WO2012161092A1 - 光源制御方法 - Google Patents

光源制御方法 Download PDF

Info

Publication number
WO2012161092A1
WO2012161092A1 PCT/JP2012/062684 JP2012062684W WO2012161092A1 WO 2012161092 A1 WO2012161092 A1 WO 2012161092A1 JP 2012062684 W JP2012062684 W JP 2012062684W WO 2012161092 A1 WO2012161092 A1 WO 2012161092A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
pulse
full width
half maximum
light
Prior art date
Application number
PCT/JP2012/062684
Other languages
English (en)
French (fr)
Inventor
角井 素貴
忍 玉置
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2013516329A priority Critical patent/JP5654673B2/ja
Priority to EP12789472.3A priority patent/EP2717394A4/en
Publication of WO2012161092A1 publication Critical patent/WO2012161092A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094061Shared pump, i.e. pump light of a single pump source is used to pump plural gain media in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1693Solid materials characterised by additives / sensitisers / promoters as further dopants aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/176Solid materials amorphous, e.g. glass silica or silicate glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06216Pulse modulation or generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature

Definitions

  • the present invention relates to a method for controlling a pulse light source that amplifies pulse light output from a directly modulated semiconductor laser by an optical fiber amplifier and repeatedly outputs the amplified pulse light.
  • Pulse light sources are used for industrial applications such as laser processing.
  • the throughput required depending on the object to be processed varies, and the repetition frequency of the pulsed light output needs to be optimized according to the application.
  • the control of the pulse width is important not only in microfabrication but also in the fields of optical measurement, communication, and medical applications.
  • Patent Document 1 discloses an invention for compressing the pulse width of output pulsed light.
  • the pulse light source described in Patent Document 1 is effective in compressing the pulse width of the output pulse light.
  • the pulse width increases when the repetition frequency of the pulsed light output is low due to the transient response of the optical fiber amplifier. That is, according to Patent Document 1 described above, when the repetition frequency is 100 kHz, the full width at half maximum of the pulse (hereinafter referred to as pulse full width at half maximum, which may be simply expressed as pulse width or FWHM) is 0.56 ns. When the repetition frequency is 2.5 MHz, FWHM is 0.41 ns.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a light source control method capable of reducing the repetition frequency dependence of the pulse width (FWHM) of output pulsed light. .
  • the light source control method prepares a pulse light source including a directly modulated semiconductor laser as a seed light source, and reduces the repetition frequency dependence of the pulse width of the output pulse light.
  • the pulse light source includes a semiconductor laser, an optical filter, and an optical fiber amplifier, and has a MOPA (Master Oscillator Power Amplifier) structure.
  • the semiconductor laser is directly modulated and outputs pulsed light.
  • the optical filter receives pulsed light output from a semiconductor laser, and forms pulsed light in which one of the shorter wavelength side and the longer wavelength side of the wavelength band of the input pulsed light is attenuated from the other. Is output.
  • the optical fiber amplifier amplifies the shaped pulsed light output from the optical filter and outputs the amplified pulsed light.
  • the light source control method as a first aspect, by adjusting the temperature of the semiconductor laser, a predetermined full width at half maximum is realized at a predetermined repetition rate for the amplified pulsed light output from the optical fiber amplifier. Further, in the light source control method, as a second aspect applicable to the first aspect, by further controlling the pumping light power of the optical fiber amplifier, the amplified pulsed light output from the optical fiber amplifier is predetermined. It is preferable to realize the full width at half maximum of a predetermined pulse at a repetition frequency of Further, as third to fifth aspects applicable to at least one of the first and second aspects, the predetermined full width at half maximum is at least less than 1 ns, preferably less than 500 ps, more preferably less than 300 ps. In addition, as a sixth aspect applicable to at least one of the first and second aspects, it is preferable that the predetermined repetition frequency is 600 kHz or less.
  • the light source control method of the present invention obtains in advance a relationship among the temperature, repetition frequency, and pulse full width at half maximum of the semiconductor laser. deep. This relationship can be realized by tabulating previously obtained measurement values of temperature, repetition frequency, and full width at half maximum of the pulse, and storing this measurement value table in a memory.
  • the amplified pulse light from the optical fiber amplifier is It is preferable that a predetermined full width at half maximum is realized at a predetermined repetition rate.
  • the light source control method monitors the full width at half maximum of the amplified pulsed light output from the optical fiber amplifier, It is preferable to realize a predetermined full width at half maximum at a predetermined repetition rate for the amplified pulsed light output from the optical fiber amplifier by feedback controlling the temperature adjustment of the semiconductor laser based on the full width at half maximum monitor result.
  • the temperature of the semiconductor laser is raised when the full width at half maximum monitor result is wider than the full width at half maximum pulse, and the full width at half maximum monitor result is at a predetermined pulse. It is preferable that the temperature of the semiconductor laser is lowered when the full width at half maximum is smaller.
  • the repetition frequency dependence of the pulse width (FWHM) of the output pulsed light can be suitably reduced.
  • FIG. 1 is a diagram showing a configuration of an embodiment of a pulse light source according to the present invention.
  • the pulse light source 1 has a MOPA structure and includes a seed light source 10 and an optical fiber amplifier 20.
  • the seed light source 10 is a 1060 nm-band Fabry-Perot semiconductor laser that is directly pulse-modulated in a driving current range of 0 to 220 mA so as to realize a high repetition frequency ranging from 100 kHz to 1 MHz and a constant pulse width independent of the repetition frequency. including.
  • the optical fiber amplifier 20 includes a preamplifier 21 and a booster amplifier 22.
  • the preamplifier 21 includes a YbDF 110, a band pass filter 120, a YbDF 130, a band pass filter 140, a YbDF 150, and the like.
  • the booster amplifier 22 includes a YbDF 160 and the like.
  • Each of the preamplifier 21 and the booster amplifier 22 is an optical fiber amplifier, amplifies the pulse light repeatedly output from the seed light source 10, and outputs the amplified pulse light from the end cap 30.
  • This pulsed light source 1 outputs pulsed light having a wavelength near 1060 nm, which is suitable for laser processing.
  • YbDFs 110, 130, 150, and 160 are optical amplifying media that amplify pulse light having a wavelength of about 1060 nm outputted from the seed light source 10, and Yb element is added as an active substance to the core of an optical fiber made of quartz glass. .
  • YbDFs 110, 130, 150, and 160 are advantageous in that the pumping light wavelength and the amplified light wavelength are close to each other and are advantageous in terms of power conversion efficiency, and are advantageous in that they have a high gain in the vicinity of a wavelength of 1060 nm.
