WO2019216188A1 - 伝送線路及びその実装構造 - Google Patents

伝送線路及びその実装構造 Download PDF

Info

Publication number
WO2019216188A1
WO2019216188A1 PCT/JP2019/017141 JP2019017141W WO2019216188A1 WO 2019216188 A1 WO2019216188 A1 WO 2019216188A1 JP 2019017141 W JP2019017141 W JP 2019017141W WO 2019216188 A1 WO2019216188 A1 WO 2019216188A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
transmission line
conductor
main body
signal conductor
Prior art date
Application number
PCT/JP2019/017141
Other languages
English (en)
French (fr)
Inventor
邦明 用水
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020518237A priority Critical patent/JP7001154B2/ja
Priority to CN201990000622.0U priority patent/CN213938408U/zh
Publication of WO2019216188A1 publication Critical patent/WO2019216188A1/ja
Priority to US17/066,514 priority patent/US11291109B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0242Structural details of individual signal conductors, e.g. related to the skin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/085Coaxial-line/strip-line transitions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0253Impedance adaptations of transmission lines by special lay-out of power planes, e.g. providing openings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09263Meander
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09727Varying width along a single conductor; Conductors or pads having different widths

Definitions

  • the present invention relates to a transmission line for transmitting a signal and a mounting structure for mounting the transmission line on a circuit board or the like.
  • a transmission line composed of a laminate in which a plurality of insulating base materials are laminated has a structure in which an end of a signal conductor of the transmission line is connected to a terminal electrode formed on the upper surface or the lower surface of the laminate. Therefore, in a transmission line including a plurality of signal conductors, the positions of the plurality of signal conductors in the stacking direction are different, so the lengths of the interlayer connection conductors connected to each signal conductor are different. The electrical characteristics of the transmission line for each conductor are not uniform.
  • Patent Document 1 discloses a transmission line that suppresses uneven electrical characteristics for each transmission line by forming a conductor pattern for adjusting the path length of the signal conductor at the end of each signal conductor. ing.
  • an object of the present invention is to provide a transmission line that achieves impedance matching in the structure portion from the end portion of the signal conductor to the terminal electrode, and a mounting structure of the transmission line.
  • a transmission line as an example of the present disclosure is: It comprises a plurality of connecting portions connected to the outside, and a main body portion located between the connecting portions.
  • the connection portion includes a terminal electrode connected to an external electrode, a signal conductor, and a ground conductor
  • the main body portion includes a signal conductor and a ground conductor, and at least of the plurality of connection portions.
  • One is composed of a first region including a terminal electrode, a second region adjacent to the first region along the signal propagation path, and a third region located between the second region and the main body.
  • the first region has a larger inductance component generated in the signal conductor than the inductance component generated in the main body, and the second region has the terminal electrode and the ground conductor compared with the capacitance component generated in the main body.
  • the inductance component generated in the signal conductor is larger than the inductance component generated in the main body.
  • an LCL circuit is configured by the capacitance component in the first region, the inductance component in the second region, and the capacitance component in the third region. Therefore, the deviation of the impedance due to the inductance component generated in the first region is corrected by the capacitance component in the second region and the inductance component in the third region, and can be matched with the characteristic impedance of the main body of the transmission line. Therefore, an increase in reflection and insertion loss due to impedance discontinuity is suppressed.
  • FIG. 1A is a perspective view of the transmission line 101 according to the first embodiment
  • FIG. 1B is a cross-sectional view of the transmission line 101
  • FIG. 2 is a bottom view of each layer of the laminate constituting the transmission line 101
  • FIG. 3 is an enlarged cross-sectional view of the connection portion TA portion of the transmission line 101.
  • FIG. 4 is a Smith chart showing the action of the first region A1, the second region A2, and the third region A3 formed in the connection portion TA.
  • FIG. 5A and FIG. 5B are perspective views showing the structure of an electronic device 301 according to the second embodiment.
  • FIG. 6 is a partial enlarged cross-sectional view of a transmission line mounting structure in which the transmission line 101 is mounted on the substrate 201.
  • FIG. 6 is a partial enlarged cross-sectional view of a transmission line mounting structure in which the transmission line 101 is mounted on the substrate 201.
  • FIG. 7 is an exploded perspective view of the transmission line 103 according to the third embodiment.
  • FIG. 8 is an enlarged cross-sectional view of the connection portion TA portion of the transmission line 103.
  • FIG. 9A is a cross-sectional view of the portable electronic device showing a mounted state of the transmission line with connector 103
  • FIG. 9B is a plan view of the inside of the casing of the portable electronic device.
  • FIG. 10 is a cross-sectional view of a transmission line 104 according to the fourth embodiment.
  • FIG. 1A is a perspective view of the transmission line 101 according to the first embodiment
  • FIG. 1B is a cross-sectional view of the transmission line 101.
  • the transmission line 101 is a laminate of the insulating base materials S1 to S4 and the cover film 3 on which a predetermined conductor pattern is formed.
  • the transmission line 101 includes two connection portions TA that are respectively connected to the outside, and a main body portion BA that is positioned between the two connection portions TA-TA.
  • the connection portion TA includes a terminal electrode 11, a signal conductor 10, and ground conductors 21 and 22 that are connected to external electrodes described later.
  • the main body BA has a signal conductor 10 and ground conductors 21 and 22.
  • the cover film 3 has an opening B1 that partially exposes the ground conductor 21.
  • FIG. 2 is a bottom view of each layer of the laminate constituting the transmission line 101.
  • the insulating base materials S1 to S4 have predetermined conductor patterns formed on their lower surfaces.
  • FIG. 3 is an enlarged cross-sectional view of the connection portion TA portion of the transmission line 101.
  • hatching of the insulator layer portion is omitted for the sake of clarity. Also in each embodiment shown hereafter, in the cross-sectional view, the hatching of the insulator layer portion is omitted.
