JP3678831B2 - Steel-concrete composite floor slab bridge and its construction method - Google Patents

Steel-concrete composite floor slab bridge and its construction method Download PDF

Info

Publication number
JP3678831B2
JP3678831B2 JP3172696A JP3172696A JP3678831B2 JP 3678831 B2 JP3678831 B2 JP 3678831B2 JP 3172696 A JP3172696 A JP 3172696A JP 3172696 A JP3172696 A JP 3172696A JP 3678831 B2 JP3678831 B2 JP 3678831B2
Authority
JP
Japan
Prior art keywords
steel
plate
sheet pile
concrete
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3172696A
Other languages
Japanese (ja)
Other versions
JPH09221717A (en
Inventor
豊 川井
恭太郎 神田
Original Assignee
川鉄橋梁鉄構株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川鉄橋梁鉄構株式会社 filed Critical 川鉄橋梁鉄構株式会社
Priority to JP3172696A priority Critical patent/JP3678831B2/en
Publication of JPH09221717A publication Critical patent/JPH09221717A/en
Application granted granted Critical
Publication of JP3678831B2 publication Critical patent/JP3678831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、道路橋や鉄道橋などに用いられる鋼−コンクリート合成床版橋およびその施工方法に関する。
【0002】
【従来の技術】
都市内等の桁下空間の利用に制限を受ける道路橋や鉄道橋等においては、桁高さをできるだけ小さくする必要があることから、スラブ作用を主構造としての強度部材とする床版橋(スラブ橋)が用いられる。この床版橋には、従来、例えばRCスラブ橋やRCホロースラブ橋、PCスラブ橋等のコンクリート系の構造と、鉄筋やPC鋼材の代わりに鋼板や形鋼を用いた鋼−コンクリート合成床版橋の2種類の技術が用いられている。
【0003】
コンクリート系の床版橋は、例えば図4に示すように、全体がコンクリート1と鉄筋2とで構成されているため、必然的に自重(死荷重)が大きくなることから、桁高さ(床版厚さ)を制限した場合には鉄筋2の配置上の関係からその支間長(スパン)に制限があることや、コンクリート打設時に型枠や支保工が必要となり工事中の桁下空間の占有が一時的に必要となる。
【0004】
これに対し、鋼−コンクリート合成床版橋の場合は、例えば図5に示すように、鋼製底板3に鋼板を、鋼製主桁4にH形鋼あるいはCT形鋼をそれぞれ用い、両側端に側板5を取り付けてコンクリート6を打設する構造であるから、側板5はコンクリート打設時には型枠ならびに支保工となり、コンクリート硬化後は鉄筋に代わる強度部材として利用できるので、現地施工性にすぐれた経済的な構造であり、これまで鋼材部の構成を変えた種々の構造が提案され実用化されている。なお、図中の7は横桁である。
【0005】
しかし、このような従来技術による鋼−コンクリート合成床版橋では、鋼製底板3や鋼製主桁4の鋼材部に鋼板やH形鋼あるいはCT形鋼を組み合わせることにより、鋼材部のみで橋軸方向(主桁)ならびに橋軸直角方向(横桁)に剛性をもたせる必要があることから、工場で溶接等によって集成した構造部材が用いられており、その加工のための工数や現地での接合作業の必要性から、経済的にコンクリート系の床版橋に劣るという欠点がある。
【0006】
【発明が解決しようとする課題】
本発明は、上記のような鋼−コンクリート合成床版橋の従来技術が有するコスト面での課題を解決し、コンクリート系合成床版橋の経済性を兼ね備えた鋼−コンクリート合成床版橋およびその施工方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、鋼矢板(11)を底板とし、H形鋼またはCT形鋼を主桁部材(13)として両者を溶接またはボルト接合により一体化した橋軸方向部材(14)を複数順次爪部にて接合した鋼製パネル(21)と、半割りの鋼矢板(15)と側板(16)とを溶接またはボルト接合により一体化した枠体部材(17)とが前記爪部にて接合し、前記主桁部材(13)および側板(16)のウエブにPC鋼材(18)が貫通して装着され、前記底板の上方に場所打ちコンクリート(20)が打設されてなることを特徴とする鋼−コンクリート合成床版橋である
【0008】
なお、前記鋼矢板(11)に直線形あるいはU形またはZ形の鋼矢板を用いてもよい。
た、本発明は、工場において底板とされる鋼矢板(11)のウエブに所定の剛性を有するH形鋼あるいはCT形鋼の主桁部材(13)を溶接またはボルト接合により一体化して橋軸方向部材(14)を、また半割りの鋼矢板(15)に側板(16)を溶接またはボルト接合によりL字状に一体化して枠体部材(17)をそれぞれ製作する工程と、現地において前記橋軸方向部材(14)を複数順次爪部にて接合して所要の幅員を有する鋼製パネル(21)を形成した後、その両側端に枠体部材(17)を結合する工程と、前記鋼製パネル(21)を橋軸直角方向に拡幅した後、側板(16)と主桁部材(13)のウエブ面にPC鋼材(18)を貫通して装着する工程と、場所打ちコンクリート(20)を打設する工程と、からなることを特徴とする鋼−コンクリート合成床版橋の施工方法である。
【0009】
なお、前記場所打ちコンクリート(20)を打設する工程の前に、前記側板(16)の間にコンクリート製の横桁(19)を挿入しプレキャストする工程を付加してもよい。
【0010】
【発明の実施の形態】
以下に、本発明の好適な実施の形態について、図面を参照して詳しく説明する。
図1は本発明の構成の一例を示す部分斜視図である。この図において、11は両端部に嵌合自在な爪部12を設けた直線形鋼矢板である。13はH形鋼あるいはCT形鋼の主桁部材であり、主桁部材13を直線形鋼矢板11のウエブに溶接またはボルト接合により一体化することにより設計上必要な剛性が発揮する橋軸方向部材14が構成される。15は半割りされた直線形鋼矢板、16は側板であり、側板16を直線形鋼矢板15のウエブに溶接またはボルト接合により一体化することにより枠体部材17が構成される。18はアンボンドのPC鋼材で、主桁部材13と側板16のウエブに所定の間隔で貫通して設けられる。19はプレキャストコンクリート製の横桁で、PC鋼材18を緊張させる効果を有する。20は場所打ちコンクリートである。
【0011】
つぎに、その組み立て工程について、図2を用いて説明する。
▲1▼まず工場において、図2(a) に示すように、直線形鋼矢板11のウエブに設計上必要な剛性を有するH形鋼あるいはCT形鋼の主桁部材13を溶接またはボルト接合により一体化して橋軸方向部材14を製作する。また、直線形鋼矢板15に側板16を溶接またはボルト接合により一体化して枠体部材17を製作する。なお、主桁部材13および側板16のそれぞれのウエブ面にはPC鋼材18を貫通する孔部を所定の間隔で例えば上下に2個開けておく。
