WO2019216238A1 - Circuit structure and electrical connection box - Google Patents

Circuit structure and electrical connection box Download PDF

Info

Publication number
WO2019216238A1
WO2019216238A1 PCT/JP2019/017655 JP2019017655W WO2019216238A1 WO 2019216238 A1 WO2019216238 A1 WO 2019216238A1 JP 2019017655 W JP2019017655 W JP 2019017655W WO 2019216238 A1 WO2019216238 A1 WO 2019216238A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
heat
circuit structure
pattern
resist layer
Prior art date
Application number
PCT/JP2019/017655
Other languages
French (fr)
Japanese (ja)
Inventor
北 幸功
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2019216238A1 publication Critical patent/WO2019216238A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/08Distribution boxes; Connection or junction boxes
    • H02G3/16Distribution boxes; Connection or junction boxes structurally associated with support for line-connecting terminals within the box
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the technology disclosed in this specification relates to a circuit structure and an electrical junction box.
  • An insulating resist layer is formed on the front and back surfaces of the circuit board.
  • This resist layer has a relatively large thermal resistance. For this reason, in the prior art, a resist layer having a relatively large thermal resistance is interposed between the conductive pattern formed on the circuit board and the grease-like heat dissipation material. Was not enough.
  • the technology disclosed in the present specification has been completed based on the above circumstances, and an object thereof is to provide a circuit structure body and an electrical junction box with improved heat dissipation.
  • the technology disclosed in the present specification is a circuit structure, wherein the heat generating component is connected to the conductive pattern on the first surface on which the conductive pattern is formed, and is opposite to the first surface.
  • An insulating resist layer is formed on the second surface formed on the side, and a heat transfer pattern thermally connected to the conductive pattern is exposed from a heat dissipation window portion opened in the resist layer.
  • a circuit board having a thermal conductivity higher than that of the resist layer and thermally connected to the heat transfer pattern exposed from the heat radiating window, and heat higher than that of the resist layer.
  • a second heat transfer portion having high conductivity and thermally connected to the first heat transfer portion, and a heat sink thermally connected to the second heat transfer portion are provided.
  • the technology disclosed in the present specification is an electrical junction box, and includes the above-described circuit structure and a cover that is attached to the circuit structure and covers the circuit board.
  • the heat generated in the heat-generating component during energization is transferred to the conductive pattern to which the heat-generating component is connected, and then transferred to the heat transfer pattern that is thermally connected to the conductive pattern, and reaches the first heat transfer section. Then, it is reliably transmitted to the second heat transfer section that is connected in heat transfer with the first heat transfer section. The heat that has reached the second heat transfer section is transferred from the second heat transfer section to the heat sink and is dissipated from the heat sink to the outside.
  • the first heat transfer section has a higher thermal conductivity than the resist layer, heat is transferred from the heat transfer pattern to the second heat transfer section as compared with the case where heat is transferred to the second heat transfer section through the resist layer. It can be transmitted efficiently. Thereby, heat can be efficiently dissipated from the heat generating component to the outside through the heat sink, so that the heat dissipation of the circuit structure can be improved.
  • the protruding height dimension of the first heat transfer portion from the heat transfer pattern is set to be equal to or larger than the thickness dimension of the resist layer.
  • the protruding end portion of the first heat transfer portion protrudes closer to the heat sink than the resist layer.
  • a spacer is interposed between the heat sink and the circuit board.
  • the distance between the heat sink and the circuit board can be accurately set by the spacer. Thereby, it can suppress that a space
  • the first heat transfer part is made of solder.
  • the heat transfer pattern and the first heat transfer portion can be reliably connected by a simple technique called soldering.
  • soldering since the heat-transfer efficiency between a heat-transfer pattern and a 1st heat-transfer part can be improved, the heat dissipation of a circuit structure body can be improved more.
  • the second heat transfer part is in the form of grease or gel.
  • the second heat transfer section is in the form of grease or gel, it can be easily deformed following the shapes of the first heat transfer section and the heat sink.
  • the adhesion between the first heat transfer section and the second heat transfer section is improved, and the adhesion between the second heat transfer section and the heat sink is also improved, so that the heat dissipation of the circuit structure can be further improved. it can.
  • the second heat transfer part has a sheet shape.
  • the second heat transfer section has a sheet shape, so that it is easy to handle. Thereby, the manufacturing efficiency of a circuit structure can be improved.
  • a plurality of the first heat transfer portions are formed at intervals, and the second heat transfer portion that has entered between the plurality of first heat transfer portions is connected in heat transfer with the heat transfer pattern. is doing.
  • the efficiency of heat conduction from the conductive pattern to the heat transfer pattern can be improved, the heat dissipation of the circuit structure can be further improved.
  • the heat dissipation of the circuit structure and the electrical junction box can be improved.
  • Sectional drawing which shows the electrical-connection box which concerns on Embodiment 1.
  • Partially enlarged plan view showing FET mounted on first surface of circuit board The partially expanded bottom view of a circuit board which shows the heat-transfer pattern formed in the 2nd surface of a circuit board, and a 1st heat-transfer part.
  • the partially expanded bottom view of a circuit board which shows the heat-transfer pattern formed in the 2nd surface of the circuit board which concerns on Embodiment 2, and a 1st heat-transfer part.
  • the partially expanded bottom view of a circuit board which shows the heat-transfer pattern formed in the 2nd surface of the circuit board which concerns on Embodiment 3, and a 1st heat-transfer part.
  • the electrical junction box 10 includes a circuit configuration body 11.
  • the electrical junction box 10 is mounted on a vehicle (not shown) and is disposed between a power source (not shown) and a device (not shown).
  • symbol may be attached
  • the electrical junction box 10 includes a circuit component 11 and a cover 12 assembled.
  • the circuit structure 11 includes a heat sink 13 and a circuit board 14 fixed to the heat sink 13.
  • the heat sink 13 is made of metal and has a bottom wall 15 and a boss 16 (an example of a spacer) protruding upward from the upper surface of the bottom wall 15.
  • the boss 16 has a cylindrical shape.
  • a screw hole 17 extending downward is formed on the upper surface of the boss 16.
  • a metal which comprises the heat sink 13 arbitrary metals, such as aluminum, aluminum alloy, iron, stainless steel, copper, a copper alloy, can be selected suitably as needed.
  • the heat sink 13 may be made of a synthetic resin having heat dissipation properties.
  • the cover 12 includes an upper wall 18 and a side wall 19 extending downward from a side edge of the upper wall 18.
  • the side wall 19 is fitted on the bottom wall 15 of the heat sink 13.
  • the cover 12 and the heat sink 13 include a lock protrusion (not shown) protruding from the side edge of the bottom wall 15 of the heat sink 13 and an elastically deformable lock receiving portion (not shown) formed on the side wall 19 of the cover 12.
  • a lock protrusion protruding from the side edge of the bottom wall 15 of the heat sink 13
  • an elastically deformable lock receiving portion not shown
  • an area above the bottom wall 15 of the heat sink 13 and below the upper wall 18 of the cover 12 is an accommodation space 20 in which the circuit board 14 is accommodated. Is done.
  • the circuit board 14 is formed by forming a metal pattern on an insulating plate made of an insulating synthetic resin by a printed wiring technique.
  • a conductive pattern 22 is formed on the first surface 21 located on the upper side of the circuit board 14. Although not shown in detail, the conductive pattern 22 forms a circuit.
  • the circuit board 14 has a through hole 24 through which the bolt 23 is passed. With the circuit board 14 placed on the upper surface of the boss 16 of the heat sink 13, the bolt 23 inserted through the through hole 24 of the circuit board 14 is screwed into the screw hole 17 formed in the boss 16. A circuit board 14 is fixed to the heat sink 13.
  • a plurality of lands 25 are formed on the first surface 21 of the circuit board 14.
  • a lead 27 of an FET 26 is electrically connected to the land 25 by a known method such as soldering.
  • the FET 26 is an example of a heat generating component.
  • the heat generating component include a component that generates heat when energized, such as a relay, a capacitor, a coil, and a microcomputer.
  • the land 25 formed on the circuit board 14 is connected to electronic components (not shown) such as resistors and diodes in addition to the heat generating components.
  • the land 25 has a substantially rectangular shape when viewed from above.
  • a first resist layer 60 made of an insulating material is formed on the first surface 21 of the circuit board 14.
  • the first resist layer 60 is generally formed in a region different from the land 25, but may be formed so as to overlap a part of the land 25.
  • two leads 27 protrude outward.
  • One of the two leads 27 is a gate terminal, and the other is a drain terminal.
  • a source terminal is formed on the lower surface of the FET 26.
  • the gate terminal, drain terminal, and source terminal of the FET 26 are soldered to lands 25 formed on the upper surface of the circuit board 14.
  • the circuit board 14 has a plurality of conductive patterns 22 stacked in an electrically insulated state.
  • the second surface 28 located on the lower side of the circuit board 14 is connected to a land 25 formed on the first surface 21 and a plurality of (three in this embodiment) thermal via holes 29 in a heat transfer manner.
  • a thermal pattern 33 is formed.
  • the thermal via hole 29 is filled with a heat transfer portion 30 having thermal conductivity in a through hole 24 that penetrates the first surface 21 and the second surface 28 of the circuit board 14.
  • the heat transfer section 30 can be formed by a known technique such as chemical plating or a cured synthetic resin material containing metal powder. The heat conductivity of the heat transfer section 30 is higher than that of the insulating synthetic resin that constitutes the circuit board 14.
  • an insulating second resist layer 31 (an example of a resist layer) is formed on the second surface 28 of the circuit board 14.
  • the second resist layer 31 has a heat radiating window 32 that opens downward.
  • the heat transfer pattern 33 is exposed from the heat radiation window 32.
  • the heat radiation window 32 has a substantially rectangular shape when viewed from below.
  • a first heat transfer section 34 is connected to the heat transfer pattern 33 in a heat transfer manner.
  • any material such as metal, synthetic resin, ceramic, or the like can be appropriately selected as necessary.
  • the thermal conductivity of the first heat transfer section 34 is set higher than that of the second resist layer 31.
  • the first heat transfer unit 34 according to the present embodiment is made of solder.
  • the first heat transfer section 34 can be formed by, for example, applying cream solder to the heat transfer pattern 33, melting the cream solder by heating, and then solidifying the cream solder.
  • the first heat transfer section 34 has a rectangular shape with rounded corners when viewed from below.
  • the outer shape of the first heat transfer section 34 is formed slightly smaller than the outer shape of the heat transfer pattern 33.
  • the second heat transfer section 35 is disposed below the first heat transfer section 34.
  • the thermal conductivity of the second heat transfer part 35 is set higher than that of the second resist layer 31.
  • the second heat transfer unit 35 may be a conductor or may have an insulating property.
  • the second heat transfer section 35 may have a sheet shape or a film shape, or may have a grease shape or a gel shape.
  • the second heat transfer section 35 is in the form of a grease or a gel at least in the process of fixing the circuit board 14 to the heat sink 13 and solidifies after the circuit board 14 and the heat sink 13 are fixed. Also good. Further, it may be in the form of grease or gel throughout the process of fixing the circuit board 14 to the heat sink 13.
  • the second heat transfer unit 35 may include a filler having a high thermal conductivity.
  • the second heat transfer section 35 is an insulating synthetic resin, and in the step of fixing the circuit board 14 to the heat sink 13, has a grease shape or a gel shape. After being fixed to, it solidifies.
  • the downward protruding height dimension H of the first heat transfer section 34 from the lower surface of the heat transfer pattern 33 is set to be equal to or larger than the thickness dimension T of the second resist layer 31.
  • the protruding height dimension H of the first heat transfer section 34 from the heat transfer pattern 33 is set to be larger than the thickness dimension T of the second resist layer 31.
  • the cream solder is applied to the heat transfer pattern 33 formed on the second surface 28 of the circuit board 14 by known screen printing. Thereafter, the first heat transfer portion 34 is formed in the heat transfer pattern 33 by heating the circuit board 14 in a reflow furnace.
  • the cream solder is applied to the lands 25 formed on the first surface 21 of the circuit board 14 by known screen printing.
  • An electronic component including the FET 26 is placed. By heating the circuit board 14 in a reflow furnace, the land 25 and an electronic component including the FET 26 are connected.
  • a grease-like or gel-like second heat transfer portion 35 is applied to a portion of the heat sink 13 corresponding to the first heat transfer portion 34 formed on the second surface 28 of the circuit board 14.
  • the circuit board 14 is placed on the upper surface of the boss 16 of the heat sink 13.
  • the bolt 23 is screwed into the screw hole 17 formed in the boss 16 while the bolt 23 is inserted into the through hole 24 of the circuit board 14.
  • the first heat transfer part 34 disposed on the second surface 28 of the circuit board 14 contacts the second heat transfer part 35 from above.
  • the circuit board 14 is fixed to the heat sink 13 by screwing the bolts 23. Thereby, the circuit structure 11 is completed.
  • the FET 26 is connected to the FET 26 and the conductive pattern 22 on the first surface 21 on which the conductive pattern 22 is formed, and the second structure formed on the opposite side of the first surface 21.
  • An insulating second resist layer 31 is formed on the surface 28, and the heat transfer pattern 33 that is thermally connected to the conductive pattern 22 is exposed from the heat radiation window 32 opened in the second resist layer 31.
  • the first heat transfer section 34 having a higher thermal conductivity than the second resist layer 31 and thermally connected to the heat transfer pattern 33 exposed from the heat dissipation window section 32;
  • a second heat transfer portion 35 having a higher thermal conductivity than the resist layer 31 and thermally connected to the first heat transfer portion 34; and a heat sink thermally connected to the second heat transfer portion 35.
  • the electrical junction box 110 has a circuit structure 111.
  • a first resist layer 160 is formed on the upper surface of the circuit board 114 included in the circuit structure 111, and a second resist layer 131 is formed on the lower surface of the circuit board 114.
  • the heat transfer pattern 133 formed on the circuit board 114 is exposed by removing a part of the second resist layer 131.
  • a grease-like second heat transfer section 135 is disposed at a position corresponding to the heat transfer pattern 133.
  • symbol what added 100 to the code
  • the second heat transfer portion 135 does not reach the heat transfer pattern 133 due to the thickness of the second resist layer 131, but rather between the heat transfer pattern 133 and the second heat transfer portion 135. An air layer is formed. For this reason, the heat dissipation of the circuit structure 111 cannot be sufficiently improved by the above-described virtual technique.
  • the heat generated in the FET 26 during energization is transferred to the land 25 (conductive pattern 22) to which the FET 26 is connected, and then the heat transfer thermally connected to the land 25. Conducted to the pattern 33, transmitted to the first heat transfer unit 34, and further reliably transmitted to the second heat transfer unit 35 connected in heat transfer with the first heat transfer unit 34. The heat that has reached the second heat transfer unit 35 is transmitted from the second heat transfer unit 35 to the heat sink 13 and is dissipated from the heat sink 13 to the outside.
  • the heat transfer pattern 33 is compared to the case where heat is transferred to the second heat transfer section 35 via the second resist layer 31.
  • the heat can be efficiently transferred from the heat to the second heat transfer section 35. Thereby, heat can be efficiently dissipated from the FET 26 to the outside through the heat sink 13, so that the heat dissipation of the circuit structure 11 can be improved.
  • the protruding height dimension H of the first heat transfer section 34 from the heat transfer pattern 33 is set to be equal to or larger than the thickness dimension T of the second resist layer 31.
  • the protruding end portion of the first heat transfer portion 34 protrudes to the heat sink 13 side from the second resist layer 31. Therefore, since the 1st heat-transfer part 34 can contact the 2nd heat-transfer part 35 reliably, the heat dissipation of the circuit structure 11 can be improved reliably.
  • the boss 16 that protrudes from the heat sink 13 toward the circuit board 14 is interposed between the heat sink 13 and the circuit board 14.
  • the distance between the heat sink 13 and the circuit board 14 can be accurately set according to the height dimension of the boss 16.
  • the first heat transfer section 34 is made of solder.
  • the heat-transfer pattern 33 and the 1st heat-transfer part 34 can be connected reliably. Therefore, since the heat transfer efficiency between the heat transfer pattern 33 and the 1st heat transfer part 34 can be improved, the heat dissipation of the circuit structure 11 can be improved more.
  • the second heat transfer section 35 has a grease shape or a gel shape.
  • the second heat transfer section 35 is in the form of grease or gel, it can be easily deformed following the shapes of the first heat transfer section 34 and the heat sink 13. As a result, the adhesion between the first heat transfer section 34 and the second heat transfer section 35 is improved, and the adhesion between the second heat transfer section 35 and the heat sink 13 is also improved. It can be improved further.
  • the conductive pattern 22 and the heat transfer pattern 33 are connected by the thermal via hole 29.
  • a plurality of first transmission lines are provided on the lower surface of the heat transfer pattern 33.
  • the heat part 41 is formed in a discrete state with an interval.
  • Each first heat transfer section 41 has a substantially rectangular shape when viewed from below.
  • the first heat transfer section row 42 in which a plurality (six in this embodiment) of the first heat transfer sections 41 are arranged at intervals in the vertical direction in FIG. 4 is spaced in the left-right direction in FIG.
  • a plurality (three rows in this embodiment) are formed side by side.
  • the second heat transfer part 35 in the form of grease or gel can enter.
  • the second heat transfer section 35 that has entered the gap 43 is in direct contact with the heat transfer pattern 33.
  • the second heat transfer unit 35 moves into the gap 43 when pressed by the first heat transfer unit 41.
  • the air bubbles are pressed by the first heat transfer unit 41, It moves into the gap 43 together with the second heat transfer part 35 present around the bubbles.
  • air is excluded from the position corresponding to the first heat transfer section 41 in the second heat transfer section 35, and the first heat transfer section 41 and the second heat transfer section 35 can be reliably brought into contact with each other. .
  • the heat dissipation of the circuit structure 11 can be improved.
  • the heat transfer pattern 33 directly contacts the heat transfer pattern 33 and the heat is directly transferred from the heat transfer pattern 33 to the second heat transfer section 35. Therefore, the heat dissipation of the circuit structure 11 can be further improved.
  • first heat transfer portions 51 are arranged on the lower surface of the heat transfer pattern 33 at intervals in the vertical direction in FIG. Is formed.
  • Each first heat transfer section 51 has a substantially rectangular shape when viewed from below.
  • the second heat transfer part 35 in the form of grease or gel can enter.
  • the second heat transfer section 35 that has entered the gap 52 is in direct contact with the heat transfer pattern 33.
  • the second heat transfer unit 35 moves to the inside of the gap 52 by being pressed by the first heat transfer unit 51.
  • the air bubbles are pressed by the first heat transfer unit 51, It moves into the gap 52 together with the second heat transfer section 35 present around the bubbles.
  • air is excluded from the position corresponding to the first heat transfer part 51 in the second heat transfer part 35, and the first heat transfer part 51 and the second heat transfer part 35 can be reliably brought into contact with each other. .
  • the heat dissipation of the circuit structure 11 can be improved.
  • the boss 16 formed integrally with the heat sink 13 functions as a spacer interposed between the heat sink 13 and the circuit board 14.
  • the present invention is not limited to this. May be separate.
  • an arbitrary material such as a metal plate material, a synthetic resin plate material, or a ceramic plate material can be selected as appropriate.
  • the second heat transfer unit 35 is arranged at a position corresponding to the heat transfer pattern 33.
  • the second heat transfer unit 35 is not limited to this, and the circuit board 14 is not limited thereto. It is good also as a structure arrange
  • the shape of the heat transfer pattern 33 may be a polygonal shape such as a triangular shape or a pentagonal shape, or may be a circular shape or an oval shape, and can be any shape as necessary.
  • the conductive pattern 22 and the heat transfer pattern 33 are connected by the three thermal via holes 29.
  • the present invention is not limited to this. One to two, or four or more It is good also as a structure connected with the thermal via hole 29. FIG.
  • a plurality of fins may protrude downward.
  • the protruding height dimension H of the first heat transfer section 34 from the heat transfer pattern 33 is set to be equal to or larger than the thickness dimension T of the second resist layer 31.
  • the present invention is not limited to this, and the protruding height dimension H of the first heat transfer section 34 from the heat transfer pattern 33 may be set smaller than the thickness dimension T of the second resist layer 31. Even in this case, the heat dissipation of the circuit component 11 can be improved by the second heat transfer section 35 that is thermally connected to the first heat transfer section 34.
  • the second heat transfer section may be in the form of a sheet.
  • the second heat transfer section can be easily cut into a shape that follows the shape of the first heat transfer section.
  • the yield of the second heat transfer section can also be improved.
  • the 2nd heat-transfer part which makes a sheet form may be a product made from a synthetic resin, and may be made from metal.
  • An adhesive or a pressure-sensitive adhesive may be applied in advance to the sheet-like second heat transfer section.

