WO2019214422A1 - 从米糠油脱臭馏出物中提取天然维生素e的方法 - Google Patents

从米糠油脱臭馏出物中提取天然维生素e的方法 Download PDF

Info

Publication number
WO2019214422A1
WO2019214422A1 PCT/CN2019/083500 CN2019083500W WO2019214422A1 WO 2019214422 A1 WO2019214422 A1 WO 2019214422A1 CN 2019083500 W CN2019083500 W CN 2019083500W WO 2019214422 A1 WO2019214422 A1 WO 2019214422A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice bran
natural vitamin
bran oil
lipase
deodorized distillate
Prior art date
Application number
PCT/CN2019/083500
Other languages
English (en)
French (fr)
Inventor
魏国华
孙海辉
谢刚
熊志华
彭莉莉
廖英俊
张文亮
欧阳正阶
Original Assignee
宜春大海龟生命科学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宜春大海龟生命科学有限公司 filed Critical 宜春大海龟生命科学有限公司
Publication of WO2019214422A1 publication Critical patent/WO2019214422A1/zh
Priority to ZA2020/06954A priority Critical patent/ZA202006954B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/70Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with two hydrocarbon radicals attached in position 2 and elements other than carbon and hydrogen in position 6
    • C07D311/723,4-Dihydro derivatives having in position 2 at least one methyl radical and in position 6 one oxygen atom, e.g. tocopherols

