WO2019216331A1 - Sputtering device, method for manufacturing multilayered film, film forming device, and method for using film forming device - Google Patents

Sputtering device, method for manufacturing multilayered film, film forming device, and method for using film forming device Download PDF

Info

Publication number
WO2019216331A1
WO2019216331A1 PCT/JP2019/018339 JP2019018339W WO2019216331A1 WO 2019216331 A1 WO2019216331 A1 WO 2019216331A1 JP 2019018339 W JP2019018339 W JP 2019018339W WO 2019216331 A1 WO2019216331 A1 WO 2019216331A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
workpiece
target
holding member
region
Prior art date
Application number
PCT/JP2019/018339
Other languages
French (fr)
Japanese (ja)
Inventor
稲葉 輝明
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2020518310A priority Critical patent/JPWO2019216331A1/en
Publication of WO2019216331A1 publication Critical patent/WO2019216331A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a technique for producing a multilayer film and a film forming apparatus for forming a thin film such as a reflective film.
  • a sputtering apparatus has been devised as an apparatus for forming a thin film on the surface of a sample such as a substrate or a base material.
  • a magnetron sputtering apparatus has been devised that has a relatively high film formation rate and little plasma damage to the sample (see Patent Document 1).
  • a reflective component having a reflective surface on its surface is produced by forming a metal thin film on the surface of a substrate (resin, glass, metal, etc.).
  • a method of forming a metal thin film a method of forming a metal thin film by fixing a base material (work) in a chamber and attaching a material evaporated (sublimated) from a sputtering target or an evaporation source to the surface of the base material is known. (See Patent Document 2).
  • the present invention has been made in view of such circumstances, and one of exemplary purposes thereof is to provide a new technique for forming a multilayer film with a simple configuration.
  • a sputtering apparatus includes a placement unit on which a sample to be deposited is placed, a target having a plurality of regions made of different types of metals or alloys, A magnetron unit provided on the back side of the target, a power source for applying a voltage between the sample and the target, and a moving mechanism configured to move relative to each other while the target and the magnetron unit face each other.
  • the magnetron unit is configured to selectively face each of the plurality of regions of the target.
  • a layer containing the first type metal or alloy is formed, and the plurality of regions of the target
  • a layer containing the second type metal or alloy can be formed.
  • the first type metal or alloy and the second type metal or A layer containing an alloy can be formed.
  • the target may have a first region made of aluminum and a second region made of chromium. Thereby, a multilayer film having a layer containing aluminum and a second layer containing chromium can be formed.
  • a layer containing the first type metal or alloy is formed, and the plurality of regions of the target.
  • the third layer moves while the magnetron unit moves from a position facing the first region to a position facing the second region.
  • You may have the intermediate process of forming.
  • the third layer may be formed as a gradient film that gradually changes from the composition of the first layer to the composition of the second layer.
  • a 3rd layer can be formed as a gradient film which changed gradually from the composition of the 1st layer to the composition of the 2nd layer between the 1st layer and 2nd layer from which composition differs. Therefore, by interposing the third layer between the first layer and the second layer, the adhesion between the layers in the multilayer film is increased.
  • the first layer may be a thin film mainly made of chromium
  • the second layer may be a thin film mainly made of aluminum
  • the third layer may be a gradient film mainly made of chromium and aluminum.
  • a film forming apparatus includes a vacuum chamber, a holding member that is provided in the vacuum chamber and holds a work to be formed, and a raw material that adheres to the surface of the work held by the holding member as a thin film. And a placement unit to be placed.
  • the holding member includes a storage portion that follows the shape of the workpiece to be held, and a filling portion that fills a space between the storage portion and the vacuum chamber.
  • the gap in the vacuum chamber is reduced, and the time required for exhausting to a predetermined degree of vacuum can be reduced.
  • the holding member may have a volume ratio of 40 to 95% in the internal space of the vacuum chamber. Thereby, the time required for exhausting to a predetermined degree of vacuum can be further reduced.
  • the housing portion may be a resin material in which a metal thin film is formed in a portion in contact with (facing) the workpiece. Thereby, it can suppress that impurities, such as a water
  • Another aspect of the present invention is a method of using a film forming apparatus.
  • This method is a method of using a film forming apparatus for forming a film on the surface of a work held by a holding member in a vacuum chamber, and the first work is placed on a first holding member selected from a plurality of holding members.
  • the first holding member preferably has a volume ratio of 40 to 95% in the internal space of the vacuum chamber in a state where the first work is held.
  • the second holding member may have a volume ratio of 40 to 95% in the internal space of the vacuum chamber in a state where the second workpiece is held.
  • the volume ratio in the internal space of the vacuum chamber is A%.
  • the vacuum chamber If the ratio of the volume occupying the internal space is B%, the following formula (1) 0.5 ⁇ A / B ⁇ 1.5 (1) may be satisfied. Thereby, even if it is a workpiece
  • a multilayer film can be formed with a simple configuration. Or according to this invention, the operation rate of the film-forming apparatus can be improved.
  • FIG. 4A is a side view schematically showing an example of a multilayer film using a transparent material as a base material formed by a sputtering apparatus
  • FIG. 4B is formed by a sputtering apparatus. It is the side view which showed typically the other example of the multilayer film which used the transparent material for the base material. It is the figure which showed typically the modification of the target which concerns on this Embodiment.
  • FIG. 6A is a schematic diagram showing a schematic configuration of a magnetron unit of the sputtering apparatus according to the second embodiment
  • FIG. 6B is a diagram of a target that can be used in the sputtering apparatus according to the second embodiment.
  • It is a top view which shows an example.
  • It is a schematic diagram for demonstrating schematic structure of the vapor deposition apparatus which concerns on 3rd Embodiment.
  • FIG. 11A to FIG. 11D are schematic views for explaining the operation process of the vapor deposition apparatus according to the fourth embodiment.
  • FIG. 1 is a schematic diagram for explaining a schematic configuration of the sputtering apparatus according to the first embodiment.
  • description is abbreviate
  • the sputtering apparatus 10 includes a film formation chamber 12 and a magnetron unit 14 provided below the chamber 12.
  • the chamber 12 includes an exhaust path 18 that communicates with a turbo molecular pump and other exhaust devices via a valve 16, and a supply path 20 that is supplied with a discharge gas (a sputtering gas such as argon or xenon) during film formation. It is connected.
  • a discharge gas a sputtering gas such as argon or xenon
  • the inside of the chamber 12 is evacuated to a predetermined degree of vacuum by an exhaust device, and then a sputtering gas is supplied into the chamber 12 from the supply path 20.
  • the chamber 12 includes a base material holder 22 as a placement portion on which a base material (work) 21 that is a sample to be deposited is placed, and a target holder 26 that holds a target 24.
  • the target holder 26 is configured so that a high voltage is applied by a power source 28.
  • the power source 28 applies a voltage between the base material 21 and the target 24 via the base material holder 22 and the target holder 26.
  • the magnetron unit 14 is provided on the back side of the target 24, and is configured such that a pair of permanent magnet units 30 used as a magnetic field generation source and the target 24 and the magnetron unit 14 move relative to each other while facing each other.
  • Moving mechanism 32 is, for example, a spline mechanism that slides the permanent magnet unit 30 in the arrow direction.
  • the base material 21 is, for example, a resin molded product, a die-cast metal, glass, a ceramic material, or the like.
  • FIG. 2 is a side view schematically showing an example of a multilayer film formed by the sputtering apparatus 10.
  • the sputtering apparatus 10 performs sputtering while the magnetron unit 14 is stationary at a position facing the second region 24b. As a result, a metal film 34 mainly made of chromium is formed on the substrate 21. Thereafter, the sputtering apparatus 10 performs sputtering while moving the magnetron unit 14 toward the position facing the first region 24 a by the moving mechanism 32. As a result, an alloy film 36 containing aluminum and chromium is formed on the metal film 34.
  • the region to be sputtered was mostly the second region 24b made of chromium, but gradually the first region 24a made of aluminum was gradually included, and finally the first region 24b was made.
  • the region 24a is almost all.
  • the alloy film 36 has the highest chromium concentration on the surface 36a in contact with the metal film 34 (the lowest aluminum concentration) and the lowest chromium concentration on the surface 36b farthest from the surface 36a (the aluminum concentration is low). highest). That is, the alloy film 36 is an inclined film in which the composition of chromium and aluminum is inclined (the composition gradually changes) in the thickness direction.
  • the sputtering apparatus 10 performs sputtering in a state where the magnetron unit 14 is stopped at a position facing the first region 24a.
  • a metal film 38 mainly made of aluminum is formed on the alloy film 36.
  • a multilayer film 40 in which a metal film 34, an alloy film 36, and a metal film 38 are laminated in this order is formed on the substrate 21.
  • region of the target 24 do not necessarily need to be a single metal material, for example, may be an iron-type alloy containing chromium and nickel like stainless steel.
  • sputtering is performed in a state where the first region 24 a of the target 24 and the magnetron unit 14 face each other, thereby forming the metal film 38 containing aluminum, and (ii) the second region of the target 24.
  • Sputtering is performed in a state where 24b and the magnetron unit 14 face each other, whereby the metal film 34 containing chromium can be formed. Therefore, the sputtering apparatus 10 can also form a multilayer film in which the metal film 38 is directly formed on the metal film 34.
  • the alloy film 36 containing aluminum and chromium can be formed.
  • the alloy film 36 which is an inclined film can be formed between the metal film 34 and the metal film 38, compared with the case where the metal film 34 and the metal film 38 made of different metals are directly adhered, respectively.
  • the adhesion between the films (metal film 34, alloy film 36, metal film 38) is improved.
  • the sputtering apparatus 10 can form a multilayer film having a layer containing aluminum and a second layer containing chromium. That is, the sputtering apparatus 10 includes a second layer containing chromium having high corrosion resistance formed on the substrate, a first layer containing aluminum having high reflectivity formed on the second layer, Can be formed. Thereby, the corrosion resistance of the substrate to be deposited and the reflectance on the surface can be compatible at a high level.
  • a reflective film of a reflector which is one of the parts of an automotive lamp, includes an aluminum film formed by vapor deposition on a resin molded product, and an organic material formed by a polymerization apparatus as a protective film for the aluminum film (for example, a multilayer film of a protective film of a silicon oxide component using hexamethyldisiloxane) has been used.
  • a conventional protective film an apparatus for depositing aluminum and an apparatus for forming a film of an organic material by polymerization are required, which increases the cost of the apparatus and forms each layer with separate apparatuses. Therefore, it took a long manufacturing time.
  • the corrosion resistance is good (property that satisfies the hot water test and alkali resistance test) and the reflectance is high (85% or more with respect to visible light). Since a multilayer film can be formed, the apparatus cost can be reduced and the manufacturing time can be shortened. As a result, an automotive lamp part having a reflective film with high reflectance and high corrosion resistance can be manufactured.
  • the alloy film 36 is formed when the magnetron unit 14 is moved to the second region 24b, and the metal film 34 is formed with the magnetron unit 14 facing the second region 24b.
  • the multilayer film 42 is formed by reciprocating the magnetron unit 14.
  • FIG. 4A is a side view schematically showing an example of a multilayer film using a transparent material as a base material formed by the sputtering apparatus 10, and FIG. 4B is formed by the sputtering apparatus 10. It is the side view which showed typically the other example of the multilayer film which used the transparent material for the base material.
  • the multilayer film 44 in which the metal film 48 and the metal film 50 are laminated on the back surface side of the transparent substrate 46 is formed.
  • the sputtering apparatus 10 can form a multilayer film 54 in which an alloy film 52 that is an inclined film is laminated between the metal film 48 and the metal film 50.
  • the substrate 46 may be made of an opaque resin such as PBT, PET / PBT alloy material, or BMC instead of a transparent resin.
  • two regions are each composed of one kind of metal element, but one or both of the two regions may be composed of an alloy composed of a plurality of metal elements.
  • one region may be an alloy such as SUS, and the other region may be composed of a single kind of metal such as aluminum.
  • FIG. 5 is a diagram schematically showing a modification of the target according to the present embodiment.
  • a target 56 shown in FIG. 5 includes a first region 56a mainly composed of aluminum, a second region 56b mainly composed of chromium, and a third region 56c mainly composed of titanium. ing. Accordingly, it is possible to form a multilayer film including three or more kinds of metal films and a ternary alloy film. Further, by forming a partial region of the target 56 with an alloy, it is also possible to form a multi-component alloy film of ternary or higher.
  • the magnetron unit 14 according to the first embodiment is configured to reciprocate linearly while facing the target.
  • the sputtering apparatus according to the second embodiment includes a magnetron unit 58 and a moving mechanism that rotates the magnetron unit 58 around the rotation axis.
  • the target 60 has a disc shape and includes a plurality of arc-shaped regions 60a to 60e. Each of the regions 60a to 60e is made of different metals or alloys. Thereby, the sputtering apparatus according to the second embodiment can form a plurality of metal films made of different kinds of metals, an alloy film in which a plurality of metals are mixed, and can form the alloy film as an inclined film.
  • FIG. 7 is a schematic diagram for explaining a schematic configuration of a vapor deposition apparatus according to the third embodiment.
  • description is abbreviate
  • the vapor deposition apparatus 110 includes a film formation chamber 112 and a vapor deposition unit 114 provided in the lower portion of the chamber 112.
  • the chamber 112 is connected to an exhaust path 118 communicating with a turbo molecular pump or other exhaust device via a valve 116.
  • the inside of the chamber 112 is exhausted to a predetermined degree of vacuum by an exhaust device.
  • the vapor deposition apparatus 110 further includes a jig 122 provided in the chamber 112 as a holding member that holds a workpiece 120 (base material) that is a sample to be formed.
  • the vapor deposition unit 114 has an evaporation source 124 as a mounting portion on which a raw material to be attached as a thin film is mounted on the surface of the work 120 held by the jig 122.
  • the vapor deposition unit 114 heats a raw material such as metal placed on the evaporation source 124 by a method such as resistance heating, electron beam, high frequency induction, or laser.
  • the raw material examples include metals and alloys such as aluminum, copper, chromium, zinc, gold, silver, platinum, and nickel, and oxides and fluorides such as SiO 2 , TiO 2 , ZrO 2 , and MgF 2 .
  • the jig 122 includes a concave accommodating portion 126 that follows the shape of the workpiece 120 to be held, and a filling portion 128 that fills a space between the accommodating portion 126 and the inner wall of the chamber 112.
  • the holding portion that holds the workpiece inside the chamber has a very small volume ratio in the internal space of the chamber, and is less than 10% at most. Therefore, the time required for evacuating the chamber to a predetermined degree of vacuum becomes longer.
  • the vapor deposition apparatus 110 by providing the jig 122 holding the workpiece 120 in the chamber 112, the gap in the chamber 112 is reduced, and is necessary for exhausting to a predetermined degree of vacuum. Time can be reduced. Thereafter, the vapor deposition apparatus 110 operates the vapor deposition unit 114 to evaporate the raw material from the evaporation source 124, thereby forming a predetermined thin film on the surface of the work 120.
  • the jig 122 has a shape and a size such that a volume ratio in the internal space of the chamber 112 is 10% or more, preferably 40% or more, more preferably 70% or more.
  • the jig 122 preferably has a shape and size such that the volume ratio in the internal space of the chamber 112 is 95% or less. Thereby, the time required for exhausting to a predetermined degree of vacuum can be further reduced.
  • FIG. 8 is an enlarged view of the jig 122.
  • the material of the jig 122 is made of, for example, SUS or aluminum.
  • the jig 122 includes at least a part of the surfaces 126a and 127a out of the housing part 126 that contacts the workpiece 120 and the part 127 exposed in the chamber, and is made of a resin material such as PTFE or acrylic that has low water absorption. May be. Thereby, the fall of the vacuum degree by the degassing from resin and the fall of film-forming quality can be suppressed.
  • a metal film 126b such as stainless steel (SUS) or aluminum may be formed on the resin surface 126a in contact with the workpiece 120.
  • the jig 122 has a closed space 128 a inside the filling portion 128.
  • the space 128 a is sealed with respect to the internal space of the chamber 112. Thereby, the jig
  • the jig 122 described above has a size and shape corresponding to the workpiece 120. However, the shape and size of the workpiece are not always the same. In that case, in order to form a film on a plurality of types of workpieces, if a jig determined for each vapor deposition apparatus is used, a plurality of vapor deposition apparatuses having different specifications are required.
  • the volume of the space in the chamber to be evacuated changes depending on the size of the workpiece.
  • the time required for evacuating to a predetermined degree of vacuum and the evacuation conditions vary depending on the size of the workpiece, so the setting of the apparatus becomes complicated and the process management becomes complicated especially in the mixed flow production site. .
  • the usage method of the vapor deposition apparatus 110 which concerns on this Embodiment is the surface of the workpiece
  • FIG. 9 is a schematic diagram for explaining the second holding member and the second workpiece according to the third embodiment.
  • the jig 130 as the second holding member shown in FIG. 9 includes a concave accommodating portion 134 that follows the shape of the workpiece 132 to be held, a filling portion 136 that fills a space between the accommodating portion 134 and the inner wall of the chamber 112, Have A closed space 136 a is formed inside the filling portion 136.
  • the jig 130 has such a size that the volume when the work 132 is held is not so different from the volume when the jig 122 holds the work 120. Thereby, even if it is a workpiece
  • the volume ratio in the internal space of the chamber 112 is A%
  • the volume ratio in B is B%
  • Formula (1) may be satisfied. More preferably, 0.8 ⁇ A / B ⁇ 1.2 is satisfied.
  • the vapor deposition apparatus 110 has a predetermined vacuum between the case where the work 120 is held by the jig 122 and the case where the work 132 is held by the jig 130 in the chamber. It becomes easy to arrange the time required to exhaust to the degree. As a result, device setting work and process management during mixed flow production are facilitated.
  • FIG. 10 is a diagram schematically illustrating a modification of the jig according to the third embodiment.
  • a jig 138 shown in FIG. 10 is a container in which a plurality of parts are combined.
  • the jig 138 includes a cylindrical portion 140 made of aluminum, a resin holding portion 142 that closes one opening portion of the cylindrical portion 140, a resin bottom portion 144 that closes the other opening portion of the cylindrical portion 140, and Have
  • the holding part 142 and the bottom part 144 are made of a resin molded product such as PTFE or acrylic having low water absorption, or a metal member.
  • the holding part 142 has a concave accommodating part 143 along the shape of the work to be held.
  • a metal film 145 may be formed on the surface of the accommodating part 143 that contacts (opposes) the workpiece in order to prevent the resin of the holding part 142 from absorbing water.
  • the metal film 145 is preferably a stainless thin film having a small adsorption coefficient. Thereby, it becomes difficult for the resin of the holding part 142 to absorb water, and degassing from the resin can be reduced.
  • the cylindrical portion 140 and the holding portion 142 are coupled to each other by a fastening member such as a bolt with the O-ring 146 interposed therebetween. Moreover, the cylinder part 140 and the bottom part 144 are couple
  • the internal space 150 surrounded by the cylindrical portion 140, the holding portion 142, and the bottom portion 144 is hermetically sealed, and the entire jig 138 is a pressure vessel having a vacuum degree higher than 1 ⁇ 10 ⁇ 5 Pa. Thereby, it is possible to reduce the weight while increasing the volume including the internal space 150 of the jig 138.
  • the present inventor has conceived that the number of pumps of general performance can be reduced by using the jig according to the third embodiment.
  • work exchange chamber is demonstrated as an example.
  • FIG. 11A to FIG. 11D are schematic views for explaining the operation process of the vapor deposition apparatus according to the fourth embodiment.
  • a vapor deposition apparatus 152 shown in FIG. 11A includes a vacuum chamber 158 having a film formation chamber 154 and a chamber 156 for exchanging a work (part to be formed), and a vapor deposition unit 160 provided in the chamber 154.
  • a pump 162 serving as an exhaust device for exhausting the inside of the chamber 154 to a predetermined degree of vacuum, an introduction path 164 for introducing dry air into the chamber 156, and a rotation mechanism 166.
  • the rotating mechanism 166 exchanges the work and jig disposed in the chamber 154 and the work and jig disposed in the chamber 156 by rotating them inside the vacuum chamber 158.
  • a metal reflective film is formed on the workpiece 170 held by the jig 168 by the vapor deposition unit 160 inside the chamber 154.
  • the work 174 is held in the housing portion of the jig 172 in a state where the chamber 156 is open to the atmosphere.
  • the chamber 156 is sealed, and dry air is introduced from the introduction path 164. Accordingly, the inside of the chamber 156 is replaced with the dry gas, and moisture can be suppressed from being adsorbed and accumulated in each part in the chamber 156.
  • the jig 172 and the workpiece 174 are moved to the chamber 154 by the rotation mechanism 166, and the jig 168 and the workpiece 170 are moved to the chamber 156. Thereafter, the inside of the chamber 156 is exhausted by the pump 162 until a predetermined degree of vacuum is reached. Since the volume of the space to be exhausted is reduced by the jig 172 in the chamber 156, even a single pump with a small capacity is quickly exhausted to a predetermined degree of vacuum.
  • the vapor deposition apparatus 152 needs only to have the pump 162 in the chamber 154, and it is not necessary to provide a roughing pump in the chamber 156 for taking in and out the workpiece. If it is desired to increase the processing speed, a pump 162 may be installed on the chamber 156 side.
  • the present invention has been described with reference to the above-described embodiment.
  • the present invention is not limited to the above-described embodiment, and the present invention can be appropriately combined or replaced with the configuration of the embodiment. It is included in the present invention.
  • the described embodiments can also be included in the scope of the present invention.
  • the vapor deposition apparatus has been described as an example of the film formation apparatus.
  • the present invention relates to a technique for manufacturing a multilayer film and a film forming apparatus.

