实施例。
参考图1和图2,其中图1为本申请的一实施例中激光器的控制方法的示意图,图2为本申请的一实施例中控制信号、捕捉信号以及激光脉冲的示意图。
所述激光器的控制方法包括:
步骤1:采集控制信号的上升沿或者下降沿以形成捕捉信号。
步骤2:根据所述捕捉信号输出激光脉冲。
步骤3:在输出一个激光脉冲时开始计时。
步骤4:在计时获得的时间达到激光脉冲的最小周期时允许输出下一个激光脉冲,在计时获得的时间超过激光脉冲的最大周期时停止输出下一个激光脉冲。
在一种可能的实施方式中,输出激光脉冲的时间点跟随捕捉信号上捕捉到上升沿或者下降沿的时间点。
通过在输出一个激光脉冲时开始计时,并且只有在计时获得的时间达到激光脉冲的最小周期时才允许输出下一个激光脉冲,因此激光脉冲的周期不会小于最小周期,也即激光脉冲的频率不会超过设定的最高频率。在计时获得的时间超过激光脉冲的最大周期时停止输出下一个激光脉冲,因此激光脉冲的周期不会超过最大周期,也即激光脉冲的频率不会小于设定的最低频率。控制信号的周期具有不确定性,通过本实施例中所述激光器的控制方法一方面能够跟随控制信号输出激光脉冲,另一方面则能够将激光脉冲的周期限制在最小周期与最大周期之间,有利于保障激光器的工作性能,减少安全隐患。
在本申请的实施例中,通过最小周期计时信号和最小周期限制信号来限制激光脉冲的最小周期。在步骤3计时的同时形成最小周期计时信号,所述最小周期计时信号在计时停止时的相位与计时开始时的相位相反。例如,以高电平表示从计时开始持续到计时停止,并且所述高电平持续的时长为设定的激光脉冲的最小周期,在计时停止后由高电平转化为低电平。在步骤3计时的同时还形成与所述最小周期计时信号反相的最小周期限制信号,开始计时后当所述最小周期限制信号的相位变化时允许输出下一个激光脉冲。例如,在最小周期计时信号为高电平时最小周期限制信号为低电平,在最小周期计时信号为低电平时最小周期限制信号则为高电平,当最小周期限制信号为高电平允许输出下一个激光脉冲。在输出下一个激光脉冲时将重新开始计时,也即从输出上一个激光脉冲开始的计时将清零,从输出下一个激光脉冲时开始再次计时。
参考图3和图4,其中图3为本申请的一实施例中控制信号a、捕捉信号a、 最小周期计时信号以及最小周期限制信号的示意图,图4为本申请的一实施例中控制信号b、捕捉信号b、最小周期计时信号以及最小周期限制信号的示意图。
如图3中所示意的,在捕捉信号a上的时间点t1和t2捕捉到了控制信号a上相邻的两个上升沿,并且时间点t1和t2之间的间隔时间大于最小周期计时信号表示的最小周期Tmin。由步骤4可知,在计时获得的时间达到激光脉冲的最小周期时允许输出下一个激光脉冲。图3中时间点t1和t2之间的间隔时间大于最小周期Tmin,在捕捉信号a上的时间点t2,最小周期限制信号由低电平转换为高低平,采集到控制信号a的上升沿时将输出下一个激光脉冲。
如图4中所示意的,在捕捉信号b上的时间点t1、t2以及t3捕捉到了控制信号b上的三个上升沿,并且时间点t1和t2之间的间隔时间小于最小周期Tmin。由步骤4可知,在计时获得的时间达到激光脉冲的最小周期时允许输出下一个激光脉冲,因此在计时获得的时间小于激光脉冲的最小周期时将不能输出下一个激光脉冲。图4中时间点t1和t2之间的间隔时间小于最小周期Tmin,在捕捉信号b上的时间点t2,最小周期限制信号仍然为低电平,因此采集到捕捉信号b的上升沿时将不能输出下一个激光脉冲。图4中时间点t1和t3之间的间隔时间大于最小周期Tmin,在捕捉信号b上的时间点t3,最小周期限制信号为高电平,因此在时间点t3采集到捕捉信号b的上升沿时可以输出下一个激光脉冲。
在本申请的实施例中,通过最大周期计时信号和最大周期限制信号来限制激光脉冲的最大周期。在步骤3计时的同时形成最大周期计时信号,所述最大周期计时信号在计时停止时的相位与计时开始时的相位相反。例如,以高电平表示从计时开始持续到计时停止,并且所述高电平持续的时长为设定的激光脉冲的最大周期,在计时停止后由高电平转化为低电平。在步骤3计时的同时还形成与所述最大周期计时信号反相的最大周期限制信号,开始计时后当所述最大周期限制信号的相位变化时停止输出下一个激光脉冲。例如,在最大周期计时信号为高电平时最大周期限制信号为低电平,在最大周期计时信号为低电平 时最大周期限制信号则为高电平,当最大周期限制信号为高电平时停止输出下一个激光脉冲。在一种可能的实施方式中,因最大周期限制信号为高电平而停止输出下一个激光脉冲后,如果激光器接收到新的控制信号,将重新执行步骤1至步骤4,此时将重新开始计时,也即从输出上一个激光脉冲开始的计时将清零,从输出下一个激光脉冲时开始再次计时。