  • These YbDFs 110, 130, 150, and 160 constitute a four-stage optical fiber amplifier.
  • the pump light from the pump light source 112 via the optical coupler 113 and the optical coupler 111 is supplied to the first stage YbDF 110 in the forward direction.
  • the YbDF 110 amplifies the pulsed light from the seed light source 10 via the optical isolator 114 and the optical coupler 111, and the amplified pulsed light is output via the optical isolator 115.
  • the band pass filter 120 receives the amplified pulse light from the first stage YbDF 110 via the optical isolator 115 and attenuates one of the short wavelength side and the long wavelength side of the wavelength band of the input pulse light from the other.
  • the shaped pulse light is output.
  • the pump light from the pump light source 112 via the optical coupler 113 and the optical coupler 131 is supplied to the second stage YbDF 130 in the forward direction. Then, the YbDF 130 amplifies the pulsed light from the band pass filter 120 via the optical coupler 131 and outputs the amplified pulsed light.
  • the band pass filter 140 receives the amplified pulse light from the second stage YbDF 130 and outputs shaped pulse light in which one of the short wavelength side and the long wavelength side of the wavelength band of the input pulse light is attenuated from the other. To do.
  • the pump light from the pump light source 152 via the optical coupler 151 is supplied to the third stage YbDF 150 in the forward direction.
  • the YbDF 150 amplifies the pulsed light from the bandpass filter 140 that has passed through the optical isolator 153 and the optical coupler 151, and outputs the amplified pulsed light.
  • the pump light from each of the pump light sources 162 to 167 via the optical combiner 161 is supplied to the fourth stage YbDF 160 in the forward direction.
  • the YbDF 160 further amplifies the pulse light from the third stage YbDF 150 via the optical isolator 168 and the optical combiner 161, and the amplified pulse light is output to the outside of the pulse light source 1 through the end cap 30.
  • a more preferable configuration example is as follows.
  • Each of YbDFs 110, 120, and 130 is a single clad structure Al co-doped silica type YbDF, Al concentration is 5 wt%, core diameter is 7 ⁇ m, clad diameter is 125 ⁇ m, and 915 nm band excitation light is not saturated.
  • Absorption is 70 dB / m, 975 nm band excitation light unsaturated absorption peak is 240 dB / m, and length is 7 m.
  • the fourth stage YbDF160 is an Al co-doped silica type YbDF having a double clad structure, the Al concentration is 1 wt%, the core diameter is 10 ⁇ m, the clad diameter is 125 ⁇ m, and the 915 nm band excitation light is not saturated. Absorption is 1.5 dB / m and length is 3.5 m.
  • the wavelengths of excitation light supplied to YbDF110, 130, 150, 160 are all in the 0.98 ⁇ m band.
  • the excitation light supplied to the first stage YbDF 110 has a power of 200 mW and is in a single mode.
  • the pump light supplied to the second stage YbDF 130 has a power of 200 mW and is in a single mode.
  • the pumping light supplied to the third stage YbDF 150 has a power of 400 mW and is in a single mode.
  • the excitation light supplied to the fourth stage YbDF 160 has a power of 12 to 24 W and is multimode. In the following, when the power of pumping light supplied to the fourth stage YbDF 160 is 24 W, the pumping light power is expressed as a relative ratio to 100%.
  • each of the bandpass filters 120 and 140 is intentionally shifted from the maximum intensity wavelength of the output light spectrum of the seed light source 10 to the short wavelength side or the long wavelength side, so that the char light of the seed light output from the seed light source 10 can be reduced. Only the ping component can be cut out. Then, by amplifying the light thereafter, pulse light with a short pulse width can be generated. Each of the bandpass filters 120 and 140 can remove ASE light. The FWHM of the transmission spectrum of each of the bandpass filters 120 and 140 is maintained at, for example, 1 ns or less.
  • FIG. 2 to FIG. 13 are diagrams each showing a pulse waveform of the output pulse light from the pulse light source 1.
  • a total of 12 graphs G210, G310, G410, G510, G610, G710, G810, G910, G1010, G1110, G1210, and G1310 indicate that the excitation light power of the fourth stage YbDF160 is 30%.
  • the pulse waveform of the output pulse light in the case of the above is shown.
  • a total of ten graphs G220, G320, G420, G620, G720, G820, G920, G1020, G1120, and G1220 indicate the pulse waveform of the output pulse light when the excitation light power of the fourth stage YbDF160 is 50%.
  • a total of 11 graphs G230, G330, G430, G530, G630, G730, G830, G1030, G1130, G1230, and G1330 show the output pulse light when the pump light power of the fourth stage YbDF160 is 70%.
  • a pulse waveform is shown.
  • a total of 12 graphs G240, G340, G440, G540, G640, G740, G840, G940, G1040, G1140, G1240, and G1340 are output pulses when the pump light power of the fourth stage YbDF160 is 100%.
  • the pulse waveform of light is shown.
  • FIGS. 2 to 5 show the pulse waveforms of the output pulse light when the temperature of the seed light source 10 is set to 17 ° C.
  • 2 shows pulse waveforms (graphs G210 to G240) when the repetition frequency is 100 kHz
  • FIG. 3 shows pulse waveforms (graphs G310 to G340) when the repetition frequency is 300 kHz
  • FIG. Pulse waveforms (graphs G410 to G440) when the frequency is 600 kHz are shown
  • FIG. 5 shows pulse waveforms (graphs G510 and G530 to G540) when the repetition frequency is 1000 kHz.
  • 6 to 9 show the pulse waveforms of the output pulse light when the temperature of the seed light source 10 is set to 27 ° C.
  • 6 shows pulse waveforms (graphs G610 to G640) when the repetition frequency is 100 kHz
  • FIG. 7 shows pulse waveforms (graphs G710 to G740) when the repetition frequency is 300 kHz
  • FIG. 9 shows pulse waveforms (graphs G910 to G920, G940) when the repetition frequency is 1000 kHz.
  • FIG. 9 shows pulse waveforms when the frequency is 600 kHz.
  • 10 to 13 show the pulse waveforms of the output pulsed light when the temperature of the seed light source 10 is set to 37 ° C.
  • 10 shows pulse waveforms (graphs G1010 to G1040) when the repetition frequency is 100 kHz
  • FIG. 11 shows pulse waveforms (graphs G1110 to G1140) when the repetition frequency is 300 kHz
  • FIG. 13 shows pulse waveforms (graphs G1310 to G1320, G1340) when the frequency is set to 600 kHz
  • FIG. 13 shows pulse waveforms (graphs G1310 to G1320, G1340) when the repetition frequency is set to 1000 kHz.
  • FIG. 14 is a graph showing the relationship between the FWHM of the output pulsed light from the pulse light source 1 and the repetition frequency.
  • a graph G1410 is a relationship when the pumping light power is 100% at a temperature of 17 ° C. of the seed light source 10
  • a graph G1420 is a graph when the pumping light power is 70% at a temperature of 17 ° C. of the seed light source 10.
  • the relationship, graph G1430 shows the relationship when the pumping light power is 50% at a temperature of 17 ° C. of the seed light source 10, respectively.
  • Graph G1440 is a relationship when the pumping light power is 100% at a temperature of 27 ° C.
  • graph G1450 is a relationship when the pumping light power is 70% at a temperature of 27 ° C. of the seed light source 10, and graph G1460. These show the relationship when the pumping light power is 50% when the temperature of the seed light source 10 is 27 ° C.
  • a graph G1470 is a relationship when the pumping light power is 100% at a temperature of 37 ° C. of the seed light source 10
  • a graph G1480 is a relationship when the pumping light power is 70% at a temperature of 37 ° C. of the seed light source 10, a graph G1490. These show the relationship when the pumping light power is 50% when the temperature of the seed light source 10 is 37 ° C.
  • FIG. 15 and 16 are graphs showing the relationship between the FWHM of the pulse light output from the pulse light source 1 and the temperature of the seed light source 10.
