JP2007023714A - Composite floor slab using shape steel, composite floor slab bridge or composite girder bridge and its construction method - Google Patents

Composite floor slab using shape steel, composite floor slab bridge or composite girder bridge and its construction method Download PDF

Info

Publication number
JP2007023714A
JP2007023714A JP2005211153A JP2005211153A JP2007023714A JP 2007023714 A JP2007023714 A JP 2007023714A JP 2005211153 A JP2005211153 A JP 2005211153A JP 2005211153 A JP2005211153 A JP 2005211153A JP 2007023714 A JP2007023714 A JP 2007023714A
Authority
JP
Japan
Prior art keywords
steel
shaped steel
flange
floor slab
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005211153A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Nakanishi
克佳 中西
Yutaka Kawai
豊 川井
Mikio Koizumi
幹男 小泉
Takeshi Ishizawa
毅 石澤
Takuya Motoki
卓也 元木
Mitsuo Tono
光男 東野
Kaname Abe
要 安部
Original Assignee
Jfe Engineering Kk
Jfeエンジニアリング株式会社
Jfe Steel Kk
Jfeスチール株式会社
Ohbayashi Corp
株式会社大林組
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Engineering Kk, Jfeエンジニアリング株式会社, Jfe Steel Kk, Jfeスチール株式会社, Ohbayashi Corp, 株式会社大林組 filed Critical Jfe Engineering Kk
Priority to JP2005211153A priority Critical patent/JP2007023714A/en
Publication of JP2007023714A publication Critical patent/JP2007023714A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of a composite floor slab, a composite floor slab bridge or a composite girder bridge and a construction method using shape steel superior in economic efficiency and construction efficiency, and having high fatigue durability. <P>SOLUTION: A plurality of H shape steels 30 are juxtaposed in advance in the flange direction in a factory so that a flange is vertically positioned, and mutual lower flanges 30b of the adjacent H shape steels are connected by bolt joining or welding so that a corrugated plate or U shape steel projects upward via the corrugated plate or the U shape steel having the height of 1/2 or more of a flange interval of the H shape steel, and mutual vertical stiffening materials of the adjacent H shape steel welded in advance at a predetermined interval are connected via the bolt joining or the welding via a horizontal girder, and are carried up to a construction site thereafter. A plurality of reinforcements 36 are arranged at a predetermined interval in the axial direction of the H shape steel on an upper flange 30a of the H shape steel so as to become a right angle to the axial direction of the H shape steel, and cast-in-place concrete 38 is placed so as to cover these reinforcements. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、形鋼を用いた合成床版(主桁の上面に設置され、路面を形成する版構造)、該合成床版でなる合成床版橋(上面が直接路面を形成する、主桁と床版を兼ね備えた橋構造)、又は、前記合成床版を用いた合成桁橋(主桁の上に設置する床版を主桁の上フランジと兼用する橋構造)、及び、その施工方法に関する。   The present invention relates to a composite floor slab using shape steel (a plate structure that is installed on the upper surface of a main girder and forms a road surface), and a synthetic floor slab bridge composed of the synthetic floor slab (an upper surface directly forms a road surface). Bridge structure having both a slab and a floor slab), or a composite girder bridge using the composite floor slab (a bridge structure in which a floor slab installed on the main girder is also used as an upper flange of the main girder), and its construction method About.

′本発明に関する先行技術として、特許文献1乃至3が知られている。 'Patent Documents 1 to 3 are known as prior art relating to the present invention.

特許文献1の技術は、図17(特許文献1の図1に対応)および図18(特許文献1の図2に対応)に示す如く、上フランジ上面1a上面に突起1bを有するT形鋼1を所要間隔に並列配置するとともに、該T形鋼1のウエブ1cの高さの1/2から1/3程度の高さを有するよう台形波状に折り曲げ形成した配力筋4の各上方水平部4aを各突起付T形鋼1と直交して戴置するとともに、各突起付T形鋼1の上部フランジ1a上面よりも若干上方位置に各突起付T形鋼1と直交して上配力鉄筋3を配設したのち、下配力鉄筋4の各下方水平部4bまでコンクリート6を現地で打設した構造で、強度的に寄与しない引張り側コンクリート部を中空とすることにより、軽量で断面効率のよい合成床版橋を提供している。図において、5は発泡樹脂体である。   As shown in FIG. 17 (corresponding to FIG. 1 of Patent Document 1) and FIG. 18 (corresponding to FIG. 2 of Patent Document 1), the technique of Patent Document 1 is a T-shaped steel 1 having a protrusion 1b on the upper surface of the upper flange upper surface 1a. Are arranged in parallel at a required interval, and each upper horizontal portion of the reinforcing bar 4 formed into a trapezoidal wave shape so as to have a height of about 1/2 to 1/3 of the height of the web 1c of the T-section steel 1 4a is placed perpendicular to each T-shaped steel 1 with projections, and the upper distribution force is perpendicular to each T-shaped steel 1 with projections at a position slightly above the upper surface of the upper flange 1a of each T-shaped steel 1 with projections. After the rebar 3 is arranged, the concrete 6 is placed on-site to the lower horizontal part 4b of the lower distribution reinforcing bar 4, and the tensile side concrete part that does not contribute to strength is made hollow, thereby reducing the weight and cross section. It provides an efficient composite floor slab bridge. In the figure, 5 is a foamed resin body.

又、特許文献2の技術は、図19(特許文献2の図1に対応)に示す如く、直線形鋼矢板11の底板とH形鋼又はCT形鋼の主桁部材13とを接合一体化した橋軸方向部材14を複数結合した鋼製パネル21と、直線形鋼矢板15と側板16のウエブにPC鋼材18を貫通した後、場所打ちコンクリート20を打設して構成するもので、橋軸直角方向の剛性が確保できるため、横桁19の製作並びに現地接合の作業を無くすことができ、又、運搬コストの節減も可能な構造である。図において、12は鋼矢板11の爪部である。   Further, in the technique of Patent Document 2, as shown in FIG. 19 (corresponding to FIG. 1 of Patent Document 2), the bottom plate of the linear steel sheet pile 11 and the main girder member 13 of H-shaped steel or CT-shaped steel are joined and integrated. A steel panel 21 in which a plurality of bridge axial members 14 are joined, and a PC steel material 18 is passed through the web of straight steel sheet piles 15 and side plates 16, and then cast-in-place concrete 20 is placed. Since the rigidity in the direction perpendicular to the axis can be secured, the construction of the cross beam 19 and the work of on-site joining can be eliminated, and the transportation cost can be reduced. In the figure, reference numeral 12 denotes a claw portion of the steel sheet pile 11.

又、特許文献3の技術は、図20(特許文献3の図1に対応)に示す如く、下側U形鋼矢板11Aの底板とH形鋼の主桁部材13とを接合一体化した橋軸方向部材14と上側U形鋼矢板11Bを複数結合して拡幅した鋼製床版26と、半割U形鋼矢板15‘と側板16とを接合した枠体部材17とを一体化するとともに、主桁部材13及び側板16のウエブに横桁部材19をボルト等で接合した後、場所打ちコンクリート20を打設して構成するもので、鋼製床版組み立てに必要な面積を少なくすると共に、上下方向からの接合方式を採用することで鋼矢板スライド用の引き込み機材を不要とした構造である。図において、21はメッシュ筋である。   Further, as shown in FIG. 20 (corresponding to FIG. 1 of Patent Document 3), the technology of Patent Document 3 is a bridge in which the bottom plate of the lower U-shaped steel sheet pile 11A and the main girder member 13 of H-shaped steel are joined and integrated. While integrating a steel floor slab 26 in which a plurality of axial members 14 and upper U-shaped steel sheet piles 11B are combined and widened, and a frame member 17 in which a half U-shaped steel sheet pile 15 'and side plates 16 are joined together. The caster concrete 20 is cast after the cross beam member 19 is joined to the web of the main girder member 13 and the side plate 16 with bolts and the like, and the area required for assembling the steel floor slab is reduced. By adopting a vertical joining method, it is a structure that eliminates the need for steel sheet pile slide pull-in equipment. In the figure, 21 is a mesh streak.

