WO2019216753A1 - Bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales - Google Patents

Bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales Download PDF

Info

Publication number
WO2019216753A1
WO2019216753A1 PCT/MX2018/000116 MX2018000116W WO2019216753A1 WO 2019216753 A1 WO2019216753 A1 WO 2019216753A1 MX 2018000116 W MX2018000116 W MX 2018000116W WO 2019216753 A1 WO2019216753 A1 WO 2019216753A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerobic
anaerobic
clarification
anoxic
disinfection
Prior art date
Application number
PCT/MX2018/000116
Other languages
English (en)
French (fr)
Inventor
Francisco Xavier VALDÉS SIMANCAS
Original Assignee
Valdes Simancas Francisco Xavier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valdes Simancas Francisco Xavier filed Critical Valdes Simancas Francisco Xavier
Publication of WO2019216753A1 publication Critical patent/WO2019216753A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention falls in the field of treatment, sanitation and reduction of the organic pollutant load of wastewater; more specifically it refers to a combined bioreactor that jointly incorporates anaerobic, anoxic, aerobic and organic wastewater digestion processes for its sanitation, and that includes a novel system of physical separation of stages and biogas capture, and extraction of cream and sludge
  • UBOX® is a reactor that has two sections: in the lower part it comprises an anaerobic section and in the upper part an aerobic section.
  • the wastewater is fed into the lower section which is pre-treated anaerobically, using the UASB upflow anaerobic process (Anaerobic Sludge Bed Upflow); in the middle section it comprises a three-phase separation module that allows collecting and separating the biogas produced and which also works to keep the mud at the bottom of the reactor; a plurality of air injectors are arranged on the gas separation and collection module through which air is introduced to improve the aerobic degradation of the remaining COD (Chemical Oxygen Demand).
  • An efficient separator in the upper part of the tank that allows the discharge of the effluent and prevents the outflow of the activated sludge, while preventing air bubbles from interfering with the sedimentation process.
  • the UBOX® system combines the two processes in a single tank, using an aerobic process at the top; but it requires aerators, which mean high energy consumption and the elimination of organic load is not as efficient, so Sanitation is not the most optimal.
  • Document US2003015469 (document D1) of Hedenland Michael David et. to the. of April 17, 2002, which reveals a semi-continuous process of biological waste treatment used to treat municipal and industrial wastes containing BOD, nitrogen and phosphorus.
  • the process uses two biological reactors in series, and each maintains an inventory of mixed liquor. The inputs and outputs of the reactors in series are made by adding and removing small batches. Reactors can be configured in multiple ways for different waste conditions.
  • the preferred embodiment is an integrated discontinuous process that includes an anoxic equalization vessel, an aerobic biological reactor, a clarification stage with denitrification, a tertiary effluent treatment phase with ozone injection and filtration and an automatic sludge loss method with thickening and stabilization.
  • the process has two phases of denitrification and has very high nitrogen removal rates.
  • unprocessed wastewater 18 is treated in a first anoxic bioreactor 1 to normalize the load to the rest of the process and supplies the anoxic environment for further denitrification.
  • Equalization and the anoxicol bioreactor are agitated through a periodic minimum air jet 19.
  • a minimum volume of 50% of the bioreactor 1 is maintained.
  • the anoxic conditions and The source of carbon supplied by the unprocessed sewage, the nitrates not converted to nitrogen in the separation / denitrification vessel 7 will be converted by the heterotrophic aerobic bacteria maintained in the mixed liquor residing in the anoxic realizer and bioreactor 1.
  • the PLC control system automatically starts pump 2 and pumps a portion of reactor 1 to the aeration bioreactor 4 through line 20. The transfer will be maintained automatically until the level and the Lot stage of aeration bioreactor 4 be ready to accept the batch.
  • the semi-continuous process of biological waste treatment used to treat municipal and industrial wastes containing BOD, nitrogen and phosphorus comprises several separate reactors, pumping systems and separate stages in several reactors and tanks or vessels that differ complement from the components, structure, flow and mechanisms of the present invention.
  • Document D1 does not disclose, nor does it suggest a combined bio-reactor (CBR) with interconnected bio-reactors in stages for wastewater treatment for the purpose of efficient reuse of water, consists of a single horizontal tank of GRP (polyester reinforced with fiberglass) (1), which inside comprises different smaller containers to house the stages and / or biological processes that are sought to have, where each container is defined by intermediate dividing loudspeakers (2) so that a first tank is defined for the pretreatment and sedimentation stage (3), at least one tank for the anaerobic stage (4), at least one tank for the anoxic stage (5) , at least one tank for the aerobic stage (6), at least one tank for the clarification stage (7) and at least one tank for disinfection (8), which allows to gather in a single unit, stages for the treatment of wastewater such as: pretreatment, Anaerobic, Anoxic, Aerobic, Clarification and Disinfection processes, in order to efficiently reuse water, which is portable, that can be transported in containers; It is constructed entirely of composites (reinforced plastic
  • creams and sludges in accordance with the present invention consists of a substantially vertical form tank rectangular with a minimum depth of 7m, which is divided vertically into three zones; an anaerobic zone at the bottom, an anoxic or transition zone in the middle and an aerobic zone at the top where at least one biological RBC contact rotor is disposed; at least one wastewater feed pipeline that is disposed in the upper part of the anaerobic zone.
  • This area is characterized by the absence of oxygen, which leads to the degradation of the organic matter contained in the wastewater; This degradation generates a small amount of mud, which settles at the bottom, leaving a sufficient period of time for digestion and is subsequently extracted by means of a specially designed pipe, located at the bottom of the tank.
  • This pipe can be made of PVC, stainless steel, high density polyethylene or any material with a corrosion resistance that allows a life of at least
  • each tube consists of holes of different diameters that typically range from 19.05mm to 38.1mm (3 ⁇ 4 "to 11 ⁇ 2"). The smallest holes are located on the side closest to the suction and grow as you go to the opposite end, so that the suction is uniform along the tube.
  • This document D2 of the same inventor of the present invention is a vertical tank that requires a minimum depth of 7m, which is divided vertically into three zones; an anaerobic zone at the bottom, an anoxic or transition zone in the middle and an aerobic zone at the top; at least one wastewater feed pipeline that is disposed in the upper part of the anaerobic zone.
  • the Bioreactor or tank has a separator panel with a special configuration of rhomboids for the collection of biogas, sludge and creams, which, joined together, form an interconnected and supported intermediate polyhedral separator panel in a plurality of columns and intermediate bars implemented in the tank; said separators joined together define a plurality of conical collectors with upper connection nozzles of ducts of a biogas collection and conduction network and a plurality of funnel-shaped collectors with lower connection nozzles of ducts that define a collection network and sludge conduction from the anoxic zone.
  • CBR combined bio-reactor
  • GRP polyethylene reinforced with fiberglass
  • each container is defined by intermediate dividing baffles (2) so that a first tank for the pretreatment and sedimentation stage (3), at least one tank for the anaerobic stage (4), at least one tank for the anoxic stage (5), at least one tank for the aerobic stage (6), at less a tank for the clarification stage (7) and at least one tank for disinfection (8), which allows to gather in a single unit, stages for wastewater treatment such as: pretreatment, anaerobic, anoxic, aero processes bios, Clarification and Disinfection, for the purpose of efficient water reuse, that is portable, that can be transported in containers; It is constructed entirely of composites (rein
  • the settling tank 10 represents an anaerobic zone where settling, sludge accumulation and digestion occurs, then a little above is a transition zone and in the upper part is the biozone or ventilation zone 20 which comprises a cover or lid 21 located in the upper part of the lower sedimentation tank 10 and which houses a biological contact rotor 22, the rotor has an arrow 25 that is rotated by a motor 23;
  • the surface of the biological rotor is covered with a thin layer of biomass that is frequently exposed to the atmosphere while rotating the rotor.
  • the microorganisms naturally present in the wastewater feed and multiply very rapidly in the cyclic submerged and exposed periods to which they are subjected on the rotor surface. Microorganisms rapidly break down biomass layers.
  • the water is fed through an opening of the cover or lid 21 that protects the biological rotor superiorly and the water at the end of the journey through the biological rotor is finally passed to the final sedimentation tank 30 or clarifying tank where there is less sedimentation and where said tank 30 comprises means for recirculating the biomass or sludge from said tank 30 towards the tank 10.
  • stages for wastewater treatment such as: pretreatment, Anaerobic, anoxic, aerobic, clarification and
  • the biological rotors of this document are also not flexible to different internal processes of biological treatment (Pre-treatment, Anaerobic, Anoxic, Aerobic, Clarification and disinfection) and to different qualities of influent treatment and removal of main Nutrients (Nitrogen, Phosphorus), not They can be fully assembled, calibrated and factory tested; and require specialty facilities to put them to work.
  • the tank does not comprise physical means (baffles) to separate a completely anaerobic zone by means of a separator system (baffles) from the transitional or anoxic zone and which allows the capture of biogas and creams from the anaerobic zone and sludge from the transitional or anoxic zone.
  • Petrone of July 18, 2006 which protects a wastewater treatment unit comprising an inlet 11 to a fully sealed tank 12; in the upper part it comprises a reservoir 20 separated from the tank 12 by a lower wall; in said reservoir a rotary digester 24 is arranged.
  • a second upper reservoir 22 as a clarifying unit is disposed in the upper part of the tank;
  • the tank 12 comprises a dividing wall 46 that divides it into two tanks, the collection tank 13 where the solids precipitate and in the presence of anaerobic bacteria allows a preliminary digestion of organic matter.
  • a secondary tank 15 attached to the tank 13 and separated by the wall 46 receives by decantation the water from the tank 13 and the water in said tank 15 is fed to the reservoir 20 where the rotary digester that is immersed in 30 to 50% is disposed of its diameter where the digestion of organic matter is accelerated in an aerobic process; the water after passing through the biological digester passes to the clarifying reservoir 22 and if sediments are still found, they are pumped into the tank 13.
  • the clarified and purified water is passed through a disinfection base 56 with UV rays of UV bulbs 54; UV light destroys residual microscopic microorganisms; alternatively a disinfection bulb or a chlorination unit is used.
  • This tank is divided into two tanks by means of a dividing wall and requires a third tank to complete the process.
  • US Patent No. 5,395,529 of James PJ Butler of March 7, 1995 was found, which discloses an apparatus for the treatment of wastewater, which consists of a tank comprising an inlet port 1 and an outlet port 8; a first solids settlement zone 3 of the wastewater below the level of the inlet port 1; a second solids settlement zone 7 below the level of the exit port 8; and a compartment 14, such that the first settling zone 3 is in communication with the compartment 14 and said compartment 14 is in communication with the second settling zone 7.
  • a biological contact rotor 4 is mounted to rotate in the compartment 14.
  • each tank has a sedimentation chamber for the separation of treated water and sludge, together with a perimeter dump that in turn has an annular channel for collecting treated water with at least one pipe that connects both tanks to supply the Supply of wastewater in the distributor of the second tank to continue with the treatment.
  • Patent applications are also cited as a reference MX / a / 2011/004708 and MX / a / 2008/008724.
  • CBR bio-reactor
  • the main objective of the present invention is to make available a combined bioreactor that allows to gather in a unitary body different stages for the treatment of wastewater such as anaerobic, anoxic and aerobic processes with physical separations (baffles) that allow to carry out degradation of matter organic, which maximizes the biodiversity of bacterial colonies that without physical or other separations would not be created or cannibalized among them; with physical separation also for lamellar clarification stages typically of two stages and a section with a disinfection stage typically by means of U-rays; that also allows to capture and collect the biogas produced in anaerobic digestion to burn them or send them to other processes as required; as well as the collection of sludge and creams; and thus allow wastewater sanitation, achieving higher removal rates of BOD (biological oxygen demand) and SST (total suspended solids) per unit of time, having multiple stages with approximate retention times of 1.6hrs connected in series with its subsequent stages and biological treatment process.
  • BOD biological oxygen demand
  • SST total suspended solids
  • Another objective of the present invention is to make available a bioreactor combined with multiple stages for anaerobic, anoxic, aerobic, clarification and disinfection processes in wastewater treatment, which is also portable, which can be easily transported to the point where it is required. and that also does not generate unpleasant odors noticeable in the plant.
  • Another objective of the invention is to allow said bioreactor for anaerobic, anoxic and aerobic digestion and of the organic matter of wastewater and biogas, cream and sludge collection system, which also implies a lower space requirement when understanding all the stages processes (dances) in a single bioreactor passing the residual water by gravity through all the stages (dances) processes, so that the energy consumption is reduced to a minimum, this being one of the processes that presents the lowest cost per cubic meter of water treated.
  • Another objective of the present invention is to make available a bioreactor combined with multiple stages for anaerobic, anoxic, aerobic, clarification and disinfection processes in wastewater treatment, which also offers corrosion resistance and offers a life expectancy of more than 50 years ; and that also allows to expand its application for different types of municipal wastewater even with various types of PH’s.
  • Another objective of the present invention is to make available a bioreactor combined with multiple stages for anaerobic, anoxic, aerobic, clarification and disinfection processes in wastewater treatment, which is also flexible to different internal biological treatment processes and to different influent treatment qualities. and nutrient removal main (Nitrogen, Phosphorus), and also be fully assembled, calibrated and factory tested; that is self contained and does not need specialty facilities for its operation.
  • Another objective of the present invention is to make available a bioreactor combined with multiple stages for anaerobic, anoxic, aerobic, clarification and disinfection processes in wastewater treatment, which also has the versatility to adapt to the expected effluent quality, since they can be combine several of the stages of the treatment process (Anaerobic, Anoxic, Aerobic, Clarification and disinfection), which allows compliance with retention times and biological process variables.
  • Another objective of the invention is to allow said bioreactor for anaerobic, anoxic and aerobic digestion of wastewater organic matter and biogas, cream and sludge collection system, which also presents the possibility of energy cogeneration through production and biogas collection; which allows a better separation by physical means in stages (baffles) of the anaerobic, anoxic and aerobic section through the use of collectors in the anaerobic areas of biogas collection, the collection of sludge produced is extracted at the bottom of each stage (baffle) of the anaerobic section, each stage (baffle) also defining a barrier for the retention of floating material (foams and creams) at the top of the bioreactor.
  • Another objective of the present invention is to make available a bioreactor combined with multiple stages for anaerobic, anoxic, aerobic, clarification and disinfection processes in wastewater treatment, which can also be transported in commercial containers and / or on conventional trailer platforms already packed In its whole.
  • Another objective of the present invention is to make available a bioreactor combined with multiple stages for anaerobic, anoxic, aerobic, clarification and disinfection processes in wastewater treatment, which can also be exchanged in the field as appropriate to the treatment needs that may arise. It was due to a change in the characterization of the influent as well as new requirements in the quality of the effluent.
  • the bioreactor combined with multiple stages for anaerobic, anoxic, aerobic biological processes, and for physical clarification and disinfection processes, in wastewater treatment for the purpose of efficient water reuse consists of a unit tank of GRP (fiber reinforced polyester glass), shaped of substantially closed rectangular prism on all its faces, which internally comprises a plurality of dividing dances distributed along its entire length that define a plurality of chambers for the combination of stages for anaerobic, anoxic and aerobic biological processes, and chambers for physical processes of clarification and disinfection, same chambers that can be configured according to the treatment you want to perform, for example a standard treatment for municipal wastewater; to preserve nutrients or for nutrient removal; where the water is lifted from the influent by a pump and is introduced into the first chamber.
  • GRP fiber reinforced polyester glass
  • the plurality of dividing loudspeakers are made of a corrosion-resistant laminated material and with the rigidity necessary to support the weights of the tank structure, the hydrostatic pressure of the water and the dead weight of the sludge as would be the Fiber Reinforced Polyester of Glass (GRP), or other material that resists corrosion for at least 50 years.
  • GRP Fiber Reinforced Polyester of Glass
  • Said bioreactor combined with multiple stages for anaerobic, anoxic, aerobic, clarification and disinfection processes in Wastewater treatment is of rectangular cross section preferably with a minimum height of 1.23 meters and typical of 2.54, a minimum width of 0.57mts and typical of 2.29, and a minimum length of 3m and typical of 12m; Although these dimensions are merely enunciative but not limiting, that is to say, these dimensions may vary according to the calculations of flow management and volumes of water to be treated.
  • said plurality of dividing baffles define a first chamber for the pretreatment and sedimentation stage, at least one contiguous chamber for the anaerobic stage, at least one contiguous chamber for the anoxic stage, at least one contiguous chamber for the aerobic stage, said cameras configured for the treatments and biological processes that allow to generate a very high biodiversity of bacteria.
  • the bioreactor also contemplates at least one contiguous chamber for the clarification stage and at least one contiguous chamber for the disinfection stage as final physical treatments of the biologically treated water.
  • the basic configuration preferably includes five sections; an anaerobic section at the beginning of the process (typically 3 stages or chambers), an anoxic section in the middle (typically 2 stages or chambers), a posterior aerobic zone (typically 2 stages or chamber), this in terms of the biological process ; and for physical treatment it includes a clarification section (typically 2 stages or chambers) and finally a disinfection section (typically 1 stage or chamber).
  • the plurality of chambers are arranged in a collinear arrangement separated by said intermediate dividing dances and seriously connected.
  • Said unit tank integrates an upper gas extraction duct that extends along the collinear arrangement of said plurality of chambers comprising upper perpendicular gas collection ducts that extend into each chamber for gas collection and extraction; a lower sludge extraction duct with suction pump that extends along the bottom of the collinear array of chambers and comprising perpendicular sludge collection ducts that extend at the bottom of said plurality of chambers; a lower air injection duct from an electromechanical blower with fixed air control valve system, which comprises supports and extends at the bottom along the collinear arrangement of the plurality of chambers and comprising perpendicular ducts with diffusers of air in the lower zone of the chambers destined for the aerobic and clarification stage; and a superior water recirculation pipeline with control valve system and treated water recirculation pump.