Definitions

  • the present application relates to the field of biochemical extraction technology, and in particular to a method for extracting natural vitamin E from rice bran oil deodorized distillate.
  • Natural Vitamin E (Vitamin E, VE for short), also known as anti-fertility vitamin, is a general term for tocopherols and tocotrienols, widely found in animal and vegetable fats, organs, vegetable oils and chloroplasts. Natural vitamin E is a natural antioxidant that protects body tissues from oxidation and is an effective anti-tumor agent. Among them, biotrienol has superior physiological functions in terms of antioxidative properties, inhibition of cholesterol synthesis, inhibition of tumor cell growth, improvement of atherosclerosis and prevention of cardiovascular diseases.
  • the content of natural vitamin E in the deodorized distillate of vegetable oil can reach 3-10%, especially the deodorized distillate of soybean oil has the highest natural vitamin E content, and the resource is also the largest, and the raw materials are widely used. Therefore, at present, most of the manufacturers use soybean oil deodorized distillate as raw material to extract natural vitamin E, but the deodorized distillate of soybean, rapeseed, corn and other fats and fats only has tocopherol and no tocotrienol, which cannot be used as extracting fertility three. A raw material for phenol.
  • tocotrienols The natural source of tocotrienols is very limited, and it is unlikely that a large amount of tocotrienols will be ingested in normal foods.
  • Three commercial sources of tocotrienols currently include: palm oil, rice bran oil deodorized distillate, and carmine oleoresin. Among them, palm oil contains 600-1000ppm of tocol, and its deodorized distillate contains about 0.1-2% of natural vitamin E, which is the most reliable commercial source of tocotrienol.
  • palm oil production exceeds 20 million tons per year, and it is steadily increasing every year, and resources are highly concentrated, mainly in Malaysia and Indonesia.
  • rice bran oil deodorized distillate Another commercial source of tocotrienols is rice bran oil deodorized distillate. It is estimated that global rice bran oil production is about 80-100 million tons, mainly distributed in major rice producing countries such as China, India and Thailand in Asia. Due to the low production of palm oil in China, the extraction of tocotrienol from palm oil deodorized distillate has no resource advantage, and rice bran oil has been vigorously developed in recent years. In 2012, more than 9,788 large-scale rice processing enterprises in China produced rice, while rice bran production reached 13.31 million tons, exceeding China's 2012 soybean production of 13.05 million tons. Currently limited by conditions, although the utilization rate of rice bran is low, there are also 300,000 tons of rice bran oil production per year, and it is increasing year by year. Therefore, the extraction of natural vitamin E derived from rice bran, especially in China, has a good raw material advantage.
  • the difficulty in extracting tocotrienol from natural vitamin E is that, on the one hand, the plant resources containing tocotrienol are limited (a few oil crops such as rice bran oil, palm oil and barley oil) and the content is low, and the extraction is difficult; On the one hand, tocotrienols contain double bonds, which are more susceptible to oxidation loss than tocopherols, and the extraction conditions are harsh.
  • the main process of industrial extraction of natural vitamin E is: using acidification, alkali transesterification and other pretreatment, the fatty acid, glyceride and sterol ester components in the vegetable oil deodorized distillate are converted into fatty acid methyl ester, glycerin and free
  • the sterols are used to broaden the difference in the properties of the components, and then the corresponding separation and extraction means, such as molecular distillation, high vacuum distillation, extraction, ion exchange or silica gel chromatography, are utilized by utilizing the differences in physical and chemical properties of the components.
  • the process of purifying natural vitamin E from vegetable oil deodorized distillate by using strong acid and strong alkali has the disadvantages of cumbersome processes, poor product quality, large amount of waste water, and high labor intensity.
  • the purpose of the present application is to provide a method for extracting natural vitamin E from rice bran oil deodorized distillate to alleviate the prior art process for purifying natural vitamin E from vegetable oil deodorized distillate by using strong acid and strong alkali.
  • the process is cumbersome, the product quality is poor, a large amount of waste water and labor intensity are generated, and the technical effect of the tocotrienol extraction effect is poor.
  • the object of the present application also includes providing the natural vitamin E prepared by the above method.
  • the present application provides a method for extracting natural vitamin E from rice bran oil deodorized distillate. First, high-vacuum continuous distillation technology is used to remove free fatty acid, and then lipase is used for esterification reaction, and finally purified and purified to obtain natural vitamin E.
  • the step of removing the free fatty acid by the high-vacuum continuous distillation technology comprises: introducing a rice blast oil deodorized distillate pretreated by a falling film evaporator into a rectification column to collect a light component free fatty acid;
  • the conditions for pretreatment of the falling film evaporator include: a system vacuum of 10-1000 Pa and a temperature of 160-220 °C.
  • the rectification column is a falling film reboiling rectification column.
  • the step of performing the esterification reaction of the lipase comprises: adding a lipase to the material as a catalyst and esterifying the lower alcohol to convert the remaining free fatty acids, glycerides and sterol esters into fatty acids in the material.
  • the lower alcohol comprises methanol or ethanol.
  • the lipase is an immobilized lipase.
  • the lipase is derived from one or more of Rhizopus, Candida, and Aspergillus niger.
  • the esterification reaction is carried out at a temperature of from 40 to 60 ° C for a period of from 12 to 48 hours.
  • the low carbon alcohol is added in an amount of 10% to 30% by mass of the rice bran oil deodorized distillate.
  • the lipase is added in an amount of 0.5% to 10% by mass of the rice bran oil deodorized distillate.
  • the separating and purifying comprises the steps of: centrifuging the mixture after the fatty acid esterification reaction, recovering the lipase, then recovering the excess of the lower alcohol under reduced pressure, and finally washing the glycerol by water washing;
  • the temperature of the water washing is 70-90 °C.
  • the number of times of washing is 1-2 times.
  • the mixture after washing with water to remove glycerol is subjected to cooling crystallization and pressure filtration to remove sterol.
  • the step of cooling crystallization and pressure filtration to remove sterol comprises: cooling the crystallization of the mixture after the fatty acid esterification reaction treatment, and filtering and removing the sterol after 6-10 hours.
  • the filtrate obtained by pressure filtration to remove sterol is degassed and then separated into single or multi-stage molecular distillation to obtain the natural vitamin E;
  • the step of the single-stage molecular distillation comprises: collecting and removing the light component fatty acid alkyl ester in a single-stage molecular still, at a temperature of 140-180 ° C and a vacuum of 10-100 Pa, to obtain a recombinant natural vitamin E concentrate. .
  • the step of multi-stage molecular distillation further comprises: after obtaining the heavy component natural vitamin E concentrate, collecting the light component natural vitamin E after raising the temperature to 210-250 ° C and the vacuum being 1-20 Pa. .
  • the present application finally provides the natural vitamin E prepared by the above method.
  • the beneficial effects of the present application may include:
  • the application provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, which comprises the following steps: removing high-vacuum continuous distillation technology to remove free fatty acid, and then using lipase to carry out esterification reaction, and finally separating and purifying to obtain natural vitamin.
  • the method firstly uses high vacuum distillation to remove most of the free fatty acids in the rice bran oil deodorized distillate, reduces the amount of subsequent enzymatic esterification treatment, and then uses the lipase instead of the conventional strong acid and strong base as a catalyst to high vacuum distillation.
  • the components such as free fatty acid, triglyceride and sterol ester remaining in the deodorized distillate of rice bran oil are converted into components such as fatty acid monoester, glycerin and free plant sterol, and finally, natural vitamin E derived from rice bran oil is prepared.
  • the method has mild reaction conditions, and the fatty acid and the neutral oil in the rice bran oil deodorized distillate can be converted into a fatty acid monoester under normal temperature and normal pressure, and chemical reagents such as strong acid and alkali are avoided.
  • most of the free fatty acids are removed by high vacuum distillation, which greatly reduces the amount of subsequent enzymatic esterification treatment, reduces the use of lower alcohols, and greatly improves the extraction efficiency.
  • the method has the advantages of simple process, green environmental protection, good product quality, especially high content and yield of tocotrienol, and has excellent industrial application prospects both in terms of production process and production cost.
  • the natural vitamin E extracted by the above method provided by the present application has good quality, and the natural vitamin E is particularly high in content and yield of tocotrienol, and the loss is small.
  • the present application provides a method for extracting natural vitamin E from rice bran oil deodorized distillate. First, high-vacuum continuous distillation technology is used to remove free fatty acid, and then lipase is used for esterification reaction, and finally purified and purified to obtain natural vitamin E.
