WO2019215939A1 - Composite panel structure - Google Patents

Composite panel structure Download PDF

Info

Publication number
WO2019215939A1
WO2019215939A1 PCT/JP2018/024716 JP2018024716W WO2019215939A1 WO 2019215939 A1 WO2019215939 A1 WO 2019215939A1 JP 2018024716 W JP2018024716 W JP 2018024716W WO 2019215939 A1 WO2019215939 A1 WO 2019215939A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge axis
rib
steel plate
bottom steel
lateral rib
Prior art date
Application number
PCT/JP2018/024716
Other languages
French (fr)
Japanese (ja)
Inventor
直以 野呂
藤川 敬人
水上 繁樹
Original Assignee
日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄エンジニアリング株式会社 filed Critical 日鉄エンジニアリング株式会社
Priority to PH12019500831A priority Critical patent/PH12019500831A1/en
Publication of WO2019215939A1 publication Critical patent/WO2019215939A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D1/00Bridges in general
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges

Definitions

  • the present invention relates to a composite panel structure.
  • This application claims priority based on Japanese Patent Application No. 2018-089758 filed in Japan on May 8, 2018, the contents of which are incorporated herein by reference.
  • Patent Document 1 a composite panel structure is known in which horizontal ribs integrally joined to a concrete floor slab are arranged on the upper surface of a bottom steel plate.
  • the concrete floor slab and the lateral rib are coupled by the adhesion force of the concrete member and the force by which the flange of the lateral rib grips the concrete.
  • the concrete floor slab and the lateral rib are coupled by the adhesion force of the concrete member and the force by which the flange of the lateral rib grips the concrete. For this reason, in order to obtain the bonding force between the concrete floor slab and the lateral rib, it is necessary to consider the construction in the operation of placing the floor slab concrete.
  • An object of the present invention is to provide a composite panel structure capable of easily and firmly bonding a concrete floor slab and a lateral rib.
  • the composite panel structure includes a main girder panel, an intermediate panel, and a concrete floor slab.
  • the main girder panel includes first bottom steel plates placed on the upper surfaces of a plurality of main girders extending in the bridge axis direction of the bridge, and a plurality of the main girder panels are arranged at intervals in the direction perpendicular to the bridge axis.
  • the intermediate panel has a second bottom steel plate disposed between the first bottom steel plates of the main girder panel adjacent to each other in the direction perpendicular to the bridge axis. Concrete floor slabs are provided on the main girder panel and the intermediate panel.
  • the main girder panel further includes a first lateral rib.
  • a plurality of first lateral ribs are arranged on the upper surface of the first bottom steel plate at intervals in the bridge axis direction.
  • the first lateral rib is further coupled integrally with the concrete floor slab.
  • the first transverse rib further extends over the entire area of the first bottom steel plate in the direction perpendicular to the bridge axis.
  • the intermediate panel has a second lateral rib.
  • the second transverse rib is disposed on the upper surface of the second bottom steel plate.
  • a plurality of second lateral ribs are arranged so as to be spaced in the bridge axis direction and shifted in the bridge axis direction with respect to the first lateral rib.
  • the second lateral rib is further coupled integrally with the concrete floor slab.
  • the second lateral rib further extends in the direction perpendicular to the bridge axis.
  • the second transverse rib protrudes from the end of the second bottom steel plate in the direction perpendicular to the bridge axis toward the upper surface of the first bottom steel plate.
  • the first lateral rib and the second lateral rib each have a plurality of through holes penetrating in the bridge axis direction. These through holes are formed at intervals in a direction perpendicular to the bridge axis.
  • a plurality of through holes are formed in each of the first lateral rib and the second lateral rib. Therefore, the coupling force between the concrete floor slab and each of the first lateral rib and the second lateral rib is secured by the engagement force in the direction perpendicular to the bridge axis between the through hole and the concrete member entering the through hole. it can. As a result, the concrete floor slab and the horizontal rib can be easily and firmly bonded.
  • the second lateral rib arranged on the upper surface of the second bottom steel plate of the intermediate panel protrudes toward the upper surface of the bottom steel plate of the main girder panel and is integrally coupled with the concrete floor slab of the main girder panel.
  • the end of the second transverse rib in the direction perpendicular to the bridge axis engages with the concrete floor slab of the main girder panel in the direction perpendicular to the bridge axis.
  • the transverse rib according to the first aspect may be an I-shaped steel.
  • the cross-sectional area at the end of the transverse rib in the direction perpendicular to the bridge axis is secured, and the surface pressure applied to the concrete slab by the end of the transverse rib in the direction perpendicular to the bridge axis is reduced. can do. Therefore, it can suppress that a concrete floor slab yields by the force of the bridge axis orthogonal direction which receives from a horizontal rib.
  • the through hole of the first lateral rib avoids a position overlapping the edge of the second lateral rib in the direction perpendicular to the bridge axis in the bridge axis direction. May be formed.
  • the through hole of the first lateral rib is formed so as to avoid a position overlapping the edge of the second lateral rib in the direction perpendicular to the bridge axis in the bridge axis direction. For this reason, the concrete floor near the through hole of the first horizontal rib is compared with the case where the through hole of the first horizontal rib is arranged so as to be positioned on the line connecting the end surface of the second horizontal rib in the bridge axis direction. The degree of shear stress generated in the plate can be reduced.
  • the concrete floor slab and the horizontal rib can be easily and firmly bonded.
  • FIG. 3A It is a perspective view of the synthetic panel structure concerning one embodiment of the present invention. It is a top view in the synthetic
  • FIG. 3B is a cross-sectional view taken along line BB in FIG. 3C.
  • the composite panel structure 10 constitutes the road surface of the bridge 1.
  • the bridge 1 includes a plurality of main girders 2 extending in a direction along the bridge axis O1.
  • the main girder 2 is mainly made of I-girder steel in which rolled materials are assembled into an I-section.
  • a direction along the bridge axis O1 is referred to as a bridge axis direction X
  • a direction orthogonal to the bridge axis direction X in a top view is referred to as a bridge axis perpendicular direction Y.
  • the composite panel structure 10 includes a plurality of main girder panels 12, an intermediate panel 14, and a concrete floor slab 16.
  • the plurality of main girder panels 12 have a first bottom steel plate 11 placed on the upper surface of the main girder 2.
  • the intermediate panel 14 has the 2nd bottom steel plate 13 arrange
  • a plurality of main girder panels 12 are arranged at intervals in the direction Y perpendicular to the bridge axis. The upper surfaces of the first bottom steel plate 11 and the second bottom steel plate 13 are flush with each other.
  • three main girder panels 12 and two intermediate panels are arranged for six main girder 2s. Between the three main girder panels 12, intermediate panels 14 are respectively arranged.