Abstract

This sputtering device 10 is provided with: a placement unit on which a sample, in which a film is to be formed, is placed; a target 24 having a plurality of areas composed of different kinds of metals or alloys; a magnetron unit 14 provided on a rear surface side of the target; a power source 28 which applies a voltage between the sample and the target; and a movement mechanism 32 configured such that the target 24 and the magnetron unit 14 relatively move while facing each other. The magnetron unit 14 is configured to be able to selectively face the plurality of respective areas of the target 24.

Description

スパッタリング装置、多層膜の製造方法、成膜装置および成膜装置の使用方法Sputtering apparatus, multilayer film manufacturing method, film forming apparatus, and method of using film forming apparatus
 本発明は、多層膜を製造する技術や反射膜等の薄膜を形成する成膜装置に関する。 The present invention relates to a technique for producing a multilayer film and a film forming apparatus for forming a thin film such as a reflective film.
 従来、基板や基材等の試料の表面に薄膜を形成する装置としてスパッタリング装置が考案されている。また、成膜速度が比較的速く、試料へのプラズマのダメージが少ないマグネトロンスパッタリング装置も考案されている(特許文献1参照)。 Conventionally, a sputtering apparatus has been devised as an apparatus for forming a thin film on the surface of a sample such as a substrate or a base material. In addition, a magnetron sputtering apparatus has been devised that has a relatively high film formation rate and little plasma damage to the sample (see Patent Document 1).
 また、表面に反射面を有する反射部品は、基材(樹脂、ガラス、金属等)の表面に金属薄膜を形成することで作製される。金属薄膜を形成する方法としては、チャンバ内に基材(ワーク)を固定し、スパッタターゲットや蒸発源から気化(昇華)した材料を基材表面に付着させ、金属薄膜を成膜する方法が知られている(特許文献2参照)。 Also, a reflective component having a reflective surface on its surface is produced by forming a metal thin film on the surface of a substrate (resin, glass, metal, etc.). As a method of forming a metal thin film, a method of forming a metal thin film by fixing a base material (work) in a chamber and attaching a material evaporated (sublimated) from a sputtering target or an evaporation source to the surface of the base material is known. (See Patent Document 2).
特開2006-265681号公報JP 2006-265681 A 特開2001-262316号公報JP 2001-262316 A
 前述のスパッタリング装置で多層膜を形成する場合、通常であれば、複数のスパッタリング装置を用意し、それぞれの装置で一層ずつ薄膜を形成する必要がある。そのため、製造効率が悪く、また、製造装置全体のコストも増大してしまう。 When forming a multilayer film with the above-described sputtering apparatus, it is usually necessary to prepare a plurality of sputtering apparatuses and to form a thin film one by one with each apparatus. For this reason, the manufacturing efficiency is poor, and the cost of the entire manufacturing apparatus increases.
 また、大きさや形状の異なる様々なワークに対する成膜を一つの真空成膜装置で処理しようとすると、最も大きなワークに合わせた真空チャンバが必要となる。そのため、ワークの交換の際に、真空チャンバ内を所定の真空度まで排気するために必要な時間が増大し、成膜装置の稼働率が低下してしまう。 In addition, if a single vacuum film forming apparatus is used to form films on various workpieces of different sizes and shapes, a vacuum chamber that matches the largest workpiece is required. For this reason, when the workpiece is replaced, the time required for evacuating the vacuum chamber to a predetermined degree of vacuum increases, and the operation rate of the film forming apparatus decreases.
 本発明はこうした状況に鑑みてなされたものであり、その例示的な目的の一つは、簡易な構成で多層膜を形成する新たな技術を提供することにある。 The present invention has been made in view of such circumstances, and one of exemplary purposes thereof is to provide a new technique for forming a multilayer film with a simple configuration.
 また、例示的な目的の他の一つは、成膜装置の稼働率を向上する新たな技術を提供することにある。 Another example purpose is to provide a new technique for improving the operating rate of the film forming apparatus.
 上記課題を解決するために、本発明のある態様のスパッタリング装置は、成膜する対象の試料が載置される載置部と、種類の異なる金属または合金からなる複数の領域を有するターゲットと、ターゲットの裏面側に設けられたマグネトロンユニットと、試料とターゲットとの間に電圧を印加する電源と、ターゲットとマグネトロンユニットとが対向しながら相対移動するように構成されている移動機構と、を備える。マグネトロンユニットは、ターゲットの複数の領域のそれぞれの領域と選択的に対向できるように構成されている。 In order to solve the above-described problems, a sputtering apparatus according to an aspect of the present invention includes a placement unit on which a sample to be deposited is placed, a target having a plurality of regions made of different types of metals or alloys, A magnetron unit provided on the back side of the target, a power source for applying a voltage between the sample and the target, and a moving mechanism configured to move relative to each other while the target and the magnetron unit face each other. . The magnetron unit is configured to selectively face each of the plurality of regions of the target.
 この態様によると、ターゲットの複数の領域のうち第1の領域とマグネトロンユニットが対向する状態でスパッタリングを行うことで、第1の種類の金属または合金を含む層を形成し、ターゲットの複数の領域のうち第2の領域とマグネトロンユニットが対向する状態でスパッタリングを行うことで、第2の種類の金属または合金を含む層を形成できる。また、ターゲットの複数の領域のうち第1の領域および第2の領域の両方とマグネトロンユニットが対向する状態でスパッタリングを行うことで、第1の種類の金属または合金ならびに第2の種類の金属または合金を含む層を形成できる。 According to this aspect, by performing sputtering in a state where the first region and the magnetron unit face each other among the plurality of regions of the target, a layer containing the first type metal or alloy is formed, and the plurality of regions of the target By performing sputtering in a state where the second region and the magnetron unit face each other, a layer containing the second type metal or alloy can be formed. Moreover, by performing sputtering in a state where both the first region and the second region of the plurality of regions of the target face the magnetron unit, the first type metal or alloy and the second type metal or A layer containing an alloy can be formed.
 ターゲットは、アルミニウムからなる第1の領域と、クロムからなる第2の領域を有してもよい。これにより、アルミニウムを含む層と、クロムを含む第2の層と、を有する多層膜を形成できる。 The target may have a first region made of aluminum and a second region made of chromium. Thereby, a multilayer film having a layer containing aluminum and a second layer containing chromium can be formed.
 本発明の別の態様は、多層膜の製造方法である。この方法は、種類の異なる金属または合金からなる複数の領域を有するターゲットに対して、マグネトロンユニットを相対移動させることで、複数の領域のうち第1の領域をスパッタして成膜された第1の層と、複数の領域のうち第2の領域をスパッタして成膜された第2の層とを積層する。 Another aspect of the present invention is a method for producing a multilayer film. In this method, a first region formed by sputtering a first region of a plurality of regions is formed by moving a magnetron unit relative to a target having a plurality of regions made of different types of metals or alloys. And a second layer formed by sputtering the second region of the plurality of regions.
 この態様によると、ターゲットの複数の領域のうち第1の領域とマグネトロンユニットが対向する状態でスパッタリングを行うことで、第1の種類の金属または合金を含む層を形成し、ターゲットの複数の領域のうち第2の領域とマグネトロンユニットが対向する状態でスパッタリングを行うことで、第2の種類の金属または合金を含む層を形成できる。 According to this aspect, by performing sputtering in a state where the first region and the magnetron unit face each other among the plurality of regions of the target, a layer containing the first type metal or alloy is formed, and the plurality of regions of the target By performing sputtering in a state where the second region and the magnetron unit face each other, a layer containing the second type metal or alloy can be formed.
 第1の層を形成する工程と第2の層を形成する工程との間に、マグネトロンユニットが第1の領域と対向する位置から第2の領域と対向する位置まで移動しながら第3の層を形成する中間工程を有してもよい。中間工程は、第1の層の組成から第2の層の組成まで徐々に変化した傾斜膜として第3の層を形成してもよい。これにより、組成の異なる第1の層と第2の層との間に、第1の層の組成から第2の層の組成まで徐々に変化した傾斜膜として第3の層を形成できる。そのため、第3の層を第1の層と第2の層との間に介在させることで、多層膜における各層同士の密着性が増す。 Between the step of forming the first layer and the step of forming the second layer, the third layer moves while the magnetron unit moves from a position facing the first region to a position facing the second region. You may have the intermediate process of forming. In the intermediate step, the third layer may be formed as a gradient film that gradually changes from the composition of the first layer to the composition of the second layer. Thereby, a 3rd layer can be formed as a gradient film which changed gradually from the composition of the 1st layer to the composition of the 2nd layer between the 1st layer and 2nd layer from which composition differs. Therefore, by interposing the third layer between the first layer and the second layer, the adhesion between the layers in the multilayer film is increased.
 第1の層は主としてクロムからなる薄膜であり、第2の層は主としてアルミニウムからなる薄膜であり、第3の層は主としてクロムとアルミニウムとからなる傾斜膜であってもよい。これにより、成膜する対象の試料の耐食性や表面での反射率を高いレベルで両立し得る。 The first layer may be a thin film mainly made of chromium, the second layer may be a thin film mainly made of aluminum, and the third layer may be a gradient film mainly made of chromium and aluminum. Thereby, the corrosion resistance of the sample to be deposited and the reflectance on the surface can be compatible at a high level.
 本発明のある態様の成膜装置は、真空チャンバと、真空チャンバ内に設けられる、成膜対象のワークを保持する保持部材と、保持部材に保持されたワークの表面に薄膜として付着させる原材料が載置される載置部と、を備える。保持部材は、保持するワークの形状に沿った収容部と、該収容部と真空チャンバとの間を埋める充填部と、を有する。 A film forming apparatus according to an aspect of the present invention includes a vacuum chamber, a holding member that is provided in the vacuum chamber and holds a work to be formed, and a raw material that adheres to the surface of the work held by the holding member as a thin film. And a placement unit to be placed. The holding member includes a storage portion that follows the shape of the workpiece to be held, and a filling portion that fills a space between the storage portion and the vacuum chamber.
 この態様によると、ワークを保持した保持部材を真空チャンバ内に設けることで、真空チャンバ内の隙間が少なくなり、所定の真空度まで排気するために必要な時間を低減できる。 According to this aspect, by providing the holding member holding the workpiece in the vacuum chamber, the gap in the vacuum chamber is reduced, and the time required for exhausting to a predetermined degree of vacuum can be reduced.
 保持部材は、真空チャンバの内部空間に占める体積の割合が40~95%であってもよい。これにより、所定の真空度まで排気するために必要な時間をより低減できる。 The holding member may have a volume ratio of 40 to 95% in the internal space of the vacuum chamber. Thereby, the time required for exhausting to a predetermined degree of vacuum can be further reduced.
 充填部は、内部に閉じた空間を有してもよい。これにより、保持部材を軽量化できる。 The filling unit may have a closed space inside. Thereby, a holding member can be reduced in weight.
 収容部は、ワークと接する(対向する)部分に金属薄膜が形成された樹脂材料であってもよい。これにより、収容部から水分等の不純物が真空チャンバ内やワークへ拡散することを抑制できる。 The housing portion may be a resin material in which a metal thin film is formed in a portion in contact with (facing) the workpiece. Thereby, it can suppress that impurities, such as a water | moisture content, are spread | diffused in a vacuum chamber or a workpiece | work from an accommodating part.
 本発明の別の態様は、成膜装置の使用方法である。この方法は、真空チャンバ内で保持部材に保持されたワークの表面に成膜する成膜装置の使用方法であって、複数の保持部材から選択された第1の保持部材に第1のワークを保持させた状態で該第1のワークの表面に成膜する工程と、複数の保持部材から選択された、第1の保持部材と形状が異なる第2の保持部材に、第1のワークと形状が異なる第2のワークを保持させた状態で該第2のワークの表面に成膜する工程と、が選択可能である。 Another aspect of the present invention is a method of using a film forming apparatus. This method is a method of using a film forming apparatus for forming a film on the surface of a work held by a holding member in a vacuum chamber, and the first work is placed on a first holding member selected from a plurality of holding members. The step of forming a film on the surface of the first workpiece while being held, and the second holding member selected from a plurality of holding members and having a shape different from that of the first holding member, And a step of forming a film on the surface of the second workpiece while holding a second workpiece having a different thickness.