▲2▼つぎに、これらの部材を現地に運搬し、現地において図2(b) に示すように、複数の橋軸方向部材14のそれぞれの爪部12を順次接合することにより必要な幅員を有する鋼製パネル21を形成する。
▲3▼図2(c) に示すように、鋼製パネル21の両側端面に枠体部材17の直線形鋼矢板15を接合する。これによって、場所打ちコンクリート打設時の漏れを止めることができる。
▲4▼引き続き、鋼製パネル21を爪部12の接合部の遊びが最大となるように橋軸直角方向に拡幅した後、図2(d) に示すように、側板16と主桁部材13のウエブ面の孔部にPC鋼材18を挿入し、横桁19をプレキャストする。
▲5▼図2(e) に示すように、場所打ちコンクリート20を打設する。
【0012】
なお、上記の拡幅作業は、PC鋼材18の緊張に際し底板である直線形鋼矢板11, 15に緊張力が入らず、場所打ちコンクリート20へのプレストレス導入の効率を上げるためである。これによって、場所打ちコンクリート20の硬化後PC鋼材18を緊張(横締め作業)し、橋軸直角方向の一体化と剛性を確保することができる。なお、上記の組み立て工程において、ステップ▲4▼でのプレキャストコンクリート製の横桁19のプレキャストを省略することも可能である。
【0013】
このような組み立て工程を用いることにより、横桁の製作ならびに現地接合の作業をなくすことができる。また、従来の合成床版橋の技術では底板に鋼板を用いるため、PC鋼材で横締めしても緊張力の大半が鋼材に導入され、場所打ちコンクリートへの緊張力の硬化が薄れるのであるが、これに対し本発明では、底板に用いる直線形鋼矢板の爪接合部に遊びがあるため、底板には緊張力が導入されずPC鋼材の緊張力のほとんどが場所打ちコンクリートに導入されプレストレスの効率が高く保持できるのである。
【0014】
さらに、本発明の合成床版橋の場合は、工場製作された大ブロックを運搬せざるを得ない従来例に対し、必要長さの直線形鋼矢板を運搬すればよいので、運搬コストの節減も可能である。
なお、上記の例では底板部に直線形鋼矢板11を用いるとして説明したが、本発明はこれに限るものではなく、例えばU形鋼矢板やZ形鋼矢板を用いても同様の作用効果を奏することが可能である。すなわち、図3(a) ,(b) は2種類のU形鋼矢板11A,11Bを組み合わせた例を示す斜視図であるが、これによって底板部に波板形状を与えることができるから、コンクリートの打設量を減らし死荷重の低減とコスト低減を図ることができる。なお、橋軸方向部材には、図3(a) に示すように、工場において予めU形鋼矢板11AにH形鋼の主桁部材13Aを溶接またはボルト接合にて取り付けて橋軸方向の剛性を高める橋軸方向部材14Aと、図3(b) に示すように、U形鋼矢板11BとCT形鋼の主桁部材13Bによる底板部機能のみを期待する橋軸方向部材14Bの2通りがあり、設計上の所要剛性に応じてその配置を決めるようにすればよい。
【0015】
【発明の効果】
以上説明したように、本発明によれば、直線形鋼矢板と主桁部材とによる橋軸方向部材と半割りの直線形鋼矢板と側板とによる枠体部材とを工場で予め組み立てた後、建設現場において直線形鋼矢板の爪部同士を接合して一体化し、その後PC鋼材を配置して場所打ちコンクリートを打設し、場所打ちコンクリートの硬化後においてPC鋼材に緊張力を与えて、橋軸直角方向の剛性を確保することが可能となるので、横桁の製作ならびに現地接合の作業をなくすことができ、また運搬コストの節減も可能である。
【図面の簡単な説明】
【図1】本発明の一実施例の構成を示す部分斜視図である。
【図2】 (a) 〜(e) は本発明の合成床版橋の組み立て工程の説明図である。
【図3】 (a) ,(b) は本発明の他の実施例を示す部分斜視図である。
【図4】コンクリート系床版橋の従来例を示す部分斜視図である。
【図5】鋼−コンクリート合成床版橋の従来例を示す斜視図である。
【符号の説明】
11 直線形鋼矢板(鋼矢板)
11A,11B U形鋼矢板
12 爪部
13,13A,13B 主桁部材
14,14A,14B 橋軸方向部材
15 直線形鋼矢板(鋼矢板)
15A U形鋼矢板
16 側板
17,17A 枠体部材
18 PC鋼材
19 横桁
20 場所打ちコンクリート
21 鋼製パネル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel-concrete composite floor slab bridge used for road bridges, railway bridges, and the like, and a construction method thereof.
[0002]
[Prior art]
In road bridges and railway bridges that are restricted by the use of under-girder spaces in cities, etc., it is necessary to make the girder height as small as possible. Slab bridge) is used. Conventionally, for this floor slab bridge, for example, an RC slab bridge, an RC hollows slab bridge, a PC slab bridge, etc., a concrete structure, and a steel-concrete composite floor slab bridge using steel plates or section steel instead of reinforcing bars and PC steel materials are used. Two types of techniques are used.
[0003]
For example, as shown in FIG. 4, the concrete floor slab bridge is composed entirely of concrete 1 and rebar 2, so the weight (dead load) inevitably increases. When the plate thickness is limited, there is a limitation on the span length (span) due to the arrangement of the reinforcing bars 2, and there is a need for formwork and support work when placing concrete. Occupancy is needed temporarily.
[0004]