参考图5和图6,其中图5为本申请的一实施例中控制信号c、捕捉信号c、最大周期计时信号以及最大周期限制信号的示意图,图6为本申请的一实施例中控制信号d、捕捉信号d、最大周期计时信号以及最大周期限制信号的示意图。
如图5中所示意的,在捕捉信号c上的时间点t1和t2捕捉到了控制信号c上相邻的两个上升沿,并且时间点t1和t2之间的间隔时间小于最大周期计时信号表示的最大周期Tmax。由步骤4可知,在计时获得的时间超过激光脉冲的最大周期时停止输出下一个激光脉冲,因此在计时获得的时间没有超过激光脉冲的最大周期时输出下一个激光脉冲。图5中时间点t1和t2之间的间隔时间小于最大周期Tmax,因此在捕捉信号c上的时间点t2,最小周期限制信号仍然为高电平,而最大周期限制信号则仍然为低电平,采集到捕捉信号b的上升沿时将输出下一个激光脉冲。
如图6中所示意的,在捕捉信号d上的时间点t1和t2捕捉到了控制信号d上相邻的两个上升沿,并且时间点t1和t2之间的间隔时间大于最大周期计时信号表示的最大周期Tmax。由步骤4可知,在计时获得的时间超过激光脉冲的最大周期时停止输出下一个激光脉冲。图6中时间点t1和t2之间的间隔时间大于最大周期Tmax,因此在捕捉信号d上的时间点t2,最小周期限制信号转化为低电平,而最大周期限制信号则转化为高电平,采集到捕捉信号b的上升沿时将停止输出下一个激光脉冲。
在一种可能的实施方式中,在输出一个激光脉冲时开始对泵浦源的工作时间计时,在所述工作时间达到最大工作时间时激光器关闭泵浦源。
参考图7,为本申请的一实施例中控制信号e、捕捉信号e以及最大工作时 间的示意图。在捕捉信号e上的时间点t1和t2捕捉到了控制信号e上相邻的两个上升沿,并且在输出一个激光脉冲时开始对泵浦源的工作时间计时,如果工作时间超过最大工作时间θ,则激光器将关闭泵浦源。具体而言,激光器可以通过关闭泵浦源的工作电流,使得泵浦源停止工作。
本申请的一实施例公开一种激光器的电子控制装置。参考图8,为本申请的一实施例中激光器的电子控制装置300的示意图。该激光器的电子控制装置300包括:微控制单元(MCU)301、现场可编辑逻辑门阵列(FPGA)302、一个或者多个数模转换器303以及控制接口304。所述微控制单元301与所述现场可编辑逻辑门阵列302相互进行通信。所述现场可编辑逻辑门阵列302通过所述一个或者多个数模转换器303进行数模转换,通过所述控制接口304与应用设备控制板卡400以及上位机500进行通信。所述现场可编辑逻辑门阵列302可以通过所述一个或者多个数模转换器303输出控制信号以控制泵浦源的工作电流。所述现场可编辑逻辑门阵列302还可以向激光器的声光控制板卡发送控制指令。所述控制接口304可以是DB25控制接口。所述应用设备控制板卡400装设在激光打标设备等其他应用激光器的设备。
所述激光器的电子控制装置300用于控制实现:采集控制信号的上升沿或者下降沿以形成捕捉信号;根据所述捕捉信号输出激光脉冲;在输出一个激光脉冲时开始计时,在计时获得的时间达到激光脉冲的最小周期时允许输出下一个激光脉冲,在计时获得的时间超过激光脉冲的最大周期时停止输出下一个激光脉冲。
进一步地,所述激光器的电子控制装置300还用于控制实现:输出激光脉冲的时间点跟随所述捕捉信号上捕捉到上升沿或者下降沿的时间点。
进一步地,所述激光器的电子控制装置300还用于控制实现:计时的同时形成最小周期计时信号,所述最小周期计时信号在计时停止时的相位与计时开始时的相位相反;形成与所述最小周期计时信号反相的最小周期限制信号,开始计时后当所述最小周期限制信号的相位变化时允许输出下一个激光脉冲。
进一步地,所述激光器的电子控制装置300还用于控制实现:计时的同时形成最大周期计时信号,所述最大周期计时信号在计时停止时的相位与计时开始时的相位相反;形成与所述最大周期计时信号反相的最大周期限制信号,开始计时后当所述最大周期限制信号的相位变化时停止输出下一个激光脉冲。