  • a ground conductor 22 is formed on the entire surface of the insulating base S1.
  • An electrode 24 that is electrically connected to the ground conductor 22 via the interlayer connection conductor (via conductor) V and an auxiliary ground conductor 23 that is electrically connected to the ground conductor 22 via the interlayer connection conductor V are formed on the insulating substrate S2. Yes.
  • the signal conductor 10 is formed on the insulating base material S3. Further, an electrode 25 connected to the electrode 24 through the interlayer connection conductor V is formed on the insulating base S3.
  • an inductor portion 10M having a line width narrower than that of the signal conductor 10 of the main body portion BA and formed in a meander line shape is formed.
  • the formation region A3 of the inductor portion 10M corresponds to a “third region” according to the present invention.
  • the terminal electrode 11 and the ground conductor 21 are formed on the insulating base material S4.
  • the cover film 3 is formed with openings that expose predetermined portions of the terminal electrode 11 and the ground conductor 21.
  • the insulating substrates S1 to S4 are flexible resin sheets such as liquid crystal polymer (LCP) and poly ether ether ketone (PEEK).
  • LCP liquid crystal polymer
  • PEEK poly ether ether ketone
  • Each electrode (conductor) is formed by attaching a copper foil to the insulating substrate and patterning the copper foil by photolithography.
  • the cover film 3 is, for example, a polyimide film. In addition to attaching the cover film in this way, a resist film may be formed by printing.
  • the main body BA has a stripline formed by the signal conductor 10, the ground conductors 21 and 22, and the insulating base material existing between the ground conductors 21 and 22 and the signal conductor 10.
  • the connecting portion TA forms a strip line by the signal conductor 10, the ground conductors 21 and 22, and the insulating base material existing between the ground conductors 21 and 22 and the signal conductor 10.
  • the distance between the end portion 10 ⁇ / b> E of the signal conductor 10 and the auxiliary ground conductor 23 is closer than the distance between the signal conductor 10 and the ground conductor 22 of the main body BA. Yes. Therefore, the capacitance component generated between the end 10E of the signal conductor 10 and the auxiliary ground conductor 23 is larger than the capacitance component generated in the main body BA.
  • the region A2 where the large capacitance component is generated corresponds to the “second region” according to the present invention.
  • an inductance component is generated in a region from the facing region between the end portion 10 ⁇ / b> E of the signal conductor 10 and the auxiliary ground conductor 23 to the terminal electrode 11.
  • the region A1 where the inductance component occurs corresponds to the “first region” according to the present invention.
  • connection portion TA includes the first region A1 including the terminal electrode 11, the second region A2 adjacent to the first region A1 along the signal propagation path, and the second region A2 and the main body BA. It is comprised by 3rd area
  • the direction “along the signal propagation path” is a propagation direction of a signal propagating through a strip line constituted by the signal conductor portions 10M and 10E and the ground potential conductors 21, 22, and 23. This is the direction when the conductors 21, 22, 23, etc. of the ground potential are viewed in the vertical direction.
  • the connecting portion TA also constitutes a strip line.
  • the signal conductor portions 10E and 10M and the ground potential conductors 21, 22, and 23 have a large inductance component and a large capacitance component. Are configured in a lumped constant circuit.
  • the inductance component generated in the first area A1 is larger than the inductance component generated in the main body BA. Further, the capacitance component generated in the second region A2 is larger than the capacitance component generated in the main body BA. Further, the inductance component generated in the third region A3 is larger than the inductance component generated in the main body BA.
  • FIG. 4 is a Smith chart showing the action of the first region A1, the second region A2, and the third region A3 formed in the connection portion TA.
  • each point represents the impedance in each part of the transmission line 101
  • the curve represents a process of changing impedance by reactance insertion in the first region A1, the second region A2, and the third region A3.
  • the impedance viewed from the front of the first region A1 toward the first region A1 is displaced from the reference point P0 to P1 along the isoresistance circle.
  • the impedance viewed from the front of the second region A2 to the second region A2 side is displaced to P2 along the isoconductance circle.
  • the impedance viewed from the front of the third region A3 toward the third region A3 side is displaced to P0 along the isoresistance circle. That is, it matches the reference impedance (50 ⁇ ).
  • FIG. 4 shows a combination of a certain inductance value, a certain capacitance value, and a certain inductance value, but this is of course an example.
  • connection portion TA is illustrated, but the inductance component of the first region A ⁇ b> 1 and the second connection portion TA in the one connection portion TA and the other connection portion TA of the transmission line 101. It is preferable to make the capacitance component in the region A2 and the inductance component in the third region A3 equal to each other because a wider frequency band can be dealt with.
  • the width of the signal conductor 10 of the main body BA is constant and the distance between the signal conductor 10 and the ground conductors 21 and 22 is also constant, the change in the characteristic impedance of the main body BA is small and the transmission loss is small.
  • the signal conductor 10 has a stepped shape at the boundary between the thin part of the line width constituting the third region A3 and the body part BA (the thick part of the line width). It is preferable to moderate the change in the line width along the signal propagation direction by, for example, tapering the boundary where the line width of the signal conductor 10 changes. This is because the loss that occurs at the line width change portion of the signal conductor 10 is suppressed.
  • Second Embodiment An example of a transmission line mounting structure is shown.
  • FIG. 5A and FIG. 5B are perspective views showing the structure of an electronic device 301 according to the second embodiment.
  • FIG. 5A is an exploded perspective view of the main part of the electronic device 301
  • FIG. 5B is a perspective view of the main part of the electronic device 301.
  • the electronic device 301 of this embodiment includes a substrate 201 and a transmission line 101 mounted on the substrate 201. Although elements other than the transmission line 101 are also mounted on the substrate 201, they do not appear in FIGS. 5 (A) and 5 (B).
  • the configuration of the transmission line 101 shown in FIGS. 5A and 5B is as shown in the first embodiment.
  • the ground conductor 21 is exposed from the cover film 3 on the lower surface (mounting surface) of the transmission line 101.