  • the method firstly uses high vacuum distillation to remove most of the free fatty acids in the rice bran oil deodorized distillate, reduces the amount of subsequent enzymatic esterification treatment, and then uses the lipase instead of the conventional strong acid and strong base as a catalyst to high vacuum distillation.
  • the components such as free fatty acid, triglyceride and sterol ester remaining in the deodorized distillate of rice bran oil are converted into components such as fatty acid monoester, glycerin and free plant sterol, and finally, natural vitamin E derived from rice bran oil is prepared.
  • the method has mild reaction conditions, and the fatty acid and the neutral oil in the rice bran oil deodorized distillate can be converted into a fatty acid monoester under normal temperature and normal pressure, and chemical reagents such as strong acid and alkali are avoided.
  • most of the free fatty acids are removed by high vacuum distillation, which greatly reduces the amount of subsequent enzymatic esterification treatment, reduces the use of lower alcohols, and greatly improves the extraction efficiency.
  • the method has the advantages of simple process, green environmental protection, good product quality, especially high content and yield of tocotrienol, greatly reducing the loss of active ingredients, and is excellent in both production process and production cost. Industrial application prospects.
  • the step of removing the free fatty acid by the high vacuum continuous rectification technique comprises: introducing the rice bran oil deodorized distillate pretreated by the falling film evaporator into the rectification column to collect the light component free fatty acid,
  • the conditions of the falling film evaporator pretreatment include: the system vacuum is 10-1000 Pa, and the temperature is 160-220 °C.
  • Most of the raw materials rich in tocotrienol are high acid value raw materials.
  • the use of high vacuum continuous distillation technology to remove most of the fatty acids can reduce the processing cost in the later stage, and reduce the interference of free fatty acids on the subsequent processes and enrich the raw materials. In the natural vitamin E.
  • system vacuum is 10 Pa, 50 Pa, 100 Pa, 200 Pa, 300 Pa, 400 Pa, 500 Pa, 600 Pa, 700 Pa, 800 Pa, 900 Pa or 1000 Pa; temperatures are typically, but not limited to, 160 ° C, 180 ° C, 200 ° C, 210 ° C or 220 ° C.
  • the rectification column is a falling film reboiler rectification column.
  • the lipase is subjected to an esterification reaction step comprising: adding a lipase to the material as a catalyst and a lower alcohol for esterification, and remaining free fatty acids, glycerides and sterol esters in the material. Conversion to fatty acid monoesters, glycerol and sterols.
  • the method is environmentally friendly and targeted, and is not effective against natural vitamin E and the like.
  • the composition causes loss.
  • the lower alcohol comprises methanol or ethanol.
  • the lipase is an immobilized lipase.
  • the lipase is derived from one or more of Rhizopus, Candida, and Aspergillus niger; that is, in the present application, the lipase provided is Rhizopus (produced) lipase (typical) But non-limiting include: one or more of Rhizopus arrhizus lipase, Rhizopus oryzae lipase, or Rhizopus oryzae lipase, Candida lipase, or Aspergillus niger One or more of the enzymes.
  • the temperature of the esterification reaction is from 40 to 60 ° C for a period of from 12 to 48 hours.
  • the esterification reaction temperature is the optimum reaction temperature of the lipase, typically but not limited to 40 ° C, 45 ° C, 50 ° C, 55 ° C or 60 ° C; the esterification reaction time is typically but not limited to 12 h, 18 h, 24h, 36h or 48h.
  • the amount of the lower alcohol added is from 10% to 30% by mass of the rice bran oil deodorized distillate.
  • the mass addition amount of the lower alcohol is typically, but not limited to, 10%, 15%, 20%, 25% or 30%.
  • the mass of the lipase is from 0.5% to 10.0% by mass of the rice bran oil deodorized distillate.
  • the mass addition amount of lipase is typically, but not limited to, 0.5%, 1.0%, 5.0% or 10.0%.
  • the separation and purification comprises the steps of centrifuging the mixture after the fatty acid esterification reaction, recovering the lipase, then recovering the excess of the lower alcohol under reduced pressure, and finally performing the step of washing with water to remove the glycerin, wherein the washing is performed.
  • the temperature is 70-90 ° C. Washing can remove glycerin from the material and facilitate subsequent crystallization of sterol crystals.
  • the water wash temperature is typically, but not limited to, 70 ° C, 75 ° C, 80 ° C, 85 ° C or 90 ° C.
  • the number of water washes is 1-2 times.
  • the mixture after water washing to remove glycerin is subjected to cooling crystallization and pressure filtration to remove sterol.
  • the step of cooling crystallization and pressure filtration to remove sterol comprises: cooling the crystallization of the mixture after the fatty acid esterification treatment, and removing sterol after 6-10 hours.
  • the time for natural cooling to cool the crystallization is typically, but not limited to, 6 h, 7 h, 8 h, 9 h or 10 h.
  • the filtrate obtained by pressure filtration to remove sterol is degassed and then subjected to single-stage or multi-stage molecular distillation to obtain natural vitamin E.
  • the step of single-stage molecular distillation includes: in a molecular distiller, the temperature is The light component fatty acid alkyl ester was collected and removed at 140-180 ° C and a vacuum of 10-100 Pa, and the recombinant was divided into natural vitamin E concentrate.
  • the temperature is typically, but not limited to, 140 ° C, 150 ° C, 160 ° C, 170 ° C or 180 ° C; vacuum is typically, but not limited to, 10 Pa, 20 Pa, 30 Pa, 40 Pa, 50 Pa, 60 Pa, 70 Pa, 80 Pa, 90 Pa or 100 Pa. .
  • the step of multi-stage molecular distillation further comprises: after obtaining the heavy component natural vitamin E concentrate, collecting the light component when the temperature is raised to 210-250 ° C and the vacuum is 1-20 Pa.
  • Natural vitamin E. Temperatures are typically, but not limited to, 210 ° C, 220 ° C, 230 ° C, 240 ° C, and 250 ° C; vacuum is typically, but not limited to, 1 Pa, 2 Pa, 3 Pa, 4 Pa, 5 Pa, 10 Pa, 15 Pa, or 20 Pa.
  • the yield of the natural vitamin E of the product can be further improved by the vaporization temperature, the amount of the lower alcohol added, the esterification time, the temperature, and the cooling crystallization time and the distillation temperature, the selection and control of the vacuum, and The content of the target product in the product.
  • the natural vitamin E prepared by the above method is provided, and the natural vitamin E has good quality, and the natural vitamin E, in particular, the tocotrienol content and the yield are high, and the loss is small.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, excess methanol was removed under reduced pressure, and then washed with water once to remove glycerin.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, excess ethanol was removed under reduced pressure, and then glycerin was removed by washing twice.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, and excess ethanol was removed under reduced pressure.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the amount is 25% of the mass of the rice bran oil deodorized distillate, the esterification reaction temperature is 55 ° C, and the time is 15 h;
  • the mixture was centrifuged, lipase was recovered, and excess methanol was removed under reduced pressure.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, and excess methanol was removed under reduced pressure.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, and excess methanol was removed under reduced pressure.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, and excess ethanol was removed under reduced pressure.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, and excess ethanol was removed under reduced pressure.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, and excess methanol was removed under reduced pressure.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, and excess methanol was removed under reduced pressure.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, and excess ethanol was removed under reduced pressure.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, and excess methanol was removed under reduced pressure.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, and excess methanol was removed under reduced pressure.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, and excess methanol was removed under reduced pressure.
  • This embodiment provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, comprising the following steps:
  • the mixture was centrifuged, lipase was recovered, and excess methanol was removed under reduced pressure.
  • the present comparative example provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, wherein the raw material composition is consistent with Example 1, and includes the following steps:
  • the present comparative example provides a method for extracting natural vitamin E from rice bran oil deodorized distillate, wherein the raw material composition is consistent with that of Example 1, and the specific steps refer to CN1074217A, including acidification, water elution gas, alkali transesterification, water. The steps of eluting gas, cold-pressing sterol, molecular distillation, etc., finally obtaining a natural vitamin E concentrate.
  • the method provided by the present application can increase the yield of natural vitamin E, especially the yield of tocotrienol, and obtain high natural vitamin E content, especially the loss of tocotrienol. less.
  • the method provided by the comparative example has different specific process parameters, resulting in a significant decrease in the contents of the comparative tocopherol and tocotrienol, indicating that the method provided by the present application significantly improves tocopherol and tocotrienol
  • the yield and content of the method are environmentally friendly, the process flow is simple, the energy consumption is low, and the cost is low.
  • the method for extracting natural vitamin E from rice bran oil deodorized distillate provided by the application has the advantages of simple process, green environmental protection, good product quality, especially high content and yield of tocotrienol, regardless of production process or production cost. In terms of both, they all have excellent industrial application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

