WO2019218529A1 - 一种应用于cis的运动检测电路及运动检测方法 - Google Patents

一种应用于cis的运动检测电路及运动检测方法 Download PDF

Info

Publication number
WO2019218529A1
WO2019218529A1 PCT/CN2018/102896 CN2018102896W WO2019218529A1 WO 2019218529 A1 WO2019218529 A1 WO 2019218529A1 CN 2018102896 W CN2018102896 W CN 2018102896W WO 2019218529 A1 WO2019218529 A1 WO 2019218529A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
capacitor
branch
comparator
comparator branch
Prior art date
Application number
PCT/CN2018/102896
Other languages
English (en)
French (fr)
Inventor
曾夕
温建新
金毓奇
罗颖
Original Assignee
上海集成电路研发中心有限公司
成都微光集电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海集成电路研发中心有限公司, 成都微光集电科技有限公司 filed Critical 上海集成电路研发中心有限公司
Priority to US17/043,775 priority Critical patent/US11102380B2/en
Publication of WO2019218529A1 publication Critical patent/WO2019218529A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/144Movement detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present invention relates to the field of CMOS integrated circuit design technology, and in particular, to a motion detection circuit and a motion detection method applied to a CIS.
  • CMOS integrated circuit technology With the development of CMOS integrated circuit technology, electronic products have become more and more widely used in daily life and become an indispensable part of various fields.
  • CMOS image sensor For the detection of moving objects, it is possible to compare two frames of image data by a CMOS image sensor (CIS), and to determine whether the object is in motion by detecting whether there is a difference between the two frames of image data.
  • CIS CMOS image sensor
  • An object of the present invention is to overcome the above-mentioned drawbacks of the prior art and to provide a motion detecting circuit and a motion detecting method applied to a CIS.
  • the present invention provides a motion detecting circuit applied to a CIS, comprising:
  • a comparator shunt comprising a first comparator branch and a second comparator branch, wherein the first comparator branch and the second comparator branch are respectively provided with a first input end and a second input end Output
  • a current frame pixel signal sampling branch one end of which is connected to the pixel structure output end of the CMOS image sensor, and the other end is respectively connected to the first input end of the first comparator branch and the first input end of the second comparator branch, Transmitting the current frame pixel signal to the first comparator branch and the second comparator branch, respectively;
  • a pixel signal sampling branch of the previous frame one end of which is connected to the pixel structure output end of the CMOS image sensor through a connected first end of the first capacitor and the second capacitor connected in series, and the other end is connected through the second end of the first capacitor a second input end of the first comparator branch, and a second end connected to the second comparator branch through the second end of the second capacitor, for transmitting the previous frame pixel signal to the first capacitor and the first
  • the first end of the second capacitor is connected, and the first error reference signal related to the pixel signal of the previous frame outputted by the second end of the first capacitor is transmitted to the first comparator branch, and the second capacitor is second. Transmitting, by the terminal output, a second error reference signal related to the pixel signal of the previous frame to the second comparator branch;
  • the output end of the first comparator branch and the output of the second comparator branch respectively output a comparison result signal for the current frame pixel signal and the first error reference signal, the current frame pixel signal and the second error reference signal And determining whether the image point reflected by the pixel of the pixel connected to the motion detecting circuit is moved by the high and low states of the two comparison result signals.
  • the method further includes: a first signal sampling switch disposed in the current frame pixel signal sampling branch, a second signal sampling switch disposed in the previous frame pixel signal sampling branch, a first comparison control switch, and a second comparison control switch ;among them:
  • the first end of the first signal sampling switch is connected to the first end of the second signal sampling switch, and is connected to the pixel structure output end of the CMOS image sensor; the second end of the first signal sampling switch is respectively connected to the first comparator branch a first input end and a first input end of the second comparator branch; the second end of the second signal sampling switch is commonly connected with the first end of the first capacitor and the first end of the second capacitor;
  • the second end of the first capacitor is connected to the first end of the first comparison control switch, the second end of the first comparison control switch is connected to the second input end of the first comparator branch; the second end of the second capacitor is Second, the first end of the comparison control switch is connected, and the second end of the second comparison control switch is connected to the second input end of the second comparator branch.
  • the method further includes: a clearing and resetting branch, the connection is disposed between the first end and the second end of the first capacitor and the second capacitor, and is used for clearing both ends of the first capacitor and the second capacitor Zero sum reset control; the clear and reset branches are respectively connected to ground and an error signal.
  • the method further includes: a first signal sampling switch disposed in the current frame pixel signal sampling branch, a second signal sampling switch disposed in the previous frame pixel signal sampling branch, a first comparison control switch, and a second comparison control switch , set in the first reset switch to the fourth reset switch of the clear and reset branch;
  • the first end of the first signal sampling switch is connected to the first end of the second signal sampling switch, and is connected to the pixel structure output end of the CMOS image sensor; the second end of the first signal sampling switch is respectively connected to the first comparator branch a first input end and a first input end of the second comparator branch; a second end of the second signal sampling switch and a first end of the first capacitor, a first end of the second capacitor, and a first reset switch One end connected together;
  • the second end of the first capacitor is connected to the first end of the first comparison control switch, the first end of the second reset switch, and the first end of the fourth reset switch; the second end of the second capacitor is compared with the second comparison The first end of the switch and the first end of the third reset switch are connected in common;
  • the second end of the first reset switch, the second end of the second reset switch, and the second end of the third reset switch are commonly grounded; the second end of the fourth reset switch is connected to an error signal;
  • the second end of the first comparison control switch is coupled to the second input of the first comparator branch; the second end of the second comparison control switch is coupled to the second input of the second comparator branch.
  • first input end of each of the first comparator branch and the second comparator branch is an inverting input end, and a second input end is a forward input end; or the first comparator branch
  • the first input of each of the second comparator branches is a forward input and the second input is an inverted input.
  • the current frame pixel signal, the previous frame pixel signal, the first error reference signal, the second error reference signal, and the comparison result signal are voltage signals.
  • comparator shunt can be shared (multiplexed) with a comparator shunt of the analog to digital conversion circuit of the CMOS image sensor.
  • the comparator shunt can take the form of a circuit having a single-stage or multi-stage comparator structure.
  • comparator shunting to any type of structure does not affect circuit performance.
  • the comparator shunt has an enable signal structure.
  • the motion detecting circuit is connected to one pixel structure output end of the CMOS image sensor, one row of pixel structure output end or one column of pixel structure output end.
  • an amplification circuit is disposed between the pixel structure output end of the CMOS image sensor and the first signal sampling switch and the second signal sampling switch.
  • the present invention also provides a motion detecting method based on the above-described motion detecting circuit applied to a CIS, comprising the following steps:
  • the method includes: clearing and resetting the branch, connecting both ends of the first capacitor and the second capacitor to the ground, and performing signal clearing on both ends of the first capacitor and the second capacitor;
  • Performing a reset step comprising: resetting both ends of the first capacitor and the second capacitor by using a clear and reset branch, and obtaining a first capacitor reset signal value equal to an error signal value at a second end of the first capacitor Obtaining a second value of the second capacitor reset signal at a second end of the second capacitor;
  • Performing a previous frame data reading step comprising: using a previous frame pixel signal sampling split, transmitting the previous frame pixel signal to the first end of the first capacitor and the second capacitor, and performing the previous frame pixel signal Reading, obtaining a first error reference signal value greater than a previous frame pixel signal value at a second end of the first capacitor, and obtaining a second error reference signal value smaller than a previous frame pixel signal value at a second end of the second capacitor ;
  • Performing a current frame data reading step comprising: reading, by using a current frame pixel signal sampling branch, a current frame pixel signal;
  • Performing a data comparison step comprising: comparing the current frame pixel signal outputted by the first comparator branch with the first error reference signal, and using the second comparator branch to output the current frame pixel signal Comparing with the second error reference signal, and respectively outputting the comparison result signal, determining whether the image point reflected by the pixel of the pixel connected to the motion detecting circuit moves due to the high and low states of the two comparison result signals.
  • the determining method when the first input end of each of the first comparator branch and the second comparator branch is an inverting input end, and the second input end is a forward input end, the determining method include:
  • the comparison result signals respectively output by the first comparator branch and the second comparator branch are both low state signals, and the image point corresponding to the pixel point is determined to occur. Exercise; or,
  • the comparison result signals respectively output by the first comparator branch and the second comparator branch are all high state signals, and the image point corresponding to the pixel point is determined to occur. Exercise; or,
  • the comparison result signal outputted by the first comparator branch corresponds to a high state signal
  • the second comparison The comparison result signal outputted by the branch circuit corresponds to a low state signal, and it is determined that the image point corresponding to the pixel point does not move.
  • the determining method when the first input end of each of the first comparator branch and the second comparator branch is a forward input end, and the second input end is an inverted input end, the determining method include:
  • the comparison result signals respectively output by the first comparator branch and the second comparator branch are all high state signals, and the image point corresponding to the pixel point is determined to occur. Exercise; or,
  • the comparison result signals respectively output by the first comparator branch and the second comparator branch are all low state signals, and the image point corresponding to the pixel point is determined to occur. Exercise; or,
  • the comparison result signal outputted by the first comparator branch corresponds to a low state signal
  • the second comparison The comparison result signal outputted by the branch circuit corresponds to a high state signal, and it is determined that the image point corresponding to the pixel point does not move.