  • a resist film is formed on the mounting surface of the substrate 201.
  • the substrate 201 includes a substrate-side connection electrode 61 to which the terminal electrode 11 of the transmission line 101 is connected, and this is exposed from the resist film. Further, the substrate-side ground conductor 51 is exposed on the mounting surface of the substrate 201.
  • the terminal electrode 11 of the transmission line 101 is connected to the substrate-side connection electrode 61, and the ground conductor 21 of the transmission line 101 is connected to the substrate-side ground conductor 51.
  • the ground conductor 21 of the transmission line 101 is connected to the substrate-side ground conductor 51.
  • FIG. 6 is a partially enlarged sectional view of a transmission line mounting structure in which the transmission line 101 is mounted on the substrate 201.
  • an inductance component is also generated in the region A ⁇ b> 12 from the end of the signal conductor 40 on the substrate 201 side to the terminal electrode 11.
  • the first region A1 of the transmission line 101 alone is as shown in FIG. That is, by mounting the transmission line 101 on the substrate 201, the inductance component added to the first region A1 increases.
  • the impedance matching circuit formed by the first region A1, the second region A2, and the third region A3 formed in the connection portion of the transmission line 101 responds to an increase in inductance component added to the first region A1 when mounted on the substrate. Can be determined. As a result, impedance matching of the connecting portion is performed with higher accuracy in a state where the transmission line 101 is mounted on the substrate 201.
  • FIG. 7 is an exploded perspective view of the transmission line 103 according to the third embodiment.
  • FIG. 8 is an enlarged cross-sectional view of the connection portion TA portion of the transmission line 103.
  • the transmission line 103 includes two coaxial connectors 4.
  • the basic structure of the transmission line before the coaxial connector 4 is attached is the same as that of the transmission line 101 shown in FIG.
  • the central conductor 41 of the coaxial connector 4 is connected to the terminal electrode 11, and the outer conductor 42 of the coaxial connector 4 is connected to the ground conductor 21.
  • an inductance component is generated in the region A11 where the path between the central conductor 41 of the connector 4 and the terminal electrode 11 is formed, and this inductance component is added to the first region A1 of the transmission line. Is done. Even in such a case, the impedance matching circuit formed by the first region A1, the second region A2, and the third region A3 formed in the connection portion of the transmission line 103 has an inductance added to the first region A1 by the attachment of the connector 4. What is necessary is just to determine according to the increase in a component. As a result, the impedance matching of the connecting portion is performed with higher accuracy in the attached state of the connector 4.
  • FIG. 9A is a cross-sectional view of the portable electronic device showing the mounted state of the transmission line 103 with a connector
  • FIG. 9B is a plan view of the inside of the casing of the portable electronic device.
  • the portable electronic device 302 includes a thin casing 210.
  • circuit boards 202a and 202b, a battery pack 206, and the like are arranged.
  • Chip components are mounted on the surfaces of the circuit boards 202a and 202b.
  • the circuit boards 202a and 202b and the battery pack 206 are installed in the casing 210 so that the battery pack 206 is disposed between the circuit boards 202a and 202b when the casing 210 is viewed in plan. Since the casing 210 is formed as thin as possible, the distance between the battery pack 206 and the casing 210 in the thickness direction of the casing 210 is extremely narrow. Therefore, a normal coaxial cable cannot be arranged between them.
  • the transmission line 103 of this embodiment Since the transmission line 103 of this embodiment has flexibility, it is bent along the gap.
  • the transmission line 103 can be passed between the battery pack 206 and the casing 210 by arranging the transmission line 103 so that the thickness direction thereof matches the thickness direction of the casing 210.
  • the circuit boards 202 a and 202 b which are spaced apart from each other with the battery pack 206 disposed in the middle can be connected by the transmission line 103.
  • the transmission line of the present invention can simplify the process because the impedance matching circuit portion of the transmission line is composed only of a conductor pattern. Moreover, the tolerance with respect to a bending stress is high. In other words, unlike the case where a chip component for impedance matching is mounted on a transmission line, there is no problem that the chip component receives a bending stress and falls off as the transmission line is bent.
  • FIG. 10 is a cross-sectional view of the transmission line 104 according to the fourth embodiment.
  • the structure of the third region A3 is different from the transmission line 101 shown in FIGS.
  • an opening AP of the ground conductor 22 is formed at a position facing the inductor portion 10M.
  • the third region A3 having a predetermined inductance component may be configured by suppressing a capacitance component generated between the ground conductor and the ground conductor.
  • FIG. 10 shows an example in which the inductor portion 10M having a narrow line width and a meander line shape is provided.
  • the signal conductor 10 in the three regions A3 may be linear.
  • the line width may be the same as the line width of the signal conductor 10 of the body portion BA. According to this structure, since the line width of the signal conductor 10 is constant, there is no loss occurring in the line width changing portion, and the transmission loss of the entire line is small.
  • the transmission line provided with the single signal conductor 10 can comprise similarly about the transmission line provided with several signal conductors.
  • the plurality of signal conductors may be arranged in the same layer or in different layers.
  • the end portion 10E of the signal conductor 10 and the auxiliary ground conductor 23 face each other in the stacking direction of the insulating base materials S1 to S4, and a capacitance is generated in the facing portion.
  • the facing direction is not limited to this.
  • a ground conductor pattern is formed on the side of the end portion 10E of the signal conductor 10 in a direction along the surface of the insulating substrate, and a capacitance is generated between the end portion 10E of the signal conductor 10 and the ground conductor pattern. Also good.
  • the number of connecting portions is not limited to one pair, but may be a plurality of pairs.
  • the present invention can be similarly applied to a structure in which a signal conductor branches between a plurality of connection portions and one connection portion.
  • connection portions TA may have the structure of the transmission line connection portion TA shown in each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Combinations Of Printed Boards (AREA)
  • Waveguides (AREA)