涉及生物化工提取技术领域,具体而言,提供了从米糠油脱臭馏出物中提取天然维生素E的方法。该方法首先利用高真空精馏除去米糠油脱臭馏出物中大部分游离脂肪酸,降低后续酶法酯化的处理量,然后利用脂肪酶将高真空精馏后米糠油脱臭馏出物中剩余的游离脂肪酸、甘油三酯和甾醇酯等组分转化为脂肪酸单酯、甘油和游离植物甾醇等组分,最后利用分子蒸馏技术,提取制备米糠油来源的天然维生素E。该方法工艺简单,绿色环保,产品品质好,特别是生育三烯酚的含量和收率高,无论从生产工艺还是生产成本上而言,都具有极好的工业应用前景。

Description

从米糠油脱臭馏出物中提取天然维生素E的方法
相关申请的交叉引用
本申请要求于2018年05月07日提交中国专利局的申请号为2018104291907、名称为“从米糠油脱臭馏出物中提取天然维生素E的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及生物化工提取技术领域,具体而言,涉及从米糠油脱臭馏出物中提取天然维生素E的方法。
背景技术
天然维生素E(Vitamin E,简称VE),又名抗不育维生素,是生育酚和生育三烯酚的总称,广泛存在于动植物脂肪、脏器、植物油料和叶绿植物中。天然维生素E是天然的抗氧化剂,可以保护身体组织免于氧化作用的损害,同时也是一种有效的抗肿瘤剂。其中,生物三烯酚比生育酚在抗氧化性能、抑制胆固醇合成、抑制肿瘤细胞生长、改善动脉粥样硬化及预防心血管疾病等方面具有更优越的生理功能。
一般植物油的脱臭馏出物中天然维生素E的质量含量可达3-10%,尤其是大豆油的脱臭馏出物中天然维生素E含量最高,其资源量也最大,原料来源广泛。所以目前厂家大多以大豆油脱臭馏出物为原料来提取天然维生素E,但是大豆、菜籽、玉米等油脂的脱臭馏出物中只有生育酚而没有生育三烯酚,其不能作为提取生育三烯酚的原料。
生育三烯酚的自然来源十分有限,在正常食物中不大可能摄取到大量的生育三烯酚。目前生育三烯酚的三种商业来源包括:棕榈油、米糠油脱臭馏出物和胭脂红油树脂。其中,棕榈油含有600-1000ppm的母育酚,其脱臭馏出物中大约含有0.1-2%的天然维生素E,是生育三烯酚最可靠的商业来源。目前全球棕榈油每年产量超过2000万吨,每年均在稳步上升,而且资源高度集中,主要分布于马来西亚和印度尼西亚。
生育三烯酚另外的一个商业来源是米糠油脱臭馏出物,现估计全球米糠油产量约80-100万吨左右,主要分布于亚洲的中国、印度及泰国等水稻主产国。由于中国棕榈油产量较低,棕榈油脱臭馏出物中提取生育三烯酚没有资源优势,而米糠油近年来得到大力发展。2012年中国本土9788个规模以上的大米加工企业在生产大米的同时,其米糠产量多达1331万吨,超过了中国2012年大豆1305万吨的产量。目前受条件限制,虽然米糠利用率较低,但是每年也有30万吨的米糠油产量,而且在逐年增加,所以提取米糠来源的天然维生素E亚洲地区尤其是中国具有很好的原料优势。
天然维生素E中生育三烯酚的提取难点在于,一方面,含有生育三烯酚的植物资源有限(米糠油、棕榈油及大麦油等少数几种油料作物)且含量低,提取难度大;另一方面,生育三烯酚含有双键,较生育酚更容易氧化损失,提取条件较苛刻。
目前工业化提取天然维生素E的主要工艺是:利用酸酯化,碱酯交换等预处理,将植物油脱臭馏出物中的脂肪酸,甘油酯及甾醇酯等组分转化为脂肪酸甲酯,甘油及游离甾醇以拉大各组分的性质差异,然后利用各组分物理及化学性质的差异,使用相应的分离提取手段,如分子蒸馏,高真空精馏,萃取,离子交换或者硅胶色谱等。上述的预处理方法中均用到强酸,强碱等化学试剂,需要通过水洗将这些酸碱试剂去除,产生大量废水。此外强酸碱也易造成天然维生素E破坏及损失,降低产品收率。尤其是米糠,棕榈等物理精炼的油脂,其油脂的脱臭馏出物中游离脂肪酸占比高,不皂化物含量低(不皂化物主要是由天然维生素E,植物甾醇,角鲨烯,类胡萝卜素等类脂质),按传统大豆脱臭馏出物中天然维生素E的提取工艺提取米糠及棕榈油中的天然维生素E成本极高,单位产出极低,在消耗大量强酸和强碱的同时,还产生大量废水,造成严重的环境污染。
综上所述,利用强酸强碱从植物油脱臭馏出物中提纯天然维生素E的工艺,存在着工序繁琐,产品品质差,产生大量废水,劳动强度大等缺点。
有鉴于此,特提出本申请。
发明内容
本申请的目的包括,提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,以缓解现有技术中利用强酸强碱从植物油脱臭馏出物中提纯天然维生素E的工艺,存在着工序繁琐,产品品质差,产生大量废水和劳动强度大等问题,同时生育三烯酚提取效果差的技术问题。
本申请的目的还包括,提供由上述方法制备得到的天然维生素E。
至少为了实现本申请的上述目的中的一个,特采用以下技术方案:
本申请提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,先利用高真空连续精馏技术去除游离脂肪酸,再用脂肪酶进行酯化反应处理,最后分离提纯得到天然维生素E。
可选地,所述高真空连续精馏技术去除游离脂肪酸的步骤包括:将降膜蒸发器预处理过的米糠油脱臭馏出物导入精馏塔中,收集轻组分游离脂肪酸;
所述降膜蒸发器预处理的条件包括:系统真空为10-1000Pa,温度为160-220℃。
可选地,所述精馏塔为降膜再沸式精馏塔。
可选地,所述脂肪酶进行酯化反应处理的步骤包括:在物料中加入脂肪酶作为催化剂和低碳醇进行酯化反应,将物料中剩余的游离脂肪酸、甘油酯和甾醇酯转化为脂肪酸单酯、甘油和甾醇。
可选地,所述低碳醇包括甲醇或乙醇。
可选地,所述脂肪酶为固定化脂肪酶。
可选地,所述脂肪酶来源于根霉、假丝酵母、黑曲霉中一种或多种。
可选地,所述酯化反应的温度为40-60℃,时间为12-48h。
可选地,所述低碳醇的质量添加量为米糠油脱臭馏出物质量的10%-30%。
可选地,所述脂肪酶的质量添加量为米糠油脱臭馏出物质量的0.5%-10%。
可选地,所述分离提纯包括将脂肪酸酯化反应处理后的混合物进行离心分离,回收脂肪酶,然后减压回收过量的低碳醇,最后水洗去除甘油的步骤;
所述水洗的温度为70-90℃。
可选地,所述水洗次数为1-2次。
可选地,水洗去除甘油后的混合物经冷却结晶和压滤去除甾醇。
可选地,所述冷却结晶和压滤去除甾醇的步骤包括:将脂肪酸酯化反应处理后的混合物自然降温冷却结晶,6-10h后过滤去除甾醇。
可选地,压滤去除甾醇后所得滤液经脱气后进入单级或者多级分子蒸馏分离得到所述天然维生素E;
所述单级分子蒸馏的步骤包括:在单级分子蒸馏器中,温度为140-180℃和真空为10-100Pa时收集去除轻组分脂肪酸烷基酯,得到重组分为天然维生素E浓缩物。
可选地,所述多级分子蒸馏的步骤还包括:得到重组分天然维生素E浓缩物后,将温度升高为210-250℃和真空为1-20Pa时,收集得到轻组分天然维生素E。
本申请最后提供由上述方法制备得到的天然维生素E。
与现有技术相比,本申请的有益效果可能包括:
本申请提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,具体包括先利用高真空连续精馏技术去除游离脂肪酸,再用脂肪酶进行酯化反应处理,最后分离提纯得到天然维生素E。该方法首先利用高真空精馏除去米糠油脱臭馏出物中大部分游离脂肪酸,降低后续酶法酯化的处理量,然后利用脂肪酶代替常规的强酸、强碱作为催化剂,将高真空精馏后米糠油脱臭馏出物中剩余的游离脂肪酸、甘油三酯和甾醇酯等组分转化为脂肪酸单酯、甘油和游离植物甾醇等组分,最后提取制备米糠油来源的天然维生素E。该方法反应条件温和,常温常压下可以将米糠油脱臭馏出物中的脂肪酸和中性油脂转化为脂肪酸单酯, 避免使用强酸、强碱等化学试剂。此外,通过高真空精馏先除去绝大部分游离脂肪酸,大大降低后续酶法酯化的处理量,降低低碳醇的使用量,极大的提高了提取效率。该方法工艺简单,绿色环保,产品品质好,特别是生育三烯酚的含量和收率高,无论从生产工艺还是生产成本上而言,都具有极好的工业应用前景。
本申请提供的由上述方法提取得到的天然维生素E品质好,天然维生素E特别是其中生育三烯酚的含量和收率高,损耗少。
具体实施方式
下面将结合实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本申请,而不应视为限制本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。
本申请提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,先利用高真空连续精馏技术去除游离脂肪酸,再用脂肪酶进行酯化反应处理,最后分离提纯得到天然维生素E。
该方法首先利用高真空精馏除去米糠油脱臭馏出物中大部分游离脂肪酸,降低后续酶法酯化的处理量,然后利用脂肪酶代替常规的强酸、强碱作为催化剂,将高真空精馏后米糠油脱臭馏出物中剩余的游离脂肪酸、甘油三酯和甾醇酯等组分转化为脂肪酸单酯、甘油和游离植物甾醇等组分,最后提取制备米糠油来源的天然维生素E。该方法反应条件温和,常温常压下可以将米糠油脱臭馏出物中的脂肪酸和中性油脂转化为脂肪酸单酯,避免使用强酸、强碱等化学试剂。此外,通过高真空精馏先除去绝大部分游离脂肪酸,大大降低后续酶法酯化的处理量,降低低碳醇的使用量,极大的提高了提取效率。该方法工艺简单,绿色环保,产品品质好,特别是生育三烯酚的含量和收率高,极大地降低了有效成分的损耗,无论从生产工艺还是生产成本上而言,都具有极好的工业应用前景。
在本申请优选地实施方式中,高真空连续精馏技术去除游离脂肪酸的步骤包括:将降膜蒸发器预处理过的米糠油脱臭馏出物导入精馏塔中,收集轻组分游离脂肪酸,其中,降膜蒸发器预处理的条件包括:系统真空为10-1000Pa,温度为160-220℃。富含生育三烯酚的原料多为高酸值的原料,利用高真空连续精馏技术先去除绝大部分的脂肪酸可以降低后期的处理成本,同时减少游离脂肪酸对后续工艺的干扰和富集原料中的天然维生素E。系统真空典型但非限制性的为10Pa、50Pa、100Pa、200Pa、300Pa、400Pa、500Pa、600Pa、700Pa、800Pa、900Pa或1000Pa;温度典型但非限制性的为160℃、180℃、200℃、210℃或220℃。
在本申请优选地实施方式中,精馏塔为降膜再沸式精馏塔。