又、H形鋼の内面にリブを付けた内リブH形鋼の合成効果については、特許文献4に、該H形鋼及び該H形鋼を用いた壁体に関して記載され、更に、非特許文献1においても、コンクリートと高い合成効果が得られることが確認されている。ここでリブは突起を意味し、H形鋼においては通常、矩形乃至三角形の鋼材をフランジの内側に溶接して取り付けるか、H形鋼の圧延の際に一体で形成して形成される。   The synthetic effect of the inner rib H-section steel with ribs attached to the inner surface of the H-section steel is described in Patent Document 4 regarding the H-section steel and the wall body using the H-section steel. Document 1 also confirms that a high synthesis effect with concrete can be obtained. Here, the rib means a protrusion, and in H-shaped steel, a rectangular or triangular steel material is usually attached to the inside of the flange by welding or formed integrally when the H-shaped steel is rolled.

実公平7−39927号公報No. 7-39927 特開平9−221717号公報Japanese Patent Laid-Open No. 9-221717 特開平11−229329号公報JP-A-11-229329 特開2005−98059号公報JP 2005-98059 A 「SC合成地中連続壁の基礎的曲げ性状」(土木学会第58回年次学術講演会、V−244、487〜488頁、2003年9月)“Basic bending properties of SC composite underground wall” (The 58th Annual Scientific Lecture, Japan Society of Civil Engineers, V-244, pp. 487-488, September 2003)

ところが、上記した合成床版橋では、次のような問題がある。   However, the above-mentioned composite floor slab bridge has the following problems.

即ち、主桁にフランジ上面に突起1bを有するT形鋼1を用いた特許文献1の場合、フランジの突起高さに加えて上配力鉄筋3を戴置することから、上フランジ1a上のコンクリート6の被り厚が大きくなる。又、曲げ終局耐力時に、上フランジ1aの突起1bが楔作用を発現し、被りコンクリートの剥落が生じる。   That is, in the case of Patent Document 1 using the T-shaped steel 1 having the protrusion 1b on the upper surface of the flange on the main girder, since the upper distribution reinforcing bar 3 is placed in addition to the protrusion height of the flange, The covering thickness of the concrete 6 increases. Moreover, at the time of ultimate bending strength, the protrusion 1b of the upper flange 1a exhibits a wedge action, and the covering concrete is peeled off.

又、特許文献2及び3の場合、鋼製主桁とコンクリートとの一体化が鋼材表面の付着(ナチュラルボンド)および横締めPC鋼材によるズレ拘束に拠っていることから、荷重の増加により付着が切れた時点で急激な鋼材とコンクリート間のズレを生じるため、安定した終局耐力を得られない。   In the case of Patent Documents 2 and 3, since the integration of the steel main girder and the concrete depends on the adhesion of the steel surface (natural bond) and the displacement restraint by the laterally tightened PC steel, the adhesion increases due to an increase in load. Since the gap between the steel and the concrete is abrupt when it is cut, a stable ultimate strength cannot be obtained.

又、特許文献3の場合、上側U形鋼矢板11Bは中立軸に近い位置にあることから、強度部材としては殆ど機能せず、形枠材としての機能が主となり、不経済な断面構成となる。   In the case of Patent Document 3, since the upper U-shaped steel sheet pile 11B is located at a position close to the neutral axis, it hardly functions as a strength member, and mainly functions as a frame material, and has an uneconomical cross-sectional configuration. Become.

本発明は、上記のような問題点を解決するため成されたもので、合成床版橋に作用する正の曲げモーメントに抵抗できるコンクリートの有効断面としてコンクリートのほぼ全断面を考慮でき、経済的で施工性が良く、しかも終局状態に至るまで版としての挙動を呈するため疲労耐久性が高い、形鋼を用いた合成床版、合成床版橋又は合成桁橋の構造、及び、その施工方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and can consider almost the entire cross section of concrete as an effective cross section of concrete capable of resisting a positive bending moment acting on a composite floor slab bridge. The construction of a composite floor slab, a composite floor slab bridge or a composite girder bridge using shape steel, and its construction method, which has good workability, and exhibits high fatigue durability due to its behavior as a plate until reaching its final state. The purpose is to provide.

本発明は、高さがH形鋼のフランジ間隔の2分の1以上の矩形又は台形断面状の軽量重充填材(例えば発泡ウレタンや発泡スチロール等)と、該軽量充填材が上に凸となるよう接合(例えば接着)された鋼板と、フランジが上下に位置するようフランジのH形鋼の軸方向と直交する方向に併設され、隣り合うH形鋼の下フランジ同士が、前記鋼板を介して(例えばボルト接合あるいは溶接によって)繋がれた複数本のH形鋼と、該H形鋼の上フランジ上に、H形鋼の軸方向と直角となるよう、H型鋼の軸方向に所定間隔で設置された複数本の鉄筋と、これらを被覆するように打設されたコンクリートを備えたことを特徴とする、形鋼を用いた合成床版により、前記課題を解決したものである。   In the present invention, a lightweight heavy filler (for example, foamed urethane, polystyrene foam, etc.) having a rectangular or trapezoidal cross-section whose height is half or more of the H-shaped steel flange interval, and the lightweight filler are convex upward. The steel plates that are joined (for example, bonded) and the flanges adjacent to each other in the direction perpendicular to the axial direction of the H-shaped steel of the flange so that the flanges are positioned vertically, A plurality of H-section steels connected (for example, by bolting or welding) and an upper flange of the H-section steel at a predetermined interval in the axial direction of the H-section steel so as to be perpendicular to the axial direction of the H-section steel. The above-mentioned problem is solved by a composite floor slab using shape steel, which is provided with a plurality of rebars installed and concrete placed so as to cover them.

本発明は、又、高さがH形鋼のフランジ間隔の2分の1以上の波板あるいはU形鋼と、フランジが上下に位置するようフランジのH形鋼の軸方向と直交する方向に併設され、隣り合うH形鋼の下フランジ同士が、前記波板あるいはU形鋼を介して、該波板あるいはU形鋼が上に凸となるよう繋がれた複数本のH形鋼と、該H形鋼の上フランジ上に、H形鋼の軸方向と直角となるよう、H形鋼の軸方向に所定間隔で設置された複数本の鉄筋と、これらを被覆するように打設されたコンクリートとを備えたことを特徴とする、形鋼を用いた合成床版により、前記課題を解決したものである。   The present invention also includes a corrugated sheet or U-shaped steel having a height that is at least half of the flange interval of the H-shaped steel, and a direction perpendicular to the axial direction of the H-shaped steel of the flange so that the flange is positioned vertically. A plurality of H-section steels, which are connected to each other so that the lower flanges of adjacent H-section steels are protruded upward through the corrugated sheets or U-section steel, On the upper flange of the H-shaped steel, a plurality of reinforcing bars installed at predetermined intervals in the axial direction of the H-shaped steel so as to be perpendicular to the axial direction of the H-shaped steel, and so as to cover these The above-mentioned problems are solved by a synthetic slab using a shape steel, characterized in that it is provided with concrete.

又、所定間隔で(例えば予め工場において)接合(例えば溶接)された隣り合うH形鋼の垂直補剛材同士を、横桁を介して(例えばボルト接合あるいは溶接によって)繋いだものである。   In addition, vertical stiffeners of adjacent H-shaped steels joined (eg, welded) at a predetermined interval (eg, in a factory in advance) are connected to each other via a cross beam (eg, by bolting or welding).

