WO2023163580A1 - Bioreactor aerobio multi-media de alto contenido de biomasas - Google Patents
Bioreactor aerobio multi-media de alto contenido de biomasas Download PDFInfo
- Publication number
- WO2023163580A1 WO2023163580A1 PCT/MX2022/050011 MX2022050011W WO2023163580A1 WO 2023163580 A1 WO2023163580 A1 WO 2023163580A1 MX 2022050011 W MX2022050011 W MX 2022050011W WO 2023163580 A1 WO2023163580 A1 WO 2023163580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bioreactor
- air
- water
- recirculation
- high biomass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/08—Aerobic processes using moving contact bodies
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/20—Activated sludge processes using diffusers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/04—Apparatus for enzymology or microbiology with gas introduction means
- C12M1/08—Apparatus for enzymology or microbiology with gas introduction means with draft tube
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the present invention falls into the field of biotechnology, water technology and science, as well as mechanics in general; In particular, it is related to wastewater treatment systems and methods, specifically related to the means and devices used in wastewater treatment plants, and more specifically, it refers to a multi-media aerobic bioreactor with a high biomass content.
- a bioreactor is a vessel or system that maintains a biologically active environment.
- chemical and biological processes are carried out that involve microorganisms or biochemically active substances derived from said organisms. This process can be aerobic or anaerobic.
- Microorganisms play an important role in any wastewater treatment process.
- liquid waste from different industrial sectors agribusiness, food, some petrochemicals, among others
- municipal sewage are treated biologically.
- Biotechnology can be defined as "any technological application that uses biological systems and living organisms or derivatives, for the creation or modification of products or processes for a specific use” (Convention of Diversity Biological. Article 2. Use of Terms, United Nations, 1992), so that the fact of using the tool provided naturally by microorganisms means that biotechnological processes are considered as an increasingly widespread technology in the management of this type of waste, economically and ecologically. (Gil Polished).
- Aerobic wastewater treatment processes have been in the industry for a long time and are widely used today. However, these tend to be very inefficient processes in relation to the cost of operation in the form of energy in relation to their treatment capacity. Therefore, it can be concluded that it is a process capable of treating water, but in its current state is impractical and could be classified as obsolete. Because of this, the proposed invention arises, which attacks the main deficiencies of this process to provide a much more capable and efficient system.
- the present invention is focused on a multi-media aerobic bioreactor with a high biomass content that allows the unification of different factors in a single process that allow it to operate with superior efficiency both in the removal of pollutants and in energy use.
- Patent US9561976B2 by Ren Hongqiang et al. of June 05, 2013, which focuses on the problems that exist in conventional "biperickling" filters in that a large pressure drop of the fill occurs during the operation of the biperickling filter; biomass accumulation and load blocking occur easily at the bottom of the biperickling filter, so it is necessary to wash it frequently.
- the invention focuses on providing a coupling bioreactor and a method for purifying malodorous gases and waste water.
- the coupling bioreactor for treating malodorous gases and waste water simultaneously which is in the form of a tower-type seal structure, and the coupling bioreactor comprises: a) a water inlet pipe (1); b) an air inlet pipe (2); c) a gas inlet pipe (3); d) a first and a second microporous aerator (4) arranged at the bottom and halfway up the bioreactor; e) a water distributor (5); f) a suspended carrier (6); g) a gas outlet pipe (7); h) a water outlet pipe (8); i) Annular overflow weir (9) comprising an annular side wall and an annular groove; j) a biofilm; and k) a net cover (10), the net cover is disk-shaped and comprises a circular edge; wherein the docking bioreactor is filled with the suspended carrier; the biofilm adheres to the suspended carrier; the suspended carrier is a polyethylene; the ratio between the volume of the suspended vehicle and the capacity of the coupling bio
- the bioreactor of said patent does not reveal or suggest a configuration that allows a high content of biomass through the use of biocarriers that allow increasing the amount of bacteria present in the bioreactor; neither does it reveal or suggest a column mixing system which keeps the entire volume of the column in constant motion; significantly increasing the contact factor of the bioreactor by allowing a greater and better interaction between the bacteria present, the oxygen inside the injected air, and the contaminated water inside the bioreactor; and that allows recirculate water from the top of the bioreactor to the bottom creating a repetitive up-down flow system that facilitates the movement of biocarriers throughout the bioreactor even though they are slightly less dense than water.
- the bioreactor of said patent US9561976B2 does not use a fine bubble air diffusion system, which allows increasing the surface area of the injected air and reducing its ascent speed.
- the air injection system of said patent differs greatly from the air injection system of our invention, which allows supplying air at the bottom defined by a plurality of branches inserted radially near the bottom of the bioreactor with a plurality of fine bubble diffusers. that can coexist with biocarriers by integrating semicircular protective covers (arranged under each diffuser that protects the fine bubble membrane mounted on the fine bubble diffuser ducts from contact with biocarriers present inside the bioreactor, as these can damage the bubble membranes end of the same
- the microbubble generator is constituted by a double compartment container 10, a first compartment or chamber 9 defined by the space within the surrounding side wall 11, the upper wall 12 and the lower wall 13, and the second compartment, or chamber 8 , defined by the space within the enclosing wall 14 which generally defines a vertically oriented tubular member of venturi configuration.
- the tubular member 14 is supported vertically, essentially concentrically within the confines of the surrounding side wall 11 of the container at the top wall 12, through which the member projects and is attached, and at its lower end through a drain tube 15 projecting through the bottom wall 13 of the container, to which it is attached.
- An outlet 21 provides a means for the removal of gases and liquids from chamber 8 of the tubular member 14.
- the network connections provide a means for the attachment of the lower end of the drain tube 15 to the tubular member 14, while leaving an essentially annular passage, or input 16, for communication between the cameras 8,
- the drain tube 15 during normal operation is closed. Opens to drain excess fluid or by-product during periods of inactivity.
- a gas introduced under pressure through the inlets 19, 20 in the very center of the liquid flow axis, introduced through Inlets 17, 18 immediately start to form bubbles within the incoming liquid.
- patent US5534143 focuses on a microbubble generator to optimize the speed and amount of oxygen transfer to microbial inoculums or biocatchers in bioreactor systems; but it does not reveal or suggest an air injection system that allows supplying air at the bottom defined by a plurality of branches inserted radially near the bottom of the bioreactor with a plurality of fine bubble diffusers that can coexist with biocarriers by integrating semicircular protective covers ( arranged below each diffuser that protects the fine bubble membrane mounted on the fine bubble diffuser ducts from contact with the biocarriers present inside the bioreactor, since these can damage the fine bubble membranes thereof.
- Said document does not reveal or suggest a configuration that allows a high content of biomass through the use of biocarriers that allow increasing the amount of bacteria present in the bioreactor; neither does it reveal or suggest a column mixing system which keeps the entire volume of the column in constant motion; significantly increasing the contact factor of the bioreactor by allowing a greater and better interaction between the bacteria present, the oxygen inside the injected air, and the contaminated water inside the bioreactor; and that allows recirculating water from the top of the bioreactor to the bottom, creating a repetitive ascending-descending flow system that facilitates the movement of biocarriers throughout the bioreactor despite the fact that they are slightly less dense than water.
- the bioreactor of said document does not use a fine bubble air diffusion system, which makes it possible to increase the surface area of the injected air and reduce its ascent speed.
- the main objective of the present invention is to make available a multi-media aerobic bioreactor with a high biomass content that allows the unification of different factors in a single process that allow it to operate with superior efficiency in both pollutant removal and energy use.
- Another objective of the invention is to make available a multi-media aerobic bioreactor with a high biomass content that uses a fine bubble air diffusion system, which makes it possible to increase the surface area of the injected air and reduce its ascent velocity.
- Another objective of the invention is to make available a multi-media aerobic bioreactor with a high biomass content that, in addition, allows increasing the oxygen transfer capacity with the bacterial colony present inside the bioreactor and, as a consequence, the bioreactor operates more efficiently by requiring a smaller volume of air injected to perform the same oxygen transfer to the bacteria present.
- Another objective of the invention is to make available a multi-media aerobic bioreactor with a high biomass content that, in addition, has high amounts of biocarriers suspended in the water, which serve as an adherence surface for the aerobic bacterial colony that performs the bioreactor biological process.
- Another objective of the invention is to make available a multi-media aerobic bioreactor with a high biomass content that, in addition to the biocarriers, increases the amount of bacteria present in the bioreactor to in turn increase its contaminant removal capacity.
- Another objective of the invention is to make available a multi-media aerobic bioreactor with a high biomass content that also has a column mixing system to keep its entire volume in constant motion; Sensibly increase the contact factor of the bioreactor by allowing a greater and better interaction between the bacteria present, the oxygen inside the injected air, and the contaminated water inside the bioreactor.
- Another objective of the invention is to make available a multi-media aerobic bioreactor with a high biomass content, in which said column mixing system also allows water to be recirculated from the top of the bioreactor to the bottom, creating an ascending-flow system. repetitive downward movement that facilitates the movement of the biocarriers throughout the bioreactor despite the fact that they are slightly less dense than water.