 この態様によると、真空チャンバ内で第1のワークが第1の保持部材に保持されている場合と、第2のワークが第2の保持部材に保持されている場合とで、所定の真空度まで排気するために必要な時間を揃えやすくなる。 According to this aspect, when the first workpiece is held by the first holding member in the vacuum chamber and when the second workpiece is held by the second holding member, a predetermined degree of vacuum is set. It becomes easy to arrange the time required for exhausting.
 第1の保持部材は、第1のワークを保持した状態で、真空チャンバの内部空間に占める体積の割合が40~95%であるとよい。第2の保持部材は、第2のワークを保持した状態で、真空チャンバの内部空間に占める体積の割合が40~95%であるとよい。これにより、所定の真空度まで排気するために必要な時間をより低減できる。 The first holding member preferably has a volume ratio of 40 to 95% in the internal space of the vacuum chamber in a state where the first work is held. The second holding member may have a volume ratio of 40 to 95% in the internal space of the vacuum chamber in a state where the second workpiece is held. Thereby, the time required for exhausting to a predetermined degree of vacuum can be further reduced.
 第1の保持部材が、第1のワークを保持した状態で、真空チャンバの内部空間に占める体積の割合をA%、第2の保持部材が、第2のワークを保持した状態で、真空チャンバの内部空間に占める体積の割合をB%とすると、下記式(1) 0.5≦A/B≦1.5・・・式(1) を満たしてもよい。これにより、異なる大きさのワークであっても、所定の真空度まで排気するための時間のばらつきを抑えることができる。 With the first holding member holding the first workpiece, the volume ratio in the internal space of the vacuum chamber is A%. When the second holding member holds the second workpiece, the vacuum chamber If the ratio of the volume occupying the internal space is B%, the following formula (1) 0.5 ≦ A / B ≦ 1.5 (1) may be satisfied. Thereby, even if it is a workpiece | work of a different magnitude | size, the dispersion | variation in the time for exhausting to the predetermined | prescribed vacuum degree can be suppressed.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above-described components and a representation obtained by converting the expression of the present invention between a method, an apparatus, a system and the like are also effective as an aspect of the present invention.
 本発明によれば、簡易な構成で多層膜を形成できる。あるいは、本発明によれば、成膜装置の稼働率を向上できる。 According to the present invention, a multilayer film can be formed with a simple configuration. Or according to this invention, the operation rate of the film-forming apparatus can be improved.
第1の実施の形態に係るスパッタリング装置の概略構成を説明するための模式図である。It is a schematic diagram for demonstrating schematic structure of the sputtering device which concerns on 1st Embodiment. スパッタリング装置で形成される多層膜の一例を模式的に示した側面図である。It is the side view which showed typically an example of the multilayer film formed with a sputtering device. スパッタリング装置で形成される多層膜の変形例を模式的に示した側面図である。It is the side view which showed typically the modification of the multilayer film formed with a sputtering device. 図4(a)は、スパッタリング装置で形成される、基材に透明な材料を用いた多層膜の一例を模式的に示した側面図、図4(b)は、スパッタリング装置で形成される、基材に透明な材料を用いた多層膜の他の例を模式的に示した側面図である。FIG. 4A is a side view schematically showing an example of a multilayer film using a transparent material as a base material formed by a sputtering apparatus, and FIG. 4B is formed by a sputtering apparatus. It is the side view which showed typically the other example of the multilayer film which used the transparent material for the base material. 本実施の形態に係るターゲットの変形例を模式的に示した図である。It is the figure which showed typically the modification of the target which concerns on this Embodiment. 図6(a)は、第2の実施の形態に係るスパッタリング装置のマグネトロンユニットの概略構成を示す模式図、図6(b)は、第2の実施の形態に係るスパッタリング装置に利用できるターゲットの一例を示す上面図である。FIG. 6A is a schematic diagram showing a schematic configuration of a magnetron unit of the sputtering apparatus according to the second embodiment, and FIG. 6B is a diagram of a target that can be used in the sputtering apparatus according to the second embodiment. It is a top view which shows an example. 第3の実施の形態に係る蒸着装置の概略構成を説明するための模式図である。It is a schematic diagram for demonstrating schematic structure of the vapor deposition apparatus which concerns on 3rd Embodiment. 治具の拡大図である。It is an enlarged view of a jig. 第3の実施の形態に係る第2の保持部材と第2のワークとを説明するための模式図である。It is a schematic diagram for demonstrating the 2nd holding member and 2nd workpiece | work which concern on 3rd Embodiment. 第3の実施の形態に係る治具の変形例を模式的に示す図である。It is a figure which shows typically the modification of the jig | tool which concerns on 3rd Embodiment. 図11(a)~図11(d)は、第4の実施の形態に係る蒸着装置の動作工程を説明するための模式図である。FIG. 11A to FIG. 11D are schematic views for explaining the operation process of the vapor deposition apparatus according to the fourth embodiment.
 以下、本発明を実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述される全ての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. Further, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 (第1の実施の形態)
 図1は、第1の実施の形態に係るスパッタリング装置の概略構成を説明するための模式図である。なお、図1に示すマグネトロンスパッタリング装置について、公知の構成については説明を適宜省略する。
(First embodiment)
FIG. 1 is a schematic diagram for explaining a schematic configuration of the sputtering apparatus according to the first embodiment. In addition, about a magnetron sputtering apparatus shown in FIG. 1, description is abbreviate | omitted suitably about a well-known structure.
 スパッタリング装置10は、成膜用のチャンバ12と、チャンバ12の下方に設けられたマグネトロンユニット14と、を備える。チャンバ12は、バルブ16を介してターボ分子ポンプやその他の排気装置と連通する排気路18と、成膜時の放電ガス(アルゴン、キセノン等のスパッタガス)が供給される供給路20と、が接続されている。チャンバ12の内部は、排気装置により所定の真空度まで排気され、その後に供給路20からスパッタガスがチャンバ12の内部に供給される。 The sputtering apparatus 10 includes a film formation chamber 12 and a magnetron unit 14 provided below the chamber 12. The chamber 12 includes an exhaust path 18 that communicates with a turbo molecular pump and other exhaust devices via a valve 16, and a supply path 20 that is supplied with a discharge gas (a sputtering gas such as argon or xenon) during film formation. It is connected. The inside of the chamber 12 is evacuated to a predetermined degree of vacuum by an exhaust device, and then a sputtering gas is supplied into the chamber 12 from the supply path 20.
 チャンバ12は、成膜の対象の試料である基材(ワーク)21が載置される載置部としての基材ホルダ22と、ターゲット24を保持するターゲットホルダ26と、を備える。ターゲットホルダ26は、電源28により高電圧が印加されるように構成されている。電源28は、基材ホルダ22およびターゲットホルダ26を介して、基材21とターゲット24との間に電圧を印加する。 The chamber 12 includes a base material holder 22 as a placement portion on which a base material (work) 21 that is a sample to be deposited is placed, and a target holder 26 that holds a target 24. The target holder 26 is configured so that a high voltage is applied by a power source 28. The power source 28 applies a voltage between the base material 21 and the target 24 via the base material holder 22 and the target holder 26.
 マグネトロンユニット14は、ターゲット24の裏面側に設けられており、磁場発生源として使用される一組の永久磁石ユニット30と、ターゲット24とマグネトロンユニット14とが対向しながら相対移動するように構成されている移動機構32と、を備える。本実施の形態に係る移動機構32は、例えば、永久磁石ユニット30を矢印方向にスライドさせるスプライン機構である。 The magnetron unit 14 is provided on the back side of the target 24, and is configured such that a pair of permanent magnet units 30 used as a magnetic field generation source and the target 24 and the magnetron unit 14 move relative to each other while facing each other. Moving mechanism 32. The moving mechanism 32 according to the present embodiment is, for example, a spline mechanism that slides the permanent magnet unit 30 in the arrow direction.
 スパッタリング装置10が作動すると、スパッタガスの原子が電界でターゲット24に衝突し、ターゲット24の材料が基材21に向かって放出される。その結果、放出された金属や合金の粒子は、基材21の表面に堆積することで成膜される。基材21は、例えば、樹脂成形品、ダイキャスト金属、ガラス、セラミック材料等である。 When the sputtering apparatus 10 is activated, the atoms of the sputtering gas collide with the target 24 by an electric field, and the material of the target 24 is released toward the base material 21. As a result, the released metal or alloy particles are deposited on the surface of the substrate 21 to form a film. The base material 21 is, for example, a resin molded product, a die-cast metal, glass, a ceramic material, or the like.
 ターゲット24は、種類の異なる金属または合金からなる複数の領域を有している。本実施の形態に係るターゲット24は、アルミニウムを主成分とする第1の領域24aと、クロムを主成分とする第2の領域24bと、を有している。そして、マグネトロンユニット14は、このようなターゲット24の複数の領域のそれぞれの領域と選択的に対向できるように構成されている。 The target 24 has a plurality of regions made of different types of metals or alloys. The target 24 according to the present embodiment has a first region 24a mainly composed of aluminum and a second region 24b mainly composed of chromium. The magnetron unit 14 is configured to be able to selectively face each of the plurality of regions of the target 24.
 次に、本実施の形態に係るスパッタリング装置10により多層膜を形成する方法について説明する。図2は、スパッタリング装置10で形成される多層膜の一例を模式的に示した側面図である。 Next, a method for forming a multilayer film using the sputtering apparatus 10 according to the present embodiment will be described. FIG. 2 is a side view schematically showing an example of a multilayer film formed by the sputtering apparatus 10.
 はじめに、スパッタリング装置10は、マグネトロンユニット14が第2の領域24bと対向する位置で静止した状態でスパッタリングを行う。これにより、基材21の上に主としてクロムからなる金属膜34が形成される。その後、スパッタリング装置10は、移動機構32によりマグネトロンユニット14を第1の領域24aと対向する位置に向かって移動させながら、スパッタリングを行う。これにより、金属膜34の上にアルミニウムおよびクロムを含む合金膜36が形成される。 First, the sputtering apparatus 10 performs sputtering while the magnetron unit 14 is stationary at a position facing the second region 24b. As a result, a metal film 34 mainly made of chromium is formed on the substrate 21. Thereafter, the sputtering apparatus 10 performs sputtering while moving the magnetron unit 14 toward the position facing the first region 24 a by the moving mechanism 32. As a result, an alloy film 36 containing aluminum and chromium is formed on the metal film 34.
 マグネトロンユニット14が第2の領域24bと対向する位置から第1の領域24aと対向する位置まで移動する過程で、プラズマが発生する領域も移動する。そのため、スパッタされる領域は、最初はクロムからなる第2の領域24bがほとんどであったが、徐々に、アルミニウムからなる第1の領域24aが含まれることとなり、最終的には、第1の領域24aがほとんどとなる。 In the process in which the magnetron unit 14 moves from the position facing the second area 24b to the position facing the first area 24a, the area where the plasma is generated also moves. Therefore, the region to be sputtered was mostly the second region 24b made of chromium, but gradually the first region 24a made of aluminum was gradually included, and finally the first region 24b was made. The region 24a is almost all.
 そのため、合金膜36は、金属膜34と接する面36aにおいてクロムの濃度が最も高く(アルミニウムの濃度が最も低く)、面36aから最も離れた面36bにおいてクロムの濃度が最も低い(アルミニウムの濃度が最も高い)。つまり、合金膜36は、厚み方向において、クロムおよびアルミニウムの組成に傾斜がある(組成が徐々に変化する)傾斜膜である。 Therefore, the alloy film 36 has the highest chromium concentration on the surface 36a in contact with the metal film 34 (the lowest aluminum concentration) and the lowest chromium concentration on the surface 36b farthest from the surface 36a (the aluminum concentration is low). highest). That is, the alloy film 36 is an inclined film in which the composition of chromium and aluminum is inclined (the composition gradually changes) in the thickness direction.