又、前記H形鋼を、内面に突起のついたH形鋼としたものである。ここで、リブ等の突起は、H形鋼のフランジ、ウエブのどちらか一方又は両方に付けることができる。   Further, the H-shaped steel is an H-shaped steel having protrusions on the inner surface. Here, protrusions such as ribs can be attached to either or both of the flange of the H-shaped steel and the web.

前記突起の高さは2mm以上50mm以下が望ましく、幅は高さの1倍から5倍、突起の間隔は幅の4倍以下が望ましい。   The height of the protrusions is preferably 2 mm or more and 50 mm or less, the width is preferably 1 to 5 times the height, and the distance between the protrusions is preferably 4 times or less the width.

本発明は、又、前記のH形鋼のウエブをH形鋼の軸方向に切断して成るT形断面形鋼のウエブ切断面に、H形鋼の軸方向に複数の孔を有する帯状の鋼板を溶接してウエブ高さを延長した複数本のT形断面部材を形枠兼用となる底鋼板に溶接し、該T形鋼断面部材を被覆するようにコンクリートを打設したことを特徴とする合成床版を提供するものである。   The present invention also provides a strip-like shape having a plurality of holes in the axial direction of the H-shaped steel on the web cutting surface of the T-shaped sectional steel obtained by cutting the H-shaped steel web in the axial direction of the H-shaped steel. It is characterized in that a plurality of T-shaped cross-section members, which are welded steel plates to extend the web height, are welded to a bottom steel plate that also serves as a formwork, and concrete is cast so as to cover the T-shaped steel cross-section members. To provide a synthetic floor slab.

本発明は、又、前記の合成床版でなる合成床版橋を提供するものである。   The present invention also provides a composite floor slab bridge comprising the above-described synthetic floor slab.

本発明は、又、前記の合成床版を備えたことを特徴とする合成桁橋を提供するものである。   The present invention also provides a composite girder bridge comprising the above-described composite floor slab.

本発明は、又、工場で予め、複数本のH形鋼をフランジが上下に位置するようフランジ方向に併設し、隣り合うH形鋼の下フランジ同士を、高さがH形鋼のフランジ間隔の2分の1以上の波板あるいはU形鋼を介して、波板あるいはU形鋼が上に凸となるようボルト接合あるいは溶接によって繋ぎ、且つ所定間隔で予め工場において溶接した隣り合うH形鋼の垂直補剛材同士を、横桁を介して、ボルト接合あるいは溶接によって繋ぎ、その後、建設現場まで運搬し、建設現場において、H形鋼の上フランジ上に、H形鋼の軸方向と直角となるよう、H形鋼の軸方向に所定間隔で複数本の鉄筋を設置し、これらを被覆するように現場打ちコンクリートを打設することを特徴とする、形鋼を用いた合成床版、合成床版橋又は合成桁橋の施工方法により、前記課題を解決したものである。   In the present invention, a plurality of H-section steels are installed in the flange direction in advance so that the flanges are positioned vertically, and the lower flanges of adjacent H-section steels are spaced apart from each other by the height of the H-section steel. Adjacent H-shapes that are connected by bolting or welding so that the corrugated sheet or U-shaped steel is convex upward through one-half or more corrugated sheets or U-shaped steel, and previously welded at predetermined intervals in the factory Steel vertical stiffeners are connected to each other by bolting or welding via cross beams, and then transported to the construction site. At the construction site, the axial direction of the H-shaped steel is placed on the upper flange of the H-shaped steel. A composite floor slab using section steel, characterized in that a plurality of rebars are installed at predetermined intervals in the axial direction of the H-section steel so as to form a right angle, and cast-in-place concrete is cast to cover them. For construction methods of composite floor slab bridges or composite girder bridges Ri is obtained by solving the above problems.

本発明によれば、合成床版に正の曲げモーメントが作用した場合、コンクリート断面のうちH形鋼近傍以外の部分も、下方の波板あるいはU形鋼、鉄筋と横桁、およびH形鋼から2軸の拘束力を受け、しかもこの部分がH形鋼の高さの2分の1よりも上方に位置するため、この部分の大部分が圧縮領域となる。その結果、コンクリートのほぼ全断面が有効断面となり、正の曲げモーメントに対して高い強度が得られる。又、H形鋼内面に突起を付けたH形鋼(突起の寸法は、高さが2mm以上50mm以下であり、幅が高さの1倍から5倍であることが望ましく、突起の間隔は幅の4倍以下であることが望ましい)を用いることによって、H形鋼の軸方向にも拘束される3軸圧縮状態が形成され、更に高い曲げ強度が得られる。しかも、スタッド等のずれ止めを設置して合成効果を得る場合と比べ、ずれ止め溶接部の疲労耐久性を考慮しなくてもよいため、経済的な設計が可能となる。又、鋼製部材が小部材片で構成されているため、全てを現場で組み立てれば、運搬性が高く、現場で使用する重機も小型のものでよいことから限られた作業スペース内で施工できる。   According to the present invention, when a positive bending moment is applied to the composite slab, the portion other than the vicinity of the H-shaped steel in the concrete cross section is also the lower corrugated sheet or U-shaped steel, the reinforcing bar and the cross beam, and the H-shaped steel. Since this part receives the restraining force of 2 axes from this, and this part is located above 1/2 of the height of H-section steel, most of this part becomes a compression area | region. As a result, almost the entire cross section of the concrete becomes an effective cross section, and high strength is obtained with respect to a positive bending moment. H-shaped steel with protrusions on the inner surface of the H-shaped steel (the dimensions of the protrusions are preferably 2 mm or more and 50 mm or less in height, and the width is preferably 1 to 5 times the height. 3), it is desirable that the width be less than 4 times the width, and a triaxial compression state that is constrained also in the axial direction of the H-section steel is formed, and higher bending strength is obtained. In addition, compared with the case of obtaining a composite effect by installing a stopper such as a stud, it is not necessary to consider the fatigue durability of the stopper welded portion, so an economical design is possible. In addition, since the steel members are composed of small pieces, if they are all assembled on site, they are highly transportable and can be installed in a limited work space because heavy equipment used on site may be small. .

更に、ずれ止めや鉄筋が輻輳しない単純な構造であるため施工性もよい。   Furthermore, since it has a simple structure in which the stopper and the reinforcing bar do not converge, the workability is also good.

なお、上記の波板には、コルゲートプレート、ライナープレートが含まれる。又、波板の材質として、コンクリートも含まれる。   The corrugated plate includes a corrugated plate and a liner plate. Further, the corrugated plate material includes concrete.

又、上記には、正の曲げモーメントに対して本発明が有効であることを述べているが、本発明構造を上下逆転することにより、負の曲げモーメントに対しても、同様に有効な構造となる。   In addition, the above describes that the present invention is effective for a positive bending moment, but a structure that is also effective for a negative bending moment by reversing the structure of the present invention upside down. It becomes.

本発明の効果を以下に示す。   The effect of this invention is shown below.

(1)合成床版に正の曲げモーメントが作用した場合、コンクリート断面のうちH形鋼近傍以外の部分も、下方の波板あるいはU形鋼、鉄筋と横桁、およびH形鋼から2軸の拘束力を受け、しかもこの部分がH形鋼の高さの2分の1よりも上方に位置するため、この部分の大部分が圧縮領域となる。その結果、コンクリートのほぼ全断面が有効断面となり、正の曲げモーメントに対して高い強度が得られる。 (1) When a positive bending moment is applied to the composite floor slab, the portion other than the vicinity of the H-shaped steel in the concrete section is also biaxial from the lower corrugated sheet or U-shaped steel, the reinforcing bar and the cross beam, and the H-shaped steel. Since this part is located above half of the height of the H-section steel, most of this part becomes the compression region. As a result, almost the entire cross section of the concrete becomes an effective cross section, and high strength is obtained with respect to a positive bending moment.