Abstract

伝送線路(101)は、外部にそれぞれ接続される複数の接続部(TA)と、この接続部(TA)同士の間に位置する本体部(BA)と、で構成される。接続部(TA)は、外部の電極に接続される端子電極(11)と、信号導体(10)と、グランド導体(21,22)と、を有する。本体部(BA)は信号導体(10)とグランド導体(21,22)とを有し、複数の接続部(TA)のうち少なくとも一つは、端子電極(11)を含む第1領域と、信号伝搬経路に沿って前記第1領域に隣接する第2領域と、この第2領域と本体部(BA)との間に位置する第3領域とで構成される。これら第1領域、第2領域、第3領域によって、接続部(TA)でのインピーダンス整合が図られる。

Description

伝送線路及びその実装構造
 本発明は、信号を伝送する伝送線路と、この伝送線路を回路基板等へ実装する実装構造に関する。
 複数の絶縁基材を積層した積層体で構成される伝送線路は、伝送線路の信号導体の端部を、積層体の上面又は下面に形成された端子電極に接続する構造を備える。そのため、複数の信号導体を備える伝送線路においては、複数の信号導体の積層方向の位置が異なるので、各信号導体に接続される層間接続導体の長さが異なり、そのことに起因して、信号導体ごとの伝送線路の電気的特性が不揃いとなる。
 特許文献1には、各信号導体の端部に、信号導体の経路長を調整するための導体パターンを形成することによって、上記伝送線路ごとの電気的特性の不揃いを抑制した伝送線路が示されている。
国際公開第2018/025697号
 特許文献1に示されるような、伝送線路の信号導体の端部から端子電極が引き出された伝送線路においては、信号導体の端部から端子電極までの構造部に、その他の構造部(主要な伝送線路部)とは異なる寄生容量や寄生インダクタンス等の寄生成分が生じる。そのため、信号導体の端部から端子電極までの構造部でインピーダンス不整合が生じやすい。このようなインピーダンス不整合が生じると、挿入損失が増大し、また信号の反射による高周波回路上の不具合が生じる。
 そこで、本発明の目的は、信号導体の端部から端子電極までの構造部におけるインピーダンス整合を図った伝送線路及びその伝送線路の実装構造を提供することにある。
(1)本開示の一例としての伝送線路は、
 外部にそれぞれ接続される複数の接続部と、当該接続部同士の間に位置する本体部と、で構成される。前記接続部は、外部の電極に接続される端子電極と、信号導体と、グランド導体と、を有し、前記本体部は信号導体とグランド導体とを有し、前記複数の接続部のうち少なくとも一つは、端子電極を含む第1領域と、信号伝搬経路に沿って第1領域に隣接する第2領域と、当該第2領域と本体部との間に位置する第3領域とで構成される。そして、第1領域は、本体部に生じるインダクタンス成分に比べて、信号導体に生じるインダクタンス成分が大きく、第2領域は、前記本体部に生じるキャパシタンス成分に比べて、前記端子電極と前記グランド導体との間に生じるキャパシタンス成分が大きく、第3領域は、本体部に生じるインダクタンス成分に比べて、信号導体に生じるインダクタンス成分が大きい。
 上記構成により、第1領域のキャパシタンス成分と第2領域のインダクタンス成分と第3領域のキャパシタンス成分とでL-C-L回路が構成される。そのため、第1領域に生じるインダクタンス成分によるインピーダンスのずれは、第2領域のキャパシタンス成分及び第3領域のインダクタンス成分によって補正され、伝送線路の本体部の特性インピーダンスに整合させることができる。したがって、インピーダンスの不連続性による反射及び挿入損失の増加が抑制される。
 本発明によれば、外部に接続される接続部におけるインピーダンス整合を図った伝送線路及びその伝送線路の実装構造が得られる。
図1(A)は第1の実施形態に係る伝送線路101の斜視図であり、図1(B)は伝送線路101の断面図である。 図2は伝送線路101を構成する積層体の各層の下面図である。 図3は伝送線路101の接続部TA部分の拡大断面図である。 図4は、接続部TAに形成された、第1領域A1、第2領域A2、第3領域A3による作用を示すスミスチャートである。 図5(A)、図5(B)は、第2の実施形態に係る電子機器301の構造を示す斜視図である。 図6は、基板201に伝送線路101が実装された、伝送線路の実装構造、の部分拡大断面図である。 図7は第3の実施形態に係る伝送線路103の分解斜視図である。 図8は伝送線路103の接続部TA部分の拡大断面図である。 図9(A)は、コネクタ付き伝送線路103の実装状態を示す、携帯電子機器の断面図であり、図9(B)は当該携帯電子機器の筐体内部の平面図である。 図10は第4の実施形態に係る伝送線路104の断面図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1(A)は第1の実施形態に係る伝送線路101の斜視図であり、図1(B)は伝送線路101の断面図である。