- Another objective of the invention is to make available a multi-media aerobic bioreactor with a high biomass content that also has flow-inducing partitions in the upper part. bottom of the outlet of the central recirculation duct to generate a vertical ascending flow in the part of the bioreactor where the air is injected; so that said helical flow adds a longer residence time to the fine bubble in its ascending path, which increases the efficiency of oxygen exchange throughout the bioreactor.
- a multi-media aerobic bioreactor with a high biomass content in accordance with this
- the invention consists of a cylindrical body with a bottom wall and an upper cover, which has at least one inlet for water to be treated from a previous stage in the upper part of the body or at least one inlet for reflux water from recirculation or both; and internally it houses a column mixer system centrally mounted on the upper cover cap and whose lower end is housed in the upper area of a central recirculation duct located centrally at the bottom of the bioreactor that projects vertically to the upper part thereof; so that said column mixing system and said central recirculation duct create an internal recirculation effect in the bioreactor that pushes the influent and recirculation water together with a plurality of biocarriers contained in the bioreactor from the top of it to a area close to the bottom thereof, which exit through a water outlet opening of said central recirculation duct; an air injection system to the bioreactor to generate the aerobic biological degradation process, defined by a
- said column mixer system is defined by a gear motor that is exposed on the upper cover; a motor shaft that projects internally is coupled to said geared motor by means of a union bushing; Mounting means for a support base of a subassembly of the column mixer where the upper end of a vertical union tube is coupled, comprising two inlets connected to the inlet of water to be treated from a previous stage and the inlet of water from recirculation reflux, and at the lower end a drilled tube is coupled for inlet flow outlet; means for mounting and centering within said vertical joint tube and allowing the rotation of the lower end of the shaft where a mixing propeller is coupled which is exposed to cause a downward axial flow within the central recirculation duct, this allows water to with biocarriers inside the bioreactor and the water that enters it mixes and goes down to the bottom through said central recirculation duct, significantly increasing the contact factor, and therefore the treatment capacity.
- said assembly means of a support base of a subassembly of the column mixer where the upper end of the a vertical union tube are defined by a mounting bracket to the jet engine where a subassembly support base and a gearmotor mounting plate are attached.
- recirculation are defined by a friction bushing that is mounted on the lower end of the shaft that passes through a lower centering plate and is connected to a bearing sleeve; respective radially connected centering arms to keep the system aligned within a central recirculation duct and a centering coupling sleeve arranged below.
- said central recirculation duct is located centrally at the bottom of the bioreactor and projects vertically to the upper part thereof, housing in its upper section the lower section of said column mixer system.
- Said central recirculation duct comprises in a section close to the lower end, that is, close to the bottom of the bioreactor, an internal recirculation water outlet opening where curved helical flow-inducing screens are arranged circumferentially in which said opening coincides. output of internal recirculation, so that a helical flow of internal recirculation is generated.
- Said central recirculation duct together with the column mixer system allows the generation of a downward recirculation current through its interior and ascending through the area between its exterior wall and the wall of the bioreactor body, concentrating the flow of the column mixer system to the bottom of the bioreactor, which allows mixing all the water in the bioreactor with a mixing propeller and a geared motor.
- a biocarrier retention mesh is placed in the upper area of the bioreactor, which prevents biocarriers from leaving the bioreactor to other treatment stages, allowing only the passage of water to subsequent stages. , but prevents the exit of the biocarriers.
- said air injection system responsible for injecting air into the bioreactor to generate the aerobic biological degradation process is made up of a circular rolled tube defined by a plurality of rolled tubular sections joined by slotted copies of Union; circular rolled tube is inlet for pressurized air from an air supply source and distributes air to a plurality of branches individual air diffusion.
- Each air diffusion branch includes union nipples that connect to the circular rolled tube and a shut-off valve that allows cutting or restoring the air flow to each individual diffusion branch.
- a union nipple is connected to said stop valve to join another assembly nipple to the bioreactor through a slotted copy, where an internal fuser holder spike is located internally, joined to a fine bubble diffuser duct that generates small air bubbles inside the bioreactor with the air supplied to the air injection system. This allows the creation of an aerobic bacterial colony inside the bioreactor and begins the degradation of contaminants present in the water to be treated.
- each one of said fine bubble diffuser ducts comprises a semicircular protective cover below that protects the fine bubble membrane mounted on the fine bubble diffuser ducts, from contact with the biocarriers present inside the bioreactor, since these can damage the fine bubble membranes of the same.
- the air injection system further comprises an external union copy that joins the mounting nipple with a slotted plug that externally seals each individual diffusion branch.
- a clamping bolt with clamping washer enters a bore in the mounting nipple to the bioreactor to secure the internal diffuser spigot inside said mounting nipple, and a pair of hydraulic sealing O-rings allow hydraulic sealing of the interior of the bioreactor with respect to the air chamber in the mounting nipple, the internal diffuser spigot and the exterior of the bioreactor.
- Said bioreactor also comprises an inspection man entrance in the lower area thereof, and a plurality of fixing anchors at the base thereof.
- the bioreactor in accordance with the present invention allows the unification of different factors in a single process that allow it to operate with superior efficiency both in the removal of pollutants and in energy use.
- the system uses a fine bubble air diffusion system, which increases the surface area of the injected air and reduces its ascent velocity. This increases the oxygen transfer capacity with the bacterial colony present within the bioreactor substantially. As a consequence, the bioreactor operates more efficiently by requiring a smaller volume of injected air to perform the same oxygen transfer to the bacteria present.
- the bioreactor has high amounts of biocarriers suspended in the water, which serve as an adherence surface for the aerobic bacterial colony that performs the biological process of the bioreactor. These Biocarriers increase the amount of bacteria present in the bioreactor, which increases its contaminant removal capacity.
- the bioreactor has a column mixing system which keeps its entire volume in constant motion. This significantly increases the contact factor of the bioreactor by allowing a greater and better interaction between the bacteria present, the oxygen inside the injected air, and the contaminated water inside the bioreactor. Additionally, this column mixing system allows water to be recirculated from the top of the bioreactor to the bottom. This repetitive up-down flow system facilitates the movement of biocarriers throughout the bioreactor even though they are slightly less dense than water.
- the bioreactor has some flow-inducing screens at the bottom of the outlet of the central recirculation duct to generate a vertical upward flow in the part of the bioreactor where the air is injected. This helical flow adds a longer residence time to the fine bubble on its upward path, which increases the efficiency of oxygen exchange throughout the bioreactor.
- Figure 1 shows an exploded view of the multi-media aerobic bioreactor with a high biomass content, in accordance with the preferred embodiment of the invention.
- Figure 2 shows a conventional perspective view of the fully assembled, multi-media aerobic bioreactor with a high biomass content, in accordance with the preferred embodiment of the invention.
- Figure 3 shows an exploded view of the column mixer system that is housed inside the system in accordance with the preferred embodiment of the invention.
- Figure 4 illustrates an axial section of the column mixer system, assembled and housed inside it in accordance with the preferred embodiment of the invention.
- Figure 5 shows a top view of the central recirculation duct that houses the column mixer system, showing the arrangement of helical flow deflector partitions.
- Figure 6 shows a conventional perspective view of the central recirculation duct that houses the column mixer system, showing the recirculation outlet opening. internal and the arrangement of helical flow deflecting partitions.
- Figure 7 shows a schematization in conventional perspective of the central recirculation duct, with the teachings of the present invention.
- Figure 8 illustrates a front view schematization of the central recirculation duct, with the teachings of the present invention.
- Figure 9 illustrates a conventional perspective view of the biocarrier retention mesh that is arranged inside the upper area of the bioreactor.
- Figure 10 shows an exploded view of the biocarrier retention mesh that is placed inside the upper area of the bioreactor.
- Figure 11 shows a conventional perspective view of the air injection system to the central recirculation duct.
- Figure 12 shows an exploded view of the central recirculation duct.
- Figure 13 shows an exploded view of an individual air diffusion branch of the bioreactor air injection system.
- Figure 14 shows an exploded view of a mounting nipple to the bioreactor where an internal diffuser-holder spike of the air injection system to the bioreactor is housed internally.
- the reactor is defined by a cylindrical body (1) with a bottom (2) and an upper lid (3), which presents a water inlet of the one-stage bioreactor in the upper part. previous (4) and a recirculation reflux water inlet (5); internally it houses a column mixer system (6) which is responsible for creating an internal recirculation effect in the bioreactor. In conjunction with a central recirculation duct (7) it pushes the water and the biocarriers (8, see figures 7 and 8) from the top of the bioreactor to the bottom of it. This allows one to have the coexistence of an environment with biocarriers (8, see figures
- Said column mixer system (6) is defined by a gear motor (9) that is exposed on the upper cover (3), in said gear motor (9) a drive shaft (11) is coupled by means of a union bushing (10). projecting inwardly and a mounting copy (12) to the jet engine (9), where a subassembly support base (13) of the column mixer (6) and a gearmotor mounting plate (14) are coupled.
- a union tube (15) is externally coupled to the geared motor (9), which is connected to a pair of "T" connectors for the water inlet (16 and 17) where the water inlet of the bioreactor of a previous stage (4) and the recirculation reflux water inlet (5), joined by a nipple (18) and at the lower end of the T connector (17) a drilled tube (19) is coupled for the outlet of input stream.