 その後、スパッタリング装置10は、マグネトロンユニット14を第1の領域24aと対向する位置で停止した状態でスパッタリングを行う。これにより、合金膜36の上に主としてアルミニウムからなる金属膜38が形成される。その結果、図2に示すように、基材21の上に、金属膜34、合金膜36、金属膜38がこの順で積層された多層膜40が形成される。 Thereafter, the sputtering apparatus 10 performs sputtering in a state where the magnetron unit 14 is stopped at a position facing the first region 24a. As a result, a metal film 38 mainly made of aluminum is formed on the alloy film 36. As a result, as shown in FIG. 2, a multilayer film 40 in which a metal film 34, an alloy film 36, and a metal film 38 are laminated in this order is formed on the substrate 21.
 なお、ターゲット24の第1の領域や第2の領域は、必ずしも、単一の金属材料である必要はなく、例えば、ステンレス鋼のようにクロムやニッケルを含む鉄系合金であってもよい。 In addition, the 1st area | region and 2nd area | region of the target 24 do not necessarily need to be a single metal material, for example, may be an iron-type alloy containing chromium and nickel like stainless steel.
 このように、(i)ターゲット24の第1の領域24aとマグネトロンユニット14が対向する状態でスパッタリングを行うことで、アルミニウムを含む金属膜38を形成し、(ii)ターゲット24の第2の領域24bとマグネトロンユニット14が対向する状態でスパッタリングを行うことで、クロムを含む金属膜34を形成できる。したがって、スパッタリング装置10は、金属膜34の上に金属膜38が直接形成された多層膜も形成できる。 Thus, (i) sputtering is performed in a state where the first region 24 a of the target 24 and the magnetron unit 14 face each other, thereby forming the metal film 38 containing aluminum, and (ii) the second region of the target 24. Sputtering is performed in a state where 24b and the magnetron unit 14 face each other, whereby the metal film 34 containing chromium can be formed. Therefore, the sputtering apparatus 10 can also form a multilayer film in which the metal film 38 is directly formed on the metal film 34.
 また、(iii)ターゲット24の第1の領域24aおよび第2の領域24bの両方とマグネトロンユニット14が対向する状態でスパッタリングを行うことで、アルミニウムおよびクロムを含む合金膜36を形成できる。これにより、傾斜膜である合金膜36を、金属膜34と金属膜38との間に形成できるので、異種金属からなる金属膜34と金属膜38とを直接密着させる場合と比較して、それぞれの膜(金属膜34、合金膜36、金属膜38)同士の密着性が向上する。 (Iii) By performing sputtering while the magnetron unit 14 faces both the first region 24a and the second region 24b of the target 24, the alloy film 36 containing aluminum and chromium can be formed. Thereby, since the alloy film 36 which is an inclined film can be formed between the metal film 34 and the metal film 38, compared with the case where the metal film 34 and the metal film 38 made of different metals are directly adhered, respectively. The adhesion between the films (metal film 34, alloy film 36, metal film 38) is improved.
 上述のように、本実施の形態に係るスパッタリング装置10は、アルミニウムを含む層と、クロムを含む第2の層と、を有する多層膜を形成できる。つまり、スパッタリング装置10は、基材の上に形成された耐食性の高いクロムを含む第2の層と、第2の層の上に形成された反射率が高いアルミニウムを含む第1の層と、を有する多層膜を形成できる。これにより、成膜する対象の基材の耐食性や表面での反射率を高いレベルで両立し得る。 As described above, the sputtering apparatus 10 according to the present embodiment can form a multilayer film having a layer containing aluminum and a second layer containing chromium. That is, the sputtering apparatus 10 includes a second layer containing chromium having high corrosion resistance formed on the substrate, a first layer containing aluminum having high reflectivity formed on the second layer, Can be formed. Thereby, the corrosion resistance of the substrate to be deposited and the reflectance on the surface can be compatible at a high level.
 従来、自動車用灯具の部品の一つであるリフレクタの反射膜には、樹脂成形品上に蒸着により形成されたアルミニウムの膜と、アルミニウムの膜の保護膜として重合装置で形成された有機材料(例えば、ヘキサメチルジシロキサンを用いた酸化シリコン成分)の保護膜と、の多層膜が用いられていた。しかしながら、従来の保護膜の製造では、アルミニウムを蒸着するための装置と、有機材料を重合により成膜する装置とが必要であり、装置コストが高くなるとともに、各層を別々の装置で形成することから製造時間も長く必要であった。 Conventionally, a reflective film of a reflector, which is one of the parts of an automotive lamp, includes an aluminum film formed by vapor deposition on a resin molded product, and an organic material formed by a polymerization apparatus as a protective film for the aluminum film ( For example, a multilayer film of a protective film of a silicon oxide component using hexamethyldisiloxane) has been used. However, in the production of a conventional protective film, an apparatus for depositing aluminum and an apparatus for forming a film of an organic material by polymerization are required, which increases the cost of the apparatus and forms each layer with separate apparatuses. Therefore, it took a long manufacturing time.
 これに対して、本実施の形態に係るスパッタリング装置10では、一つの装置で、耐食性が良好(温水試験、耐アルカリ性試験を満たせる性質)かつ反射率も高い(可視光に対して85%以上)多層膜を形成できるため、装置コストの低減や製造時間の短縮化が図られる。その結果、反射率が高く耐食性の高い反射膜を有する自動車灯具用部品を製造できる。 On the other hand, in the sputtering apparatus 10 according to the present embodiment, the corrosion resistance is good (property that satisfies the hot water test and alkali resistance test) and the reflectance is high (85% or more with respect to visible light). Since a multilayer film can be formed, the apparatus cost can be reduced and the manufacturing time can be shortened. As a result, an automotive lamp part having a reflective film with high reflectance and high corrosion resistance can be manufactured.
 (多層膜の変形例)
 図3は、スパッタリング装置10で形成される多層膜の変形例を模式的に示した側面図である。図3に示す多層膜42は、ターゲット24を備えたスパッタリング装置10で形成可能なものである。多層膜42は、マグネトロンユニット14を往復動することで得られる。具体的には、図2に示す多層膜40を製造した方法と同様に、基材21上に金属膜34、合金膜36、金属膜38を形成する。その時点で、マグネトロンユニット14は、図1に示す第1の領域24aと対向する位置にある。その後、マグネトロンユニット14を第2の領域24bへ移動させる段階で合金膜36が形成され、マグネトロンユニット14が第2の領域24bと対向した状態で金属膜34が形成される。このように、マグネトロンユニット14を往復動することで、多層膜42が形成される。
(Modification of multilayer film)
FIG. 3 is a side view schematically showing a modification of the multilayer film formed by the sputtering apparatus 10. The multilayer film 42 shown in FIG. 3 can be formed by the sputtering apparatus 10 provided with the target 24. The multilayer film 42 is obtained by reciprocating the magnetron unit 14. Specifically, the metal film 34, the alloy film 36, and the metal film 38 are formed on the base material 21 in the same manner as the method for manufacturing the multilayer film 40 shown in FIG. At that time, the magnetron unit 14 is in a position facing the first region 24a shown in FIG. Thereafter, the alloy film 36 is formed when the magnetron unit 14 is moved to the second region 24b, and the metal film 34 is formed with the magnetron unit 14 facing the second region 24b. Thus, the multilayer film 42 is formed by reciprocating the magnetron unit 14.
 図4(a)は、スパッタリング装置10で形成される、基材に透明な材料を用いた多層膜の一例を模式的に示した側面図、図4(b)は、スパッタリング装置10で形成される、基材に透明な材料を用いた多層膜の他の例を模式的に示した側面図である。 FIG. 4A is a side view schematically showing an example of a multilayer film using a transparent material as a base material formed by the sputtering apparatus 10, and FIG. 4B is formed by the sputtering apparatus 10. It is the side view which showed typically the other example of the multilayer film which used the transparent material for the base material.
 図4(a)に示す基材46は、透明な樹脂(ポリカーボネート樹脂やアクリル樹脂)やガラスであり、部品の表側に位置する。スパッタリング装置10は、図1に示すマグネトロンユニット14が第1の領域24aと対向する状態でスパッタリングを行うことで、基材46の裏面側にアルミニウムを含む金属膜48を形成し、その後、マグネトロンユニット14を移動させ、マグネトロンユニット14が第2の領域24bと対向する状態でスパッタリングを行うことで、金属膜48の裏面側表面にクロムを含む金属膜50を形成する。 4A is a transparent resin (polycarbonate resin or acrylic resin) or glass, and is located on the front side of the part. The sputtering apparatus 10 performs sputtering in a state where the magnetron unit 14 shown in FIG. 1 faces the first region 24a, thereby forming a metal film 48 containing aluminum on the back surface side of the base 46, and then the magnetron unit. 14 is moved, and sputtering is performed in a state where the magnetron unit 14 faces the second region 24b, whereby the metal film 50 containing chromium is formed on the back surface of the metal film 48.
 これにより、透明な基材46の裏面側に金属膜48および金属膜50が積層された多層膜44が形成される。また、スパッタリング装置10は、図4(b)に示すように、金属膜48と金属膜50との間に傾斜膜である合金膜52が積層されている多層膜54を形成できる。 Thereby, the multilayer film 44 in which the metal film 48 and the metal film 50 are laminated on the back surface side of the transparent substrate 46 is formed. Further, as shown in FIG. 4B, the sputtering apparatus 10 can form a multilayer film 54 in which an alloy film 52 that is an inclined film is laminated between the metal film 48 and the metal film 50.
 スパッタリング装置10により透明な基材46上に形成した多層膜44および多層膜54は、いずれも可視光に対する反射率が85%以上であり、温水試験や耐アルカリ性試験を満たすものである。なお、基材46は、透明な樹脂の代わりに、PBTやPET/PBTアロイ材、BMC等の不透明な樹脂を用いてもよい。 The multilayer film 44 and the multilayer film 54 formed on the transparent base material 46 by the sputtering apparatus 10 both have a reflectance with respect to visible light of 85% or more, and satisfy the warm water test and the alkali resistance test. The substrate 46 may be made of an opaque resin such as PBT, PET / PBT alloy material, or BMC instead of a transparent resin.
 (ターゲットの変形例)
 次に、スパッタリング装置10に利用できるターゲットの変形例について説明する。上述のターゲットは、2つの領域がそれぞれ1種類の金属元素で構成されているが、2つの領域の一方または両方が、複数の金属元素からなる合金で構成されていてもよい。例えば、一方の領域がSUS等の合金であり、他方の領域がアルミニウム等の単一種の金属で構成されていてもよい。
(Target modification)
Next, modifications of the target that can be used in the sputtering apparatus 10 will be described. In the above-described target, two regions are each composed of one kind of metal element, but one or both of the two regions may be composed of an alloy composed of a plurality of metal elements. For example, one region may be an alloy such as SUS, and the other region may be composed of a single kind of metal such as aluminum.
 また、ターゲットに領域は3つ以上であってもよい。図5は、本実施の形態に係るターゲットの変形例を模式的に示した図である。図5に示すターゲット56は、アルミニウムを主成分とする第1の領域56aと、クロムを主成分とする第2の領域56bと、チタンを主成分とする第3の領域56cと、を有している。これにより、3種類以上の金属膜や、三元系の合金膜を含む多層膜を形成することが可能となる。また、ターゲット56の一部の領域を合金で構成することで、三元系以上の多元系の合金膜を形成することも可能である。 Also, the target may have three or more areas. FIG. 5 is a diagram schematically showing a modification of the target according to the present embodiment. A target 56 shown in FIG. 5 includes a first region 56a mainly composed of aluminum, a second region 56b mainly composed of chromium, and a third region 56c mainly composed of titanium. ing. Accordingly, it is possible to form a multilayer film including three or more kinds of metal films and a ternary alloy film. Further, by forming a partial region of the target 56 with an alloy, it is also possible to form a multi-component alloy film of ternary or higher.
 (第2の実施の形態)
 図6(a)は、第2の実施の形態に係るスパッタリング装置のマグネトロンユニットの概略構成を示す模式図、図6(b)は、第2の実施の形態に係るスパッタリング装置に利用できるターゲットの一例を示す上面図である。なお、第2の実施の形態に係るスパッタリング装置において、チャンバ12やその内部構造については、第1の実施の形態と同様であり、図示を省略している。
(Second Embodiment)
FIG. 6A is a schematic diagram showing a schematic configuration of a magnetron unit of the sputtering apparatus according to the second embodiment, and FIG. 6B is a diagram of a target that can be used in the sputtering apparatus according to the second embodiment. It is a top view which shows an example. In the sputtering apparatus according to the second embodiment, the chamber 12 and its internal structure are the same as those in the first embodiment and are not shown.