  • Each dividing loudspeaker comprises a plurality of connections for each chamber that define upper water passage ducts in the upper area of each partition fable of each chamber and siphon-type internally projected ducts for the exit and discharge of water to the lower zone of each adjoining camera
  • the speed of the water at maximum flow of the plant through the passageways between chamber and chamber in the ascending direction flows no more of 2 meters per hour.
  • the water passes from one stage to another through the passage of water that crosses the next dance and is located in the corner opposite the injection point and about 20 cm from the maximum water level, so that the creams are retained in the baffle in which they float, already in the next stage the tube that carried the water of the previous stage falls down to 10 cm above the bottom of the tank to force the treated water to make the longest path within each stage preventing the short circuits of the fluid in the process, and at the same time allow to have a uniform retention time of the water flow in each stage (baffle).
  • anaerobic section In the anaerobic section it is characterized by the absence of oxygen, which leads to the degradation of the organic matter contained in the wastewater; This degradation generates a small amount of sludge, which settles at the bottom, leaving a sufficient period of time for digestion and is subsequently extracted by means of a specially designed doubt, located at the bottom of the tank that flows into one of the Taque ends of rectangular section.
  • Said sludge extraction lower duct is made of plastic materials, typically PVC, GRP or PAD or any material with a corrosion resistance that allows a useful life of at least 50 years, of a diameter sufficient for its function and a thickness that avoid collapsing even with the load of water outside and a total vacuum inside. It is placed approximately with its flush 5cm from the bottom of the tank so that it has a catchment area by means of holes that are evenly distributed at the bottom. This pipeline is distributed along the bioreactor, allowing it to cover the entire sedimentation area. Each tube consists of holes of different diameters that typically range from 6.0mm to 12.1mm (1/4 ”to 1 ⁇ 2"). Smaller holes are located on the side closest to the suction and grow as you go to the opposite end, so that the suction is uniform throughout the tube.
  • plastic materials typically PVC, GRP or PAD or any material with a corrosion resistance that allows a useful life of at least 50 years, of a diameter sufficient for its function and a thickness that avoid collapsing even
  • the upper perpendicular gas collection ducts that extend to each chamber for the collection and extraction thereof comprise a plurality of holes for the collection thereof, these pipelines with holes attached to the upper gas extraction duct form collection and conduction network of biogas.
  • Said upper gas extraction duct is arranged a few centimeters from the top of the tank with holes arranged up so that the creams that could float do not find an easy way out in them.
  • the gases found in anaerobic areas that could contain methane and hydrogen sulfide are separated from those emitted from anoxic and aerobic areas which are freely discharged into the atmosphere.
  • upper and lower outlets are generated in the upper part of the part, where tubes are connected from a side pipe network that connects all the upper outlets and sends the gas to a device in charge from its acid washing by separating the hydrogen sulfide from methane and another network that connects the lower outlets and sends the sedimented sludge to the anaerobic zone of the first section and stage to continue with its digestion.
  • sweet methane could be stored in a biogas bag so that it can be used for cooking, generating electrical and heat energy, heating the influent and / or the sludge of the process, or if not it would be of no use to burn it in a lighter to convert it to CO2 and significantly reduce the impact that methane if expelled as gas would have on the ozone layer.
  • Said lower air injection pipe consists of a network of PVC pipes or other material installed at the bottom of the tank, pipe where the diffusers that are submerged are interconnected, this inject air that comes from an electromechanical blower, the main air pipe it travels on the opposite side to the sludge extraction pipe.
  • chambers of the clarification physical treatment stages they comprise an angled baffle and a straight transverse baffle creating two chambers or lamellar clarifier stages arranged in Serie.
  • the first clarification chamber has the entry of water from the aerobic section from the bottom, where there is an upward flow with gravity decantation of solids suspended on the lamellae, the flow that leaves the first clarification chamber proceeds to enter by the lower part of the second clarification chamber, where it repeats the same cycle, before reaching the surface of the latter it is removed by gravity at a speed of less than 15 cm per second to pass to the disinfection section, on the surface
  • a skimmer is available from the fluid of each clarifier which captures the floating material and directs them to the sludge extraction line, which will take it to the previous stages of the process for its new sedimentation and then to the first stage of the anaerobic section For your final digestion.
  • a UV lamp system is arranged inside the blower and a recirculation pump.
  • the chambers are closed and include holes in the upper wall with access doors for maintenance.
  • Water can enter the tank in different ways, it can enter through the upper part of the pretreatment and sedimentation chamber by the action of a pump from the influent, after passing through a hydrograph that rests externally on the tank, which is used to separate the solids that transport water and discard them inside of an outer container.
  • the treated water exits from the rear of the tank, but the exact position of the outlet orifice varies according to its position with reference to the final discharge point. Retention times vary according to arrangement and flow and by way of example without being limited to these times, you have:
  • the combined biological reactor makes it possible to combine anaerobic, anoxic and aerobic biological treatments of wastewater and for physical treatment of casification and disinfection.
  • the system allows the mentioned treatments to be adapted according to the quality of wastewater in the influent and the expected water quality in the effluent.
  • a nominal flow of systems ranging from 51 to 147 m 3 per day is indicated and these can be combined systems to treat greater wastewater flows, the flows may vary depending on the dimensions and volumes of water to be treated.
  • the bioreactor combined with multiple stages for anaerobic, anoxic, aerobic biological processes, and for physical treatments of clarification and disinfection of wastewater in order to efficiently reuse water, maximizes the biodiversity of bacteria colonies that without physical or other separations type would not be created or can be used among them.
  • the biological sections and stages there is also the aforementioned lamellar clarification section typically of two stages and a section with a disinfection stage typically by means of UV rays.
  • Said reactor comprises at the same time physical means (baffles) for separating stages, capturing and collecting the biogas produced in anaerobic digestion; as well as the collection of sludge and creams; and of This mode allows wastewater sanitation, achieving higher removal rates of BOD (biological oxygen demand) and SST (total suspended solids) per unit of time by having multiple stages with approximate retention times of 1.6 hrs connected in series with their subsequent stages and process of biological treatment.
  • BOD biological oxygen demand
  • SST total suspended solids
  • the configuration of the bioreactor allows several cameras to be handled for the different stages, two or more cameras can be used for each stage to allow the separation of different bacteria that if they were together in one chamber could strongly compete with each other or cannibalize, in this way competition is avoided and each stage and each biological process is potentialized and sensitized to obtain better treated water.
  • the configuration of the chambers for the different stages of biological processes can be manipulated by means of a system of air injection control valves for those cameras desitianas to aerobic processes, valves for the control of water recirculation and valves for sludge extraction and the gases of the respective pipelines.
  • the sludge from each stage of the different sections, anaerobic, anoxic and aerobic is sedimented in its corresponding stage for a period and eventually all are recirculated and stored in the anaerobic section in the first stage (baffle), so as to allow its complete digestion and the process as a whole produces only inert sludge and in very low quantities, facilitating the process of extracting them and reducing your disposal costs.
  • said pretreatment and sedimentation chamber comprises larger dimensions with greater volumetric capacity than the rest of the chambers, which in addition to degrading the organic load of the water, serves as a digester and storage of digested sludge, with retention times for them ranging from 6 months up to 3 years, depending on the influent to be treated, that when the older ones are removed, from the bottom of it, they are completely digested and ready for disposal without further processes.
  • FIG. 1 shows a conventional perspective of the bioreactor combined with multiple stages for anaerobic, anoxic, aerobic, clarification and disinfection processes in wastewater treatment, in accordance with the preferred embodiment of the invention.
  • Figure 2 shows a conventional bioreactor perspective combined with multiple stages for anaerobic, anoxic, aerobic, clarification and disinfection processes in wastewater treatment, showing the ducts for gas extraction, sludge, air injection and water recirculation, in accordance with the preferred embodiment of the invention .
  • Figure 3 shows a conventional perspective view of the interior of the bioreactor combined with multiple stages for anaerobic, anoxic, aerobic, clarification and disinfection processes in wastewater treatment, illustrating the dividing loudspeakers, the different chambers formed and the gas extraction ducts , sludge, air injection and water recirculation, in accordance with the preferred embodiment of the invention.
  • Figure 4 illustrates a side view of the interior of the bioreactor combined with multiple stages for anaerobic, anoxic, aerobic, clarification and disinfection processes in wastewater treatment, polishing the dividing loudspeakers, the different chambers formed and the gas extraction ducts, sludge, air injection and water recirculation, in accordance with the preferred embodiment of the invention.
  • Figure 5 illustrates a top view of the interior of the bioreactor combined with multiple stages for anaerobic, anoxic, aerobic, clarification and disinfection processes in wastewater treatment, illustrating the dividing loudspeakers, the different chambers formed and the gas extraction ducts, sludge, air injection and water recirculation, in accordance with the preferred embodiment of the invention.
  • Figure 6 shows in conventional perspective the interior of the rear end of the bioreactor where the blower, the recirculation pump, the sludge pump, the different pipes and the clarification means are understood, in accordance with a preferred embodiment of the invention. .
  • FIG. 7 shows a conventional perspective of the UV lamp system of the chamber of the disinfection stage, in accordance with one of the embodiments of the invention.
  • Water can enter the unit tank (1) in different ways, it can enter through the upper part and impersonate a hydrograph (8) that rests externally on the unit tank (1), which is used to separate the solids it carries water and discard them in an outer container (9).
  • the treated water leaves the rear of the unit tank (1), but the exact position of the outlet orifice varies according to its position with reference to the final discharge point.
  • said unitary tank (1) of GRP fiberglass reinforced polyester
  • said unitary tank (1) of GRP fiberglass reinforced polyester
  • said unitary tank (1) of GRP fiberglass reinforced polyester
  • said unitary tank (1) of GRP fiberglass reinforced polyester
  • said unitary tank (1) of GRP fiberglass reinforced polyester
  • said unitary tank (1) of GRP fiberglass reinforced polyester
  • said unitary tank (1) of GRP fiberglass reinforced polyester
  • said unitary tank (1) of GRP fiberglass reinforced polyester
  • said unitary tank (1) of GRP fiberglass reinforced polyester
  • said unitary tank (1) of GRP fiberglass reinforced polyester
  • Said plurality of dividing dances (10) define a plurality of chambers for biological water treatment processes and a plurality of chambers for the physical treatment of water for clarification and disinfection, which preferably consist of a first chamber for the stage of pretreatment and sedimentation (11) where most of the sedimentable solids are eliminated, two chambers for the anaerobic stage (12), two chambers for the anoxic stage (13), two chambers for the aeorbia stage (14), at least one chamber for the clarification stage (15) and at least one chamber for disinfection treatment (16).
  • the plurality of chambers are arranged in a collinear arrangement separated by said dividing speakers (10) and communicated in series.
  • Said unit tank (1) integrates an upper gas extraction duct (17) that extends along the collinear arrangement of said plurality of chambers comprising upper perpendicular gas collection ducts (18) themselves having a plurality of holes for the collection of gas and extending to each chamber for the collection and extraction of gases; a lower sludge extraction duct (19) with suction pump (not shown), which extends along the bottom of the collinear array of chambers and comprising perpendicular sludge collection ducts (20) with holes for the sludge extraction, which extends at the bottom of said plurality of chambers; a lower air injection duct (21) from a blower (22), which comprises supports and extends at the bottom along the collinear arrangement of the plurality of chambers and comprising perpendicular ducts with air bubble diffusers (23 ) in the lower zone of the aerobic stage chambers (14) and the chamber
  • the aerobic zone is where the growth of different nitrifying bacteria (nitrosomes and nitrobacter) that converts ammoniacal nitrogen into nitrites and subsequently into nitrates that, as explained above, will be transformed into nitrogen gas in the anoxic zone.
  • the first chamber for the pretreatment and sedimentation stage (11) comprises at least one external (influential) wastewater supply pipe (not shown). closer to the bottom.
  • the biogas produced through anaerobic digestion is not collected due to its insufficient quantity but if necessary the biogas is collected by an upper gas extraction duct (17) that is at the top of the unit tank (1) then be driven to a biogas burner (not shown).
  • Denitrification is performed by heterotrophic bacteria that use nitrate and nitrite as an electron acceptor when organic matter is oxidized. This process occurs in anoxic or anaerobic conditions (dissolved oxygen) with a concentration ⁇ 0.5 mg.L-1). Biological denitrification is coupled to the respiratory electron transport chain, and nitrate and nitrite are used as an electron acceptor for the oxidation of a variety of organic electron donors. It has been shown that a wide range of bacteria is capable of denitrification, but a similar microbial capacity has also been found in algae or fungi. Bacteria capable of denitrification are both heterotrophs as autotrophs. Most of these heterotrophic bacteria are facultative aerobic organisms with the ability to use oxygen, as well as nitrate or nitrite, and some can also carry out fermentation in the absence of nitrate or oxygen.
  • Biological denitrification involves the biological oxidation of many organic substrates in the treatment of wastewater using nitrate or nitrite as an electron acceptor instead of oxygen.
  • nitrate reductase is induced in the respiratory chain of electron transport, and helps transfer hydrogen and electrons to nitrate as a terminal electron acceptor.
  • Nitrate reduction reactions involve the different reduction steps from nitrate to nitrite, nitric oxide, nitrous oxide and nitrogen gas.
  • the elimination of biological phosphorus is carried out by the accumulation of phosphates from microorganisms that have the ability to accumulate phosphate above what is required for growth. This biological process is known as bio-P or enhanced removal of biological phosphate.
  • the camera for the aerobic stage (14) usually defined by two cameras both of equal size.
  • the removal of biological oxygen demand (BOD) will be favored.
  • the chemical oxygen demand (COD) while the second chamber is designed for the n itrification reactions.
  • N itification is the process that converts ammonia into nitrite and then nitrate under aerobic conditions and using oxygen as an electron acceptor.
  • the nitrogen in untreated sewage is in the form of particles of ammonia and organic nitrogen. While the nitrogen found in the particles can be removed through particle removal processes, ammonia must be converted to nitrate as the first step in the nitrogen removal process. Ammonia is converted to nitrate by autotrophic nitrification. This is a two-step process performed by autotrophic bacteria, where ammonia is first oxidized to nitrite and then nitrite is oxidized to nitrate.
  • the nitrification process is performed by a limited group of bacteria: Nitrosomonas and Nitrobacter.
  • Nitrosomonas perform the oxidation of ammonia to nitrite, while Nitrobacter oxidizes nitrite to nitrate. These processes are favored due to the low amount of biological oxygen demand (BOD) in the reactor that was consumed in the first stage of the aerobic reactor producing a limiting condition for colonies of bacteria that consume biological oxygen demand (BOD).
  • BOD biological oxygen demand
  • a UV lamp system (31) is arranged and inside the blower (22) and the water recirculation pump (25) are arranged.
  • the two modules of lamellae inside the chambers of the clarification stages (15) are interconnected by means of a PVC pipe (35) that leaves the upper part of the first module and re-enters the lower part of the second module
  • Said lamellar type clarifier allows to separate the semi-heavy and heavy elements in suspension, which carry the wastewater.
  • the lamellar type clarifier was designed for efficient separation of sediments from water continuously, and they must have two fundamental purposes: 1) Increase the settling surface.
  • Lamellar Decanter The idea of using a Lamellar Decanter is based on the fact that the surface load (m 3 / m 2 / day) of a free fall decanter does not depend on its height. With this idea it is possible to expand the capacity of a decanter by dividing its height into “n” decanters, or by using plates with a certain inclination.
  • the inlet flow is channeled through a pipe to the settling chamber, where the distribution of lamellae is located, which allow to increase the effective settling surface. With the passage of the fluid between the lamellae, the separation of the suspended solids that slide down the slope of the lamellae towards the bottom of the decanter occurs while the clean water follows an ascending path towards the upper surface of the decanter.
  • the lamellar system allows the distance that a particle has to travel until it decants is less than in a conventional decanter increasing the clarification capacity.
  • the clean water already clarified in the upper part of the Lamellar Decanter falls into a second stage of lamellar clarification which guarantees the sedimentation of suspended solids.
  • the clarifier has a pressurized air wash line which pumps air from the bottom of the clarifier to the lamellae, this washing allows sludge and organic matter to be removed from the lamellae.
  • the blower (22) is the electromechanical equipment whose function is to supply the air flow and pressure through the lower air injection duct (21) to the aerobic areas.
  • the water recirculation pump (25) is connected to the line of the lower sludge extraction duct (19) to be recirculated to any of the previous stages. The suction of the water to be recirculated is controlled by automatic valves (36).
  • the UV disinfection equipment (31) is located after the clarification zone and is the last stage of the process, so the flow to the outlet is the one prepared for the discharge.
  • the final section of the effluent process is the biological treatment of ultraviolet light disinfection, for which there is a closed UV disinfection equipment (31) consisting of a closed cylindrical container (34) manufactured made of compression-resistant austenitic stainless steel, which operates by exposing the flow to a beam of ultraviolet light, which is arranged connected to a PVC pipe (35, see figure 6) or other stainless material, which conducts the fluid to the UV device inlet, which has one or several lamps embedded in a quartz glass case, which with the emission of light into the fluid destroys the reproductive capacity of the different pathogens that are in the water, preventing them from spreading.
  • a closed UV disinfection equipment consisting of a closed cylindrical container (34) manufactured made of compression-resistant austenitic stainless steel, which operates by exposing the flow to a beam of ultraviolet light, which is arranged connected to a PVC pipe (35, see figure 6) or other stainless material, which conducts the fluid to the UV device inlet, which has one or several lamps embedded in a quartz glass case, which with the
  • It has an electrical control system that includes a power switch, voltage meter, current meter, a timer, operation indicator lights and UV lamp failure indicator light (not shown).
  • the system is located in the control compartment after the clarification process, with easy access and space available for cleaning and maintenance.
  • the plurality of chambers are closed and comprise holes in the upper wall with access doors (7) for maintenance.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Physical Water Treatments (AREA)