进一步地,所述激光器的电子控制装置300还用于控制实现:在输出一个激光脉冲时开始对泵浦源的工作时间计时,在所述工作时间达到最大工作时间时激光器关闭泵浦源。
上述各实施例中的激光器的电子控制装置有利于保障激光器的工作性能,减少安全隐患。
本申请的一实施例公开一种激光器的控制装置。参考图9,为本申请的一实施例中激光器的控制装置的示意图。所述激光器的控制装置,包括:采集模块101、脉冲控制模块102以及周期计时模块103。
采集模块101用于采集控制信号的上升沿或者下降沿以形成捕捉信号。脉冲控制模块102,用于根据所述捕捉信号输出激光脉冲;周期计时模块103用于在输出一个激光脉冲时开始计时,在计时获得的时间达到激光脉冲的最小周期时所述脉冲控制模块102允许输出下一个激光脉冲,在计时获得的时间超过激光脉冲的最大周期时所述脉冲控制模块102停止输出下一个激光脉冲。所述脉冲控制模块102输出激光脉冲的时间点跟随所述捕捉信号上捕捉到上升沿或者下降沿的时间点。
本申请的一实施例公开另一种激光器的控制装置。参考图10,为本申请的另一实施例中激光器的控制装置的示意图。所述激光器的控制装置,包括:采集模块201、脉冲控制模块202、周期计时模块203、限制模块204以及工作时间计时模块205。
采集模块201用于采集控制信号的上升沿或者下降沿以形成捕捉信号。脉冲控制模块202用于根据所述捕捉信号输出激光脉冲。周期计时模块203用于在输出一个激光脉冲时开始计时,在计时获得的时间达到激光脉冲的最小周期 时所述脉冲控制模块102允许输出下一个激光脉冲,在计时获得的时间超过激光脉冲的最大周期时所述脉冲控制模块102停止输出下一个激光脉冲。所述周期计时模块203计时的同时形成最小周期计时信号,所述最小周期计时信号在计时停止时的相位与计时开始时的相位相反。所述周期计时模块203计时的同时形成最大周期计时信号,所述最大周期计时信号在计时停止时的相位与计时开始时的相位相反。
限制模块204用于形成与所述最小周期计时信号反相的最小周期限制信号,开始计时后当所述最小周期限制信号的相位变化时所述脉冲控制模块202允许输出下一个激光脉冲。在输出一个激光脉冲时所述工作时间计时模块205开始对泵浦源的工作时间计时,在所述工作时间达到最大工作时间时激光器关闭泵浦源。
上述各实施例中的激光器的控制装置,一方面能够跟随控制信号输出激光脉冲,另一方面则能够将激光脉冲的周期限制在最小周期与最大周期之间,有利于保障激光器的工作性能,减少安全隐患。
本申请的一实施例公开一种激光器。参考图11,为本申请的一实施例中激光器的示意图。所述激光器包括光路模组10和电路模组20。光路模组10包括依次设置的一个或者多个泵浦源11、一个或者多个谐振腔12、一个或者多个光电探测器15、一个或者多个光纤放大器13以及激光输出头14。其中谐振腔12中设置有第一合束器121、高反射镜122、增益光纤123、低反射率光纤光栅124以及声光开关125。其中,所述高反射镜122也可以由高反光栅代替。光纤放大器13设置有第二合束器131和泵浦激光器132。电路模组20包括声光控制电路21、输出控制电路22、泵浦驱动电路23以及保护电路24。所述激光器应用上述任意一种激光器的控制方法将激光脉冲的周期限制在最小周期与最大周期之间。
本申请的一实施例公开一种激光打孔设备,用于在太阳能电池膜上打孔。参考图12,为本申请的一实施例中激光打孔设备的示意图。所述激光打孔设备 包括:激光器30、光学系统40、工作平台50以及控制板卡60。所述工作平台50用于装设和固定太阳能电池膜,以便从所述光学系统40射出的激光光束能够对太阳能电池膜精准地打孔。所述控制板卡60用于控制所述激光器30和/或所述光学系统40和/或所述工作平台50。所述激光器30产生的激光光束通过所述光学系统40聚焦至所述工作平台50上的太阳能电池膜,进而对所述太阳能电池膜打孔。所述激光打孔设备中的激光器30应用上述任意一种激光器的控制方法将激光脉冲的周期限制在最小周期与最大周期之间。上述实施例中的激光打孔设备对太阳能电池膜上打孔后,所述太阳能电池膜上将形成大小均匀、间距一致的圆孔,所述激光打孔设备具有极佳的工作性能。