在本申请优选地实施方式中,脂肪酶进行酯化反应处理的步骤包括:在物料中加入脂肪酶作为催化剂和低碳醇进行酯化反应,将物料中剩余的游离脂肪酸、甘油酯和甾醇酯转化为脂肪酸单酯、甘油和甾醇。利用酶的专一性和反应条件的温和特点,将脂肪酸、甘油酯和甾醇酯转化为脂肪酸单酯、甘油和甾醇,该方法既对环境友好又具有针对性,不会对天然维生素E等有效成分造成损耗。
在本申请优选地实施方式中,低碳醇包括甲醇或乙醇。
在本申请优选地实施方式中,脂肪酶为固定化脂肪酶。
在本申请优选地实施方式中,脂肪酶来源于根霉、假丝酵母、黑曲霉中一种或多种;即,本申请中,所提供的脂肪酶为根霉(产)脂肪酶(典型但非限制性的包括:黑根霉脂肪酶、华根霉脂肪酶、或者米根霉脂肪酶中的一种或几种),假丝酵母(产)脂肪酶,或者黑曲霉(产)脂肪酶中的一种或多种。
在本申请优选地实施方式中,酯化反应的温度为40-60℃,时间为12-48h。酯化反应温度为脂肪酶的最适反应温度,典型但非限制性的为40℃、45℃、50℃、55℃或60℃;酯化反应时间典型但非限制性的为12h、18h、24h、36h或48h。
在本申请优选地实施方式中,低碳醇的质量添加量为米糠油脱臭馏出物质量的10%-30%。低碳醇的质量添加量典型但非限制性的为10%、15%、20%、25%或30%。
在本申请优选地实施方式中,脂肪酶的质量添加量为米糠油脱臭馏出物质量的0.5%-10.0%。脂肪酶的质量添加量典型但非限制性的为0.5%、1.0%、5.0%或10.0%。
在本申请优选地实施方式中,分离提纯包括将脂肪酸酯化反应处理后的混合物离心分离,回收脂肪酶,然后减压回收过量的低碳醇,最后进行水洗去除甘油的步骤,其中,水洗的温度为70-90℃。水洗可以去除物料中的甘油,有利于后面的甾醇结晶去除。水洗温度典型但非限制性的为70℃、75℃、80℃、85℃或90℃。
在本申请优选地实施方式中,水洗次数为1-2次。
在本申请优选地实施方式中,水洗去除甘油后的混合物经冷却结晶和压滤去除甾醇。
在本申请优选地实施方式中,冷却结晶和压滤去除甾醇的步骤包括:将脂肪酸酯化反应处理后的混合物自然降温冷却结晶,6-10h后过滤去除甾醇。自然降温冷却结晶的时间典型但非限制性的为6h、7h、8h、9h或10h。
在本申请优选地实施方式中,压滤去除甾醇后所得滤液经脱气后进入单级或者多级分子蒸馏分离得到天然维生素E,单级分子蒸馏的步骤包括:在分子蒸馏器中,温度为140-180℃和真空为10-100Pa时收集去除轻组分脂肪酸烷基酯,得到重组分为天然维生素E 浓缩物。温度典型但非限制性的为140℃、150℃、160℃、170℃或180℃;真空典型但非限制性的为10Pa、20Pa、30Pa、40Pa、50Pa、60Pa、70Pa、80Pa、90Pa或者100Pa。
在本申请优选地实施方式中,多级分子蒸馏的步骤还包括:得到重组分天然维生素E浓缩物后,将温度升高为210-250℃和真空为1-20Pa时,收集得到轻组分天然维生素E。温度典型但非限制性的为210℃、220℃、230℃、240℃及250℃;真空典型但非限制性的为1Pa、2Pa、3Pa、4Pa、5Pa、10Pa、15Pa或者20Pa。
本申请如上的方法中,通过对于汽化温度,低碳醇添加量,酯化时间、温度,以及冷却结晶时间和蒸馏温度、真空的选择和控制,可以进一步提高产品天然维生素E的收率,以及产物中目标产品的含量。
本申请最后提供由上述方法制备得到的天然维生素E,该天然维生素E品质好,天然维生素E特别是其中生育三烯酚的含量和收率高,损耗少。
为了有助于更清楚的理解本申请的内容,现结合具体的实施例详细介绍如下。但这些实施例仅是范例性的,并不对本申请的范围构成任何限制。
实施例1
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为10Pa,温度为160℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入脂肪酶和甲醇进行酯化反应,其中,脂肪酶Novozym 435的添加量为米糠油脱臭馏出物质量的0.5%,甲醇的添加量为米糠油脱臭馏出物质量的30%,酯化反应温度为40℃,时间为48h;
离心分离,回收脂肪酶,减压去除过量的甲醇,然后水洗1次去除甘油。
步骤c):将步骤b)中的物料自然降温冷却结晶,6h后过滤除去甾醇。
步骤d):除去甾醇后滤液经脱气后在单级分子蒸馏器中,温度为140℃,真空为10Pa时收集去除轻组分脂肪酸甲酯,得到重组分天然维生素E浓缩物。
实施例2
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为1000Pa,温度为220℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入脂肪酶和乙醇进行酯化反应,其中,脂肪酶Lipozyme TL IM的添加量为米糠油脱臭馏出物质量的10.0%,甲醇的添加量为米糠油脱臭馏出物质量的10%,酯化反应温度为60℃,时间为12h;
离心分离,回收脂肪酶,减压去除过量的乙醇,然后水洗2次去除甘油。
步骤c):将步骤b)中的物料自然降温冷却结晶,10h后过滤除去甾醇。
步骤d):除去甾醇后滤液经脱气后在单级分子蒸馏器中,温度为180℃,真空为100Pa时收集去除轻组分脂肪酸乙酯,得到重组分天然维生素E浓缩物。
实施例3
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为200Pa,温度为190℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入脂肪酶和乙醇进行酯化反应,其中,脂肪酶Lipozyme RM IM的添加量为米糠油脱臭馏出物质量的5.0%,乙醇的添加量为米糠油脱臭馏出物质量的15%,酯化反应温度为45℃,时间为24h;
离心分离,回收脂肪酶,减压去除过量的乙醇。
步骤c):用温度为75℃的水洗步骤b)中物料,去除包含甘油的水相,共水洗2次;
步骤d):将步骤c)中的物料自然降温冷却结晶,9h后过滤除去甾醇。
步骤e):除去甾醇后滤液经脱气后在单级分子蒸馏器中,温度为160℃,真空为50Pa时收集去除轻组分脂肪酸乙酯,得到重组分天然维生素E浓缩物。
实施例4
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为900Pa,温度为210℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入脂肪酶和甲醇进行酯化反应,其中,脂肪酶Novozym 435的添加量为米糠油脱臭馏出物质量的1.0%,甲醇的添加量为米糠油脱臭馏出物质量的25%,酯化反应温度为55℃,时间为15h;
离心分离,回收脂肪酶,减压去除过量的甲醇。
步骤c):用温度为85℃的水洗步骤b)中物料,去除包含甘油的水相,共水洗2次;
步骤d):将步骤c)中的物料自然降温冷却结晶,7h后过滤除去甾醇。
步骤e):除去甾醇后滤液经脱气后在单级分子蒸馏器中,温度为140℃,真空为10Pa时收集去除轻组分脂肪酸甲酯,得到重组分天然维生素E浓缩物。
实施例5
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为900Pa,温度为200℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入脂肪酶和甲醇进行酯化反应,其中,脂肪酶Lipozyme TL IM的添加量为米糠油脱臭馏出物质量的3.0%,甲醇的添加量为米糠油脱臭馏出物质量的25%,酯化反应温度为50℃,时间为36h;
离心分离,回收脂肪酶,减压去除过量的甲醇。
步骤c):用温度为80℃的水洗步骤b)中物料,去除包含甘油的水相,共水洗1次;
步骤d):将步骤c)中的物料自然降温冷却结晶,8h后过滤除去甾醇。
步骤e):除去甾醇后滤液经脱气后在第1级分子蒸馏器中,温度为165℃,真空为60Pa时收集去除轻组分脂肪酸甲酯,得到重组分天然维生素E浓缩物。
步骤f):将步骤e)中重组分天然维生素E浓缩物在第2级分子蒸馏器中,温度为210℃,真空为1Pa时收取得到轻组分天然维生素E,重组分为植物沥青。
实施例6
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为900Pa,温度为200℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入脂肪酶和甲醇进行酯化反应,其中,脂肪酶Lipozyme TL IM的添加量为米糠油脱臭馏出物质量的5.0%,甲醇的添加量为米糠油脱臭馏出物质量的25%,酯化反应温度为50℃,时间为36h;
离心分离,回收脂肪酶,减压去除过量的甲醇。
步骤c):用温度为80℃的水洗步骤b)中物料,去除包含甘油的水相,共水洗2次;
步骤d):将步骤c)中的物料自然降温冷却结晶,8h后过滤除去甾醇。
步骤e):除去甾醇后滤液经脱气后在第1级分子蒸馏器中,温度为170℃,真空为70Pa时收集去除轻组分脂肪酸甲酯,得到重组分天然维生素E浓缩物。
步骤f):将步骤e)中重组分天然维生素E浓缩物在第2级分子蒸馏器中,温度为250℃,真空为20Pa时收取得到轻组分天然维生素E,重组分为植物沥青。
实施例7
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为900Pa,温度为210℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入脂肪酶和乙醇进行酯化反应,其中,脂肪酶Novozym 435的添加量为米糠油脱臭馏出物质量的1.0%,乙醇的添加量为米糠油脱臭馏出物质量的30%,酯化反应温度为55℃,时间为15h;
离心分离,回收脂肪酶,减压去除过量的乙醇。
步骤c):用温度为85℃的水洗步骤b)中物料,去除包含甘油的水相,共水洗2次;
步骤d):将步骤c)中的物料自然降温冷却结晶,7h后过滤除去甾醇。
步骤e):除去甾醇后滤液经脱气后在单级分子蒸馏器中,温度为140℃,真空为10Pa时收集去除轻组分脂肪酸乙酯,得到重组分天然维生素E浓缩物。
实施例8