  • the concrete floor slab 16 is provided on the main girder panel 12 and the intermediate panel 14.
  • the concrete floor slab 16 is provided over the entire area on the three main girder panels 12 and the entire area on the two intermediate panels 14.
  • the concrete floor slab 16 is integrally provided on the three main girder panels 12 and the two intermediate panels 14.
  • the concrete slab 16 may be constructed by on-site casting, or a precast concrete member may be laid.
  • An asphalt pavement 17 is constructed on the upper surface of the concrete floor slab 16.
  • the upper surface of the asphalt pavement 17 is a road surface on which the vehicle travels.
  • the main girder panel 12 includes a first lateral rib 15A.
  • the first lateral rib 15 ⁇ / b> A is disposed on the upper surface of the first bottom steel plate 11.
  • a plurality of first lateral ribs 15 ⁇ / b> A are arranged at intervals in the bridge axis direction X. These first lateral ribs 15 ⁇ / b> A are integrally coupled to the concrete floor slab 16.
  • the first lateral rib 15A extends in the direction Y perpendicular to the bridge axis.
  • the first lateral ribs 15 ⁇ / b> A extend in the entire region of the first bottom steel plate 11 in the direction Y perpendicular to the bridge axis.
  • the first transverse rib 15A is made of rolled steel I-type steel.
  • the intermediate panel 14 includes a second lateral rib 15B.
  • the second lateral ribs 15 ⁇ / b> B are disposed on the upper surface of the second bottom steel plate 13.
  • a plurality of second lateral ribs 15B are arranged at intervals in the bridge axis direction X. These second lateral ribs 15B are arranged so as to be shifted in the bridge axis direction X with respect to the first lateral ribs 15A.
  • the second lateral rib 15B is integrally coupled to the concrete floor slab 16.
  • the second lateral rib 15B extends in the direction Y perpendicular to the bridge axis.
  • the second transverse rib 15B is made of rolled I-shaped steel.
  • the first lateral ribs 15A and the second lateral ribs 15B are alternately arranged at intervals in the bridge axis direction X.
  • the distance between the first lateral rib 15A and the second lateral rib 15B in the bridge axis direction X is equal.
  • the distance between the first lateral rib 15A and the second lateral rib 15B in the bridge axis direction X is, for example, 150 mm.
  • the second lateral rib 15B protrudes from the end of the second bottom steel plate 13 in the direction Y perpendicular to the bridge axis toward the upper surface of the first bottom steel plate 11.
  • the second lateral ribs 15B are integrally coupled to a concrete floor slab 16 located above the main girder panel 12.
  • a plurality of through holes 18 are formed in each of the first lateral rib 15A and the second lateral rib 15B. These through holes 18 are penetrated in the bridge axis direction X. These through holes 18 are formed at intervals in the direction Y perpendicular to the bridge axis. The number of through holes 18 formed in each of the first lateral rib 15A and the second lateral rib 15B can be arbitrarily changed.
  • the through hole 18 of the first horizontal rib 15A is formed so as to avoid a position overlapping with the edge of the second horizontal rib 15B in the bridge axis perpendicular direction Y in the bridge axis direction X.
  • the through hole 18 of the first lateral rib 15A is not disposed on a line connecting the end surface of the second lateral rib 15B in the bridge axis direction X.
  • the external force generated in the composite panel structure 10 will be described with reference to FIG.
  • a bending moment and a shearing force are generated in the main girder panel 12 and the intermediate panel 14 due to the weight of the vehicle.
  • the bridge axis perpendicular direction Y is formed between the through hole 18 formed in each of the first lateral rib 15A and the second lateral rib 15B and the concrete member in the through hole 18.
  • the engagement force of is generated.
  • An engaging force is generated between the end of the transverse rib 15 in the direction perpendicular to the bridge axis Y and the concrete floor slab 16. In this way, the concrete slab 16 opposes the shear force in the direction Y perpendicular to the bridge axis described above.
  • a plurality of through holes 18 are formed in each of the first lateral ribs 15A and the second lateral ribs 15B.
  • the bonding force between the concrete floor slab 16 and each of the first lateral ribs 15A and the second lateral ribs 15B includes the adhesion force of the concrete member, the force with which the flanges of the lateral ribs 15A and 15B grip the concrete, and the through holes. This can be ensured by the engagement force in the direction Y perpendicular to the bridge axis between the concrete member 18 and the concrete member entering the through hole 18. Therefore, the concrete floor slab 16 and the lateral rib 15 can be easily and firmly coupled.
  • the second lateral rib 15B is further integrally coupled to the concrete floor slab 16 of the main girder panel 12. For this reason, the end of the second transverse rib 15B in the direction perpendicular to the bridge axis Y engages with the concrete floor slab 16 of the main girder panel 12 in the direction perpendicular to the bridge axis.
  • the lateral rib 15 is I-shaped steel, the cross-sectional area (or the area of the end face) of the end of the lateral rib 15 in the direction Y perpendicular to the bridge axis can be ensured. Therefore, the surface pressure applied to the concrete slab 16 by the ends of the lateral ribs 15 in the direction Y perpendicular to the bridge axis can be reduced. Therefore, it is possible to suppress the yielding of the concrete floor slab 16 due to the force in the direction Y perpendicular to the bridge axis received from the lateral rib 15.
  • the through hole 18 of the first lateral rib 15A is formed so as to avoid a position overlapping with the edge of the second lateral rib 15B in the bridge axis perpendicular direction Y in the bridge axis direction X. Therefore, the through hole 18 of the first lateral rib 15A is penetrated by the first lateral rib 15A as compared with the case where the end face of the second lateral rib 15B is arranged on a line continuous with the bridge axis direction X. The degree of shear stress generated in the concrete floor slab 16 near the hole 18 can be reduced.
  • FIGS. 3A to 3D a verification test for confirming the effect of the present invention will be described with reference to FIGS. 3A to 3D.
  • a composite panel structure 10 according to this embodiment as shown in FIGS. 3A and 3B was employed as an example.
  • the degree of shear stress generated inside was evaluated by numerical analysis.
  • a shear stress of about 0.2 N / mm 2 is applied to the concrete slab 16 near the first lateral rib located on the line connecting the end surface of the second lateral rib 15B in the bridge axis direction X.
  • the degree of occurrence was confirmed by numerical analysis.
  • the portion corresponding to the S portion shown in FIGS. 3C and 3D is about 1.0 N / mm 2 . It was confirmed that shear stress was generated.
  • the concrete floor slab is formed by forming the through hole 18 of the first lateral rib 15A so as to avoid the position overlapping the edge of the second lateral rib 15B in the bridge axis perpendicular direction Y and the bridge axis direction X. It was confirmed that the degree of shear stress generated in 16 can be reduced.
  • the present invention is not limited to such a mode.
  • the quantity of the main girder panel 12 and the intermediate panel 14 can be arbitrarily changed.
  • the present invention can be applied to a composite panel structure. According to the present invention, the concrete slab and the horizontal rib can be easily and firmly bonded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

Provided is a composite panel structure comprising primary girder panels (12), intermediate panels (14), and a concrete slab (16). The primary girder panels (12) have first transverse ribs (15A). The intermediate panels (14) have second transverse ribs (15B). A plurality of the second transverse ribs (15B) are arranged in a bridge axis direction (X) with an interval on the upper surface of a second bottom steel plate (13). The second transverse ribs (15B) are arranged shiftedly in the bridge axis direction (X), to the first transverse ribs (15A). The second transverse ribs (15B) protrude from an edge of the second bottom steel plate (13) in a direction (Y) perpendicular to the bridge axis direction toward the upper surface of a first bottom steel plate (11). A plurality of through-holes (18) that penetrate in the bridge axis direction (X) and are arranged with an interval in the direction (Y) perpendicular to the bridge axis direction are formed in each of the first transverse ribs (15A) and the second transverse ribs (15B).

Description

合成パネル構造Composite panel structure
 本発明は、合成パネル構造に関する。
 本願は、2018年5月8日に、日本に出願された特願2018-089758号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a composite panel structure.
This application claims priority based on Japanese Patent Application No. 2018-089758 filed in Japan on May 8, 2018, the contents of which are incorporated herein by reference.
 特許文献1に示すように、底鋼板の上面にコンクリート床版と一体に結合された横リブが配置された合成パネル構造が知られている。
 このような合成パネル構造では、コンクリート床版と横リブとは、コンクリート部材の付着力と、横リブのフランジがコンクリートを把持する力と、により結合されている。
As shown in Patent Document 1, a composite panel structure is known in which horizontal ribs integrally joined to a concrete floor slab are arranged on the upper surface of a bottom steel plate.
In such a composite panel structure, the concrete floor slab and the lateral rib are coupled by the adhesion force of the concrete member and the force by which the flange of the lateral rib grips the concrete.
特許第3908642号公報Japanese Patent No. 3908642
 上述した通り、合成パネル構造では、コンクリート床版と横リブとは、コンクリート部材の付着力と、横リブのフランジがコンクリートを把持する力と、によって結合されている。このため、コンクリート床版と横リブとの結合力を得るために、床版コンクリートの打込み作業で施工上の配慮が必要になる。 As described above, in the composite panel structure, the concrete floor slab and the lateral rib are coupled by the adhesion force of the concrete member and the force by which the flange of the lateral rib grips the concrete. For this reason, in order to obtain the bonding force between the concrete floor slab and the lateral rib, it is necessary to consider the construction in the operation of placing the floor slab concrete.
 本発明は、コンクリート床版と横リブとを容易かつ強固に結合することができる合成パネル構造を提供することを目的とする。 An object of the present invention is to provide a composite panel structure capable of easily and firmly bonding a concrete floor slab and a lateral rib.
 本発明の第一態様によれば、合成パネル構造は、主桁パネルと、中間パネルと、コンクリート床版と、を備える。主桁パネルは、橋梁の橋軸方向に延びる複数の主桁の上面に載置された第1底鋼板を有し、橋軸直角方向に間隔をあけて複数配置されている。中間パネルは、橋軸直角方向に隣り合う前記主桁パネルの前記第1底鋼板同士の間に配置された第2底鋼板を有する。コンクリート床版は、前記主桁パネル上および前記中間パネル上に設けられている。前記主桁パネルは、第1横リブを更に有している。第1横リブは、前記第1底鋼板の上面に、橋軸方向に間隔をあけて複数配置されている。第1横リブは、更に、前記コンクリート床版と一体に結合されている。第1横リブは、更に、橋軸直角方向に前記第1底鋼板の全域に延びている。前記中間パネルは、第2横リブを有している。第2横リブは、前記第2底鋼板の上面に配置されている。第2横リブは、橋軸方向に間隔をあけて、かつ、前記第1横リブに対して橋軸方向にずらされるように複数配置されている。第2横リブは、更に、前記コンクリート床版と一体に結合されている。第2横リブは、更に、橋軸直角方向に延びている。前記第2横リブは、前記第2底鋼板の橋軸直角方向の端部から、前記第1底鋼板の上面に向けて突出している。前記第1横リブおよび前記第2横リブには、それぞれ橋軸方向に貫かれた貫通孔が複数形成されている。これら貫通孔は、橋軸直角方向に間隔をあけて形成されている。 According to the first aspect of the present invention, the composite panel structure includes a main girder panel, an intermediate panel, and a concrete floor slab. The main girder panel includes first bottom steel plates placed on the upper surfaces of a plurality of main girders extending in the bridge axis direction of the bridge, and a plurality of the main girder panels are arranged at intervals in the direction perpendicular to the bridge axis. The intermediate panel has a second bottom steel plate disposed between the first bottom steel plates of the main girder panel adjacent to each other in the direction perpendicular to the bridge axis. Concrete floor slabs are provided on the main girder panel and the intermediate panel. The main girder panel further includes a first lateral rib. A plurality of first lateral ribs are arranged on the upper surface of the first bottom steel plate at intervals in the bridge axis direction. The first lateral rib is further coupled integrally with the concrete floor slab. The first transverse rib further extends over the entire area of the first bottom steel plate in the direction perpendicular to the bridge axis. The intermediate panel has a second lateral rib. The second transverse rib is disposed on the upper surface of the second bottom steel plate. A plurality of second lateral ribs are arranged so as to be spaced in the bridge axis direction and shifted in the bridge axis direction with respect to the first lateral rib. The second lateral rib is further coupled integrally with the concrete floor slab. The second lateral rib further extends in the direction perpendicular to the bridge axis. The second transverse rib protrudes from the end of the second bottom steel plate in the direction perpendicular to the bridge axis toward the upper surface of the first bottom steel plate. The first lateral rib and the second lateral rib each have a plurality of through holes penetrating in the bridge axis direction. These through holes are formed at intervals in a direction perpendicular to the bridge axis.
 第一態様では、第1横リブおよび第2横リブに、それぞれ貫通孔が複数形成されている。このため、コンクリート床版と、第1横リブおよび第2横リブそれぞれと、の結合力を、貫通孔と、この貫通孔内に進入するコンクリート部材と、の橋軸直角方向の係合力により確保できる。その結果、コンクリート床版と横リブとを容易かつ強固に結合することができる。 In the first aspect, a plurality of through holes are formed in each of the first lateral rib and the second lateral rib. Therefore, the coupling force between the concrete floor slab and each of the first lateral rib and the second lateral rib is secured by the engagement force in the direction perpendicular to the bridge axis between the through hole and the concrete member entering the through hole. it can. As a result, the concrete floor slab and the horizontal rib can be easily and firmly bonded.
 第一態様では、更に、中間パネルの第2底鋼板の上面に配置された第2横リブが、主桁パネルの底鋼板の上面に向けて突出し、主桁パネルのコンクリート床版と一体に結合されている。このため、第2横リブの橋軸直角方向の端部が、主桁パネルのコンクリート床版に対して橋軸直角方向に係合する。すなわち、第2横リブの橋軸直角方向の端面からコンクリート床版に橋軸直角方向にせん断応力が加えられたときに、コンクリート床版のうち、第2横リブに橋軸直角方向に重なる部分によって、そのせん断応力を受け止めることができる。
 これにより、貫通孔内に進入したコンクリート部材の係合力に加えて、より一層効果的にコンクリート床版と第2横リブとを容易かつ強固に結合することができる。
In the first aspect, the second lateral rib arranged on the upper surface of the second bottom steel plate of the intermediate panel protrudes toward the upper surface of the bottom steel plate of the main girder panel and is integrally coupled with the concrete floor slab of the main girder panel. Has been. For this reason, the end of the second transverse rib in the direction perpendicular to the bridge axis engages with the concrete floor slab of the main girder panel in the direction perpendicular to the bridge axis. That is, when shear stress is applied to the concrete floor slab in the direction perpendicular to the bridge axis from the end surface of the second transverse rib in the direction perpendicular to the bridge axis, the portion of the concrete slab that overlaps the second transverse rib in the direction perpendicular to the bridge axis Therefore, the shear stress can be received.
Thereby, in addition to the engaging force of the concrete member that has entered the through hole, the concrete floor slab and the second lateral rib can be more easily and firmly coupled.
 本発明の第二態様によれば、第一態様に係る横リブは、I型鋼であってもよい。
 横リブをI型鋼とすることで、横リブの橋軸直角方向の端部における断面積を確保して、横リブの橋軸直角方向の端部がコンクリート床版に対して与える面圧を小さくすることができる。したがって、コンクリート床版が横リブから受ける橋軸直角方向の力により降伏するのを抑えることができる。
According to the second aspect of the present invention, the transverse rib according to the first aspect may be an I-shaped steel.
By making the horizontal rib I-shaped steel, the cross-sectional area at the end of the transverse rib in the direction perpendicular to the bridge axis is secured, and the surface pressure applied to the concrete slab by the end of the transverse rib in the direction perpendicular to the bridge axis is reduced. can do. Therefore, it can suppress that a concrete floor slab yields by the force of the bridge axis orthogonal direction which receives from a horizontal rib.
 本発明の第三態様によれば、第一又は第二態様に係る第1横リブの貫通孔は、前記第2横リブにおける橋軸直角方向の端縁と、橋軸方向に重なる位置を回避するように形成されてもよい。
 この第三態様では、第1横リブの貫通孔が、第2横リブにおける橋軸直角方向の端縁と、橋軸方向に重なる位置を回避するように形成されている。このため、第1横リブの貫通孔を、第2横リブの端面を橋軸方向に連ねた線上に位置するように配置した場合と比較して、第1横リブの貫通孔付近のコンクリート床版に発生するせん断応力度を小さくすることができる。
According to the third aspect of the present invention, the through hole of the first lateral rib according to the first or second aspect avoids a position overlapping the edge of the second lateral rib in the direction perpendicular to the bridge axis in the bridge axis direction. May be formed.
In the third aspect, the through hole of the first lateral rib is formed so as to avoid a position overlapping the edge of the second lateral rib in the direction perpendicular to the bridge axis in the bridge axis direction. For this reason, the concrete floor near the through hole of the first horizontal rib is compared with the case where the through hole of the first horizontal rib is arranged so as to be positioned on the line connecting the end surface of the second horizontal rib in the bridge axis direction. The degree of shear stress generated in the plate can be reduced.
 上記合成パネル構造によれば、コンクリート床版と横リブとを容易かつ強固に結合することができる。 According to the above synthetic panel structure, the concrete floor slab and the horizontal rib can be easily and firmly bonded.
本発明の一実施形態に係る合成パネル構造の斜視図である。It is a perspective view of the synthetic panel structure concerning one embodiment of the present invention. 図1に示す合成パネル構造における上面図である。It is a top view in the synthetic | combination panel structure shown in FIG. 検証試験における実施例に係る合成パネル構造を示す図である。It is a figure which shows the synthetic | combination panel structure which concerns on the Example in a verification test. 図3AのA-A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 3A. 検証試験における比較例に係る合成パネル構造を示す図である。It is a figure which shows the synthetic | combination panel structure which concerns on the comparative example in a verification test. 図3CのB-B線に沿う断面図である。FIG. 3B is a cross-sectional view taken along line BB in FIG. 3C.
(実施形態)
 以下、図1および図2を参照し、本発明の一実施形態に係る合成パネル構造10について説明する。
 本実施形態に係る合成パネル構造10は、橋梁1の路面を構成する。橋梁1は、橋軸O1に沿う方向に延びる複数の主桁2を備えている。主桁2には、主に圧延材をI断面に組み立てたI桁鋼が採用されている。
 以下の説明において、橋軸O1に沿う方向を橋軸方向Xといい、上面視で橋軸方向Xと直交する方向を橋軸直角方向Yという。
(Embodiment)
Hereinafter, with reference to FIG. 1 and FIG. 2, the synthetic | combination panel structure 10 which concerns on one Embodiment of this invention is demonstrated.
The composite panel structure 10 according to the present embodiment constitutes the road surface of the bridge 1. The bridge 1 includes a plurality of main girders 2 extending in a direction along the bridge axis O1. The main girder 2 is mainly made of I-girder steel in which rolled materials are assembled into an I-section.
In the following description, a direction along the bridge axis O1 is referred to as a bridge axis direction X, and a direction orthogonal to the bridge axis direction X in a top view is referred to as a bridge axis perpendicular direction Y.
 図1に示すように、合成パネル構造10は、複数の主桁パネル12と、中間パネル14と、コンクリート床版16と、を備えている。複数の主桁パネル12は、主桁2の上面に載置された第1底鋼板11を有する。中間パネル14は、橋軸直角方向Yに隣り合う主桁パネル12の第1底鋼板11同士の間に配置された第2底鋼板13を有する。 As shown in FIG. 1, the composite panel structure 10 includes a plurality of main girder panels 12, an intermediate panel 14, and a concrete floor slab 16. The plurality of main girder panels 12 have a first bottom steel plate 11 placed on the upper surface of the main girder 2. The intermediate panel 14 has the 2nd bottom steel plate 13 arrange | positioned between the 1st bottom steel plates 11 of the main girder panel 12 adjacent to the bridge-axis perpendicular direction Y. As shown in FIG.
 主桁パネル12は、橋軸直角方向Yに間隔をあけて複数配置されている。
 第1底鋼板11および第2底鋼板13それぞれの上面は、互いに面一となっている。図示の例では、6つの主桁2に対して、3つの主桁パネル12と、2つの中間パネルと、が配置されている。3つの主桁パネル12の間に、中間パネル14がそれぞれ配置されている。
A plurality of main girder panels 12 are arranged at intervals in the direction Y perpendicular to the bridge axis.
The upper surfaces of the first bottom steel plate 11 and the second bottom steel plate 13 are flush with each other. In the illustrated example, three main girder panels 12 and two intermediate panels are arranged for six main girder 2s. Between the three main girder panels 12, intermediate panels 14 are respectively arranged.
 コンクリート床版16は、主桁パネル12上および中間パネル14上に設けられている。コンクリート床版16は、3つの主桁パネル12上の全域および2つの中間パネル14上の全域に設けられている。コンクリート床版16は、3つの主桁パネル12上および2つの中間パネル14上にて、一体に設けられている。
 コンクリート床版16は、現場打ちにより施工してもよいし、プレキャストしたコンクリート部材を敷設してもよい。コンクリート床版16の上面にはアスファルト舗装17が施工されている。アスファルト舗装17の上面は、車両が走行する路面となっている。
The concrete floor slab 16 is provided on the main girder panel 12 and the intermediate panel 14. The concrete floor slab 16 is provided over the entire area on the three main girder panels 12 and the entire area on the two intermediate panels 14. The concrete floor slab 16 is integrally provided on the three main girder panels 12 and the two intermediate panels 14.
The concrete slab 16 may be constructed by on-site casting, or a precast concrete member may be laid. An asphalt pavement 17 is constructed on the upper surface of the concrete floor slab 16. The upper surface of the asphalt pavement 17 is a road surface on which the vehicle travels.
 主桁パネル12は、第1横リブ15Aを備えている。第1横リブ15Aは、第1底鋼板11の上面に配置されている。第1横リブ15Aは、橋軸方向Xに間隔をあけて複数配置されている。これら第一横リブ15Aは、コンクリート床版16と一体に結合されている。
 第1横リブ15Aは、橋軸直角方向Yに延びている。第1横リブ15Aは、橋軸直角方向Yで、第1底鋼板11の全域に延びている。第1横リブ15Aには、圧延材のI型鋼が採用されている。
The main girder panel 12 includes a first lateral rib 15A. The first lateral rib 15 </ b> A is disposed on the upper surface of the first bottom steel plate 11. A plurality of first lateral ribs 15 </ b> A are arranged at intervals in the bridge axis direction X. These first lateral ribs 15 </ b> A are integrally coupled to the concrete floor slab 16.
The first lateral rib 15A extends in the direction Y perpendicular to the bridge axis. The first lateral ribs 15 </ b> A extend in the entire region of the first bottom steel plate 11 in the direction Y perpendicular to the bridge axis. The first transverse rib 15A is made of rolled steel I-type steel.
 中間パネル14は、第2横リブ15Bを備えている。第2横リブ15Bは、第2底鋼板13の上面に配置されている。第2横リブ15Bは、橋軸方向Xに間隔をあけて複数配置されている。これら第2横リブ15Bは、第1横リブ15Aに対して橋軸方向Xにずらされるように配置されている。
 第2横リブ15Bは、コンクリート床版16と一体に結合されている。第2横リブ15Bは、橋軸直角方向Yに延びている。第2横リブ15Bには、圧延材のI型鋼が採用されている。
The intermediate panel 14 includes a second lateral rib 15B. The second lateral ribs 15 </ b> B are disposed on the upper surface of the second bottom steel plate 13. A plurality of second lateral ribs 15B are arranged at intervals in the bridge axis direction X. These second lateral ribs 15B are arranged so as to be shifted in the bridge axis direction X with respect to the first lateral ribs 15A.
The second lateral rib 15B is integrally coupled to the concrete floor slab 16. The second lateral rib 15B extends in the direction Y perpendicular to the bridge axis. The second transverse rib 15B is made of rolled I-shaped steel.
 第1横リブ15Aと第2横リブ15Bとは、橋軸方向Xに間隔をあけて交互に配置されている。橋軸方向Xにおける第1横リブ15Aと第2横リブ15Bとの間隔は、等間隔となっている。橋軸方向Xにおける第1横リブ15Aと第2横リブ15Bとの間隔は、例えば150mmとなっている。 The first lateral ribs 15A and the second lateral ribs 15B are alternately arranged at intervals in the bridge axis direction X. The distance between the first lateral rib 15A and the second lateral rib 15B in the bridge axis direction X is equal. The distance between the first lateral rib 15A and the second lateral rib 15B in the bridge axis direction X is, for example, 150 mm.
 第2横リブ15Bは、橋軸直角方向Yにおける第2底鋼板13の端部から、第1底鋼板11の上面に向けて突出している。第2横リブ15Bは、主桁パネル12の上方に位置するコンクリート床版16と一体に結合されている。 The second lateral rib 15B protrudes from the end of the second bottom steel plate 13 in the direction Y perpendicular to the bridge axis toward the upper surface of the first bottom steel plate 11. The second lateral ribs 15B are integrally coupled to a concrete floor slab 16 located above the main girder panel 12.
 第1横リブ15Aおよび第2横リブ15Bにはそれぞれ、複数の貫通孔18が形成されている。これら貫通孔18は、橋軸方向Xに貫かれている。これら貫通孔18は、橋軸直角方向Yに間隔をあけて形成されている。
 第1横リブ15Aおよび第2横リブ15Bそれぞれに形成される貫通孔18の数量は、任意に変更することができる。
A plurality of through holes 18 are formed in each of the first lateral rib 15A and the second lateral rib 15B. These through holes 18 are penetrated in the bridge axis direction X. These through holes 18 are formed at intervals in the direction Y perpendicular to the bridge axis.
The number of through holes 18 formed in each of the first lateral rib 15A and the second lateral rib 15B can be arbitrarily changed.
 ここで、第1横リブ15Aの貫通孔18は、橋軸直角方向Yにおける第2横リブ15Bの端縁と橋軸方向Xに重なる位置を回避するように形成されている。言い換えると、第1横リブ15Aの貫通孔18は、第2横リブ15Bの端面を橋軸方向Xに連ねた線上には配置されていない。 Here, the through hole 18 of the first horizontal rib 15A is formed so as to avoid a position overlapping with the edge of the second horizontal rib 15B in the bridge axis perpendicular direction Y in the bridge axis direction X. In other words, the through hole 18 of the first lateral rib 15A is not disposed on a line connecting the end surface of the second lateral rib 15B in the bridge axis direction X.
 次に、図2を用いて、合成パネル構造10に生じる外力について説明する。
 図2に示す状態において、例えば路面を車両が走行すると、主桁パネル12および中間パネル14には、車両の重量により曲げモーメントおよびせん断力が発生する。
 このように発生したせん断力に対向して、第1横リブ15Aおよび第2横リブ15Bそれぞれに形成された貫通孔18と、貫通孔18内のコンクリート部材と、の間に橋軸直角方向Yの係合力が生じる。
 横リブ15の橋軸直角方向Yの端部と、コンクリート床版16と、の間に係合力が生じる。このようにして、コンクリート床版16が、前述した橋軸直角方向Yのせん断力に対抗する。
Next, the external force generated in the composite panel structure 10 will be described with reference to FIG.
In the state shown in FIG. 2, for example, when the vehicle travels on the road surface, a bending moment and a shearing force are generated in the main girder panel 12 and the intermediate panel 14 due to the weight of the vehicle.
Opposing to the shearing force thus generated, the bridge axis perpendicular direction Y is formed between the through hole 18 formed in each of the first lateral rib 15A and the second lateral rib 15B and the concrete member in the through hole 18. The engagement force of is generated.
An engaging force is generated between the end of the transverse rib 15 in the direction perpendicular to the bridge axis Y and the concrete floor slab 16. In this way, the concrete slab 16 opposes the shear force in the direction Y perpendicular to the bridge axis described above.
 以上説明したように、本実施形態に係る合成パネル構造10によれば、第1横リブ15Aおよび第2横リブ15Bにはそれぞれ、貫通孔18が複数形成されている。このため、コンクリート床版16と第1横リブ15Aおよび第2横リブ15Bそれぞれとの結合力を、コンクリート部材の付着力、横リブ15A、15Bのフランジがコンクリートを把持する力、および、貫通孔18と貫通孔18内に進入するコンクリート部材との橋軸直角方向Yの係合力、により確保することができる。したがって、コンクリート床版16と横リブ15とを容易かつ強固に結合することができる。 As described above, according to the composite panel structure 10 according to the present embodiment, a plurality of through holes 18 are formed in each of the first lateral ribs 15A and the second lateral ribs 15B. For this reason, the bonding force between the concrete floor slab 16 and each of the first lateral ribs 15A and the second lateral ribs 15B includes the adhesion force of the concrete member, the force with which the flanges of the lateral ribs 15A and 15B grip the concrete, and the through holes. This can be ensured by the engagement force in the direction Y perpendicular to the bridge axis between the concrete member 18 and the concrete member entering the through hole 18. Therefore, the concrete floor slab 16 and the lateral rib 15 can be easily and firmly coupled.
 中間パネル14の第2底鋼板13の上面に配置された第2横リブ15Bは、主桁パネル12の底鋼板の上面に向けて突出する。第2横リブ15Bは、更に主桁パネル12のコンクリート床版16と一体に結合されている。このため、第2横リブ15Bの橋軸直角方向Yの端部は、主桁パネル12のコンクリート床版16に対して橋軸直角方向Yに係合する。 The second lateral ribs 15 </ b> B arranged on the upper surface of the second bottom steel plate 13 of the intermediate panel 14 protrude toward the upper surface of the bottom steel plate of the main girder panel 12. The second lateral rib 15B is further integrally coupled to the concrete floor slab 16 of the main girder panel 12. For this reason, the end of the second transverse rib 15B in the direction perpendicular to the bridge axis Y engages with the concrete floor slab 16 of the main girder panel 12 in the direction perpendicular to the bridge axis.
 すなわち、橋軸直角方向Yにおける第2横リブ15Bの端面からコンクリート床版16に、橋軸直角方向Yにせん断応力が加えられたときに、コンクリート床版16のうち、第2横リブ15Bに橋軸直角方向Yに重なる部分によって、そのせん断応力を受け止めることができる。
 これにより、貫通孔18内に進入したコンクリート部材の係合力に加えて、より一層効果的にコンクリート床版16と第2横リブ15Bとを容易かつ強固に結合することができる。
That is, when a shear stress is applied to the concrete floor slab 16 from the end surface of the second horizontal rib 15B in the bridge axis perpendicular direction Y, the second horizontal rib 15B of the concrete floor slab 16 is applied to the second horizontal rib 15B. The shear stress can be received by the portion overlapping the direction Y perpendicular to the bridge axis.
Thereby, in addition to the engaging force of the concrete member that has entered the through hole 18, the concrete floor slab 16 and the second lateral rib 15 </ b> B can be more easily and firmly coupled.
 横リブ15がI型鋼なので、橋軸直角方向Yにおける横リブ15の端部の断面積(又は、端面の面積)を確保できる。そのため、橋軸直角方向Yにおける横リブ15の端部がコンクリート床版16に対して与える面圧を小さくすることができる。したがって、コンクリート床版16が横リブ15から受ける橋軸直角方向Yの力により降伏するのを抑えることができる。 Since the lateral rib 15 is I-shaped steel, the cross-sectional area (or the area of the end face) of the end of the lateral rib 15 in the direction Y perpendicular to the bridge axis can be ensured. Therefore, the surface pressure applied to the concrete slab 16 by the ends of the lateral ribs 15 in the direction Y perpendicular to the bridge axis can be reduced. Therefore, it is possible to suppress the yielding of the concrete floor slab 16 due to the force in the direction Y perpendicular to the bridge axis received from the lateral rib 15.
 第1横リブ15Aの貫通孔18は、橋軸直角方向Yにおける第2横リブ15Bの端縁と、橋軸方向Xに重なる位置を回避するように形成されている。このため、第1横リブ15Aの貫通孔18を、第2横リブ15Bの端面を橋軸方向Xに連ねた線上に位置するように配置した場合と比較して、第1横リブ15Aの貫通孔18付近のコンクリート床版16に発生するせん断応力度を小さくすることができる。 The through hole 18 of the first lateral rib 15A is formed so as to avoid a position overlapping with the edge of the second lateral rib 15B in the bridge axis perpendicular direction Y in the bridge axis direction X. Therefore, the through hole 18 of the first lateral rib 15A is penetrated by the first lateral rib 15A as compared with the case where the end face of the second lateral rib 15B is arranged on a line continuous with the bridge axis direction X. The degree of shear stress generated in the concrete floor slab 16 near the hole 18 can be reduced.
(検証試験)
 以下、図3Aから図3Dを用いて本発明の効果を確認するための検証試験について説明する。
 この検証試験では、実施例として図3A、図3Bに示すような本実施形態に係る合成パネル構造10を採用した。比較例として、図3C、図3Dに示すような第1横リブ15Aの貫通孔18を、第2横リブ15Bの端面を橋軸方向Xに連ねた線上に位置するように配置した構成10Bを採用した。
 実施例および比較例それぞれについて、内部に発生するせん断応力度を数値解析により評価した。
(Verification test)
Hereinafter, a verification test for confirming the effect of the present invention will be described with reference to FIGS. 3A to 3D.
In this verification test, a composite panel structure 10 according to this embodiment as shown in FIGS. 3A and 3B was employed as an example. As a comparative example, a configuration 10B in which the through holes 18 of the first lateral ribs 15A as shown in FIGS. 3C and 3D are arranged so as to be positioned on a line connecting the end surfaces of the second lateral ribs 15B in the bridge axis direction X. Adopted.
For each of the examples and comparative examples, the degree of shear stress generated inside was evaluated by numerical analysis.
 実施例に係る合成パネル構造では、第2横リブ15Bの端面を橋軸方向Xに連ねた線上に位置する第1横リブ付近のコンクリート床版16に、約0.2N/mmのせん断応力度が発生することが数値解析により確認された。
 比較例に係る合成パネル構造では、第1横リブ15Aの貫通孔18付近のコンクリート床版16のうち、図3C、図3Dに示すS部に対応する箇所に、約1.0N/mmのせん断応力度が発生することが確認された。
 これらの結果により、橋軸直角方向Yにおける第2横リブ15Bの端縁と橋軸方向Xに重なる位置を回避するように第1横リブ15Aの貫通孔18を形成することで、コンクリート床版16に発生するせん断応力度を小さくすることができることが確認された。
In the composite panel structure according to the example, a shear stress of about 0.2 N / mm 2 is applied to the concrete slab 16 near the first lateral rib located on the line connecting the end surface of the second lateral rib 15B in the bridge axis direction X. The degree of occurrence was confirmed by numerical analysis.
In the composite panel structure according to the comparative example, in the concrete floor slab 16 in the vicinity of the through hole 18 of the first lateral rib 15A, the portion corresponding to the S portion shown in FIGS. 3C and 3D is about 1.0 N / mm 2 . It was confirmed that shear stress was generated.
Based on these results, the concrete floor slab is formed by forming the through hole 18 of the first lateral rib 15A so as to avoid the position overlapping the edge of the second lateral rib 15B in the bridge axis perpendicular direction Y and the bridge axis direction X. It was confirmed that the degree of shear stress generated in 16 can be reduced.
 本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。 The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、上記実施形態においては、3つの主桁パネル12の間に2つの中間パネル14が配置された構成を示したが、このような態様に限られない。主桁パネル12と中間パネル14の数量は任意に変更することができる。 For example, in the above-described embodiment, the configuration in which the two intermediate panels 14 are arranged between the three main girder panels 12 is shown, but the present invention is not limited to such a mode. The quantity of the main girder panel 12 and the intermediate panel 14 can be arbitrarily changed.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した変形例を適宜組み合わせてもよい。 In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with well-known constituent elements without departing from the spirit of the present invention, and the above-described modified examples may be appropriately combined.
 本発明は、合成パネル構造に適用できる。本発明によれば、コンクリート床版と横リブとを容易かつ強固に結合することができる。 The present invention can be applied to a composite panel structure. According to the present invention, the concrete slab and the horizontal rib can be easily and firmly bonded.
 1 橋梁
 2 主桁
 10 合成パネル構造
 11 第1底鋼板
 12 主桁パネル
 13 第2底鋼板
 14 中間パネル
 15A 第1横リブ
 15B 第2横リブ
 16 コンクリート床版
 18 貫通孔
DESCRIPTION OF SYMBOLS 1 Bridge 2 Main girder 10 Composite panel structure 11 1st bottom steel plate 12 Main girder panel 13 2nd bottom steel plate 14 Intermediate panel 15A 1st horizontal rib 15B 2nd horizontal rib 16 Concrete floor slab 18 Through-hole

Claims (3)

  1.  橋梁の橋軸方向に延びる複数の主桁の上面に載置された第1底鋼板を有し、橋軸直角方向に間隔をあけて複数配置された主桁パネルと、
     橋軸直角方向に隣り合う前記主桁パネルの前記第1底鋼板同士の間に配置された第2底鋼板を有する中間パネルと、
     前記主桁パネル上および前記中間パネル上に設けられたコンクリート床版と、を備え、
     前記主桁パネルは、前記第1底鋼板の上面に、橋軸方向に間隔をあけて複数配置されて前記コンクリート床版と一体に結合され、橋軸直角方向に前記第1底鋼板の全域に延びる第1横リブを更に有し、
     前記中間パネルは、前記第2底鋼板の上面に、橋軸方向に間隔をあけて、かつ、前記第1横リブに対して橋軸方向にずらされるように複数配置されて前記コンクリート床版と一体に結合され、橋軸直角方向に延びる第2横リブを更に有し、
     前記第2横リブは、前記第2底鋼板の橋軸直角方向の端部から、前記第1底鋼板の上面に向けて突出し、
     前記第1横リブおよび前記第2横リブにはそれぞれ、橋軸方向に貫かれた貫通孔が橋軸直角方向に間隔をあけて複数形成されている合成パネル構造。
    A main girder panel having a first bottom steel plate placed on the upper surfaces of a plurality of main girders extending in the bridge axis direction of the bridge, and arranged in a plurality at intervals in a direction perpendicular to the bridge axis;
    An intermediate panel having a second bottom steel plate disposed between the first bottom steel plates of the main girder panel adjacent in the direction perpendicular to the bridge axis;
    A concrete floor slab provided on the main girder panel and the intermediate panel,
    A plurality of the main girder panels are arranged on the upper surface of the first bottom steel plate at intervals in the bridge axis direction, and are integrally coupled with the concrete floor slab, and the whole area of the first bottom steel plate is perpendicular to the bridge axis. A first lateral rib extending;
    A plurality of the intermediate panels are arranged on the upper surface of the second bottom steel plate so as to be spaced apart in the bridge axis direction and shifted in the bridge axis direction with respect to the first lateral rib. A second transverse rib coupled together and extending in a direction perpendicular to the bridge axis;
    The second lateral rib protrudes from the end of the second bottom steel plate in the direction perpendicular to the bridge axis toward the upper surface of the first bottom steel plate,
    A composite panel structure in which a plurality of through holes penetrating in the bridge axis direction are formed in the first horizontal rib and the second horizontal rib at intervals in a direction perpendicular to the bridge axis.
  2.  前記第1横リブおよび前記第2横リブは、I型鋼である請求項1に記載の合成パネル構造。 The composite panel structure according to claim 1, wherein the first lateral rib and the second lateral rib are I-shaped steel.
  3.  前記第1横リブの貫通孔は、前記第2横リブにおける橋軸直角方向の端縁と、橋軸方向に重なる位置を回避するように形成されている請求項1又は2に記載の合成パネル構造。 3. The composite panel according to claim 1, wherein the through hole of the first lateral rib is formed so as to avoid a position overlapping with an edge of the second lateral rib in a direction perpendicular to the bridge axis in the bridge axis direction. Construction.
PCT/JP2018/024716 2018-05-08 2018-06-28 Composite panel structure WO2019215939A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12019500831A PH12019500831A1 (en) 2018-05-08 2019-04-16 Composite panel structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018089758A JP7206060B2 (en) 2018-05-08 2018-05-08 Composite panel construction
JP2018-089758 2018-05-08

Publications (1)

Publication Number Publication Date
WO2019215939A1 true WO2019215939A1 (en) 2019-11-14

Family

ID=68467987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024716 WO2019215939A1 (en) 2018-05-08 2018-06-28 Composite panel structure

Country Status (3)

Country Link
JP (1) JP7206060B2 (en)
PH (1) PH12019500831A1 (en)
WO (1) WO2019215939A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7174879B1 (en) * 2022-06-14 2022-11-17 三井住友建設鉄構エンジニアリング株式会社 Joining structure of precast composite floor slab panel and joining method of precast composite floor slab panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3908642B2 (en) * 2002-10-15 2007-04-25 新日本製鐵株式会社 Composite panel structure and panel bridge structure and construction method of continuous composite girder bridge
JP2007113208A (en) * 2005-10-18 2007-05-10 Metropolitan Expressway Co Ltd Longitudinal rib composite floor slab
JP2009102826A (en) * 2007-10-22 2009-05-14 Mitsui Eng & Shipbuild Co Ltd Girder bridge with reinforced concrete composite steel floor slab

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3908642B2 (en) * 2002-10-15 2007-04-25 新日本製鐵株式会社 Composite panel structure and panel bridge structure and construction method of continuous composite girder bridge
JP2007113208A (en) * 2005-10-18 2007-05-10 Metropolitan Expressway Co Ltd Longitudinal rib composite floor slab
JP2009102826A (en) * 2007-10-22 2009-05-14 Mitsui Eng & Shipbuild Co Ltd Girder bridge with reinforced concrete composite steel floor slab

Also Published As

Publication number Publication date
JP7206060B2 (en) 2023-01-17
PH12019500831A1 (en) 2019-11-11
JP2019196599A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US6807789B1 (en) Steel-concrete composite beam using asymmetric section steel beam
KR101509100B1 (en) Excellent workability H-beam adapter
JP2000319816A (en) Rigid connection structure of upper and lower composite members
JP2007023714A (en) Composite floor slab using shape steel, composite floor slab bridge or composite girder bridge and its construction method
JP2006316580A (en) Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
JP2008063803A (en) Composite floor slab formed of shape steel with inner rib, composite floor slab bridge, or composite girder bridge
KR101557226B1 (en) Prestressed steel concrete composite beam
WO2019215939A1 (en) Composite panel structure
KR101483362B1 (en) Steel concrete composite beam using profiled plate
JP2008088634A (en) Composite steel-concrete floor slab
JP6042622B2 (en) Floor slab structure using sandwich type composite slab panel
KR101630931B1 (en) Road decking panel having concrete crack protection and manufacture convenience
KR101482977B1 (en) Steel concrete composite beam using profiled plate
KR101482979B1 (en) Steel concrete composite beam with cap plate and structure system thereof
JP2017101445A (en) Joining method of precast floor slab and joining structure of precast floor slab
KR200347024Y1 (en) Complex Slab Structure using 2 Dimensionally arrayed Corrugated Type Deck Plate
JP2008231688A (en) Bridge structure using composite floor slab, its construction method, and form for composite floor slab
JP7374607B2 (en) Road slabs and their construction methods
JP2813107B2 (en) Bridge
KR101984211B1 (en) Wide composite structure for reinforcing the connecting part of girders and column
KR101457796B1 (en) Hybrid Structures Using Steel Framework and Precast Concrete Slab
JP3994873B2 (en) Joining structure and joining method of steel main girder and pier
JP7163527B1 (en) Floor slab structure and lateral buckling stiffening method for floor slab structure
KR20140013830A (en) Π-shaped precast concrete slab and construction method using the same
JP2000008325A (en) Combined girder structure for floor slab

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918028

Country of ref document: EP

Kind code of ref document: A1