  • FIG. 15 shows a graph when the pump light power of the fourth stage YbDF 160 is 100%.
  • the graph G1510 is a relationship when the repetition frequency is 100 kHz
  • the graph G1520 is the case when the repetition frequency is 300 kHz. Relationship, graph G1530 shows the relationship when the repetition frequency is 600 kHz, and graph G1540 shows the relationship when the repetition frequency is 1 MHz.
  • FIG. 16 shows a graph when the pump light power of the fourth stage YbDF 160 is 70%.
  • the graph G1610 is a relationship when the repetition frequency is 100 kHz
  • the graph G1620 is a repetition frequency of 300 kHz
  • the graph G1630 shows the relationship when the repetition frequency is 600 kHz
  • the graph G1640 shows the relationship when the repetition frequency is 1 MHz.
  • the FWHM of the output pulse light is at least less than 1 ns, preferably less than 500 ps, and more preferably less than 300 ps. If the temperature is 35.5 ° C. and the excitation power of the fourth stage YbDF160 is 100%, and if the repetition frequency is 300 kHz, the seed light source temperature is 34.0 ° C. and the excitation power of the fourth stage YbDF160 is 100%. If the repetition frequency is 600 kHz, the seed light source temperature may be 27.0 ° C. and the excitation power of the fourth stage YbDF 160 may be 100%. By controlling the temperature of the seed light source 10 in this way, the FWHM of the output pulse light can be maintained at 300 ps in the range of the repetition frequency of 100 kHz to 600 kHz.
  • the temperature of the seed light source 10 is set to 37.0 ° C. and the excitation power of the fourth stage YbDF 160 is set to 70%. .
  • the repetition frequency is 300 kHz
  • the temperature of the seed light source 10 may be 34.0 ° C.
  • the excitation power of the fourth stage YbDF 160 may be 70%.
  • the repetition frequency is 600 kHz
  • the temperature of the seed light source 10 may be 27.0 ° C.
  • the excitation power of the fourth stage YbDF 160 may be 70%.
  • the repetition frequency is 1 MHz
  • the temperature of the seed light source may be 27.0 ° C.
  • the FWHM of the output pulse light can be maintained at 200 ps in the range of the repetition frequency of 100 kHz to 1 MHz.
  • the control of the excitation power of the fourth stage YbDF 160 if it is attenuated to the peak value of the output pulse light, the processing quality is affected. For this reason, it is desirable to control the peak value of the output pulsed light within a region saturated due to either or both of the small signal gain of the optical fiber amplifier and the nonlinear optical effect in the optical fiber. In the graphs shown in FIGS. 2 to 13, the range in which the excitation power of the fourth stage YbDF 160 is 70 to 100% corresponds to this.
  • the FWHM of the output pulsed light of the pulsed light source 1 is varied under various conditions (including the repetition frequency, the temperature of the seed light source 10 and the fourth stage YbDF excitation power). Based on this result, the temperature of the seed light source 10 and the fourth stage YbDF excitation power are adjusted based on this result, so that the output pulse light has a predetermined pulse width (at a predetermined repetition frequency). FWHM) is preferable.
  • Such control by the feedforward method is suitable for reducing the apparatus cost.
  • FIGS. 17 and 18 are diagrams showing the configuration of another embodiment of the pulse light source according to the present invention.
  • the pulse light sources 1A and 1B shown in these drawings are light sources that perform feedback control. Such feedback control is superior in terms of guaranteeing stabilization of processing quality.
  • a configuration for monitoring output pulse light (beam splitter, PD 44, digital oscilloscope 45 disposed on the downstream side of the end cap 30). Is unnecessary.
  • the pulse light source 1A shown in FIG. 17 adjusts the temperature of the seed light source 10 by the Peltier element 41, stores the temperature setting value Tref of the seed light source 10 in the memory 50 by the temperature setting unit 43, and The Peltier element 41 is controlled by the operational amplifier 42 so that the temperature measurement value becomes the temperature setting value Tref.
  • the pulse light source 1 ⁇ / b> A branches a part of the pulsed light output from the end cap 30 with a beam splitter, and monitors the FWHM of the branched light received by the PD 44 with the digital oscilloscope 45.
  • the memory 50 stores the FWHM of the output pulsed light of the pulsed light source 1 measured in advance under conditions (including the repetition frequency, the temperature of the seed light source 10 and the fourth stage YbDF excitation power).
  • the measured values are stored as a table associated with each condition.
  • the control unit 46A performs feedback control based on the FWHM monitoring result.
  • the pulse light source 1A adjusts the temperature of the seed light source 10 by adjusting the temperature setting value Tref of the seed light source 10 in the temperature setting unit 43 by this feedback control, and the output pulse light has a predetermined pulse at a predetermined repetition frequency. Realize width (FWHM). At this time, if the FWHM monitor result is wider than the predetermined pulse width (FWHM), the temperature of the seed light source 10 is increased. If the FWHM monitor result is narrower than the predetermined pulse width (FWHM), the seed light source 10 Reduce the temperature.
  • the pulse light source 1B shown in FIG. 18 includes a control unit 46B instead of the control unit 46A.
  • the control unit 46B performs feedback control based on the monitoring result of FWHM.
  • the pulse light source 1B adjusts the temperature of the seed light source 10 by adjusting the temperature setting value Tref of the seed light source 10 in the temperature setting unit 43 by this feedback control, and also adjusts the excitation power of the fourth-stage YbDF 160.
  • a predetermined pulse width (FWHM) is realized at a predetermined repetition rate.
  • the FWHM control algorithm for the output pulsed light is preferably as follows. That is, as shown in FIG. 19, first, in step S1, the temperature of the seed light source 10 is adjusted within the variable range, and if this still fails to realize the desired FWHM of the output pulse light, in step S2, The excitation power of the fourth stage YbDF 160 is adjusted. If the FWHM of the desired output pulse light is wider than the adjustable value in steps S1 and S2, any of the pulse width, bias level and amplitude of the modulation signal of the seed light source 10 is adjusted in step S3.
  • the temperature adjustment in step S1 is desirably performed under conditions with a repetition frequency of 600 kHz or less. As shown in FIGS. 15 and 16, when the repetition frequency exceeds 600 kHz, the dependence of the FWHM of the output pulse light on the temperature of the seed light source 10 is not monotonous.
  • any alarm (lighting of the LED on the operation panel or on the control software) will be issued by the control unit in either feedforward control or feedback control. Error message) is desirable.
  • SYMBOLS 1,1A, 1B Pulse light source, 10 ... Seed light source, 20 ... Optical fiber amplifier, 21 ... Preamplifier, 22 ... Booster amplifier, 30 ... End cap, 50 ... Memory, 110 ... YbDF, 111 ... Optical coupler, 112 ... Excitation Light source, 113 ... optical coupler, 114, 115 ... optical isolator, 120 ... band pass filter, 130 ... YbDF, 131 ... optical coupler, 140 ... band pass filter, 150 ... YbDF, 151 ... optical coupler, 152 ... pumping light source, 153 ... optical isolator, 160 ... YbDF, 161 ... optical combiner, 162 to 167 ... excitation light source, 168 ... optical isolator.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 本発明は、出力パルス光のパルス幅(FWHM)の繰返し周波数依存性を低減可能な光源制御方法に関する。パルス光源は、MOPA構造を有し、種光源および光ファイバ増幅器を備える。種光源は、直接変調され、パルス光を出力する半導体レーザを含む。種光源の温度および光ファイバ増幅器の励起光パワーを調整することで、光ファイバ増幅器から出力されるパルス光について、所定の繰返し周波数において所定のパルス半値全幅を実現する。