  • the current frame pixel signal, the previous frame pixel signal, the first capacitance reset signal value, the second capacitance reset signal value, the error signal, the first error reference signal, the second error reference signal, and the comparison result signal are voltages signal.
  • An advantage of the present invention is that the present invention controls the sampling of the current frame and the previous frame pixel signal by setting the current frame pixel signal sampling branch and the previous frame pixel signal sampling branch, respectively, and sampling the pixel signal in the previous frame.
  • the first capacitor and the second capacitor are arranged in series to transmit the pixel signal of the previous frame to be compared to the first end of the first capacitor and the second capacitor, and then the second capacitor and the second capacitor are disconnected.
  • a first error reference signal and a second error reference signal respectively outputted by the terminals and associated with the pixel signal of the previous frame are respectively transmitted to the first comparator branch and the second comparator branch of the comparator branch, through the first comparison And the second comparator branch respectively outputs a comparison result signal for the current frame pixel signal and the first error reference signal, the current frame pixel signal and the second error reference signal, and thus by determining the high and low states of the comparison result signal, A data comparison is performed to determine whether the image point reflected by the pixel of the pixel connected to the motion detecting circuit is moving.
  • the invention utilizes the first capacitor and the second capacitor as the storage capacitor, can perform motion detection on the currently photographed object in real time, and the error of the detected two frames of signals is determined by the value of the externally input error signal, which is convenient for adjustment;
  • the data comparison process of the device branching, and the motion detection can be completed according to the state of the analog signal outputted by the first comparator branch and the second comparator branch, and each test process does not need to undergo analog-to-digital conversion.
  • the motion detection is completed quickly, so that the detection time is greatly shortened; in addition, the comparator shunt can multiplex the comparator shunt in the CIS analog-to-digital conversion circuit, so in the case of multiplexing, the present invention only adds two more than the ordinary CIS circuit.
  • the capacitor and the eight switches are greatly simplified in structure compared to the conventional motion detecting circuit, and the area can be greatly reduced.
  • Figure 1 is a block diagram showing the construction of a motion detecting circuit applied to a CIS in accordance with a preferred embodiment of the present invention.
  • FIG. 2-6 are schematic views of different working states of the motion detecting circuit of FIG. 1.
  • FIG. 1 is a schematic structural diagram of a motion detecting circuit applied to a CIS according to a preferred embodiment of the present invention.
  • a motion detecting circuit applied to a CIS of the present invention may include: a comparator branch IV, a current frame pixel signal sampling branch I and a previous frame pixel signal sampling branch II.
  • Comparator branch IV (please refer to the dotted line frame portion where IV is located) includes a first comparator branch COM1 and a second comparator branch COM2; the first comparator branch COM1 and the second comparator branch COM2 respectively The first input end, the second input end and the output end are provided.
  • One end of the current frame pixel signal sampling branch I is connected to the pixel structure output end (Vpix input end) of the CMOS image sensor, and the other end of the current frame pixel signal sampling branch I is respectively connected to the first input end of the first comparator branch COM1. And a first input of the second comparator branch COM2.
  • the current frame pixel signal sampling branch I is used to transfer the current frame pixel signal (Vpix) output by the pixel structure output terminal of the CMOS image sensor to the first comparator branch COM1 and the second comparator branch COM2, respectively.
  • One end of the pixel signal sampling branch II of the previous frame is connected to the pixel structure output end of the CMOS image sensor through a set of connected first ends of the first capacitor CAP1 and the second capacitor CAP2, and the pixel signal sampling branch of the previous frame
  • the other end of the second terminal is connected to the comparator branch IV through the disconnected second ends of the first capacitor CAP1 and the second capacitor CAP2, respectively, that is, the second end of the first capacitor CAP1 is connected to the second of the first comparator branch COM1.
  • the input terminal is coupled to the second input of the second comparator branch COM2 via the second end of the second capacitor CAP2.
  • the previous frame pixel signal sampling branch II is used to first transmit the previous frame pixel signal to the first end of the first capacitor CAP1 and the second capacitor CAP2, and then output the first end of the first capacitor CAP1
  • the first error reference signal related to one frame of the pixel signal is transmitted to the first comparator branch COM1
  • the second error reference signal related to the pixel signal of the previous frame outputted by the second end of the second capacitor CAP2 is transmitted to the first Two comparator branch COM2.
  • the first signal sampling switch S1 may be disposed on the current frame pixel signal sampling branch I, and the second signal sampling switch S2 may be disposed on the pixel signal sampling branch II of the previous frame.
  • the first signal sampling switch S1 and the second signal sampling switch S2 respectively control sampling of two frame pixel signals of the current frame and the previous frame.
  • the first end of the first signal sampling switch S1 is connected to the first end of the second signal sampling switch S2, and is commonly connected to the pixel structure output end of the CMOS image sensor.
  • the second end of the first signal sampling switch S1 can be respectively connected to the first input end of the first comparator branch COM1 and the first input end of the second comparator branch COM2 through the connection point D.
  • the first signal sampling switch S1 controls the transmission of the current frame pixel signal.
  • the detection circuit performs motion detection.
  • the second end of the second signal sampling switch S2 is connected to the first end of the first capacitor CAP1 and the first end of the second capacitor CAP2, and can be connected to the first end of the first capacitor CAP1 and the first end of the second capacitor CAP2.
  • the common connection point is at point A.
  • the second signal sampling switch S2 controls the transmission of the pixel signal of the previous frame. When the second signal sampling switch S2 is turned off, the data of the previous frame to be compared is transmitted to the common connection point A of the first capacitor CAP1 and the second capacitor CAP2. point.
  • the first comparison control switch S8 and the second comparison control switch S7 may also be disposed on the pixel signal sampling branch II of the previous frame.
  • the first end of the first comparison control switch S8 is connected to the second end of the first capacitor CAP1, and the second end of the first comparison control switch S8 is connected to the second point of the first comparator branch COM1 through the connection point F
  • the first end of the second comparison control switch S7 is connected to the second end of the second capacitor CAP2, and the second end of the second comparison control switch S7 is connectable to the second comparator branch COM2
  • the second input is connected.
  • a clearing and resetting branch III can also be provided on the pixel signal sampling branch II of the previous frame (please refer to the dotted line frame where III is located).
  • the clearing and resetting branch III connection is disposed between the first end and the second end of the first capacitor CAP1 and the second capacitor CAP2 for clearing and resetting both ends of the first capacitor CAP1 and the second capacitor CAP2.
  • Control; clear and reset branch III are connected to ground and an error signal (V0).
  • the clearing and resetting branch III may specifically include a first reset switch to a fourth reset switch S5, S3, S4, S6.
  • the second end of the second signal sampling switch S2 is connected to the first end of the first capacitor CAP1, the first end of the second capacitor CAP2, and the first end of the first reset switch S5 to the point A; the first capacitor CAP1
  • the second end is connected to the first end of the first comparison control switch S8, the first end of the second reset switch S3, and the first end of the fourth reset switch S6 to the point B;
  • the second end of the second capacitor CAP2 is The first end of the second comparison control switch S7 and the first end of the third reset switch S4 are commonly connected to the C point; the second end of the first reset switch S5, the second end of the second reset switch S3, and the third reset switch
  • the second end of S4 is commonly grounded; the second end of the fourth reset switch S6 is connected to the error signal (V0).
  • the error signal (V0) is a maximum error allowable range when the two frames of the first error reference signal and the second error reference signal are equal in size, that is, when the absolute value of the difference between the two frame signal sizes is smaller than the error signal (V0) When it is determined that the two frame signals are equal in size; when the absolute value of the difference between the two frame signal sizes is greater than the error signal (V0), it is determined that the two frame signals are not equal in size.
  • the first comparator branch COM1 and the second comparator branch COM2 of the comparator branch IV are two-input single-output circuits, and the respective outputs of the first comparator branch COM1 and the second comparator branch COM2 are used for Output a comparison result separately.
  • the first input end of the first comparator branch COM1 and the second comparator branch COM2 is an inverting input end, and the second input end is a forward input end, as shown in FIG.
  • the first input end of the first comparator branch COM1 and the second comparator branch COM2 may be a forward input end, and the second input end may be an inverted input end.
  • the comparison result signal of the signal can determine whether the image point reflected by the pixel of the pixel connected to the motion detecting circuit moves due to the high and low states of the two comparison result signals. By comparing the motion detection results of the full-scale pixels, it can be determined whether the object is in motion.
  • the current frame pixel signal, the previous frame pixel signal, the first error reference signal, the second error reference signal, and the two comparison result signals may all be voltage signals.
  • the motion detecting circuit of the present invention can be connected to a pixel structure output end of a CMOS image sensor, a row of pixel structure output terminals or a column of pixel structure output terminals.
  • Comparator shunt IV for any type of structure does not affect circuit performance.
  • the comparator branch IV can take the form of a circuit having a single stage comparator structure.
  • the comparator shunt IV can also take the form of a circuit having a multi-stage comparator structure.
  • the comparator branch IV can be commonly used in the analog-to-digital conversion circuit of the CMOS image sensor, that is, the motion detection circuit and the comparator branch IV of the analog-to-digital conversion circuit can be multiplexed.
  • An amplification circuit may be disposed between the pixel structure output end of the CMOS image sensor and the first signal sampling switch S1 and the second signal sampling switch S2 to amplify the pixel signal of the input motion detecting circuit.
  • the comparison result signals are all voltage signals.
  • FIG. 2 to FIG. 6 are schematic diagrams showing different working states of the motion detecting circuit of FIG. 1.
  • a motion detection method based on the above motion detection circuit applied to a CIS according to the present invention includes the following steps:
  • the clearing step is performed.
  • the method includes: clearing and resetting the branch III, connecting both ends of the first capacitor CAP1 and the second capacitor CAP2 to the ground, and performing signal clearing on both ends of the first capacitor CAP1 and the second capacitor CAP2.