Abstract

La invención se refiere a un bioreactor combinado con múltiples etapas para procesos anaeróbios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales con el fin de reúso eficiente del agua, caracterizado porque consta un tanque unitario cerrado en todas sus caras, que comprende internamente una pluralidad de bafles divisorios distribuidos en toda su longitud mismos que definen una pluralidad de cámaras en arreglo clineal para la combinación de etapas anaeróbia, anóxica, aerobia, de clarificación y desinfección que pueden configurarse de acuerdo al tratamiento que se desea realizar; en donde el agua es levantada del influente mediante una bomba y se introduce en la primera cámara; en donde dicho tanque unitario integra un ducto de extracción de gases, un ducto inferior de extracción de lodos con bomba de succión, un ducto inferior de inyección de aire desde un soplador y un ducto superior de recirculación con bomba de recirculación de agua tratada que comprende una pluralidad de conexiones para cada cámara que definen ductos superiores de paso de agua en la zona superior de cada cámara y ductos proyectados inferiormente tipo sifón para la salida y descarga de agua hacia la zona inferior de cada cámara contigua; y en donde la cámara de clarificación comprenden un paquete de lamellas que definen un clarificador tipo lamelar y en la cámara de la etapa de desinfección se dispone un sistema de desinfección de lámparas UV.