(2)又、H形鋼内面に突起を付けたH形鋼(突起の寸法は、高さが2mm以上50mm以下であり、幅が高さの1倍から5倍であることが望ましく、突起の間隔は幅の4倍以下であることが望ましい)を用いることによって、H形鋼の軸方向にも拘束される3軸圧縮状態が形成され、更に高い曲げ強度が得られる。 (2) H-shaped steel with protrusions on the inner surface of the H-shaped steel (the dimensions of the protrusions are preferably 2 mm or more and 50 mm or less in height, and the width is preferably 1 to 5 times the height. Is preferably 4 times or less of the width), a triaxial compression state that is constrained also in the axial direction of the H-section steel is formed, and higher bending strength can be obtained.

(3)しかも、スタッド等のずれ止めを設置して合成効果を得る場合と比べ、ずれ止め溶接部の疲労耐久性を考慮しなくてもよいため、経済的な設計が可能になる。又、鋼製部材が小部材片で構成されているため、全て現場で組み立てれば、運搬性が高く、現場で使用する重機も小型のものでよいことから、限られた作業スペース内で施工できる。 (3) Moreover, compared with the case where a slip stopper such as a stud is provided to obtain a composite effect, it is not necessary to consider the fatigue durability of the slip welded portion, so that an economical design is possible. In addition, since the steel members are composed of small pieces, if they are all assembled on site, they are highly transportable, and the heavy equipment used on site can be small, so construction can be performed within a limited work space. .

(4)更に、ずれ止めや鉄筋が輻輳しない単純な構造であるため施工性も良い。 (4) Furthermore, since it has a simple structure in which the stopper and the reinforcing bar do not converge, the workability is also good.

(5)形鋼をコンクリートによって被覆しているため、形鋼の座屈現象を考慮しなくても良く且つ塗装面積が小さいため、より経済的な設計が可能となる。 (5) Since the section steel is covered with concrete, it is not necessary to consider the buckling phenomenon of the section steel, and since the painted area is small, a more economical design is possible.

(6)引張力が発生する不必要な下方のコンクリートを欠損させているため、軽量であるので長支間化が可能である。又、コンクリートのひび割れも発生しにくい。 (6) Since unnecessary lower concrete where tensile force is generated is lost, it is light in weight so that it is possible to make a long span. In addition, concrete cracks are less likely to occur.

以下、本発明の実施形態を、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施形態を具備する橋梁構造であり、Dは本発明が適用される床版、Pは橋脚、Bは横梁、Fはフーチング、Gは地盤である。   FIG. 1 shows a bridge structure having an embodiment of the present invention, wherein D is a floor slab to which the present invention is applied, P is a bridge pier, B is a cross beam, F is a footing, and G is the ground.

図2は、本発明に係わる形鋼を用いた第1実施形態の合成床版橋である。この第1実施形態においては、複数本のH形鋼30を、そのフランジ30a、30bが上下に位置するようフランジのH形鋼の軸方向(長手方向)と直交する方向(フランジ方向と称する)に並設し、隣り合うH形鋼の下フランジ30b同士を、高さがH形鋼のフランジ間隔の1/2以上の矩形又は台形断面状の軽量充填材34を上に凸となるように接着した鋼板32を介して、ボルト接合あるいは溶接によって繋いだ後、H形鋼30の上フランジ30a上に、H形鋼30の軸方向と直角となるよう、複数本の鉄筋36をH形鋼の軸方向に所定間隔で設置し、これらを被覆するようにコンクリート38を打設して、合成床版橋Dを構成する鋼材を一体化したものである。図中の矢印aは応力方向である。   FIG. 2 is a composite floor slab bridge according to the first embodiment using a section steel according to the present invention. In the first embodiment, a plurality of H-section steels 30 are perpendicular to the axial direction (longitudinal direction) of the H-section steel of the flange so that the flanges 30a and 30b are positioned vertically (referred to as the flange direction). In parallel, the lower flanges 30b of adjacent H-shaped steels have a rectangular or trapezoidal cross-section lightweight filler 34 whose height is ½ or more of the H-shaped steel flange interval. A plurality of rebars 36 are connected to the H-shaped steel 30 on the upper flange 30a of the H-shaped steel 30 so as to be perpendicular to the axial direction of the H-shaped steel 30 after being joined by bolted bonding or welding through the bonded steel plates 32. These are installed at predetermined intervals in the axial direction, and concrete 38 is cast so as to cover them, and the steel materials constituting the composite slab bridge D are integrated. The arrow a in the figure is the stress direction.

前記軽量充填材34としては、発泡ウレタンや発泡スチロールの他、軽量コンクリート等を用いることができる。   As the lightweight filler 34, lightweight concrete can be used in addition to urethane foam and polystyrene.

本発明の第2実施形態は、図3に示す如く、所定間隔で予め工場において溶接した隣り合うH形鋼30の垂直補剛材40同士を、横桁42を介してボルト接合あるいは溶接によって繋ぐようにしたものである。他の点については第1実施形態と同じであるので、説明は省略する。   In the second embodiment of the present invention, as shown in FIG. 3, vertical stiffeners 40 of adjacent H-section steels 30 previously welded in a factory at predetermined intervals are connected to each other by bolting or welding via a cross beam 42. It is what I did. Since other points are the same as those of the first embodiment, description thereof is omitted.

本発明の第3実施形態は、隣り合うH形鋼30の下フランジ30b同士を鋼板32を介して繋ぐ代わりに、図4に示すごとく、高さがH形鋼30のフランジ間隔の1/2以上の波板又はU形鋼50を介して、該波板あるいはU形鋼50が上に凸となるように、ボルト接合あるいは溶接によって繋いだものである。   In the third embodiment of the present invention, instead of connecting the lower flanges 30b of the adjacent H-shaped steels 30 via the steel plate 32, the height is 1/2 of the flange interval of the H-shaped steel 30 as shown in FIG. The corrugated sheet or U-shaped steel 50 is connected by bolting or welding so that the corrugated sheet or U-shaped steel 50 is convex upward.

又、本発明の第4実施形態は、図5に示す如く、図4に示した第3実施形態に、図3に示した第2実施形態と同様の垂直補剛材40及び横桁42を設けたものである。   Further, in the fourth embodiment of the present invention, as shown in FIG. 5, the vertical stiffener 40 and the cross beam 42 similar to those of the second embodiment shown in FIG. 3 are added to the third embodiment shown in FIG. It is provided.

なお、前記H形鋼30としては、図6に示すような、内面にリブ31c等の突起が付いた、例えば内リブH形鋼31を用いることができる。この内リブH形鋼31を用いた本発明の第5実施形態の合成床版あるいは合成床版橋の施工手順を図7乃至図11に示す。   As the H-section steel 30, for example, an inner rib H-section steel 31 having protrusions such as ribs 31c on the inner surface as shown in FIG. 6 can be used. The construction procedure of the composite slab or the composite slab bridge of the fifth embodiment of the present invention using the inner rib H-section steel 31 is shown in FIGS.

施工に際しては、図7に示す如く、工場で予め、複数本の内リブH形鋼31をフランジ31a、31bが上下に位置するようフランジ方向に併設し、図8に示す如く、隣り合う内リブH形鋼31の下フランジ31b同士を、高さが内リブH形鋼31のフランジ間隔の2分の1以上の波板あるいはU形鋼50を介して、波板あるいはU形鋼50が上に凸となるようボルト接合あるいは溶接によって繋ぎ、かつ所定間隔で予め工場において溶接した隣り合う内リブH形鋼31(内リブ31cの寸法は、高さが2mm以上50mm以下であり、幅が高さの1倍から5倍であることが望ましく、内リブの間隔は幅の4倍以下であることが望ましい)の垂直補剛材40同士を、図9に示す如く、横桁42を介して、ボルト接合あるいは溶接によって繋ぐ。その後、建設現場まで運搬し、建設現場において、図10に示す如く、内リブH形鋼31の上フランジ31a上に、内リブH形鋼31の軸方向と直角となるよう、複数本の鉄筋36を内リブH形鋼31の軸方向に所定間隔で設置し、図11に示す如く、これらを被覆するよう場所打ちコンクリート38を打設する。   At the time of construction, as shown in FIG. 7, a plurality of inner rib H-sections 31 are pre-installed at the factory in the flange direction so that the flanges 31a and 31b are positioned vertically, and adjacent inner ribs as shown in FIG. The corrugated sheet or U-shaped steel 50 is located above the lower flanges 31b of the H-shaped steel 31 with the corrugated sheet or U-shaped steel 50 having a height that is at least half the flange interval of the inner rib H-shaped steel 31. Adjacent inner rib H-section steel 31 connected by bolting or welding so as to be convex and welded in advance at predetermined intervals in the factory (the inner rib 31c has a height of 2 mm to 50 mm in height and a high width. The vertical stiffeners 40 are preferably 1 to 5 times the height, and the interval between the inner ribs is preferably 4 times the width or less), as shown in FIG. , Connect by bolting or weldingThereafter, the steel sheet is transported to the construction site. At the construction site, as shown in FIG. 10, a plurality of reinforcing bars are placed on the upper flange 31a of the inner rib H-section steel 31 so as to be perpendicular to the axial direction of the inner rib H-section steel 31. 36 are installed at predetermined intervals in the axial direction of the inner rib H-shaped steel 31, and cast-in-place concrete 38 is placed so as to cover them as shown in FIG.

図4に示した第3実施形態で、通常のH形鋼30の代わりに内リブH形鋼31を用いた本発明の第6実施形態を図12に示す。   FIG. 12 shows a sixth embodiment of the present invention in which an inner rib H-section steel 31 is used instead of the normal H-section steel 30 in the third embodiment shown in FIG.

又、第6実施形態に鋼板32と軽量充填材34を加えた第7実施形態を図13に示す。   FIG. 13 shows a seventh embodiment in which a steel plate 32 and a lightweight filler 34 are added to the sixth embodiment.

又、第7実施形態に垂直補剛材40と横桁42を加えた第8実施形態を図14に示す。   FIG. 14 shows an eighth embodiment in which a vertical stiffener 40 and a cross beam 42 are added to the seventh embodiment.

又、図12に示した第6実施形態のU形鋼50を波板52に変えると共に、垂直補剛材40と横桁42を加えた第9実施形態を図15に示す。   FIG. 15 shows a ninth embodiment in which the U-shaped steel 50 of the sixth embodiment shown in FIG. 12 is changed to a corrugated plate 52 and a vertical stiffener 40 and a cross beam 42 are added.

図16は、請求項7に対応する第10実施形態を示しており、支間長が長い場合や上戴荷重が大きい場合において、内リブH形鋼の剛性だけでは強度上、変形制限上、設計が困難な場合の実施例である。内リブH形鋼のウエブを長手方向に切断して得られるT形断面鋼60のウエブ切断面60aに、長手方向に複数の孔を有する帯状鋼板62を溶接しウエブ高さを延長したT形断面部材を、底鋼板64に溶接にて接合した後、現地に設置し、該T形断面部材を被覆するようコンクリート38を打設する。この時、死荷重を低減するため、コンクリートの引張側の一部に軽量充填材34をコンクリート打設前に設置し、コンクリート断面を最小限とする。図において、36は鉄筋である。   FIG. 16 shows a tenth embodiment corresponding to claim 7, and in the case where the length of the support is long or the load applied is large, the rigidity of the inner rib H-section steel alone is high in strength, deformation limitation, and design. This is an example when it is difficult. A T-shape in which a strip steel plate 62 having a plurality of holes in the longitudinal direction is welded to a web cutting surface 60a of a T-shaped cross-section steel 60 obtained by cutting a web of inner rib H-section steel in the longitudinal direction to extend the web height. After the cross-section member is joined to the bottom steel plate 64 by welding, the cross-section member is installed on site, and concrete 38 is placed so as to cover the T-shaped cross-section member. At this time, in order to reduce the dead load, a light filler 34 is installed on a part of the concrete tension side before placing the concrete to minimize the concrete cross section. In the figure, 36 is a reinforcing bar.

なお、突起の種類はリブに限定されない。   In addition, the kind of protrusion is not limited to a rib.

本実施の形態に係わる橋梁の諸元については、橋梁の種類、規模に応じて種々異なるが、図7〜図11に示した第5実施形態で、U形鋼50の代わりに波板52を用いた例の構成における寸法の一例を示せば、次の通りである。   Although the specifications of the bridge according to the present embodiment vary depending on the type and scale of the bridge, in the fifth embodiment shown in FIGS. 7 to 11, the corrugated plate 52 is used instead of the U-shaped steel 50. An example of dimensions in the configuration of the used example is as follows.

内リブH形鋼31の断面寸法は600mm×300mm×12mm×25mmで、長さは12mである。内リブ31dの寸法は、高さが2mm以上50mm以下であり,幅が高さの1倍から5倍である。内リブ31dの間隔は幅の4倍以下である。併設する内リブH形鋼31との間隔は600mmである。垂直補剛材40の寸法は、600mm×150mm×12mmで、設置間隔は橋軸方向に5mである。併設した内リブH形鋼を繋ぐための横桁(I形断面)42の寸法は、250mm×200mm×12mm×9mmであり、設置間隔は橋軸方向に5mである。波板52は、8mm厚の鋼板で、高さは300mmである。鉄筋36は、D25を250mm間隔とする。   The cross-sectional dimension of the inner rib H-section steel 31 is 600 mm × 300 mm × 12 mm × 25 mm, and the length is 12 m. The dimensions of the inner rib 31d are 2 mm or more and 50 mm or less in height, and the width is 1 to 5 times the height. The interval between the inner ribs 31d is not more than four times the width. The interval with the inner rib H-section steel 31 provided side by side is 600 mm. The size of the vertical stiffener 40 is 600 mm × 150 mm × 12 mm, and the installation interval is 5 m in the bridge axis direction. The dimension of the cross beam (I-shaped cross section) 42 for connecting the adjacent inner rib H-shaped steel is 250 mm × 200 mm × 12 mm × 9 mm, and the installation interval is 5 m in the bridge axis direction. The corrugated plate 52 is an 8 mm thick steel plate having a height of 300 mm. The reinforcing bar 36 sets D25 at an interval of 250 mm.