On the other hand, in the case of a steel-concrete composite floor slab bridge, for example, as shown in FIG. 5, a steel plate is used for the steel bottom plate 3, and H-shaped steel or CT-shaped steel is used for the steel main girder 4, respectively. Since the side plate 5 is attached to the concrete 6 and the concrete 6 is placed, the side plate 5 becomes a formwork and a supporting work when the concrete is placed, and after the concrete is hardened, it can be used as a strength member instead of a reinforcing bar, so it is excellent in local workability. So far, various structures have been proposed and put into practical use in which the structure of the steel part is changed. In the figure, 7 is a horizontal beam.
[0005]
However, in such a conventional steel-concrete composite floor slab bridge, a steel plate, an H-shaped steel, or a CT-shaped steel is combined with a steel material portion of the steel bottom plate 3 or the steel main girder 4 so that only the steel material portion is bridged. Since it is necessary to provide rigidity in the axial direction (main girder) and the direction perpendicular to the bridge axis (horizontal girder), structural members assembled by welding, etc. are used at the factory. Due to the necessity of joining work, there is a disadvantage that it is economically inferior to a concrete type slab bridge.
[0006]
[Problems to be solved by the invention]
The present invention solves the cost problems of the conventional technology of the steel-concrete composite floor slab bridge as described above, and combines the economical efficiency of the concrete-based composite floor slab bridge and its The purpose is to provide a construction method.
[0007]
[Means for Solving the Problems]
The present invention is a steel sheet pile (11) and a bottom plate, a plurality sequentially claw portions bridges axial member which is integrated by welding or bolting the two (14) of the H-shaped steel or CT shaped steel as main girder member (13) joining the contact combined steel panels (21) at the half-split steel sheet pile (15) and the side plate (16) frame members are integrated by welding or bolting and (17) of the claw portion at PC steel material (18) is mounted through the web of the main girder member (13) and side plate (16), and cast-in-place concrete (20) is placed above the bottom plate. It is a steel-concrete composite deck slab .
[0008]
The steel sheet pile (11) may be a linear, U-shaped or Z-shaped steel sheet pile.
Also, the present invention is integrated by welding or bolting the main girder member of H-shaped steel or CT section steel (13) having a predetermined stiffness to the web of the steel sheet pile (11) which is the bottom plate in a factory bridge The process of manufacturing the frame member (17) by integrating the axial member (14), the side plate (16) to the half steel sheet pile (15) by welding or bolt joining , after contact engaged by said bridge axial member (14) at a plurality sequentially claw portions to form a steel panel (21) having the required width, and bonding the frame member (17) at its both side ends The steel panel (21) is widened in the direction perpendicular to the bridge axis, and then the PC plate (18) is inserted through the web surface of the side plate (16) and the main girder member (13), and cast-in-place concrete And (20) a step of placing the steel-concrete composite deck slab bridge.
[0009]