 第1の実施の形態に係るマグネトロンユニット14は、ターゲットと対向する状態で直線的に往復動するように構成されている。これに対して、第2の実施の形態に係るスパッタリング装置は、マグネトロンユニット58と、マグネトロンユニット58を回転軸を中心に回転させる移動機構と、を備える。 The magnetron unit 14 according to the first embodiment is configured to reciprocate linearly while facing the target. On the other hand, the sputtering apparatus according to the second embodiment includes a magnetron unit 58 and a moving mechanism that rotates the magnetron unit 58 around the rotation axis.
 ターゲット60は、円板状であり、複数の円弧状の領域60a~60eを備える。各領域60a~60eは、それぞれ異種の金属または合金である。これにより、第2の実施の形態に係るスパッタリング装置は、種類の異なる金属からなる複数の金属膜や、複数の金属が混合した合金膜を形成でき、また、合金膜を傾斜膜として形成できる。 The target 60 has a disc shape and includes a plurality of arc-shaped regions 60a to 60e. Each of the regions 60a to 60e is made of different metals or alloys. Thereby, the sputtering apparatus according to the second embodiment can form a plurality of metal films made of different kinds of metals, an alloy film in which a plurality of metals are mixed, and can form the alloy film as an inclined film.
 (第3の実施の形態)
 成膜装置には種々の方式があるが、以下の実施の形態では、蒸着装置を例に説明する。図7は、第3の実施の形態に係る蒸着装置の概略構成を説明するための模式図である。なお、図7に示す蒸着装置について、公知の構成については説明を適宜省略する。
(Third embodiment)
There are various types of film forming apparatuses. In the following embodiments, a vapor deposition apparatus will be described as an example. FIG. 7 is a schematic diagram for explaining a schematic configuration of a vapor deposition apparatus according to the third embodiment. In addition, about the vapor deposition apparatus shown in FIG. 7, description is abbreviate | omitted suitably about a well-known structure.
 蒸着装置110は、成膜用のチャンバ112と、チャンバ112の下部に設けられた蒸着ユニット114と、を備える。チャンバ112は、バルブ116を介してターボ分子ポンプやその他の排気装置と連通する排気路118が接続されている。チャンバ112の内部は、排気装置により所定の真空度まで排気される。 The vapor deposition apparatus 110 includes a film formation chamber 112 and a vapor deposition unit 114 provided in the lower portion of the chamber 112. The chamber 112 is connected to an exhaust path 118 communicating with a turbo molecular pump or other exhaust device via a valve 116. The inside of the chamber 112 is exhausted to a predetermined degree of vacuum by an exhaust device.
 蒸着装置110は、チャンバ112内に設けられる、成膜対象の試料であるワーク120(基材)を保持する保持部材としての治具122を更に備える。蒸着ユニット114は、治具122に保持されたワーク120の表面に薄膜として付着させる原材料が載置される載置部としての蒸発源124を有する。蒸着ユニット114は、抵抗加熱、電子ビーム、高周波誘導、レーザーなどの方法で蒸発源124に載置されている金属などの原材料を加熱する。原材料は、アルミニウム、銅、クロム、亜鉛、金、銀、プラチナ、ニッケルなどの金属や合金類、SiO、TiO、ZrO、MgFなどの酸化物やフッ化物が挙げられる。 The vapor deposition apparatus 110 further includes a jig 122 provided in the chamber 112 as a holding member that holds a workpiece 120 (base material) that is a sample to be formed. The vapor deposition unit 114 has an evaporation source 124 as a mounting portion on which a raw material to be attached as a thin film is mounted on the surface of the work 120 held by the jig 122. The vapor deposition unit 114 heats a raw material such as metal placed on the evaporation source 124 by a method such as resistance heating, electron beam, high frequency induction, or laser. Examples of the raw material include metals and alloys such as aluminum, copper, chromium, zinc, gold, silver, platinum, and nickel, and oxides and fluorides such as SiO 2 , TiO 2 , ZrO 2 , and MgF 2 .
 次に、蒸着装置110の動作について説明する。はじめに、チャンバ112を大気圧に開放し、ワーク120を保持した治具122をチャンバ112内の所定位置に設置する。あるいは、チャンバ112内に予め設置されている治具122にワーク120をセットする。その後、チャンバ112内の雰囲気を外部に対して遮断してからバルブ116を開き、不図示の排気装置でチャンバ112内を所定の真空度まで排気する。 Next, the operation of the vapor deposition apparatus 110 will be described. First, the chamber 112 is opened to atmospheric pressure, and the jig 122 holding the workpiece 120 is placed at a predetermined position in the chamber 112. Alternatively, the workpiece 120 is set on a jig 122 installed in the chamber 112 in advance. Thereafter, the atmosphere in the chamber 112 is shut off from the outside, the valve 116 is opened, and the inside of the chamber 112 is exhausted to a predetermined degree of vacuum by an exhaust device (not shown).
 本実施の形態に係る治具122は、保持するワーク120の形状に沿った凹状の収容部126と、収容部126とチャンバ112の内壁との間を埋める充填部128と、を有する。通常の蒸着装置では、チャンバの内部でワークを保持する保持部は、チャンバの内部空間に占める体積の割合が非常に小さく、せいぜい10%未満である。そのため、チャンバ内を所定の真空度まで排気するために必要な時間が長くなる。 The jig 122 according to the present embodiment includes a concave accommodating portion 126 that follows the shape of the workpiece 120 to be held, and a filling portion 128 that fills a space between the accommodating portion 126 and the inner wall of the chamber 112. In a normal vapor deposition apparatus, the holding portion that holds the workpiece inside the chamber has a very small volume ratio in the internal space of the chamber, and is less than 10% at most. Therefore, the time required for evacuating the chamber to a predetermined degree of vacuum becomes longer.
 そこで、本実施の形態に係る蒸着装置110においては、ワーク120を保持した治具122をチャンバ112内に設けることで、チャンバ112内の隙間が少なくなり、所定の真空度まで排気するために必要な時間を低減できる。その後、蒸着装置110は、蒸着ユニット114を動作させ、蒸発源124から原材料を蒸発させることで、ワーク120の表面に所定の薄膜を成膜する。 Therefore, in the vapor deposition apparatus 110 according to the present embodiment, by providing the jig 122 holding the workpiece 120 in the chamber 112, the gap in the chamber 112 is reduced, and is necessary for exhausting to a predetermined degree of vacuum. Time can be reduced. Thereafter, the vapor deposition apparatus 110 operates the vapor deposition unit 114 to evaporate the raw material from the evaporation source 124, thereby forming a predetermined thin film on the surface of the work 120.
 なお、治具122は、チャンバ112の内部空間に占める体積の割合が10%以上、好ましくは、40%以上、より好ましくは70%以上となるような形状や大きさである。また、治具122は、チャンバ112の内部空間に占める体積の割合が95%以下となるような形状や大きさが好ましい。これにより、所定の真空度まで排気するために必要な時間をより低減できる。 Note that the jig 122 has a shape and a size such that a volume ratio in the internal space of the chamber 112 is 10% or more, preferably 40% or more, more preferably 70% or more. In addition, the jig 122 preferably has a shape and size such that the volume ratio in the internal space of the chamber 112 is 95% or less. Thereby, the time required for exhausting to a predetermined degree of vacuum can be further reduced.
 図8は、治具122の拡大図である。治具122の材質は、例えば、SUSやアルミニウムで構成されている。また、治具122は、ワーク120と接触する収容部126やチャンバ内で露出する部分127のうち、少なくとも一部の表面126a,127aは、吸水性の低いPTFE、アクリル等の樹脂材料で構成してもよい。これにより、樹脂からの脱ガスによる真空度の低下や成膜品質の低下を抑制できる。更に、ワーク120と接触する樹脂の表面126a上に、ステンレス(SUS)やアルミニウム等の金属膜126bを成膜してもよい。これにより、収容部126の樹脂の表面126aから水分等の不純物がチャンバ内やワーク120へ拡散することを抑制できる。その結果、所定の真空度まで排気するために必要な時間を大幅に短縮でき、また、成膜の品質の低下を抑制できる。 FIG. 8 is an enlarged view of the jig 122. The material of the jig 122 is made of, for example, SUS or aluminum. In addition, the jig 122 includes at least a part of the surfaces 126a and 127a out of the housing part 126 that contacts the workpiece 120 and the part 127 exposed in the chamber, and is made of a resin material such as PTFE or acrylic that has low water absorption. May be. Thereby, the fall of the vacuum degree by the degassing from resin and the fall of film-forming quality can be suppressed. Further, a metal film 126b such as stainless steel (SUS) or aluminum may be formed on the resin surface 126a in contact with the workpiece 120. Thereby, it is possible to prevent impurities such as moisture from diffusing from the resin surface 126 a of the housing portion 126 into the chamber or the workpiece 120. As a result, the time required for evacuating to a predetermined degree of vacuum can be greatly shortened, and deterioration in film quality can be suppressed.
 また、本実施の形態に係る治具122は、充填部128の内部に閉じた空間128aを有している。空間128aは、チャンバ112の内部空間に対して封止されている。これにより、治具122を軽量化できる。 Moreover, the jig 122 according to the present embodiment has a closed space 128 a inside the filling portion 128. The space 128 a is sealed with respect to the internal space of the chamber 112. Thereby, the jig | tool 122 can be reduced in weight.
 次に、蒸着装置110で用いられる他の治具について説明する。前述の治具122は、ワーク120に対応した大きさや形状である。しかしながら、ワークの形状や大きさは常に同じではない。その場合、複数種のワークに対して成膜するために、蒸着装置毎に決まった治具を用いると、仕様の異なる複数の蒸着装置が必要となる。 Next, other jigs used in the vapor deposition apparatus 110 will be described. The jig 122 described above has a size and shape corresponding to the workpiece 120. However, the shape and size of the workpiece are not always the same. In that case, in order to form a film on a plurality of types of workpieces, if a jig determined for each vapor deposition apparatus is used, a plurality of vapor deposition apparatuses having different specifications are required.
 あるいは、一つの治具で形状の異なるワークに対応しようとすると、ワークの大きさによって排気の対象となるチャンバ内の空間の体積が変わる。その場合、所定の真空度まで排気するために必要な時間や排気条件がワークの大きさによって変わるため、特に混流生産の現場では装置の設定が煩雑になったり、工程管理が複雑となったりする。 Or, if one jig is used to handle workpieces with different shapes, the volume of the space in the chamber to be evacuated changes depending on the size of the workpiece. In that case, the time required for evacuating to a predetermined degree of vacuum and the evacuation conditions vary depending on the size of the workpiece, so the setting of the apparatus becomes complicated and the process management becomes complicated especially in the mixed flow production site. .
 そこで、本実施の形態に係る蒸着装置110の使用方法は、複数の治具から選択された第1の保持部材としての前述の治具122にワーク120を保持させた状態でワーク120の表面に成膜する工程と、治具122と形状が異なる第2の保持部材としての治具に、ワーク120と形状が異なる第2のワークを保持させた状態で第2のワークの表面に成膜する工程と、が選択可能である。 Then, the usage method of the vapor deposition apparatus 110 which concerns on this Embodiment is the surface of the workpiece | work 120 in the state which hold | maintained the workpiece | work 120 to the above-mentioned jig | tool 122 as a 1st holding member selected from the several jig | tool. Forming a film on the surface of the second workpiece in a state where the second workpiece having a shape different from that of the workpiece 120 is held by a jig as a second holding member having a shape different from that of the jig 122. And a process can be selected.
 図9は、第3の実施の形態に係る第2の保持部材と第2のワークとを説明するための模式図である。図9に示す第2の保持部材である治具130は、保持するワーク132の形状に沿った凹状の収容部134と、収容部134とチャンバ112の内壁との間を埋める充填部136と、を有する。充填部136の内部には、閉じた空間136aが形成されている。 FIG. 9 is a schematic diagram for explaining the second holding member and the second workpiece according to the third embodiment. The jig 130 as the second holding member shown in FIG. 9 includes a concave accommodating portion 134 that follows the shape of the workpiece 132 to be held, a filling portion 136 that fills a space between the accommodating portion 134 and the inner wall of the chamber 112, Have A closed space 136 a is formed inside the filling portion 136.
 また、治具130は、ワーク132を保持した状態での体積が、治具122がワーク120を保持した状態での体積と余り違わないような大きさである。これにより、異なる大きさのワークであっても、所定の真空度まで排気するための時間のばらつきを抑えることができる。 Also, the jig 130 has such a size that the volume when the work 132 is held is not so different from the volume when the jig 122 holds the work 120. Thereby, even if it is a workpiece | work of a different magnitude | size, the dispersion | variation in the time for exhausting to the predetermined | prescribed vacuum degree can be suppressed.