  • the input voltage signal Vpix of the entire motion detecting circuit is connected to the pixel structure output end of the CMOS image sensor, and the input voltage signal of the motion detecting circuit is also the output voltage signal Vpix of the CIS pixel structure.
  • the output voltage of the output terminal of the first comparator branch COM1 of the comparator branch IV is denoted as V1, and the output voltage of the output end of the second comparator branch COM2 is denoted as V2; the first capacitor CAP1 and the second capacitor CAP2 are commonly connected
  • VA The voltage at point A
  • VA the voltage at point B of the second capacitor CAP1
  • VB the voltage at point C of the second terminal CAP2
  • VC the first comparator branch COM1 and the second comparator are
  • the voltage at the point D of the common connection point of the first input end of the branch COM2 and the first signal sampling switch S1 is denoted as VD
  • the voltage at the connection point F of the second input end of the first comparator branch COM1 and the first comparison control switch S8 is recorded.
  • VF the voltage at the junction point E of the second input terminal of the second comparator branch COM2 and the second comparison control switch S7
  • VE the error signal is denoted as V0.
  • the operation of the entire motion detection circuit includes five states (steps), namely, clear, reset, previous frame data read, current frame data read, and data comparison. Clearing, resetting, and reading of the previous frame data are performed when the previous frame data comparison ends and the pixel structure still outputs the previous frame data.
  • the current frame data read and data comparison are the current frame data output in the pixel structure. In the case of. Clearing, resetting, reading of the previous frame data, the current working state of frame data reading and data comparison are sequentially performed cyclically.
  • the non-common connection points B, C of the first capacitor CAP1 and the second capacitor CAP2 respectively output an error reference voltage (ie, a first error reference voltage and a second error reference voltage) related to the previous frame data.
  • an error reference voltage ie, a first error reference voltage and a second error reference voltage
  • the first error reference voltage is higher than the pixel signal of the previous frame
  • the second error reference voltage is lower than the pixel signal of the previous frame, which is higher than the first error reference voltage of the pixel signal of the previous frame.
  • the second error reference voltage lower than the pixel signal of the previous frame is recorded as a low reference voltage.
  • the voltage across the first capacitor CAP1 and the second capacitor CAP2 is affected by the voltage at the point of common connection point A and the state of the four reset switches (first reset switch - fourth reset switch).
  • the error signal V0 is a maximum error allowable range when the two frames are equal in size, that is, when the absolute value of the difference between the two frame signal sizes is smaller than the error signal, it is determined that the two frames are equal in size; when the difference between the two frame signals is small When the absolute value is greater than the error signal, it is determined that the two frame signals are not equal in size.
  • the first reset switch S5, the second reset switch S3, and the third reset switch S4 are turned off (ie, the first reset switch S5, the second reset switch S3, and the third reset switch S4 have one end and Connected to the ground, the two ends of the first capacitor CAP1 and the second capacitor CAP2 are connected to the ground, and the first signal sampling switch S1, the second signal sampling switch S2, the fourth reset switch S6, the first comparison control switch S8,
  • the clearing operation can eliminate all error signals caused by adaptation or external interference at both ends of the capacitor to ensure the accuracy of subsequent comparison results.
  • the reset step is performed.
  • the method may include: resetting both ends of the first capacitor CAP1 and the second capacitor CAP2 by using the clear and reset branch III, and obtaining a first capacitor reset signal equal to the error signal value V0 at the second end of the first capacitor CAP1.
  • a second capacitance reset signal value of zero value is obtained at the second end of the second capacitor CAP2.
  • the voltage at point C may not be 0, that is, the third reset switch S4 may not be connected to the ground (ie, may be in an open state), but the difference between VA and VB, VB, and VC is always an error. Half of the difference between signal V0 and signal VC.
  • the previous frame data reading step is performed.
  • the method may include: using the pixel signal sampling branch II of the previous frame, transmitting the pixel signal of the previous frame to the first end of the first capacitor CAP1 and the second capacitor CAP2, and reading the pixel signal of the previous frame, at the first The second end of the capacitor CAP1 obtains a first error reference signal value that is greater than the previous frame pixel signal value, and the second end of the second capacitor CAP2 obtains a second error reference signal value that is smaller than the previous frame pixel signal value.
  • VB is the high reference voltage (first error reference signal)
  • VC is the low reference voltage (second error reference signal)
  • VB and VC always maintain a fixed difference from the previous frame data, that is, in error When the signal V0 is fixed, the size of the high reference signal and the low reference signal will be completely determined by the previous frame data.
  • the current frame data reading step is performed.
  • the method may include: reading, by using the current frame pixel signal sampling branch I, the current frame pixel signal.
  • the pixel unit After the reading of the previous frame data is finished, the pixel unit outputs the current frame data, and the circuit enters the current frame data reading state.
  • the first signal sampling switch S1 is turned off, and the second signal sampling switch S2 and the first reset switch are turned off.
  • S5, the second reset switch S3, the third reset switch S4, the fourth reset switch S6, the first comparison control switch S8, and the second comparison control switch S7 are turned on, and the current frame pixel signal outputted to the pixel structure output end of the CMOS image sensor The voltage is read.
  • the data comparison step is performed.
  • the method may include: comparing the current frame pixel signal outputted by the first comparator branch COM1 with the first error reference signal, and using the second comparator branch COM2 to output the current frame pixel signal and the second The error reference signals are compared, and a comparison result signal is respectively output, and the image points reflected by the pixels of the pixels connected to the motion detection circuit are determined to be moved by the high and low states of the two comparison result signals.
  • each of the first comparator branch COM1 and the second comparator branch COM2 is an inverting input end, and the second input end is connected to a forward input end, that is, a current frame signal.
  • the signal passing through point D is connected to the inverting input terminal (-) of the first comparator branch COM1 and the second comparator branch COM2, and the point B passes through the point F and the forward direction of the first comparator branch COM1.
  • the input terminal (+) is connected, and the C point is connected to the positive input terminal (+) of the second comparator branch COM2 through the E point.
  • the first signal sampling switch S1, the first comparison control switch S8, and the second comparison control switch S7 are turned off, and the second signal sampling switch S2, the first reset switch S5, the second reset switch S3, and the third reset are performed.
  • the switch S4 and the fourth reset switch S6 are turned on, and the high reference signal enters the first comparator branch COM1 and the low reference signal enters the second comparator branch COM2.
  • the image point corresponding to the pixel can be judged by the following method:
  • the comparison result signals respectively output by the first comparator branch COM1 and the second comparator branch COM2 are all low state signals, and the image corresponding to the pixel point is determined. Point movement; or,
  • the comparison result signals respectively output by the first comparator branch COM1 and the second comparator branch COM2 are high state signals, and the image corresponding to the pixel is determined. Point movement; or,
  • the comparison result signal output by the first comparator branch COM1 corresponds to a high state signal
  • the second The comparison result signal outputted by the comparator branch COM2 corresponds to a low state signal, and it is determined that the image point corresponding to the pixel point does not move.
  • VH the high state voltages of V1 and V2 output by the comparator shunt IV
  • VL the low state voltages
  • the motion of the object can be determined. Only when it is detected that all the image points are not moving, it can be determined that the object is not moving.
  • the motion detection of the entire CIS image can be completed by detecting the results of V1 and V2 of all image points.
  • the first signal sampling switch S1 can also be turned on.
  • the D point is not charged and discharged, and the voltage remains unchanged, which does not affect the circuit operation.
  • connection manner of the input ends of the first comparator branch COM1 and the second comparator branch COM2 can be changed, and the determination of V1 and V2 is changed after the change, and the circuit operation is not affected. That is, if the current frame signal (the signal passing through the D point) is connected to the positive input terminal (+) of the first comparator branch COM1 and the second comparator branch COM2, the point B passes through the point F and the first comparator branch.
  • the inverting input terminal (-) of the circuit COM1 is connected, and the C point is connected to the inverting input terminal (-) of the second comparator branch COM2 through the E point, then when compared,
  • the present invention controls the sampling of the current frame and the previous frame pixel signal by setting the current frame pixel signal sampling branch and the previous frame pixel signal sampling branch, and respectively setting the sampling by the pixel signal sampling in the previous frame.
  • the first capacitor and the second capacitor are configured to pass the pixel signal of the previous frame to be compared to the first end of the first capacitor and the second capacitor, and then output the second end of the first capacitor and the second capacitor
  • a first error reference signal and a second error reference signal associated with the pixel signal of the previous frame are respectively transmitted to the first comparator branch COM1 and the second comparator branch COM2 of the comparator branch IV, through the first comparison
  • the controller branch COM1 and the second comparator branch COM2 respectively output comparison result signals for the current frame pixel signal and the first error reference signal, the current frame pixel signal and the second error reference signal, and thus determine the high and low states of the comparison result signal
  • By performing a data comparison it is possible to determine whether or not the image point reflected by the pixel of the pixel connected to
  • the invention utilizes the first capacitor and the second capacitor as the storage capacitor, can perform motion detection on the currently photographed object in real time, and the error of the detected two frames of signals is determined by the value of the externally input error signal, which is convenient for adjustment;
  • the data comparison process of the device branch IV, and the motion detection can be completed according to the state of the analog signal output by the first comparator branch COM1 and the second comparator branch COM2, and the module does not need to undergo modulus for each detection process.
  • the motion detection can be completed quickly, so that the detection time is greatly shortened; in addition, the comparator branch IV can multiplex the comparator branch IV in the CIS analog-to-digital conversion circuit, so in the case of multiplexing, the present invention is only ordinary
  • the CIS circuit adds two capacitors and eight switches, which is greatly simplified in structure compared to the conventional motion detection circuit, and the area can be greatly reduced.