本発明の実施形態を具備する橋梁構造を示す斜視図The perspective view which shows the bridge structure which comprises embodiment of this invention 本発明による形鋼を用いた第1実施形態の合成床版橋を示す斜視図The perspective view which shows the composite floor slab bridge of 1st Embodiment using the shape steel by this invention. 同じく第2実施形態の合成床版橋を示す斜視図The perspective view which similarly shows the composite floor slab bridge of 2nd Embodiment 同じく第3実施形態の合成床版を示す斜視図The perspective view which similarly shows the synthetic floor slab of 3rd Embodiment 同じく第4実施形態の合成床版を示す斜視図The perspective view which similarly shows the synthetic floor slab of 4th Embodiment 同じく第5実施形態の合成床版橋で用いる内リブH形鋼の構造を示す(a)正面図及び(b)斜視図(A) Front view and (b) Perspective view showing the structure of the inner rib H-section steel used in the composite floor slab bridge of the fifth embodiment. 同じく第5実施形態の最初の施工手順を示す斜視図The perspective view which similarly shows the first construction procedure of 5th Embodiment 同じく第5実施形態の次の施工手順を示す斜視図The perspective view which similarly shows the next construction procedure of 5th Embodiment 同じく第5実施形態の次の施工手順を示す斜視図The perspective view which similarly shows the next construction procedure of 5th Embodiment 同じく第5実施形態の次の施工手順を示す斜視図The perspective view which similarly shows the next construction procedure of 5th Embodiment 同じく第5実施形態の次の施工手順を示す斜視図The perspective view which similarly shows the next construction procedure of 5th Embodiment 同じく第6実施形態の合成床版橋を示す斜視図The perspective view which similarly shows the composite floor slab bridge of 6th Embodiment 同じく第7実施形態の合成床版橋を示す斜視図The perspective view which similarly shows the composite floor slab bridge of 7th Embodiment 同じく第8実施形態の合成床版橋を示す斜視図The perspective view which similarly shows the composite floor slab bridge of 8th Embodiment 同じく第9実施形態の合成床版橋を示す斜視図The perspective view which similarly shows the composite floor slab bridge of 9th Embodiment 同じく第10実施形態の合成床版橋を示す斜視図The perspective view which similarly shows the composite floor slab bridge of 10th Embodiment 特許文献1に記載された従来の形鋼を用いた合成床版橋の要部を示す斜視図The perspective view which shows the principal part of the composite floor slab bridge using the conventional shape steel described in patent document 1 同じく図17のA−A線に沿う横断面図Similarly, a cross-sectional view along line AA in FIG. 特許文献2に記載された従来の形鋼を用いた合成床版橋の要部を示す斜視図The perspective view which shows the principal part of the composite floor slab bridge using the conventional shape steel described in patent document 2 特許文献3に記載された従来の形鋼を用いた合成床版橋の要部を示す斜視図The perspective view which shows the principal part of the composite floor slab bridge using the conventional shape steel described in patent document 3

符号の説明Explanation of symbols

D…形鋼を用いた合成床版(橋)
B…梁
P…橋脚
F…フーチング
G…地盤
a…応力方向
30…H形鋼
30a、31a…上フランジ
30b、31b…下フランジ
31…内リブH形鋼
31c…ウエブ
31d…内リブ
32…鋼板
34…無収縮材
36…鉄筋
38…コンクリート
40…垂直補剛材
42…横桁
50…U形鋼
52…波板
60…T形断面鋼
60a…ウエブ切断面
62…帯状鋼板
64…底鋼板
D ... Synthetic floor slab using shape steel (bridge)
B ... Beam P ... Pier F ... Footing G ... Ground a ... Stress direction 30 ... H section steel 30a, 31a ... Upper flange 30b, 31b ... Lower flange 31 ... Inner rib H section steel 31c ... Web 31d ... Inner rib 32 ... Steel plate 34 ... Non-shrink material 36 ... Reinforcement 38 ... Concrete 40 ... Vertical stiffener 42 ... Cross girder 50 ... U-shaped steel 52 ... Corrugated sheet 60 ... T-shaped cross-section steel 60a ... Web cut surface 62 ... Strip steel plate 64 ... Bottom steel plate

Claims (12)