Abstract

A circuit structure 11 according to the present embodiment is provided with: an FET 26; a circuit board 14 in which the FET 26 is connected to an electrically conductive pattern 22 on a first surface 21 on which the electrically conductive pattern 22 is formed, an insulating second resist layer 31 is formed on a second surface 28 formed on an opposite side to the first surface 21, and a heat-conductive pattern 33 heat-conductively connected to the electrically conductive pattern 22 is exposed from a heat dissipating window part 32 that is opened in the second resist layer 31; a first heat-conductive part 34 which has a higher heat conductivity than the second resist layer 31, and is heat-conductively connected to the heat-conductive pattern 33 exposed from the heat dissipating window part 32; a second heat-conductive part 35 which has a higher heat conductivity than the second resist layer 31, and is heat-conductively connected to the first heat-conductive part 34; and a heat sink 13 which is heat-conductively connected to the second heat-conductive part 35.

Description

回路構成体、及び電気接続箱Circuit structure and electrical junction box
 本明細書に開示された技術は、回路構成体、及び電気接続箱に関する。 The technology disclosed in this specification relates to a circuit structure and an electrical junction box.
 従来、回路基板に発熱部品が実装された回路構成体として、特開2014-170868号公報に記載のものが知られている。この回路構成体は、金属筐体の内部に収容されている。回路基板と金属筐体との間には、グリース状の放熱材が配されている。この放熱材は、回路基板と金属筐体の双方に接触している。これにより、通電時に発熱部品で発生した熱は、回路基板から放熱材を経て金属筐体へと伝達され、金属筐体から外部へと放散されることが期待された。 Conventionally, as a circuit structure in which a heat generating component is mounted on a circuit board, one described in Japanese Patent Application Laid-Open No. 2014-170868 is known. This circuit component is housed inside a metal housing. A grease-like heat dissipating material is disposed between the circuit board and the metal casing. This heat dissipation material is in contact with both the circuit board and the metal casing. As a result, it was expected that the heat generated in the heat-generating component when energized was transmitted from the circuit board to the metal casing through the heat dissipation material and dissipated from the metal casing to the outside.
特開2014-170868号公報JP 2014-170868 A
 回路基板の表面及び裏面には、絶縁性のレジスト層が形成されている。このレジスト層は比較的に熱抵抗が大きい。このため、従来技術においては、回路基板に形成された導電パターンと、グリース状の放熱材との間に、比較的に熱抵抗が大きなレジスト層が介在してしまうので、回路構成体の放熱性が十分ではなかった。 An insulating resist layer is formed on the front and back surfaces of the circuit board. This resist layer has a relatively large thermal resistance. For this reason, in the prior art, a resist layer having a relatively large thermal resistance is interposed between the conductive pattern formed on the circuit board and the grease-like heat dissipation material. Was not enough.
 本明細書に開示された技術は上記のような事情に基づいて完成されたものであって、放熱性が向上した回路構成体、及び電気接続箱を提供することを目的とする。 The technology disclosed in the present specification has been completed based on the above circumstances, and an object thereof is to provide a circuit structure body and an electrical junction box with improved heat dissipation.
 本明細書に開示された技術は、回路構成体であって、発熱部品と、導電パターンが形成された第1面の前記導電パターンに前記発熱部品が接続されており、前記第1面と反対側に形成された第2面には絶縁性のレジスト層が形成されており、前記レジスト層に開口された放熱窓部から前記導電パターンと伝熱的に接続された伝熱パターンが露出している回路基板と、前記レジスト層よりも熱伝導率が高く、且つ、前記放熱窓部から露出する前記伝熱パターンに伝熱的に接続された第1伝熱部と、前記レジスト層よりも熱伝導率が高く、且つ、前記第1伝熱部と伝熱的に接続された第2伝熱部と、前記第2伝熱部と伝熱的に接続するヒートシンクと、を備える。 The technology disclosed in the present specification is a circuit structure, wherein the heat generating component is connected to the conductive pattern on the first surface on which the conductive pattern is formed, and is opposite to the first surface. An insulating resist layer is formed on the second surface formed on the side, and a heat transfer pattern thermally connected to the conductive pattern is exposed from a heat dissipation window portion opened in the resist layer. A circuit board having a thermal conductivity higher than that of the resist layer and thermally connected to the heat transfer pattern exposed from the heat radiating window, and heat higher than that of the resist layer. A second heat transfer portion having high conductivity and thermally connected to the first heat transfer portion, and a heat sink thermally connected to the second heat transfer portion are provided.
 また、本明細書に開示された技術は、電気接続箱であって、上記の回路構成体と、前記回路構成体に取り付けられて、前記回路基板を覆うカバーと、を備える。 Also, the technology disclosed in the present specification is an electrical junction box, and includes the above-described circuit structure and a cover that is attached to the circuit structure and covers the circuit board.
 通電時に発熱部品で発生した熱は、発熱部品が接続された導電パターンに伝達された後に、この導電パターンと伝熱的に接続された伝熱パターンへと伝導され、第1伝熱部にまで伝達され、更に、第1伝熱部と伝熱的に接続された第2伝熱部へと確実に伝達される。第2伝熱部に到達した熱は、第2伝熱部からヒートシンクへと伝達され、ヒートシンクから外部へと放散される。 The heat generated in the heat-generating component during energization is transferred to the conductive pattern to which the heat-generating component is connected, and then transferred to the heat transfer pattern that is thermally connected to the conductive pattern, and reaches the first heat transfer section. Then, it is reliably transmitted to the second heat transfer section that is connected in heat transfer with the first heat transfer section. The heat that has reached the second heat transfer section is transferred from the second heat transfer section to the heat sink and is dissipated from the heat sink to the outside.
 第1伝熱部はレジスト層よりも熱伝導率が高いので、レジスト層を介して第2伝熱部に熱が伝達される場合に比べて、伝熱パターンから第2伝熱部へ熱を効率よく伝達することができる。これにより、発熱部品から、ヒートシンクを経て外部へと熱を効率よく放散することができるので、回路構成体の放熱性を向上させることができる。 Since the first heat transfer section has a higher thermal conductivity than the resist layer, heat is transferred from the heat transfer pattern to the second heat transfer section as compared with the case where heat is transferred to the second heat transfer section through the resist layer. It can be transmitted efficiently. Thereby, heat can be efficiently dissipated from the heat generating component to the outside through the heat sink, so that the heat dissipation of the circuit structure can be improved.
 本明細書に開示された技術の実施態様としては以下の態様が好ましい。 The following embodiments are preferred as embodiments of the technology disclosed in this specification.
 前記第1伝熱部の前記伝熱パターンからの突出高さ寸法は、前記レジスト層の厚さ寸法と同じか、又は大きく設定されている。 The protruding height dimension of the first heat transfer portion from the heat transfer pattern is set to be equal to or larger than the thickness dimension of the resist layer.
 上記の構成によれば、第1伝熱部の突出端部は、レジスト層よりもヒートシンク側に突出するようになっている。これにより、第1伝熱部は確実に第2伝熱部と接触することができるので、回路構成体の放熱性を確実に向上させることができる。 According to the above configuration, the protruding end portion of the first heat transfer portion protrudes closer to the heat sink than the resist layer. Thereby, since a 1st heat-transfer part can contact with a 2nd heat-transfer part reliably, the heat dissipation of a circuit structure body can be improved reliably.
 前記ヒートシンクと前記回路基板との間にはスペーサが介在されている。 A spacer is interposed between the heat sink and the circuit board.
 上記の構成によれば、ヒートシンクと回路基板との間隔をスペーサによって正確に設定できる。これにより、第2伝熱部と第1伝熱部との間に空隙が生じることを抑制することができる。この結果、回路構成体の放熱性をより向上させることができる。 According to the above configuration, the distance between the heat sink and the circuit board can be accurately set by the spacer. Thereby, it can suppress that a space | gap arises between a 2nd heat-transfer part and a 1st heat-transfer part. As a result, the heat dissipation of the circuit structure can be further improved.
 前記第1伝熱部は、はんだからなる。 The first heat transfer part is made of solder.
 上記の構成によれば、伝熱パターンと第1伝熱部とを、はんだ付けという簡易な手法により、確実に接続することができる。これにより、伝熱パターンと第1伝熱部との間の伝熱効率を向上させることができるので、回路構成体の放熱性をより向上させることができる。 According to the above configuration, the heat transfer pattern and the first heat transfer portion can be reliably connected by a simple technique called soldering. Thereby, since the heat-transfer efficiency between a heat-transfer pattern and a 1st heat-transfer part can be improved, the heat dissipation of a circuit structure body can be improved more.
 前記第2伝熱部は、グリース状又はゲル状をなしている。 The second heat transfer part is in the form of grease or gel.
 上記の構成によれば、第2伝熱部はグリース状又はゲル状をなしているので、第1伝熱部及びヒートシンクの形状に追従して容易に変形することができる。これにより、第1伝熱部と第2伝熱部の密着性が向上すると共に、第2伝熱部とヒートシンクとの密着性も向上するので、回路構成体の放熱性をより向上させることができる。 According to the above configuration, since the second heat transfer section is in the form of grease or gel, it can be easily deformed following the shapes of the first heat transfer section and the heat sink. As a result, the adhesion between the first heat transfer section and the second heat transfer section is improved, and the adhesion between the second heat transfer section and the heat sink is also improved, so that the heat dissipation of the circuit structure can be further improved. it can.
 前記第2伝熱部は、シート状をなしている。 The second heat transfer part has a sheet shape.