- a friction bushing (20) is mounted on the lower end of the drive shaft (11) which passes through a lower centering plate (21) and connects to a bearing sleeve (22); respective centering arms (23) are radially connected to keep the system aligned within a central recirculation duct (7, see figure 1), a centering coupling sleeve (24) is arranged internally and finally a mixing propeller is shown. (25) which receives transmission from said drive shaft (11) and sits in a drive bushing (26) of the mixing propeller (25).
- the mixing propeller (25) together with the gear motor (9), union bushing (10), the drive shaft (11), the friction bushing (20) and the drive bushing (26) of the mixing propeller ( 25) rotate to cause downward axial flow within the central recirculation duct (7).
- This allows the water with biocarriers (8, see figures 7 and 8) inside the bioreactor and the water that enters it to mix and sink to the bottom, significantly increasing the contact factor and therefore the treatment capacity.
- a central recirculation duct (7, see figure 1, 5 and 6), is located centrally at the bottom of the bioreactor and projects vertically to the top of it, housing in its upper section said column mixer system (6, see figures 3 and 4), as shown in figures 7 and 8.
- Said central recirculation duct (7) comprises in a section close to the lower end, that is, close to the bottom of the bioreactor, a internal recirculation outlet opening (27) and a plurality of curved helical flow-inducing partitions (28) in one of which the internal recirculation outlet opening (27) coincides, so that a helical flow of internal recirculation.
- the central recirculation duct (7) allows the creation of a downward-ascending recirculation in conjunction with the column mixer system (6), concentrates the flow of the column mixer system (6) to the bottom of the bioreactor, which allows mix the entire bioreactor with the mixing propeller (25, see figures 3 and 4) and a geared motor (9, see figures 3 and 4) with a lower capacity and, therefore, lower electrical consumption.
- a retention mesh (29) for the biocarriers 8, see figures 7 and 8
- the biocarriers 8, see figures 7 and 8
- Said retention mesh (29) prevents the exit of biocarriers (8, see figures 7 and 8) inside the bioreactor to other treatment stages.
- the supports (34) with the upper laminated ring (30) and the lower laminated ring (31), are joined along their entire periphery by a medium-fine mesh (not shown), which allows the passage of water through later stages, but prevents the exit of the biocarriers (8, see figures 7 and 8). In the same way, it provides a seat with the upper base of the bioreactor body, which allows it to prostrate itself in its position without the need for mechanical elements.
- an air injection system (35, see figure 11) is shown, responsible for injecting air into the cylindrical body (1, see figures 1, 2, 7 and 8 ) of the bioreactor to generate the biological degradation process aerobic, it is defined by a circular rolled tube (36) defined by a plurality of rolled tubular sections (37) joined by grooved joint copies (38).
- the circular rolled tube (36) has an air inlet (39) from a pressurized air supply source that distributes air to a plurality of individual air diffusion branches.
- Each air diffusion branch includes union nipples (40) that connect to the circular rolled tube (36) and a stop valve (41) that allows cutting or restoring the air flow to each individual diffusion branch.
- a union nipple (42) is connected to said stop valve (41) to join another mounting nipple (44) to the bioreactor through a slotted copy (43) where an internal diffuser holder spigot (45) is attached to a duct.
- fine bubble diffuser (46) that generates small air bubbles inside the bioreactor with the air that is provided to the air injection system (35). This allows the creation of an aerobic bacterial colony inside the bioreactor and begins the degradation of contaminants present in the water to be treated.
- Each of said fine bubble diffuser ducts (46) internally comprise a semicircular protective cover (47) that protects the fine bubble membrane mounted on the fine bubble diffuser ducts (46) from contact with biocarriers (8, see Figures 7 and 8) present inside the bioreactor, since these can damage the fine bubble membranes of the bioreactor.
- the air injection system (35) also includes a copy external union (48) that joins the mounting nipple (44) with a slotted plug (49) that externally seals each individual diffusion branch.
- a tightening bolt (50) with a tightening washer (51) enters a hole in the mounting nipple (44) to the bioreactor to fix the internal diffuser holder pin (45) inside said mounting nipple (44).
- a pair of hydraulic sealing O-rings (52) allow the hydraulic sealing of the interior of the bioreactor with respect to the air chamber in the mounting nipple (44) and the internal diffuser-holder spigot (45) and the exterior of the bioreactor.
- the bioreactor also includes an inspection man entrance (53) in the lower area thereof, and fixing anchors (54) at the base thereof.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Zoology (AREA)
- Hydrology & Water Resources (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Sustainable Development (AREA)
- Biological Treatment Of Waste Water (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
La invención está referida a un biorreactor aerobio multi-media de alto contenido de biomasas, caracterizado por comprender un cuerpo con una pared de fondo y una tapa superior, que presenta en la zona alta una entrada de agua a tratar y una entrada de agua de recirculación; e internamente aloja un sistema mezclador en columna montado en la tapa superior y cuyo extremo inferior se aloja en la zona superior de un ducto de recirculación dispuesto en el fondo del biorreactor que se proyecta verticalmente hasta la parte superior del mismo para crean un efecto de recirculación interna en el biorreactor que empuja el agua junto con una pluralidad de bioportadores desde la parte superior hasta una zona próxima al fondo, que salen a través de una abertura de salida de agua de dicho ducto de recirculación; un sistema de inyección de aire al biorreactor para generar el proceso de degradación biológico aerobio definido por un distribuidor circular de aire que distribuye aire a una pluralidad de ramales individuales de difusión de aire, en donde en cada ramal se acoplan difusores de burbuja fina de aire que penetral la pared del biorreactor en una zona próxima al extremo inferior.
Description
BIOREACTOR AEROBIO MULTI-MEDIA DE ALTO CONTENIDO DE BIOMASAS
CAMPO DE LA INVENCIÓN
La presente invención cae en el campo de la biotecnología, la tecnología y ciencia del agua, asi como de la mecánica en lo general; en particular se relaciona con los sistemas y métodos de tratamiento de aguas residuales, específicamente lo relacionado con los medios y dispositivos usados en plantas de tratamiento de agua residual y más específicamente está referida a un biorreactor aerobio multi-media de alto contenido de biomasas.
ANTECEDENTES DE LA INVENCIÓN
Es de conocimiento generalizado que el crecimiento de la población y sus requerimientos, a nivel social e industrial, hace que la demanda de agua por parte de todos sea cada vez mayor. Por tanto, resulta de vital importancia hacer una correcta utilización de las aguas residuales a fin de liberar importantes volúmenes de agua limpia para el abastecimiento humano (Gil Pulido).
En el ámbito del tratamiento de aguas residuales, existen
diversas técnicas, aparatos y dispositivos para llevar a cabo el tratamiento de las aguas contaminadas, reducir la carga orgánica y reducir o eliminar ciertos contaminantes para ofrecer agua que pueda utilizarse para diferentes propósitos sin contaminantes.
Un biorreactor es un recipiente o sistema que mantiene un ambiente biológicamente activo. En dichos biorreactores se llevan a cabo procesos químicos y biológicos que involucran microorganismos o sustancias bioquímicamente activas derivadas de dichos organismos. Este proceso puede ser aeróbico o anaerobio.
Los microorganismos juegan un papel importante en todo proceso de depuración de aguas residuales. De manera general, los desechos líquidos procedentes de diferentes sectores industriales (agroindustria, alimentaria, alguna petroquímica ente otras), asi como aguas negras municipales, son tratados por via biológica. Estos procesos biológicos que ocurren en la mayoría de los reactores, bajo unas condiciones determinadas y controladas, tienen lugar de manera natural en ríos, lagos y otros sistemas acuáticos (Gil Pulido).
La biotecnología se puede definir como “toda aplicación tecnológica que utiliza sistemas biológicos y organismos vivos o derivados, para la creación o modificación de productos o procesos para un uso especifico” (Convención de la Diversidad
Biológica. Articulo 2. Uso de Términos, Naciones Unidas, 1992), de modo que el hecho de utilizar la herramienta que proporcionan de manera natural los microorganismos hace que los procesos biotecnológicos sean considerados como una tecnología cada vez más extendida en el manejo de este tipo de desechos, de manera económica y ecológica. (Gil Pulido).
En el caso concreto de las aguas residuales, las técnicas desarrolladas en biotecnología en este área no sólo tienen como objetivo reducir la carga orgánica en general, sino que es utilizada para eliminar otros agentes contaminantes industriales presentes en las aguas, asi como para convertir el flujo de desechos derivados del proceso de depuración en productos útiles o incluso con valor añadido para poder liberarlos al medio ambiente sin causar perjuicio (como el compost de lodos de depuradoras). (Gil Pulido).
Los procesos biológicos tanto aerobios como anaerobios son ampliamente utilizados en el tratamiento de aguas residuales para su saneamiento.
Los procesos de tratamiento aerobios de aguas residuales llevan mucho tiempo en la industria y son bastante utilizados hoy en dia. Sin embargo, estos tienden a ser procesos muy ineficientes en la relación de costo de operación en forma de energía con relación a su capacidad de tratamiento. Por lo tanto, se puede concluir que es un proceso capaz de tratar agua, pero en su
estado actual es impráctico y se podría catalogar como obsoleto. A razón de esto surge la invención propuesta la cual ataca las deficiencias principales de este proceso para brindar un sistema mucho mas capaz y eficiente.