参考图13和图14,其中图13为现有技术中的激光打孔设备在太阳能电池膜上打孔后的效果图,图14为本申请中的激光打孔设备在太阳能电池膜上打孔后的效果图。图13中的圆饼区域内为现有技术中的激光打孔设备在太阳能电池膜上打孔后形成的一个孔形区域Sp。图14中白色圆圈内为本申请中的激光打孔设备在太阳能电池膜上打孔后形成的一个孔形区域Sp。图13中的多个孔形区域Sp分布不规则,无法满足技术上的要求,因此现有技术中的激光打孔设备在太阳能电池膜上打孔的效果较差。在图14中矩阵式分布了多个孔形区域Sp。图14中的多个孔形区域Sp的大小均匀,间距一致。本领域的技术人员应当了解,图14中矩阵式分布的多个孔形区域Sp反映了出本申请中的激光打孔设备具有极佳的工作性能。此外本申请中的激光打孔设备在对铝箔片、铜箔片打孔时也能达到图14中的效果。
本申请的一实施例公开一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质中存储有计算机指令,所述计算机指令适于处理器加载,以实现上述任意一种激光器的控制方法。
当上述各个实施例中的技术方案使用到软件实现时,可以将实现上述各个实施例的计算机指令和/或数据存储在计算机可读介质中或作为可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信 介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存储的任何可用介质。以此为例但不限于此:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外,任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光钎光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定义中。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种激光器的控制方法,其特征在于,包括:采集控制信号的上升沿或者下降沿以形成捕捉信号;根据所述捕捉信号输出激光脉冲;在输出一个激光脉冲时开始计时,在计时获得的时间达到激光脉冲的最小周期时允许输出下一个激光脉冲,在计时获得的时间超过激光脉冲的最大周期时停止输出下一个激光脉冲。
  2. 根据权利要求1所述激光器的控制方法,其特征在于,输出激光脉冲的时间点跟随所述捕捉信号上捕捉到上升沿或者下降沿的时间点。
  3. 根据权利要求1或2所述激光器的控制方法,其特征在于,计时的同时形成最小周期计时信号,所述最小周期计时信号在计时停止时的相位与计时开始时的相位相反;形成与所述最小周期计时信号反相的最小周期限制信号,开始计时后当所述最小周期限制信号的相位变化时允许输出下一个激光脉冲。
  4. 根据权利要求3所述激光器的控制方法,其特征在于,计时的同时形成最大周期计时信号,所述最大周期计时信号在计时停止时的相位与计时开始时的相位相反;形成与所述最大周期计时信号反相的最大周期限制信号,开始计时后当所述最大周期限制信号的相位变化时停止输出下一个激光脉冲。
  5. 根据权利要求1或2所述激光器的控制方法,其特征在于,在输出一个激光脉冲时开始对泵浦源的工作时间计时,在所述工作时间达到最大工作时间时激光器关闭泵浦源。
  6. 根据权利要求5所述激光器的控制方法,其特征在于,
    所述关闭泵浦源可通过关闭泵浦源的工作电流实现。
  7. 一种激光器的电子控制装置,其特征在于,包括:微控制单元、现场可编辑逻辑门阵列、一个或者多个数模转换器以及控制接口;所述微控制单元与所述现场可编辑逻辑门阵列相互进行通信;所述现场可编辑逻辑门阵列通过所述一个或者多个数模转换器进行数模转换,通过所述控制接口与应用设备控制 板卡以及上位机进行通信;
    所述激光器的电子控制装置用于控制实现:采集控制信号的上升沿或者下降沿以形成捕捉信号;根据所述捕捉信号输出激光脉冲;在输出一个激光脉冲时开始计时,在计时获得的时间达到激光脉冲的最小周期时允许输出下一个激光脉冲,在计时获得的时间超过激光脉冲的最大周期时停止输出下一个激光脉冲。