Description

光源制御方法
 本発明は、直接変調された半導体レーザから出力されるパルス光を光ファイバ増幅器により増幅し、該増幅パルス光を繰返し出力するパルス光源を制御する方法に関するものである。
 パルス光源は、レーザ加工等に代表される産業用途に用いられる。一般に、微細な加工対象のレーザ加工において、パルスレーザ光のパルス幅を一定に制御することは、周囲への熱影響を含めた加工品質を管理する上で重要である。その一方で、加工対象に応じて要求されるスループットなどは様々であり、パルス光出力の繰返し周波数は用途に応じて最適化が必要となる。なお、パルス幅の制御は、微細加工に限らず、光計測や通信、医療応用の分野でも重要である。特許文献1には、出力パルス光のパルス幅を圧縮する発明が開示されている。
特開2009-152560号公報
 発明者らは、上述のような従来のパルス光源のパルス幅制御について詳細に検討した結果、以下のような課題を発見した。すなわち、上記特許文献1に記載されたパルス光源は、出力パルス光のパルス幅を圧縮する上で有効である。しかし、上記特許文献1の図13に示されたように、光ファイバ増幅器の過渡応答により、パルス光出力の繰返し周波数が低いとパルス幅が増大する。即ち、上記特許文献1によれば、繰返し周波数が100kHzであるときにパルスの半値全幅(以下、パルス半値全幅といい、単にパルス幅又はFWHMと表す場合もある)は0.56nsであるが、繰返し周波数が2.5MHzであるときにはFWHMは0.41nsとなっている。
 本発明は、上述のような課題を解決するためになされたものであり、出力パルス光のパルス幅(FWHM)の繰返し周波数依存性を低減可能にする光源制御方法を提供することを目的としている。
 本発明に係る光源制御方法は、直接変調される半導体レーザを種光源として含むパルス光源を用意し、出力パルス光のパルス幅の繰返し周波数依存性を低減させる。具体的に、パルス光源は、半導体レーザと、光フィルタと、光ファイバ増幅器と、を備え、MOPA(Master Oscillator Power Amplifier)構造を有する。半導体レーザは、直接変調され、パルス光を出力する。光フィルタは、半導体レーザから出力されるパルス光を入力し、その入力パルス光の波長帯域のうちのパルス光のピーク波長より短波長側および長波長側の一方を他方より減衰させた成形パルス光を出力する。光ファイバ増幅器は、光フィルタから出力された成形(shaped)パルス光を増幅し、その増幅パルス光を出力する。そして、当該光源制御方法では、第1の態様として、半導体レーザの温度を調整することにより、光ファイバ増幅器から出力される増幅パルス光について、所定の繰返し周波数において所定のパルス半値全幅を実現する。また、当該光源制御方法では、上記第1の態様に適用可能な第2の態様として、更に光ファイバ増幅器の励起光パワーを制御することにより、光ファイバ増幅器から出力される増幅パルス光について、所定の繰返し周波数において所定のパルスの半値全幅を実現するのが好適である。さらに、上記第1および第2の態様の少なくともいずれかに適用可能な第3~第5の態様として、所定のパルス半値全幅は少なくとも1ns未満、好ましくは500ps未満、更に好ましくは300ps未満である。また、上記第1および第2の態様の少なくともいずれかに適用可能な第6の態様として、所定の繰返し周波数は600kHz以下であるのが好適である。
 本発明の光源制御方法は、上記第1および第2の態様の少なくともいずれかに適用可能な第7の態様として、半導体レーザの温度と繰返し周波数とパルス半値全幅との間の関係を予め求めておく。この関係は、温度、繰り返し周波数、パルス半値全幅の予め得られた測定値をテーブル化し、この測定値テーブルをメモリに格納しておくことにより実現可能である。第7の態様では、この関係(予めメモリに格納されたテーブルにより関係付けられた測定値)に基づいて半導体レーザの温度調整をフィードフォワード制御することにより、光ファイバ増幅器からの増幅パルス光について、所定の繰返し周波数において所定のパルス半値全幅が実現されるのが好適である。
 さらに、上記第1および第2の態様の少なくともいずれかに適用可能な第8の態様として、本発明に係る光源制御方法は、光ファイバ増幅器から出力される増幅パルス光の半値全幅をモニタし、この半値全幅モニタ結果に基づいて半導体レーザの温度調整をフィードバック制御することにより、光ファイバ増幅器から出力される増幅パルス光について、所定の繰返し周波数において所定のパルス半値全幅を実現するのが好適である。特に、上記第8の態様に適用可能な第9の態様として、半値全幅モニタ結果が所定のパルス半値全幅と比較して広いときに半導体レーザの温度が上げられ、半値全幅モニタ結果が所定のパルスの半値全幅と比較して狭いときに半導体レーザの温度が下げられるのが好適である。
 本発明によれば、出力パルス光のパルス幅(FWHM)の繰返し周波数依存性が好適に低減され得る。
は、本発明に係るパルス光源の一実施形態の構成を示す図である。 は、図1のパルス光源からの出力パルス光(増幅パルス光)のパルス波形を示す図である。 は、図1のパルス光源からの出力パルス光のパルス波形を示す図である。 は、図1のパルス光源からの出力パルス光のパルス波形を示す図である。 は、図1のパルス光源からの出力パルス光のパルス波形を示す図である。 は、図1のパルス光源からの出力パルス光のパルス波形を示す図である。 は、図1のパルス光源からの出力パルス光のパルス波形を示す図である。 は、図1のパルス光源からの出力パルス光のパルス波形を示す図である。 は、図1のパルス光源からの出力パルス光のパルス波形を示す図である。 は、図1のパルス光源からの出力パルス光のパルス波形を示す図である。 は、図1のパルス光源からの出力パルス光のパルス波形を示す図である。 は、図1のパルス光源からの出力パルス光のパルス波形を示す図である。 は、図1のパルス光源からの出力パルス光のパルス波形を示す図である。 は、図1のパルス光源からの出力パルス光のパルス幅(FWHM)と繰返し周波数との関係を示すグラフである。 は、図1のパルス光源からの出力パルス光のパルス幅(FWHM)と種光源の温度との関係を示すグラフである。 は、図1のパルス光源からの出力パルス光のパルス幅(FWHM)と種光源の温度との関係を示すグラフである。 は、本発明に係るパルス光源の他の実施形態の構成を示す図である。 は、本発明に係るパルス光源の更に他の実施形態の構成を示す図である。 は、出力パルス光のFWHMの制御アルゴリズムを説明するためのフローチャートである。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 図1は、本発明に係るパルス光源の一実施形態の構成を示す図である。図1において、パルス光源1は、MOPA構造を有し、種光源10および光ファイバ増幅器20と、を備える。種光源10は、100kHz~1MHzにおよぶ高い繰返し周波数と、繰返し周波数に依存せずに一定のパルス幅を実現できるよう、駆動電流0~220mAの範囲で直接パルス変調される1060nm帯ファブリーペロ半導体レーザを含む。
 光ファイバ増幅器20は、プリアンプ21およびブースタアンプ22を含む。プリアンプ21は、YbDF110、バンドパスフィルタ120、YbDF130、バンドパスフィルタ140およびYbDF150等を含む。ブースタアンプ22は、YbDF160等を含む。プリアンプ21およびブースタアンプ22それぞれは、光ファイバ増幅器であり、種光源10から繰返し出力されたパルス光を増幅し、エンドキャップ30から増幅パルス光を出力させる。このパルス光源1は、レーザ加工に好適である波長1060nm付近のパルス光を出力する。
 YbDF110,130,150,160は、種光源10から出力される波長1060nm付近のパルス光を増幅する光増幅媒体であり、石英ガラスからなる光ファイバのコアに活性物質としてYb元素が添加されている。YbDF110,130,150,160は、励起光波長と被増幅光波長とが互いに近くパワー変換効率的の点で有利であり、また、波長1060nm付近において高い利得を有する点で有利である。これらYbDF110,130,150,160は、4段の光ファイバ増幅器を構成している。
 第1段のYbDF110には、光カプラ113および光カプラ111を経由した励起光源112からの励起光が順方向に供給される。そして、YbDF110が光アイソレータ114および光カプラ111を経由した種光源10からのパルス光を増幅し、該増幅されたパルス光が光アイソレータ115を介して出力される。
 バンドパスフィルタ120は、光アイソレータ115を経由した第1段のYbDF110からの増幅パルス光を入力し、その入力パルス光の波長帯域のうちの短波長側および長波長側の一方を他方より減衰させた成形パルス光を出力する。
 第2段のYbDF130には、光カプラ113および光カプラ131を経由した励起光源112からの励起光が順方向に供給される。そして、YbDF130は、光カプラ131を経由したバンドパスフィルタ120からのパルス光を増幅し、該増幅されたパルス光を出力する。
 バンドパスフィルタ140は、第2段のYbDF130からの増幅パルス光を入力し、その入力パルス光の波長帯域のうちの短波長側および長波長側の一方を他方より減衰させた成形パルス光を出力する。
 第3段のYbDF150には、光カプラ151を経由した励起光源152からの励起光が順方向に供給される。そして、YbDF150は、光アイソレータ153および光カプラ151を経由したバンドパスフィルタ140からのパルス光を増幅し、該増幅されたパルス光を出力する。
 第4段のYbDF160には、光コンバイナ161を経由した励起光源162~167それぞれからの励起光が順方向に供給される。そして、YbDF160が光アイソレータ168および光コンバイナ161を経由した第3段のYbDF150からのパルス光を更に増幅し、該増幅されたパルス光がエンドキャップ30を介して当該パルス光源1の外部へ出力される。
 より好適な構成例は以下のとおりである。YbDF110,120,130それぞれは、単一クラッド構造のAl共添加石英系YbDFであり、Al濃度が5wt%であり、コア径が7μmであり、クラッド径が125μmであり、915nm帯励起光非飽和吸収が70dB/mであり、975nm帯励起光非飽和吸収ピークが240dB/mであり、長さが7mである。第4段のYbDF160は、二重クラッド構造を有するAl共添加石英系YbDFであり、Al濃度が1wt%であり、コア径が10μmであり、クラッド径が125μmであり、915nm帯励起光非飽和吸収が1.5dB/mであり、長さが3.5mである。
 YbDF110,130,150,160に供給される励起光の波長は何れも0.98μm帯である。第1段のYbDF110に供給される励起光は、パワーが200mWであって、単一モードである。第2段のYbDF130に供給される励起光は、パワーが200mWであって、単一モードである。第3段のYbDF150に供給される励起光は、パワーが400mWであって、単一モードである。また、第4段のYbDF160に供給される励起光は、パワーが12~24Wであって、マルチモードである。なお、以降では、第4段のYbDF160に供給される励起光のパワーが24Wであるとき100%として、これとの相対比で当該励起光パワーを表す。
 バンドパスフィルタ120,140それぞれの中心波長を、敢えて種光源10の出力光スペクトルの最大強度波長から短波長側または長波長側にシフトさせることで、種光源10から出力される種光のうちチャーピング成分だけを切り出すことができる。そして、その後に該光を増幅することにより、短パルス幅のパルス光を生成することができる。また、バンドパスフィルタ120,140それぞれはASE光を除去することができる。バンドパスフィルタ120,140それぞれの透過スペクトルのFWHMは例えば1ns以下に維持される。
 図2~図13それぞれは、パルス光源1からの出力パルス光のパルス波形を示す図である。これらの図において、グラフG210、G310,G410,G510,G610,G710,G810,G910,G1010,G1110,G1210,G1310の合計12本のグラフは、第4段のYbDF160の励起光パワーを30%とした場合の出力パルス光のパルス波形を示す。グラフG220、G320,G420,G620,G720,G820,G920,G1020,G1120,G1220の合計10本のグラフは、第4段のYbDF160の励起光パワーを50%とした場合の出力パルス光のパルス波形を示す。グラフG230、G330,G430,G530,G630,G730,G830,G1030,G1130,G1230,G1330の合計11本のグラフは、第4段のYbDF160の励起光パワーを70%とした場合の出力パルス光のパルス波形を示す。グラフG240、G340,G440,G540,G640,G740,G840,G940,G1040,G1140,G1240,G1340の合計12本のグラフは、第4段のYbDF160の励起光パワーを100%とした場合の出力パルス光のパルス波形を示す。
 図2~図5は、種光源10の温度を17℃に設定した場合の出力パルス光のパルス波形を示す。そのうち、図2は繰返し周波数を100kHzとしたときのパルス波形(グラフG210~G240)を示し、図3は繰返し周波数を300kHzとしたときのパルス波形(グラフG310~G340)を示し、図4は繰返し周波数を600kHzとしたときのパルス波形(グラフG410~G440)を示し、図5は繰返し周波数を1000kHzとしたときのパルス波形(グラフG510,G530~G540)を示す。
 図6~図9は、種光源10の温度を27℃に設定した場合の出力パルス光のパルス波形を示す。そのうち、図6は繰返し周波数を100kHzとしたときのパルス波形(グラフG610~G640)を示し、図7は繰返し周波数を300kHzとしたときのパルス波形(グラフG710~G740)を示し、図8は繰返し周波数を600kHzとしたときのパルス波形(グラフG810~G840)を示し、図9は繰返し周波数を1000kHzとしたときのパルス波形(グラフG910~G920,G940)を示す。
 また、図10~図13は、種光源10の温度を37℃に設定した場合の出力パルス光のパルス波形を示す。そのうち、図10は繰返し周波数を100kHzとしたときのパルス波形(グラフG1010~G1040)を示し、図11は繰返し周波数を300kHzとしたときのパルス波形(グラフG1110~G1140)を示し、図12は繰返し周波数を600kHzとしたときのパルス波形(グラフG1210~G1240)を示し、図13は繰返し周波数を1000kHzとしたときのパルス波形(グラフG1310~G1320,G1340)を示す。
 図2~図13から判るように、全般的に、繰返し周波数が高いほどFWHM(パルス幅)は狭く、また、4段目YbDF160の励起パワーが低いほどFWHMは狭くなる。
 なお、図14は、パルス光源1からの出力パルス光のFWHMと繰返し周波数との関係を示すグラフである。図14において、グラフG1410は、種光源10の温度17℃において励起光パワーを100%とした場合の関係、グラフG1420は、種光源10の温度17℃において励起光パワーを70%とした場合の関係、グラフG1430は、種光源10の温度17℃において励起光パワーを50%とした場合の関係をそれぞれ示す。グラフG1440は、種光源10の温度27℃において励起光パワーを100%とした場合の関係、グラフG1450は、種光源10の温度27℃において励起光パワーを70%とした場合の関係、グラフG1460は、種光源10の温度27℃において励起光パワーを50%とした場合の関係をそれぞれ示す。グラフG1470は、種光源10の温度37℃において励起光パワーを100%とした場合の関係、グラフG1480は、種光源10の温度37℃において励起光パワーを70%とした場合の関係、グラフG1490は、種光源10の温度37℃において励起光パワーを50%とした場合の関係をそれぞれ示す。
 図15および図16は、パルス光源1からの出力パルス光のFWHMと種光源10の温度との関係を示すグラフである。図15は第4段のYbDF160の励起光パワーを100%とした場合のグラフを示し、具体的には、グラフG1510は繰返し周波数が100kHzの場合の関係、グラフG1520は繰返し周波数が300kHzの場合の関係、グラフG1530は繰返し周波数が600kHzの場合の関係、グラフG1540は繰返し周波数が1MHzの場合の関係をそれぞれ示す。また、図16は第4段のYbDF160の励起光パワーを70%とした場合のグラフを示し、具体的には、グラフG1610は繰返し周波数が100kHzの場合の関係、グラフG1620は繰返し周波数が300kHzの場合の関係、グラフG1630は繰返し周波数が600kHzの場合の関係、グラフG1640は繰返し周波数が1MHzの場合の関係をそれぞれ示す。
 出力パルス光のFWHMは少なくとも1ns未満、好ましくは500ps未満、更に好ましくは300ps未満であるが、例えば、出力パルス光のFWHMを300ps程度で一定にしたい場合は、繰返し周波数が100kHzであれば種光源温度を35.5℃とするとともに4段目YbDF160の励起パワーを100%とし、繰返し周波数が300kHzであれば種光源温度を34.0℃とするとともに4段目YbDF160の励起パワーを100%とし、繰返し周波数が600kHzであれば種光源温度を27.0℃とするとともに4段目YbDF160の励起パワーを100%とすればよい。このように種光源10の温度を制御することで、繰返し周波数100kHz~600kHzの範囲で、出力パルス光のFWHMを300psに維持することができる。
 或いは、例えば、出力パルス光のFWHMを200psに維持したい場合、一例として、繰返し周波数が100kHzあれば種光源10の温度を37.0℃とするとともに4段目YbDF160の励起パワーを70%とする。また、繰返し周波数が300kHzあれば種光源10の温度を34.0℃とするとともに4段目YbDF160の励起パワーを70%としてもよい。繰返し周波数が600kHzあれば種光源10の温度を27.0℃とするとともに4段目YbDF160の励起パワーを70%としてもよい。繰返し周波数が1MHzあれば種光源の温度を27.0℃とするとともに4段目YbDF160の励起パワーを100%としてもよい。このように種光源10の温度および4段目YbDF160の励起パワーを制御することで、繰返し周波数100kHz~1MHzの範囲で、出力パルス光のFWHMを200psに維持することができる。
 ただし、4段目YbDF160の励起パワーの制御に関しては、出力パルス光のピーク値まで減衰させてしまっては加工品質に影響が及ぶ。そのため、光ファイバ増幅部の小信号利得および光ファイバ中の非線形光学効果の双方または何れか一方の要因により飽和している領域内で出力パルス光のピーク値を制御することが望ましい。図2~図13に示されたグラフでは、4段目YbDF160の励起パワーが70~100%の範囲が、これに相当する。
 なお、上述のような出力パルス光のFWHM制御に際しては、様々な条件(繰返し周波数、種光源10の温度および4段目YbDF励起パワーを含む条件)にてパルス光源1の出力パルス光のFWHMを予め計測して求めておき、この結果に基づいてフィードフォワード制御により種光源10の温度および4段目YbDF励起パワーを調整することにより、出力パルス光について、所定の繰返し周波数において所定のパルス幅(FWHM)を実現するのが好適である。このようなフィードフォワード方式による制御は、装置コストを低減する上で好適である。
 図17および図18は、本発明に係るパルス光源の他の実施形態の構成を示す図である。これらの図に示されるパルス光源1A,1Bは、フィードバック制御を行う光源である。このようなフィードバック制御は、加工品質の安定化の保証という点で、より優れている。なお、フードフォワード制御を実現する場合、図17および図18に示された構成のうち、出力パルス光をモニタする構成(エンドキャップ30の下流側に配置されたビームスプリッタ、PD44、デジタルオシロスコープ45)は不要である。
 図17に示されたパルス光源1Aは、ペルチエ素子41により種光源10の温度を調整し、温度設定部43により種光源10の温度設定値Trefをメモリ50に記憶しておき、種光源10の温度測定値が温度設定値Trefになるようにオペアンプ42によりペルチエ素子41を制御する。また、パルス光源1Aは、エンドキャップ30から出力されるパルス光の一部をビームスプリッタにより分岐し、PD44で受光された当該分岐光のFWHMをデジタルオシロスコープ45によりモニタする。なお、フィードフォワード制御の場合、メモリ50には、条件(繰返し周波数、種光源10の温度および4段目YbDF励起パワーを含む条件)にて予め測定されたパルス光源1の出力パルス光のFWHMの測定値が、各条件と関係付けられたテーブルとして格納されている。
 そして、パルス光源1Aでは、制御部46Aが、このFWHMのモニタ結果に基づいてフィードバック制御を行う。パルス光源1Aは、このフィードバック制御により、温度設定部43における種光源10の温度設定値Trefを調整することで種光源10の温度を調整し、出力パルス光について、所定の繰返し周波数において所定のパルス幅(FWHM)を実現する。このとき、FWHMモニタ結果が所定のパルス幅(FWHM)と比較して広ければ種光源10の温度を上げ、FWHMモニタ結果が所定のパルス幅(FWHM)と比較して狭ければ種光源10の温度を下げる。
 図18に示されるパルス光源1Bは、制御部46Aに替えて制御部46Bを含む。パルス光源1Bでは、制御部46Bが、FWHMのモニタ結果に基づいてフィードバック制御を行う。パルス光源1Bは、このフィードバック制御により、温度設定部43における種光源10の温度設定値Trefを調整することで種光源10の温度を調整し、また、4段目YbDF160の励起パワーを調整して、出力パルス光について、所定の繰返し周波数において所定のパルス幅(FWHM)を実現する。
 出力パルス光のFWHMの制御アルゴリズムは以下のようなものが好適である。すなわち、図19に示されたように、まず、ステップS1で種光源10の温度を可変範囲の中で調整し、これでも所望の出力パルス光のFWHMが実現できなかった場合は、ステップS2で4段目YbDF160の励起パワーを調整する。所望の出力パルス光のFWHMがステップS1,S2での調整可能な値より広い場合は、ステップS3で種光源10の変調信号のパルス幅、バイアスレベルおよび振幅の何れかを調整する。ステップS1での温度調整は、繰返し周波数600kHz以下の条件にて行うことが望ましい。図15および図16に示されたとおり、繰返し周波数が600kHzを超えると、出力パルス光のFWHMの種光源10の温度への依存性が単調ではなくなる。
 ステップS1~S3の調整でも所望の出力パルス光のFWHMが達成できない場合は、フィードフォワード制御およびフィードバック制御の何れであっても、制御部より何らかのアラーム(操作パネル上のLEDの点灯または制御ソフト上のエラーメッセージ)を出力することが望ましい。
 1,1A,1B…パルス光源、10…種光源、20…光ファイバ増幅器、21…プリアンプ、22…ブースタアンプ、30…エンドキャップ、50…メモリ、110…YbDF、111…光カプラ、112…励起光源、113…光カプラ、114,115…光アイソレータ、120…バンドパスフィルタ、130…YbDF、131…光カプラ、140…バンドパスフィルタ、150…YbDF、151…光カプラ、152…励起光源、153…光アイソレータ、160…YbDF、161…光コンバイナ、162~167…励起光源、168…光アイソレータ。