Los biorreactores convencionales requieren un volumen mayor de aire inyectado para realizar una remoción adecuada de contaminantes, por lo que requieren un soplador más robusto para poder inyectar el volumen requerido de aire a una presión mayor. Tienen una capacidad mayor de tratamiento ya que cuentan con una mayor cantidad de bacterias para realizar la biodegradación de los contaminantes presentes en el agua a tratar.
La presente invención está enfocada en un biorreactor aerobio multi-media de alto contenido de biomasas que permite unificar en un solo proceso diferentes factores que le permiten operar con una eficiencia superior tanto en remoción de contaminantes como en uso energético.
Se realizó una búsqueda para determinar el estado de la técnica mas cercano, encontrándose los siguientes documentos:
Se ubicó la patente US9561976B2 de Ren Hongqiang et al. del 05 de junio de 2013, que se centra en los problemas que existen en los filtros “biperickling” convencionales en cuanto a que se produce una gran caída de presión del relleno durante el funcionamiento del filtro biperickling; la acumulación de biomasa
y el bloqueo de la carga se producen fácilmente en el fondo del filtro biperickling, por lo que es necesario lavarlo con frecuencia. La invención se centra en proporcionar un biorreactor de acoplamiento y un método para purificar gases malolientes y aguas residuales.
El biorreactor de acoplamiento para tratar gases malolientes y aguas residuales simultáneamente que tiene la forma de una estructura de sello tipo torre, y el biorreactor de acoplamiento comprende: a) una tubería de entrada de agua (1); b) una tubería de entrada de aire (2); c) una tubería de entrada de gas (3); d) un primer y un segundo aireador microporoso (4) dispuesto en el fondo y a media altura del biorreactor; e) un distribuidor de agua (5); f) un portador suspendido (6); g) una tubería de salida de gas (7); h) una tubería de salida de agua (8); i) Vertedero de desbordamiento anular (9) que comprende una pared lateral anular y una ranura anular; j) una biopelícula; y k) una cubierta de red (10), la cubierta de red tiene forma de disco y comprende un borde circular; en donde el biorreactor de acoplamiento se llena con el portador suspendido; la biopelícula se adhiere al portador suspendido; el portador suspendido es un polietileno; la relación entre el volumen del vehículo suspendido y la capacidad del biorreactor de acoplamiento está entre el 30% y el 50%; la relación entre la altura y el diámetro del biorreactor de acoplamiento está entre 3 y 10; la tubería de entrada de agua está adaptada para recibir aguas residuales; el tubo de entrada de gas está adaptado para recibir gas maloliente; el tubo de
entrada de agua, el tubo de entrada de aire y el primer aireador microporoso están dispuestos en la parte inferior del biorreactor de acoplamiento; la tubería de entrada de agua está conectada al distribuidor de agua; el tubo de entrada de aire está conectado al primer aireador microporoso; el tubo de entrada de gas y el segundo aireador microporoso están dispuestos en una parte media del biorreactor de acoplamiento y están conectados entre si; el rebosadero anular está dispuesto en una parte superior del biorreactor de acoplamiento y está conectado a la tubería de salida de agua; el borde circular está conectado a un borde superior de la pared lateral anular; el tubo de salida de gas está dispuesto en la parte superior del biorreactor de acoplamiento; y cuando está en uso, cuando el gas maloliente y las aguas residuales se introducen en el biorreactor de acoplamiento, el portador suspendido se mueve aleatoriamente en el biorreactor de acoplamiento.
Como puede notarse el biorreactor de dicha patente no revela, ni sugiere una configuración que permita un alto contenido de biomasas mediante el uso de bioportadores que permitan incrementar la cantidad de bacteria presente en el biorreactor; tampoco revela o sugiere un sistema de mezclado de columna el cual mantiene la totalidad del volumen de este en movimiento constante; incrementando sensiblemente el factor de contacto del biorreactor al permitir una mayor y mejor interacción entre la bacteria presente, el oxigeno dentro del aire inyectado, y el agua contaminada dentro del biorreactor; y que permita
recircular agua desde la parte superior del biorreactor hasta el fondo creando un sistema de flujo ascendente-descendente repetitivo que facilite el movimiento de los bioportadores en la totalidad del biorreactor a pesar de que estos son ligeramente menos densos que el agua. El biorreactor de dicha patente US9561976B2 no utiliza un sistema de difusión de aire en burbuja fina, que permita incrementar el área superficial del aire inyectado y reducir la velocidad de ascensión del mismo.
El sistema de inyección de aire de dicha patente difiere por mucho del sistema de inyección de aire de nuestra invención, que permite suministrar aire en el fondo definido por una pluralidad de ramales insertos radialmente cerca del fondo del biorreactor con una pluralidad de difusores de burbuja fina que pueden coexistir con bioportadores al integrar cubiertas protectoras semicirculares (dispuesto debajo de cada difusor que protege la membrana de burbuja fina montada en los ductos difusores de burbuja fina del contacto de los bioportadores presentes dentro del biorreactor, ya que éstos pueden dañar las membranas de burbuja fina del mismo.
Otro documento localizado fue la patente US5534143 de Portier Ralph J. y Mao Huazhong del 25 de enero de 1995, que revela un generador de microburbujas para optimizar la velocidad y la cantidad de transferencia de oxigeno a inóculos microbianos o b i oc ata I i zad o res en sistemas de biorreactores. En particular, se refiere a un generador de microburbujas y un biorreactor de
células inmovilizadas como una combinación de aparato útil para la desintoxicación y limpieza de corrientes acuosas contaminadas con polímeros no volátiles y orgánicos volátiles, preferiblemente la última.
El generador de microburbujas está constituido por un recipiente 10 de doble compartimento, un primer compartimento o cámara 9 definido por el espacio dentro de la pared lateral 11 circundante, la pared 12 superior y la pared 13 inferior, y el segundo compartimento, o cámara 8, definida por el espacio dentro de la pared de cerramiento 14 que define generalmente un miembro tubular orientado verticalmente de configuración venturi. El miembro tubular 14 está soportado verticalmente, esencialmente concéntricamente dentro de los confines de la pared lateral 11 circundante del recipiente en la pared superior 12, a través de la cual se proyecta y se fija el miembro, y en su extremo inferior a través de un tubo de drenaje 15 que se proyecta a través de la pared inferior 13 del recipiente, a la que está unido. Una salida 21 proporciona un medio para la eliminación de gases y líquidos de la cámara 8 del miembro tubular 14. Las conexiones de la red proporcionan un medio para la unión del extremo inferior del tubo de drenaje 15 al miembro tubular 14, dejando al mismo tiempo un paso esencialmente anular, o entrada 16, para la comunicación entre las cámaras 8,
9. El tubo de drenaje 15 durante el funcionamiento normal está cerrado. Se abre para drenar el exceso de liquido o subproducto durante los periodos de inactividad. Se introduce un afluente de
liquido en el compartimento exterior, o primer compartimento, o cámara 9, a través de las entradas 17, 18, y un gas que contiene oxigeno, adecuadamente aire, a través de las entradas 19, 20, que están montadas concéntricamente dentro de las entradas de liquido 17, 18.; todos los cuales están ubicados en la pared superior 12 de la pared de cierre 11 del generador de microburbujas 10. Un gas introducido a presión a través de las entradas 19, 20 en el centro mismo del eje de flujo del liquido, introducido a través de las entradas 17, 18 inmediatamente comienza a formar burbujas dentro del liquido que entra.
Cómo puede notarse la invención de la patente US5534143 se centra en un generador de microburbujas para optimizar la velocidad y la cantidad de transferencia de oxigeno a inóculos microbianos o b i o c ata I i z a d o re s en sistemas de biorreactores; pero no revela ni sugiere un sistema de inyección de aire que permite suministrar aire en el fondo definido por una pluralidad de ramales insertos radialmente cerca del fondo del biorreactor con una pluralidad de difusores de burbuja fina que pueden coexistir con bioportadores al integrar cubiertas protectora semicircular (dispuesto debajo de cada difusor que protege la membrana de burbuja fina montada en los ductos difusores de burbuja fina del contacto de los bioportadores presentes dentro del biorreactor, ya que éstos pueden dañar las membranas de burbuja fina del mismo.
Dicho documento tampoco revela, ni sugiere una configuración
que permita un alto contenido de biomasas mediante el uso de bioportadores que permitan incrementar la cantidad de bacteria presente en el biorreactor; tampoco revela o sugiere un sistema de mezclado de columna el cual mantiene la totalidad del volumen de éste en movimiento constante; incrementando sensiblemente el factor de contacto del biorreactor al permitir una mayor y mejor interacción entre la bacteria presente, el oxigeno dentro del aire inyectado, y el agua contaminada dentro del biorreactor; y que permita recircular agua desde la parte superior del biorreactor hasta el fondo creando un sistema de flujo ascendente-descendente repetitivo que facilite el movimiento de los bioportadores en la totalidad del biorreactor a pesar de que éstos son ligeramente menos densos que el agua. El biorreactor de dicho documento no utiliza un sistema de difusión de aire en burbuja fina, que permita incrementar el área superficial del aire inyectado y reducir la velocidad de ascensión del mismo.