Note that a step of inserting a concrete cross beam (19) between the side plates (16) and precasting may be added before the step of placing the cast-in-place concrete (20).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a partial perspective view showing an example of the configuration of the present invention. In this figure, reference numeral 11 denotes a linear steel sheet pile having claw portions 12 that can be fitted to both ends. 13 is a main girder member of H-section steel or CT-section steel, and the main girder member 13 is integrated with the web of the linear steel sheet pile 11 by welding or bolt joining, and the bridge axial direction that exhibits the necessary design rigidity Member 14 is configured. 15 is a half-divided linear steel sheet pile, 16 is a side plate, and the frame member 17 is configured by integrating the side plate 16 to the web of the linear steel sheet pile 15 by welding or bolt joining. 18 is an unbonded PC steel material, which is provided through the web of the main girder member 13 and the side plate 16 at a predetermined interval. 19 is a precast concrete cross beam, which has the effect of tensioning the PC steel 18. 20 is cast-in-place concrete.
[0011]
Next, the assembly process will be described with reference to FIG.
(1) First, at the factory, as shown in Fig. 2 (a), the main girder member 13 of H-shaped steel or CT-shaped steel having the rigidity required for design is welded or bolted to the web of the linear steel sheet pile 11. The bridge axial direction member 14 is manufactured by integration. Further, the frame member 17 is manufactured by integrating the side plate 16 with the linear steel sheet pile 15 by welding or bolt joining. Note that, for example, two holes are formed on the web surfaces of the main girder member 13 and the side plate 16 so as to penetrate the PC steel material 18 at predetermined intervals.
(2) Next, these members are transported to the site, and as shown in Fig. 2 (b), the necessary width is increased by sequentially joining the claws 12 of the plurality of bridge axial members 14 as shown in Fig. 2 (b). The steel panel 21 is formed.
(3) As shown in FIG. 2 (c), the straight steel sheet piles 15 of the frame member 17 are joined to both end faces of the steel panel 21. Thereby, the leakage at the time of cast-in-place concrete can be stopped.
(4) Subsequently, after the steel panel 21 is widened in the direction perpendicular to the bridge axis so that the play of the joint portion of the claw portion 12 is maximized, as shown in FIG. 2 (d), the side plate 16 and the main girder member 13 are expanded. The PC steel material 18 is inserted into the hole portion of the web surface, and the cross beam 19 is precast.
(5) Cast in place concrete 20 as shown in FIG. 2 (e).
[0012]
The above-mentioned widening operation is for increasing the efficiency of introducing prestress into the cast-in-place concrete 20 because no tension is applied to the straight steel sheet piles 11 and 15 which are the bottom plates when the PC steel material 18 is tensioned. As a result, the PC steel material 18 can be tensioned (laterally tightened) after the cast-in-place concrete 20 is hardened, and integration and rigidity in the direction perpendicular to the bridge axis can be ensured. In the above assembly process, it is possible to omit the precasting of the precast concrete cross beam 19 in step (4).
[0013]