Abstract

本发明公开了一种应用于CIS的运动检测电路及运动检测方法,通过当前帧像素信号采样分路和上一帧像素信号采样分路,分别控制当前帧和上一帧像素信号的采样,并通过先将上一帧像素信号传递至串联的第一电容和第二电容相连的第一端,再将第一电容和第二电容不相连的第二端各自输出的与上一帧像素信号有关的第一误差参考信号和第二误差参考信号分别传递至比较器分路的第一比较器支路和第二比较器支路,通过判断第一比较器支路和第二比较器支路分别输出的针对当前帧像素信号与第一误差参考信号、当前帧像素信号与第二误差参考信号的比较结果信号的高低状态,即可判断出与运动检测电路相连的像素的像素点反映出的图像点是否发生运动。

Description

一种应用于CIS的运动检测电路及运动检测方法 技术领域
本发明涉及CMOS集成电路设计技术领域,尤其涉及一种应用于CIS的运动检测电路及运动检测方法。
技术背景
随着CMOS集成电路工艺的发展,电子产品在日常生活中的应用越来越广泛,成为各个领域不可缺少的一部分。
对于运动物体的检测,可以通过CMOS图像传感器(CIS)针对两帧图像数据进行对比,并通过检测两帧图像数据之间是否存在差异,来判定物体是否处于运动状态。
在现有用于对物体进行运动检测的电路中,一般需要对上一帧图像的数字数据进行比较。但采用此方式时,每次必须经过模数转化器进行模数转换。由于电路的读出时间受限于模数转化器的转化时间,因而减小了图像传感器的可实现的最大帧率。
另外,现有的运动检测电路一般都需要在图像传感器以外额外增加复杂的检测电路,从而导致芯片面积、功耗和成本增大较多。
发明概要
本发明的目的在于克服现有技术存在的上述缺陷,提供一种应用于CIS的运动检测电路及运动检测方法。
为达成上述目的,本发明提供了一种应用于CIS的运动检测电路,包括:
一比较器分路,包括一第一比较器支路和一第二比较器支路,所述第一比较器支路和第二比较器支路分别设有第一输入端、第二输入端、输出端;
一当前帧像素信号采样分路,其一端连接CMOS图像传感器的像素结构输出端,另一端分别连接第一比较器支路的第一输入端和第二比较器支路的第一输入端,用于将当前帧像素信号分别传递至第一比较器支路和第二比较器支路;
一上一帧像素信号采样分路,其一端通过一串联的第一电容和第二电容的相连第一端共同连接CMOS图像传感器的像素结构输出端,另一端通过第一电容的第二端连接第一比较器支路的第二输入端,以及通过第二电容的第二端连接第二比较器支路的第二输入端,用于先将上一帧像素信号传递至第一电容和第二电容相连的第一端,再将第一电容的第二端输出的一个与上一帧像素信号有关的第一误差参考信号传递至第一比较器支路,以及将第二电容的第二端输出的一个与上一帧像素信号有关的第二误差参考信号传递至第二比较器支路;
其中,通过第一比较器支路的输出端和第二比较器支路的输出端分别输出针对当前帧像素信号与第一误差参考信号、当前帧像素信号与第二误差参考信号的比较结果信号,以通过两个比较结果信号的高低状态,判断与运动检测电路相连的像素的像素点所反映出的图像点是否发生运动。
进一步地,还包括:设于当前帧像素信号采样分路的第一信号采样开关,设于上一帧像素信号采样分路的第二信号采样开关、第一比较控制开关、第二比较控制开关;其中:
第一信号采样开关的第一端与第二信号采样开关的第一端相连,并共同 连接CMOS图像传感器的像素结构输出端;第一信号采样开关的第二端分别连接第一比较器支路的第一输入端和第二比较器支路的第一输入端;第二信号采样开关的第二端与第一电容的第一端、第二电容的第一端共同连接;
第一电容的第二端与第一比较控制开关的第一端连接,第一比较控制开关的第二端连接第一比较器支路的第二输入端;第二电容的第二端与第二比较控制开关的第一端连接,第二比较控制开关的第二端连接第二比较器支路的第二输入端。
进一步地,还包括:一清零及复位支路,连接设于第一电容、第二电容的第一端和第二端之间,用于对第一电容、第二电容的两端进行清零和复位控制;所述清零及复位支路分别连接地和一误差信号。
进一步地,还包括:设于当前帧像素信号采样分路的第一信号采样开关,设于上一帧像素信号采样分路的第二信号采样开关、第一比较控制开关、第二比较控制开关,设于清零及复位支路的第一复位开关至第四复位开关;其中:
第一信号采样开关的第一端与第二信号采样开关的第一端相连,并共同连接CMOS图像传感器的像素结构输出端;第一信号采样开关的第二端分别连接第一比较器支路的第一输入端和第二比较器支路的第一输入端;第二信号采样开关的第二端与第一电容的第一端、第二电容的第一端、第一复位开关的第一端共同连接;
第一电容的第二端与第一比较控制开关的第一端、第二复位开关的第一端、第四复位开关的第一端共同连接;第二电容的第二端与第二比较控制开关的第一端、第三复位开关的第一端共同连接;
第一复位开关的第二端、第二复位开关的第二端、第三复位开关的第二端共同接地;第四复位开关的第二端连接一误差信号;
第一比较控制开关的第二端连接第一比较器支路的第二输入端;第二比较控制开关的第二端连接第二比较器支路的第二输入端。
进一步地,所述第一比较器支路和第二比较器支路各自的第一输入端为反向输入端,第二输入端为正向输入端;或者,所述第一比较器支路和第二比较器支路各自的第一输入端为正向输入端,第二输入端为反向输入端。
进一步地,所述当前帧像素信号、上一帧像素信号、第一误差参考信号、第二误差参考信号、比较结果信号为电压信号。
进一步地,所述比较器分路可与所述CMOS图像传感器的模数转化电路的比较器分路共用(复用)。
进一步地,比较器分路可以采用具有单级或多级比较器结构的电路形式。
进一步地,所述比较器分路为任意结构类型不影响电路性能。
进一步地,所述比较器分路具有使能信号结构。
进一步地,所述运动检测电路连接CMOS图像传感器的一个像素结构输出端、一行像素结构输出端或一列像素结构输出端。
进一步地,所述CMOS图像传感器的像素结构输出端与第一信号采样开关、第二信号采样开关之间设有放大电路。
本发明还提供了一种基于上述的应用于CIS的运动检测电路的运动检测方法,包括以下步骤:
执行清零步骤;其包括:利用清零及复位支路,使第一电容、第二电容 的两端与地相连,对第一电容、第二电容的两端进行信号清零;
执行复位步骤;其包括:利用清零及复位支路,对第一电容、第二电容的两端进行复位,在第一电容的第二端得到与误差信号值相等的第一电容复位信号值,在第二电容的第二端得到零值的第二电容复位信号值;
执行上一帧数据读取步骤;其包括:利用上一帧像素信号采样分路,将上一帧像素信号传递至第一电容和第二电容相连的第一端,对上一帧像素信号进行读取,在第一电容的第二端得到大于上一帧像素信号值的第一误差参考信号值,在第二电容的第二端得到小于上一帧像素信号值的第二误差参考信号值;
执行当前帧数据读取步骤;其包括:利用当前帧像素信号采样分路,对当前帧像素信号进行读取;
执行数据比较步骤;其包括:利用第一比较器支路,对其输出的当前帧像素信号和第一误差参考信号进行比较,以及利用第二比较器支路,对其输出的当前帧像素信号和第二误差参考信号进行比较,并分别输出比较结果信号,通过两个比较结果信号的高低状态,判断与运动检测电路相连的像素的像素点所反映出的图像点是否发生运动。
进一步地,执行数据比较步骤中,当所述第一比较器支路和第二比较器支路各自的第一输入端为反向输入端,第二输入端为正向输入端时,判断方法包括:
若当前帧像素信号值大于第一误差参考信号值时,第一比较器支路和第二比较器支路各自输出的比较结果信号对应都为低状态信号,判断与像素点对应的图像点发生运动;或者,
若当前帧像素信号值小于第二误差参考信号值时,第一比较器支路和第二比较器支路各自输出的比较结果信号对应都为高状态信号,判断与像素点对应的图像点发生运动;或者,
若当前帧像素信号值小于第一误差参考信号值,且当前帧像素信号值同时大于第二误差参考信号值时,第一比较器支路输出的比较结果信号对应为高状态信号,第二比较器支路输出的比较结果信号对应为低状态信号,判断与像素点对应的图像点未发生运动。
进一步地,执行数据比较步骤中,当所述第一比较器支路和第二比较器支路各自的第一输入端为正向输入端,第二输入端为反向输入端时,判断方法包括:
若当前帧像素信号值大于第一误差参考信号值时,第一比较器支路和第二比较器支路各自输出的比较结果信号对应都为高状态信号,判断与像素点对应的图像点发生运动;或者,
若当前帧像素信号值小于第二误差参考信号值时,第一比较器支路和第二比较器支路各自输出的比较结果信号对应都为低状态信号,判断与像素点对应的图像点发生运动;或者,
若当前帧像素信号值小于第一误差参考信号值,且当前帧像素信号值同时大于第二误差参考信号值时,第一比较器支路输出的比较结果信号对应为低状态信号,第二比较器支路输出的比较结果信号对应为高状态信号,判断与像素点对应的图像点未发生运动。
进一步地,所述当前帧像素信号、上一帧像素信号、第一电容复位信号值、第二电容复位信号值、误差信号、第一误差参考信号、第二误差参考信 号、比较结果信号为电压信号。
本发明的优点在于,本发明通过设置当前帧像素信号采样分路和上一帧像素信号采样分路,分别控制当前帧和上一帧像素信号的采样,并通过在上一帧像素信号采样分路串联设置第一电容和第二电容,以将待比较的上一帧像素信号传递至第一电容和第二电容相连的第一端,再将第一电容和第二电容不相连的第二端各自输出的一个与上一帧像素信号有关的第一误差参考信号和第二误差参考信号分别传递至比较器分路的第一比较器支路和第二比较器支路,通过第一比较器支路和第二比较器支路分别输出针对当前帧像素信号与第一误差参考信号、当前帧像素信号与第二误差参考信号的比较结果信号,因而通过判断比较结果信号的高低状态,只需进行一次数据比较,即可判断出与运动检测电路相连的像素的像素点反映出的图像点是否发生运动。本发明利用第一电容和第二电容作为存储电容,能够实时对当前被拍摄物体进行运动检测,且检测到的两帧信号的误差由外部输入的误差信号的值确定,便于调节;可以通过比较器分路的一次数据比较过程,并依据第一比较器支路和第二比较器支路输出的模拟信号的状态,即可完成运动检测,而且每次检测过程不需要经过模数转化,可快速完成运动检测,使得检测时间大量缩短;此外,比较器分路可以复用CIS的模数转化电路中的比较器分路,因而在复用情况下,本发明只比普通CIS电路增加两个电容和8个开关,从而相对于普通运动检测电路在结构上可大大简化,面积也可以大大缩减。