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为900Pa,温度为200℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入脂肪酶和乙醇进行酯化反应,其中,脂肪酶Lipozyme TL IM的添加量为米糠油脱臭馏出物质量的5.0%,乙醇的添加量为米糠油脱臭馏出物质量的30%,酯化反应温度为50℃,时间为36h;
离心分离,回收脂肪酶,减压去除过量的乙醇。
步骤c):用温度为80℃的水洗步骤b)中物料,去除包含甘油的水相,共水洗2次;
步骤d):将步骤c)中的物料自然降温冷却结晶,8h后过滤除去甾醇。
步骤e):除去甾醇滤液经脱气后在第1级分子蒸馏器中,温度为180℃,真空为100Pa时收集去除轻组分脂肪酸乙酯,得到重组分天然维生素E浓缩物。
步骤f):将步骤e)中重组分天然维生素E浓缩物在第2级分子蒸馏器中,温度为250℃,真空为20Pa时收取得到轻组分天然维生素E,重组分为植物沥青。
实施例9
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为10Pa,温度为160℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入黑根霉脂肪酶和甲醇进行酯化反应,其中,黑根霉脂肪酶的添加量为米糠油脱臭馏出物质量的0.5%,甲醇的添加量为米糠油脱臭馏出物质量的15%,酯化反应温度为45℃,时间为24h;
离心分离,回收脂肪酶,减压去除过量的甲醇。
步骤c):用温度为75℃的水洗步骤b)中物料,去除包含甘油的水相,共水洗2次。
步骤d):将步骤c)中的物料自然降温冷却结晶,8h后过滤除去甾醇。
步骤e):除去甾醇后滤液经脱气后在单级分子蒸馏器中,温度为170℃,真空为80Pa时收集去除轻组分脂肪酸甲酯,得到重组分天然维生素E浓缩物。
实施例10
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为900Pa,温度为200℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入黑根霉脂肪酶和甲醇进行酯化反应,其中,黑根霉脂肪酶的添加量为米糠油脱臭馏出物质量的1.5%,甲醇的添加量为米糠油脱臭馏出物质量的25%,酯化反应温度为50℃,时间为36h;
离心分离,回收脂肪酶,减压去除过量的甲醇。
步骤c):用温度为80℃的水洗步骤b)中物料,去除包含甘油的水相,共水洗2次;
步骤d):将步骤c)中的物料自然降温冷却结晶,10h后过滤除去甾醇。
步骤e):除去甾醇后滤液经脱气后在第1级分子蒸馏器中,温度为170℃,真空为80Pa时收集去除轻组分脂肪酸甲酯,得到重组分天然维生素E浓缩物。
步骤f):将步骤e)中重组分天然维生素E浓缩物在第2级分子蒸馏器中,温度为220℃,真空为5Pa时收取得到轻组分天然维生素E,重组分为植物沥青。
实施例11
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为600Pa,温度为180℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入黑根霉脂肪酶和甲醇进行酯化反应,其中,黑根霉脂肪酶的添加量为米糠油脱臭馏出物质量的1.5%,乙醇的添加量为米糠油脱臭馏出物质量的30%,酯化反应温度为50℃,时间为36h;
离心分离,回收脂肪酶,减压去除过量的乙醇。
步骤c):用温度为80℃的水洗步骤b)中物料,去除包含甘油的水相,共水洗2次;
步骤d):将步骤c)中的物料自然降温冷却结晶,10h后过滤除去甾醇。
步骤e):除去甾醇后滤液经脱气后在第1级分子蒸馏器中,温度为175℃,真空为90Pa时收集去除轻组分脂肪酸乙酯,得到重组分天然维生素E浓缩物。
步骤f):将步骤e)中重组分天然维生素E浓缩物在第2级分子蒸馏器中,温度为230℃,真空为10Pa时收取得到轻组分天然维生素E,重组分为植物沥青。
实施例12
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为300Pa,温度为180℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入假丝酵母脂肪酶和甲醇进行酯化反应,其中,假丝酵母脂肪酶的添加量为米糠油脱臭馏出物质量的1.0%,甲醇的添加量为米糠油脱臭馏出物质量的15%,酯化反应温度为50℃,时间为24h;
离心分离,回收脂肪酶,减压去除过量的甲醇。
步骤c):用温度为80℃的水洗步骤b)中物料,去除包含甘油的水相,共水洗2次;
步骤d):将步骤c)中的物料自然降温冷却结晶,8h后过滤除去甾醇。
步骤e):除去甾醇后滤液经脱气后在单级分子蒸馏器中,温度为175℃,真空为90Pa时收集去除轻组分脂肪酸甲酯,得到重组分天然维生素E浓缩物。
实施例13
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为900Pa,温度为200℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入假丝酵母脂肪酶和甲醇进行酯化反应,其中,假丝酵母脂肪酶的添加量为米糠油脱臭馏出物质量的2.5%,甲醇的添加量为米糠油脱臭馏出物质量的25%,酯化反应温度为50℃,时间为36h;
离心分离,回收脂肪酶,减压去除过量的甲醇。
步骤c):用温度为80℃的水洗步骤b)中物料,去除包含甘油的水相,共水洗2次;
步骤d):将步骤c)中的物料自然降温冷却结晶,10h后过滤除去甾醇。
步骤e):除去甾醇后滤液经脱气后在第1级分子蒸馏器中,温度为160℃,真空为60Pa时收集去除轻组分脂肪酸甲酯,得到重组分天然维生素E浓缩物。
步骤f):将步骤e)中重组分天然维生素E浓缩物在第2级分子蒸馏器中,温度为210℃,真空为1Pa时收取得到轻组分天然维生素E,重组分为植物沥青。
实施例14
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为100Pa,温度为180℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入黑曲霉脂肪酶和甲醇进行酯化反应,其中,黑曲霉脂肪酶的添加量为米糠油脱臭馏出物质量的3.0%,甲醇的添加量为米糠油脱臭馏出物质量的20%,酯化反应温度为45℃,时间为24h;
离心分离,回收脂肪酶,减压去除过量的甲醇。
步骤c):用温度为75℃的水洗步骤b)中物料,去除包含甘油的水相,共水洗2次;
步骤d):将步骤c)中的物料自然降温冷却结晶,8h后过滤除去甾醇。
步骤e):除去甾醇后滤液经脱气后在单级分子蒸馏器中,温度为150℃,真空为20Pa时收集去除轻组分脂肪酸甲酯,得到重组分天然维生素E浓缩物。
实施例15
本实施例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为900Pa,温度为200℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入黑曲霉脂肪酶和甲醇进行酯化反应,其中,黑曲霉脂肪酶的添加量为米糠油脱臭馏出物质量的5.0%,甲醇的添加量为米糠油脱臭馏出物质量的25%,酯化反应温度为50℃,时间为36h;
离心分离,回收脂肪酶,减压去除过量的甲醇。
步骤c):用温度为80℃的水洗步骤b)中物料,去除包含甘油的水相,共水洗2次;
步骤d):将步骤c)中的物料自然降温冷却结晶,10h后过滤除去甾醇。
步骤e):除去甾醇后滤液经脱气后在第1级分子蒸馏器中,温度为160℃,真空为50Pa时收集去除轻组分脂肪酸甲酯,得到重组分天然维生素E浓缩物。
步骤f):将步骤e)中重组分天然维生素E浓缩物在第2级分子蒸馏器中,温度为230℃,真空为15Pa时收取得到轻组分天然维生素E,重组分为植物沥青。
对比例1
本对比例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,其中原料组成与实施例1一致,包括以下步骤:
步骤a):米糠油脱臭馏出物通过降膜蒸发器在系统真空为200Pa,温度为150℃下汽化,进入精馏塔中分离,气相冷凝后得到轻组分游离脂肪酸。
步骤b):在步骤a)中的去除游离脂肪酸的物料中加入脂肪酶和甲醇进行酯化反应,其中,脂肪酶的添加量为米糠油脱臭馏出物质量的1.3%,甲醇的添加量为米糠油脱臭馏出物质量的40%,酯化反应温度为30℃,时间为10h。
步骤c):将步骤b)中的物料自然降温冷却结晶,5h后过滤除去甾醇。
步骤d):除去甾醇后滤液经脱气后在单级分子蒸馏器中,温度为110℃,真空为10Pa时收集去除轻组分脂肪酸甲酯,得到重组分天然维生素E浓缩物。
对比例2
本对比例提供一种从米糠油脱臭馏出物中提取天然维生素E的方法,其中原料组成与实施例1一致,具体步骤参考CN1074217A,包括酸酯化、水洗脱气、碱酯交换,水洗脱气,冷析压甾醇,分子蒸馏等步骤,最后得到天然维生素E浓缩物。
试验例
按照GB/T26635-2011动植物油脂生育酚及生育三烯酚含量测定,采用高效液相色谱法对实施例1-6和对比例中的方法制备得到的天然维生素E的收率和含量进行测试,同时对生育三烯酚的含量和收率进行测试,结果如下表:
Figure PCTCN2019083500-appb-000001
从上面的测试结果可以看出,本申请提供的方法可以提高天然维生素E的收率,特别是生育三烯酚的收率,得到的天然维生素E含量高,特别是生育三烯酚的损耗较少。对比例提供的方法相较于实施例1相比,具体工艺参数不同,导致了对比例生育酚和生育三烯酚的含量显著下降,说明本申请提供的方法显著提高生育酚和生育三烯酚的收率和含量,该方法对环境无污染,工艺流程简单,能耗少并且成本低。
尽管已用具体实施例来说明和描述了本申请,然而应意识到,在不背离本申请的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本申请范围内的所有这些变化和修改。
工业实用性
本申请所提供的从米糠油脱臭馏出物中提取天然维生素E的方法,工艺简单,绿色环保,产品品质好,特别是生育三烯酚的含量和收率高,无论从生产工艺还是生产成本上而言,都具有极好的工业应用前景。

Claims (16)

  1. 一种从米糠油脱臭馏出物中提取天然维生素E的方法,其特征在于,先利用高真空连续精馏技术去除游离脂肪酸,再用脂肪酶进行酯化反应处理,最后分离提纯得到天然维生素E。
  2. 根据权利要求1所述的方法,其特征在于,所述高真空连续精馏技术去除游离脂肪酸的步骤包括:将降膜蒸发器预处理过的米糠油脱臭馏出物导入精馏塔中,收集轻组分游离脂肪酸;
    所述降膜蒸发器预处理的条件包括:系统真空为10-1000Pa,温度为160-220℃。
  3. 根据权利要求1或2所述的方法,其特征在于,所述精馏塔为降膜再沸式精馏塔。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述脂肪酶进行酯化反应处理的步骤包括:在物料中加入脂肪酶作为催化剂和低碳醇进行酯化反应,将物料中剩余的游离脂肪酸、甘油酯和甾醇酯转化为脂肪酸单酯、甘油和甾醇。
  5. 根据权利要求4所述的方法,其特征在于,所述低碳醇包括甲醇或乙醇。
  6. 根据权利要求4或5所述的方法,其特征在于,所述脂肪酶为固定化脂肪酶;
    或者,所述脂肪酶来源于根霉、假丝酵母、黑曲霉中一种或多种。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述酯化反应的温度为40-60℃,时间为12-48h。
  8. 根据权利要求4至7中任一项所述的方法,其特征在于,所述低碳醇的质量添加量为米糠油脱臭馏出物质量的10%-30%。
  9. 根据权利要求4至8中任一项所述的方法,其特征在于,所述脂肪酶的质量添加量为米糠油脱臭馏出物质量的0.5%-10.0%。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述分离提纯包括将酯化反应处理后的混合物离心分离,回收脂肪酶,然后减压回收过量的低碳醇,最后进行水洗去除甘油的步骤;
    所述水洗的温度为70-90℃。
  11. 根据权利要求10所述的方法,其特征在于,所述水洗次数为1-2次。
  12. 根据权利要求10或11所述的方法,其特征在于,水洗去除甘油后的混合物经冷却结晶和压滤去除甾醇。
  13. 根据权利要求12所述的方法,其特征在于,所述冷却结晶和压滤去除甾醇的步骤包括:将酯化反应处理后的混合物自然降温冷却结晶,6-10h后过滤去除甾醇。
  14. 根据权利要求12或13所述的方法,其特征在于,压滤去除甾醇后所得滤液经脱气后进入单级或者多级分子蒸馏分离得到所述天然维生素E;
    所述单级分子蒸馏的步骤包括:在单级分子蒸馏器中,温度为140-180℃和真空为10-100Pa时收集去除轻组分脂肪酸甲酯,得到重组分天然维生素E浓缩物。
  15. 根据权利要求14所述的方法,其特征在于,所述多级分子蒸馏的步骤还包括:得到重组分天然维生素E浓缩物后,将温度升高为210-250℃和真空为1-20Pa时,收集得到轻组分天然维生素E。
  16. 权利要求1-15任一项所述的方法制备得到的天然维生素E。
PCT/CN2019/083500 2018-05-07 2019-04-19 从米糠油脱臭馏出物中提取天然维生素e的方法 WO2019214422A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2020/06954A ZA202006954B (en) 2018-05-07 2020-11-09 Method for extracting natural vitamin e from deodorized distillate of rice bran oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810429190.7 2018-05-07
CN201810429190.7A CN108299373B (zh) 2018-05-07 2018-05-07 从米糠油脱臭馏出物中提取天然维生素e的方法