Description

BIOREACTOR COMBINADO CON MÚLTIPLES ETAPAS PARA PROCESOS ANAEROBIOS, ANÓXICOS, AEROBIOS, CLARIFICACIÓN Y DESINFECCIÓN EN TRATAMIENTO DE AGUAS
RESIDUALES
CAMPO DE LA INVENCIÓN
La presente invención cae en el campo del tratamiento, saneamiento y disminución de la carga orgánica contaminante de aguas residuales; más específicamente se refiere a un bioreactor combinado que incorpora conjuntamente procesos de digestión anaerobia, anóxica, aerobia y de la materia orgánica de aguas residuales para su saneamiento, y que incluye un novedoso sistema de separación físico de etapas y captación de biogás, y extracción de natas y lodos.
ANTECEDENTES DE LA INVENCIÓN
Los procesos biológicos tanto anaerobios, como aerobios y anóxicos son ampliamente utilizados en el tratamiento de aguas residuales, sin embargo, en la mayoría de las plantas que aplican varios tratamientos se utilizan dos o más tanques por separado, uno para el proceso aerobio y otro para el proceso anaerobio, lo cual implica la utilización de una gran superficie de terreno, mayor gastos de materiales, mayores costos de fabricación, transporte e instalación y mas costos de operación.
En el mercado se conoce un tanque para el tratamiento de aguas residuales, que remueve los compuestos orgánicos mediante un tratamiento biológico de una primera etapa anaerobia en una zona inferior y una segunda etapa aeróbica en la zona superior. Dicho tanque conocido como UBOX® es un reactor que tiene dos secciones: en la parte inferior comprende una sección anaerobia y en la parte superior una sección aerobia. El agua residual es alimentada en la sección inferior la cual es pre-tratada anaeróbicamente, utilizando el proceso anaerobio de flujo ascendente UASB (Upflow Anaerobic Sludge Bed); en la sección media comprende un módulo de separación de tres fases que permiten colectar y separar el biogás producido y que también funcionan para mantener el lodo en la parte inferior del reactor; sobre el módulo de separación y captación de gas se disponen una pluralidad de inyectores de aire por donde se introduce aire para mejorar la degradación aerobia del DQO (Demanda Química de Oxigeno) restante. Un separador eficiente en la parte superior del tanque que permite la descarga del efluente e impide la salida del lodo activado, al mismo tiempo que evita que las burbujas de aire interfieran con el proceso de sedimentación.
El sistema UBOX® combina los dos procesos en un solo tanque, utilizando un proceso aerobio en la parte superior; pero requiere de aireadores, los cuales significan un gran consumo de energía y la eliminación de la carga orgánica no es tan eficiente, por lo que el saneamiento no es el más óptimo.
Se realizó una búsqueda para deterinar el estado de la técnica más cercano, encontrándose los siguientes documentos:
Se ubicó el documento US2003015469 (documento D1) de Hedenland Michael David et. al. del 17 de abril de 2002, que revela un proceso semicontinuo de tratamiento de desechos biológicos utilizado para tratar desechos municipales e industriales que contienen DBO, nitrógeno y fósforo. El proceso utiliza dos reactores biológicos en serie, y cada uno mantiene un inventario de licor mixto. Las entradas y salidas de los reactores en serie se realizan mediante la adición y eliminación de lotes pequeños. Los reactores se pueden configurar de múltiples maneras para diferentes condiciones de desechos. La modalidad preferida es un proceso discontinuo integrado que incluye un recipiente de ecualización anóxica, un reactor biológico aeróbico, una etapa de clarificación con desnitrificación, una fase de tratamiento de efluentes terciarios con inyección y filtración de ozono y un método automático de pérdida de lodo con espesamiento y estabilización. El proceso tiene dos fases de desnitrificación y tiene tasas muy altas de eliminación de nitrógeno.
De acuerdo con la figura 1 y la descripción, puede notarse que las aguas residuales sin procesar 18 son tratadas en un primer biorreactor anóxico 1 para normalizar la carga al resto del proceso y suministra el entorno anóxico para la desnitrificación adicional de la corriente de retorno 29 desde un recipiente de separación / desnitrificación 7. La ecualización y el biorreactor anóxicol se agitan a través de un chorro de aire mínimo periódico 19. Se mantiene un volumen mínimo del 50% del biorreactor 1. Las condiciones anóxicas y la fuente de carbono suministrada por las aguas residuales sin procesar, los nitratos no convertidos a nitrógeno en el recipiente de separación / desnitrificación 7 se convertirán por las bacterias aeróbicas heterótrofas mantenidas en el licor mixto que residen en el ecorrealizador y biorreactor anóxico 1. Dependiendo del nivel medido por el indicador de nivel 3, el sistema de control del PLC inicia automáticamente la bomba 2 y bombea una porción del reactor 1 al biorreactor de aireación 4 a través de la línea 20. La transferencia se mantendrá automáticamente hasta que el nivel y la etapa de lote del biorreactor de aireación 4 esté listo para aceptar el lote.
Como puede claramente notarse, el proceso semicontinuo de tratamiento de desechos biológicos utilizado para tratar desechos municipales e industriales que contienen DBO, nitrógeno y fósforo comprende varios reactores separados, sistemas de bombeo y etapas por separado en varios reactores y tanques o recipientes que difieren complementa de los componentes, estructura, flujo y mecanismos de la presente invención.
El documento D1 no revela, ni sugiere un bio-reactor combinado (CBR) con bio-reactores interconectados en etapas para el tratamiento de aguas residuales con el fin del reúso eficiente del agua, consiste en un solo tanque horizontal de PRFV (poliéster reforzado con fibra de vidrio) (1), que en su interior comprende diferentes contenedores más pequeños para albergar las etapas y/o procesos biológicos que se buscan tener, en donde cada contenedor está definido por bafles divisorios intermedios (2) de manera que se definen un primer tanque para la etapa de pretratamiento y sedimentación (3), al menos un tanque para la etapa anaerobia (4), al menos un tanque para la etapa anóxica (5), al menos un tanque para la etapa aerobia (6), al menos un tanque para la etapa de clarificación (7) y al menos un tanque para la desinfección (8), que permita reunir en una solo unidad, etapas para el tratamiento de aguas residuales como son: el pretratamiento, procesos Anaerobios, Anóxicos, Aerobios, Clarificación y Desinfección, con el fin del reúso eficiente del agua, que sea portátil, que pueda ser transportado en contenedores; que esté construido totalmente de composites (plásticos reforzados), por lo que es inmune a la corrosión y se puede tener una expectativa de vida de más de 50 años; y que además permita ampliar su aplicación para diferentes tipos de aguas residuales municipales incluso con varios tipos de PH's.
Se ubicó también el documento WO2013129901 (documento D2) de Francisco Xavier Valdes Simancas, del 19 de diciembre de 2012, el cual revela un biorreactor para la digestión anaerobia, aerobia y anóxica de la materia orgánica de aguas residuales y sistema de captación de biogás, natas y lodos, de conformidad con la presente invención consiste en un tanque vertical de forma substancialmente rectangular con una profundidad mínima de 7m, el cual está dividido verticalmente en tres zonas; una zona anaerobia en el fondo, una zona anóxica o de transición en el medio y una zona aerobia en la parte superior donde se dispone al menos un rotor biológico de contacto RBC; al menos un ducto de alimentación de agua residual que se dispone en la parte superior de la zona anaerobia. Esta zona se caracteriza por la ausencia de oxígeno, lo cual propicia la degradación de la materia orgánica contenida en el agua residual; mediante esta degradación se genera poca cantidad de lodo, que se sedimenta en el fondo, dejándose un periodo de tiempo suficiente para su digestión y posteriormente se extrae por medio de una tubería especialmente diseñada, localizada en el fondo del tanque. Esta tubería puede ser de PVC, acero inoxidable, polietileno de alta densidad o cualquier material con una resistencia a la corrosión que le permitan una vida útil de al menos
50 años, de un diámetro suficiente para su función y un espesor que le evite colapsarse aun con la carga de agua del exterior y un vacío total en su interior. Está colocada a aproximadamente 10cm del fondo del tanque de manera que tenga área de captación por medio de barrenos que se distribuyen uniformemente en la parte inferior. Esta tubería está distribuida a lo largo del blorreactor, permitiendo abarcar la totalidad del área de sedimentación. Cada tubo consta de barrenos de diferentes diámetros que oscilan típicamente de 19.05mm a 38.1 mm (¾" a 1 ½"). Los barrenos más pequeños se encuentran en el lado más cercano a la succión y crecen conforme se avanza al extremo opuesto, de manera que la succión sea uniforme a lo largo del tubo. En el fondo del biorreactor, el proceso de degradación de materia orgánica sucede por la acción de bacterias anaerobias llamadas metanogénicas, como su nombre lo indica, estas bacterias producen Metano y dióxido de carbono (CH4 y C02) el cual se le llama biogás; este biogás es ligero por lo que tiene un flujo ascendente dentro del tanque.
Este documento D2 del mismo inventor de la presente invención, es un tanque vertical que requiere de una profundidad mínima de 7m, el cual está dividido verticalmente en tres zonas; una zona anaerobia en el fondo, una zona anóxica o de transición en el medio y una zona aerobia en la parte superior; al menos un ducto de alimentación de agua residual que se dispone en la parte superior de la zona anaerobia.
Para evitar que el biogás se escape y poder aprovecharlo, el Biorreactor o tanque cuenta con un panel separador con una configuración especial de romboides para la recolección de biogás, lodos y natas, que unidas entre sí, forman un panel separador poliédrico intermedio unido y soportado en una pluralidad de columnas y trabes intermedias implementadas en el tanque; dichos separadores unidas entre sí definen una pluralidad de colectores cónicos con boquillas de conexión superiores de ductos de una red de captación y conducción de biogás y una pluralidad de colectores en forma de embudo con boquillas de conexión inferiores de ductos que definen una red de captación y conducción de lodos provenientes de la zona anóxica. Dicho documento D2 no revela, ni sugiere un bio-reactor combinado (CBR) con bio-reactores interconectados en etapas para el tratamiento de aguas residuales con el fin del reúso eficiente del agua, consiste en un solo tanque horizontal de PRFV (poliéster reforzado con fibra de vidrio) (1), que en su interior comprende diferentes contenedores más pequeños para albergar las etapas y/o procesos biológicos que se buscan tener, en donde cada contenedor está definido por bafles divisorios intermedios (2) de manera que se definen un primer tanque para la etapa de pretratamiento y sedimentación (3), al menos un tanque para la etapa anaerobia (4), al menos un tanque para la etapa anóxica (5), al menos un tanque para la etapa aerobia (6), al menos un tanque para la etapa de clarificación (7) y al menos un tanque para la desinfección (8), que permita reunir en una solo unidad, etapas para el tratamiento de aguas residuales como son: el pretratamiento, procesos Anaerobios, Anóxicos, Aerobios, Clarificación y Desinfección, con el fin del reúso eficiente del agua, que sea portátil, que pueda ser transportado en contenedores; que esté construido totalmente de composites (plásticos reforzados), por lo que es inmune a la corrosión y se puede tener una expectativa de vida de más de 50 años; y que además permita ampliar su aplicación para diferentes tipos de aguas residuales municipales incluso con varios tipos de PH’s.
También se encontró la patente US 4.692.241 de John L. Nicholson del 08 de septiembre de 1987 la cual divulga rotores biológicos para el tratamiento de agua residual; dentro de dicha patente se divulga en la figura 1 un tanque de sedimentación inferior 10 con una biozona 20 y un tanque de sedimentación final 30. El tanque de sedimentación 10 representa una zona anaerobia donde se da la sedimentación, acumulación de lodos y la digestión de los mismos, después un poco más arriba esta una zona de transición y en la parte superior se encuentra la biozona o zona de ventilación 20 que comprende una cubierta o tapa 21 localizada en la parte superior del tanque de sedimentación inferior 10 y que aloja un rotor biológico de contacto 22, el rotor tiene una flecha 25 que se hace girar por una motor 23; la superficie del rotor biológico está cubierta con una delgada capa de biomasa que se expone frecuentemente a la atmosfera mientras gira el rotor. Los microorganismos presentes de forma natural en la alimentación de las aguas residuales y se multiplican muy rápidamente en los cíclicos períodos sumergidas y expuestas a la que están sometidos en la superficie del rotor. Los microorganismos descomponen rápidamente las capas de la biomasa.
El agua se alimenta por una abertura de la cubierta o tapa 21 que resguarda superiormente el rotor biológico y el agua al final del recorrido por el rotor biológico se pasa finalmente al tanque final de sedimentación 30 o tanque clarificador donde hay una sedimentación menor y en donde dicho tanque 30 comprende medios para recircular la biomasa o lodos de dicho tanque 30 hacia el tanque 10.
En esta patente no se reúnen en una solo unidad, etapas para el tratamiento de aguas residuales como son: el pretratamiento, procesos Anaerobios, Anóxicos, Aerobios, Clarificación y
Desinfección, con el fin del reúso eficiente del agua. Los rotores biológico de dicho documento tampoco son flexibles a diferentes procesos interno de tratamiento biológico (Pre-tratamiento, Anaerobio, Anóxico, Aerobio, Clarificación y desinfección) y a diferentes calidades de tratamiento de influentes y remoción de Nutrientes principales (Nitrógeno, Fosforo), no pueden ser ensamblados totalmente, calibrado y probado en fábrica; y requieren de instalaciones de especialidad para ponerlas a funcionar. Además en dicho documento el tanque no comprende medios físicos (bafles) para separar una zona completamente anaerobia mediante un sistema separador (bafles) de la zona de transición o anóxica y que permite capturar el biogás y las natas de la zona anaerobia y los lodos de la zona de transición o anóxica.
Otro documento localizado es la patente US 7.156.986B2 de Theodore U. Warrow del 02 de enero de 2007, la cual protege un contactor biológico rotatorio, el cual comprende un primer tanque clarificador profundo 12 en donde se lleva a cabo una sedimentación y existe una digestión anaerobia; el tanque comprende una cubierta semicircular en la parte superior que separa una zona anaerobia de una zona aerobia, el área superior a dicha cubierta (ver figura 2) define un área de ventilación donde tiene acción el rotor; el tanque comprende una entrada 14 donde se descarga el agua residual a tratar y en donde se lleva a cabo la sedimentación; el agua que se ha clarificado y se le han eliminado los lodos y sedimentos, se hace pasar por una entrada (ver figura 3) hacia la parte superior de ventilación donde tienen acción las bacterias aerobias y donde el rotor ayuda en la aireación y ventilación para favorecer el crecimiento bacteriano y que éstas puedan digerir la carga orgánica; este tanque presenta un proceso anaerobio y un proceso aerobio; el agua pasa por todo el circuito del rotor que está dividido en 4 etapas por donde va pasando el agua y al final se descarga hacia un tanque clarificador.