附图说明
图1是本发明一较佳实施例的一种应用于CIS的运动检测电路结构示意 图。
图2-图6是图1运动检测电路的不同工作状态示意图。
发明内容
以下将结合说明书附图对本发明的内容作进一步的详细描述。应理解的是本发明能够在不同的示例上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及图示在本质上当作说明之用,而非用以限制本发明。需说明的是,附图均采用非常简化的形式且均使用非精准的比率,仅用以方便、明晰地辅助说明本发明实施例的目的。
请参阅图1,图1是本发明一较佳实施例的一种应用于CIS的运动检测电路结构示意图。如图1所示,本发明的一种应用于CIS的运动检测电路,可包括:一个比较器分路Ⅳ,一个当前帧像素信号采样分路Ⅰ和一个上一帧像素信号采样分路Ⅱ。
请参阅图1。比较器分路Ⅳ(请参考Ⅳ所在的虚线框部分)包括一个第一比较器支路COM1和一个第二比较器支路COM2;第一比较器支路COM1和第二比较器支路COM2分别设有第一输入端、第二输入端、输出端。
当前帧像素信号采样分路Ⅰ的一端连接CMOS图像传感器的像素结构输出端(Vpix输入端),当前帧像素信号采样分路Ⅰ的另一端分别连接第一比较器支路COM1的第一输入端和第二比较器支路COM2的第一输入端。当前帧像素信号采样分路Ⅰ用于将由CMOS图像传感器的像素结构输出端输出的当前帧像素信号(Vpix)分别传递至第一比较器支路COM1和第二比较器支路COM2。
上一帧像素信号采样分路Ⅱ的一端通过一组串联的第一电容CAP1和第二电容CAP2的相连的第一端共同连接CMOS图像传感器的像素结构输出端,上一帧像素信号采样分路Ⅱ的另一端分别通过第一电容CAP1和第二电容CAP2的不相连的第二端连接比较器分路Ⅳ,即通过第一电容CAP1的第二端连接第一比较器支路COM1的第二输入端,以及通过第二电容CAP2的第二端连接第二比较器支路COM2的第二输入端。上一帧像素信号采样分路Ⅱ用于先将上一帧像素信号传递至第一电容CAP1和第二电容CAP2相连的第一端,再将第一电容CAP1的第二端输出的一个与上一帧像素信号有关的第一误差参考信号传递至第一比较器支路COM1,以及将第二电容CAP2的第二端输出的一个与上一帧像素信号有关的第二误差参考信号传递至第二比较器支路COM2。
当前帧像素信号采样分路Ⅰ上可设有第一信号采样开关S1,上一帧像素信号采样分路Ⅱ上可设有第二信号采样开关S2。第一信号采样开关S1和第二信号采样开关S2分别控制当前帧和上一帧两帧像素信号的采样。第一信号采样开关S1的第一端与第二信号采样开关S2的第一端相连,并共同连接CMOS图像传感器的像素结构输出端。第一信号采样开关S1的第二端可通过连接点D点分别连接第一比较器支路COM1的第一输入端和第二比较器支路COM2的第一输入端。第一信号采样开关S1控制当前帧像素信号的传输,当第一信号采样开关S1关断时,将当前帧像素信号分别传递至第一比较器支路COM1和第二比较器支路COM2,运动检测电路进行运动检测。第二信号采样开关S2的第二端与第一电容CAP1的第一端、第二电容CAP2的第一端共同连接,并可连接在第一电容CAP1第一端、第二电容CAP2第一端的共同连 接点A点处。第二信号采样开关S2控制上一帧像素信号的传输,当第二信号采样开关S2关断时,将待比较的上一帧数据传递至第一电容CAP1、第二电容CAP2的共同连接点A点。
上一帧像素信号采样分路Ⅱ上还可设有第一比较控制开关S8、第二比较控制开关S7。其中,第一比较控制开关S8的第一端与第一电容CAP1的第二端连接,第一比较控制开关S8的第二端可通过连接点F点与第一比较器支路COM1的第二输入端连接;第二比较控制开关S7的第一端与第二电容CAP2的第二端连接,第二比较控制开关S7的第二端可通过连接点E点与第二比较器支路COM2的第二输入端连接。
上一帧像素信号采样分路Ⅱ上还可设有一个清零及复位支路Ⅲ(请参考Ⅲ所在的虚线框部分)。清零及复位支路Ⅲ连接设于第一电容CAP1、第二电容CAP2的第一端和第二端之间,用于对第一电容CAP1、第二电容CAP2的两端进行清零和复位控制;清零及复位支路Ⅲ分别连接地和一误差信号(V0)。
清零及复位支路Ⅲ具体可包括第一复位开关至第四复位开关S5、S3、S4、S6。其中,第二信号采样开关S2的第二端与第一电容CAP1的第一端、第二电容CAP2的第一端、第一复位开关S5的第一端共同连接于A点;第一电容CAP1的第二端与第一比较控制开关S8的第一端、第二复位开关S3的第一端、第四复位开关S6的第一端共同连接于B点;第二电容CAP2的第二端与第二比较控制开关S7的第一端、第三复位开关S4的第一端共同连接于C点;第一复位开关S5的第二端、第二复位开关S3的第二端、第三复位开关S4的第二端共同接地;第四复位开关S6的第二端连接误差信号(V0)。其中,误差信号(V0)为判定第一误差参考信号和第二误差参考信号两帧信号大小相 等时的最大误差允许范围,即当两帧信号大小的差值的绝对值小于误差信号(V0)时,判定两帧信号大小相等;当两帧信号大小的差值的绝对值大于误差信号(V0)时,判定两帧信号大小不相等。
比较器分路Ⅳ的第一比较器支路COM1和第二比较器支路COM2都是两输入单输出电路,第一比较器支路COM1和第二比较器支路COM2各自的输出端用于分别输出一个比较结果。其中,第一比较器支路COM1和第二比较器支路COM2各自的第一输入端为反向输入端,第二输入端为正向输入端,如图1所示。或者也可以是,第一比较器支路COM1和第二比较器支路COM2各自的第一输入端为正向输入端,第二输入端为反向输入端。
通过第一比较器支路COM1的输出端输出针对当前帧像素信号与第一误差参考信号的比较结果信号、通过第二比较器支路COM2的输出端输出针对当前帧像素信号与第二误差参考信号的比较结果信号,就可以通过这两个比较结果信号的高低状态,判断与运动检测电路相连的像素的像素点所反映出的图像点是否发生运动。通过对全幅像素的运动检测结果进行比较,即可判定物体是否处于运动状态。
上述的当前帧像素信号、上一帧像素信号、第一误差参考信号、第二误差参考信号、两个比较结果信号可均为电压信号。
本发明的运动检测电路可连接CMOS图像传感器的一个像素结构输出端、一行像素结构输出端或一列像素结构输出端。比较器分路Ⅳ为任意结构类型不影响电路性能。
如图1所示,作为可选的实施方式,比较器分路Ⅳ可以采用具有单级比较器结构的电路形式。或者,比较器分路Ⅳ也可以采用具有多级比较器结构 的电路形式。并且,比较器分路Ⅳ可以共用于CMOS图像传感器的模数转化电路中,即运动检测电路和模数转化电路的比较器分路Ⅳ可以复用。
此外,所述比较器分路Ⅳ是否具有使能信号及相关结构不影响电路性能。CMOS图像传感器的像素结构输出端与第一信号采样开关S1、第二信号采样开关S2之间还可设有放大电路,以对输入运动检测电路的像素信号进行放大。
下面通过具体实施方式及附图,对本发明的一种基于上述的应用于CIS的运动检测电路的运动检测方法进行详细说明。其中,下述说明中涉及的当前帧像素信号、上一帧像素信号、第一电容CAP1复位信号值、第二电容CAP2复位信号值、误差信号、第一误差参考信号、第二误差参考信号、比较结果信号均为电压信号。
请参阅图2-图6,图2-图6是图1运动检测电路的不同工作状态示意图。如图2-图6所示,本发明的一种基于上述的应用于CIS的运动检测电路的运动检测方法,包括以下步骤:
第一步,执行清零步骤。可包括:利用清零及复位支路Ⅲ,使第一电容CAP1、第二电容CAP2的两端与地相连,对第一电容CAP1、第二电容CAP2的两端进行信号清零。
请参阅图2。整个运动检测电路的输入电压信号Vpix与CMOS图像传感器的像素结构输出端相连,运动检测电路的输入电压信号也即CIS像素结构的输出电压信号Vpix。将比较器分路Ⅳ的第一比较器支路COM1输出端的输出电压记为V1,将第二比较器支路COM2输出端的输出电压记为V2;将第一电容CAP1、第二电容CAP2共同连接点A点的电压记为VA,第一电容CAP1 第二端B点电压记为VB,第二电容CAP2第二端C点电压记为VC;将第一比较器支路COM1和第二比较器支路COM2第一输入端与第一信号采样开关S1的共同连接点D点电压记为VD,将第一比较器支路COM1第二输入端与第一比较控制开关S8的连接点F点电压记为VF,将第二比较器支路COM2第二输入端与第二比较控制开关S7的连接点E点电压记为VE;将误差信号记为V0。
整个运动检测电路的工作包括五个状态(步骤),即清零,复位,上一帧数据读取,当前帧数据读取和数据比较。其中清零,复位和上一帧数据读取是在上一帧数据比较结束且像素结构仍然输出上一帧数据的情况下进行,当前帧数据读取和数据比较是在像素结构输出当前帧数据的情况下进行。清零,复位,上一帧数据读取,当前帧数据读取和数据比较这五个工作状态依次循环进行。
在数据比较阶段,第一电容CAP1、第二电容CAP2的非共同连接点B、C分别输出一个与上一帧数据有关的误差参考电压(即第一误差参考电压、第二误差参考电压)。其中,这两个误差参考电压中,第一误差参考电压高于上一帧像素信号,第二误差参考电压低于上一帧像素信号,将高于上一帧像素信号的第一误差参考电压记为高参考电压,将低于上一帧像素信号的第二误差参考电压记为低参考电压。第一电容CAP1、第二电容CAP2两端的电压受到共同连接点A点电压以及四个复位开关(第一复位开关-第四复位开关)的状态影响。误差信号V0为判定两帧信号大小相等时的最大误差允许范围,即当两帧信号大小的差值的绝对值小于误差信号时,判定两帧信号大小相等;当两帧信号大小的差值的绝对值大于误差信号时,判定两帧信号大小不相等。