Claims (9)

  1. 直接変調され、パルス光を出力する半導体レーザと、前記半導体レーザから出力されるパルス光を入力し、その入力パルス光の波長帯域のうちの前記入力パルス光のピーク波長より短波長側および長波長側の一方を他方より減衰させた成形パルス光を出力する光フィルタと、そして、前記光フィルタから出力された成形パルス光を増幅し、その増幅パルス光を出力する光ファイバ増幅器と、を備えたパルス光源を用意し、
     前記半導体レーザの温度を調整することにより、前記光ファイバ増幅器から出力される増幅パルス光について、所定の繰返し周波数において所定のパルス半値全幅を実現する光源制御方法。
  2. 更に前記光ファイバ増幅器の励起光パワーを制御することにより、前記光ファイバ増幅器から出力される増幅パルス光について、所定の繰返し周波数において所定のパルス半値全幅を実現することを特徴とする請求項1に記載の光源制御方法。
  3. 前記所定のパルス半値全幅が1ns未満であることを特徴とする請求項1または2に記載の光源制御方法。
  4. 前記所定のパルス半値全幅が500ps未満であることを特徴とする請求項3に記載の光源制御方法。
  5. 前記所定のパルス半値全幅が300ps未満であることを特徴とする請求項4に記載の光源制御方法。
  6. 前記所定の繰返し周波数が600kHz以下であることを特徴とする請求項1または2に記載の光源制御方法。
  7. 前記半導体レーザの温度と繰返し周波数とパルス半値全幅との間の関係を予め求めておき、この関係に基づいて前記半導体レーザの温度調整をフィードフォワード制御することにより、前記光ファイバ増幅器からの増幅パルス光について、所定の繰返し周波数において所定のパルス半値全幅を実現することを特徴とする請求項1または2に記載の光源制御方法。
  8. 前記光ファイバ増幅器から出力される増幅パルス光の半値全幅をモニタし、この半値全幅モニタ結果に基づいて前記半導体レーザの温度調整をフィードバック制御することにより、前記光ファイバ増幅器から出力される増幅パルス光について、所定の繰返し周波数において所定のパルス半値全幅を実現することを特徴とする請求項1または2に記載の光源制御方法。
  9. 前記半値全幅モニタ結果が前記所定のパルス半値全幅と比較して広いときに前記半導体レーザの温度を上げ、前記半値全幅モニタ結果が前記所定のパルス半値全幅と比較して狭いときに前記半導体レーザの温度を下げることを特徴とする請求項8に記載の光源制御方法。
PCT/JP2012/062684 2011-05-24 2012-05-17 光源制御方法 WO2012161092A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013516329A JP5654673B2 (ja) 2011-05-24 2012-05-17 光源制御方法
EP12789472.3A EP2717394A4 (en) 2011-05-24 2012-05-17 LIGHT SOURCE CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-115979 2011-05-24
JP2011115979 2011-05-24

Publications (1)

Publication Number Publication Date
WO2012161092A1 true WO2012161092A1 (ja) 2012-11-29

Family

ID=47217170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062684 WO2012161092A1 (ja) 2011-05-24 2012-05-17 光源制御方法

Country Status (4)

Country Link
US (1) US8902940B2 (ja)
EP (1) EP2717394A4 (ja)
JP (1) JP5654673B2 (ja)
WO (1) WO2012161092A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150096961A (ko) 2014-02-17 2015-08-26 한국전자통신연구원 광원 소자
JP6901261B2 (ja) * 2016-12-27 2021-07-14 株式会社ディスコ レーザー装置
CN108683068B (zh) * 2018-03-14 2020-06-09 深圳市创鑫激光股份有限公司 激光器的控制方法、电子控制装置、激光器、激光打孔设备以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152560A (ja) 2007-11-30 2009-07-09 Sumitomo Electric Ind Ltd パルス光源およびパルス圧縮方法
JP2010226096A (ja) * 2009-02-27 2010-10-07 Komatsu Ltd レーザ装置および極端紫外光源装置
JP2011243832A (ja) * 2010-05-20 2011-12-01 Miyachi Technos Corp ファイバレーザ加工装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117286A (ja) 1997-06-27 1999-01-22 Ando Electric Co Ltd 波長可変レーザ装置
JP2001168439A (ja) * 1999-12-09 2001-06-22 Fuji Photo Film Co Ltd 発光装置
DE10040226B4 (de) 2000-08-17 2006-03-09 Siemens Ag Optischer Verstärker und optische Verstärkeranordnung mit reduzierter Kreuzphasenmodulation
JP3948598B2 (ja) 2000-09-01 2007-07-25 富士通株式会社 光信号を処理するための方法、装置及びシステム
US6870663B2 (en) 2001-08-28 2005-03-22 Nippon Telegraph And Telephone Corporation Wavelength tunable light source and pulse light source
JP3898042B2 (ja) * 2001-11-30 2007-03-28 三菱電機株式会社 半導体レーザ装置および光増幅装置
JP4062062B2 (ja) 2002-11-15 2008-03-19 住友電気工業株式会社 ラマン増幅用励起モジュール
JP3669634B1 (ja) 2004-07-06 2005-07-13 株式会社東北テクノアーチ パルスレーザ光発生装置
JP2006313858A (ja) 2005-05-09 2006-11-16 Sumitomo Electric Ind Ltd レーザ光源、レーザ発振方法およびレーザ加工方法
US7391561B2 (en) 2005-07-29 2008-06-24 Aculight Corporation Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method
JP5064752B2 (ja) 2006-03-29 2012-10-31 古河電気工業株式会社 光パルス列発生器
JP4848836B2 (ja) 2006-05-16 2011-12-28 住友電気工業株式会社 光活性デバイス
US8290003B2 (en) * 2007-11-30 2012-10-16 Sumitomo Electric Industries, Ltd. Pulse light source
US8179929B2 (en) * 2009-01-23 2012-05-15 Ipg Photonics Corporation Apparatus and method for side mode suppression in slave-master laser by single mode fiber amplifier
JP5724173B2 (ja) * 2009-11-16 2015-05-27 オムロン株式会社 レーザ加工装置およびレーザ加工方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152560A (ja) 2007-11-30 2009-07-09 Sumitomo Electric Ind Ltd パルス光源およびパルス圧縮方法
JP2010226096A (ja) * 2009-02-27 2010-10-07 Komatsu Ltd レーザ装置および極端紫外光源装置
JP2011243832A (ja) * 2010-05-20 2011-12-01 Miyachi Technos Corp ファイバレーザ加工装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717394A4

Also Published As

Publication number Publication date
EP2717394A4 (en) 2015-04-15
EP2717394A1 (en) 2014-04-09
US20120300802A1 (en) 2012-11-29
US8902940B2 (en) 2014-12-02
JP5654673B2 (ja) 2015-01-14
JPWO2012161092A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
US8290003B2 (en) Pulse light source
JP5355991B2 (ja) パルス光源およびパルス圧縮方法
WO2012165481A1 (ja) パルス光発生方法
US7457329B2 (en) Method and system for a high power low-coherence pulsed light source
KR20090037895A (ko) 직렬 광자 증폭기
TWI589080B (zh) 雷射裝置及雷射加工機
WO2009089619A1 (en) Method and system for tunable pulsed laser source
JP5654673B2 (ja) 光源制御方法
EP3714518A2 (en) Apparatus for providing optical radiation
JP2009272396A (ja) 固体レーザー装置
JP5951601B2 (ja) パルス光源
US11509108B2 (en) Tm-doped fiber amplifier utilizing wavelength conditioning for broadband performance
WO2012165495A1 (ja) レーザ装置
WO2016125919A2 (ja) レーザ光源装置及びレーザパルス光生成方法
JP2015152698A (ja) レーザ光源装置
WO2016125918A1 (ja) レーザ光源装置及びレーザパルス光生成方法
CN112467504A (zh) 一种超短脉冲光纤放大器的强度噪声抑制装置
KR102603290B1 (ko) 광변조 레이저 펄스의 생성 시스템
WO2012165487A1 (ja) レーザ装置
JP2006106237A (ja) 光変調器、光パルス増幅器及び光の変調方法
Schmidt et al. 105 kHz, 85 ps, 3 MW peak power microchip laser fiber amplifier system
Masuda et al. Hybrid fiber MOPA-bulk amplifier system
JP2014053398A (ja) 光モジュールの制御方法および光学装置
Xu et al. 10.5 watts time-averaged power mid-IR supercontinuum generation with direct pulse pattern modulation
Holtz et al. Regenerative amplifier with pulse-on-demand

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789472

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013516329

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012789472

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012789472

Country of ref document: EP