 上記の構成によれば、第2伝熱部はシート状をなしているので、取り扱いが容易である。これにより、回路構成体の製造効率を向上させることができる。 According to the above configuration, the second heat transfer section has a sheet shape, so that it is easy to handle. Thereby, the manufacturing efficiency of a circuit structure can be improved.
 複数の前記第1伝熱部が間隔を空けて形成されており、複数の前記第1伝熱部同士の間に侵入した前記第2伝熱部が、前記伝熱パターンと伝熱的に接続している。 A plurality of the first heat transfer portions are formed at intervals, and the second heat transfer portion that has entered between the plurality of first heat transfer portions is connected in heat transfer with the heat transfer pattern. is doing.
 上記の構成によれば、伝熱パターンから第2伝熱部へと熱が伝達される経路が形成されるので、回路構成体の放熱性をより向上させることができる。 According to the above configuration, since a path through which heat is transmitted from the heat transfer pattern to the second heat transfer section is formed, the heat dissipation of the circuit structure can be further improved.
 前記導電パターンと前記伝熱パターンとを連結するサーマルビアホールを有する。 サ ー マ ル A thermal via hole connecting the conductive pattern and the heat transfer pattern.
 上記の構成によれば、導電パターンから伝熱パターンへの熱伝導の効率を向上させることができるので、回路構成体の放熱性をより向上させることができる。 According to the above configuration, since the efficiency of heat conduction from the conductive pattern to the heat transfer pattern can be improved, the heat dissipation of the circuit structure can be further improved.
 本明細書に開示された技術によれば、回路構成体、及び電気接続箱の放熱性を向上させることができる。 According to the technique disclosed in this specification, the heat dissipation of the circuit structure and the electrical junction box can be improved.
実施形態1に係る電気接続箱を示す断面図Sectional drawing which shows the electrical-connection box which concerns on Embodiment 1. 回路基板の第1面に実装されたFETを示す一部拡大平面図Partially enlarged plan view showing FET mounted on first surface of circuit board 回路基板の第2面に形成された伝熱パターンと、第1伝熱部とを示す、回路基板の一部拡大底面図The partially expanded bottom view of a circuit board which shows the heat-transfer pattern formed in the 2nd surface of a circuit board, and a 1st heat-transfer part. 実施形態2に係る回路基板の第2面に形成された伝熱パターンと、第1伝熱部とを示す、回路基板の一部拡大底面図The partially expanded bottom view of a circuit board which shows the heat-transfer pattern formed in the 2nd surface of the circuit board which concerns on Embodiment 2, and a 1st heat-transfer part. 実施形態3に係る回路基板の第2面に形成された伝熱パターンと、第1伝熱部とを示す、回路基板の一部拡大底面図The partially expanded bottom view of a circuit board which shows the heat-transfer pattern formed in the 2nd surface of the circuit board which concerns on Embodiment 3, and a 1st heat-transfer part. 仮想的な技術に係る電気接続箱を示す断面図Sectional view showing electrical junction box according to virtual technology
 <実施形態1>
 本明細書に開示された技術の実施形態1を、図1から図3を参照しつつ説明する。本実施形態に係る電気接続箱10は、回路構成体11を有する。電気接続箱10は、車両(図示せず)に搭載されて、電源(図示せず)と機器(図示せず)との間に配設される。以下の説明においては、複数の同一部材については、一部の部材にのみ符号を付して、他の部材については符号を省略する場合がある。
<Embodiment 1>
Embodiment 1 of the technique disclosed in this specification will be described with reference to FIGS. 1 to 3. The electrical junction box 10 according to the present embodiment includes a circuit configuration body 11. The electrical junction box 10 is mounted on a vehicle (not shown) and is disposed between a power source (not shown) and a device (not shown). In the following description, about some same members, a code | symbol may be attached | subjected only to some members, and a code | symbol may be abbreviate | omitted about another member.
 図1に示すように、電気接続箱10は、回路構成体11にカバー12が組み付けられてなる。回路構成体11は、ヒートシンク13と、ヒートシンク13に固定された回路基板14と、を有する。 As shown in FIG. 1, the electrical junction box 10 includes a circuit component 11 and a cover 12 assembled. The circuit structure 11 includes a heat sink 13 and a circuit board 14 fixed to the heat sink 13.
 本実施形態においては、ヒートシンク13は金属製であって、底壁15と、底壁15の上面から上方に突出するボス16(スペーサの一例)と、を有する。ボス16は、筒形状をなしている。ボス16の上面には、下方に延びるネジ孔17が形成されている。ヒートシンク13を構成する金属としては、アルミニウム、アルミニウム合金、鉄、ステンレス、銅、銅合金等、必要に応じて任意の金属を適宜に選択することができる。なお、ヒートシンク13は、放熱性を有する合成樹脂製であってもよい。 In the present embodiment, the heat sink 13 is made of metal and has a bottom wall 15 and a boss 16 (an example of a spacer) protruding upward from the upper surface of the bottom wall 15. The boss 16 has a cylindrical shape. A screw hole 17 extending downward is formed on the upper surface of the boss 16. As a metal which comprises the heat sink 13, arbitrary metals, such as aluminum, aluminum alloy, iron, stainless steel, copper, a copper alloy, can be selected suitably as needed. The heat sink 13 may be made of a synthetic resin having heat dissipation properties.
 カバー12は、上壁18と、上壁18の側縁から下方に延びる側壁19と、を備える。側壁19は、ヒートシンク13の底壁15に外嵌される。カバー12とヒートシンク13とは、ヒートシンク13の底壁15の側縁から突出するロック突部(図示せず)と、カバー12の側壁19に形成された弾性変形可能なロック受け部(図示せず)とが、弾性的に係合することにより一体に組み付けられる。また、カバー12とヒートシンク13とは、ネジ止めにより一体に組み付けられてもよい。このように、カバー12とヒートシンク13とは公知の手法により一体に組み付けられるようになっている。 The cover 12 includes an upper wall 18 and a side wall 19 extending downward from a side edge of the upper wall 18. The side wall 19 is fitted on the bottom wall 15 of the heat sink 13. The cover 12 and the heat sink 13 include a lock protrusion (not shown) protruding from the side edge of the bottom wall 15 of the heat sink 13 and an elastically deformable lock receiving portion (not shown) formed on the side wall 19 of the cover 12. Are integrally assembled by elastically engaging with each other. Further, the cover 12 and the heat sink 13 may be assembled together by screwing. As described above, the cover 12 and the heat sink 13 are integrally assembled by a known method.
 ヒートシンク13とカバー12とが一体に組み付けられた状態で、ヒートシンク13の底壁15の上方であって、カバー12の上壁18の下方の領域は、回路基板14が収容される収容空間20とされる。 In a state where the heat sink 13 and the cover 12 are assembled together, an area above the bottom wall 15 of the heat sink 13 and below the upper wall 18 of the cover 12 is an accommodation space 20 in which the circuit board 14 is accommodated. Is done.
 回路基板14は、絶縁性の合成樹脂からなる絶縁板に、プリント配線技術により金属製のパターンを形成してなる。回路基板14の上側の位置する第1面21には導電パターン22が形成されている。詳細には図示しないが、導電パターン22は回路を形成している。 The circuit board 14 is formed by forming a metal pattern on an insulating plate made of an insulating synthetic resin by a printed wiring technique. A conductive pattern 22 is formed on the first surface 21 located on the upper side of the circuit board 14. Although not shown in detail, the conductive pattern 22 forms a circuit.
 回路基板14はボルト23が貫通される貫通孔24を有する。回路基板14がヒートシンク13のボス16の上面に載置された状態で、回路基板14の貫通孔24に挿通されたボルト23がボス16に形成されたネジ孔17に螺合されることにより、回路基板14がヒートシンク13に固定されている。 The circuit board 14 has a through hole 24 through which the bolt 23 is passed. With the circuit board 14 placed on the upper surface of the boss 16 of the heat sink 13, the bolt 23 inserted through the through hole 24 of the circuit board 14 is screwed into the screw hole 17 formed in the boss 16. A circuit board 14 is fixed to the heat sink 13.
 図2に示すように、回路基板14の第1面21には複数のランド25(導電パターン22の一例)が形成されている。ランド25には、FET26(Field effect transistor)のリード27がはんだ付け等の公知の手法により電気的に接続されている。FET26は発熱部品の一例である。発熱部品としては、リレー、コンデンサ、コイル、マイコン等、通電時に発熱する部品が例示される。 As shown in FIG. 2, a plurality of lands 25 (an example of the conductive pattern 22) are formed on the first surface 21 of the circuit board 14. A lead 27 of an FET 26 (Field effect transistor) is electrically connected to the land 25 by a known method such as soldering. The FET 26 is an example of a heat generating component. Examples of the heat generating component include a component that generates heat when energized, such as a relay, a capacitor, a coil, and a microcomputer.
 なお、回路基板14に形成されたランド25には、発熱部品の他に、抵抗、ダイオード等の図示しない電子部品が接続されている。ランド25は上方から見て略長方形状をなしている。回路基板14の第1面21には、絶縁性材料からなる第1レジスト層60が形成されている。第1レジスト層60は、概ねランド25と異なる領域に形成されているが、ランド25の一部に重なって形成されていてもよい。 The land 25 formed on the circuit board 14 is connected to electronic components (not shown) such as resistors and diodes in addition to the heat generating components. The land 25 has a substantially rectangular shape when viewed from above. A first resist layer 60 made of an insulating material is formed on the first surface 21 of the circuit board 14. The first resist layer 60 is generally formed in a region different from the land 25, but may be formed so as to overlap a part of the land 25.
 FET26の側縁からは、2本のリード27が外方に突出している。2本のリード27の一方はゲート端子であり、他方はドレイン端子である。FET26の下面には、ソース端子が形成されている。FET26のゲート端子、ドレイン端子、及びソース端子は回路基板14の上面に形成されたランド25にはんだ付けされている。 From the side edge of the FET 26, two leads 27 protrude outward. One of the two leads 27 is a gate terminal, and the other is a drain terminal. A source terminal is formed on the lower surface of the FET 26. The gate terminal, drain terminal, and source terminal of the FET 26 are soldered to lands 25 formed on the upper surface of the circuit board 14.