  8. 根据权利要求7所述激光器的电子控制装置,其特征在于,所述激光器的电子控制装置还用于控制实现:输出激光脉冲的时间点跟随所述捕捉信号上捕捉到上升沿或者下降沿的时间点。
  9. 根据权利要求7或8所述激光器的电子控制装置,其特征在于,所述激光器的电子控制装置还用于控制实现:计时的同时形成最小周期计时信号,所述最小周期计时信号在计时停止时的相位与计时开始时的相位相反;形成与所述最小周期计时信号反相的最小周期限制信号,开始计时后当所述最小周期限制信号的相位变化时允许输出下一个激光脉冲。
  10. 根据权利要求9所述激光器的电子控制装置,其特征在于,所述激光器的电子控制装置还用于控制实现:计时的同时形成最大周期计时信号,所述最大周期计时信号在计时停止时的相位与计时开始时的相位相反;形成与所述最大周期计时信号反相的最大周期限制信号,开始计时后当所述最大周期限制信号的相位变化时停止输出下一个激光脉冲。
  11. 根据权利要求7或8所述激光器的电子控制装置,其特征在于,所述激光器的电子控制装置还用于控制实现:在输出一个激光脉冲时开始对泵浦源的工作时间计时,在所述工作时间达到最大工作时间时激光器关闭泵浦源。
  12. 根据权利要求11所述激光器的电子控制装置,其特征在于,
    所述关闭泵浦源可通过关闭泵浦源的工作电流实现。
  13. 一种激光器,包括光路模组和电路模组,其特征在于,所述激光器应用权利要求1至6任意一项所述激光器的控制方法。
  14. 一种激光打孔设备,用于在太阳能电池膜上打孔,所述激光打孔设备包括:激光器、光学系统、工作平台以及控制板卡;所述控制板卡用于控制所述激光器和/或所述光学系统和/或所述工作平台;所述激光器产生的激光光束通过所述光学系统聚焦至所述工作平台上的太阳能电池膜,进而对所述太阳能电池膜打孔;其特征在于,所述激光器应用权利要求1至6任意一项所述激光器的控制方法。
  15. 一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可读存储介质中存储有计算机指令,所述计算机指令适于处理器加载,以实现权利要求1至6任意一项所述激光器的控制方法。
PCT/CN2018/117484 2018-03-14 2018-11-26 激光器的控制方法、电子控制装置、激光器、激光打孔设备以及存储介质 WO2019218634A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810209906 2018-03-14
CN201810466986.X 2018-05-16
CN201810466986.XA CN108683068B (zh) 2018-03-14 2018-05-16 激光器的控制方法、电子控制装置、激光器、激光打孔设备以及存储介质

Publications (1)

Publication Number Publication Date
WO2019218634A1 true WO2019218634A1 (zh) 2019-11-21

Family

ID=63805078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117484 WO2019218634A1 (zh) 2018-03-14 2018-11-26 激光器的控制方法、电子控制装置、激光器、激光打孔设备以及存储介质

Country Status (2)

Country Link
CN (1) CN108683068B (zh)
WO (1) WO2019218634A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108683068B (zh) * 2018-03-14 2020-06-09 深圳市创鑫激光股份有限公司 激光器的控制方法、电子控制装置、激光器、激光打孔设备以及存储介质
CN109244819B (zh) * 2018-11-27 2020-06-09 深圳市创鑫激光股份有限公司 一种激光器及其出光控制方法、装置及激光设备