Ante la necesidad de contar con un biorreactor aerobio multimedia de alto contenido de biomasas que ayude a unificar en un solo proceso diferentes factores que permiten operar con una eficiencia superior tanto en remoción de contaminantes como en uso energético, fue que se desarrolló la presente invención.
OBJETIVOS DE LA INVENCIÓN
La presente invención tiene como objetivo principal hacer disponible un biorreactor aerobio multi-media de alto contenido de biomasas que permite unificar en un solo proceso diferentes factores que le permiten operar con una eficiencia superior tanto en remoción de contaminantes como en uso energético.
Otro objetivo de la invención es hacer disponible un biorreactor aerobio multi-media de alto contenido de biomasas que utilice un sistema de difusión de aire en burbuja fina, que permita incrementar el área superficial del aire inyectado y reducir la velocidad de ascensión del mismo.
Otro objetivo de la invención es hacer disponible un biorreactor aerobio multi-media de alto contenido de biomasas que, además, permita incrementar la capacidad de transferencia de oxigeno con la colonia bacteriana presente dentro del biorreactor y como consecuencia, el biorreactor opere más eficientemente al requerir un volumen menor de aire inyectado para realizar la misma transferencia de oxigeno a la bacteria presente.
Otro objetivo de la invención es hacer disponible un biorreactor aerobio multi-media de alto contenido de biomasas que, además, cuente con altas cantidades de bioportadores suspendidos en el agua, los cuales sirven como una superficie de adherencia para la colonia bacteriana aerobia que realiza el proceso biológico del biorreactor.
Otro objetivo de la invención es hacer disponible un biorreactor aerobio multi-media de alto contenido de biomasas que, además los bioportadores incrementen la cantidad de bacteria presente en el biorreactor para a su vez incrementar la capacidad de remoción de contaminantes de éste.
Otro objetivo de la invención es hacer disponible un biorreactor aerobio multi-media de alto contenido de biomasas que, además cuente con un sistema de mezclado de columna para mantener la totalidad del volumen de éste en movimiento constante; incremente sensiblemente el factor de contacto del biorreactor al permitir una mayor y mejor interacción entre la bacteria presente, el oxigeno dentro del aire inyectado, y el agua contaminada dentro del biorreactor.
Otro objetivo de la invención es hacer disponible un biorreactor aerobio multi-media de alto contenido de biomasas, en el que además dicho sistema de mezclado de columna permita recircular agua desde la parte superior del biorreactor hasta el fondo, creando un sistema de flujo ascendente-descendente repetitivo que facilite el movimiento de los bioportadores en la totalidad del biorreactor a pesar de que éstos son ligeramente menos densos que el agua.
Otro objetivo de la invención es hacer disponible un biorreactor aerobio multi-media de alto contenido de biomasas que además cuente con unas mamparas inductoras de flujo en la parte
inferior de la salida del ducto central de recirculación para generar un flujo ascendente vertical en la parte del biorreactor donde se inyecta el aire; de modo que dicho flujo helicoidal le agregue un tiempo de residencia mayor a la burbuja fina en su trayecto ascendente lo cual incrementa la eficiencia de intercambio de oxigeno en todo el biorreactor.
Y todas aquellas cualidades y objetivos que se harán aparentes al realizar una descripción general y detallada de la presente invención apoyados en las modalidades ¡lustradas.
BREVE DESCRIPCIÓN DEL INVENTO
Para el desarrollo de biorreactor aerobio multi-media de alto contenido de biomasas se presentaron una serie de problemáticas que se fueron resolviendo. a) El uso de difusores de membrana fina mejora substancialmente la capacidad de tratamiento en comparación a un sistema de burbuja gruesa; sin embargo, las membranas son componentes delicados que requieren mantenimiento más frecuente. Para resolver este problema se realizo un sistema de intercambio de difusores que permite dar mantenimiento sin interrumpir el proceso y desde la parte exterior del biorreactor. Esto tiene como ventaja principal un mantenimiento más sencillo sin la necesidad de vaciar el biorreactor completo para lograr el mismo objetivo. b) El uso de bioportadores suspendidos con difusores de burbuja fina es problemático ya que los bioportadores pueden
hacer contacto con la membrana y dañarla al viajar por el biorreactor. Esta posibilidad se vuelve una certidumbre al contemplar que el biorreactor cuanta con miles o decenas de miles de bioportadores dentro de un solo biorreactor. Para resolver este problema se creo una cubierta especial para proteger al difusor de este tipo de contacto no deseado con los bioportadores, volviendo factible el uso de ambos en un solo biorreactor. c) El implementar difusores de burbuja fina mejora la relación de intercambio de oxigeno del sistema ya que el tamaño de burbuja es más pequeño y sube más lento. Desafortunadamente, esto reduce la capacidad de mezclado del biorreactor por medio de la inyección de aire en comparación a un sistema de burbuja gruesa que sube más rápido y con más fuerza. Esto se vuelve problemático cuando se agregan bioportadores al biorreactor ya que al ser ligeramente menos densos que el agua, tienden a flotar, y sin un mezclado adecuado tienden a apelmazarse en la parte superior del biorreactor con muy poco movimiento. Para solucionar este problema se implemento el sistema de mezclado de columna para poder compensar la falta de mezclado por parte del aire. Esto le permite operar al biorreactor en un esquema superior ya que se cuenta con un mejor mezclado e intercambio de oxigeno que lo que se puede lograr utilizando burbuja gruesa.
De manera general biorreactor aerobio multi-media de alto contenido de biomasas, de conformidad con la presente
invención consiste en un cuerpo cilindrico con una pared de fondo y una tapa de cobertura superior, el cual presenta en la zona alta del cuerpo al menos una entrada de agua a tratar proveniente de una etapa previa o al menos una entrada de agua de reflujo de recirculación o ambas; e internamente aloja un sistema mezclador en columna montado centralmente en la tapa de cobertura superior y cuyo extremo inferior se aloja en la zona superior de un ducto central de recirculación dispuesto centralmente en el fondo del biorreactor que se proyecta verticalmente hasta la parte superior del mismo; de manera que dicho sistema mezclador en columna y dicho ducto central de recirculación crean un efecto de recirculación interna en el biorreactor que empuja el agua del influente y de recirculación junto con una pluralidad de bioportadores contenidos en el biorreactor desde la parte superior de éste hasta una zona próxima al fondo del mismo, que salen a través de una abertura de salida de agua de dicho ducto central de recirculación; un sistema de inyección de aire al biorreactor para generar el proceso de degradación biológico aerobio, definido por un distribuidor circular de aire que cuenta con una entrada de aire presurizado desde una fuente de suministro de aire y que distribuye aire a una pluralidad de ramales individuales de difusión de aire que presentan una válvula de paso que permite cortar o restaurar el flujo de aire de cada ramal, en donde en cada ramal se acoplan difusores de burbuja fina de aire que penetral perpendicularmente la pared del biorreactor en una zona próxima al extremo inferior que permite una coexistencia
de un ambiente con bioportadores en un biorreactor de aireación de burbuja fina.
En la modalidad preferida de la invención dicho sistema mezclador en columna está definido por un motorreductor que queda expuesto sobre la tapa de cobertura superior; en dicho motorreductor se acopla mediante un casquillo de unión una flecha motriz que se proyecta interiormente; medios de montaje de una base de soporte de un subensamble del mezclador en columna donde se acopla el extremo superior de un tubo de unión vertical que comprende dos entradas comunicadas con la entrada de agua a tratar proveniente de una etapa previa y la entrada de agua de reflujo de recirculación, y en el extremo inferior se acopla un tubo barrenado para salida de flujo de entrada; medios para montar y centrar dentro de dicho tubo de unión vertical y permitir el giro del extremo inferior de la flecha donde se acopla una propela de mezclado que queda expuesta para causar un flujo axial descendente dentro del ducto central de recirculación, esto permite que el agua con bioportadores dentro del biorreactor y el agua que entra al mismo se mezcle y baje hasta el fondo a través de dicho ducto central de recirculación, incrementando sensiblemente el factor de contacto, y por ende la capacidad de tratamiento.
En la modalidad preferida de la invención dichos medios de montaje de una base de soporte de un subensamble del mezclador en columna donde se acopla el extremo superior de
un tubo de unión vertical, están definidos por un copie de montaje al motorreactor en donde se copla una base de soporte de subensamble y una placa de montaje de motorreductor.
En la modalidad preferida de la invención dichos medios para montar y centrar dentro de dicho tubo de unión vertical y permitir el giro del extremo inferior de la flecha donde se acopla una propela de mezclado que queda expuesta para causar un flujo axial descendente dentro del ducto central de recirculación, están definidos por un casquillo de fricción que se monta en el extremo inferior de la flecha que pasa a través de un plato de centrado inferior y se conecta a una camisa de rodamientos; sendos brazos de centrado conectados radialmente para mantener el sistema alineado dentro de un ducto central de recirculación y una camisa de acople de centrado dispuesta i nferiorme nte .