 本実施形態に係る回路基板14は、電気的に絶縁状態で積層された複数層の導電パターン22を有する。回路基板14の下側に位置する第2面28には、第1面21に形成されたランド25と、複数(本実施形態では3個)のサーマルビアホール29によって伝熱的に接続された伝熱パターン33が形成されている。サーマルビアホール29は、回路基板14の第1面21と第2面28とを貫通する貫通孔24内に、熱伝導性を有する伝熱部30が充填されている。伝熱部30は、化学めっき、金属粉を含有する合成樹脂材を硬化させたもの等、公知の手法により形成することができる。伝熱部30の熱伝導性は、回路基板14を構成する絶縁性の合成樹脂よりも高い。 The circuit board 14 according to the present embodiment has a plurality of conductive patterns 22 stacked in an electrically insulated state. The second surface 28 located on the lower side of the circuit board 14 is connected to a land 25 formed on the first surface 21 and a plurality of (three in this embodiment) thermal via holes 29 in a heat transfer manner. A thermal pattern 33 is formed. The thermal via hole 29 is filled with a heat transfer portion 30 having thermal conductivity in a through hole 24 that penetrates the first surface 21 and the second surface 28 of the circuit board 14. The heat transfer section 30 can be formed by a known technique such as chemical plating or a cured synthetic resin material containing metal powder. The heat conductivity of the heat transfer section 30 is higher than that of the insulating synthetic resin that constitutes the circuit board 14.
 図2に示すように、回路基板14の第2面28には、絶縁性の第2レジスト層31(レジスト層の一例)が形成されている。第2レジスト層31には、下方に開口する放熱窓部32が形成されている。放熱窓部32からは、上記した伝熱パターン33が露出している。放熱窓部32は下方から見て略長方形状をなしている。 As shown in FIG. 2, an insulating second resist layer 31 (an example of a resist layer) is formed on the second surface 28 of the circuit board 14. The second resist layer 31 has a heat radiating window 32 that opens downward. The heat transfer pattern 33 is exposed from the heat radiation window 32. The heat radiation window 32 has a substantially rectangular shape when viewed from below.
 伝熱パターン33には、第1伝熱部34が伝熱的に接続されている。第1伝熱部34は、金属、合成樹脂、セラミック等、必要に応じて任意の材料を適宜に選択することができる。第1伝熱部34の熱伝導率は第2レジスト層31よりも高く設定されている。本実施形態に係る第1伝熱部34は、はんだからなる。第1伝熱部34は、例えば、伝熱パターン33にクリームはんだを塗布後、加熱によりクリームはんだを溶融し、その後、固化させることにより形成することができる。 A first heat transfer section 34 is connected to the heat transfer pattern 33 in a heat transfer manner. For the first heat transfer section 34, any material such as metal, synthetic resin, ceramic, or the like can be appropriately selected as necessary. The thermal conductivity of the first heat transfer section 34 is set higher than that of the second resist layer 31. The first heat transfer unit 34 according to the present embodiment is made of solder. The first heat transfer section 34 can be formed by, for example, applying cream solder to the heat transfer pattern 33, melting the cream solder by heating, and then solidifying the cream solder.
 第1伝熱部34は、下方から見て、角の丸められた長方形状をなしている。第1伝熱部34の外形状は、伝熱パターン33の外形状よりもやや小さく形成されている。 The first heat transfer section 34 has a rectangular shape with rounded corners when viewed from below. The outer shape of the first heat transfer section 34 is formed slightly smaller than the outer shape of the heat transfer pattern 33.
 第1伝熱部34の下方には、第2伝熱部35が配されている。第2伝熱部35の熱伝導率は、第2レジスト層31よりも高く設定されている。第2伝熱部35は導体でもよいし、また、絶縁性を有していてもよい。第2伝熱部35は、シート状又はフィルム状をなしていてもよいし、グリース状又はゲル状をなしていてもよい。第2伝熱部35は、少なくとも回路基板14をヒートシンク13に固定する工程においてはグリース状又はゲル状をなしていて、回路基板14とヒートシンク13とを固定した後においては固化するものであってもよい。また、回路基板14をヒートシンク13に固定する工程の前後を通じてグリース状又はゲル状であってもよい。第2伝熱部35は、熱伝導率の高いフィラーを含んでいてもよい。 The second heat transfer section 35 is disposed below the first heat transfer section 34. The thermal conductivity of the second heat transfer part 35 is set higher than that of the second resist layer 31. The second heat transfer unit 35 may be a conductor or may have an insulating property. The second heat transfer section 35 may have a sheet shape or a film shape, or may have a grease shape or a gel shape. The second heat transfer section 35 is in the form of a grease or a gel at least in the process of fixing the circuit board 14 to the heat sink 13 and solidifies after the circuit board 14 and the heat sink 13 are fixed. Also good. Further, it may be in the form of grease or gel throughout the process of fixing the circuit board 14 to the heat sink 13. The second heat transfer unit 35 may include a filler having a high thermal conductivity.
 本実施形態に係る第2伝熱部35は、絶縁性の合成樹脂であって、回路基板14をヒートシンク13に固定する工程においてはグリース状又はゲル状をなしており、回路基板14をヒートシンク13に固定した後においては、固化するようになっている。 The second heat transfer section 35 according to the present embodiment is an insulating synthetic resin, and in the step of fixing the circuit board 14 to the heat sink 13, has a grease shape or a gel shape. After being fixed to, it solidifies.
 第1伝熱部34の、伝熱パターン33の下面からの、下方への突出高さ寸法Hは、第2レジスト層31の厚さ寸法Tと、同じか、又は大きく設定されている。本実施形態においては、第1伝熱部34の伝熱パターン33からの突出高さ寸法Hは、第2レジスト層31の厚さ寸法Tよりも大きく設定されている。 The downward protruding height dimension H of the first heat transfer section 34 from the lower surface of the heat transfer pattern 33 is set to be equal to or larger than the thickness dimension T of the second resist layer 31. In the present embodiment, the protruding height dimension H of the first heat transfer section 34 from the heat transfer pattern 33 is set to be larger than the thickness dimension T of the second resist layer 31.
製造工程
 続いて、本実施形態に係る電気接続箱10の製造工程の一例を説明する。電気接続箱10の製造工程は、以下の記載に限定されない。
Manufacturing Process Subsequently, an example of a manufacturing process of the electrical junction box 10 according to the present embodiment will be described. The manufacturing process of the electrical junction box 10 is not limited to the following description.
 回路基板14の第2面28に形成された伝熱パターン33に、クリームはんだを公知のスクリーン印刷により塗布する。その後、回路基板14をリフロー炉で加熱することにより、伝熱パターン33に第1伝熱部34を形成する。 The cream solder is applied to the heat transfer pattern 33 formed on the second surface 28 of the circuit board 14 by known screen printing. Thereafter, the first heat transfer portion 34 is formed in the heat transfer pattern 33 by heating the circuit board 14 in a reflow furnace.
 回路基板14の第1面21に形成されたランド25に、クリームはんだを公知のスクリーン印刷により塗布する。FET26を含む電子部品を載置する。回路基板14をリフロ―炉で加熱することにより、ランド25と、FET26を含む電子部品とを接続する。 The cream solder is applied to the lands 25 formed on the first surface 21 of the circuit board 14 by known screen printing. An electronic component including the FET 26 is placed. By heating the circuit board 14 in a reflow furnace, the land 25 and an electronic component including the FET 26 are connected.
 ヒートシンク13のうち、回路基板14の第2面28に形成された第1伝熱部34に対応する部分に、グリース状又はゲル状の第2伝熱部35を塗布する。回路基板14をヒートシンク13のボス16の上面に載置する。回路基板14の貫通孔24内にボルト23を挿通させつつ、このボルト23をボス16に形成されたネジ孔17に螺合させる。ボルト23を螺合することにより回路基板14がヒートシンク13に接近すると、回路基板14の第2面28に配された第1伝熱部34が上方から第2伝熱部35に接触する。更にボルト23を螺合することにより回路基板14をヒートシンク13に固定する。これにより回路構成体11が完成する。 A grease-like or gel-like second heat transfer portion 35 is applied to a portion of the heat sink 13 corresponding to the first heat transfer portion 34 formed on the second surface 28 of the circuit board 14. The circuit board 14 is placed on the upper surface of the boss 16 of the heat sink 13. The bolt 23 is screwed into the screw hole 17 formed in the boss 16 while the bolt 23 is inserted into the through hole 24 of the circuit board 14. When the circuit board 14 approaches the heat sink 13 by screwing the bolts 23, the first heat transfer part 34 disposed on the second surface 28 of the circuit board 14 contacts the second heat transfer part 35 from above. Further, the circuit board 14 is fixed to the heat sink 13 by screwing the bolts 23. Thereby, the circuit structure 11 is completed.
 続いて、カバー12を上方からヒートシンク13に組み付ける。これにより電気接続箱10が完成する。 Subsequently, the cover 12 is assembled to the heat sink 13 from above. Thereby, the electrical junction box 10 is completed.
本実施形態の作用効果
 続いて、本実施形態の作用効果について説明する。本実施形態に係る回路構成体11は、FET26と、導電パターン22が形成された第1面21の導電パターン22にFET26が接続されており、第1面21と反対側に形成された第2面28には絶縁性の第2レジスト層31が形成されており、第2レジスト層31に開口された放熱窓部32から導電パターン22と伝熱的に接続された伝熱パターン33が露出している回路基板14と、第2レジスト層31よりも熱伝導率が高く、且つ、放熱窓部32から露出する伝熱パターン33に伝熱的に接続された第1伝熱部34と、第2レジスト層31よりも熱伝導率が高く、且つ、第1伝熱部34と伝熱的に接続された第2伝熱部35と、第2伝熱部35と伝熱的に接続するヒートシンク13と、を備える。
Operational Effects of the Present Embodiment Next, operational effects of the present embodiment will be described. In the circuit structure 11 according to this embodiment, the FET 26 is connected to the FET 26 and the conductive pattern 22 on the first surface 21 on which the conductive pattern 22 is formed, and the second structure formed on the opposite side of the first surface 21. An insulating second resist layer 31 is formed on the surface 28, and the heat transfer pattern 33 that is thermally connected to the conductive pattern 22 is exposed from the heat radiation window 32 opened in the second resist layer 31. The first heat transfer section 34 having a higher thermal conductivity than the second resist layer 31 and thermally connected to the heat transfer pattern 33 exposed from the heat dissipation window section 32; A second heat transfer portion 35 having a higher thermal conductivity than the resist layer 31 and thermally connected to the first heat transfer portion 34; and a heat sink thermally connected to the second heat transfer portion 35. 13.