CN109687260B (zh) * 2018-12-28 2020-05-29 苏州创鑫激光科技有限公司 一种激光器保护方法以及装置
CN111308486A (zh) * 2020-03-30 2020-06-19 维沃移动通信有限公司 激光测距装置、方法及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080273559A1 (en) * 2007-05-04 2008-11-06 Ekspla Ltd. Multiple Output Repetitively Pulsed Laser
CN201285460Y (zh) * 2008-10-30 2009-08-05 武汉电信器件有限公司 一种基于智能控制单元的可插拔光收发模块
CN203326349U (zh) * 2013-05-23 2013-12-04 珠海市光辰科技有限公司 激光器
CN103904547A (zh) * 2012-12-26 2014-07-02 三星电机株式会社 脉冲激光系统及其驱动方法
CN106493476A (zh) * 2015-09-03 2017-03-15 维亚机械株式会社 激光加工装置及激光加工方法
CN107534265A (zh) * 2015-03-30 2018-01-02 奥里巴Abx股份有限公司 用于触发脉冲光源的方法和设备
CN108683068A (zh) * 2018-03-14 2018-10-19 深圳市创鑫激光股份有限公司 激光器的控制方法、电子控制装置、激光器、激光打孔设备以及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6639177B2 (en) * 2001-03-29 2003-10-28 Gsi Lumonics Corporation Method and system for processing one or more microstructures of a multi-material device
CN101327548A (zh) * 2008-06-25 2008-12-24 天津大学 高重复频率光子晶体光纤紫外超短脉冲激光加工机
CN101764345B (zh) * 2009-12-22 2012-05-09 深圳市大族激光科技股份有限公司 一种激光器
US8648277B2 (en) * 2011-03-31 2014-02-11 Electro Scientific Industries, Inc. Laser direct ablation with picosecond laser pulses at high pulse repetition frequencies
WO2012161092A1 (ja) * 2011-05-24 2012-11-29 住友電気工業株式会社 光源制御方法
CN103760822B (zh) * 2013-12-30 2016-06-22 成都乐创自动化技术股份有限公司 一种切割方法及设备
CN104722932B (zh) * 2015-03-28 2016-09-14 大族激光科技产业集团股份有限公司 一种非晶硅太阳电池玻璃基底的激光钻孔方法
CN205565283U (zh) * 2015-12-29 2016-09-07 中国科学院西安光学精密机械研究所 一种光纤放大器实时保护装置及其激光器
CN107508122B (zh) * 2017-09-05 2019-08-27 深圳市杰普特光电股份有限公司 一种mopa激光器的控制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080273559A1 (en) * 2007-05-04 2008-11-06 Ekspla Ltd. Multiple Output Repetitively Pulsed Laser
CN201285460Y (zh) * 2008-10-30 2009-08-05 武汉电信器件有限公司 一种基于智能控制单元的可插拔光收发模块
CN103904547A (zh) * 2012-12-26 2014-07-02 三星电机株式会社 脉冲激光系统及其驱动方法