 伝送線路101は、所定の導体パターンが形成された絶縁基材S1~S4とカバーフィルム3との積層体である。
 伝送線路101は、外部にそれぞれ接続される二つの接続部TAと、二つの接続部TA-TA間に位置する本体部BAと、で構成される。接続部TAは、後に示す外部の電極に接続される端子電極11と信号導体10とグランド導体21,22とを有する。本体部BAは信号導体10とグランド導体21,22とを有する。カバーフィルム3には、グランド導体21を部分的に露出させる開口B1が形成されている。
 図2は伝送線路101を構成する積層体の各層の下面図である。図1(A)、図1(B)に示す向きで、絶縁基材S1~S4には、それらの下面に所定の導体パターンが形成されている。また、図3は伝送線路101の接続部TA部分の拡大断面図である。図1(B)、図3においては、図の明瞭化のため、絶縁体層部分のハッチングは省略している。以降に示す各実施形態においても、断面図には、絶縁体層部分のハッチングを省略して図示する。
 絶縁基材S1には、その全面にグランド導体22が形成されている。
 絶縁基材S2には、層間接続導体(ビア導体)Vを介してグランド導体22と導通する電極24と、層間接続導体Vを介してグランド導体22と導通する補助グランド導体23とが形成されている。
 絶縁基材S3には信号導体10が形成されている。また、絶縁基材S3には層間接続導体Vを介して電極24に繋がる電極25が形成されている。
 上記信号導体10の端部10Eと本体部BAの信号導体10との間には、本体部BAの信号導体10より線幅が細く、ミアンダライン状に形成されたインダクタ部10Mが形成されている。このインダクタ部10Mの形成領域A3は本発明に係る「第3領域」に相当する。
 絶縁基材S4には端子電極11とグランド導体21が形成されている。カバーフィルム3には、上記端子電極11及びグランド導体21の所定箇所を露出させる開口が形成されている。
 上記絶縁基材S1~S4は例えば液晶ポリマー(LCP)やポリ・エーテル・エーテル・ケトン(PEEK)等の可撓性を有する樹脂シートである。また、上記各電極(導体)は、上記絶縁基材に銅箔を張り付け、その銅箔をフォトリソグラフィによってパターニングすることによって形成されたものである。カバーフィルム3は例えばポリイミドフィルムである。なお、このようにカバーフィルムを貼付すること以外に、レジスト膜を印刷形成してもよい。
 本体部BAは、信号導体10とグランド導体21,22と、これらグランド導体21,22と信号導体10との間に存在する絶縁基材とによってストリップラインが構成されている。同様に、接続部TAは、信号導体10とグランド導体21,22と、これらグランド導体21,22と信号導体10との間に存在する絶縁基材とによってストリップラインが構成されている。
 図2、図3に表れているように、信号導体10の端部10Eと補助グランド導体23との間隔は、本体部BAの信号導体10とグランド導体22との間隔に比較して近接している。そのため、信号導体10の端部10Eと補助グランド導体23との間に生じるキャパシタンス成分は、本体部BAに生じるキャパシタンス成分に比べて大きい。この大きなキャパシタンス成分が生じる領域A2は本発明に係る「第2領域」に相当する。
 また、図3において、信号導体10の端部10Eと補助グランド導体23との対向領域から端子電極11までの領域にインダクタンス成分が生じる。このインダクタンス成分が生じる領域A1が本発明に係る「第1領域」に相当する。
 このように、接続部TAは、端子電極11を含む第1領域A1と、信号伝搬経路に沿って第1領域A1に隣接する第2領域A2と、この第2領域A2と本体部BAとの間に位置する第3領域A3とで構成される。上記「信号伝搬経路に沿った」方向とは、信号導体の一部10M,10Eと、グランド電位の導体21,22,23とで、構成されるストリップラインを伝搬する信号の伝搬方向であり、グランド電位の導体21,22,23等を垂直方向に視た状態での方向である。
 本体部BAは通常のストリップラインを構成するので、分布定数回路である。接続部TAもストリップラインを構成するが、この接続部TAにおいては、信号導体の一部10E,10Mとグランド電位の導体21,22,23とで、インダクタンス成分の大きい箇所とキャパシタンス成分の大きい箇所とが集中定数回路的に構成される。
 第1領域A1に生じるインダクタンス成分は、本体部BAに生じるインダクタンス成分より大きい。また、第2領域A2に生じるキャパシタンス成分は、本体部BAに生じるキャパシタンス成分より大きい。さらに、第3領域A3に生じるインダクタンス成分は、本体部BAに生じるインダクタンス成分より大きい。
 図4は、接続部TAに形成された、第1領域A1、第2領域A2、第3領域A3による作用を示すスミスチャートである。図4において、各点は、伝送線路101の各部におけるインピーダンスを表し、曲線は第1領域A1、第2領域A2、第3領域A3によるリアクタンスの挿入によるインピーダンスの変化過程を表している。