 まず、本実施形態の効果を説明するために、仮想的な技術に係る電気接続箱110を図6に示す。電気接続箱110は回路構成体111を有する。回路構成体111に含まれる回路基板114の上面には第1レジスト層160が形成されており、回路基板114の下面には第2レジスト層131が形成されている。第2レジスト層131の一部を剥がすことにより回路基板114に形成された伝熱パターン133が露出している。この伝熱パターン133に対応する位置にグリース状の第2伝熱部135が配されている。なお、符号については、特に言及しない限り、実施形態1に係る部材に付した符号に、100を加えたものを用いた。 First, in order to explain the effect of this embodiment, an electrical connection box 110 according to a virtual technology is shown in FIG. The electrical junction box 110 has a circuit structure 111. A first resist layer 160 is formed on the upper surface of the circuit board 114 included in the circuit structure 111, and a second resist layer 131 is formed on the lower surface of the circuit board 114. The heat transfer pattern 133 formed on the circuit board 114 is exposed by removing a part of the second resist layer 131. A grease-like second heat transfer section 135 is disposed at a position corresponding to the heat transfer pattern 133. In addition, about the code | symbol, what added 100 to the code | symbol attached | subjected to the member which concerns on Embodiment 1 was used unless it mentions especially.
 上記の技術によると、第2レジスト層131の厚みのために第2伝熱部135が伝熱パターン133にまで到達せず、むしろ、伝熱パターン133と第2伝熱部135との間に空気層が形成されてしまう。このため、上記の仮想的な技術によっては、回路構成体111の放熱性を十分に向上させることはできないのである。 According to the above technique, the second heat transfer portion 135 does not reach the heat transfer pattern 133 due to the thickness of the second resist layer 131, but rather between the heat transfer pattern 133 and the second heat transfer portion 135. An air layer is formed. For this reason, the heat dissipation of the circuit structure 111 cannot be sufficiently improved by the above-described virtual technique.
 これに対して本実施形態においては、通電時にFET26で発生した熱は、FET26が接続されたランド25(導電パターン22)に伝達された後に、このランド25と伝熱的に接続された伝熱パターン33へと伝導され、第1伝熱部34にまで伝達され、更に、第1伝熱部34と伝熱的に接続された第2伝熱部35へと確実に伝達される。第2伝熱部35に到達した熱は、第2伝熱部35からヒートシンク13へと伝達され、ヒートシンク13から外部へと放散される。 On the other hand, in the present embodiment, the heat generated in the FET 26 during energization is transferred to the land 25 (conductive pattern 22) to which the FET 26 is connected, and then the heat transfer thermally connected to the land 25. Conducted to the pattern 33, transmitted to the first heat transfer unit 34, and further reliably transmitted to the second heat transfer unit 35 connected in heat transfer with the first heat transfer unit 34. The heat that has reached the second heat transfer unit 35 is transmitted from the second heat transfer unit 35 to the heat sink 13 and is dissipated from the heat sink 13 to the outside.
 第1伝熱部34は第2レジスト層31よりも熱伝導率が高いので、第2レジスト層31を介して第2伝熱部35に熱が伝達される場合に比べて、伝熱パターン33から第2伝熱部35へ熱を効率よく伝達することができる。これにより、FET26から、ヒートシンク13を経て外部へと熱を効率よく放散することができるので、回路構成体11の放熱性を向上させることができる。 Since the first heat transfer section 34 has higher thermal conductivity than the second resist layer 31, the heat transfer pattern 33 is compared to the case where heat is transferred to the second heat transfer section 35 via the second resist layer 31. The heat can be efficiently transferred from the heat to the second heat transfer section 35. Thereby, heat can be efficiently dissipated from the FET 26 to the outside through the heat sink 13, so that the heat dissipation of the circuit structure 11 can be improved.
 本実施形態によれば、第1伝熱部34の伝熱パターン33からの突出高さ寸法Hは、第2レジスト層31の厚さ寸法Tと同じか、又は大きく設定されている。 According to the present embodiment, the protruding height dimension H of the first heat transfer section 34 from the heat transfer pattern 33 is set to be equal to or larger than the thickness dimension T of the second resist layer 31.
 上記の構成によれば、第1伝熱部34の突出端部は、第2レジスト層31よりもヒートシンク13側に突出するようになっている。これにより、第1伝熱部34は確実に第2伝熱部35と接触することができるので、回路構成体11の放熱性を確実に向上させることができる。 According to the above configuration, the protruding end portion of the first heat transfer portion 34 protrudes to the heat sink 13 side from the second resist layer 31. Thereby, since the 1st heat-transfer part 34 can contact the 2nd heat-transfer part 35 reliably, the heat dissipation of the circuit structure 11 can be improved reliably.
 本実施形態によれば、ヒートシンク13と回路基板14との間には、ヒートシンク13から回路基板14に向けて突出するボス16が介在している。 According to the present embodiment, the boss 16 that protrudes from the heat sink 13 toward the circuit board 14 is interposed between the heat sink 13 and the circuit board 14.
 上記の構成によれば、ヒートシンク13と回路基板14との間隔をボス16の高さ寸法によって正確に設定できる。これにより、グリース状又はゲル状をなす第2伝熱部35の充填量を正確に見積もることができるので、第2伝熱部35と第1伝熱部34との間に空隙が生じることを抑制することができる。この結果、回路構成体11の放熱性をより向上させることができる。 According to the above configuration, the distance between the heat sink 13 and the circuit board 14 can be accurately set according to the height dimension of the boss 16. Thereby, since the filling amount of the 2nd heat-transfer part 35 which makes the shape of a grease or a gel can be estimated correctly, that a space | gap arises between the 2nd heat-transfer part 35 and the 1st heat-transfer part 34. Can be suppressed. As a result, the heat dissipation of the circuit structure 11 can be further improved.
 本実施形態によれば、第1伝熱部34は、はんだからなる。 According to the present embodiment, the first heat transfer section 34 is made of solder.
 上記の構成によれば、伝熱パターン33と第1伝熱部34とを確実に接続することができる。これにより、伝熱パターン33と第1伝熱部34との間の伝熱効率を向上させることができるので、回路構成体11の放熱性をより向上させることができる。 According to said structure, the heat-transfer pattern 33 and the 1st heat-transfer part 34 can be connected reliably. Thereby, since the heat transfer efficiency between the heat transfer pattern 33 and the 1st heat transfer part 34 can be improved, the heat dissipation of the circuit structure 11 can be improved more.
 本実施形態によれば、第2伝熱部35は、グリース状又はゲル状をなしている。 According to the present embodiment, the second heat transfer section 35 has a grease shape or a gel shape.
 上記の構成によれば、第2伝熱部35はグリース状又はゲル状をなしているので、第1伝熱部34及びヒートシンク13の形状に追従して容易に変形することができる。これにより、第1伝熱部34と第2伝熱部35の密着性が向上すると共に、第2伝熱部35とヒートシンク13との密着性も向上するので、回路構成体11の放熱性をより向上させることができる。 According to the above configuration, since the second heat transfer section 35 is in the form of grease or gel, it can be easily deformed following the shapes of the first heat transfer section 34 and the heat sink 13. As a result, the adhesion between the first heat transfer section 34 and the second heat transfer section 35 is improved, and the adhesion between the second heat transfer section 35 and the heat sink 13 is also improved. It can be improved further.
 本実施形態によれば、導電パターン22と伝熱パターン33とはサーマルビアホール29によって連結されている。 According to the present embodiment, the conductive pattern 22 and the heat transfer pattern 33 are connected by the thermal via hole 29.
 上記の構成によれば、導電パターン22から伝熱パターン33への熱伝導の効率を向上させることができるので、回路構成体11の放熱性をより向上させることができる。 According to the above configuration, since the efficiency of heat conduction from the conductive pattern 22 to the heat transfer pattern 33 can be improved, the heat dissipation of the circuit structure 11 can be further improved.
 <実施形態2>
 次に、本明細書に開示された技術の実施形態2を、図4を参照しつつ説明する本実施形態に係る回路基板40においては、伝熱パターン33の下面には、複数の第1伝熱部41が、間隔を空けて離散した状態で形成されている。各第1伝熱部41は、下方から見て、略長方形状をなしている。本実施形態においては、図4における上下方向について間隔を空けて複数(本実施形態では6個)の第1伝熱部41が並ぶ第1伝熱部列42が、図4における左右方向に間隔を空けて複数(本実施形態では3列)並んで形成されている。
<Embodiment 2>
Next, in the circuit board 40 according to this embodiment, which is described with reference to FIG. 4, Embodiment 2 of the technology disclosed in the present specification, a plurality of first transmission lines are provided on the lower surface of the heat transfer pattern 33. The heat part 41 is formed in a discrete state with an interval. Each first heat transfer section 41 has a substantially rectangular shape when viewed from below. In the present embodiment, the first heat transfer section row 42 in which a plurality (six in this embodiment) of the first heat transfer sections 41 are arranged at intervals in the vertical direction in FIG. 4 is spaced in the left-right direction in FIG. A plurality (three rows in this embodiment) are formed side by side.
 複数の第1伝熱部41同士の間に形成された隙間43内に、グリース状又はゲル状をなす第2伝熱部35が侵入することができるようになっている。上記の隙間43内に侵入した第2伝熱部35は伝熱パターン33と直接に接触するようになっている。 In the gap 43 formed between the plurality of first heat transfer parts 41, the second heat transfer part 35 in the form of grease or gel can enter. The second heat transfer section 35 that has entered the gap 43 is in direct contact with the heat transfer pattern 33.
 上記以外の構成については、実施形態1と略同様なので、同一部材については同一符号を付し、重複する説明を省略する。 Since the configuration other than the above is substantially the same as that of the first embodiment, the same members are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態によれば、第2伝熱部35は、第1伝熱部41に押圧されることにより、隙間43の内部へと移動する。これにより、第2伝熱部35のうち第1伝熱部41に対応する位置に空気の泡が存在した場合でも、この空気の泡は、第1伝熱部41に押圧されて、空気の泡の周囲に存在する第2伝熱部35と共に隙間43内へ移動する。この結果、第2伝熱部35のうち第1伝熱部41に対応する位置からは空気が排除され、第1伝熱部41と第2伝熱部35とを確実に接触させることができる。これにより、回路構成体11の放熱性を向上させることができる。 According to the present embodiment, the second heat transfer unit 35 moves into the gap 43 when pressed by the first heat transfer unit 41. Thereby, even when air bubbles are present at a position corresponding to the first heat transfer unit 41 in the second heat transfer unit 35, the air bubbles are pressed by the first heat transfer unit 41, It moves into the gap 43 together with the second heat transfer part 35 present around the bubbles. As a result, air is excluded from the position corresponding to the first heat transfer section 41 in the second heat transfer section 35, and the first heat transfer section 41 and the second heat transfer section 35 can be reliably brought into contact with each other. . Thereby, the heat dissipation of the circuit structure 11 can be improved.
 また、隙間43内に移動した第2伝熱部35のうち伝熱パターン33と直接に接触するものについては、伝熱パターン33から第2伝熱部35へと熱が直接に伝達される経路が形成されるので、回路構成体11の放熱性をより向上させることができる。 Further, of the second heat transfer section 35 that has moved into the gap 43, the heat transfer pattern 33 directly contacts the heat transfer pattern 33 and the heat is directly transferred from the heat transfer pattern 33 to the second heat transfer section 35. Therefore, the heat dissipation of the circuit structure 11 can be further improved.
 <実施形態3>
 次に、本明細書に開示された技術の実施形態3を、図5を参照しつつ説明する。本実施形態に係る回路基板50においては、伝熱パターン33の下面には、複数(本実施形態では6個)の第1伝熱部51が、図5における上下方向について間隔を空けて並んで形成されている。各第1伝熱部51は、下方から見て、略長方形状をなしている。
<Embodiment 3>
Next, a third embodiment of the technique disclosed in this specification will be described with reference to FIG. In the circuit board 50 according to the present embodiment, a plurality (six in the present embodiment) of first heat transfer portions 51 are arranged on the lower surface of the heat transfer pattern 33 at intervals in the vertical direction in FIG. Is formed. Each first heat transfer section 51 has a substantially rectangular shape when viewed from below.
 複数の第1伝熱部51同士の間に形成された隙間52内に、グリース状又はゲル状をなす第2伝熱部35が侵入することができるようになっている。上記の隙間52内に侵入した第2伝熱部35は伝熱パターン33と直接に接触するようになっている。 In the gap 52 formed between the plurality of first heat transfer parts 51, the second heat transfer part 35 in the form of grease or gel can enter. The second heat transfer section 35 that has entered the gap 52 is in direct contact with the heat transfer pattern 33.
 上記以外の構成については、実施形態1と略同様なので、同一部材については同一符号を付し、重複する説明を省略する。 Since the configuration other than the above is substantially the same as that of the first embodiment, the same members are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態によれば、第2伝熱部35は、第1伝熱部51に押圧されることにより、隙間52の内部へと移動する。これにより、第2伝熱部35のうち第1伝熱部51に対応する位置に空気の泡が存在した場合でも、この空気の泡は、第1伝熱部51に押圧されて、空気の泡の周囲に存在する第2伝熱部35と共に隙間52内へ移動する。この結果、第2伝熱部35のうち第1伝熱部51に対応する位置からは空気が排除され、第1伝熱部51と第2伝熱部35とを確実に接触させることができる。これにより、回路構成体11の放熱性を向上させることができる。 According to the present embodiment, the second heat transfer unit 35 moves to the inside of the gap 52 by being pressed by the first heat transfer unit 51. Thereby, even when air bubbles are present at a position corresponding to the first heat transfer unit 51 in the second heat transfer unit 35, the air bubbles are pressed by the first heat transfer unit 51, It moves into the gap 52 together with the second heat transfer section 35 present around the bubbles. As a result, air is excluded from the position corresponding to the first heat transfer part 51 in the second heat transfer part 35, and the first heat transfer part 51 and the second heat transfer part 35 can be reliably brought into contact with each other. . Thereby, the heat dissipation of the circuit structure 11 can be improved.
 また、隙間52内に移動した第2伝熱部35のうち伝熱パターン33と直接に接触するものについては、伝熱パターン33から第2伝熱部35へと熱が伝達される経路が形成されるので、回路構成体11の放熱性をより向上させることができる。 Further, of the second heat transfer section 35 that has moved into the gap 52, a path through which heat is transferred from the heat transfer pattern 33 to the second heat transfer section 35 is formed for those that are in direct contact with the heat transfer pattern 33. Therefore, the heat dissipation of the circuit structure 11 can be further improved.
 <他の実施形態>
 本明細書に開示された技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本明細書に開示された技術の技術的範囲に含まれる。
<Other embodiments>
The technology disclosed in the present specification is not limited to the embodiments described with reference to the above description and drawings, and for example, the following embodiments are also included in the technical scope of the technology disclosed in the present specification.
(1)実施形態1においては、ヒートシンク13に一体に形成されたボス16が、ヒートシンク13と回路基板14との間に介在するスペーサとして機能したが、これに限られず、スペーサは、ヒートシンク13とは別体であってもよい。ヒートシンク13と別体のスペーサとしては、例えば、金属製の板材、合成樹脂製の板材、セラミック製の板材等、必要に応じて任意の材料を適宜に選択できる。 (1) In the first embodiment, the boss 16 formed integrally with the heat sink 13 functions as a spacer interposed between the heat sink 13 and the circuit board 14. However, the present invention is not limited to this. May be separate. As the spacer separate from the heat sink 13, for example, an arbitrary material such as a metal plate material, a synthetic resin plate material, or a ceramic plate material can be selected as appropriate.
(2)実施形態1においては、第2伝熱部35は、伝熱パターン33に対応する位置に配される構成としたが、これに限られず、第2伝熱部35は、回路基板14の第2面28を全て覆うように配される構成としてもよい。 (2) In the first embodiment, the second heat transfer unit 35 is arranged at a position corresponding to the heat transfer pattern 33. However, the second heat transfer unit 35 is not limited to this, and the circuit board 14 is not limited thereto. It is good also as a structure arrange | positioned so that all the 2nd surfaces 28 may be covered.
(3)伝熱パターン33の形状は、三角形状、五角形状等の多角形状でもよく、また、円形状、長円形状でもよく、必要に応じて任意の形状とすることができる。 (3) The shape of the heat transfer pattern 33 may be a polygonal shape such as a triangular shape or a pentagonal shape, or may be a circular shape or an oval shape, and can be any shape as necessary.
(4)実施形態1においては、導電パターン22と伝熱パターン33とは3個のサーマルビアホール29で連結される構成としたが、これに限られず、1個~2個、又は4個以上のサーマルビアホール29で連結される構成としてもよい。 (4) In the first embodiment, the conductive pattern 22 and the heat transfer pattern 33 are connected by the three thermal via holes 29. However, the present invention is not limited to this. One to two, or four or more It is good also as a structure connected with the thermal via hole 29. FIG.
(5)ヒートシンク13の下面には、複数のフィンが下方に突出する構成としてもよい。 (5) On the lower surface of the heat sink 13, a plurality of fins may protrude downward.
(6)本実施形態においては、第1伝熱部34の伝熱パターン33からの突出高さ寸法Hは、第2レジスト層31の厚さ寸法Tと同じか、又は大きく設定されている構成としたが、これに限られず、第1伝熱部34の伝熱パターン33からの突出高さ寸法Hは、第2レジスト層31の厚さ寸法Tよりも小さく設定されていてもよい。この場合でも、第1伝熱部34と伝熱的に接続された第2伝熱部35により、回路構成体11の放熱性を向上させることができる。 (6) In the present embodiment, the protruding height dimension H of the first heat transfer section 34 from the heat transfer pattern 33 is set to be equal to or larger than the thickness dimension T of the second resist layer 31. However, the present invention is not limited to this, and the protruding height dimension H of the first heat transfer section 34 from the heat transfer pattern 33 may be set smaller than the thickness dimension T of the second resist layer 31. Even in this case, the heat dissipation of the circuit component 11 can be improved by the second heat transfer section 35 that is thermally connected to the first heat transfer section 34.
(7)第2伝熱部は、シート状であってもよい。これにより、第2伝熱部の取り扱いが容易になるので、回路構成体11の製造効率を向上させることができる。例えば、第2伝熱部を、第1伝熱部の形状に倣う形状に、容易に切断することができる。また、これにより、第2伝熱部の歩留まりも向上させることができる。なお、シート状をなす第2伝熱部は、合成樹脂製であってもよいし、また、金属製であってもよい。シート状をなす第2伝熱部には、予め接着剤又は粘着剤が塗布されていてもよい。また、シート状をなす第2伝熱部は、接着剤又は粘着剤が塗布されたヒートシンク13に貼付してもよい。 (7) The second heat transfer section may be in the form of a sheet. Thereby, since handling of the 2nd heat transfer part becomes easy, the manufacture efficiency of circuit composition object 11 can be raised. For example, the second heat transfer section can be easily cut into a shape that follows the shape of the first heat transfer section. Thereby, the yield of the second heat transfer section can also be improved. In addition, the 2nd heat-transfer part which makes a sheet form may be a product made from a synthetic resin, and may be made from metal. An adhesive or a pressure-sensitive adhesive may be applied in advance to the sheet-like second heat transfer section. Moreover, you may affix the 2nd heat-transfer part which makes a sheet form on the heat sink 13 with which the adhesive agent or the adhesive was apply | coated.
 10:電気接続箱
 11:回路構成体
 13:ヒートシンク
 14,40,50:回路基板
 16:ボス(スペーサの一例)
 21:第1面
 22:導電パターン
 26:FET
 28:第2面
 29:サーマルビアホール
 31:第2レジスト層(レジスト層の一例)
 32:放熱窓部
 33:伝熱パターン
 34,41,51:第1伝熱部
 35:第2伝熱部
10: Electrical junction box 11: Circuit structure 13: Heat sink 14, 40, 50: Circuit board 16: Boss (an example of a spacer)
21: First surface 22: Conductive pattern 26: FET
28: Second surface 29: Thermal via hole 31: Second resist layer (an example of a resist layer)
32: Heat dissipation window 33: Heat transfer pattern 34, 41, 51: First heat transfer 35: Second heat transfer

Claims (9)

  1.  発熱部品と、
     導電パターンが形成された第1面の前記導電パターンに前記発熱部品が接続されており、前記第1面と反対側に形成された第2面には絶縁性のレジスト層が形成されており、前記レジスト層に開口された放熱窓部から前記導電パターンと伝熱的に接続された伝熱パターンが露出している回路基板と、
     前記レジスト層よりも熱伝導率が高く、且つ、前記放熱窓部から露出する前記伝熱パターンに伝熱的に接続された第1伝熱部と、
     前記レジスト層よりも熱伝導率が高く、且つ、前記第1伝熱部と伝熱的に接続された第2伝熱部と、
     前記第2伝熱部と伝熱的に接続するヒートシンクと、を備えた回路構成体。
    Heat-generating parts,
    The heat generating component is connected to the conductive pattern on the first surface on which the conductive pattern is formed, and an insulating resist layer is formed on the second surface formed on the side opposite to the first surface, A circuit board in which a heat transfer pattern thermally connected to the conductive pattern is exposed from a heat dissipation window portion opened in the resist layer;
    A first heat transfer portion having a higher thermal conductivity than the resist layer and thermally connected to the heat transfer pattern exposed from the heat dissipation window;
    A thermal conductivity higher than that of the resist layer, and a second heat transfer section connected in heat transfer with the first heat transfer section;
    A circuit structure comprising: a heat sink thermally connected to the second heat transfer unit.
  2.  前記第1伝熱部の前記伝熱パターンからの突出高さ寸法は、前記レジスト層の厚さ寸法と同じか、又は大きく設定されている、請求項1に記載の回路構成体。 2. The circuit structure according to claim 1, wherein a protruding height dimension of the first heat transfer portion from the heat transfer pattern is set to be equal to or larger than a thickness dimension of the resist layer.
  3.  前記ヒートシンクと前記回路基板との間にはスペーサが介在されている、請求項1または請求項2に記載の回路構成体。 The circuit structure according to claim 1 or 2, wherein a spacer is interposed between the heat sink and the circuit board.
  4.  前記第1伝熱部は、はんだからなる、請求項1から請求項3のいずれか一項に記載の回路構成体。 The circuit structure according to any one of claims 1 to 3, wherein the first heat transfer section is made of solder.
  5.  前記第2伝熱部は、グリース状又はゲル状をなしている、請求項1から請求項4のいずれか一項に記載の回路構成体。 The circuit structure according to any one of claims 1 to 4, wherein the second heat transfer section has a grease shape or a gel shape.
  6.  前記第2伝熱部は、シート状をなしている、請求項1から請求項4のいずれか一項に記載の回路構成体。 The circuit structure according to any one of claims 1 to 4, wherein the second heat transfer section has a sheet shape.
  7.  複数の前記第1伝熱部が間隔を空けて形成されており、複数の前記第1伝熱部同士の間に侵入した前記第2伝熱部が、前記伝熱パターンと伝熱的に接続している、請求項5または請求項6に記載の回路構成体。 A plurality of the first heat transfer portions are formed at intervals, and the second heat transfer portion that has entered between the plurality of first heat transfer portions is connected in heat transfer with the heat transfer pattern. The circuit structure according to claim 5 or 6.
  8.  前記導電パターンと前記伝熱パターンとを連結するサーマルビアホールを有する、請求項1から請求項7のいずれか一項に記載の回路構成体。 The circuit structure according to any one of claims 1 to 7, further comprising a thermal via hole that connects the conductive pattern and the heat transfer pattern.
  9.  請求項1から請求項8のいずれか一項に記載の回路構成体と、
     前記回路構成体に取り付けられて、前記回路基板を覆うカバーと、を備えた電気接続箱。
    A circuit structure according to any one of claims 1 to 8,
    An electrical junction box, comprising: a cover attached to the circuit structure and covering the circuit board.
PCT/JP2019/017655 2018-05-11 2019-04-25 Circuit structure and electrical connection box WO2019216238A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018092072A JP2019197848A (en) 2018-05-11 2018-05-11 Circuit structure and electric connection box
JP2018-092072 2018-05-11