CN203326349U (zh) * 2013-05-23 2013-12-04 珠海市光辰科技有限公司 激光器
CN107534265A (zh) * 2015-03-30 2018-01-02 奥里巴Abx股份有限公司 用于触发脉冲光源的方法和设备
CN106493476A (zh) * 2015-09-03 2017-03-15 维亚机械株式会社 激光加工装置及激光加工方法
CN108683068A (zh) * 2018-03-14 2018-10-19 深圳市创鑫激光股份有限公司 激光器的控制方法、电子控制装置、激光器、激光打孔设备以及存储介质

Also Published As

Publication number Publication date
CN108683068B (zh) 2020-06-09
CN108683068A (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
WO2019218634A1 (zh) 激光器的控制方法、电子控制装置、激光器、激光打孔设备以及存储介质
SG125243A1 (en) Method and apparatus for perforating printed circuit board
CN107908680A (zh) 微信公众号的管理方法、电子装置及计算机可读存储介质
US20190342528A1 (en) Blockchain-Based Trustless Date Verifiable Video Capture
CN110152190B (zh) 脑电刺激装置、系统及终端设备、存储介质
EP2863558A1 (en) Audio data transmission method, system, transmission device, and electronic signature tool
CN103825179A (zh) 一种脉冲波形可调的光纤激光器及其调制方法
TW492901B (en) Laser processing apparatus
EP2190230A3 (en) User privacy management apparatus and method in mobile communications system
CN108566706A (zh) 闪光灯控制方法、装置、终端设备及存储介质
CN109244821B (zh) 激光器及激光生成方法
CN202940816U (zh) 音频数据传输系统、传输装置及电子签名工具
KR20130018186A (ko) 연동 소프트웨어 개발 장치를 이용한 데이터 연동 방법
US20140324368A1 (en) Test method, test system and electronic device employing the same
CN115579723B (zh) 一种时域和光谱形状可控的脉冲串产生系统、方法
CN109753359B (zh) 一种用于构建资源池的fpga板卡、服务器和系统
CN114283808A (zh) 多路外呼系统、方法、设备、介质及产品
CN112382288B (zh) 一种语音调试设备的方法、系统、计算机设备和存储介质
CN209373790U (zh) 一种拼接屏遥控器
CN112829300A (zh) 3d打印方法、装置、3d打印设备及存储介质
CN111082291B (zh) 一种用于穿孔的监测装置及光纤激光器
CN109215664B (zh) 语音处理方法及装置
CN106375001B (zh) 一种基于无信标光apt系统的捕获方法
JP2006145584A (ja) 波長が紫外域の複数のレーザの形成方法および形成装置並びにレーザ加工装置
CN110932903B (zh) 一种实时监测当前在线设备的方法、设备、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918969

Country of ref document: EP

Kind code of ref document: A1