高さがH形鋼のフランジ間隔の2分の1以上の矩形又は台形断面状の軽量充填材と、
該軽量充填材が上に凸となるよう接合された鋼板と、
フランジが上下に位置するようフランジのH形鋼の軸方向と直交する方向に併設され、隣り合うH形鋼の下フランジ同士が、前記鋼板を介して繋がれた複数本のH形鋼と、
該H形鋼の上フランジ上に、H形鋼の軸方向と直角となるよう、所定間隔で設置された複数本の鉄筋と、
これらを被覆するように打設されたコンクリートと、
を備えたことを特徴とする、形鋼を用いた合成床版。
A lightweight filler with a rectangular or trapezoidal cross-section that is at least half the height of the H-shaped steel flange;
Steel plates joined so that the lightweight filler is convex upward;
A plurality of H-section steels that are provided side by side in the direction perpendicular to the axial direction of the H-section steel of the flange so that the flanges are positioned above and below, and the lower flanges of adjacent H-section steels are connected via the steel plate;
A plurality of reinforcing bars installed at predetermined intervals on the upper flange of the H-shaped steel so as to be perpendicular to the axial direction of the H-shaped steel;
Concrete placed to cover these,
A composite floor slab using section steel, characterized by comprising:
高さがH形鋼のフランジ間隔の2分の1以上の波板あるいはU形鋼と、
フランジが上下に位置するようフランジ方向のH形鋼の軸方向と直交する方向に併設され、隣り合うH形鋼の下フランジ同士が、前記波板あるいはU形鋼を介して、該波板あるいはU形鋼が上に凸となるよう繋がれた複数本のH形鋼と、
該H形鋼の上フランジ上に、H形鋼の軸方向と直角となるよう、H形鋼の軸方向に所定間隔で設置された複数本の鉄筋と、
これらを被覆するように打設されたコンクリートと、
を備えたことを特徴とする、形鋼を用いた合成床版。
Corrugated sheet or U-shaped steel whose height is half or more of the H-shaped steel flange interval;
The flanges are arranged in the direction perpendicular to the axial direction of the H-shaped steel in the flange direction so that the flanges are positioned above and below, and the lower flanges of adjacent H-shaped steels, A plurality of H-sections connected so that the U-section is convex upward;
A plurality of reinforcing bars installed at predetermined intervals in the axial direction of the H-shaped steel so as to be perpendicular to the axial direction of the H-shaped steel on the upper flange of the H-shaped steel;
Concrete placed to cover these,
A composite floor slab using section steel, characterized by comprising:
所定間隔で接合された隣り合うH形鋼の垂直補剛材同士が、横桁を介して繋がれていることを特徴とする請求項1又は2記載の形鋼を用いた合成床版。   The composite floor slab using a section steel according to claim 1 or 2, wherein vertical stiffeners of adjacent H-section steel joined at a predetermined interval are connected via a cross beam. 隣り合うH形鋼の間隔が、H形鋼のフランジ間隔以下であることを特徴とする請求項1又は2記載の形鋼を用いた合成床版。   The composite floor slab using a section steel according to claim 1 or 2, wherein an interval between adjacent H-section steels is equal to or less than a flange interval of the H-section steel. 前記H形鋼が、内面に突起のついたH形鋼であることを特徴とする請求項1乃至4のいずれかに記載の形鋼を用いた合成床版。   The composite floor slab using a section steel according to any one of claims 1 to 4, wherein the H section steel is an H section steel having a protrusion on an inner surface. 前記突起の高さが2mm以上50mm以下、幅が高さの1倍から5倍、突起の間隔が幅の4倍以下であることを特徴とする請求項5に記載の形鋼を用いた合成床版。   The composition using the structural steel according to claim 5, wherein the height of the protrusion is 2 mm or more and 50 mm or less, the width is 1 to 5 times the height, and the interval between the protrusions is 4 times or less the width. Floor slab. 請求項5又は6に記載のH形鋼のウエブをH形鋼の軸方向に切断して成るT形断面形鋼のウエブ切断面に、H形鋼の軸方向に複数の孔を有する帯状の鋼板を溶接してウエブ高さを延長した複数本のT形断面部材を形枠兼用となる底鋼板に溶接し、
該T形鋼断面部材を被覆するようにコンクリートを打設したことを特徴とする合成床版。
A strip-like shape having a plurality of holes in the axial direction of the H-shaped steel on the cut surface of the T-shaped cross-sectional steel obtained by cutting the H-shaped steel web according to claim 5 or 6 in the axial direction of the H-shaped steel. Welding a plurality of T-shaped cross-section members that are welded to a steel plate and extending the web height to a bottom steel plate that also serves as a formwork;
A composite floor slab characterized in that concrete is cast so as to cover the T-shaped steel cross-section member.
請求項1乃至7のいずれかに記載の合成床版でなる合成床版橋。   A synthetic floor slab bridge comprising the synthetic floor slab according to claim 1. 請求項1乃至7のいずれかに記載の合成床版を備えたことを特徴とする合成桁橋。   A composite girder bridge comprising the composite floor slab according to claim 1. 工場で予め、複数本のH形鋼をフランジが上下に位置するように併設し、
隣り合うH形鋼の下フランジ同士を、高さがH形鋼のフランジ間隔の1/2以上の波板あるいはU形鋼を介して、波板あるいはU形鋼が上に凸となるようボルト接合あるいは溶接によって繋ぎ、
且つ所定間隔で予め工場において溶接した隣り合うH形鋼の垂直補剛材同士を、横桁を介して、ボルト接合あるいは溶接によって繋ぎ、
その後、建設現場まで運搬し、
建設現場において、H形鋼の上フランジ上に、H形鋼の軸方向と直角となるよう、複数本の鉄筋をH形鋼の方向に所定間隔で設置し、
これらを被覆するように場所打ちコンクリートを打設することを特徴とする、形鋼を用いた合成床版の施工方法。
Pre-installed multiple H-shaped steel bars in the factory so that the flanges are positioned above and below,
Bolts such that the corrugated sheet or U-shaped steel protrudes upward through the corrugated sheet or U-shaped steel whose height is ½ or more of the flange interval of the H-shaped steel. Connected by welding or welding,
In addition, the vertical stiffeners of adjacent H-section steel welded in advance at a predetermined interval in the factory are connected to each other by a bolt joint or welding via a cross beam.
Then transport to the construction site,
At the construction site, on the upper flange of the H-shaped steel, a plurality of reinforcing bars are installed at predetermined intervals in the direction of the H-shaped steel so as to be perpendicular to the axial direction of the H-shaped steel,
A method for constructing a composite slab using shape steel, wherein cast-in-place concrete is cast so as to cover these.
工場で予め、複数本のH形鋼をフランジが上下に位置するように併設し、
隣り合うH形鋼の下フランジ同士を、高さがH形鋼のフランジ間隔の1/2以上の波板あるいはU形鋼を介して、波板あるいはU形鋼が上に凸となるようボルト接合あるいは溶接によって繋ぎ、
且つ所定間隔で予め工場において溶接した隣り合うH形鋼の垂直補剛材同士を、横桁を介して、ボルト接合あるいは溶接によって繋ぎ、
その後、建設現場まで運搬し、
建設現場において、H形鋼の上フランジ上に、H形鋼の軸方向と直角となるよう、複数本の鉄筋をH形鋼の軸方向に所定間隔で設置し、
これらを被覆するように場所打ちコンクリートを打設することを特徴とする、形鋼を用いた合成床版橋の施工方法。
Pre-installed multiple H-shaped steel bars in the factory so that the flanges are positioned above and below,
Bolts such that the corrugated sheet or U-shaped steel protrudes upward through the corrugated sheet or U-shaped steel whose height is ½ or more of the flange interval of the H-shaped steel. Connected by welding or welding,
In addition, the vertical stiffeners of adjacent H-section steel welded in advance at a predetermined interval in the factory are connected to each other by a bolt joint or welding via a cross beam.
Then transport to the construction site,
At the construction site, on the upper flange of the H-shaped steel, a plurality of reinforcing bars are installed at predetermined intervals in the axial direction of the H-shaped steel so as to be perpendicular to the axial direction of the H-shaped steel,
A method for constructing a composite slab bridge using shaped steel, wherein cast-in-place concrete is cast so as to cover these.
工場で予め、複数本のH形鋼をフランジが上下に位置するように併設し、
隣り合うH形鋼の下フランジ同士を、高さがH形鋼のフランジ間隔の1/2以上の波板あるいはU形鋼を介して、波板あるいはU形鋼が上に凸となるようボルト接合あるいは溶接によって繋ぎ、
且つ所定間隔で予め工場において溶接した隣り合うH形鋼の垂直補剛材同士を、横桁を介して、ボルト接合あるいは溶接によって繋ぎ、
その後、建設現場まで運搬し、
建設現場において、H形鋼の上フランジ上に、H形鋼の軸方向と直角となるよう、複数本の鉄筋をH形鋼の軸方向に所定間隔で設置し、
これらを被覆するように場所打ちコンクリートを打設することを特徴とする、形鋼を用いた合成桁橋の施工方法。
Pre-installed multiple H-shaped steel bars in the factory so that the flanges are positioned above and below,
Bolts such that the corrugated sheet or U-shaped steel protrudes upward through the corrugated sheet or U-shaped steel whose height is ½ or more of the flange interval of the H-shaped steel. Connected by welding or welding,
In addition, the vertical stiffeners of adjacent H-section steel welded in advance at a predetermined interval in the factory are connected to each other by a bolt joint or welding via a cross beam.
Then transport to the construction site,
At the construction site, on the upper flange of the H-shaped steel, a plurality of reinforcing bars are installed at predetermined intervals in the axial direction of the H-shaped steel so as to be perpendicular to the axial direction of the H-shaped steel,
A method for constructing a composite girder bridge using shaped steel, wherein cast-in-place concrete is cast so as to cover these.
JP2005211153A 2005-07-21 2005-07-21 Composite floor slab using shape steel, composite floor slab bridge or composite girder bridge and its construction method Pending JP2007023714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211153A JP2007023714A (en) 2005-07-21 2005-07-21 Composite floor slab using shape steel, composite floor slab bridge or composite girder bridge and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005211153A JP2007023714A (en) 2005-07-21 2005-07-21 Composite floor slab using shape steel, composite floor slab bridge or composite girder bridge and its construction method

Publications (1)

Publication Number Publication Date
JP2007023714A true JP2007023714A (en) 2007-02-01

Family

ID=37784842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211153A Pending JP2007023714A (en) 2005-07-21 2005-07-21 Composite floor slab using shape steel, composite floor slab bridge or composite girder bridge and its construction method

Country Status (1)