 図3に示した第1領域A1のインダクタンス成分の影響で、この第1領域A1の手前から第1領域A1側をみたインピーダンスは、基準点P0から等抵抗円に沿ってP1へ変位する。また、第2領域A2のキャパシタンス成分の作用で、第2領域A2の手前から第2領域A2側をみたインピーダンスは等コンダクタンス円に沿ってP2へ変位する。そして、第3領域A3のインダクタンス成分の作用で、第3領域A3の手前から第3領域A3側をみたインピーダンスは等抵抗円に沿ってP0へ変位する。つまり、基準インピーダンス(50Ω)に整合する。
 図4に示した例は、あるインダクタンス値、あるキャパシタンス値、あるインダクタンス値の組み合わせについて示したが、これは無論一例である。
 また、図3では二つの接続部TAのうち一方の接続部TAについて図示したが、伝送線路101の一方の接続部TAと他方の接続部TAとにおいて、第1領域A1のインダクタンス成分、第2領域A2のキャパシタンス成分、第3領域A3のインダクタンス成分の値をそれぞれ等しくすると、より広範囲の周波数帯域に対応できるので、好ましい。
 本体部BAの信号導体10の幅は一定であり、かつ信号導体10とグランド導体21,22との間隔も一定であるので、この本体部BAの特性インピーダンスの変化は小さく、伝送損失は小さい。
 なお、図2に示した例では、信号導体10は、第3領域A3を構成する線幅の細い部分と本体部BA(線幅の太い部分)との境界で段差形状となっているが、信号導体10の線幅の変化する境界をテーパー状にする等して、信号伝搬方向に沿った線幅の変化を緩やかにする方が好ましい。信号導体10の線幅の変化部で生じる損失が抑制されるからである。
《第2の実施形態》
 第2の実施形態では伝送線路の実装構造の例を示す。
 図5(A)、図5(B)は、第2の実施形態に係る電子機器301の構造を示す斜視図である。図5(A)は電子機器301の主要部の分解斜視図であり、図5(B)は電子機器301の主要部の斜視図である。
 図5(B)に示すように、本実施形態の電子機器301は、基板201と、この基板201に実装された伝送線路101とを備える。基板201には伝送線路101以外の素子も実装されるが、図5(A)、図5(B)では現れていない。
 図5(A)、図5(B)に示す伝送線路101の構成は第1の実施形態で示したとおりである。
 伝送線路101の下面(実装面)には、カバーフィルム3からグランド導体21を露出させている。
 基板201の実装面にはレジスト膜が形成されている。基板201は、伝送線路101の端子電極11が接続される基板側接続電極61を備え、これがレジスト膜から露出している。また、基板201の実装面には、基板側グランド導体51が露出している。
 基板201に伝送線路101が表面実装されることで、伝送線路101の端子電極11は基板側接続電極61に接続され、伝送線路101のグランド導体21は基板側グランド導体51に接続される。また、伝送線路101のグランド導体21は基板側グランド導体51に接続される。これらの接続は例えばはんだ付けにより行われる。
 図6は、基板201に伝送線路101が実装された、伝送線路の実装構造、の部分拡大断面図である。図6において、基板201側の信号導体40の端部から端子電極11まで領域A12にもインダクタンス成分が生じる。伝送線路101単独での第1領域A1は図3に示したとおりである。つまり、伝送線路101を基板201に実装することで、第1領域A1に付加されるインダクタンス成分が増大する。伝送線路101の接続部に形成する第1領域A1、第2領域A2、第3領域A3によるインピーダンス整合回路は、上記基板への実装状態で第1領域A1に付加されるインダクタンス成分の増大に応じて定めればよい。そのことで、伝送線路101を基板201に実装した状態で接続部のインピーダンス整合がより高精度に行われる。
《第3の実施形態》
 第3の実施形態では、コネクタ付き伝送線路及びその実装構造の例について示す。
 図7は第3の実施形態に係る伝送線路103の分解斜視図である。図8は伝送線路103の接続部TA部分の拡大断面図である。この伝送線路103は、二つの同軸コネクタ4を備える。この同軸コネクタ4を取り付ける前の伝送線路の基本的な構造は図1(A)に示した伝送線路101と同じである。同軸コネクタ4の中心導体41は端子電極11に接続され、同軸コネクタ4の外導体42はグランド導体21に接続される。
 このように、コネクタ4を設けると、コネクタ4の中心導体41と端子電極11との間の経路が形成された領域A11にインダクタンス成分が生じ、このインダクタンス成分が伝送線路の第1領域A1に付加される。このような場合でも、伝送線路103の接続部に形成する第1領域A1、第2領域A2、第3領域A3によるインピーダンス整合回路は、上記コネクタ4の取り付けによって第1領域A1に付加されるインダクタンス成分の増大に応じて定めればよい。そのことで、コネクタ4の取り付け状態で、接続部のインピーダンス整合がより高精度に行われる。