 より詳述すると、治具122が、ワーク120を保持した状態で、チャンバ112の内部空間に占める体積の割合をA%、治具130が、ワーク132を保持した状態で、チャンバ112の内部空間に占める体積の割合をB%とすると、 0.5≦A/B≦1.5・・・式(1) を満たしているとよい。より好ましくは、0.8≦A/B≦1.2を満たしているとよい。これにより、異なる大きさのワークであっても、所定の真空度まで排気するための時間のばらつきを抑えることができる。 More specifically, in the state where the jig 122 holds the workpiece 120, the volume ratio in the internal space of the chamber 112 is A%, and in the state where the jig 130 holds the workpiece 132, the internal space of the chamber 112. Assuming that the volume ratio in B is B%, 0.5 ≦ A / B ≦ 1.5... Formula (1) may be satisfied. More preferably, 0.8 ≦ A / B ≦ 1.2 is satisfied. Thereby, even if it is a workpiece | work of a different magnitude | size, the dispersion | variation in the time for exhausting to the predetermined | prescribed vacuum degree can be suppressed.
 このように、本実施の形態に係る蒸着装置110は、チャンバ内でワーク120が治具122に保持されている場合と、ワーク132が治具130に保持されている場合とで、所定の真空度まで排気するために必要な時間を揃えやすくなる。その結果、装置の設定作業や混流生産時の工程管理が容易となる。 As described above, the vapor deposition apparatus 110 according to the present embodiment has a predetermined vacuum between the case where the work 120 is held by the jig 122 and the case where the work 132 is held by the jig 130 in the chamber. It becomes easy to arrange the time required to exhaust to the degree. As a result, device setting work and process management during mixed flow production are facilitated.
 なお、治具130は、チャンバ112の内部空間に占める体積の割合が10%以上、好ましくは、40%以上、より好ましくは70%以上となるような形状や大きさである。また、治具130は、チャンバ112の内部空間に占める体積の割合が95%以下となるような形状や大きさが好ましい。これにより、所定の真空度まで排気するために必要な時間をより低減できる。また、治具の形状は、蒸発源からワークに向かう原材料の経路を妨げない形状である。 Note that the jig 130 has a shape and a size such that the volume ratio in the internal space of the chamber 112 is 10% or more, preferably 40% or more, more preferably 70% or more. In addition, the jig 130 preferably has a shape and a size such that the volume ratio in the internal space of the chamber 112 is 95% or less. Thereby, the time required for exhausting to a predetermined degree of vacuum can be further reduced. The shape of the jig is a shape that does not obstruct the path of the raw material from the evaporation source to the workpiece.
 (変形例)
 図10は、第3の実施の形態に係る治具の変形例を模式的に示す図である。図10に示す治具138は、複数の部品を組み合わせた容器である。治具138は、アルミニウムからなる筒部140と、筒部140の一方の開口部を閉塞する樹脂製の保持部142と、筒部140の他方の開口部を閉塞する樹脂製の底部144と、を有する。保持部142および底部144は、吸水性の低いPTFEやアクリル等の樹脂成形品、もしくは金属部材からなる。保持部142は、保持するワークの形状に沿った凹状の収容部143を有する。
(Modification)
FIG. 10 is a diagram schematically illustrating a modification of the jig according to the third embodiment. A jig 138 shown in FIG. 10 is a container in which a plurality of parts are combined. The jig 138 includes a cylindrical portion 140 made of aluminum, a resin holding portion 142 that closes one opening portion of the cylindrical portion 140, a resin bottom portion 144 that closes the other opening portion of the cylindrical portion 140, and Have The holding part 142 and the bottom part 144 are made of a resin molded product such as PTFE or acrylic having low water absorption, or a metal member. The holding part 142 has a concave accommodating part 143 along the shape of the work to be held.
 また、ワークと接触(対向)する収容部143の表面には、保持部142の樹脂が吸水することを抑制するために、金属膜145が成膜されていてもよい。金属膜145は、例えば、吸着係数の小さなステンレスの薄膜が好ましい。これにより、保持部142の樹脂が吸水しにくくなり、また、樹脂からの脱ガスを低減できる。 Further, a metal film 145 may be formed on the surface of the accommodating part 143 that contacts (opposes) the workpiece in order to prevent the resin of the holding part 142 from absorbing water. For example, the metal film 145 is preferably a stainless thin film having a small adsorption coefficient. Thereby, it becomes difficult for the resin of the holding part 142 to absorb water, and degassing from the resin can be reduced.
 筒部140と保持部142とは、Oリング146を挟んだ状態で、ボルトなどの締結部材で互いに結合される。また、筒部140と底部144とは、Oリング148とを挟んだ状態で、ボルトなどの締結部材で結合される。筒部140、保持部142および底部144で囲まれた内部空間150は、密閉されており、治具138全体は真空度が1×10-5Paより高真空の耐圧容器である。これにより、治具138の内部空間150を含む体積を大きくしつつ軽量化できる。 The cylindrical portion 140 and the holding portion 142 are coupled to each other by a fastening member such as a bolt with the O-ring 146 interposed therebetween. Moreover, the cylinder part 140 and the bottom part 144 are couple | bonded by fastening members, such as a volt | bolt, in the state which pinched | interposed the O-ring 148. FIG. The internal space 150 surrounded by the cylindrical portion 140, the holding portion 142, and the bottom portion 144 is hermetically sealed, and the entire jig 138 is a pressure vessel having a vacuum degree higher than 1 × 10 −5 Pa. Thereby, it is possible to reduce the weight while increasing the volume including the internal space 150 of the jig 138.
 (第4の実施の形態)
 真空成膜プロセスにおいてチャンバ内を所定の真空度に排気する必要がある。また、所定の真空度まで迅速に排気する場合は、大容量で高性能のポンプを使用したり、複数のポンプを用いて多段階に排気したりする必要があり、成膜装置のコストが上昇する一因となっている。
(Fourth embodiment)
In the vacuum film formation process, it is necessary to evacuate the chamber to a predetermined degree of vacuum. In addition, when evacuating quickly to a predetermined degree of vacuum, it is necessary to use a high-capacity, high-performance pump, or evacuate in multiple stages using multiple pumps, which increases the cost of the film formation system. It is a cause to do.
 そこで、本発明者は、第3の実施の形態に係る治具を用いることで、一般的な性能のポンプであっても使用する数を減らすことができる点に想到した。以下では、ワーク交換室を備えた蒸着装置を一例として説明する。 Therefore, the present inventor has conceived that the number of pumps of general performance can be reduced by using the jig according to the third embodiment. Below, the vapor deposition apparatus provided with the workpiece | work exchange chamber is demonstrated as an example.
 図11(a)~図11(d)は、第4の実施の形態に係る蒸着装置の動作工程を説明するための模式図である。 FIG. 11A to FIG. 11D are schematic views for explaining the operation process of the vapor deposition apparatus according to the fourth embodiment.
 図11(a)に示す蒸着装置152は、成膜用のチャンバ154とワーク(成膜される部品)を交換するチャンバ156とを有する真空槽158と、チャンバ154に設けられている蒸着ユニット160と、チャンバ154内を所定の真空度まで排気する排気装置としてのポンプ162と、チャンバ156内にドライエアを導入する導入路164と、回転機構166と、を備える。回転機構166は、チャンバ154内に配置されているワークおよび治具と、チャンバ156内に配置されているワークおよび治具と、を真空槽158の内部で回転させて交換する。 A vapor deposition apparatus 152 shown in FIG. 11A includes a vacuum chamber 158 having a film formation chamber 154 and a chamber 156 for exchanging a work (part to be formed), and a vapor deposition unit 160 provided in the chamber 154. A pump 162 serving as an exhaust device for exhausting the inside of the chamber 154 to a predetermined degree of vacuum, an introduction path 164 for introducing dry air into the chamber 156, and a rotation mechanism 166. The rotating mechanism 166 exchanges the work and jig disposed in the chamber 154 and the work and jig disposed in the chamber 156 by rotating them inside the vacuum chamber 158.
 図11(a)に示す状態では、チャンバ154の内部において、治具168に保持されているワーク170に対して蒸着ユニット160により金属の反射膜が成膜されている。一方、チャンバ156においては、大気に開放した状態で、治具172の収容部にワーク174を保持させる。 In the state shown in FIG. 11A, a metal reflective film is formed on the workpiece 170 held by the jig 168 by the vapor deposition unit 160 inside the chamber 154. On the other hand, in the chamber 156, the work 174 is held in the housing portion of the jig 172 in a state where the chamber 156 is open to the atmosphere.
 次に、図11(b)に示すように、チャンバ156を密封し、導入路164からドライエアを導入する。これにより、チャンバ156内がドライガスで置換され、チャンバ156内の各部に水分が吸着して蓄積されることを抑制できる。 Next, as shown in FIG. 11B, the chamber 156 is sealed, and dry air is introduced from the introduction path 164. Accordingly, the inside of the chamber 156 is replaced with the dry gas, and moisture can be suppressed from being adsorbed and accumulated in each part in the chamber 156.
 次に、図11(c)に示すように、回転機構166によって治具172およびワーク174がチャンバ154に移動し、治具168およびワーク170がチャンバ156に移動する。その後、ポンプ162によってチャンバ156内が所定の真空度に達するまで排気される。なお、チャンバ156内は、排気される空間の容積が治具172によって減らされているため、容量の小さい一つのポンプであっても迅速に所定の真空度まで排気される。 Next, as shown in FIG. 11 (c), the jig 172 and the workpiece 174 are moved to the chamber 154 by the rotation mechanism 166, and the jig 168 and the workpiece 170 are moved to the chamber 156. Thereafter, the inside of the chamber 156 is exhausted by the pump 162 until a predetermined degree of vacuum is reached. Since the volume of the space to be exhausted is reduced by the jig 172 in the chamber 156, even a single pump with a small capacity is quickly exhausted to a predetermined degree of vacuum.
 次に、図11(d)に示すように、チャンバ154の内部において、治具172に保持されているワーク174に対して蒸着ユニット160により金属の反射膜が成膜される。一方、チャンバ156においては、治具172に保持されていた、成膜されたワーク170が取り出される。 Next, as shown in FIG. 11D, a metal reflective film is formed on the work 174 held by the jig 172 by the vapor deposition unit 160 inside the chamber 154. On the other hand, in the chamber 156, the film-formed workpiece 170 held by the jig 172 is taken out.
 上述のように、第4の実施の形態に係る蒸着装置152は、チャンバ154にのみポンプ162があればよく、ワークの出し入れを行うチャンバ156に粗引き用のポンプを設ける必要はないが、更に処理を高速化したい場合には、チャンバ156側にもポンプ162を設置してもよい。 As described above, the vapor deposition apparatus 152 according to the fourth embodiment needs only to have the pump 162 in the chamber 154, and it is not necessary to provide a roughing pump in the chamber 156 for taking in and out the workpiece. If it is desired to increase the processing speed, a pump 162 may be installed on the chamber 156 side.
 以上、本発明を上述の実施の形態を参照して説明したが、本発明は上述の実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。 As described above, the present invention has been described with reference to the above-described embodiment. However, the present invention is not limited to the above-described embodiment, and the present invention can be appropriately combined or replaced with the configuration of the embodiment. It is included in the present invention. In addition, it is possible to appropriately change the combination and processing order in the embodiment based on the knowledge of those skilled in the art and to add various modifications such as various design changes to the embodiment. The described embodiments can also be included in the scope of the present invention.
 上述の実施の形態では、成膜装置として蒸着装置を例に説明したが、スパッタリング装置やその他の真空を利用した成膜装置、特に、大量生産のために頻繁に真空引きが必要な工程に利用する成膜装置に好適である。 In the above-described embodiment, the vapor deposition apparatus has been described as an example of the film formation apparatus. However, the sputtering apparatus and other film formation apparatuses using vacuum, particularly for processes that require frequent evacuation for mass production. It is suitable for a film forming apparatus.
 本発明は、多層膜を製造する技術や成膜装置に関する。 The present invention relates to a technique for manufacturing a multilayer film and a film forming apparatus.
 10 スパッタリング装置、 12 チャンバ、 14 マグネトロンユニット、 21 基材、 24 ターゲット、 24a 第1の領域、 24b 第2の領域、 28 電源、 30 永久磁石ユニット、 32 移動機構、 34 金属膜、 36 合金膜、 38 金属膜、 40 多層膜。 10 sputtering equipment, 12 chambers, 14 magnetron units, 21 base material, 24 targets, 24a first area, 24b second area, 28 power supply, 30 permanent magnet unit, 32 moving mechanism, 34 metal film, 36 alloy film, 38 metal films, 40 multilayer films.