电路处于清零状态时,将第一复位开关S5、第二复位开关S3、第三复位开关S4关断(即第一复位开关S5、第二复位开关S3、第三复位开关S4均有一端与地相连),使第一电容CAP1、第二电容CAP2的两端与地相连,将第一信号采样开关S1、第二信号采样开关S2、第四复位开关S6、第一比较控制开关S8、第二比较控制开关S7打开;此时,VA=0,VB=0,VC=0,第一电容CAP1、第二电容CAP2的两端清零。
清零操作能消除电容两端由于适配或者外界干扰带来的所有误差信号,保证后续比较结果的准确性。
第二步,执行复位步骤。可包括:利用清零及复位支路Ⅲ,对第一电容CAP1、第二电容CAP2的两端进行复位,在第一电容CAP1的第二端得到与误差信号值V0相等的第一电容复位信号值,在第二电容CAP2的第二端得到零值的第二电容复位信号值。
请参阅图3。当清零状态结束后,电路进入复位状态,将第三复位开关S4、第四复位开关S6关断,将第一信号采样开关S1、第二信号采样开关S2、第一复位开关S5、第二复位开关S3、第一比较控制开关S8、第二比较控制开关S7打开,此时VB=V0,VC=0,对第一电容CAP1、第二电容CAP2的两端进行复位。记第一电容CAP1和第二电容CAP2的电容值大小分别为cv1和cv2,则A点电压满足以下公式(公式一):
(VA-VC)·cv2=(VB-VA)·cv1            公式一
为方便说明,本实施例中取cv1=cv2,则A点电压可满足以下公式(公式二):
VA=(VB+VC)/2               公式二
则复位状态时,VA=V0/2。
本实施例的复位状态中,C点电压可以不为0,即第三复位开关S4可以不连接到地(即可以处于打开状态),但VA和VB、VB和VC的差值大小始终是误差信号V0与信号VC的差值的一半。
第三步,执行上一帧数据读取步骤。可包括:利用上一帧像素信号采样分路Ⅱ,将上一帧像素信号传递至第一电容CAP1和第二电容CAP2相连的第一端,对上一帧像素信号进行读取,在第一电容CAP1的第二端得到大于上一帧像素信号值的第一误差参考信号值,在第二电容CAP2的第二端得到小于上一帧像素信号值的第二误差参考信号值。
请参阅图4。当复位状态结束后,电路进入上一帧数据读取状态,此时将第二信号采样开关S2关断,将第一信号采样开关S1、第一复位开关S5、第二复位开关S3、第三复位开关S4、第四复位开关S6、第一比较控制开关S8、第二比较控制开关S7打开,对CMOS图像传感器的像素结构输出端输出的上一帧像素信号电压进行读取。
由于B点和C点都处于悬空状态,且由于第一电容CAP1和第二电容CAP2两端存在的电荷感应效应,使得第一电容CAP1和第二电容CAP2两端的电压差保持不变。记像素输出的上一帧数据为Vpix1,则此时,VA=Vpix1,VB=Vpix1+V0/2,VC=Vpix1-V0/2。其中,VB即高参考电压(第一误差参考信号),VC即低参考电压(第二误差参考信号),且VB和VC始终保持与上一帧数据保持固定差值,也就是说,在误差信号V0固定时,高参考信号和低参考信号的大小将完全由上一帧数据决定。
第四步,执行当前帧数据读取步骤。可包括:利用当前帧像素信号采样 分路Ⅰ,对当前帧像素信号进行读取。
请参阅图5。当上一帧数据读取结束后,像素单元输出当前帧数据,电路进入当前帧数据读取状态,此时将第一信号采样开关S1关断,将第二信号采样开关S2、第一复位开关S5、第二复位开关S3、第三复位开关S4、第四复位开关S6、第一比较控制开关S8、第二比较控制开关S7打开,对CMOS图像传感器的像素结构输出端输出的当前帧像素信号电压进行读取。记像素输出的当前帧数据为Vpix2,则此时VD=Vpix2。
第五步,执行数据比较步骤。可包括:利用第一比较器支路COM1,对其输出的当前帧像素信号和第一误差参考信号进行比较,以及利用第二比较器支路COM2,对其输出的当前帧像素信号和第二误差参考信号进行比较,并分别输出一个比较结果信号,通过这两个比较结果信号的高低状态,判断与运动检测电路相连的像素的像素点所反映出的图像点是否发生运动。
请参阅图6。在本实施例中,按第一比较器支路COM1和第二比较器支路COM2各自的第一输入端为反向输入端,第二输入端为正向输入端进行连接,即当前帧信号(通过D点的信号)均与第一比较器支路COM1和第二比较器支路COM2的反向输入端(-)相连,B点通过F点与第一比较器支路COM1的正向输入端(+)相连,C点通过E点与第二比较器支路COM2的正向输入端(+)相连。当上一帧数据读取结束后,电路进入数据比较状态。此时,将第一信号采样开关S1、第一比较控制开关S8、第二比较控制开关S7关断,将第二信号采样开关S2、第一复位开关S5、第二复位开关S3、第三复位开关S4、第四复位开关S6打开,高参考信号进入第一比较器支路COM1、低参考信号进入第二比较器支路COM2。可通过以下方法判断与像素点对应的图像 点是否发生运动:
若当前帧像素信号值大于第一误差参考信号值时,第一比较器支路COM1和第二比较器支路COM2各自输出的比较结果信号对应都为低状态信号,判断与像素点对应的图像点发生运动;或者,
若当前帧像素信号值小于第二误差参考信号值时,第一比较器支路COM1和第二比较器支路COM2各自输出的比较结果信号对应都为高状态信号,判断与像素点对应的图像点发生运动;或者,
若当前帧像素信号值小于第一误差参考信号值,且当前帧像素信号值同时大于第二误差参考信号值时,第一比较器支路COM1输出的比较结果信号对应为高状态信号,第二比较器支路COM2输出的比较结果信号对应为低状态信号,判断与像素点对应的图像点未发生运动。
此时,VF=VB=Vpix1+V0/2,VE=VC=Vpix1-V0/2。在本实施例中,比较器分路Ⅳ输出的V1和V2的高状态电压记为VH,低状态电压记为VL。
对第一比较器支路COM1来说,若VD<VF,则V1=VH,若VD>VF,则V1=VL;
对第二比较器支路COM2来说,若VD<VE,则V2=VH,若VD>VE,则V2=VL。
也就是说,当Vpix2<Vpix1-V0/2时,V1=VH,V2=VH,此时两帧数据不相等,电路对应的图像点运动;
当Vpix1-V0/2<Vpix2<Vpix1+V0/2时,V1=VH,V2=VL,此时两帧数据相等,电路对应的图像点不运动;
当Vpix2>Vpix1+V0/2时,V1=VL,V2=VL,此时两帧数据不相等,电路对应的图像点运动。
而对于整幅图像来说,只要检测到任何一个图像点运动即可判定被拍摄 物体运动,只有检测到所有图像点均不运动才能判定被拍摄物体不运动。通过对所有图像点的V1和V2的结果进行检测,即可完成整个CIS图像的运动检测。
本实施例中的数据比较状态中,第一信号采样开关S1也可以打开,在第一信号采样开关S1打开时,D点没有充放电,电压保持不变,不影响电路工作。
在上述本实施例中,第一比较器支路COM1、第二比较器支路COM2输入端的连接方式可以改变,改变后V1和V2的判定随之改变,并不影响电路工作。即如果当前帧信号(通过D点的信号)均与第一比较器支路COM1和第二比较器支路COM2的正向输入端(+)相连,B点通过F点与第一比较器支路COM1的反向输入端(-)相连,C点通过E点与第二比较器支路COM2的反向输入端(-)相连,那么比较时,
对第一比较器支路COM1来说,若VD<VF,则V1=VL,若VD>VF,则V1=VH;
对第二比较器支路COM2来说,若VD<VE,则V2=VL,若VD>VE,则V2=VH。
也就是说,当Vpix2<Vpix1-V0/2时,V1=VL,V2=VL,此时两帧数据不相等,电路对应的图像点运动;
当Vpix1-V0/2<Vpix2<Vpix1+V0/2时,V1=VL,V2=VH,此时两帧数据相等,电路对应的图像点不运动;
当Vpix2>Vpix1+V0/2时,V1=VH,V2=VH,此时两帧数据不相等,电路对应的图像点运动。
综上,本发明通过设置当前帧像素信号采样分路和上一帧像素信号采样分路,分别控制当前帧和上一帧像素信号的采样,并通过在上一帧像素信号 采样分路串联设置第一电容和第二电容,以将待比较的上一帧像素信号传递至第一电容和第二电容相连的第一端,再将第一电容和第二电容不相连的第二端各自输出的一个与上一帧像素信号有关的第一误差参考信号和第二误差参考信号分别传递至比较器分路Ⅳ的第一比较器支路COM1和第二比较器支路COM2,通过第一比较器支路COM1和第二比较器支路COM2分别输出针对当前帧像素信号与第一误差参考信号、当前帧像素信号与第二误差参考信号的比较结果信号,因而通过判断比较结果信号的高低状态,只需进行一次数据比较,即可判断出与运动检测电路相连的像素的像素点反映出的图像点是否发生运动。本发明利用第一电容和第二电容作为存储电容,能够实时对当前被拍摄物体进行运动检测,且检测到的两帧信号的误差由外部输入的误差信号的值确定,便于调节;可以通过比较器分路Ⅳ的一次数据比较过程,并依据第一比较器支路COM1和第二比较器支路COM2输出的模拟信号的状态,即可完成运动检测,而且每次检测过程不需要经过模数转化,可快速完成运动检测,使得检测时间大量缩短;此外,比较器分路Ⅳ可以复用CIS的模数转化电路中的比较器分路Ⅳ,因而在复用情况下,本发明只比普通CIS电路增加两个电容和8个开关,从而相对于普通运动检测电路在结构上可大大简化,面积也可以大大缩减。
以上所述的仅为本发明的实施例,所述实施例并非用以限制本发明专利保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