Publications (1)

Publication Number Publication Date
WO2019216238A1 true WO2019216238A1 (en) 2019-11-14

Family

ID=68468372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017655 WO2019216238A1 (en) 2018-05-11 2019-04-25 Circuit structure and electrical connection box

Country Status (2)

Country Link
JP (1) JP2019197848A (en)
WO (1) WO2019216238A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050468A (en) * 2020-01-02 2020-04-21 台达电子企业管理(上海)有限公司 Electronic device and assembling method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211144A (en) * 2014-04-28 2015-11-24 日立オートモティブシステムズ株式会社 Electronic circuit device and manufacturing method thereof
JP2017005093A (en) * 2015-06-10 2017-01-05 日本電気株式会社 Substrate heat dissipation structure and method of assembling the same
JP2017046526A (en) * 2015-08-28 2017-03-02 株式会社オートネットワーク技術研究所 Circuit structure and electric junction box

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211144A (en) * 2014-04-28 2015-11-24 日立オートモティブシステムズ株式会社 Electronic circuit device and manufacturing method thereof
JP2017005093A (en) * 2015-06-10 2017-01-05 日本電気株式会社 Substrate heat dissipation structure and method of assembling the same
JP2017046526A (en) * 2015-08-28 2017-03-02 株式会社オートネットワーク技術研究所 Circuit structure and electric junction box

Also Published As

Publication number Publication date
JP2019197848A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP6252871B2 (en) Circuit structure and electrical junction box
JP4121185B2 (en) Electronic circuit equipment
JP6354600B2 (en) CIRCUIT COMPOSITION, ELECTRIC CONNECTION BOX, AND METHOD FOR MANUFACTURING CIRCUIT COMPOSITION
JP6044473B2 (en) Electronic device and method for manufacturing the same
CN108738225A (en) Circuit board module and electronic device
JPWO2017154696A1 (en) Circuit structure
JP2015223044A (en) Circuit structure and electric connection box
JP2016152349A (en) Circuit structure
US10820406B2 (en) Circuit structure and electrical junction box
JP4433875B2 (en) Heat dissipating structure of heat generating component and method of manufacturing heat dissipating member in this heat dissipating structure
WO2019216238A1 (en) Circuit structure and electrical connection box
JP6780792B2 (en) Circuit components and electrical junction boxes
JP2007019125A (en) Electric power conversion device
JP2019079903A (en) Circuit structure and manufacturing method of the same
JP4489112B2 (en) Electronic board mounting structure
JP4452888B2 (en) Electronic circuit equipment
JP7056364B2 (en) Circuit structure and electrical junction box
JP2009238923A (en) Electronic equipment
WO2019216366A1 (en) Circuit structure
JP2006135202A (en) Heat radiating structure for electronic appliance
WO2021059914A1 (en) Electronic circuit device
CN111466159B (en) Method for producing a printed circuit board and heat sink structure, and structure for this purpose comprising printed circuit board and heat sink
JP2011066281A (en) Heat generating device
JP2009188192A (en) Circuit device
JP2017076663A (en) Electronic component mounting board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800283

Country of ref document: EP

Kind code of ref document: A1