Claims (12)

  1.  成膜する対象の試料が載置される載置部と、
     種類の異なる金属または合金からなる複数の領域を有するターゲットと、
     前記ターゲットの裏面側に設けられたマグネトロンユニットと、
     前記試料と前記ターゲットとの間に電圧を印加する電源と、
     前記ターゲットと前記マグネトロンユニットとが対向しながら相対移動するように構成されている移動機構と、を備え、
     前記マグネトロンユニットは、前記ターゲットの複数の領域のそれぞれの領域と選択的に対向できるように構成されていることを特徴とするスパッタリング装置。
    A placement unit on which a sample to be deposited is placed;
    A target having a plurality of regions of different types of metals or alloys;
    A magnetron unit provided on the back side of the target;
    A power source for applying a voltage between the sample and the target;
    A moving mechanism configured to move relative to the target and the magnetron unit while facing each other,
    The said magnetron unit is comprised so that it can selectively oppose each area | region of the several area | region of the said target, The sputtering device characterized by the above-mentioned.
  2.  前記ターゲットは、アルミニウムからなる第1の領域と、クロムからなる第2の領域を有することを特徴とする請求項1に記載のスパッタリング装置。 The sputtering apparatus according to claim 1, wherein the target has a first region made of aluminum and a second region made of chromium.
  3.  種類の異なる金属または合金からなる複数の領域を有するターゲットに対して、マグネトロンユニットを相対移動させることで、前記複数の領域のうち第1の領域をスパッタして成膜された第1の層と、前記複数の領域のうち第2の領域をスパッタして成膜された第2の層とを積層する多層膜の製造方法。 A first layer formed by sputtering a first region of the plurality of regions by moving the magnetron unit relative to a target having a plurality of regions made of different types of metals or alloys; A method for producing a multilayer film, in which a second layer formed by sputtering a second region of the plurality of regions is laminated.
  4.  前記第1の層を形成する工程と前記第2の層を形成する工程との間に、前記マグネトロンユニットが前記第1の領域と対向する位置から前記第2の領域と対向する位置まで移動しながら第3の層を形成する中間工程を有し、
     前記中間工程は、前記第1の層の組成から前記第2の層の組成まで徐々に変化した傾斜膜として前記第3の層を形成することを特徴とする請求項3に記載の多層膜の製造方法。
    Between the step of forming the first layer and the step of forming the second layer, the magnetron unit moves from a position facing the first region to a position facing the second region. While having an intermediate step of forming the third layer,
    4. The multilayer film according to claim 3, wherein the intermediate step forms the third layer as a gradient film that gradually changes from the composition of the first layer to the composition of the second layer. 5. Production method.
  5.  前記第1の層は主としてクロムからなる薄膜であり、前記第2の層は主としてアルミニウムからなる薄膜であり、前記第3の層は主としてクロムとアルミニウムとからなる傾斜膜であることを特徴とする請求項4に記載の多層膜の製造方法。 The first layer is a thin film mainly made of chromium, the second layer is a thin film mainly made of aluminum, and the third layer is an inclined film mainly made of chromium and aluminum. The manufacturing method of the multilayer film of Claim 4.
  6.  真空チャンバと、
     前記真空チャンバ内に設けられる、成膜対象のワークを保持する保持部材と、
     前記保持部材に保持されたワークの表面に薄膜として付着させる原材料が載置される載置部と、を備え、
     前記保持部材は、保持するワークの形状に沿った収容部と、該収容部と前記真空チャンバとの間を埋める充填部と、を有することを特徴とする成膜装置。
    A vacuum chamber;
    A holding member provided in the vacuum chamber for holding a workpiece to be deposited;
    A mounting portion on which a raw material to be attached as a thin film is mounted on the surface of the workpiece held by the holding member;
    The film forming apparatus, wherein the holding member includes an accommodating portion along a shape of a workpiece to be held, and a filling portion that fills a space between the accommodating portion and the vacuum chamber.
  7.  前記保持部材は、前記真空チャンバの内部空間に占める体積の割合が40~95%であることを特徴とする請求項6に記載の成膜装置。 The film forming apparatus according to claim 6, wherein the holding member has a volume ratio of 40 to 95% in the internal space of the vacuum chamber.
  8.  前記充填部は、内部に閉じた空間を有することを特徴とする請求項6または7に記載の成膜装置。 The film forming apparatus according to claim 6 or 7, wherein the filling unit has a closed space inside.
  9.  前記収容部は、前記ワークと接する部分に金属薄膜が形成された樹脂材料であることを特徴とする請求項6乃至8のいずれか1項に記載の成膜装置。 The film forming apparatus according to any one of claims 6 to 8, wherein the accommodating portion is a resin material in which a metal thin film is formed in a portion in contact with the workpiece.
  10.  真空チャンバ内で保持部材に保持されたワークの表面に成膜する成膜装置の使用方法であって、
     複数の保持部材から選択された第1の保持部材に第1のワークを保持させた状態で該第1のワークの表面に成膜する工程と、
     複数の保持部材から選択された、前記第1の保持部材と形状が異なる第2の保持部材に、前記第1のワークと形状が異なる第2のワークを保持させた状態で該第2のワークの表面に成膜する工程と、
     が選択可能なことを特徴とする成膜装置の使用方法。
    A method of using a film forming apparatus for forming a film on the surface of a work held by a holding member in a vacuum chamber,
    Forming a film on the surface of the first workpiece in a state where the first workpiece is held by a first holding member selected from a plurality of holding members;
    A second workpiece selected from a plurality of holding members is held in a state where a second workpiece having a shape different from that of the first workpiece is held by a second holding member having a shape different from that of the first holding member. Forming a film on the surface of
    A method of using a film forming apparatus, wherein
  11.  前記第1の保持部材は、前記第1のワークを保持した状態で、前記真空チャンバの内部空間に占める体積の割合が40~95%であり、
     前記第2の保持部材は、前記第2のワークを保持した状態で、前記真空チャンバの内部空間に占める体積の割合が40~95%である、
     ことを特徴とする請求項10に記載の成膜装置の使用方法。
    In the state where the first holding member holds the first workpiece, the volume ratio in the internal space of the vacuum chamber is 40 to 95%,
    The second holding member has a volume ratio of 40 to 95% in the internal space of the vacuum chamber while holding the second workpiece.
    The method of using the film forming apparatus according to claim 10.
  12.  前記第1の保持部材が、前記第1のワークを保持した状態で、前記真空チャンバの内部空間に占める体積の割合をA%、前記第2の保持部材が、前記第2のワークを保持した状態で、前記真空チャンバの内部空間に占める体積の割合をB%とすると、下記式(1)
     0.5≦A/B≦1.5・・・式(1)
     を満たすことを特徴とする請求項10または11に記載の成膜装置の使用方法。
    In a state where the first holding member holds the first workpiece, the volume ratio occupying the internal space of the vacuum chamber is A%, and the second holding member holds the second workpiece. In this state, if the volume ratio in the internal space of the vacuum chamber is B%, the following formula (1)
    0.5 ≦ A / B ≦ 1.5 Formula (1)
    The method of using the film forming apparatus according to claim 10 or 11, wherein:
PCT/JP2019/018339 2018-05-09 2019-05-08 Sputtering device, method for manufacturing multilayered film, film forming device, and method for using film forming device WO2019216331A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020518310A JPWO2019216331A1 (en) 2018-05-09 2019-05-08 Sputtering equipment, method of manufacturing multilayer film, method of using film forming equipment and film forming equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-090490 2018-05-09
JP2018090490 2018-05-09
JP2018098178 2018-05-22
JP2018-098178 2018-05-22