Country Link
JP (1) JP2007023714A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102278340A (en) * 2011-08-22 2011-12-14 张家港市安远钢结构有限公司 Enclosing plate connecting structure for machine room of crane
CN102418313A (en) * 2011-09-30 2012-04-18 李勇 Polycarbonate (PC) composite bridge with corrugated steel webs and construction method for PC composite bridge
CN102733313A (en) * 2012-07-17 2012-10-17 中国建筑土木建设有限公司 Cast-in-place beam built-up plate system and construction method thereof
JP2012202195A (en) * 2011-03-28 2012-10-22 Jfe Engineering Corp Girder structure, junction structure of girder structure and concrete slab, concrete slab, girder bridge and bridge
CN103243652A (en) * 2013-05-06 2013-08-14 中铁二十四局集团安徽工程有限公司 Large-span non-floor type cast-in-place beam falsework and construction method thereof
CN103774560A (en) * 2014-01-28 2014-05-07 浙江大舜公路建设有限公司 Suspension type cast-in-place template curved bridge construction method
CN105908883A (en) * 2016-06-12 2016-08-31 中国十七冶集团有限公司 Construction method for preventing upward floating of composite floor system lightweight core formwork
KR101802257B1 (en) * 2017-04-28 2017-12-28 대영스틸산업주식회사 The structure of segment plate for cable bridbe and the constructure method of cable bridge using them
CN107989059A (en) * 2017-11-01 2018-05-04 重庆建工市政交通工程有限责任公司 A kind of construction method of Cast-in-situ Beam bracket basis cushion layer structure
CN110158454A (en) * 2019-07-02 2019-08-23 叶锦华 A kind of connector for the assembled steel-concrete combined structure mixing combined bridge for steel-
CN111305090A (en) * 2020-03-17 2020-06-19 张其凤 Bridge reinforcing device and reinforcing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831322U (en) * 1981-08-25 1983-03-01
JPS60195205A (en) * 1984-03-14 1985-10-03 Kawasaki Steel Co Construction of plywood floor panel bridge
JPS63181802A (en) * 1987-01-22 1988-07-27 Nippon Kokan Kk Synthetic floor panel bridge
JPH0437612U (en) * 1990-07-24 1992-03-30
JPH05222707A (en) * 1991-02-27 1993-08-31 Miyaji Tekkosho:Kk Composite floor board bridge and construction thereof
JPH0681319A (en) * 1992-07-15 1994-03-22 Miyaji Tekkosho:Kk Synthetic floor board bridge and construction method thereof
JPH0739927Y2 (en) * 1990-10-30 1995-09-13 川崎製鉄株式会社 Hollow synthetic slab bridge
JPH11229329A (en) * 1998-02-10 1999-08-24 Kawasaki Steel Corp Constructing method for steel-concrete composite floor board bridge

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831322U (en) * 1981-08-25 1983-03-01
JPS60195205A (en) * 1984-03-14 1985-10-03 Kawasaki Steel Co Construction of plywood floor panel bridge
JPS63181802A (en) * 1987-01-22 1988-07-27 Nippon Kokan Kk Synthetic floor panel bridge
JPH0437612U (en) * 1990-07-24 1992-03-30
JPH0739927Y2 (en) * 1990-10-30 1995-09-13 川崎製鉄株式会社 Hollow synthetic slab bridge
JPH05222707A (en) * 1991-02-27 1993-08-31 Miyaji Tekkosho:Kk Composite floor board bridge and construction thereof
JPH0681319A (en) * 1992-07-15 1994-03-22 Miyaji Tekkosho:Kk Synthetic floor board bridge and construction method thereof
JPH11229329A (en) * 1998-02-10 1999-08-24 Kawasaki Steel Corp Constructing method for steel-concrete composite floor board bridge

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202195A (en) * 2011-03-28 2012-10-22 Jfe Engineering Corp Girder structure, junction structure of girder structure and concrete slab, concrete slab, girder bridge and bridge
CN102278340A (en) * 2011-08-22 2011-12-14 张家港市安远钢结构有限公司 Enclosing plate connecting structure for machine room of crane
CN102418313A (en) * 2011-09-30 2012-04-18 李勇 Polycarbonate (PC) composite bridge with corrugated steel webs and construction method for PC composite bridge
CN102418313B (en) * 2011-09-30 2014-01-29 李勇 Polycarbonate (PC) composite bridge with corrugated steel webs and construction method for PC composite bridge
CN102733313A (en) * 2012-07-17 2012-10-17 中国建筑土木建设有限公司 Cast-in-place beam built-up plate system and construction method thereof
CN102733313B (en) * 2012-07-17 2014-06-18 中国建筑土木建设有限公司 Cast-in-place beam built-up plate system and construction method thereof
CN103243652A (en) * 2013-05-06 2013-08-14 中铁二十四局集团安徽工程有限公司 Large-span non-floor type cast-in-place beam falsework and construction method thereof
CN103243652B (en) * 2013-05-06 2015-07-29 中铁二十四局集团安徽工程有限公司 A kind of large-span non-floor type cast-in-place beam falsework and construction method thereof
CN103774560A (en) * 2014-01-28 2014-05-07 浙江大舜公路建设有限公司 Suspension type cast-in-place template curved bridge construction method
CN103774560B (en) * 2014-01-28 2015-08-19 浙江大舜公路建设有限公司 The curved bridge construction engineering method of suspension type cast-in-situ template
CN105908883A (en) * 2016-06-12 2016-08-31 中国十七冶集团有限公司 Construction method for preventing upward floating of composite floor system lightweight core formwork
KR101802257B1 (en) * 2017-04-28 2017-12-28 대영스틸산업주식회사 The structure of segment plate for cable bridbe and the constructure method of cable bridge using them
CN107989059A (en) * 2017-11-01 2018-05-04 重庆建工市政交通工程有限责任公司 A kind of construction method of Cast-in-situ Beam bracket basis cushion layer structure
CN110158454A (en) * 2019-07-02 2019-08-23 叶锦华 A kind of connector for the assembled steel-concrete combined structure mixing combined bridge for steel-
CN110158454B (en) * 2019-07-02 2020-11-24 叶锦华 Connecting piece of assembled steel-concrete composite structure for steel-concrete composite bridge
CN111305090A (en) * 2020-03-17 2020-06-19 张其凤 Bridge reinforcing device and reinforcing method
CN111305090B (en) * 2020-03-17 2021-08-03 烟台大学 Bridge reinforcing device and reinforcing method

Similar Documents

Publication Publication Date Title
JP2007023714A (en) Composite floor slab using shape steel, composite floor slab bridge or composite girder bridge and its construction method
JP2008063803A (en) Composite floor slab formed of shape steel with inner rib, composite floor slab bridge, or composite girder bridge
JP4059909B2 (en) Composite panel structure and panel bridge structure and construction method of continuous composite girder bridge
KR101186062B1 (en) Connection of concrete filled steel tube column and H-shaped steel beam and constructing method of the same
JP2010101094A (en) Structure for rigidly connecting bridge pier and concrete girder together
KR101591480B1 (en) Steel Pipe Strut Connection Structure Bearing Composite Stress
JP3678831B2 (en) Steel-concrete composite floor slab bridge and its construction method
JP5053016B2 (en) Girder structure using corrugated steel web
JP2006009449A (en) Truss panel girder and precast truss panel
JP2003268719A (en) Steel-concrete composite beam and its installation method
JP5601882B2 (en) Steel seismic wall and building with the same
JP2006316580A (en) Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
KR102108335B1 (en) Composite Steel Structure with Seismic Performance Joint
KR101583401B1 (en) The continuous hybrid girder consist of concrete block and steel block which is can add prestress by gap difference between top and bottom of connection face of blocks
KR101049963B1 (en) Steel plate structure and construction method of wall-slab joint structure using same
JP4897643B2 (en) Reinforced concrete composite steel slab girder bridge
KR20190063645A (en) Connecting structure of Composite column and H-beam and manufacturing method thereof
JP2007023713A (en) Steel/concrete composite rigid-frame bridge and its construction method
KR101426155B1 (en) The hybrid rahmen structure which can add prestress on steel girder of horizontal member by gap difference of connection face between vertical member and steel girder of horizontal member
KR20170139873A (en) Coupling structure of double type for girder and column capable of reducing girder height
KR101347939B1 (en) Composite structure of corrugated steel plate web-PSC composite beam structure which combined corrugated steel plate and concrete plate with L shape steel
KR101129502B1 (en) Synthetic girder of i type
JP4293696B2 (en) Construction method of composite floor slab bridge
JP4585614B1 (en) Method for constructing synthetic steel slab bridge, ribbed steel slab, and synthetic steel slab bridge
JP5674338B2 (en) Steel shear wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A977 Report on retrieval

Effective date: 20091116

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100513

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100604

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20100625

Free format text: JAPANESE INTERMEDIATE CODE: A912