 図9(A)は、上記コネクタ付き伝送線路103の実装状態を示す、携帯電子機器の断面図であり、図9(B)は当該携帯電子機器の筐体内部の平面図である。
 携帯電子機器302は、薄型の筐体210を備える。筐体210内には、回路基板202a,202bと、バッテリーパック206等が配置される。回路基板202a,202bの表面には、チップ部品が実装される。回路基板202a,202b及びバッテリーパック206は、筐体210を平面視して、回路基板202a,202b間にバッテリーパック206が配置されるように、筐体210内に設置される。筐体210はできる限り薄型に形成されるので、筐体210の厚み方向での、バッテリーパック206と筐体210との間隔は極狭い。したがって、この間に通常の同軸ケーブルを配置することはできない。
 本実施形態の伝送線路103は可撓性を有するので隙間に沿って曲げられる。この伝送線路103は、その厚み方向と、筐体210の厚み方向とが一致するように配置することで、バッテリーパック206と筐体210との間に、伝送線路103を通すことができる。これにより、バッテリーパック206を中間に配して離間された回路基板202a,202bを伝送線路103で接続できる。
 本発明の伝送線路は伝送線路のインピーダンス整合回路部が導体パターンのみで構成されているのでプロセスが簡素化できる。また、曲げ応力に対する耐性が高い。つまり、インピーダンス整合のためのチップ部品を伝送線路に搭載した場合のように、伝送線路の曲げに伴ってチップ部品が曲げ応力を受けて脱落する、といった不具合が生じない。
《第4の実施形態》
 第4の実施形態では、第1の実施形態で示した伝送線路とは第3領域の構造が異なる伝送線路について示す。
 図10は第4の実施形態に係る伝送線路104の断面図である。図1(B)、図3、に示した伝送線路101とは、第3領域A3の構造が異なる。本実施形態の伝送線路104では、インダクタ部10Mに対向する位置に、グランド導体22の開口APが形成されている。この構造により、インダクタ部10Mとグランド導体22との間に生じるキャパシタンス成分が抑制され、インダクタンス成分を相対的に大きくできる。そのため、図1(B)、図2に示した例に比べて、インダクタ部10Mにおける信号導体10の線幅を太くでき、また線長を短くできる。その結果、インダクタ部10Mにおける導体損失を低減できる。
 このように、グランド導体との間に生じるキャパシタンス成分を抑制することで所定のインダクタンス成分を有する第3領域A3を構成してもよい。
 なお、図10では、線幅が細くてミアンダライン状に形成されたインダクタ部10Mを備える例を示したが、グランド導体22に開口APを形成することで所定のインダクタンス成分が得られれば、第3領域A3における信号導体10は直線状であってもよい。さらには、その線幅が本体部BAの信号導体10の線幅と同じであってもよい。この構造によれば、信号導体10の線幅が一定であるので、線幅の変化部で生じる損失が無く、線路全体の伝送損失が小さい。
 なお、以上に示した幾つかの実施形態では、単一の信号導体10を備える伝送線路を例示したが、複数の信号導体を備える伝送線路についても同様に構成できる。また、複数の信号導体は同一層に配置されていてもよいし、異なる層に配置されていてもよい。
 また、以上に示した幾つかの実施形態では、信号導体10の端部10Eと補助グランド導体23とが、絶縁基材S1~S4の積層方向に対向し、この対向部にキャパシタンスを生じさせる例を示したが、対向方向はこれに限らない。絶縁基材の面に沿った方向で、信号導体10の端部10Eの側方にグランド導体パターンを形成し、この信号導体10の端部10Eとグランド導体パターンとの間にキャパシタンスを生じさせてもよい。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。
 例えば、接続部は1対に限らず、複数対であってもよい。また、複数の接続部と一つの接続部との間で信号導体が分岐する構造であっても、同様に適用できる。
 また、例えば複数の接続部TAのうち一つ又は幾つかだけが各実施形態で示した伝送線路の接続部TAの構造であってもよい。
A1…第1領域
A2…第2領域
A3…第3領域
A11,A12…領域
AP…開口
B1…開口
BA…本体部
P0…基準点
S1~S4…絶縁基材
TA…接続部
V…層間接続導体
3…カバーフィルム
4…同軸コネクタ
10…信号導体
10E…信号導体の端部
10M…信号導体のインダクタ部
11…端子電極
21,22…グランド導体
23…補助グランド導体
24,25…電極
40…信号導体
41…中心導体
42…外導体
51…基板側グランド導体
61…基板側接続電極
101,103,104…伝送線路
201…基板
202a,202b…回路基板
206…バッテリーパック
210…筐体
301…電子機器
302…携帯電子機器