Publications (1)

Publication Number Publication Date
WO2019216331A1 true WO2019216331A1 (en) 2019-11-14

Family

ID=68466800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018339 WO2019216331A1 (en) 2018-05-09 2019-05-08 Sputtering device, method for manufacturing multilayered film, film forming device, and method for using film forming device

Country Status (2)

Country Link
JP (1) JPWO2019216331A1 (en)
WO (1) WO2019216331A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230971A (en) * 1986-03-31 1987-10-09 Shimadzu Corp Device for sputtering magnetron
JP2000021788A (en) * 1998-06-26 2000-01-21 Shin Etsu Handotai Co Ltd Apparatus for growing thin film and thin-film growing method using apparatus
JP2002332563A (en) * 2001-03-05 2002-11-22 Osaka Gas Co Ltd Alloy film, heat resistant member having the film and production method therefor
JP2004091849A (en) * 2002-08-30 2004-03-25 Tokyo Electron Ltd Treatment apparatus
JP2008084602A (en) * 2006-09-26 2008-04-10 Sabic Innovative Plastics Japan Kk Reflector for automobile headlight
JP2013171941A (en) * 2012-02-20 2013-09-02 Stanley Electric Co Ltd Vacuum processing apparatus, and method of manufacturing article using vacuum processing apparatus
JP2013194284A (en) * 2012-03-19 2013-09-30 Citizen Holdings Co Ltd Hard decorative member
JP2017036466A (en) * 2015-08-07 2017-02-16 日新電機株式会社 Sputter device, and film deposition method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230971A (en) * 1986-03-31 1987-10-09 Shimadzu Corp Device for sputtering magnetron
JP2000021788A (en) * 1998-06-26 2000-01-21 Shin Etsu Handotai Co Ltd Apparatus for growing thin film and thin-film growing method using apparatus
JP2002332563A (en) * 2001-03-05 2002-11-22 Osaka Gas Co Ltd Alloy film, heat resistant member having the film and production method therefor
JP2004091849A (en) * 2002-08-30 2004-03-25 Tokyo Electron Ltd Treatment apparatus
JP2008084602A (en) * 2006-09-26 2008-04-10 Sabic Innovative Plastics Japan Kk Reflector for automobile headlight
JP2013171941A (en) * 2012-02-20 2013-09-02 Stanley Electric Co Ltd Vacuum processing apparatus, and method of manufacturing article using vacuum processing apparatus
JP2013194284A (en) * 2012-03-19 2013-09-30 Citizen Holdings Co Ltd Hard decorative member
JP2017036466A (en) * 2015-08-07 2017-02-16 日新電機株式会社 Sputter device, and film deposition method

Also Published As

Publication number Publication date
JPWO2019216331A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
US7588669B2 (en) Single-process-chamber deposition system
JP5167282B2 (en) Film forming apparatus and film forming method
Willey Practical production of optical thin films
WO2019216331A1 (en) Sputtering device, method for manufacturing multilayered film, film forming device, and method for using film forming device
JP2007533856A5 (en)
JP3952017B2 (en) Method and apparatus for forming an optically effective multilayer film
KR101242591B1 (en) Deposition method of anti-finger layer
JPH04221061A (en) Thin film forming device
JP4656744B2 (en) Sputtering equipment
JP6161149B2 (en) Method of manufacturing metal-coated member and vacuum manufacturing apparatus thereof
JP2011026652A (en) Apparatus for forming film on both surfaces
CN111218659A (en) Film forming method and film forming apparatus
JPH05132774A (en) Sputtering apparatus
JP6378884B2 (en) Deposition method
US20100059367A1 (en) Sputter-coating apparatus
CN113463037B (en) Method for coating reflecting film on outer surface of fluoride special-shaped light guide rod
KR101141394B1 (en) Multi coating layer and antipolution coating layer formation apparatus
KR200366426Y1 (en) Apparatus for plasma coating
JP3880006B2 (en) Method for manufacturing optical article
JP2006267054A (en) Multilayer film reflection mirror, manufacturing method, and euv exposure device
WO1997047781A1 (en) Reactive magnetron sputtering apparatus and method
RU2025749C1 (en) Mirror and method to form its protective coating
JPH05339725A (en) Sputtering device
JP2735677B2 (en) Manufacturing method of aluminum alloy thin film
TWI399448B (en) Aparatus and method of sputtering deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800671

Country of ref document: EP

Kind code of ref document: A1