Al igual que la patente anterior, no se divulga, ni se sugiere una solo unidad, que define etapas para el tratamiento de aguas residuales como son: el pretratamiento, procesos Anaerobios, Anóxicos, Aerobios, Clarificación y Desinfección, con el fin del reúso eficiente del agua. Los rotores biológico de dicho documento tampoco son flexibles a diferentes procesos interno de tratamiento biológico (Pre-tratamiento, Anaerobio, Anóxico, Aerobio, Clarificación y desinfección) y a diferentes calidades de tratamiento de influentes y remoción de Nutrientes principales (Nitrógeno, Fosforo), no pueden ser ensamblados totalmente, calibrado y probado en fábrica; y requieren de instalaciones de especialidad para ponerlas a funcionar.
Dicho documento tmpoco revela un separador físico (bafle) adicional de la zona netamente anaerobia, ni un sistema de recuperación de biogás que permita colectar y recuperar el gas para reutilizarse; tampoco se divulga o se sugiere un sistema de recolección de natas ni la recolección de lodos de la zona adicional de transición. Se encontró también la patente US7.077.959B2 de Richard J.
Petrone del 18 de julio de 2006, la cual protege una unidad de tratamiento de agua residual que comprende una entrada 11 a un tanque 12 completamente sellado; en la parte superior comprende un reservorio 20 separado del tanque 12 por una pared inferior; en dicho reservorio se dispone un digestor rotatorio 24. Un segundo reservorio superior 22 como unidad clarificadora se dispone en la parte alta el tanque; el tanque 12 comprende una pared divisoria 46 que lo divide en dos tanques, el tanque de colección 13 donde precipitan los sólidos y en presencia de bacterias anaerobias permite una digestión preliminar de materia orgánica. Un tanque secundario 15 adjunto al tanque 13 y separado por la pared 46 recibe por decantación el agua procedente del tanque 13 y el agua en dicho tanque 15 es alimentada al reservorio 20 donde se dispone el digestor rotario que está inmerso en un 30 a 50% de su diámetro donde se acelera la digestión de materia orgánica en un proceso aerobio; el agua después que pasa por el digestor biológico pasa al reservorio clarificador 22 y en caso de que aún halla sedimentos, éstos se bombean hacia el tanque 13. El agua clarificada y depurada se hace pasar a través de una base de desinfección 56 con rayos UV de bulbos UV 54; la luz UV destruye microorganismos microscópicos residuales; alternativamente se usa un bulbo de desinfección o una unidad de cloración. Este tanque está dividido en dos tanques por medio de una pared divisoria y requiere de un tercer tanque para completar el proceso. Al igual que la patente anterior, no se divulga, ni se sugiere un separador físico (bafle) adicional de la zona netamente anaerobia, ni un sistema de recuperación de biogás que permita colectar y recuperar el gas para reutilizarse; tampoco se divulga o se sugiere un sistema de recolección de natas, ni la recolección de lodos de la zona adicional de transición.
Se encontró la patente US5.395.529 de James P. J. Butler del 07 de marzo de 1995, la cual divulga un aparato para el tratamiento de agua residual, que consta de un tanque que comprende un puerto de entrada 1 y un puerto de salida 8; una primera zona 3 de asentamiento de sólidos del agua residual por debajo del nivel del puerto de entrada 1; una segunda zona 7 de asentamiento de sólidos debajo del nivel del puerto de salida 8; y un compartimiento 14, tal que la primera zona de sedimentación 3 está en comunicación con el compartimiento 14 y dicho compartimiento 14 está en comunicación con la segunda zona de sedimentación 7. Un rotor biológico de contacto 4 está montado para rotar en el compartimiento 14. En esta patente se ejecutan ambos procesos anaerobio y aerobio para el tratamiento de aguas residuales; al igual que la patente anterior, no se divulga, ni se sugiere un separador físico (bafle) adicional de la zona netamente anaerobia, ni un sistema de recuperación de biogás que permita colectar y recuperar el gas para reutilizarse; tampoco se divulga o se sugiere un sistema de recolección de natas ni la recolección de lodos de la zona adicional de transición. El diseño y configuración del tanque, tampoco permite un proceso continuo y eficiente de saneamiento de aguas residuales.
En México se encontró la solicitud de patente MX/a/2007/013635 de Leticia Montoya Herrera et al. presentada el 31 de octubre de 2007, la cual divulga un aparato de depuración para tratamiento de aguas residuales de agroindustrias denominado reactor anaerobio dúplex consistente en dos tanques similares conectados en serie. Cada tanque tiene unida en la parte superior una pieza cónica truncada con paredes con ángulos a 60°. Esta posee una campana invertida con paredes a 60°, denominada cámara de separación de biogás, incluyendo al menos una campana de recolección y desalojo de natas al exterior de cada tanque mediante un tubo.
También posee un distribuidor circular, formado por secciones distribuidas en partes iguales, cada sección va unida con uno o varios tubos que bajan sujetados hasta el fondo del tanque. En la parte superior cada tanque tiene una cámara de sedimentación para la separación de agua tratada y lodos, unida a ella un vertedor perimetral que a su vez posee un canal anular recolector de agua tratada con al menos una tubería que conecta ambos tanques para suministrar la alimentación del agua residual en el distribuidor del segundo tanque para seguir con el tratamiento. Con este reactor anaerobio dúplex se obtienen eficiencias de al menos 80% de remoción en tratamiento de aguas residuales de agroindustrias con valores de DQO superiores a 5000 mg/L.
También se citan como referencia las solicitudes de patente MX/a/2011/004708 y MX/a/2008/008724.
No se encontró en ninguno de los documentos citados, un Bioreactor combinado para el tratamiento de aguas residuales mediante procesos anaerobios, aerobios y anóxicos de degradación de materia orgánica que comprenda integralmente un sistema de recolección de biogás, natas y lodos de una manera práctica, eficiente y funcional; y que en un mismo reservorio permita la ejecución de digestión anaerobia, aerobia y anóxica con la posibilidad de sanear aguas residuales logrando una eficiencia de remoción de DBO (demanda biológica de oxígeno) y SST (sólidos suspendidos totales) mayor al 95%, además de un proceso de nitrificación . En donde el biogás colectado pueda utilizarse como combustible para precalentar la corriente de entrada o como materia prima para la cogeneración de energía que se puede utilizar en el proceso en la misma planta o para cualquier otro fin.
Ante la necesidad de hacer disponible un bio-reactor combinado (CBR) en una sola unidad con bio-reactores interconectados en etapas, que sea flexibles a diferentes procesos interno de tratamiento biológico (Pre-tratamiento, Anaerobio, Anóxico, Aerobio, Clarificación y desinfección) y a diferentes calidades de tratamiento de influentes y remoción de Nutrientes principales (Nitrógeno, Fosforo), y que además sea totalmente ensamblable, calibrado y probado en fábrica; que sea auto contenido y no necesite instalaciones de especialidad para ponerlas a funcionar, fue que se desarrolló la presente invención. OBJETIVOS DE LA INVENCIÓN
El objetivo principal de la presente invención es hacer disponible un bioreactor combinado que permita reunir en un cuerpo unitario diferentes etapas para el tratamiento de aguas residuales como son procesos anaerobios, anóxicos y aerobios con separaciones físicas (bafles) que permita llevar a cabo degradación de materia orgánica, que permita maximizar la biodiversidad de colonias de bacterias que sin separaciones físicas u de otro tipo no se crearían o se canibalizarían entre ellas; con separación física también para etapas de clarificación lamelar típicamente de dos etapas y una sección con una etapa de desinfección típicamente mediante rayos U V ; que además permita captar y colectar el biogás producido en la digestión anaerobia para quemarlos o mandarlos a otros procesos según se requiera; así como la captación de lodos y natas; y de este modo permita el saneamiento del agua residual, logrando tasas de remoción mayores de DBO (demanda biológica de oxígeno) y SST (sólidos suspendidos totales) por unidad de tiempo, al tener múltiples etapas con tiempos de retención aproximada de 1.6hrs conectadas en serie con sus subsecuentes etapas y proceso de tratamiento biológico.
Otro objetivo de la presente invención es hacer disponible un bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, que además sea portátil, que puede ser transportado con facilidad al punto donde sea requerido y que además no genera olores desagradables perceptibles en la planta.
Otro objetivo de la invención es permitir dicho bioreactor para la digestión anaerobia, anóxica y aerobia y de la materia orgánica de aguas residuales y sistema de captación de biogás, natas y lodos, que además implique un menor requerimiento de espacio al comprender todos los procesos etapas (bailes) en un solo bioreactor pasando el agua residual por gravedad a través de todos los procesos etapas (bailes), así el consumo de energía se reduzca al mínimo, siendo este uno de los procesos que presenta el menor costo por metro cúbico de agua tratada.
Otro objetivo de la presente invención es hacer disponible un bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, que además ofrezca resistencia a la corrosión y ofrezca una expectativa de vida de más de 50 años; y que además permita ampliar su aplicación para diferentes tipos de aguas residuales municipales incluso con varios tipos de PH’s.
Otro objetivo de la presente invención es hacer disponible un bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, que además sea flexible a diferentes procesos interno de tratamiento biológico y a diferentes calidades de tratamiento de influentes y remoción de Nutrientes principales (Nitrógeno, Fosforo), y que además sea totalmente ensamblable, calibrado y probado en fábrica; que sea auto contenido y no necesite instalaciones de especialidad para su operación .
Otro objetivo de la presente invención es hacer disponible un bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, que además tenga la versatilidad de adaptarse a la calidad del efluente esperado, ya que se pueden combinar varias de las etapas del proceso de tratamiento (Anaerobio, Anóxico, Aerobio, Clarificación y desinfección), que permita cumplir con lo tiempos de retención y las variables del proceso biológico.
Otro objetivo de la invención es permitir dicho bioreactor para la digestión anaerobia, anóxica y aerobia de la materia orgánica de aguas residuales y sistema de captación de biogás, natas y lodos, que además presente la posibilidad de la cogeneración de energía a través de la producción y recolección de biogás; que permite hacer una mejor separación por medios físicos en etapas (bafles) de la sección anaerobia, anóxica y aerobia a través del uso de colectores en las zonas anaerobias de recolección de biogás, la recolección de lodos producidos se extraen en el fondo de cada etapa (bafle) de la sección anaerobia, definiendo además cada etapa (bafle) una barrera para la retención de material flotante (espumas y natas) en la parte superior del bioreactor. Otro objetivo de la presente invención es hacer disponible un bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, que además pueda ser transportado en contenedores comerciales y/o en plataformas de tráileres convencionales ya embalado en su totalidad.
Otro objetivo de la presente invención es hacer disponible un bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, que además puedan ser intercambiadas en campo según corresponda a las necesidades de tratamiento que pudieran surgir ya fuera por cambio en la caracterización del influente como por nuevos requerimientos en la calidad del efluente.
Y todas aquellas cualidades y objetivos que se harán aparentes al realizar una descripción general y detallada de la presente invención apoyados en las modalidades ilustradas.
BREVE DESCRIPCIÓN DEL INVENTO
El bioreactor combinado con múltiples etapas para procesos biológicos anaerobios, anóxicos, aerobios, y para procesos físicos de clarificación y desinfección, en tratamiento de aguas residuales con el fin del reúso eficiente del agua, consiste en un tanque unitario de PRFV (poliéster reforzado con fibra de vidrio), en forma de substancialmente prisma rectangular cerrado en todas su caras , que comprende internamente una pluralidad de bailes divisorios distribuidos en toda su longitud mismos que definen una pluralidad de cámaras para la combinación de etapas para procesos biológicos anaerobio, anóxico y aerobio, y cámaras para procesos físicos de clarificación y desinfección, mismas cámaras que pueden configurarse de acuerdo al tratamiento que se desea realizar, por ejemplo un tratamiento estándar para aguas residuales municipales; para preservar nutrientes o para remoción de nutrientes; en donde el agua es levantada del influente mediante una bomba y se introduce en la primera cámara.
La pluralidad de bafles divisorios están hechos de un material laminado resistente a la corrosión y con la rigidez necesaria para soportar los pesos de la estructura del tanque, la presión hidrostática del agua y el peso muerto de los lodos como seria el Poliéster Reforzado con Fibra de Vidrio (PRFV), u otro material que resista la corrosión por al menos 50 años. El bioreactor combinado con múltiples etapas para procesos biológicos anaerobios, anóxicos, aerobios, y para tratamientos físicos como clarificación y desinfección en tratamiento de aguas residuales, tiene la flexibilidad de configurarse de acuerdo al tipo de tratamiento que se desea realizar.
Dicho bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales es de sección transversal rectangular preferentemente con una altura mínima de 1.23 mts y típica de 2.54, un ancho mínimo de 0.57mts y típico de 2.29, y una longitud mínima de 3m y típica de 12m; aunque estas dimensiones son meramente enunciativas mas no limitativas, es decir dichas dimensiones pueden variar de acuerdo a los cálculos de manejo de flujos y volúmenes de agua a tratar.
En la modalidad preferida de la invención dicha pluralidad de bafles divisorios definen una primera cámara para la etapa de pretratamiento y sedimentación, al menos una cámara contigua para la etapa anaerobia, al menos una cámara contigua para la etapa anóxica, al menos un cámara contigua para la etapa aerobia, dichas cámaras configuradas para los tratamientos y procesos biológicos que permiten genear una biodiversidad muy alta de bacterias. El bioreactor contempla además al menos una cámara contigua para la etapa de clarificación y al menos una cámara contigua para la etapa de desinfección como tratamientos físicos final del agua tratada biológicamente.
La configuración básica contempla preferentemente cinco secciones; una sección anaerobia en el comienzo del proceso (típicamente de 3 etapas o cámaras), una sección anóxica en medio (típicamente de 2 etapas o cámaras), una zona aerobia posterior (típicamente de 2 etapas o cámara), esto en cuanto al proceso biológico; y para el tratamiento físico contempla una sección de clarificación (típicamente de 2 etapas o cámaras) y por ultimo una de desinfección (típicamente de 1 etapa o cámara). La pluralidad de cámaras están dispuestas en un arreglo colineal separados por los referidos bailes divisorios intermedios y conectadas en seria. Dicho tanque unitario integra un ducto superior de extracción de gases que se extiende a lo largo del arreglo colineal de dicha pluralidad de cámaras que comprenden ductos perpendiculares superiores de captación de gas que se extienden hacia cada cámara para la captación y extracción de gases; un ducto inferior de extracción de lodos con bomba de succión que se extiende a lo largo del fondo del arreglo colineal de cámaras y que comprenden ductos perpendiculares de captación de lodos que se extienden en el fondo de dicha pluralidad de cámaras; un ducto inferior de inyección de aire desde un soplador electromecánico con sistema de válvulas de control de fijo de aire, el cual comprende soportes y se extiende en el fondo a lo largo del arreglo colineal de la pluralidad de cámaras y que comprende ductos perpendiculares con difusores de aire en la zona inferior de las cámaras destinadas para la etapa aerobia y de clarificación; y un ducto superior de recirculación de agua con sistema de válvula de control y bomba de recirculación de agua tratada. Cada bafle divisorio comprende una pluralidad de conexiones para cada cámara que definen ductos superiores de paso de agua en la zona superior de cada fable de dividión de cada cámara y ductos proyectados interiormente tipo sifón para la salida y descarga de agua hacia la zona inferior de cada cámara contigua.
La velocidad del agua a flujo máximo de la planta por los ductos de paso entre cámara y cámara en dirección ascendente fluye a no mas de 2 metros por hora. El agua pasa de una etapa a otra por medio de dicho paso de agua que atraviesa el próximo baile y que se encuentra ubicado en la esquina contraria al punto de inyección y a unos 20 cm del nivel máximo del agua, de manera que las natas se retengan en el bafle en el que se flotan, ya en la siguiente etapa el tubo que conducía el agua de la etapa previa baja hasta 10 cm arriba del fondo del tanque para forzar el agua que se trata a que haga el recorrido mas largo dentro de cada etapa impidiendo los cortos circuitos del fluido en el proceso, y al mismo tiempo permita tener un tiempo de retención uniforme del flujo de agua en cada etapa (bafle).
En la sección anaerobia se caracteriza por la ausencia de oxígeno, lo cual propicia la degradación de la materia orgánica contenida en el agua residual; mediante esta degradación se genera poca cantidad de lodo, que se sedimenta en el fondo, dejándose un periodo de tiempo suficiente para su digestión y posteriormente se extrae por medio de un dudo especialmente diseñada, localizada en el fondo del tanque que confluye hacia uno de los extremos del taque de sección rectangular.
Dicho ducto inferior de extracción de lodos es de materiales plásticos, típicamente PVC, PRFV o PAD o cualquier material con una resistencia a la corrosión que le permitan una vida útil de al menos 50 años, de un diámetro suficiente para su función y un espesor que le evite colapsarse aun con la carga de agua del exterior y un vacio total en su interior. Está colocada a aproximadamente con su rasante a 5cm del fondo del tanque de manera que tenga área de captación por medio de barrenos que se distribuyen uniformemente en la parte inferior. Éste ducto está distribuido a lo largo del bioreactor, permitiendo abarcar la totalidad del área de sedimentación. Cada tubo consta de barrenos de diferentes diámetros que oscilan típicamente de 6.0mm a 12.1mm (1/4” a ½" ) . Los barrenos más pequeños se encuentran en el lado más cercano a la succión y crecen conforme se avanza al extremo opuesto, de manera que la succión sea uniforme a lo largo del tubo.
En las primeras etapas del bioreactor, en las cámaras de la sección anaerobia el proceso de degradación de materia orgánica sucede por la acción de bacterias que no requieren oxigeno entre ellas las metanogénicas, como su nombre lo indica, estas desdoblan la carga orgánica en metano y dióxido de carbono (CH4 y CO2) el cual se le llama biogás; este biogás es ligero por lo que tiene un flujo ascendente dentro de las etapas (bafles) de la sección anaerobia del tanque.
Los ductos perpendiculares superiores de captación de gas que se extienden hacia cada cámara para la captación y extracción del mismo comprenden una pluralidad de orificios para la recolección del mismo, estos ductos con orificios unidos al ducto superior de extracción de gases forman red de captación y conducción de biogás.
Dicho ducto superior de extracción de gases se encuentra dispuesto a unos centímetros de la parte superior del tanque con orificios dispuestos hacia arriba de manera que las natas que se pudieran flotar no encuentren una salida fácil en los mismos. Los gases que se encuentran en las zonas anaerobias que podrían contener metano y sulfhídrico, se separan de los que se emiten de las zonas anóxicas y aerobias los cuales se descargan libremente a la atmosfera.
Al realizar el ensamble de todas las piezas, en la parte superior e i n fe rio r se generan salidas superiores e inferiores, donde se conecta tubos de una red de tubería lateral que conecta todas las salidas superiores y envía el gas a un dispositivo que se encarga de su lavado de ácidos separando el sulfhídrico del metano y otra red que conecta las salidas inferiores y envía los lodos sedimentados hacia la zona anaerobia de la primera sección y etapa para continuar con su digestión.
Posterior al lavado del gas, el metano dulce, se podría almacenar en una bolsa para biogás de manera que este se pueda utilizar para la cocina, generar energía eléctrica y calorífica, calentar el influente y/o los lodos del proceso, o si no se le tuviera ningún aprovechamiento quemarlo en un mechero para convertirlo a CO2 y reducir importantemente el impacto que el metano si se expeliera como gas tendría en la capa de ozono. Volviendo al ciclo del agua, posteriormente a que la misma pase por cada una de las etapas anaerobias de la sección, pasa entonces a la primera etapa de la sección anóxica donde se encuentra con agua recirculada proveniente del final de las etapas aeróbicas, las cuales vienen ricas en nitritos y nitratos con su correspondiente oxigeno disuelto mismo que faculta la anoxicidad y promueve la denitrificacion a la vez que sigue reduciendo la DBO del agua.
Dicho ducto inferior de inyección de aire consta de una red de tuberías de PVC u otro material instaladas en el fondo del tanque, tubería donde se interconectan los difusores que quedan sumergidos, esto inyectan aire que proviene de un soplador electromecánico, la tubería principal de aire viaja por un lado contrario a la tubería de extracción de lodos.
En esta sección llamada aerobia donde al menos comprende dos cámaras, en la primera se realiza la degradación de la materia orgánica remanente del agua, y en la segunda permite el crecimiento de diferentes bacterias nitr ¡ficantes (nitro somas y nitrobacter) que convierten el nitrógeno amoniacal ( N H 4 ) en nitr¡tos(NC>2) y posteriormente en nitratos ( N O 3 ) que como ya se explicó anteriormente se transformarán en nitrógeno gas en la zona anóxica a través de un proceso conocido como denitrificacion.
Mediante estos procesos se logra el tratamiento del agua residual y la disminución de la carga orgánica contaminante en más del 95%.
En las cámaras de las etapas de tratamiento físico de clarificación comprenden un bafle angulado y un bafle transversal recto creando dos cámaras o etapas de clarificadores lamelares dispuestos en serie.
La primera cámara de clarificación disponen de la entrada de agua proveniente de la sección aerobia por la parte inferior, sucediendo ahí un flujo ascendente con decantación por gravedad de solidos suspendidos sobre las lámelas, el flujo que sale de la primera cámara de clarificación procede a entrar por la parte inferior de la segunda cámara de clarificación, donde repite el mismo ciclo, antes de llegar a la superficie de este ultimo es extraído por gravedad a una velocidad menor a 15 cm por segundo para pasar a la sección de desinfección, sobre las superficie del fluido de cada clarificador se dispone ahí de un desnatador el cual capta el material flotante y las direcciona hacia la línea de extracción de lodos, que lo conducirá a etapas previas del proceso para su nueva sedimentación y posteriormente a la primera etapa de la sección anaerobia para su final digestión.
En cada cámara de la etapa de clarificación donde se dispone un paquete de lamellas que definen un clarificador tipo lamelar y en la cámara de la etapa de desinfección se dispone un sistema de lámparas UV en interiormente se dispone el soplador y una bomba de recirculación .
Las cámaras están cerradas y comprenden orificios en la pared superior con puertas de acceso para mantenimiento.
El agua puede entrar al tanque de diferentes maneras, puede entrar por la parte superior de la cámara de pretratamiento y sedimentación mediante la acción de una bomba desde el influente, después de pasar por una hidrocriba que descansa externamente sobre el tanque, la cual se utiliza para separar los sólidos que transporta el agua y los desecha dentro de un recipiente exterior. El agua tratada sale por la parte posterior del tanque, pero, la posición exacta del orificio de salida varia según su posicionamiento con referencia a el punto de descarga final. Los tiempos de retención varían según el arreglo y el flujo y a modo de ejemplo sin limitarse a estos tiempos, se tiene:
Etapa de pretratamiento y Sedimentación 2.8 hrs.
Etapa Anaerobia 3.2 h rs
Etapa Anóxica 3.2 h r s
Etapa Aerobia 3.2hrs
Etapa de Clarificación 1.6 h rs
Etapa de Desinfección 0.1 h r s El reactor biológico combinado permite combinar tratamientos biológicos anaerobios, anóxicos y aerobios de aguas residual y para tratamiento físico de casificación y desinfección. El sistema permite adaptar los tratamientos mencionados en función de la calidad de agua residual en el influente y la calidad de agua esperada en el efluente.
A manera de ejemplo, se indica un flujo nominal de los sistemas que oscilan entre 51 y 147 m3 por día y se puede combinar estos sistemas para tratar mayores flujos de agua residual, los flujos pueden variar en función de las dimensiones y volúmenes de agua a tratar.
Figure imgf000031_0001
El bioreactor combinado con múltiples etapas para procesos biológicos anaerobios, anóxicos, aerobios, y para tratamientos físicos de clarificación y desinfección de aguas residuales con el fin del reúso eficiente del agua, permite maximizar la biodiversidad de colonias de bacterias que sin separaciones físicas u de otro tipo no se crearían o se can i bal izarí an entre ellas. Además de las secciones y etapas biológicas existe también la referida sección de clarificación lamelar típicamente de dos etapas y una sección con una etapa de desinfección típicamente mediante rayos UV. Dicho reactor comprende al mismo tiempo medios físicos (bafles) para separar etapas, captar y colectar el biogás producido en la digestión anaerobia; así como la captación de lodos y natas; y de este modo permita el saneamiento del agua residual, logrando tasas de remoción mayores de DBO (demanda biológica de oxígeno) y SST (sólidos suspendidos totales) por unidad de tiempo al tener múltiples etapas con tiempos de retención aproximada de 1.6 h r s conectadas en serie con sus subsecuentes etapas y proceso de tratamiento biológico.
La configuración del bioreactor perimite manejar varias cámaras para las diferentes etapas, pueden usarse dos o más cámaras para cada etapa para permitir la separación de diferentes bacterias que si estuvieran juntas en una cámara pudieran compertir furtemente entre sí o canibalizarse, de esta manera se evita competencia y se potencializa y efcientiza cada etapa y cada proceso biológico para obtener agua mejor tratada. La configuración de las camaras para las diferentes etapas de procesos biológicos puede manipularse mediante un sistema de válvulas de control de inyeccón de aire para aquellas cámaras desitianas a los procesos aerobios, válvulas para el control de recirculación de agua y válvlas para la extracción de lodos y los gases de los respectivos ductos.
Los lodos de cada una de etapas de las diferentes secciones, anaerobias, anóxicas y aerobias se sedimenta en su correspondiente etapa por un periodo y eventualmente todos se recirculan y almacenan en la sección anaerobia en la primera etapa (bafle), de manera que permita su completa digestión y el proceso en su conjunto produzca únicamente lodos inertes y en muy bajas cantidades, facilitando el proceso de extracción de los mismos y reduciendo sus costos de disposición. dicha cámara de pretratamiento y sedimentación comprende mayores dimensiones con mayor capacidad volumétrica que el resto de las cámaras, que además de degradar la carga orgánica del agua, funge como digestor y almacenador de lodos digeridos, con tiempos de retención para los mismos que van desde 6 meses hasta 3 años, dependiendo del influente a tratar, que cuando se extraen los mas viejos, de la parte inferior del mismo, se encuentran completamente digeridos y listos para su disposición sin procesos posteriores.
Para una mejor comprensión del invento, se pasará a hacer la descripción detallada de alguna de las modalidades del mismo, mostrada en los dibujos que con fines ilustrativos mas no limitativos se anexan a la presente descripción.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 muestra una perspectiva convencional del bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, de conformidad con la modalidad preferida de la invención.
La figura 2 muestra una perspectiva convencional del bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, mostrando los ductos para extracción de gases, lodos, de inyección de aire y de recirculación de agua, de conformidad con la modalidad preferida de la invención.
La figura 3 muestra una vista en perspectiva convencional del interior del bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, ilustrando los bafles divisorios, la diferentes cámaras formadas y los ductos para extracción de gases, lodos, de inyección de aire y de recirculación de agua, de conformidad con la modalidad preferida de la invención. La figura 4 ilustra una vista lateral del interior del bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, ¡lustrando los bafles divisorios, la diferentes cámaras formadas y los ductos para extracción de gases, lodos, de inyección de aire y de recirculación de agua, de conformidad con la modalidad preferida de la invención.
La figura 5 ¡lustra una vista superior del interior del bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, ilustrando los bafles divisorios, la diferentes cámaras formadas y los ductos para extracción de gases, lodos, de inyección de aire y de recirculación de agua, de conformidad con la modalidad preferida de la invención.
La figura 6 muestra en perspectiva convencional del interior del extremo posterior del biorreactor donde se comprenden el soplador, la bomba de recirculación, la bomba de extracción de lodos, las diferentes tuberías y los medios de clarificación, de conformidad con una modalidad preferida de la invención.
La figura 7 muestra una perspectiva convencional del sistema de lámparas UV de la cámara de la etapa de desinfección, de conformidad con una de las modalidades de la invención.
Para comprender mejor las características de la presente invención se acompaña a la presente descripción, como parte integrante de la misma, los dibujos con carácter ilustrativo más no limitativo, que se describen a continuación.
DESCRIPCIÓN DETALLADA DEL INVENTO Los detalles característicos del bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, se muestran claramente en la siguiente descripción y en los dibujos ilustrativos que se anexan, sirviendo los mismos signos de referencia para señalar las mismas partes.
Haciendo referencia a la figura 1, el del bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales con el fin del reúso eficiente del agua, consiste en un tanque unitario (1) de PRFV (poliéster reforzado con fibra de vidrio), en forma substancialmente de prisma rectangular cerrado en todas su caras, definiendo una pared de fondo (2), dos paredes laterales (3, 4), una pared anterior (5), una pared posterior (6) y una pared superior (7) en donde el agua es levantada del influente mediante una bomba (no mostrada) para introducirse a su interior. El agua puede entrar al tanque unitario (1) de diferentes maneras, puede entrar por la parte superior y hacerse pasar por una hidrocriba (8) que descansa externamente sobre el tanque unitario (1), la cual se utiliza para separar los sólidos que transporta el agua y los desecha dentro de un recipiente exterior (9). El agua tratada sale por la parte posterior del tanque unitario (1), pero la posición exacta del orificio de salida varia según su posicionamiento con referencia a el punto de descarga final.
Con referencia a las figuras 1, 2, 3 y 4, haciendo más énfasis en las figuras 3 y 4, dicho tanque unitario (1) de PRFV (poliéster reforzado con fibra de vidrio), en forma de substancialmente prisma rectangular cerrado en todas su caras, comprende internamente una pluralidad de bafles divisorios (10) distribuidos en toda su longitud, mismos que definen una pluralidad de cámaras para la combinación de etapas para el tratamiento biológico como etapa anaerobia, anóxica, aerobia, cámaras para el tratamiento físico como la clarificación y desinfección que pueden configurarse de acuerdo al tratamiento que se desea realizar, por ejemplo un tratamiento estándar para aguas residuales municipales; para preservar nutrientes o para remoción de nutrientes.
Dicha pluralidad de bailes divisorios (10) definen una una pluralidad de cámaras para los procesos de tratamiento biológico del agua y una pluralidad de cámaras para el tratameinto físico del agua para su clarificación y desinfección, que constan preferentemente de una primera cámara para la etapa de pretratamiento y sedimentación (11) en donde se eliminan la mayoría de los sólidos sedimentables, dos cámaras para la etapa anaerobia (12), dos cámara para la etapa anóxica (13), dos cámaras para la etapa aeorbia (14), al menos una cámara para la etapa de clarificación (15) y al menos una cámara para el tratamiento de desinfección (16).
La pluralidad de cámaras están dispuestas en un arreglo colineal separados por los referidos bafles divisorios (10) y comunicadas en serie. Dicho tanque unitario (1) integra un ducto superior de extracción de gases (17) que se extiende a lo largo del arreglo colineal de dicha pluralidad de cámaras que comprenden ductos perpendiculares superiores de captación de gas (18) mismos que presentan una pluralidad de orificios para la captación de gas y que se extienden hacia cada cámara para la captación y extracción de gases; un ducto inferior de extracción de lodos (19) con bomba de succión (no mostrada), que se extiende a lo largo del fondo del arreglo colineal de cámaras y que comprenden ductos perpendiculares de captación de lodos (20) con barrenos para la extracción de los lodos, que se extienden en el fondo de dicha pluralidad de cámaras; un ducto inferior de inyección de aire (21) desde un soplador (22), el cual comprende soportes y se extiende en el fondo a lo largo del arreglo colineal de la pluralidad de cámaras y que comprende ductos perpendiculares con difusores burbujeadores de aire (23) en la zona inferior de las cámaras de la etapa aerobia (14) y las cámaras para las etapas de clarificación y desinfección (15, 16) y un ducto superior de recirculación de agua (24) con bomba de reclrcu lación de agua (25); en donde cada bafle divisorio (10) comprende una pluralidad de conexiones de paso de agua para cada cámara que definen ductos superiores de paso de agua (26) en la zona superior de cada cámara y ductos proyectados interiormente tipo sifón (27) para la salida y descarga de agua hacia la zona inferior de cada cámara contigua.
En dichas cámaras para la etapa anaerobia (12) se genera un proceso que se caracteriza por la ausencia de oxígeno, lo cual propicia la primera degradación de la materia orgánica contenida en el agua residual; mediante esta degradación se genera lodo, que se sedimenta en el fondo y posteriormente se extrae por medio de dicho de extracción de lodos (19). El proceso de degradación de materia orgánica sucede por la acción de bacterias anaerobias llamadas metanogénicas, como su nombre lo indica, estas bacterias producen metano y dióxido de carbono (CH4 y CO2), el cual se le llama biogás; este biogás es ligero por lo que tiene un flujo ascendente dentro de las cámaras de la etapa anaerobia (12). Las cámaras de la etapa anóxica (13) o sección anóxica o de transición en el medio donde llega el agua procedente de las cámaras para la etapa anaerobia (12) o zona anaerobia, y a un lado una cantidad de agua de recirculación que proviene de las cámaras para la etapa aeorbia (14) o sección aerobia, creando una mezcla que crea una mínima concentración de oxígeno que se consume rápidamente creando un ambiente anóxico, el cual permite el ere cimiento de bacterias desnitrificantes que convierten los nitratos de la corriente de recirculación a nitrógeno gaseoso en la presencia de compuestos de carbono contenidos en el agua residual.
Las cámaras de la etapa aerobia (14) separada de la zona anóxica por medio de dichos bafles divisirios (10); dependiendo de los requerimientos se pueden disponer de la cantidad de cámaras necesarias para cada etapa anaerobia, anóxica o aerobia; cómo se dispone en esta sección aerobia quedando en contacto el aire de difusores de burbuja y el agua proveniente de la zona anóxica. La zona aerobia es donde se propaga el crecimiento de diferentes bacterias nitrificantes (nitrosomas y nitrobacter) que convierten el nitrógeno amoniacal en nitritos y posteriormente en nitratos que como ya se explicó anteriormente se transformarán en nitrógeno gas en la zona anóxica.
En la primera cámara para la etapa de pretratamiento y sedimentación (11) se comprende al menos un ducto de alimentación exterior (influente) de agua residual (no mostrado) lo más cerca de la parte inferior.
El biogás producido a través de la digestión anaeróbica no se recoge debido a su cantidad insuficiente pero en caso de ser necesario el biogás es colectado por un ducto superior de extracción de gases (17) que está en la parte superior del tanque unitario (1) para después ser conducido hasta un quemador de biogás (no mostrado).
Para el caso de las cámaras para la etapa anaerobia (12), su tamaño depende del grado de remoción de nutrientes (fosforo y nitrógeno) que se quiere alcanzar, en caso de querer preservarlos es posible diseñar el biorreactor combinado sin ninguna cámara anóxica para la etapa anóxica (13) o en caso de que se requiera su remoción pueden instalarse las necesarias hasta alcanzar el grado de remoción esperado.
La desnitrificación es realizada por bacterias heterotróficas que usan nitrato y nitrito como aceptor de electrones cuando se oxida la materia orgánica. Este proceso ocurre en condiciones anóxicas o anaeróbicas (oxígeno disuelto) con concentración <0.5 mg.L-1). La desnitrificación biológica está acoplada a la cadena de transporte de electrones respiratorio, y el nitrato y el nitrito se usan como aceptor de electrones para la oxidación de una variedad de donantes de electrones orgánicos. Se ha demostrado que una amplia gama de bacterias es capaz de desnitrificación, pero también se ha encontrado una capacidad microbiana similar en algas u hongos. Las bacterias capaces de desnitrificación son tanto heterótrofas como autótrofas. La mayoría de estas bacterias heterótrofas son organismos aeróbicos facultativos con la capacidad de usar oxígeno, así como nitrato o nitrito, y algunos también pueden llevar a cabo la fermentación en ausencia de nitrato u oxígeno.
La desnitrificación biológica implica la oxidación biológica de muchos sustratos orgánicos en el tratamiento de aguas residuales utilizando nitrato o nitrito como aceptor de electrones en lugar de oxígeno. En ausencia de Oxigeno disuelto (DO) o bajo concentraciones limitadas del mismo, se induce la enzima nitrato reductasa en la cadena respiratoria del transporte de electrones, y ayuda a transferir hidrógeno y electrones al nitrato como aceptor de electrones terminal. Las reacciones de reducción de nitrato implican los diferentes pasos de reducción desde nitrato a nitrito, a óxido nítrico, a óxido nitroso y a gas nitrógeno.
La eliminación del fósforo biológico se lleva a cabo mediante la acumulación de fosfatos de microorganismos que tienen la capacidad de acumular fosfato por encima de lo que se requiere para el crecimiento. Este proceso biológico se conoce como bio-P o eliminación mejorada de fosfato biológico.
La cámara para la etapa aerobia (14) definida habitualmente por dos cámaras ambas de igual tamaño. En la primera cámara se favorecerá la remoción de la demanda biológica de oxigeno (DBO) y la demanda química de oxigeno (DQO) mientras que la segunda cámara es diseñada para las reacciones de n itrificación .
La n itrificación es el proceso que convierte el amoniaco en nitrito y luego en nitrato bajo condiciones aeróbicas y usando oxígeno como aceptor de electrones.
El nitrógeno en las aguas residuales sin tratar se encuentra en forma de partículas de amoníaco y nitrógeno orgánico. Mientras que el nitrógeno que se encuentra en las partículas puede eliminarse medíante procesos de eliminación de partículas, el amoniaco debe convertirse en nitrato como primer paso del proceso de eliminación de nitrógeno. El amoníaco se convierte en nitrato mediante la nitrificación autótrofa. Este es un proceso de dos pasos realizado por bacterias autótrofas, donde el amoníaco primero se oxida a nitrito y luego el nitrito se oxida a nitrato.
El proceso de nitrificación es realizado por un grupo limitado de bacterias: Nitrosomonas y Nitrobacter. Las Nitrosomonas realizan la oxidación de amoníaco a nitrito, mientras que Nitrobacter oxida el nitrito a nitrato. Estos procesos se ven favorecidos debido a la baja cantidad demanda biológica de oxigeno (DBO) en el reactor que fue consumido en la primera etapa del reactor aerobio produciendo una condición limitante para colonias de bacterias consumidoras de demanda biológica de oxigeno (DBO).
Con referencia a las figuras 3 a 7, en las cámaras de las etapas de clarificación y desinfección (15, 16) se comprende un bafle angulado (28) y un bafle transversal recto (29) creando dos cámaras o etapas de clarificadores lamelares dispuestos en serie, en donde se disponen dos paquetes de lamellas (30) que definen un clarificador tipo lamelar y en la cámara de la etapa de desinfección (16) se dispone un sistema de lámparas UV (31) e interiormente se dispone el soplador (22) y la bomba de recirculación de agua (25).
En la figura 6 se muestran los componentes descritos, mostrando además en la pared posterior (6) y el comportimiento de control y operación, unas rejillas de ventilación (32) fabricadas de Poliester Reforzado con Fibra de vidrio PRFV para el adecuado flujo de aire limpio y fresco dentro de esta división y una puerta de dos hojas (33) para el acceso a supervisión y mantenimiento de dichos componentes.
Los dos módulos de lámelas dentro de las las cámaras de las etapas de clarificación (15) son interconectadas mediante una tubería de PVC (35) que sale de la parte superior del primer módulo y reingresa por la parte inferior del segundo módulo
Dicho clarificador tipo lamelar permite separar los elementos semipesados y pesados en suspensión, que llevan las aguas residuales.
El clarificador tipo lamelar fue diseñado para la separación eficiente de sedimentos del agua en continuo, y deben tener dos propósitos fundamentales: 1) Aumentar la superficie de decantación.
2) Obtener un flujo laminar.
La idea de utilizar un Decantador Lamelar se basa en el hecho de que la carga superficial (m3/m2/día) de un decantador en caída libre no depende de su altura. Con esta idea es posible ampliar la capacidad de un decantador dividiendo su altura en “n” decantadores, o bien utilizando placas con cierta inclinación. El caudal de entrada es canalizado a través de una tubería hasta la cámara de decantación, dónde se encuentra la distribución de lámelas que permiten aumentar la superficie efectiva de decantación. Con el paso del fluido entre las lámelas se produce la separación de los sólidos en suspensión que resbalan por la pendiente de las lámelas hacia el fondo del decantador mientras que el agua limpia sigue una trayectoria ascendente hacia la superficie superior del decantador.
El sistema lamelar permite que la distancia que una partícula tiene que recorrer hasta que decanta sea menor que en un decantador convencional aumentando la capacidad de clarificación. El agua limpia ya clarificada en la parte superior del Decantador Lamelar cae a una segunda etapa de clarificación lamelar lo que garantiza la sedimentación de solidos suspendidos.
Como mecanismo de mantenimiento para evitar la obturación de las lámelas, el clarificador tiene una línea de lavado de aire a presión que bombea aire desde el fondo del clarificador hacia las lámelas, este lavado permite remover lodos y materia orgánica de las lámelas. El soplador (22) es el equipo electromecánico cuya función es de suministra el flujo y presión de aire a través del ducto inferior de inyección de aire (21) hacia las zonas aerobias. La bomba de recirculación de agua (25) es conectada a la línea del ducto inferior de extracción de lodos (19) para ser recirculada a alguna de las etapas anteriores. La succión del agua a recircular es controlada mediante válvulas automáticas (36).
El equipo de desinfección UV (31) se encuentra después de la zona de clarificación y es la última etapa del proceso por lo que el flujo a la salida es el predispuesto para la descarga.
Con referencia a la figura 7, la sección final del proceso del efluente es el tratamiento biológico de desinfección por luz ultravioleta, para lo cual se cuenta con el equipo de desinfección UV (31) cerrado que consiste en un contenedor cilindrico (34) cerrado fabricado de acero inoxidable austenítico resistente a la compresión, que opera por exposición del flujo a un haz de luz ultravioleta, el cual se dispone conectado a un tubo de PVC (35, ver figura 6) u otro material inoxidable, que conduce el fluido a la entrada del dispositivo UV, que dispone de una o varias lámparas encamisadas en una funda de vidrio de cuarzo, que con la emisión de luz hacia el fluido destruyen la capacidad reproductiva de los diferentes patógenos que se encuentren en el agua evitando con eso la propagación de los mismos.
Cuenta con un sistema de control eléctrico que incluye un interruptor de alimentación, medidor de voltaje, medidor de corriente, un temporizador, luces indicadoras de funcionamiento y luz indicadora de fallas en la lámpara UV (no mostrados).
El sistema se encuentra ubicado en el compartimiento de control después del proceso de clarificación, con fácil acceso y espacio disponible para limpieza y mantenimiento.
Con referencia a las figuras 1 y 2, la pluralidad de cámaras están cerradas y comprenden orificios en la pared superior con puertas de acceso (7) para mantenimiento.
El invento ha sido descrito suficientemente como para que una persona con conocimientos medios en la materia pueda reproducir y obtener los resultados que mencionamos en la presente invención. Sin embargo, cualquier persona hábil en el campo de la técnica que compete el presente invento puede ser capaz de hacer modificaciones no descritas en la presente solicitud, sin embargo, si para la aplicación de estas modificaciones en una estructura determinada o en el proceso de manufactura del mismo, se requiere de la materia reclamada en las siguientes reivindicaciones, dichas estructuras deberán ser comprendidas dentro del alcance de la invención.

Claims

REIVINDICACIONES Habiendo descrito suficientemente la invención, se reclama como propiedad lo contenido en las siguientes cláusulas reivindicatorías.
1.- Un bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales con el fin del reúso eficiente del agua, caracterizado porque consta un tanque unitario cerrado en todas su caras, que comprende internamente una pluralidad de bailes divisorios distribuidos en toda su longitud mismos que definen una pluralidad de cámaras en arreglo colineal conectadas en serie para la combinación de etapas de procesos biológicos anaerobia, anóxica, aerobia y una pluralidad de cámaras para tratamiento físico del agua para su clarificación y desinfección; en donde dicho tanque unitario integra un ducto superior de extracción de gases que se extiende a lo largo del arreglo colineal de dicha pluralidad de cámaras, con ductos superiores perforados conectados perpendicularmente que se extienden hacia cada cámara para la captación y extracción de gases; un ducto inferior de extracción de lodos con bomba de succión que se extiende a lo largo del fondo del arreglo colineal de cámaras y que comprenden ductos perpendiculares perforados de captación de lodos que se extienden en el fondo de dicha pluralidad de cámaras; un ducto inferior de inyección de aire desde un soplador, el cual se extiende en el fondo a lo largo del arreglo colineal de la pluralidad de cámaras y que comprende ductos perpendiculares con difusores de aire en la zona inferior de las cámaras principalmente de la etapa aerobia y de clarificación; y un ducto superior de recirculación con bomba de recirculación de agua tratada; en donde cada fable divisirio comprende una pluralidad de conexiones para cada cámara que definen ductos superiores de paso de agua en la zona superior de cada cámara y ductos proyectados interiormente tipo sifón para la salida y descarga de agua hacia la zona inferior de cada cámara contigua; y en donde en la cámara de clarificación comprende paquetes de lamellas que definen un clarificador tipo lamelar y en la cámara de la etapa de desinfección se dispone un sistema de desinfección de lámparas UV.
2.- El bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, de acuerdo con la reivindicación 1, caracterizado porque incluye una bomba que bombea el agua a tratar desde el influente que se hace pasar por una hidrocriba para separar los sólidos que transporta el agua y los desecha dentro de un recipiente exterior a dicho biorecator.
3.- El bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, de acuerdo con la reivindicación 1, caracterizado porque dicha pluralidad de bailes divisorios definen una primera cámara para la etapa de pretratamiento y sedimentación, al menos una cámara contigua para la etapa anaerobia, al menos una cámara contigua para la etapa anóxica, al menos un cámara contigua para la etapa aerobia, al menos una cámara contigua para la etapa de clarificación y al menos una cámara contigua para la etapa de desinfección.
4.- El bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, de acuerdo con la reivindicación 1, caracterizado porque entre dichas cámaras de clarificación y de desinfección se comprende un bafle angulado y un bafle transversal recto que genera dos cámaras en serie donde se dispones paquetes de lamellas que definen un decantador lamelar.
5.- El bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, de acuerdo con la reivindicación 1, caracterizado porque dicho decantador lamelar es un decantador en caída libre que permite ampliar la capacidad dividiendo su altura en“n" decantadores, o bien utilizando placas con cierta inclinación.
6.- El bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, de acuerdo con la reivindicación 1, caracterizado porque dicha cámara de clarificación tiene una línea de lavado de aire a presión que bombea aire desde el fondo del clarificador hacia las lámelas, para remover lodos y materia orgánica de las lámelas.
7.- El bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, de acuerdo con la reivindicación 1, caracterizado porque dicho sistema de desinfección de lámparas UV consiste consiste en un contenedor cilindrico cerrado que opera por exposición del flujo a un haz de luz ultravioleta, el cual se dispone conectado a un tubo de PVC u otro material inoxidable, que conduce el fluido a la entrada del dispositivo UV, que dispone de una o varias lámparas encamisadas en una funda de vidrio de cuarzo, que con la emisión de luz hacia el fluido destruyen la capacidad reproductiva de los diferentes patógenos que se encuentren en el agua evitando con eso la propagación de los mismos.
8.- El bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, de acuerdo con la reivindicación 7, caracterizado porque dicho sistema de desinfección de lámparas UV además comprende un interruptor de alimentación, medidor de voltaje, medidor de corriente, un temporizador, luces indicadoras de funcionamiento y luz indicadora de fallas en la lámpara UV.
9.- El bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, de acuerdo con la reivindicación 1, caracterizado porque la pluralidad de cámaras están cerradas y comprenden orificios en la pared superior con puertas de acceso para mantenimiento.
10.- El bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, de acuerdo con la reivindicación 1, caracterizado porque está manufacturado de PRFV (poliéster reforzado con fibra de vidrio), en forma de substancialmente prisma rectangular.
11.- El bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, de acuerdo con la reivindicación 3, caracterizado porque dicha cámara de pretratamiento y sedimentación comprende mayores dimensiones con mayor capacidad volumétrica que el resto de las cámaras, que además de degradar la carga orgánica del agua, funge como digestor y almacenador de lodos digeridos, con tiempos de retención para los mismos que van desde 6 meses hasta 3 años, dependiendo del influente a tratar, que cuando se extraen los mas viejos, de la parte inferior del mismo, se encuentran completamente digeridos y listos para su disposición sin procesos posteriores.
12.- El bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales, de acuerdo con las reivindicacones anteriores, caracterizado porque dichas cámaras para las diferentes etapas de los procesos biológicos están configuradas para usarse una, dos o más cámaras para cada etapa anerobia, anóxica o aerobia, para permitir la separación de diferentes baceterias para evitar competencia, potencializar y efcientizar cada etapa y cada proceso biológico para obtener agua mejor tratada; en donde la configuración de las camaras para las diferentes etapas de procesos biológicos puede manipularse mediante un sistema de válvulas de control de inyeccón de aire para aquellas cámaras desitianas a los procesos aerobios, válvulas para el control de recirculación de agua y válvulas para la extracción de lodos y los gases de los respectivos ductos.
PCT/MX2018/000116 2018-05-11 2018-10-30 Bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales WO2019216753A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2018005952A MX2018005952A (es) 2018-05-11 2018-05-11 Bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales.
MXMX/A/2018/005952 2018-05-11

Publications (1)

Publication Number Publication Date
WO2019216753A1 true WO2019216753A1 (es) 2019-11-14

Family

ID=68468150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2018/000116 WO2019216753A1 (es) 2018-05-11 2018-10-30 Bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales

Country Status (2)

Country Link
MX (1) MX2018005952A (es)
WO (1) WO2019216753A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113800626A (zh) * 2021-10-28 2021-12-17 上海市政工程设计研究总院(集团)有限公司 一种废水脱氮处理系统及方法
CN114590956A (zh) * 2022-01-27 2022-06-07 江苏华太生态环保科技有限公司 一种分段式一体化农村污水处理装置及其处理方法
WO2023163580A1 (es) * 2022-02-25 2023-08-31 Valdes De La Garza Xavier Bioreactor aerobio multi-media de alto contenido de biomasas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0185542A2 (en) * 1984-12-18 1986-06-25 Klargester Environmental Engineering Limited Improvements in sewage treatment biological rotors
US20150008169A1 (en) * 2012-03-02 2015-01-08 Francisco Xavier Valdes Simancas Combined bioreactor for the treatment of waste water, by means of anaerobic, aerobic and anoxic processes of degradation of organic matter with zone separator system and collection of biogases, scum and sludge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0185542A2 (en) * 1984-12-18 1986-06-25 Klargester Environmental Engineering Limited Improvements in sewage treatment biological rotors
US20150008169A1 (en) * 2012-03-02 2015-01-08 Francisco Xavier Valdes Simancas Combined bioreactor for the treatment of waste water, by means of anaerobic, aerobic and anoxic processes of degradation of organic matter with zone separator system and collection of biogases, scum and sludge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113800626A (zh) * 2021-10-28 2021-12-17 上海市政工程设计研究总院(集团)有限公司 一种废水脱氮处理系统及方法
CN114590956A (zh) * 2022-01-27 2022-06-07 江苏华太生态环保科技有限公司 一种分段式一体化农村污水处理装置及其处理方法
WO2023163580A1 (es) * 2022-02-25 2023-08-31 Valdes De La Garza Xavier Bioreactor aerobio multi-media de alto contenido de biomasas

Also Published As

Publication number Publication date
MX2018005952A (es) 2019-11-12

Similar Documents

Publication Publication Date Title
ES2315009T3 (es) Sistemas reactores con cargas secuenciales de mezcla anoxica de equilibrio.
KR940000563B1 (ko) 폐수처리 방법 및 그 장치
EP0728122B1 (en) System and method for treatment of polluted water
US9758411B2 (en) Combined bioreactor for the treatment of waste water, by means of anaerobic, aerobic and anoxic processes of degradation of organic matter with zone separator system and collection of biogases, scum and sludge
ES2827773T3 (es) Aparato y procedimiento de biopelícula con soporte de membrana
US20110127214A1 (en) Energy optimization in an anaerobic, facultative, anoxic aerobic plant, using fine bubbles, without sludge production
WO2019216753A1 (es) Bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales
KR100913728B1 (ko) 순산소에 의하여 용존산소농도를 조절하는 폐수처리 방법 및 이에 적합한 폐수처리 장치
CN106007267A (zh) 大型一体化污水处理装置及污水处理工艺
CN113149217A (zh) 涡流式污水处理集成装备
JP2006289153A (ja) 汚水浄化方法及び装置
WO2021074307A1 (en) Wastewater treatment system
RU52397U1 (ru) Устройство для биологической очистки сточных вод
CN214496045U (zh) 一种高效低氧mbbr污水处理一体化设备
CN212025099U (zh) 一体化污水生化处理装置
JP3263267B2 (ja) 浄化槽
KR102182069B1 (ko) 식생이 결합된 생물막 수처리 장치
KR101898183B1 (ko) 복합담체와 분사수류장치를 구비한 하·폐수처리장치 및 이를 이용한 인·질소 제거 방법
RU2736187C1 (ru) Способ и устройство для очистки хозяйственно-бытовых сточных вод
RU98997U1 (ru) Установка биологической очистки сточных вод
ES2908743B2 (es) Instalación para el tratamiento de aguas residuales
CN220907283U (zh) 一体化污水处理装置
CN214734820U (zh) 涡流式污水处理集成装备
CN218931842U (zh) 一种污泥减量污水处理系统
CN212833291U (zh) 一种医疗废水处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18917840

Country of ref document: EP

Kind code of ref document: A1