Publications (1)

Publication Number Publication Date
WO2019214422A1 true WO2019214422A1 (zh) 2019-11-14

Family

ID=62846627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083500 WO2019214422A1 (zh) 2018-05-07 2019-04-19 从米糠油脱臭馏出物中提取天然维生素e的方法

Country Status (3)

Country Link
CN (1) CN108299373B (zh)
WO (1) WO2019214422A1 (zh)
ZA (1) ZA202006954B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409719A (zh) * 2022-01-24 2022-04-29 浙江工业大学 一种从米糠油脱臭馏出物中提取植物甾醇的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112920155A (zh) * 2021-04-01 2021-06-08 福建省格兰尼生物工程股份有限公司 一种从脱臭馏出物中提取α维生素E的方法
CN112941126A (zh) * 2021-04-01 2021-06-11 福建省格兰尼生物工程股份有限公司 一种从非大豆脱臭馏出物中提取大豆维生素e的方法
CN115650943B (zh) * 2022-09-13 2024-02-27 宜春大海龟生命科学股份有限公司 一种从植物脱臭馏出物中富集多不饱和脂肪酸酯、角鲨烯、天然维生素e及植物甾醇的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1775771A (zh) * 2005-06-28 2006-05-24 中谷天科(天津)生物工程有限公司 从植物油脂精炼脱臭馏出物中提取天然维生素e的方法
CN1830993A (zh) * 2005-03-09 2006-09-13 四川古杉油脂化学有限公司 一种生产植物甾醇和维生素e混合物的方法
CN103045664A (zh) * 2012-12-15 2013-04-17 华中科技大学 利用脱臭馏出物生产生物柴油和甾醇及维生素e的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333079C (zh) * 2004-03-18 2007-08-22 清华大学 由植物油脱臭馏出物提取维生素e和甾醇的新工艺
CN101153035B (zh) * 2007-10-19 2010-09-15 浙江工业大学 一种从植物油脱臭馏出物中提取维生素e的方法
CN101225414B (zh) * 2008-01-09 2011-07-06 河南工业大学 酶催化、分子蒸馏提取天然维生素e、植物甾醇、脂肪酸甲酯新方法
US9512098B1 (en) * 2014-02-03 2016-12-06 Board Of Trustees Of The University Of Arkansas Process of producing purified gamma- and delta-tocotrienols from tocol-rich oils or distillates
WO2016028235A1 (en) * 2014-08-18 2016-02-25 Chiang Mai University A system and method for extracting and/or concentrating vitamin e
CN105315254B (zh) * 2015-11-25 2017-10-03 新疆百禾晶生物科技有限公司 一种基于酶法从番茄籽油脱臭馏出物中提取维生素e的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1830993A (zh) * 2005-03-09 2006-09-13 四川古杉油脂化学有限公司 一种生产植物甾醇和维生素e混合物的方法
CN1775771A (zh) * 2005-06-28 2006-05-24 中谷天科(天津)生物工程有限公司 从植物油脂精炼脱臭馏出物中提取天然维生素e的方法
CN103045664A (zh) * 2012-12-15 2013-04-17 华中科技大学 利用脱臭馏出物生产生物柴油和甾醇及维生素e的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409719A (zh) * 2022-01-24 2022-04-29 浙江工业大学 一种从米糠油脱臭馏出物中提取植物甾醇的方法
CN114409719B (zh) * 2022-01-24 2023-12-12 浙江工业大学 一种从米糠油脱臭馏出物中提取植物甾醇的方法

Also Published As

Publication number Publication date
CN108299373A (zh) 2018-07-20
ZA202006954B (en) 2021-09-29
CN108299373B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2019214422A1 (zh) 从米糠油脱臭馏出物中提取天然维生素e的方法
Vali et al. A process for the preparation of food-grade rice bran wax and the determination of its composition
CN1964960B (zh) 从油的植物营养素还原法
CN105016956B (zh) 一种提取角鲨烯的方法
CN100537592C (zh) 植物甾醇、生物柴油和维生素e联产方法
WO2017084241A1 (zh) 一种亚临界体系中酶法制备1,3-二油酸-2-棕榈酸甘油三酯的方法
CN103242965A (zh) 一种提取纯化α-亚麻酸的方法
WO2016136751A1 (ja) 油脂の製造方法
JP2002194381A (ja) 植物油および脂肪の少量成分の回収並びに精製
CN103787864B (zh) 一种从海洋微藻发酵液中提取dha的方法
CN107216253A (zh) 一种利用酶-化学联合技术从大豆油脱臭馏出物中提取ve、甾醇的生产方法
CN107722093B (zh) 一种从植物油脱臭馏出物中提取甾醇的工艺
CN102219669B (zh) 一种采用超临界co2流体萃取马齿苋亚麻酸的方法
CN1111168C (zh) 超临界流体精制高纯度甾醇的方法
CN103588855B (zh) 一种从脱臭馏出物中提纯植物甾醇的方法
CN110079387B (zh) 一种超声辅助低共熔溶剂萃取脱除猪油中胆固醇的方法
CN110627802B (zh) 由生产芝麻油所产生的副产物中提取芝麻木酚素的方法
CN113337551A (zh) 一种结构甘油三酯的制备方法
JP4393640B2 (ja) 植物ステロールの製法
EP3245277B1 (en) Recovery of tocopherols/tocotrienols, carotenoids, glycerols, sterols and fatty acid esters from crude vegetable oil and the process thereof
CN115650943B (zh) 一种从植物脱臭馏出物中富集多不饱和脂肪酸酯、角鲨烯、天然维生素e及植物甾醇的方法
CN104610201B (zh) 一种l‑抗坏血酸蓖麻酸酯及其制备方法与应用
JP6194908B2 (ja) 油脂の製造方法
CN113943605B (zh) 一种微生物油脂冬化分提的方法
CN109836510B (zh) 一种高纯度核桃青皮多糖的提取方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800566

Country of ref document: EP

Kind code of ref document: A1