By using such an assembly process, it is possible to eliminate the production of cross beams and the work of on-site joining. In addition, since the conventional composite floor slab bridge technology uses a steel plate for the bottom plate, most of the tension force is introduced into the steel material even if it is laterally tightened with PC steel material, and the hardening of the tension force on cast-in-place concrete is diminished. On the other hand, in the present invention, since there is play in the claw joint portion of the linear steel sheet pile used for the bottom plate, no tension force is introduced into the bottom plate, and most of the tension force of the PC steel material is introduced into the cast-in-place concrete. It is possible to maintain high efficiency.
[0014]
Furthermore, in the case of the composite floor slab bridge of the present invention, it is only necessary to transport a linear steel sheet pile of the required length compared to the conventional example in which a large block manufactured at the factory has to be transported. Is also possible.
In the above example, the linear steel sheet pile 11 is used for the bottom plate portion. However, the present invention is not limited to this, and the same effect can be obtained by using, for example, a U-shaped steel sheet pile or a Z-shaped steel sheet pile. It is possible to play. 3 (a) and 3 (b) are perspective views showing an example in which two types of U-shaped steel sheet piles 11A and 11B are combined. By this, a corrugated plate shape can be given to the bottom plate portion. Can reduce the dead load and cost. As shown in Fig. 3 (a), the bridge girder member is attached to the U-shaped steel sheet pile 11A by welding or bolting in advance at the factory. As shown in FIG. 3 (b), there are two types of bridge axial members 14B that expect only the bottom plate function by the U-shaped steel sheet pile 11B and the CT beam main girder member 13B. Yes, the arrangement may be determined according to the required design rigidity.
[0015]
【The invention's effect】
As described above, according to the present invention, after pre-assembling the frame member by the bridge axial direction member by the linear steel sheet pile and the main girder member and the half linear steel sheet pile and the side plate at the factory, At the construction site, the claws of the straight steel sheet piles are joined and integrated, and then PC steel is placed and cast-in-place concrete is cast. After cast-in-place concrete is hardened, tension is applied to the PC steel, Since the rigidity in the direction perpendicular to the axis can be secured, it is possible to eliminate the production of cross beams and the work of on-site joining, and the transportation cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a partial perspective view showing a configuration of an embodiment of the present invention.
[Fig. 2] (a) to (e) are explanatory views of an assembly process of the composite floor slab bridge of the present invention.
3 (a) and 3 (b) are partial perspective views showing another embodiment of the present invention.
FIG. 4 is a partial perspective view showing a conventional example of a concrete floor slab bridge.
FIG. 5 is a perspective view showing a conventional example of a steel-concrete composite floor slab bridge.
[Explanation of symbols]
11 Straight steel sheet pile (steel sheet pile)
11A, 11B U-shaped steel sheet pile
12 Nail
13, 13A, 13B Main girder member
14, 14A, 14B Bridge axial member
15 Straight steel sheet pile (steel sheet pile)
15A U-shaped sheet pile
16 Side plate
17, 17A Frame member
18 PC steel
19 Horizontal girder
20 Cast-in-place concrete
21 Steel panel