En la modalidad preferida de la invención dicho ducto central de recirculación se dispone centralmente en el fondo del biorreactor y se proyecta verticalmente hasta la parte superior del mismo, alojando en su sección superior la sección inferior de dicho sistema mezclador en columna. Dicho ducto central de recirculación comprende en una sección próxima al extremo inferior, es decir, próxima al fondo del biorreactor, una abertura de salida de agua de recirculación interna donde se disponen circunferencialmente mamparas inductoras de flujo helicoidal de forma curvada en las cuales coincide dicha abertura de salida
de recirculación interna, de modo que se genera un flujo helicoidal de recirculación interna.
Dicho ducto central de recirculación en conjunto con el sistema mezclador de columna permite la generación de una corriente de recirculación descendente a través de su interior y ascendente a través del área comprendida entre su pared exterior y la pared del cuerpo del biorreactor, concentrando el flujo del sistema mezclador de columna hasta el fondo del biorreactor, lo cual permite mezclar la totalidad de agua del biorreactor con una propela de mezclado y el un motorreductor.
En otra de las modalidades preferidas de la invención, en la zona superior del biorreactor se dispone una malla de retención de los bioportadores, que impide la salida de bioportadores dentro del biorreactor a otras etapas de tratamiento, permitiendo solo el paso de agua a etapas posteriores, pero impide la salida de los bioportadores.
En otra de las modalidades de la invención dicho sistema de inyección de aire responsable de inyectar el aire al biorreactor para generar el proceso de degradación biológico aerobio, está conformado por un tubo rolado circular definido por una pluralidad de secciones tubulares roladas unidas mediante copies ranurados de unión; el tubo rolado circular cuenta con una entrada de aire presurizado desde una fuente de suministro de aire y distribuye aire a una pluralidad de ramales
individuales de difusión de aire. Cada ramal de difusión de aire comprende niples de unión que conecta al tubo rolado circular y una válvula de paso que permite cortar o restaurar el flujo de aire a cada ramal de difusión individual. A dicha válvula de paso se conecta un niple de unión para unir mediante un copie ranurado otro niple de montaje al biorreactor en donde se dispone internamente una espiga interna portad ¡fusor unido a un ducto difusor de burbuja fina que genera pequeñas burbujas de aire dentro del biorreactor con el aire que se le proporciona al sistema de inyección de aire. Esto permite la creación de una colonia bacteriana de tipo aerobio dentro del biorreactor y comienza la degradación de contaminantes presentes en el agua a tratar.
En la modalidad preferida de la invención cada un de dichos ductos difusores de burbuja fina comprenden inferiormente una cubierta protectora semicircular que protege la membrana de burbuja fina montada en los ductos difusores de burbuja fina, del contacto de los bioportadores presentes dentro del biorreactor, ya que éstos pueden dañar las membranas de burbuja fina del mismo.
El sistema de inyección de aire además comprende un copie de unión externo que une el niple de montaje con un tapón ranurado que sella externamente cada ramal de difusión individual. Un perno de apriete con rondana de apriete penetra en un barreno del niple de montaje al biorreactor para fijar la
espiga interna portadifusor en el interior de dicho niple de montaje, y un par de juntas tóricas de sellado hidráulico permiten el sellado hidráulico del interior del biorreactor con respecto a la cámara de aire en el niple de montaje, la espiga interna portadifusor y el exterior del biorreactor.
Dicho biorreactor, además comprende una entrada de hombre de inspección en la zona baja del mismo, y una pluralidad de anclas de fijación en la base del mismo.
El biorreactor de conformidad con la presente invención permite unificar en un solo proceso diferentes factores que le permiten operar con una eficiencia superior tanto en remoción de contaminantes, como en uso energético.
1. El sistema utiliza un sistema de difusión de aire en burbuja fina, lo cual incrementa el área superficial del aire inyectado y reduce la velocidad de ascensión del mismo. Esto incrementa la capacidad de transferencia de oxigeno con la colonia bacteriana presente dentro del biorreactor substancialmente. Como consecuencia, el biorreactor opera más eficientemente al requerir un volumen menor de aire inyectado para realizar la misma transferencia de oxigeno a la bacteria presente.
2. El biorreactor cuenta con altas cantidades de bioportadores suspendidos en el agua los cuales sirven como una superficie de adherencia para la colonia bacteriana aerobia que realiza el proceso biológico del biorreactor. Estos
bioportadores incrementan la cantidad de bacteria presente en el biorreactor, lo cual incrementa la capacidad de remoción de contaminantes de éste.
3. El biorreactor cuenta con un sistema de mezclado de columna el cual mantiene la totalidad del volumen de éste en movimiento constante. Esto incrementa sensiblemente el factor de contacto del biorreactor al permitir una mayor y mejor interacción entre la bacteria presente, el oxigeno dentro del aire inyectado, y el agua contaminada dentro del biorreactor. Adicionalmente, este sistema de mezclado de columna permite recircular agua desde la parte superior del biorreactor hasta el fondo. Este sistema de flujo ascendente-descendente repetitivo facilita el movimiento de los bioportadores en la totalidad del biorreactor a pesar de que éstos son ligeramente menos densos que el agua.
4. El biorreactor cuenta con unas mamparas inductoras de flujo en la parte inferior de la salida del ducto central de recirculación para generar un flujo ascendente vertical en la parte del biorreactor donde se inyecta el aire. Este flujo helicoidal le agrega un tiempo de residencia mayor a la burbuja fina en su trayecto ascendente lo cual incrementa la eficiencia de intercambio de oxigeno en todo el biorreactor.
Para comprender mejor las características de la invención se acompaña a la presente descripción, como parte integrante de la misma, los dibujos con carácter ilustrativo más no limitativo, que se describen a continuación.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 muestra un explosionado del biorreactor aerobio multi-media de alto contenido de biomasas, de conformidad con la modalidad preferida de la invención.
La figura 2 muestra una vista en perspectiva convencional del biorreactor aerobio multi-media de alto contenido de biomasas, completamente ensamblado, de conformidad con la modalidad preferida de la invención.
La figura 3 muestra un explosionado del sistema mezclador en columna que se aloja al interior del de conformidad con la modalidad preferida de la invención.
La figura 4 ¡lustra un corte axial del sistema mezclador en columna, ensamblado y que se aloja al interior del de conformidad con la modalidad preferida de la invención.
La figura 5 muestra una vista superior del ducto central de recirculación que aloja el sistema mezclador en columna, mostrando la disposición de mamparas deflectoras de flujo helicoidal.
La figura 6 muestra una vista en perspectiva convencional del ducto central de recirculación que aloja el sistema mezclador en columna, mostrando la apertura de salida de recirculación
interna y la disposición de mamparas deflectoras de flujo helicoidal.
La figura 7 muestra una esquematización en perspectiva convencional del ducto central de recirculación, con las enseñanzas de la presente invención.
La figura 8 ¡lustra una esquematización en vista frontal del ducto central de recirculación, con las enseñanzas de la presente invención.
La figura 9 ¡lustra una vista en perspectiva convencional de la malla de retención de bioportadores que se dispone al interior en la zona superior del biorreactor.
La figura 10 muestra un explosionado de la malla de retención de bioportadores que se dispone al interior en la zona superior del biorreactor.
La figura 11 muestra una vista en perspectiva convencional del sistema de inyección de aire al ducto central de recirculación.
La figura 12 muestra un explosionado del ducto central de recirculación .
La figura 13 muestra un explosionado de un ramal individual de difusión de aire del sistema de inyección de aire al biorreactor.
La figura 14 muestra en explosionado un niple de montaje al
biorreactor donde se aloja internamente una espiga interna portadifusor del sistema de inyección de aire al biorreactor.
Para una mejor comprensión del invento, a continuación, se describirá detalladamente de alguna de las modalidades del mismo, mostrada en los dibujos que con fines ilustrativos mas no limitativos se anexan a la presente descripción.
DESCRIPCIÓN DETALLADA DEL INVENTO
Los detalles característicos del biorreactor aerobio multi-media de alto contenido de biomasas, se muestran claramente en la siguiente descripción y en los dibujos ilustrativos que se anexan, sirviendo los mismos signos de referencia para señalar las mismas partes.
De acuerdo con las figuras 1 a 4, el reactor está definido por un cuerpo cilindrico (1) con un fondo (2) y una tapa superior (3), el cual presenta en la parte alta una entrada de agua del biorreactor de una etapa previa (4) y una entrada de agua de reflujo de recirculación (5); internamente aloja un sistema mezclador en columna (6) que es el responsable de crear un efecto de recirculación interna en el biorreactor. En conjunto con un ducto central de recirculación (7) empuja el agua y los bioportadores (8, ver figura 7 y 8) desde la parte superior del biorreactor hasta el fondo del mismo. Esto permite que se tenga
la coexistencia de un ambiente con bioportadores (8, ver figuras
7 y 8) en el biorreactor de aireación de burbuja fina.
Dicho sistema mezclador en columna (6) está definido por un motorred uctor (9) que queda expuesto sobre la tapa superior (3), en dicho motorreductor (9) se acopla mediante un casquillo de unión (10) una flecha motriz (11) que se proyecta interiormente y un copie de montaje (12) al motorreactor (9), en donde se acopla una base de soporte de subensamble (13) del mezclador en columna (6) y una placa de montaje de motorreductor (14). Un tubo de unión (15) se acopla externamente al motorreductor (9), el cual está conectado a un par de conectores en “T” de entrada de agua (16 y 17) donde a través de ductos se conectan la entrada de agua del biorreactor de una etapa previa (4) y la entrada de agua de reflujo de recirculación (5), unidos mediante un niple (18) y en el extremo inferior del conector T (17) se acopla un tubo barrenado (19) para salida de flujo de entrada. Un casquillo de fricción (20) se monta en el extremo inferior de la flecha motriz (11) que pasa a través de un plato de centrado inferior (21) y se conecta a una camisa de rodamientos (22); sendos brazos de centrado (23) se conecta radialmente para mantener el sistema alineado dentro de un ducto central de recirculación (7, ver figura 1), una camisa de acople de centrado (24) se dispone interiormente y finalmente se muestra una propela de mezclado (25) que recibe transmisión desde dicha flecha motriz (11) y se sienta en un casquillo motriz (26) de la propela de mezclado (25).
La propela de mezclado (25) en conjunto con el motorreductor (9), casquillo de unión (10), la flecha motriz (11), el casquillo de fricción (20) y el casquillo motriz (26) de la propela de mezclado (25) giran para causar un flujo axial descendente dentro del ducto central de recirculación (7). Esto permite que el agua con bioportadores (8, ver figuras 7 y 8) dentro del biorreactor y la que entra al mismo, se mezcle y baje hasta el fondo, incrementando sensiblemente el factor de contacto, y por ende la capacidad de tratamiento.
Con respecto a las figuras 5 y 6, un ducto central de recirculación (7, ver figura 1, 5 y 6), se dispone centralmente en el fondo del biorreactor y se proyecta verticalmente hasta la parte superior del mismo, alojando en su sección superior dicho sistema mezclador en columna (6, ver figuras 3 y 4), como se muestra en las figuras 7 y 8. Dicho ducto central de recirculación (7) comprende en una sección próxima al extremo inferior, es decir próxima al fondo del biorreactor una abertura de salida de recirculación interna (27) y una pluralidad de mamparas inductoras de flujo helicoidal (28) de forma curvada en una de las cuales coincide la abertura de salida de recirculación interna (27), de modo que se genera un flujo helicoidal de recirculación interna. El ducto central de recirculación (7), permite la creación de una recirculación descendente-ascendente en conjunto con el sistema mezclador de columna (6), concentra el flujo del sistema mezclador de columna (6) hasta el fondo del biorreactor, lo cual permite
mezclar la totalidad del biorreactor con la propela de mezclado (25, ver figuras 3 y 4) y el un motorreductor (9, ver figuras 3 y 4) de menor capacidad y, por ende, menor consumo eléctrico.
De acuerdo con las figuras 1 y 7 a 10, en la zona superior del biorreactor se dispone una malla de retención (29) de los bioportadores (8, ver figuras 7 y 8), conformada por un anillo laminado superior (30) y un anillo laminado inferior (31), al menos uno o más segmentos tubulares anulares de gran diámetro (32) unidos entre si en arreglo circular a través de una pluralidad de perfiles verticales (33) y soportes (34) con el anillo laminado superior (30) y el anillo laminado inferior (31). Dicha malla de retención (29) impide la salida de bioportadores (8, ver figuras 7 y 8) dentro del biorreactor a otras etapas de tratamiento. Los soportes (34) con el anillo laminado superior (30) y el anillo laminado inferior (31), se encuentran unidos en toda su periferia por una malla de tramado mediano-fino (no mostrada), la cual permite el paso de agua a etapas posteriores, pero impide la salida de los bioportadores (8, ver figuras 7 y 8). De igual manera, provee un asiento con la base superior del cuerpo del biorreactor, la cual le permite postrarse en su posición sin necesidad de elementos mecánicos.
De acuerdo con las figuras 1, 7, 8 y 11 a 14, se muestra un sistema de inyección de aire (35, ver figura 11) responsable de inyectar el aire al cuerpo cilindrico (1, ver figuras 1, 2, 7 y 8) del biorreactor para generar el proceso de degradación biológico
aerobio, éste se define por un tubo rolado circular (36) definido por una pluralidad de secciones tubulares roladas (37) unidas mediante copies ranurados de unión (38). El tubo rolado circular (36) cuenta con una entrada de aire (39) desde una fuente de suministro de aire presurizado y que distribuye aire a una pluralidad de ramales individuales de difusión de aire. Cada ramal de difusión de aire comprende niples de unión (40) que conecta al tubo rolado circular (36) y una válvula de paso (41) que permite cortar o restaurar el flujo de aire a cada ramal de difusión individual. A dicha válvula de paso (41) se conecta un niple de unión (42) para unir mediante un copie ranurado (43) otro niple de montaje (44) al biorreactor donde se dispone internamente una espiga interna portadifusor (45) unido a un ducto difusor de burbuja fina (46) que genera pequeñas burbujas de aire dentro del biorreactor con el aire que se le proporciona al sistema de inyección de aire (35). Esto permite la creación de una colonia bacteriana de tipo aerobio dentro del biorreactor y comienza la degradación de contaminantes presentes en el agua a tratar.
Cada uno de dichos ductos difusores de burbuja fina (46) comprenden interiormente una cubierta protectora semicircular (47) que protege la membrana de burbuja fina montada en los ductos difusores de burbuja fina (46) del contacto de los bioportadores (8, ver figuras 7 y 8) presentes dentro del biorreactor, ya que éstos pueden dañar las membranas de burbuja fina del mismo.
El sistema de inyección de aire (35) además comprende un copie
de unión externo (48) que une el niple de montaje (44) con un tapón ranurado (49) que sella externamente cada ramal de difusión individual.
Un perno de apriete (50) con rondana de apriete (51) penetra en un barreno del niple de montaje (44) al biorreactor para fijar la espiga interna portadifusor (45) en el interior de dicho niple de montaje (44). Y un par de juntas tóricas de sellado hidráulico (52) permiten el sellado hidráulico del interior del biorreactor con respecto a la cámara de aire en el niple de montaje (44) y la espiga interna portadifusor (45) y el exterior del biorreactor.
De acuerdo con las figuras 1 y 2 el biorreactor además comprende una entrada de hombre de inspección (53) en la zona baja del mismo, y anclas de fijación (54) en la base del mismo.
El invento ha sido descrito suficientemente como para que una persona con conocimientos medios en la materia pueda reproducir y obtener los resultados que mencionamos en la presente invención. Sin embargo, cualquier persona hábil en el campo de la técnica que compete el presente invento puede ser capaz de hacer modificaciones no descritas en la presente solicitud, sin embargo, si para la aplicación de estas modificaciones en una estructura determinada o en el proceso de manufactura del mismo, se requiere de la materia reclamada en las siguientes reivindicaciones, dichas estructuras deberán ser comprendidas dentro del alcance de la invención.
Claims
1.- Un biorreactor aerobio multi-media de alto contenido de biomasas, caracterizado porque comprende un cuerpo cilindrico con una pared de fondo y una tapa de cobertura superior, el cual presenta en la zona alta al menos una entrada de agua a tratar proveniente de una etapa previa o al menos una entrada de agua de reflujo de recirculación o ambas; e internamente aloja un sistema mezclador en columna montado en la tapa de cobertura superior y cuyo extremo inferior se aloja en la zona superior de un ducto de recirculación dispuesto en el fondo del biorreactor que se proyecta verticalmente hasta la parte superior del mismo; de manera que dicho sistema mezclador en columna y dicho ducto central de recirculación crean un efecto de recirculación interna en el biorreactor que empuja el agua del influente y/o de recirculación junto con una pluralidad de bioportadores contenidos en el biorreactor desde la parte superior de éste hasta una zona próxima al fondo del mismo, que salen a través de una abertura de salida de agua de dicho ducto de recirculación; un sistema de inyección de aire al biorreactor para generar el proceso de degradación biológico aerobio, definido por un distribuidor circular de aire que cuenta con una entrada de aire presurizado desde una fuente de suministro de
aire y que distribuye aire a una pluralidad de ramales individuales de difusión de aire que presentan una válvula de paso para cortar o restaurar el flujo de aire en cada ramal, en donde en cada ramal se acoplan difusores de burbuja fina de aire que penetral la pared del biorreactor en una zona próxima al extremo inferior.
2.- El biorreactor aerobio multi-media de alto contenido de biomasas, de acuerdo con la reivindicación 1, caracterizado porque dicho sistema mezclador en columna está definido por un motorreductor que queda expuesto sobre la tapa de cobertura superior; en dicho motorreductor se acopla mediante un casquillo de unión una flecha motriz que se proyecta interiormente dentro de dicho biorreactor; medios de montaje de una base de soporte de un subensamble del mezclador en columna donde se acopla el extremo superior de un tubo de unión vertical que comprende dos entradas comunicadas con la entrada de agua a tratar proveniente de una etapa previa y la entrada de agua de reflujo de recirculación, y en el extremo inferior se acopla un tubo barrenado para salida de flujo de entrada; medios para montar y centrar dentro de dicho tubo de unión vertical y permitir el giro del extremo inferior de la flecha donde se acopla una propela de mezclado que queda expuesta para causar un flujo axial descendente dentro del ducto de recirculación, ocasionando que el agua con bioportadores dentro del biorreactor y el agua que entra al mismo se mezcle y baje hasta el fondo a través de dicho ducto de recirculación.
3.- El biorreactor aerobio multi-media de alto contenido de biomasas, de acuerdo con la reivindicación 2, caracterizado porque dichos medios de montaje de una base de soporte de un subensamble del mezclador en columna donde se acopla el extremo superior de un tubo de unión vertical están definidos por un copie de montaje al motorreactor en donde se copla una base de soporte de subensamble y una placa de montaje de motorred uctor.
4.- El biorreactor aerobio multi-media de alto contenido de biomasas, de acuerdo con la reivindicación 2, caracterizado porque dichos medios para montar y centrar dentro de dicho tubo de unión vertical y permitir el giro del extremo inferior de la flecha donde se acopla una propela de mezclado que queda expuesta, están definidos por un casquillo de fricción que se monta en el extremo inferior de la flecha que pasa a través de un plato de centrado inferior y se conecta a una camisa de rodamientos; sendos brazos de centrado conectados radialmente para mantener el sistema alineado dentro de un ducto de recirculación y una camisa de acople de centrado dispuesta i nferiorme nte .
5.- El biorreactor aerobio multi-media de alto contenido de biomasas, de acuerdo con la reivindicación 1, caracterizado porque dicho ducto de recirculación se dispone centralmente en el fondo del biorreactor y se proyecta verticalmente hasta la
parte superior del mismo, alojando en su sección superior la sección inferior de dicho sistema mezclador en columna y comprendiendo en una sección próxima al extremo inferior, es decir, próxima al fondo del biorreactor, una abertura de salida de agua de recirculación interna donde se disponen circunferencialmente mamparas inductoras de flujo helicoidal de forma curvada para generar una flujo helicoidal de recirculación i nterna.
6.- El biorreactor aerobio multi-media de alto contenido de biomasas, de acuerdo con la reivindicación 1, caracterizado porque dicho ducto de recirculación en conjunto con el sistema mezclador de columna están configurados para generar una corriente de recirculación descendente a través de su interior y ascendente a través del área comprendida entre su pared exterior y la pared del cuerpo del biorreactor, concentrando el flujo descendente del sistema mezclador de columna hasta el fondo del biorreactor.
7.- El biorreactor aerobio multi-media de alto contenido de biomasas, de acuerdo con la reivindicación 1, caracterizado porque además comprende una malla de retención de los bioportadores dispuesta en la zona superior del biorreactor que impide la salida de bioportadores a otras etapas de tratamiento.
8.- El biorreactor aerobio multi-media de alto contenido de biomasas, de acuerdo con la reivindicación 1, caracterizado
porque dicho sistema de inyección de aire está conformado por un tubo rolado circular definido por una pluralidad de secciones tubulares roladas unidas mediante copies ranurados de unión; el tubo rolado circular cuenta con una entrada de aire presurizado desde una fuente de suministro de aire y distribuye aire a una pluralidad de ramales individuales de difusión de aire; en donde cada ramal de difusión de aire comprende niples de unión que conecta al tubo rolado circular y una válvula de paso que permite cortar o restaurar el flujo de aire a cada ramal de difusión individual; a dicha válvula de paso se conecta un niple de unión para unir mediante un copie ranurado otro niple de montaje al biorreactor en donde se dispone internamente una espiga interna portadifusor unido a un ducto difusor de burbuja fina que genera pequeñas burbujas de aire dentro del biorreactor con el aire que se le proporciona al sistema de inyección de aire.
9.- El biorreactor aerobio multi-media de alto contenido de biomasas, de acuerdo con la reivindicación 8, caracterizado porque cada un de dichos ductos difusores de burbuja fina comprenden interiormente una cubierta protectora semicircular que protege la membrana de burbuja fina montada en los ductos difusores de burbuja fina, del contacto de los bioportadores presentes dentro del biorreactor.
10- El biorreactor aerobio multi-media de alto contenido de biomasas, de acuerdo con la reivindicación 8, caracterizado porque dicho sistema de inyección de aire además comprende un
copie de unión externo que une el niple de montaje con un tapón ranurado que sella externamente cada ramal de difusión individual; un perno de apriete con rondana de apriete penetra en un barreno del niple de montaje al biorreactor para fijar la espiga interna portadifusor en el interior de dicho niple de montaje, y un par de juntas tóricas de sellado hidráulico permiten el sellado hidráulico del interior del biorreactor con respecto a la cámara de aire en el niple de montaje, la espiga interna portadifusor y el exterior del biorreactor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2022002497A MX2022002497A (es) | 2022-02-25 | 2022-02-25 | Bioreactor aerobio multi-media de alto contenido de biomasas. |
MXMX/A/2022/002497 | 2022-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023163580A1 true WO2023163580A1 (es) | 2023-08-31 |
Family
ID=87766509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/MX2022/050011 WO2023163580A1 (es) | 2022-02-25 | 2022-02-28 | Bioreactor aerobio multi-media de alto contenido de biomasas |
Country Status (2)
Country | Link |
---|---|
MX (1) | MX2022002497A (es) |
WO (1) | WO2023163580A1 (es) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999061378A1 (en) * | 1998-05-22 | 1999-12-02 | Atara Environmental, Inc. | Multistage facultative wastewater treatment system |
WO2019103594A1 (es) * | 2017-11-27 | 2019-05-31 | Valdes Simancas Francisco Xavier | Contactor biológico flotante para tratamiento de aguas residuales |
WO2019216753A1 (es) * | 2018-05-11 | 2019-11-14 | Valdes Simancas Francisco Xavier | Bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales |
WO2022075830A1 (es) * | 2020-10-05 | 2022-04-14 | Valdes De La Garza Xavier | Bioreactor anaerobio multi-media de alto contenido de biomasas y factor de contacto |
-
2022
- 2022-02-25 MX MX2022002497A patent/MX2022002497A/es unknown
- 2022-02-28 WO PCT/MX2022/050011 patent/WO2023163580A1/es unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999061378A1 (en) * | 1998-05-22 | 1999-12-02 | Atara Environmental, Inc. | Multistage facultative wastewater treatment system |
WO2019103594A1 (es) * | 2017-11-27 | 2019-05-31 | Valdes Simancas Francisco Xavier | Contactor biológico flotante para tratamiento de aguas residuales |
WO2019216753A1 (es) * | 2018-05-11 | 2019-11-14 | Valdes Simancas Francisco Xavier | Bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales |
WO2022075830A1 (es) * | 2020-10-05 | 2022-04-14 | Valdes De La Garza Xavier | Bioreactor anaerobio multi-media de alto contenido de biomasas y factor de contacto |
Also Published As
Publication number | Publication date |
---|---|
MX2022002497A (es) | 2023-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101594086B1 (ko) | 나노버블 및 수산화 라디칼 발생장치와 이를 이용한 오염수 무약품 처리시스템 | |
JP6198029B2 (ja) | 排水処理システム及び排水処理方法 | |
CN101618925B (zh) | 一种污水处理装置 | |
US7524419B2 (en) | Mixer for use with media in wastewater treatment | |
JP6750930B6 (ja) | 汚排水浄化システム | |
KR101884448B1 (ko) | 오존을 이용한 하폐수의 고도 수처리장치 | |
KR101638970B1 (ko) | 엠비비알을 이용한 선박용 오폐수 처리 장치 | |
CN107200401A (zh) | 厌氧‑缺氧‑好氧‑膜组件处理方法 | |
KR200449869Y1 (ko) | 고도산화공정을 이용한 부유식 물정화장치 | |
US20210276902A1 (en) | Wastewater treatment system | |
CN107176679A (zh) | 厌氧‑缺氧‑好氧‑好氧‑膜组件处理方法 | |
KR101627642B1 (ko) | 고도수처리장치 | |
KR200449463Y1 (ko) | 태양광에너지를 이용한 고도산화공정방식의 부유식 물정화장치 | |
WO2019216753A1 (es) | Bioreactor combinado con múltiples etapas para procesos anaerobios, anóxicos, aerobios, clarificación y desinfección en tratamiento de aguas residuales | |
ES2397304T3 (es) | Mejoras relacionadas con el tratamiento de agua | |
WO2023163580A1 (es) | Bioreactor aerobio multi-media de alto contenido de biomasas | |
CN107151054A (zh) | 厌氧‑缺氧‑好氧‑好氧‑膜组件处理装置 | |
KR102315900B1 (ko) | A2o 및 sbr 하이브리드형 폐수처리 시스템 | |
KR101750449B1 (ko) | 고정형 속도가변식 표면포기장치와 부유식 배출장치를 이용한 sbr공법의 소규모 하 폐수 처리장치 및 공정 | |
KR101617426B1 (ko) | 순산소 공급에 의한 하폐수의 고도 수처리장치 | |
KR102153994B1 (ko) | 순환식 상부 집중포기 체적변화형 산기식 수처리 장치 | |
CN212559882U (zh) | 一种水质净化装置 | |
RU2725262C1 (ru) | Блочно-модульное сооружение очистки сточных вод | |
KR101081031B1 (ko) | 슬러지와 하수 총인 감소 및 축산분뇨 액비화 처리장치 및 이를 이용한 처리방법 | |
KR100997446B1 (ko) | 미세 기포발생기 및 그를 구비한 오폐수처리시설 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22929109 Country of ref document: EP Kind code of ref document: A1 |