Claims (10)

  1. 一种应用于CIS的运动检测电路,其特征在于,包括:
    一比较器分路,包括一第一比较器支路和一第二比较器支路,所述第一比较器支路和第二比较器支路分别设有第一输入端、第二输入端、输出端;
    一当前帧像素信号采样分路,其一端连接CMOS图像传感器的像素结构输出端,另一端分别连接第一比较器支路的第一输入端和第二比较器支路的第一输入端,用于将当前帧像素信号分别传递至第一比较器支路和第二比较器支路;
    一上一帧像素信号采样分路,其一端通过一串联的第一电容和第二电容的相连第一端共同连接CMOS图像传感器的像素结构输出端,另一端通过第一电容的第二端连接第一比较器支路的第二输入端,以及通过第二电容的第二端连接第二比较器支路的第二输入端,用于先将上一帧像素信号传递至第一电容和第二电容相连的第一端,再将第一电容的第二端输出的一个与上一帧像素信号有关的第一误差参考信号传递至第一比较器支路,以及将第二电容的第二端输出的一个与上一帧像素信号有关的第二误差参考信号传递至第二比较器支路;
    其中,通过第一比较器支路的输出端和第二比较器支路的输出端分别输出针对当前帧像素信号与第一误差参考信号、当前帧像素信号与第二误差参考信号的比较结果信号,以通过两个比较结果信号的高低状态,判断与运动检测电路相连的像素的像素点所反映出的图像点是否发生运动。
  2. 根据权利要求1所述的应用于CIS的运动检测电路,其特征在于,还包括:设于当前帧像素信号采样分路的第一信号采样开关,设于上一帧像素信号采样分路的第二信号采样开关、第一比较控制开关、第二比较控制开关;其中
    第一信号采样开关的第一端与第二信号采样开关的第一端相连,并共同连接CMOS图像传感器的像素结构输出端;第一信号采样开关的第二端分别 连接第一比较器支路的第一输入端和第二比较器支路的第一输入端;第二信号采样开关的第二端与第一电容的第一端、第二电容的第一端共同连接;
    第一电容的第二端与第一比较控制开关的第一端连接,第一比较控制开关的第二端连接第一比较器支路的第二输入端;第二电容的第二端与第二比较控制开关的第一端连接,第二比较控制开关的第二端连接第二比较器支路的第二输入端。
  3. 根据权利要求1所述的应用于CIS的运动检测电路,其特征在于,还包括:一清零及复位支路,连接设于第一电容、第二电容的第一端和第二端之间,用于对第一电容、第二电容的两端进行清零和复位控制;所述清零及复位支路分别连接地和一误差信号。
  4. 根据权利要求3所述的应用于CIS的运动检测电路,其特征在于,还包括:设于当前帧像素信号采样分路的第一信号采样开关,设于上一帧像素信号采样分路的第二信号采样开关、第一比较控制开关、第二比较控制开关,设于清零及复位支路的第一复位开关至第四复位开关;其中
    第一信号采样开关的第一端与第二信号采样开关的第一端相连,并共同连接CMOS图像传感器的像素结构输出端;第一信号采样开关的第二端分别连接第一比较器支路的第一输入端和第二比较器支路的第一输入端;第二信号采样开关的第二端与第一电容的第一端、第二电容的第一端、第一复位开关的第一端共同连接;
    第一电容的第二端与第一比较控制开关的第一端、第二复位开关的第一端、第四复位开关的第一端共同连接;第二电容的第二端与第二比较控制开关的第一端、第三复位开关的第一端共同连接;
    第一复位开关的第二端、第二复位开关的第二端、第三复位开关的第二端共同接地;第四复位开关的第二端连接一误差信号;
    第一比较控制开关的第二端连接第一比较器支路的第二输入端;第二比较控制开关的第二端连接第二比较器支路的第二输入端。
  5. 根据权利要求1-4任意一项所述的应用于CIS的运动检测电路,其 特征在于,所述第一比较器支路和第二比较器支路各自的第一输入端为反向输入端,第二输入端为正向输入端;或者,所述第一比较器支路和第二比较器支路各自的第一输入端为正向输入端,第二输入端为反向输入端。
  6. 根据权利要求1-4任意一项所述的应用于CIS的运动检测电路,其特征在于,所述当前帧像素信号、上一帧像素信号、第一误差参考信号、第二误差参考信号、比较结果信号为电压信号。
  7. 一种基于权利要求3所述的应用于CIS的运动检测电路的运动检测方法,其特征在于,包括以下步骤:
    执行清零步骤;其包括:利用清零及复位支路,使第一电容、第二电容的两端与地相连,对第一电容、第二电容的两端进行信号清零;
    执行复位步骤;其包括:利用清零及复位支路,对第一电容、第二电容的两端进行复位,在第一电容的第二端得到与误差信号值相等的第一电容复位信号值,在第二电容的第二端得到零值的第二电容复位信号值;
    执行上一帧数据读取步骤;其包括:利用上一帧像素信号采样分路,将上一帧像素信号传递至第一电容和第二电容相连的第一端,对上一帧像素信号进行读取,在第一电容的第二端得到大于上一帧像素信号值的第一误差参考信号值,在第二电容的第二端得到小于上一帧像素信号值的第二误差参考信号值;
    执行当前帧数据读取步骤;其包括:利用当前帧像素信号采样分路,对当前帧像素信号进行读取;
    执行数据比较步骤;其包括:利用第一比较器支路,对其输出的当前帧像素信号和第一误差参考信号进行比较,以及利用第二比较器支路,对其输出的当前帧像素信号和第二误差参考信号进行比较,并分别输出比较结果信号,通过两个比较结果信号的高低状态,判断与运动检测电路相连的像素的像素点所反映出的图像点是否发生运动。
  8. 根据权利要求7所述的运动检测方法,其特征在于,执行数据比较步骤中,当所述第一比较器支路和第二比较器支路各自的第一输入端为反 向输入端,第二输入端为正向输入端时,判断方法包括:
    若当前帧像素信号值大于第一误差参考信号值时,第一比较器支路和第二比较器支路各自输出的比较结果信号对应都为低状态信号,判断与像素点对应的图像点发生运动;或者
    若当前帧像素信号值小于第二误差参考信号值时,第一比较器支路和第二比较器支路各自输出的比较结果信号对应都为高状态信号,判断与像素点对应的图像点发生运动;或者
    若当前帧像素信号值小于第一误差参考信号值,且当前帧像素信号值同时大于第二误差参考信号值时,第一比较器支路输出的比较结果信号对应为高状态信号,第二比较器支路输出的比较结果信号对应为低状态信号,判断与像素点对应的图像点未发生运动。
  9. 根据权利要求7所述的运动检测方法,其特征在于,执行数据比较步骤中,当所述第一比较器支路和第二比较器支路各自的第一输入端为正向输入端,第二输入端为反向输入端时,判断方法包括:
    若当前帧像素信号值大于第一误差参考信号值时,第一比较器支路和第二比较器支路各自输出的比较结果信号对应都为高状态信号,判断与像素点对应的图像点发生运动;或者
    若当前帧像素信号值小于第二误差参考信号值时,第一比较器支路和第二比较器支路各自输出的比较结果信号对应都为低状态信号,判断与像素点对应的图像点发生运动;或者
    若当前帧像素信号值小于第一误差参考信号值,且当前帧像素信号值同时大于第二误差参考信号值时,第一比较器支路输出的比较结果信号对应为低状态信号,第二比较器支路输出的比较结果信号对应为高状态信号,判断与像素点对应的图像点未发生运动。
  10. 根据权利要求7-9任意一项所述的运动检测方法,其特征在于,所述当前帧像素信号、上一帧像素信号、第一电容复位信号值、第二电容复位信号值、误差信号、第一误差参考信号、第二误差参考信号、比较结果信号 为电压信号。
PCT/CN2018/102896 2018-05-16 2018-08-29 一种应用于cis的运动检测电路及运动检测方法 WO2019218529A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/043,775 US11102380B2 (en) 2018-05-16 2018-08-29 Motion detection circuit and motion detection method applied to CIS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810469339.4A CN108600579B (zh) 2018-05-16 2018-05-16 一种应用于cis的运动检测电路及运动检测方法
CN201810469339.4 2018-05-16

Publications (1)

Publication Number Publication Date
WO2019218529A1 true WO2019218529A1 (zh) 2019-11-21

Family

ID=63631460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102896 WO2019218529A1 (zh) 2018-05-16 2018-08-29 一种应用于cis的运动检测电路及运动检测方法

Country Status (3)

Country Link
US (1) US11102380B2 (zh)
CN (1) CN108600579B (zh)
WO (1) WO2019218529A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110971792B (zh) * 2018-09-29 2021-08-13 华为技术有限公司 一种动态视觉传感器
CN113826379A (zh) * 2019-05-10 2021-12-21 索尼高级视觉传感股份公司 具有像素内数字改变检测的动态视觉传感器
CN112788262A (zh) * 2020-12-30 2021-05-11 上海集成电路研发中心有限公司 图像信号检测电路、控制方法以及运动检测方法
CN114302081B (zh) * 2021-12-31 2023-07-28 上海集成电路装备材料产业创新中心有限公司 运动检测电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100259626A1 (en) * 2009-04-08 2010-10-14 Laura Savidge Method and apparatus for motion artifact removal in multiple-exposure high-dynamic range imaging
CN101938279A (zh) * 2009-06-30 2011-01-05 比亚迪股份有限公司 一种模数转换电路、模数转换方法及图像处理系统
US20150042855A1 (en) * 2013-08-12 2015-02-12 Samsung Electronics Co., Ltd. Image sensor, method of operating the same, and system including the image sensor
CN104782111A (zh) * 2012-10-29 2015-07-15 关根弘一 运动检测用固体摄像装置以及运动检测系统
CN108712620A (zh) * 2018-05-16 2018-10-26 上海集成电路研发中心有限公司 一种运动检测电路及运动检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9936132B2 (en) * 2012-10-26 2018-04-03 The Regents Of The University Of Michigan CMOS image sensors with feature extraction
JP6168064B2 (ja) * 2012-12-06 2017-07-26 パナソニックIpマネジメント株式会社 Ad変換器、イメージセンサ、およびデジタルカメラ
KR20160017500A (ko) * 2014-08-06 2016-02-16 에스케이하이닉스 주식회사 이중 데이터 레이트 카운터 및 그를 이용한 아날로그-디지털 변환 장치와 씨모스 이미지 센서
KR20210037302A (ko) * 2019-09-27 2021-04-06 삼성전자주식회사 이미지 센서 및 그 동작 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100259626A1 (en) * 2009-04-08 2010-10-14 Laura Savidge Method and apparatus for motion artifact removal in multiple-exposure high-dynamic range imaging
CN101938279A (zh) * 2009-06-30 2011-01-05 比亚迪股份有限公司 一种模数转换电路、模数转换方法及图像处理系统
CN104782111A (zh) * 2012-10-29 2015-07-15 关根弘一 运动检测用固体摄像装置以及运动检测系统
US20150042855A1 (en) * 2013-08-12 2015-02-12 Samsung Electronics Co., Ltd. Image sensor, method of operating the same, and system including the image sensor
CN108712620A (zh) * 2018-05-16 2018-10-26 上海集成电路研发中心有限公司 一种运动检测电路及运动检测方法

Also Published As

Publication number Publication date
US20210092259A1 (en) 2021-03-25
CN108600579A (zh) 2018-09-28
CN108600579B (zh) 2020-03-20
US11102380B2 (en) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2019218529A1 (zh) 一种应用于cis的运动检测电路及运动检测方法
JP7374242B2 (ja) 動的ビジョンセンサアーキテクチャ
KR102373088B1 (ko) 이벤트 기반의 비전 센서
KR100485301B1 (ko) 반도체장치, 및 그 반도체장치를 이용한 연산장치, 신호변환기 및 신호처리시스템
US8130125B2 (en) A/D converter, solid-state image capturing apparatus and electronic information device
US8582008B2 (en) Fast-settling line driver design for high resolution video IR and visible images
CN107613230B (zh) 高分辨率大动态范围数字化读出装置及其读出方法
WO2021128532A1 (zh) 视锥视杆复用式仿生视觉传感器
JP6100443B2 (ja) Cmos撮像センサのために適合された増幅器
US20200358975A1 (en) Ad conversion circuit, imaging device, and endoscope system
US7369162B2 (en) Image sensing apparatus
CN108712620B (zh) 一种运动检测电路及运动检测方法
US20100238335A1 (en) Clamp circuit and solid-state image sensing device having the same
US8587698B2 (en) Image sensor and method for operating the same
EP3871407B1 (en) Ultra-high dynamic range cmos sensor
TW201832548A (zh) 逐一輸出不同感測像素單元之感測訊號電荷及重置訊號電荷之影像感測器及感測像素陣列
CN105554421B (zh) 一种全局像元非线性补偿结构
US11039100B2 (en) Signal conversion circuit and signal readout circuit
CN114172517A (zh) 一种红外读出电路和模数转换器
US10145734B2 (en) Methods and apparatus for a light sensor
CN207802163U (zh) 读出电路和成像系统
CN101931737B (zh) 黑电平补偿电路
JP4286101B2 (ja) 光検出装置のためのオフセット抑圧回路
CN219592535U (zh) 线阵图像传感器芯片和图像传感器
CN116132830A (zh) 线阵图像传感器芯片和图像传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918810

Country of ref document: EP

Kind code of ref document: A1