Claims (4)

  1. 鋼矢板(11)を底板とし、H形鋼またはCT形鋼を主桁部材(13)として両者を溶接またはボルト接合により一体化した橋軸方向部材(14)を複数順次爪部にて接合した鋼製パネル(21)と、半割りの鋼矢板(15)と側板(16)とを溶接またはボルト接合により一体化した枠体部材(17)とが前記爪部にて接合し、前記主桁部材(13)および側板(16)のウエブにPC鋼材(18)が貫通して装着され、前記底板の上方に場所打ちコンクリート(20)が打設されてなることを特徴とする鋼−コンクリート合成床版橋。Steel sheet pile (11) and a bottom plate, junction main girder member H-beams or CT section steel (13) bridge axis direction member are integrated by welding or bolts joined together as (14) at a plurality sequentially claw portions The steel panel (21), and the frame member (17) in which the half steel sheet pile (15) and the side plate (16) are integrated by welding or bolt joining are joined at the claw portion , A steel-concrete characterized in that a PC steel material (18) is inserted through the web of the girder member (13) and the side plate (16) and the cast-in-place concrete (20) is placed above the bottom plate. Synthetic floor slab bridge.
  2. 前記鋼矢板(11)が直線形あるいはU形またはZ形の鋼矢板である請求項1に記載の鋼−コンクリート合成床版橋。The steel-concrete composite deck slab bridge according to claim 1, wherein the steel sheet pile (11) is a straight, U-shaped or Z-shaped steel sheet pile.
  3. 工場において底板とされる鋼矢板(11)のウエブに所定の剛性を有するH形鋼あるいはCT形鋼の主桁部材(13)を溶接またはボルト接合により一体化して橋軸方向部材(14)を、また半割りの鋼矢板(15)に側板(16)を溶接またはボルト接合によりL字状に一体化して枠体部材(17)をそれぞれ製作する工程と、現地において前記橋軸方向部材(14)を複数順次爪部にて接合して所要の幅員を有する鋼製パネル(21)を形成した後、その両側端に枠体部材(17)を結合する工程と、前記鋼製パネル(21)を橋軸直角方向に拡幅した後、側板(16)と主桁部材(13)のウエブ面にPC鋼材(18)を貫通して装着する工程と、場所打ちコンクリート(20)を打設する工程と、からなることを特徴とする鋼−コンクリート合成床版橋の施工方法。Bottom plate and is the steel sheet pile (11) webs in the bridge axis direction members integrally by welding or bolted main beam member (13) of the H-shaped steel or CT shape steel having a predetermined rigidity of the factory (14) In addition, the frame plate member (17) is manufactured by integrating the side plate (16) to the half-cut steel sheet pile (15) by welding or bolt joining, and the bridge axial direction member (14 ) after contact engagement to form a steel panel (21) having the required width a at a plurality sequentially claw portions, and bonding the frame member (17) at its both side ends, the steel panels (21 ) Is widened in the direction perpendicular to the bridge axis, and then the PC steel (18) is inserted through the web surface of the side plate (16) and main girder member (13), and cast-in-place concrete (20) is cast. And a method for constructing a steel-concrete composite deck slab bridge.
  4. 前記場所打ちコンクリート(20)を打設する工程の前に、前記側板(16)の間にコンクリート製の横桁(19)を挿入しプレキャストする工程を付加することを特徴とする請求項3記載の鋼−コンクリート合成床版橋の施工方法。  4. A step of inserting and precasting a concrete cross beam (19) between the side plates (16) is added before the step of placing the cast-in-place concrete (20). Method of steel-concrete composite floor slab bridge.
JP3172696A 1996-02-20 1996-02-20 Steel-concrete composite floor slab bridge and its construction method Expired - Fee Related JP3678831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3172696A JP3678831B2 (en) 1996-02-20 1996-02-20 Steel-concrete composite floor slab bridge and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3172696A JP3678831B2 (en) 1996-02-20 1996-02-20 Steel-concrete composite floor slab bridge and its construction method