Claims (8)

  1.  外部にそれぞれ接続される複数の接続部と、当該接続部同士の間に位置する本体部と、で構成される伝送線路であって、
     前記接続部は、外部の電極に接続される端子電極と、信号導体と、グランド導体と、を有し、
     前記本体部は信号導体とグランド導体とを有し、
     前記複数の接続部のうち少なくとも一つは、前記端子電極を含む第1領域と、信号伝搬経路に沿って前記第1領域に隣接する第2領域と、当該第2領域と前記本体部との間に位置する第3領域とで構成され、
     前記第1領域は、前記本体部に生じるインダクタンス成分に比べて、前記信号導体に生じるインダクタンス成分が大きく、
     前記第2領域は、前記本体部に生じるキャパシタンス成分に比べて、前記端子電極と前記グランド導体との間に生じるキャパシタンス成分が大きく、
     前記第3領域は、前記本体部に生じるインダクタンス成分に比べて、前記信号導体に生じるインダクタンス成分が大きい、
     伝送線路。
  2.  前記複数の接続部の全てが、前記第1領域、前記第2領域及び前記第3領域で構成される、
     請求項1に記載の伝送線路。
  3.  前記接続部及び前記本体部は、多層基板を構成する絶縁基材及び導体パターンで構成される、
     請求項1又は2に記載の伝送線路。
  4.  補助グランド導体を有し、前記本体部の前記信号導体と前記補助グランド導体との間隔は、前記第2領域の前記信号導体と前記グランド導体との間隔よりも小さい、
     請求項1から3のいずれかに記載の伝送線路。
  5.  前記第3領域の前記信号導体の線幅は前記本体部の前記信号導体の線幅よりも細い、
     請求項1から4のいずれかに記載の伝送線路。
  6.  前記グランド導体の、前記第3領域の前記信号導体に対向する位置に開口が形成されている、
     請求項1から5のいずれかに記載の伝送線路。
  7.  前記端子電極及び前記グランド導体にそれぞれ導通し、前記外部の電極に接続されるコネクタを備える、
     請求項1から6のいずれかに記載の伝送線路。
  8.  請求項1から7のいずれかに記載の伝送線路と、当該伝送線路が実装される回路基板とを備え、
     前記伝送線路の前記端子電極は、前記回路基板の表面に形成されている電極に接続されている、
     伝送線路の実装構造。
PCT/JP2019/017141 2018-05-08 2019-04-23 伝送線路及びその実装構造 WO2019216188A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020518237A JP7001154B2 (ja) 2018-05-08 2019-04-23 伝送線路及びその実装構造
CN201990000622.0U CN213938408U (zh) 2018-05-08 2019-04-23 传输线路及其安装构造
US17/066,514 US11291109B2 (en) 2018-05-08 2020-10-09 Transmission line and mounting structure thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018089744 2018-05-08
JP2018-089744 2018-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/066,514 Continuation US11291109B2 (en) 2018-05-08 2020-10-09 Transmission line and mounting structure thereof

Publications (1)

Publication Number Publication Date
WO2019216188A1 true WO2019216188A1 (ja) 2019-11-14

Family

ID=68466744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017141 WO2019216188A1 (ja) 2018-05-08 2019-04-23 伝送線路及びその実装構造

Country Status (4)

Country Link
US (1) US11291109B2 (ja)
JP (1) JP7001154B2 (ja)
CN (1) CN213938408U (ja)
WO (1) WO2019216188A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251158A1 (ja) * 2020-06-11 2021-12-16 株式会社村田製作所 伝送線路
WO2022080067A1 (ja) * 2020-10-13 2022-04-21 株式会社村田製作所 回路基板及び回路基板の製造方法
WO2023166894A1 (ja) * 2022-03-01 2023-09-07 株式会社村田製作所 回路モジュール及び回路基板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308547A (ja) * 2000-04-27 2001-11-02 Sharp Corp 高周波多層回路基板
JP2006173400A (ja) * 2004-12-16 2006-06-29 Canon Inc プリント配線板
JP2008541484A (ja) * 2005-05-16 2008-11-20 テラダイン・インコーポレーテッド インピーダンス調整がなされるバイア構造

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212276B (zh) * 2014-12-01 2022-05-10 株式会社村田制作所 电子设备及电气元件
JP6447786B2 (ja) 2016-08-02 2019-01-09 株式会社村田製作所 多層基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308547A (ja) * 2000-04-27 2001-11-02 Sharp Corp 高周波多層回路基板
JP2006173400A (ja) * 2004-12-16 2006-06-29 Canon Inc プリント配線板
JP2008541484A (ja) * 2005-05-16 2008-11-20 テラダイン・インコーポレーテッド インピーダンス調整がなされるバイア構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251158A1 (ja) * 2020-06-11 2021-12-16 株式会社村田製作所 伝送線路
JPWO2021251158A1 (ja) * 2020-06-11 2021-12-16
JP7359308B2 (ja) 2020-06-11 2023-10-11 株式会社村田製作所 伝送線路
WO2022080067A1 (ja) * 2020-10-13 2022-04-21 株式会社村田製作所 回路基板及び回路基板の製造方法
WO2023166894A1 (ja) * 2022-03-01 2023-09-07 株式会社村田製作所 回路モジュール及び回路基板

Also Published As

Publication number Publication date
US20210029822A1 (en) 2021-01-28
JP7001154B2 (ja) 2022-01-19
CN213938408U (zh) 2021-08-10
US11291109B2 (en) 2022-03-29
JPWO2019216188A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
JP5754562B1 (ja) 高周波信号線路及び電子機器
US9692100B2 (en) Multi-layer resin substrate having grounding conductors configured to form triplate line sections and microstrip sections
US11291109B2 (en) Transmission line and mounting structure thereof
US11696392B2 (en) Transmission line and mounting structure thereof
JP5842850B2 (ja) フラットケーブルおよび電子機器
US10056669B2 (en) Transmission line
JP5811306B1 (ja) 信号伝送部品および電子機器
US10079417B2 (en) High-frequency transmission line and electronic device
US9705194B2 (en) Antenna module
US11909088B2 (en) Transmission line member including first and third transmission line portions connected by a second coplanar waveguide portion of reduced thickness and greater width
US9312590B2 (en) High-frequency signal transmission line and electronic device
JP5527493B1 (ja) フラットケーブルおよび電子機器
JP5279424B2 (ja) 高周波伝送装置
US9583809B2 (en) High-frequency signal line
US20220077555A1 (en) Transmission line substrate and electronic device
JP7359308B2 (ja) 伝送線路
CN217363377U (zh) 传输线路以及电子设备
WO2023132309A1 (ja) 伝送線路およびそれを備える電子機器
US9583810B2 (en) High-frequency signal line
WO2018211897A1 (ja) 複合多層基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800784

Country of ref document: EP

Kind code of ref document: A1