Publications (2)

Publication Number Publication Date
JPH09221717A JPH09221717A (en) 1997-08-26
JP3678831B2 true JP3678831B2 (en) 2005-08-03

Family

ID=12339054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3172696A Expired - Fee Related JP3678831B2 (en) 1996-02-20 1996-02-20 Steel-concrete composite floor slab bridge and its construction method

Country Status (1)

Country Link
JP (1) JP3678831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109537459A (en) * 2018-11-29 2019-03-29 中铁四局集团第二工程有限公司 A kind of cast-in-situ box girder skew web plate mould bases integral construction method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3708495B2 (en) 2002-03-26 2005-10-19 朝日エンヂニヤリング株式会社 Structure of floor slab bridge
KR100685725B1 (en) * 2003-09-05 2007-02-23 아사히 엔지니어링 가부시키가이샤 Structure of floor slab bridge
JP4519023B2 (en) * 2005-07-21 2010-08-04 Jfeエンジニアリング株式会社 Steel / concrete composite rigid frame bridge and its construction method
KR100693872B1 (en) * 2005-10-17 2007-03-12 한국건설기술연구원 Connection structure and construction method for steel and concrete composite deck with a blocked out
KR100777432B1 (en) * 2006-04-27 2007-11-21 주식회사 포스코 Double Composite Bridge using Steel Composite Structure
JP2008063803A (en) * 2006-09-07 2008-03-21 Jfe Engineering Kk Composite floor slab formed of shape steel with inner rib, composite floor slab bridge, or composite girder bridge
JP5214902B2 (en) * 2007-04-06 2013-06-19 新日鐵住金株式会社 Steel / concrete composite slabs and composite slab bridges using steel sheet piles
KR100775936B1 (en) * 2007-08-02 2007-11-15 주식회사 지구코퍼레이션 Lining board and method manufacturing of the same
JP5200825B2 (en) * 2008-09-29 2013-06-05 Jfeエンジニアリング株式会社 Construction method of arch rib of concrete arch bridge
KR101004617B1 (en) * 2010-08-12 2011-01-03 이엔이건설주식회사 Steel slab pannel and composited bridge construction method using temporary steel reinforcing rib and concrete reinforcing rib
KR101004618B1 (en) * 2010-08-12 2011-01-03 이엔이건설주식회사 Composite girder bridge construction method using temporary steel lateral rib and permanent concrete lateral rib
JP5260685B2 (en) * 2011-01-07 2013-08-14 日本車輌製造株式会社 Moving roof equipment for placing composite floor slab concrete
CN106869032B (en) * 2017-02-27 2018-12-07 中铁十九局集团有限公司 A kind of bridge bearing platform constructing tie beam method
CN109577190B (en) * 2018-11-21 2020-11-10 许峰 Prefabricated bridge plate
CN109577191B (en) * 2018-11-21 2020-11-10 许峰 Prefabricated bridge plate based on corrugated steel plate
CN109577192B (en) * 2018-11-21 2020-11-10 许峰 Prefabricated bridge plate with built-in steel reinforcement framework
CN111794074A (en) * 2020-07-07 2020-10-20 浙江华东工程咨询有限公司 Arch bridge concrete beam and beam forming method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109537459A (en) * 2018-11-29 2019-03-29 中铁四局集团第二工程有限公司 A kind of cast-in-situ box girder skew web plate mould bases integral construction method

Also Published As

Publication number Publication date
JPH09221717A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
JP3678831B2 (en) Steel-concrete composite floor slab bridge and its construction method
JP4414834B2 (en) Construction method of earthquake-resistant wall
KR20060046151A (en) Precast composition i-beam with concrete panel and corrugated steel web girder
JP2007023714A (en) Composite floor slab using shape steel, composite floor slab bridge or composite girder bridge and its construction method
JP2005256341A (en) Corrugated steel-plate web u component bridge
JP2006009449A (en) Truss panel girder and precast truss panel
JP5053016B2 (en) Girder structure using corrugated steel web
JP2008063803A (en) Composite floor slab formed of shape steel with inner rib, composite floor slab bridge, or composite girder bridge
JP2000319816A (en) Rigid connection structure of upper and lower composite members
CA2023198C (en) Composite girder construction and method of making same
KR101270733B1 (en) Prestressed Concrete Box Girder Integrated with Steel Deck and Constructing Method of Bridge using Such Girder
JP2002188120A (en) Joining structure of corrugated steel plate web beam
JP3410368B2 (en) Connection method of corrugated steel web girder
JP2750556B2 (en) Manufacturing method of prestressed concrete girder
JPH11229329A (en) Constructing method for steel-concrete composite floor board bridge
KR100622452B1 (en) Multi-H section steel girder compounded part
JPH11148110A (en) Continuous girder bridge
JP3682521B2 (en) Structure of two-stage main girder composite floor slab bridge
JP2006183286A (en) Connection structure of corrugated steel web for corrugated steel web u-shaped component bridge
KR20080004752U (en) Composite bridge
JP2006169730A (en) Concrete bridge girder and method of forming the same
JP2000064222A (en) Elevated bridge
JPH08302619A (en) Joint structure for composite members
JP3950747B2 (en) Bridge girder
JP3437785B2 (en) Corrugated steel web girder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees