WO2019214260A1 - 像素电路及其驱动方法和显示装置 - Google Patents

像素电路及其驱动方法和显示装置 Download PDF

Info

Publication number
WO2019214260A1
WO2019214260A1 PCT/CN2018/124859 CN2018124859W WO2019214260A1 WO 2019214260 A1 WO2019214260 A1 WO 2019214260A1 CN 2018124859 W CN2018124859 W CN 2018124859W WO 2019214260 A1 WO2019214260 A1 WO 2019214260A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
control
sub
voltage
light
Prior art date
Application number
PCT/CN2018/124859
Other languages
English (en)
French (fr)
Inventor
杨盛际
董学
陈小川
王辉
卢鹏程
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/489,750 priority Critical patent/US11250779B2/en
Publication of WO2019214260A1 publication Critical patent/WO2019214260A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0238Improving the black level
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/066Adjustment of display parameters for control of contrast
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a pixel circuit, a driving method thereof, and a display device.
  • Silicon-based OLED (Organic Light-Emitting Diode) microdisplays are at the intersection of microelectronics and optoelectronics and require high contrast in certain situations.
  • the existing pixel circuit cannot effectively ensure that the voltage across the light-emitting element is reduced under a specific low-pressure Mos (Metal-oxide-semiconductor) process limitation condition, thereby failing to achieve high contrast.
  • Mos Metal-oxide-semiconductor
  • an embodiment of the present disclosure provides a pixel circuit including a light emitting element, the pixel circuit further including a data writing sub circuit, a driving sub circuit, a storage sub circuit, an emission control sub circuit, and a voltage converter Circuit
  • the data writing sub-circuit is respectively connected to the gate line, the data line and the data writing node, and is configured to control, in the charging compensation phase, to write the data voltage on the data line under the control of the gate line
  • the data is written to the node
  • the light-emitting control sub-circuit is respectively connected to the light-emitting control end, the power voltage input end and the first end of the driving sub-circuit, and is configured to turn on the power voltage input end under the control of the light-emitting control end during the light-emitting phase a connection between the first ends of the drive subcircuits;
  • the step-down sub-circuit is respectively connected to the data writing node, the control node and the power voltage input end, and is configured to control the stepping of the data voltage during the charging compensation phase to obtain a first step-down voltage;
  • a first end of the storage sub-circuit is connected to the control node, a second end of the storage sub-circuit is connected to a first voltage input, and the storage sub-circuit is configured to perform the control in the charging compensation phase Charging and discharging a potential of the node to the first step-down voltage, and controlling to maintain a potential of the control node as the first step-down voltage in the light-emitting phase;
  • a control end of the driving sub-circuit is connected to the control node, a second end of the driving sub-circuit is connected to a first pole of the light-emitting element, and the driving sub-circuit is used in the lighting stage a connection between the first end of the driving sub-circuit and the first pole of the light-emitting element to drive the light-emitting element to emit light under control of the control node;
  • the second pole of the light emitting element is coupled to the second voltage input.
  • the buck sub-circuit includes: a buck transistor having a gate coupled to the data write node, a first pole coupled to the supply voltage input, a second pole and the control Node connection
  • the supply voltage input is for inputting a supply voltage, and the supply voltage is within a first predetermined voltage range such that the buck transistor is capable of operating in a saturation region during the charge compensation phase.
  • the driving sub-circuit includes a driving transistor; a gate of the driving transistor is connected to a control end of the driving sub-circuit, a first pole of the driving transistor and the driving sub-circuit The first end is connected, and the second pole of the driving transistor is connected to the second end of the driving sub-circuit.
  • the pixel circuit further includes an on/off control sub-circuit
  • the control end of the on/off control sub-circuit is connected to the on-off control terminal, the first end of the on-off control sub-circuit is connected to the data write node, and the second end of the on-off control sub-circuit
  • the control node is connected, and the on/off control sub-circuit is configured to turn on or off the connection between the data writing node and the control node under the control of the on-off control terminal.
  • the pixel circuit further includes a photo sensor circuit and a comparison sub circuit
  • the photo-sensing circuit is configured to detect an illumination intensity of ambient light
  • the comparison sub-circuit is configured to compare the illumination intensity of the ambient light with a predetermined threshold illumination intensity, and output the first to the on-off control terminal when the illumination intensity of the ambient light is less than or equal to the threshold illumination intensity a control signal, when the illumination intensity of the ambient light is greater than the threshold illumination intensity, outputting a second control signal to the on/off control terminal;
  • the on-off control sub-circuit is specifically configured to disconnect the connection between the data writing node and the control node when the on-off control terminal receives the first control signal, in the on-off When the control terminal receives the second control signal, the connection between the data writing node and the control node is turned on.
  • the pixel circuit further includes a photo sensor circuit, a comparison sub circuit, and a voltage regulation module;
  • the photo-sensing circuit is configured to detect an illumination intensity of ambient light
  • the comparison sub-circuit is further configured to output a first control signal to the voltage adjustment module when the illumination intensity of the ambient light is less than or equal to the threshold illumination intensity, when the ambient light illumination intensity is greater than the threshold a light intensity, outputting a second control signal to the voltage regulation module;
  • the voltage adjustment module is respectively connected to the second voltage input terminal and the comparison sub-circuit, and is configured to increase a second voltage input to the second voltage input terminal when receiving the first control signal, The second voltage is turned down when the second control signal is received.
  • the light emitting element is a micro organic light emitting diode
  • an anode of the micro organic light emitting diode is a first pole of the light emitting element
  • a cathode of the micro organic light emitting diode is a light emitting element The second pole.
  • the storage subcircuit includes a storage capacitor; a first end of the storage capacitor is coupled to the control node, and a second end of the storage capacitor is coupled to a first voltage input.
  • the pixel circuit further includes a reset control sub-circuit
  • a control end of the reset control sub-circuit is connected to a reset control end, a first end of the reset control sub-circuit is connected to a first pole of the light-emitting element, and a second end of the reset control sub-circuit and a third voltage
  • the input terminal is connected, and the reset control sub-circuit is configured to turn on or off a connection between the first pole of the light-emitting element and the third voltage input terminal under the control of the reset control end.
  • the gate line includes a first gate line and a second gate line; and the data writing sub-circuit includes:
  • a first data write transistor a gate connected to the first gate line, a first pole connected to the data line, and a second pole connected to the data write node;
  • a second data write transistor a gate connected to the second gate line, a first pole connected to the data line, and a second pole connected to the data write node;
  • the first data write transistor is an N-type transistor
  • the second data write transistor is a P-type transistor.
  • an embodiment of the present disclosure further provides a driving method of a pixel circuit, the driving method of the pixel circuit is applied to the pixel circuit as described in the first aspect, and the driving method of the pixel circuit include:
  • the data line outputs a data voltage Vdata
  • the data writing sub-circuit controls the writing of the data voltage Vdata to the node under the control of the gate line, and the step-down sub-circuit lowers the data voltage Vdata. Pressing, the first step-down voltage is obtained, and the storage sub-circuit control charges and discharges the potential of the control node to the first step-down voltage.
  • the driving method of the pixel circuit further includes:
  • the data writing sub-circuit controls disconnection between the data writing node and the data line under control of the gate line; the storage sub-circuit control maintains the The potential of the control node is the first step-down voltage, and the light-emitting control sub-circuit turns on the connection between the power voltage input terminal and the first pole of the driving sub-circuit under the control of the light-emitting control terminal, the driving sub-circuit Under the control of the control node, a connection between the first end of the driving sub-circuit and the first pole of the light emitting element is turned on to drive the light emitting element to emit light.
  • the pixel circuit further includes a reset control sub-circuit; a reset phase is provided before the charge compensation phase, and the driving method of the pixel circuit further includes:
  • the reset control sub-circuit turns on a connection between the first pole and the third voltage input end of the light emitting element under the control of the reset control end to the light emitting element The potential of the first pole is reset;
  • the reset control sub-circuit disconnects the connection between the first pole of the light-emitting element and the third voltage input terminal under the control of the reset control terminal.
  • an embodiment of the present disclosure further provides a display device comprising the pixel circuit as described in the first aspect.
  • the display device further includes a silicon-based substrate; the pixel circuit is disposed on the silicon-based substrate.
  • the silicon-based substrate is a single crystal silicon-based substrate.
  • FIG. 1 is a structural diagram of a pixel circuit according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing a relationship between a voltage VEL across a light-emitting element and a luminance L of a light-emitting element;
  • FIG. 3 is a structural diagram of a pixel circuit according to a first embodiment of the present disclosure
  • FIG. 4 is a structural diagram of a pixel circuit according to a second embodiment of the present disclosure.
  • FIG. 5 is a structural diagram of a pixel circuit according to a third embodiment of the present disclosure.
  • FIG. 6 is a structural diagram of a pixel circuit according to a fourth embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of a first embodiment of a pixel circuit according to the present disclosure.
  • FIG. 9 is a structural diagram of a second embodiment of the pixel circuit of the present disclosure.
  • the transistors employed in all embodiments of the present disclosure may each be a thin film transistor or a field effect transistor or other device having the same characteristics.
  • one of the poles is referred to as a first pole, and the other pole is referred to as a second pole.
  • the first pole may be a drain
  • the second pole may be a source
  • the first pole may be a source
  • the second pole may be a drain.
  • the pixel circuit includes a light emitting element EL, and the pixel circuit further includes a data writing sub-circuit 11 , a driving sub-circuit 12 , a storage sub-circuit 13 , an emission control sub-circuit 14 , and a lowering The voltage circuit 15.
  • the data writing sub-circuit 11 is respectively connected to the gate line Gate, the data line Data and the data writing node ND for controlling the data line Data under the control of the gate line Gate in the charging compensation phase.
  • the data voltage is written to the data write node ND.
  • the light-emitting control sub-circuit 14 is respectively connected to the light-emitting control terminal EM, the power voltage input terminal and the first end of the driving sub-circuit 12 for conducting the light-emitting phase under the control of the light-emitting control terminal EM.
  • a connection between the power supply voltage input terminal and the first end of the driving subcircuit 12; the power supply voltage input terminal is for inputting a power supply voltage Vdd.
  • the step-down sub-circuit 15 is respectively connected to the data writing node ND, the control node NC and the power voltage input terminal for controlling the stepping of the data voltage in the charging compensation phase to obtain a first step-down voltage.
  • the first end of the storage sub-circuit 13 is connected to the control node NC, the second end of the storage sub-circuit 13 is connected to a first voltage input terminal, and the storage sub-circuit 13 is used in the charging compensation phase. Charging and discharging the potential of the control node NC to the first step-down voltage, and controlling to maintain the potential of the control node NC as the first step-down voltage in the light-emitting phase; the first voltage input terminal For inputting the first voltage V1.
  • a control end of the driving sub-circuit 12 is connected to the control node NC, a second end of the driving sub-circuit 12 is connected to a first pole of the light-emitting element EL, and the driving sub-circuit 12 is used in the In the light emitting phase, under the control of the control node NC, a connection between the first end of the driving sub-circuit 12 and the first electrode of the light emitting element EL is turned on to drive the light emitting element EL to emit light.
  • the second pole of the light emitting element EL is connected to the second voltage input terminal; the second voltage input terminal is for inputting the second voltage V2.
  • the pixel circuit according to the embodiment of the present disclosure adds a step-down sub-circuit 15 capable of lowering the potential of the control node NC compared to the potential of the data writing node ND in the charge compensation phase, and passing through the storage sub-circuit 13 Charging compensation phase, the potential of the control node NC is charged and discharged to the first step-down voltage, and the potential of the control node NC is controlled to be the first step-down voltage during the light-emitting phase, thereby controlling the light-emitting phase and decreasing
  • the potential of the first pole of the light-emitting element EL is to reduce the voltage across the light-emitting element EL, so that the light-emitting luminance of the light-emitting element EL is lowered, and the dark state is conspicuous to improve the contrast of the light-emitting element EL.
  • the first voltage V1 may be a low voltage
  • the first voltage input terminal may also be a common electrode voltage input terminal or a ground terminal
  • the second voltage V2 may be a low voltage, but not limited thereto.
  • the low voltage may be a zero voltage or a negative voltage less than 0V, but is not limited thereto.
  • the horizontal axis is the voltage across the VEL of the light-emitting element, and the unit is V (volt), and the vertical axis is the luminance L of the light-emitting element, and the unit is nit (nit).
  • the VEL is in the first voltage range VR1
  • the illuminating element is in a high contrast low brightness mode
  • VEL is in the second voltage range VR2
  • the illuminating element is in a high brightness low contrast mode.
  • a display period includes a charging compensation phase and an illumination phase which are sequentially disposed;
  • the data line outputs the data voltage Vdata
  • the data writing sub-circuit 11 controls the writing of the data voltage Vdata to the data writing node ND under the control of the gate line Gate, and the step-down sub-circuit 15 pairs
  • the data voltage Vdata is stepped down to obtain a first step-down voltage VD1
  • the storage sub-circuit 13 charges and discharges the potential of the control node NC to the first step-down voltage VD1.
  • the data writing sub-circuit 11 controls to disconnect the connection between the data writing node ND and the data line Data under the control of the gate line Gate; the storage sub-circuit Controlling that the potential of the control node NC is the first step-down voltage VD1, and the light-emitting control sub-circuit 14 turns on the first end of the power voltage input terminal and the driving sub-circuit 12 under the control of the light-emitting control terminal EM
  • the connection between the driving sub-circuit 12 under the control of the control node NC, the connection between the first end of the driving sub-circuit 12 and the first pole of the light-emitting element EL is turned on to drive the The light emitting element EL emits light.
  • the step-down sub-circuit may include: a buck transistor, a gate connected to the data writing node, a first pole connected to the power voltage input terminal, and a second pole connected to the control node.
  • the supply voltage input is for inputting a supply voltage, and the supply voltage is within a first predetermined voltage range such that the buck transistor is capable of operating in a saturation region during the charge compensation phase.
  • the buck transistor may be an N-type transistor, but is not limited thereto.
  • the driving sub-circuit may include a driving transistor; a gate of the driving transistor is connected to a control end of the driving sub-circuit, and a first pole of the driving transistor and a first one of the driving sub-circuit The second terminal of the driving transistor is connected to the second end of the driving sub-circuit.
  • the driving transistor may be an N-type transistor, but is not limited thereto.
  • the pixel circuit of the embodiment of the present disclosure may further include an on/off control sub-circuit; the control end of the on-off control sub-circuit is connected to the on-off control end, and the first end of the on-off control sub-circuit Connected to the data writing node, the second end of the on/off control sub-circuit is connected to the control node, and the on-off control sub-circuit is used to be turned on or off under the control of the on-off control terminal
  • the data write node is connected to the connection between the node and the control node.
  • the pixel circuit according to the first embodiment of the present disclosure further includes an on/off control sub-circuit 16; and the on-off control sub-circuit 16
  • the control terminal is connected to the on/off control terminal SW, and the first end of the on/off control sub-circuit 16 is connected to the data write node ND, and the second end of the on/off control sub-circuit 16 and the control node NC Connected, the on-off control sub-circuit 16 is configured to turn on or off the connection between the data write node ND and the control node NC under the control of the on-off control terminal SW.
  • the first embodiment of the pixel circuit shown in FIG. 3 adds the on-off control sub-circuit 16 when the on-off control sub-circuit 16 controls the disconnection between the data writing node ND and the control node NC. High contrast can be achieved when connected. Further, when the on-off control sub-circuit 16 controls the connection between the conduction data writing node ND and the control node NC, it is possible to control that the contrast is not improved.
  • the first embodiment of the pixel circuit shown in FIG. 3 of the present disclosure is in operation, when the on-off control sub-circuit 16 controls the conduction between the data writing node ND and the control node NC
  • the potential of the second electrode of the light-emitting element EL can be further lowered to achieve high luminance, and a high-voltage EL EL driving scheme can be realized under a low-voltage Mos process.
  • the pixel circuit according to the second embodiment of the present disclosure may further include a photo sensor circuit 31 and a comparison sub circuit 32;
  • the sensor circuit 31 is configured to detect the illumination intensity of the ambient light;
  • the comparison sub-circuit 32 is configured to compare the illumination intensity of the ambient light with a predetermined threshold illumination intensity, and when the illumination intensity of the ambient light is less than or equal to the
  • the first control signal is outputted to the on/off control terminal SW when the illumination intensity is greater than the threshold illumination intensity, and the second control signal is output to the on/off control terminal SW;
  • the on-off control sub-circuit 16 is specifically configured to disconnect the connection between the data writing node ND and the control node NC when the on-off control terminal SW receives the first control signal, When the on/off control terminal SW receives the second control signal, the connection between the data writing node ND and the control node NC is turned on.
  • the pixel circuit according to the second embodiment of the present disclosure may further include a photo sensor circuit 31 and a comparison sub circuit 32.
  • the ambient light intensity is less than or equal to a predetermined threshold light intensity
  • the nighttime enters the nighttime.
  • the on-off control sub-circuit 16 controls the connection between the disconnection data writing node ND and the control node NC, high contrast and low brightness can be achieved.
  • the illumination intensity of the ambient light is greater than the predetermined threshold illumination intensity, that is, entering the daytime outdoor mode
  • the on/off control sub-circuit 16 controls the connection between the conduction data writing node ND and the control node NC, which can be realized low. Contrast and high brightness.
  • the potential of the second pole of the light emitting element EL can be lowered to improve the The voltage across the light-emitting element EL is described to achieve high brightness.
  • the pixel circuit of the third embodiment of the present disclosure may further include a photo sensor circuit 31 and a comparison sub circuit. 32 and a voltage adjustment module 33; the photo sensor circuit 31 is configured to detect the illumination intensity of the ambient light; and the comparison sub-circuit 32 is further configured to: when the illumination intensity of the ambient light is less than or equal to the threshold illumination intensity, Outputting a first control signal to the voltage adjustment module 33, and outputting a second control signal to the voltage adjustment module 33 when the illumination intensity of the ambient light is greater than the threshold illumination intensity;
  • the voltage adjustment module 33 is respectively connected to the second voltage input terminal and the comparison sub-circuit 32, and is configured to increase the second input to the second voltage input terminal when receiving the first control signal The voltage V2, when receiving the second control signal, lowers the second voltage V2.
  • the pixel circuit of the third embodiment of the present disclosure may further include a photo sensor circuit 31, a comparison sub circuit 32, and a voltage adjustment module 33, when the illumination intensity of the ambient light is less than or equal to a predetermined threshold illumination intensity. That is, entering the night mode, the voltage adjustment module 33 raises the second voltage V2 to achieve high contrast and low brightness. In addition, when the illumination intensity of the ambient light is greater than a predetermined threshold illumination intensity, that is, entering the daytime outdoor mode, the voltage adjustment module 33 lowers the second voltage V2 to achieve low contrast and high brightness.
  • the light emitting element EL may be an organic light emitting diode.
  • the light emitting element may be a Micro Oled (micro organic light emitting diode), and the first electrode of the micro organic light emitting diode may be an anode.
  • the second pole of the micro organic light emitting diode may be a cathode, but is not limited thereto.
  • the micro organic light emitting diode is a silicon-based OLED microdisplay device, which is based on a single crystal silicon chip, and has a pixel size of 1/10 of that of a conventional display device, and the fineness is much higher than that of a conventional display device.
  • the storage sub-circuit may include a storage capacitor; a first end of the storage capacitor is connected to the control node, and a second end of the storage capacitor is connected to the first voltage input end.
  • the pixel circuit of the third embodiment of the present disclosure may further include a reset control sub-circuit; the control end of the reset control sub-circuit is connected to the reset control end, and the first end of the reset control sub-circuit is a first pole of the light emitting element is connected, a second end of the reset control subcircuit is connected to a third voltage input end, and the reset control subcircuit is used to be turned on or off under the control of the reset control end a connection between the first pole of the light emitting element and the third voltage input.
  • the third voltage input terminal may be a low voltage input terminal, a ground terminal or a common electrode voltage input terminal.
  • the pixel circuit according to the fourth embodiment of the present disclosure further includes a reset control sub-circuit 50; the control end of the reset control sub-circuit 50. Connected to the reset control terminal Discharge, the first end of the reset control sub-circuit 50 is connected to the first pole of the light-emitting element EL, and the second end of the reset control sub-circuit 50 is connected to the common electrode voltage input end.
  • the reset control sub-circuit 50 is configured to turn on the connection between the first pole and the third voltage input end of the light-emitting element during the reset phase under the control of the reset control terminal Discharge, in the charging compensation phase and to emit light
  • the phase disconnects the connection between the first pole of the light emitting element and the third voltage input.
  • the third input terminal is a common electrode voltage input terminal for inputting the common electrode voltage Vcom.
  • the pixel circuit increases the reset control sub-circuit 50 to turn on between the first pole of the light-emitting element EL and the third voltage input terminal in a reset phase before the charging compensation phase is set.
  • the connection is to reset the potential of the first pole of the light-emitting element EL to Vcom, and reset the voltage signal of the first pole of the light-emitting element EL of the previous frame display time, thereby effectively improving the high frequency Drives the problem of motion blur.
  • the gate line may include a first gate line and a second gate line;
  • the data writing sub-circuit may include:
  • a first data write transistor a gate connected to the first gate line, a first pole connected to the data line, and a second pole connected to the data write node;
  • a second data write transistor a gate connected to the second gate line, a first pole connected to the data line, and a second pole connected to the data node;
  • the first data write transistor is an N-type transistor
  • the second data write transistor is a P-type transistor.
  • the gate line includes a first gate line and a second gate line
  • the first data write transistor is an N-type transistor, corresponding to a data voltage having a lower voltage value
  • the second data write transistor is a P-type
  • the transistor corresponds to a data voltage having a higher voltage value to increase the driving voltage range of the data voltage on the data line.
  • the first embodiment of the pixel circuit of the present disclosure includes a micro organic light emitting diode Moled, a data writing sub-circuit 11 , a driving sub-circuit 12 , a storage sub-circuit 13 , an emission control sub-circuit 14 , and a lowering The voltage sub-circuit 15 and the reset control sub-circuit 50.
  • the data writing sub-circuit 11 includes:
  • a first data write transistor N1 a gate connected to the first gate line Gate1, a drain connected to the data line Data, and a source connected to the data write node ND;
  • a second data write transistor P1 a gate connected to the second gate line Gate2, a drain connected to the data line Data, and a source connected to the data write node ND;
  • the driving sub-circuit 12 includes a driving transistor DTFT; the gate of the driving transistor DTFT is connected to the control node NC, and the drain of the driving transistor DTFT is connected to the anode of the micro organic light emitting diode Moled;
  • Moled cathode is connected to low voltage VSS;
  • the storage sub-circuit 13 includes a storage capacitor C1; the first end of the storage capacitor C1 is connected to the control node NC, and the second end of the storage capacitor C1 is connected to the ground GND;
  • the illumination control sub-circuit 14 includes an illumination control transistor P2; the gate of the illumination control transistor P2 is connected to the illumination control terminal EM, the source of the illumination control transistor P2 is connected to a power supply voltage Vdd, and the illumination control transistor P2 a drain connected to a source of the driving transistor DTFT;
  • the step-down sub-circuit 15 includes: a buck transistor TD, a gate connected to the data write node ND, a source connected to the power supply voltage Vdd, and a drain connected to the control node NC;
  • the reset control sub-circuit 50 includes a reset control transistor N2, a gate connected to the reset control terminal Discharge, a drain connected to the anode of the micro organic light emitting diode Moled, and a source connected to the common electrode voltage Vcom.
  • N1 and N2 are N-type transistors
  • P1 and P2 are P-type transistors
  • both TD and DTFT are N-type transistors, but not limited thereto.
  • the TD can operate in the saturation region in the charge compensation phase and the light-emitting phase, and the DTFT operates in the saturation region in the light-emitting phase, at which time the present disclosure is implemented.
  • the pixel circuit described in the example includes a voltage-driven pixel driving circuit, that is, the luminance of the Moled in the light-emitting phase is related to the voltage difference between the anode of the Moled and the cathode of the Moled.
  • the TD and the DTFT select a P-type transistor
  • the source of the TD since the source of the TD is connected to Vdd, and the source of the DTFT is also connected to the Vdd during the light-emitting phase, the TD operates in the amplification region during the charge compensation phase and the light-emitting phase.
  • the DTFT also operates in the amplification region, and the driving mode adopted by the pixel circuit is current-driven.
  • the illuminating brightness of the Moled is related to the driving current flowing through the Moled.
  • each display period includes a reset phase S1, a charge compensation phase S2, and an illumination phase S3, which are sequentially disposed.
  • Gate1 and EM both output a high level
  • Gate2 and Discharge both output a low level
  • P1 and N1 are both turned on
  • N2 and P2 are all turned off
  • Data output data voltage Vdata Vdata is written to ND
  • TD Working in the saturation region
  • Vdata charges the gate of the DTFT (the gate of the DTFT is connected to the control node NC) through C1, so that the potential of the NC becomes Vdata-Vth1, and Vth1 is the threshold voltage of TD;
  • the TD operates in a saturation region
  • both the TD and the DTFT operate in a saturation region (i.e., a constant current region).
  • the first embodiment of the pixel circuit shown in FIG. 7 is in a specific low-pressure Mos (Metal-oxide-semiconductor) process limitation condition (0.11 um (micrometer), 6 V (volt) process) Under the same, high contrast can also be achieved.
  • Mos Metal-oxide-semiconductor
  • the threshold voltage of the TD and the threshold voltage of the DTFT are both equal to 1V, VSS is equal to -3V, and each transistor selects a 6V process (that is, a voltage between any of the transistors). If the voltage difference is less than or equal to 6V, and Vdata is greater than or equal to 1V and less than or equal to 5V, if the pixel circuit according to the embodiment of the present disclosure is not used, the cross-voltage of the Moled is greater than or equal to 3V and less than or equal to 7V, and the present invention is adopted. In the pixel circuit described in the embodiment, the voltage across the Moled can be controlled to be greater than or equal to 2V and less than or equal to 6V. When the voltage across the Moled is 2V, the dark current of the Moled is small at this time, so that the contrast of the Moled illumination can be improved.
  • the first embodiment of the pixel circuit described in the present disclosure can improve the contrast of the Moled by two steps of depressing the TD and the DTFT.
  • the pixel circuit according to the embodiment of the present disclosure overcomes the IVL (current-voltage-brightness) characteristic of the light-emitting element itself under a specific preset environment, and can realize a high-contrast scheme of the light-emitting element, and the premise is guaranteed in Wafer (single crystal silicon round)
  • the film has a specific withstand voltage range to achieve high contrast.
  • the second embodiment of the pixel circuit of the present disclosure further includes the on/off control sub-circuit 16 on the basis of the first embodiment of the pixel circuit shown in FIG. ;
  • the on-off control sub-circuit 16 includes an on-off control transistor TG, a gate connected to the on-off control terminal SW, a drain connected to the data write node ND, and a source connected to the control node NC.
  • the TG is an N-type transistor, but is not limited thereto.
  • the TG when the SW outputs a high level, the TG is turned on to control the communication between the ND and the NC, and the contrast can be controlled without being improved; when the SW outputs a low level , TG is disconnected and high contrast can be achieved.
  • the driving method of the pixel circuit according to the embodiment of the present disclosure is applied to the pixel circuit described above, and the driving method of the pixel circuit includes:
  • the data line outputs a data voltage Vdata
  • the data writing sub-circuit controls the writing of the data voltage Vdata to the node under the control of the gate line, and the step-down sub-circuit lowers the data voltage Vdata. Pressing, the first step-down voltage is obtained, and the storage sub-circuit control charges and discharges the potential of the control node to the first step-down voltage.
  • the driving method of the pixel circuit causes the potential of the control node to be lower than the potential of the data writing node by the step-down sub-circuit in the charging compensation phase, so that the potential of the control node is the first
  • the voltage is stepped down, and the potential of the control node is maintained at the first step-down voltage by the storage sub-circuit during the illumination phase, so that the contrast of the light-emitting element can be improved.
  • the driving method of the pixel circuit further includes:
  • the data writing sub-circuit controls disconnection between the data writing node and the data line under control of the gate line; the storage sub-circuit control maintains the The potential of the control node is the first step-down voltage, and the light-emitting control sub-circuit turns on the connection between the power voltage input terminal and the first pole of the driving sub-circuit under the control of the light-emitting control terminal, the driving sub-circuit Under the control of the control node, a connection between the first end of the driving sub-circuit and the first pole of the light emitting element is turned on to drive the light emitting element to emit light.
  • the pixel circuit may further include a reset control sub-circuit; and a reset phase is disposed before the charging compensation phase, and the driving method of the pixel circuit further includes:
  • the reset control sub-circuit turns on a connection between the first pole and the third voltage input end of the light emitting element under the control of the reset control end to the light emitting element The potential of the first pole is reset;
  • the reset control sub-circuit disconnects the connection between the first pole of the light-emitting element and the third voltage input terminal under the control of the reset control terminal.
  • the driving method of the pixel circuit controls the sub circuit to reset between the first pole of the light emitting element and the third voltage input terminal in a reset phase before the charging compensation phase
  • the connection is to reset the potential of the first pole of the light-emitting element to a third voltage, and reset the voltage signal of the first pole of the light-emitting element of the previous frame display time, thereby effectively improving the high frequency Drives the problem of motion blur.
  • the display device includes the pixel circuit described above.
  • the display device may further include a silicon-based substrate; the pixel circuit is disposed on the silicon-based substrate.
  • the display device may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the silicon-based substrate may be a single crystal silicon-based substrate.
  • CMOS Complementary Metal Oxide Semiconductor
  • Drive circuit layer SiO 2 (silicon dioxide) oxide layer, pixel pattern isolation layer, pixel pattern conductive layer (silicon-based chip top layer metal), pixel anode dielectric layer (lower electrode), organic light-emitting layer, transparent common cathode electrode Layer (upper electrode), polymer and ceramic film encapsulation layer, black material matrix spacer, color filter strip and glass cover.
  • the CMOS driving circuit layer includes a pixel driving circuit, a GOA (Gate On Array, a gate driving circuit disposed on the array substrate), and a previous IC (Integrated Circuit) driving portion, and the CMOS driving circuit layer is integrated in On the single crystal silicon based substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

像素电路包括发光元件(EL, Moled)、数据写入子电路(11)、驱动子电路(12)、存储子电路(13)、发光控制子电路(14)和降压子电路(15)。降压子电路(15)在充电补偿阶段(S2)控制对数据电压(Vdata)进行降压,得到第一降压电压(VD1),并通过控制节点(NC)输出第一降压电压(VD1)。存储子电路(13)在充电补偿阶段(S2)将控制节点(NC)的电位充放电至第一降压电压(VD1),并在发光阶段(S3)控制维持控制节点(NC)的电位为第一降压电压(VD1)。驱动子电路(12)用于在发光阶段(S3),在控制节点(NC)的控制下,导通驱动子电路(12)的第一端与发光元件(EL, Moled)的第一极之间的连接,以驱动发光元件(EL, Moled)发光。

Description

像素电路及其驱动方法和显示装置
相关申请的交叉引用
本申请主张在2018年5月8日在中国提交的中国专利申请号No.201810430441.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种像素电路及其驱动方法和显示装置。
背景技术
硅基OLED(Organic Light-Emitting Diode,有机发光二极管)微显示器处于微电子技术和光电子技术的交叉点上,在特定情况下需要实现高对比度。现有的像素电路无法有效的保证在特定的低压Mos(Metal-oxide-semiconductor,金属-氧化物-半导体)制程限制条件下降低发光元件的跨压,从而无法实现高对比度。
发明内容
在第一个方面中,本公开实施例提供了一种像素电路,包括发光元件,所述像素电路还包括数据写入子电路、驱动子电路、存储子电路、发光控制子电路和降压子电路;
所述数据写入子电路分别与栅线、数据线和数据写入节点连接,用于在充电补偿阶段,在所述栅线的控制下,控制将所述数据线上的数据电压写入所述数据写入节点;
所述发光控制子电路分别与发光控制端、电源电压输入端和所述驱动子电路的第一端连接,用于在发光阶段,在发光控制端的控制下,导通所述电源电压输入端与所述驱动子电路的第一端之间的连接;
所述降压子电路分别与所述数据写入节点、控制节点和电源电压输入端连接,用于在充电补偿阶段控制对所述数据电压进行降压,得到第一降压电 压;
所述存储子电路的第一端与所述控制节点连接,所述存储子电路的第二端与第一电压输入端连接,所述存储子电路用于在所述充电补偿阶段将所述控制节点的电位充放电至所述第一降压电压,并在所述发光阶段控制维持所述控制节点的电位为所述第一降压电压;
所述驱动子电路的控制端与所述控制节点连接,所述驱动子电路的第二端与所述发光元件的第一极连接,所述驱动子电路用于在所述发光阶段,在所述控制节点的控制下,导通所述驱动子电路的第一端与所述发光元件的第一极之间的连接,以驱动所述发光元件发光;以及
所述发光元件的第二极与第二电压输入端连接。
根据本公开的一些实施例,所述降压子电路包括:降压晶体管,栅极与所述数据写入节点连接,第一极与所述电源电压输入端连接,第二极与所述控制节点连接;
所述电源电压输入端用于输入电源电压,所述电源电压位于第一预定电压范围内,以使得在所述充电补偿阶段所述降压晶体管能够工作于饱和区。
根据本公开的一些实施例,所述驱动子电路包括驱动晶体管;所述驱动晶体管的栅极与所述驱动子电路的控制端连接,所述驱动晶体管的第一极与所述驱动子电路的第一端连接,所述驱动晶体管的第二极与所述驱动子电路的第二端连接。
根据本公开的一些实施例,所述像素电路还包括通断控制子电路;
所述通断控制子电路的控制端与通断控制端连接,所述通断控制子电路的第一端与所述数据写入节点连接,所述通断控制子电路的第二端与所述控制节点连接,所述通断控制子电路用于在所述通断控制端的控制下,导通或断开所述数据写入节点与所述控制节点之间的连接。
根据本公开的一些实施例,所述像素电路还包括光感子电路和比较子电路;
所述光感子电路用于检测环境光的光照强度;
所述比较子电路用于比较所述环境光的光照强度与预定的阈值光照强度,并当所述环境光的光照强度小于或等于所述阈值光照强度时,向所述通断控 制端输出第一控制信号,当所述环境光的光照强度大于所述阈值光照强度时,向所述通断控制端输出第二控制信号;
所述通断控制子电路具体用于在所述通断控制端接收到所述第一控制信号时,断开所述数据写入节点与所述控制节点之间的连接,在所述通断控制端接收到所述第二控制信号时,导通所述数据写入节点与所述控制节点之间的连接。
根据本公开的一些实施例,所述像素电路还包括光感子电路、比较子电路和电压调节模块;
所述光感子电路用于检测环境光的光照强度;
所述比较子电路还用于当所述环境光的光照强度小于或等于所述阈值光照强度时,向所述电压调节模块输出第一控制信号,当所述环境光的光照强度大于所述阈值光照强度时,向所述电压调节模块输出第二控制信号;
所述电压调节模块分别与所述第二电压输入端和所述比较子电路连接,用于当接收到所述第一控制信号时,调高输入至所述第二电压输入端的第二电压,当接收到所述第二控制信号时,调低所述第二电压。
根据本公开的一些实施例,所述发光元件为微型有机发光二极管,所述微型有机发光二极管的阳极为所述发光元件的第一极,所述微型有机发光二极管的阴极为所述发光元件的第二极。
根据本公开的一些实施例,所述存储子电路包括存储电容;所述存储电容的第一端与所述控制节点连接,所述存储电容的第二端与第一电压输入端连接。
根据本公开的一些实施例,所述像素电路还包括复位控制子电路;
所述复位控制子电路的控制端与复位控制端连接,所述复位控制子电路的第一端与所述发光元件的第一极连接,所述复位控制子电路的第二端与第三电压输入端连接,所述复位控制子电路用于在所述复位控制端的控制下,导通或断开所述发光元件的第一极与所述第三电压输入端之间的连接。
根据本公开的一些实施例,所述栅线包括第一栅线和第二栅线;所述数据写入子电路包括:
第一数据写入晶体管,栅极与所述第一栅线连接,第一极与所述数据线 连接,第二极与所述数据写入节点连接;以及,
第二数据写入晶体管,栅极与所述第二栅线连接,第一极与所述数据线连接,第二极与所述数据写入节点连接;
所述第一数据写入晶体管为N型晶体管,所述第二数据写入晶体管为P型晶体管。
在第二个方面中,本公开实施例还提供了一种像素电路的驱动方法,所述像素电路的驱动方法应用于如第一个方面中所述的像素电路,所述像素电路的驱动方法包括:
在充电补偿阶段,数据线输出数据电压Vdata,数据写入子电路在栅线的控制下,控制将所述数据电压Vdata写入数据写入节点,降压子电路对所述数据电压Vdata进行降压,得到第一降压电压,存储子电路控制将所述控制节点的电位充放电至所述第一降压电压。
根据本公开的一些实施例,在所述充电补偿阶段之后设置有发光阶段,所述像素电路的驱动方法还包括:
在所述发光阶段,所述数据写入子电路在所述栅线的控制下,控制断开所述数据写入节点与所述数据线之间的连接;所述存储子电路控制维持所述控制节点的电位为所述第一降压电压,发光控制子电路在发光控制端的控制下,导通所述电源电压输入端与驱动子电路的第一极之间的连接,所述驱动子电路在所述控制节点的控制下,导通所述驱动子电路的第一端与发光元件的第一极之间的连接,以驱动所述发光元件发光。
根据本公开的一些实施例,所述像素电路还包括复位控制子电路;在所述充电补偿阶段之前设置有重置阶段,所述像素电路的驱动方法还包括:
在所述重置阶段,所述复位控制子电路在所述复位控制端的控制下,导通所述发光元件的第一极与第三电压输入端之间的连接,以对所述发光元件的第一极的电位进行重置;
在充电补偿阶段和发光阶段,所述复位控制子电路在复位控制端的控制下,断开所述发光元件的第一极与所述第三电压输入端之间的连接。
在第三个方面中,本公开实施例还提供了一种显示装置,包括如第一个方面中所述的像素电路。
根据本公开的一些实施例,所述显示装置还包括硅基衬底;所述像素电路设置于所述硅基衬底上。
根据本公开的一些实施例,所述硅基衬底为单晶硅基衬底。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1本公开实施例所述的像素电路的结构图;
图2是发光元件的跨压VEL与发光元件的亮度L之间的关系示意图;
图3是本公开第一实施例所述的像素电路的结构图;
图4是本公开第二实施例所述的像素电路的结构图;
图5是本公开第三实施例所述的像素电路的结构图;
图6是本公开第四实施例所述的像素电路的结构图;
图7是本公开所述的像素电路的第一具体实施例的结构图;
图8是本公开所述的像素电路的第一具体实施例的工作时序图;以及
图9是本公开所述的像素电路的第二具体实施例的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开所有实施例中采用的晶体管均可以为薄膜晶体管或场效应管或其他特性相同的器件。在本公开实施例中,为区分晶体管除栅极之外的两极,将其中一极称为第一极,另一极称为第二极。在实际操作时,所述第一极可以为漏极,所述第二极可以为源极;或者,所述第一极可以为源极,所述第二极可以为漏极。
如图1所示,本公开实施例所述的像素电路包括发光元件EL,所述像素电路还包括数据写入子电路11、驱动子电路12、存储子电路13、发光控制子电路14和降压子电路15。
所述数据写入子电路11分别与栅线Gate、数据线Data和数据写入节点ND连接,用于在充电补偿阶段,在所述栅线Gate的控制下,控制将所述数据线Data上的数据电压写入所述数据写入节点ND。
所述发光控制子电路14分别与发光控制端EM、电源电压输入端和所述驱动子电路12的第一端连接,用于在发光阶段,在发光控制端EM的控制下,导通所述电源电压输入端与所述驱动子电路12的第一端之间的连接;所述电源电压输入端用于输入电源电压Vdd。
所述降压子电路15分别与所述数据写入节点ND、控制节点NC和电源电压输入端连接,用于在充电补偿阶段控制对所述数据电压进行降压,得到第一降压电压。
所述存储子电路13的第一端与所述控制节点NC连接,所述存储子电路13的第二端与第一电压输入端连接,所述存储子电路13用于在所述充电补偿阶段将所述控制节点NC的电位充放电至所述第一降压电压,并在所述发光阶段控制维持所述控制节点NC的电位为所述第一降压电压;所述第一电压输入端用于输入第一电压V1。
所述驱动子电路12的控制端与所述控制节点NC连接,所述驱动子电路12的第二端与所述发光元件EL的第一极连接,所述驱动子电路12用于在所述发光阶段,在所述控制节点NC的控制下,导通所述驱动子电路12的第一端与所述发光元件EL的第一极之间的连接,以驱动所述发光元件EL发光。
所述发光元件EL的第二极与第二电压输入端连接;所述第二电压输入端用于输入第二电压V2。
本公开实施例所述的像素电路增设了降压子电路15,能够在充电补偿阶段使得控制节点NC的电位比起所述数据写入节点ND的电位有所降低,并通过存储子电路13在充电补偿阶段所述控制节点NC的电位充放电至所述第一降压电压,并在发光阶段控制维持所述控制节点NC的电位为所述第一降压电压,从而控制在发光阶段,降低所述发光元件EL的第一极的电位,以 降低所述发光元件EL的跨压,使得所述发光元件EL的发光亮度降低,暗态明显,以提高所述发光元件EL的对比度。
在实际操作时,第一电压V1可以为低电压,第一电压输入端也可以为公共电极电压输入端或地端,第二电压V2可以为低电压,但不以此为限。
在本公开实施例中,所述低电压可以为零电压或小于0V的负电压,但不以此为限。
下面结合附图来说明为何发光元件的跨压降低则对比度提高。
如图2所示,横轴为发光元件的跨压VEL,单位为V(伏),纵轴为发光元件的亮度L,单位为nit(尼特),当VEL在第一电压范围VR1时,该发光元件处于高对比度低亮度模式,当VEL在第二电压范围VR2时,该发光元件处于高亮度低对比度模式。
本公开如图1所示的像素电路在工作时,一显示周期包括依次设置的充电补偿阶段和发光阶段;
在所述充电补偿阶段,数据线输出数据电压Vdata,数据写入子电路11在栅线Gate的控制下,控制将所述数据电压Vdata写入数据写入节点ND,降压子电路15对所述数据电压Vdata进行降压,得到第一降压电压VD1,存储子电路13将所述控制节点NC的电位充放电至所述第一降压电压VD1。
在所述发光阶段,所述数据写入子电路11在所述栅线Gate的控制下,控制断开所述数据写入节点ND与所述数据线Data之间的连接;所述存储子电路控制维持所述控制节点NC的电位为所述第一降压电压VD1,发光控制子电路14在发光控制端EM的控制下,导通所述电源电压输入端与驱动子电路12的第一端之间的连接,所述驱动子电路12在所述控制节点NC的控制下,导通所述驱动子电路12的第一端与发光元件EL的第一极之间的连接,以驱动所述发光元件EL发光。
具体的,所述降压子电路可以包括:降压晶体管,栅极与所述数据写入节点连接,第一极与所述电源电压输入端连接,第二极与所述控制节点连接。
所述电源电压输入端用于输入电源电压,所述电源电压位于第一预定电压范围内,以使得在所述充电补偿阶段所述降压晶体管能够工作于饱和区。
在实际操作时,所述降压晶体管可以为N型晶体管,但不以此为限。
在具体实施时,所述驱动子电路可以包括驱动晶体管;所述驱动晶体管的栅极与所述驱动子电路的控制端连接,所述驱动晶体管的第一极与所述驱动子电路的第一端连接,所述驱动晶体管的第二极与所述驱动子电路的第二端连接。
在实际操作时,所述驱动晶体管可以为N型晶体管,但不以此为限。
可选的,本公开实施例所述的像素电路还可以包括通断控制子电路;所述通断控制子电路的控制端与通断控制端连接,所述通断控制子电路的第一端与所述数据写入节点连接,所述通断控制子电路的第二端与所述控制节点连接,所述通断控制子电路用于在所述通断控制端的控制下,导通或断开所述数据写入节点与所述控制节点之间的连接。
如图3所示,在图1所示的像素电路的实施例的基础上,本公开第一实施例所述的像素电路还包括通断控制子电路16;所述通断控制子电路16的控制端与通断控制端SW连接,所述通断控制子电路16的第一端与所述数据写入节点ND连接,所述通断控制子电路16的第二端与所述控制节点NC连接,所述通断控制子电路16用于在所述通断控制端SW的控制下,导通或断开所述数据写入节点ND与所述控制节点NC之间的连接。
本公开如图3所示的像素电路的第一实施例增设了所述通断控制子电路16,当所述通断控制子电路16控制断开数据写入节点ND与控制节点NC之间的连接时,可以实现高对比度。另外,当所述通断控制子电路16控制导通数据写入节点ND与控制节点NC之间的连接时,可以控制不进行对比度的提高。
并且,在一些情况下,本公开如图3所示的像素电路的第一实施例在工作时,当所述通断控制子电路16控制导通数据写入节点ND与控制节点NC之间的连接时,可以进一步通过降低发光元件EL的第二极的电位,以能够实现高亮度,则可以在低压的Mos制程工艺下,实现高压的发光元件EL驱动方案。
可选的,在图3所示的像素电路的基础上,如图4所示,本公开第二实施例所述的像素电路还可以包括光感子电路31和比较子电路32;所述光感子电路31用于检测环境光的光照强度;所述比较子电路32用于比较所述环 境光的光照强度与预定的阈值光照强度,并当所述环境光的光照强度小于或等于所述阈值光照强度时,向所述通断控制端SW输出第一控制信号,当所述环境光的光照强度大于所述阈值光照强度时,向所述通断控制端SW输出第二控制信号;
所述通断控制子电路16具体用于在所述通断控制端SW接收到所述第一控制信号时,断开所述数据写入节点ND与所述控制节点NC之间的连接,在所述通断控制端SW接收到所述第二控制信号时,导通所述数据写入节点ND与所述控制节点NC之间的连接。
在一些情况下,本公开第二实施例所述的像素电路还可以包括光感子电路31和比较子电路32,当环境光的光照强度小于或等于预定的阈值光照强度时,也即进入夜间模式,通断控制子电路16控制断开数据写入节点ND与控制节点NC之间的连接时,可以实现高对比度并低亮度。另外,当环境光的光照强度大于预定的阈值光照强度时,也即进入白天室外模式,通断控制子电路16控制导通数据写入节点ND与控制节点NC之间的连接时,可以实现低对比度并高亮度。
在具体实施时,本公开如图4所示的像素驱动电路的第二实施例在工作时,当进入白天室外模式时,可以通过降低所述发光元件EL的第二极的电位,以提高所述发光元件EL的跨压,以实现高亮度。
可选的,在本公开如图1所示的像素电路的实施例的基础上,如图5所示,本公开第三实施例所述像素电路还可以包括光感子电路31、比较子电路32和电压调节模块33;所述光感子电路31用于检测环境光的光照强度;所述比较子电路32还用于当所述环境光的光照强度小于或等于所述阈值光照强度时,向所述电压调节模块33输出第一控制信号,当所述环境光的光照强度大于所述阈值光照强度时,向所述电压调节模块33输出第二控制信号;
所述电压调节模块33分别与所述第二电压输入端和所述比较子电路32连接,用于当接收到所述第一控制信号时,调高输入至所述第二电压输入端的第二电压V2,当接收到所述第二控制信号时,调低所述第二电压V2。
在一些情况下,本公开第三实施例所述的像素电路还可以包括光感子电路31、比较子电路32和电压调节模块33,当环境光的光照强度小于或等于 预定的阈值光照强度时,也即进入夜间模式,所述电压调节模块33调高第二电压V2,以实现高对比度并低亮度。另外,当环境光的光照强度大于预定的阈值光照强度时,也即进入白天室外模式,所述电压调节模块33调低第二电压V2,以实现低对比度并高亮度。
在实际操作时,所述发光元件EL可以为有机发光二极管,具体的,所述发光元件可以为Micro Oled(微型有机发光二极管),所述微型有机发光二极管的第一极可以为阳极,所述微型有机发光二极管的第二极可以为阴极,但不以此为限。
所述微型有机发光二极管为硅基OLED微显示器件,它以单晶硅芯片为基底,像素尺寸为传统显示器件的1/10,精细度远远高于传统显示器件。
具体的,所述存储子电路可以包括存储电容;所述存储电容的第一端与所述控制节点连接,所述存储电容的第二端与第一电压输入端连接。
在一些情况下,本公开第三实施例所述的像素电路还可以包括复位控制子电路;所述复位控制子电路的控制端与复位控制端连接,所述复位控制子电路的第一端与所述发光元件的第一极连接,所述复位控制子电路的第二端与第三电压输入端连接,所述复位控制子电路用于在所述复位控制端的控制下,导通或断开所述发光元件的第一极与所述第三电压输入端之间的连接。
在具体实施时,所述第三电压输入端可以为低电压输入端、地端或公共电极电压输入端。
如图6所示,在图1所示的像素电路的实施例的基础上,本公开第四实施例所述的像素电路还包括复位控制子电路50;所述复位控制子电路50的控制端与复位控制端Discharge连接,所述复位控制子电路50的第一端与所述发光元件EL的第一极连接,所述复位控制子电路50的第二端与公共电极电压输入端连接,所述复位控制子电路50用于在所述复位控制端Discharge的控制下,在重置阶段导通所述发光元件的第一极与第三电压输入端之间的连接,在充电补偿阶段和发光阶段断开所述发光元件的第一极与所述第三电压输入端之间的连接。
在图6所示的实施例中,所述第三输入端为公共电极电压输入端,所述公共电极电压输入端用于输入公共电极电压Vcom。
本公开实施例所述的像素电路通过增设复位控制子电路50,以在设置于充电补偿阶段之前的重置阶段导通所述发光元件EL的第一极与所述第三电压输入端之间的连接,以将所述发光元件EL的第一极的电位重置放电到Vcom,将上一帧显示时间的所述发光元件EL的第一极的电压信号进行重置,可以有效改善高频驱动下动态模糊(motion blur)的问题。
在具体实施时,所述栅线可以包括第一栅线和第二栅线;所述数据写入子电路可以包括:
第一数据写入晶体管,栅极与所述第一栅线连接,第一极与所述数据线连接,第二极与所述数据写入节点连接;以及,
第二数据写入晶体管,栅极与所述第二栅线连接,第一极与所述数据线连接,第二极与所述数据节点连接;
所述第一数据写入晶体管为N型晶体管,所述第二数据写入晶体管为P型晶体管。
在一些情况下,所述栅线包括第一栅线和第二栅线,第一数据写入晶体管为N型晶体管,对应于电压值较低的数据电压,第二数据写入晶体管为P型晶体管,对应于电压值较高的数据电压,以能够增加数据线上的数据电压的驱动电压范围。下面结合附图说明本公开所述的像素电路的具体实施例。
如图7所示,本公开所述的像素电路的第一具体实施例包括微型有机发光二极管Moled、数据写入子电路11、驱动子电路12、存储子电路13、发光控制子电路14、降压子电路15和复位控制子电路50。
所述数据写入子电路11包括:
第一数据写入晶体管N1,栅极与所述第一栅线Gate1连接,漏极与所述数据线Data连接,源极与所述数据写入节点ND连接;以及,
第二数据写入晶体管P1,栅极与所述第二栅线Gate2连接,漏极与所述数据线Data连接,源极与所述数据写入节点ND连接;
所述驱动子电路12包括驱动晶体管DTFT;所述驱动晶体管DTFT的栅极与控制节点NC连接,所述驱动晶体管DTFT的漏极与所述微型有机发光二极管Moled的阳极连接;
Moled的阴极接入低电压VSS;
所述存储子电路13包括存储电容C1;所述存储电容C1的第一端与所述控制节点NC连接,所述存储电容C1的第二端与地端GND连接;
所述发光控制子电路14包括发光控制晶体管P2;所述发光控制晶体管P2的栅极与发光控制端EM连接,所述发光控制晶体管P2的源极接入电源电压Vdd,所述发光控制晶体管P2的漏极与所述驱动晶体管DTFT的源极连接;
所述降压子电路15包括:降压晶体管TD,栅极与所述数据写入节点ND连接,源极接入所述电源电压Vdd,漏极与所述控制节点NC连接;
所述复位控制子电路50包括:复位控制晶体管N2,栅极与复位控制端Discharge连接,漏极与所述微型有机发光二极管Moled的阳极连接,源极接入公共电极电压Vcom。
在图7所示的像素电路的第一具体实施例中,N1和N2为N型晶体管,P1和P2为P型晶体管,TD和DTFT都为N型晶体管,但不以此为限。
在实际操作时,当TD和DTFT都为N型晶体管时,才能够使得在充电补偿阶段和发光阶段,TD工作于饱和区,并在所述发光阶段DTFT工作于饱和区,此时本公开实施例所述的像素电路包括电压式驱动的像素驱动电路,也即在发光阶段Moled的发光亮度与Moled的阳极与Moled的阴极之间的电压差值有关。而当TD和DTFT选用P型晶体管时,由于TD的源极接入Vdd,并DTFT的源极在发光阶段也接入Vdd,则在充电补偿阶段和发光阶段,TD工作于放大区,在所述发光阶段DTFT也工作于放大区,则像素电路采用的驱动方式为电流驱动式,在发光阶段Moled的发光亮度与流过Moled的驱动电流有关。
如图8所示,每一显示周期包括依次设置的重置阶段S1、充电补偿阶段S2和发光阶段S3,本公开所述的像素电路的第一具体实施例在工作时,
在重置阶段S1,Discharge、EM和Gate2都输出高电平,Gate1输出低电平,N1、P1、DTFT、TD和P2都关断,N2开启,以将Moled的阳极电位重置放电至Vcom,以将上一帧Moled的阳极的电压信号进行重置,可以有效改善高频驱动下的动态模糊问题;
在充电补偿阶段S2,Gate1和EM都输出高电平,Gate2和Discharge都 输出低电平,P1和N1都导通,N2和P2都关断,Data输出数据电压Vdata,Vdata写入ND,TD工作于饱和区,Vdata通过C1对DTFT的栅极(DTFT的栅极与控制节点NC连接)充电,以使得NC的电位变为Vdata-Vth1,Vth1为TD的阈值电压;
在发光阶段S3,Gate1、Discharge和EM都输出低电平,Gate2输出高电平,P2导通,N1、P1和N2都关断,DTFT和TD都工作于饱和区(也即DTFT和TD为此时为源跟随晶体管),NC的电位保持为Vdata-Vth1,Moled的阳极电位接近于Vdata-Vth1-Vth2,Vth2为DTFT的阈值电压,从而使得Moled的阳极的电压经过两次降压,与相关技术相比进一步降低了Moled的跨压(也即Moled的阳极电压与Moled的阴极电压之间的电压差值),使得此时的发光亮度降低,暗态明显(使得Moled的处于暗态的时候更黑),提高Moled的对比度。
在图7所示的像素电路的第一具体实施例在工作时,在充电补偿阶段,TD工作于饱和区,在发光阶段,TD和DTFT都工作于饱和区(也即恒流区)。并图7所示的像素电路的第一具体实施例即使处于特定的低压Mos(Metal-oxide-semiconductor,金属-氧化物-半导体)制程限制条件(0.11um(微米)、6V(伏)制程)下,也可以实现高对比度。
在图7所示的像素电路的第一具体实施例中,TD的阈值电压和DTFT的阈值电压都等于1V,VSS等于-3V,而各晶体管选用6V制程(也即晶体管任意电极之间的电压压差不能超过6V),Vdata大于或等于1V而小于或等于5V,则如果不采用本公开实施例所述的像素电路,Moled的跨压大于或等于3V而小于或等于7V,而采用了本公开实施例所述的像素电路,则Moled的跨压可以控制在大于或等于2V而小于或等于6V。当Moled的跨压为2V时,Moled此时的暗态电流很小,从而可以提高Moled发光的对比度。
本公开所述的像素电路的第一具体实施例通过TD和DTFT两次降压,可以提高Moled的对比度。
本公开实施例所述的像素电路在特定的预设环境下,克服发光元件本身的IVL(电流-电压-亮度)特性,可以实现发光元件的高对比度方案,前提保证在Wafer(单晶硅圆片)特定的耐压范围内,来实现高对比度。
如图9所述,在本公开如图6所示的像素电路的第一具体实施例的基础上,本公开所述的像素电路的第二具体实施例还包括所述通断控制子电路16;
所述通断控制子电路16包括:通断控制晶体管TG,栅极与通断控制端SW连接,漏极与所述数据写入节点ND连接,源极与所述控制节点NC连接。
在图9所示的第二具体实施例中,TG为N型晶体管,但不以此为限。
本公开所述的像素电路的第二具体实施例在工作时,当SW输出高电平时,TG开启,以控制ND与NC之间连通,可以控制不进行对比度的提高;当SW输出低电平时,TG断开,可以实现高对比度。
本公开实施例所述的像素电路的驱动方法,应用于上述的像素电路,所述像素电路的驱动方法包括:
在充电补偿阶段,数据线输出数据电压Vdata,数据写入子电路在栅线的控制下,控制将所述数据电压Vdata写入数据写入节点,降压子电路对所述数据电压Vdata进行降压,得到第一降压电压,存储子电路控制将所述控制节点的电位充放电至所述第一降压电压。
本公开实施例所述的像素电路的驱动方法通过降压子电路在充电补偿阶段使得控制节点的电位比起所述数据写入节点的电位有所降低,使得所述控制节点的电位为第一降压电压,并通过存储子电路在发光阶段控制维持所述控制节点的电位为所述第一降压电压,从而能够提高所述发光元件的对比度。
具体的,在所述充电补偿阶段之后设置有发光阶段,所述像素电路的驱动方法还包括:
在所述发光阶段,所述数据写入子电路在所述栅线的控制下,控制断开所述数据写入节点与所述数据线之间的连接;所述存储子电路控制维持所述控制节点的电位为所述第一降压电压,发光控制子电路在发光控制端的控制下,导通所述电源电压输入端与驱动子电路的第一极之间的连接,所述驱动子电路在所述控制节点的控制下,导通所述驱动子电路的第一端与发光元件的第一极之间的连接,以驱动所述发光元件发光。
在具体实施时,所述像素电路还可以包括复位控制子电路;在所述充电补偿阶段之前设置有重置阶段,所述像素电路的驱动方法还包括:
在所述重置阶段,所述复位控制子电路在所述复位控制端的控制下,导 通所述发光元件的第一极与第三电压输入端之间的连接,以对所述发光元件的第一极的电位进行重置;
在所述充电补偿阶段和所述发光阶段,所述复位控制子电路在复位控制端的控制下,断开所述发光元件的第一极与所述第三电压输入端之间的连接。
本公开实施例所述的像素电路的驱动方法通过复位控制子电路,以在设置于充电补偿阶段之前的重置阶段导通所述发光元件的第一极与所述第三电压输入端之间的连接,以将所述发光元件的第一极的电位重置放电到第三电压,将上一帧显示时间的所述发光元件的第一极的电压信号进行重置,可以有效改善高频驱动下动态模糊(motion blur)的问题。
本公开实施例所述的显示装置包括上述的像素电路。
具体的,本公开实施例所述的显示装置还可以包括硅基衬底;所述像素电路设置于所述硅基衬底上。
本公开实施例所提供的显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
在具体实施时,所述硅基衬底可以为单晶硅基衬底,在制作所述显示装置时,在单晶硅基衬底上依次设置CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)驱动电路层、SiO 2(二氧化硅)氧化物层、像素图案隔离层、像素图形导电层(硅基芯片顶层金属)、像素阳极介质层(下电极)、有机发光层、透明共阴电极层(上电极)、聚合物和陶瓷薄膜封装层、黑色材料矩阵隔离条、彩色滤光片条和玻璃封盖。
所述CMOS驱动电路层包括像素驱动电路、GOA(Gate On Array,设置于阵列基板上的栅极驱动电路)以及之前的IC(Integrated Circuit,集成电路)驱动部分,所述CMOS驱动电路层集成于所述单晶硅基衬底上。
应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (16)

  1. 一种像素电路,包括发光元件,所述像素电路还包括数据写入子电路、驱动子电路、存储子电路、发光控制子电路和降压子电路;
    所述数据写入子电路分别与栅线、数据线和数据写入节点连接,用于在充电补偿阶段,在所述栅线的控制下,控制将所述数据线上的数据电压写入所述数据写入节点;
    所述发光控制子电路分别与发光控制端、电源电压输入端和所述驱动子电路的第一端连接,用于在发光阶段,在发光控制端的控制下,导通所述电源电压输入端与所述驱动子电路的第一端之间的连接;
    所述降压子电路分别与所述数据写入节点、控制节点和电源电压输入端连接,用于在充电补偿阶段控制对所述数据电压进行降压,得到第一降压电压;
    所述存储子电路的第一端与所述控制节点连接,所述存储子电路的第二端与第一电压输入端连接,所述存储子电路用于在所述充电补偿阶段将所述控制节点的电位充放电至所述第一降压电压,并在所述发光阶段控制维持所述控制节点的电位为所述第一降压电压;
    所述驱动子电路的控制端与所述控制节点连接,所述驱动子电路的第二端与所述发光元件的第一极连接,所述驱动子电路用于在所述发光阶段,在所述控制节点的控制下,导通所述驱动子电路的第一端与所述发光元件的第一极之间的连接,以驱动所述发光元件发光;以及
    所述发光元件的第二极与第二电压输入端连接。
  2. 如权利要求1所述的像素电路,其中,所述降压子电路包括:降压晶体管,栅极与所述数据写入节点连接,第一极与所述电源电压输入端连接,第二极与所述控制节点连接;
    所述电源电压输入端用于输入电源电压,所述电源电压位于第一预定电压范围内,以使得在所述充电补偿阶段所述降压晶体管能够工作于饱和区。
  3. 如权利要求1或2所述的像素电路,其中,所述驱动子电路包括驱动晶体管;所述驱动晶体管的栅极与所述驱动子电路的控制端连接,所述驱动 晶体管的第一极与所述驱动子电路的第一端连接,所述驱动晶体管的第二极与所述驱动子电路的第二端连接。
  4. 如权利要求1至3中任一项所述的像素电路,其中,所述像素电路还包括通断控制子电路;
    所述通断控制子电路的控制端与通断控制端连接,所述通断控制子电路的第一端与所述数据写入节点连接,所述通断控制子电路的第二端与所述控制节点连接,所述通断控制子电路用于在所述通断控制端的控制下,导通或断开所述数据写入节点与所述控制节点之间的连接。
  5. 如权利要求4所述的像素电路,其中,所述像素电路还包括光感子电路和比较子电路;
    所述光感子电路用于检测环境光的光照强度;
    所述比较子电路用于比较所述环境光的光照强度与预定的阈值光照强度,并当所述环境光的光照强度小于或等于所述阈值光照强度时,向所述通断控制端输出第一控制信号,当所述环境光的光照强度大于所述阈值光照强度时,向所述通断控制端输出第二控制信号;
    所述通断控制子电路具体用于在所述通断控制端接收到所述第一控制信号时,断开所述数据写入节点与所述控制节点之间的连接,在所述通断控制端接收到所述第二控制信号时,导通所述数据写入节点与所述控制节点之间的连接。
  6. 如权利要求1至4中任一项所述的像素电路,其中,所述像素电路还包括光感子电路、比较子电路和电压调节模块;
    所述光感子电路用于检测环境光的光照强度;
    所述比较子电路还用于当所述环境光的光照强度小于或等于所述阈值光照强度时,向所述电压调节模块输出第一控制信号,当所述环境光的光照强度大于所述阈值光照强度时,向所述电压调节模块输出第二控制信号;
    所述电压调节模块分别与所述第二电压输入端和所述比较子电路连接,用于当接收到所述第一控制信号时,调高输入至所述第二电压输入端的第二电压,当接收到所述第二控制信号时,调低所述第二电压。
  7. 如权利要求1至6中任一项权利要求所述的像素电路,其中,所述发 光元件为微型有机发光二极管,所述微型有机发光二极管的阳极为所述发光元件的第一极,所述微型有机发光二极管的阴极为所述发光元件的第二极。
  8. 如权利要求1至7中任一项权利要求所述的像素电路,其中,所述存储子电路包括存储电容;所述存储电容的第一端与所述控制节点连接,所述存储电容的第二端与第一电压输入端连接。
  9. 如权利要求1至8中任一项权利要求所述的像素电路,其中,所述像素电路还包括复位控制子电路;
    所述复位控制子电路的控制端与复位控制端连接,所述复位控制子电路的第一端与所述发光元件的第一极连接,所述复位控制子电路的第二端与第三电压输入端连接,所述复位控制子电路用于在所述复位控制端的控制下,导通或断开所述发光元件的第一极与所述第三电压输入端之间的连接。
  10. 如权利要求1至9中任一项权利要求所述的像素电路,其中,所述栅线包括第一栅线和第二栅线;所述数据写入子电路包括:
    第一数据写入晶体管,栅极与所述第一栅线连接,第一极与所述数据线连接,第二极与所述数据写入节点连接;以及,
    第二数据写入晶体管,栅极与所述第二栅线连接,第一极与所述数据线连接,第二极与所述数据写入节点连接;
    所述第一数据写入晶体管为N型晶体管,所述第二数据写入晶体管为P型晶体管。
  11. 一种像素电路的驱动方法,所述像素电路的驱动方法应用于如权利要求1至10中任一项权利要求所述的像素电路,所述像素电路的驱动方法包括:
    在充电补偿阶段,数据线输出数据电压Vdata,数据写入子电路在栅线的控制下,控制将所述数据电压Vdata写入数据写入节点,降压子电路对所述数据电压Vdata进行降压,得到第一降压电压,存储子电路控制将所述控制节点的电位充放电至所述第一降压电压。
  12. 如权利要求11所述的像素电路的驱动方法,其中,在所述充电补偿阶段之后设置有发光阶段,所述像素电路的驱动方法还包括:
    在所述发光阶段,所述数据写入子电路在所述栅线的控制下,控制断开 所述数据写入节点与所述数据线之间的连接;所述存储子电路控制维持所述控制节点的电位为所述第一降压电压,发光控制子电路在发光控制端的控制下,导通所述电源电压输入端与驱动子电路的第一极之间的连接,所述驱动子电路在所述控制节点的控制下,导通所述驱动子电路的第一端与发光元件的第一极之间的连接,以驱动所述发光元件发光。
  13. 如权利要求11或12所述的像素电路的驱动方法,其中,所述像素电路还包括复位控制子电路;在所述充电补偿阶段之前设置有重置阶段,所述像素电路的驱动方法还包括:
    在所述重置阶段,所述复位控制子电路在所述复位控制端的控制下,导通所述发光元件的第一极与第三电压输入端之间的连接,以对所述发光元件的第一极的电位进行重置;
    在充电补偿阶段和发光阶段,所述复位控制子电路在复位控制端的控制下,断开所述发光元件的第一极与所述第三电压输入端之间的连接。
  14. 一种显示装置,包括如权利要求1至10中任一项权利要求所述的像素电路。
  15. 如权利要求14所述的显示装置,其中,所述显示装置还包括硅基衬底;所述像素电路设置于所述硅基衬底上。
  16. 如权利要求15所述的显示装置,其中,所述硅基衬底为单晶硅基衬底。
PCT/CN2018/124859 2018-05-08 2018-12-28 像素电路及其驱动方法和显示装置 WO2019214260A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/489,750 US11250779B2 (en) 2018-05-08 2018-12-28 Pixel circuit, method driving the same and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810430441.3 2018-05-08
CN201810430441.3A CN110459167B (zh) 2018-05-08 2018-05-08 像素电路及其驱动方法和显示装置

Publications (1)

Publication Number Publication Date
WO2019214260A1 true WO2019214260A1 (zh) 2019-11-14

Family

ID=68467685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124859 WO2019214260A1 (zh) 2018-05-08 2018-12-28 像素电路及其驱动方法和显示装置

Country Status (3)

Country Link
US (1) US11250779B2 (zh)
CN (1) CN110459167B (zh)
WO (1) WO2019214260A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11545074B2 (en) * 2018-10-04 2023-01-03 Samsung Electronics Co., Ltd. Display device having configuration for constant current setting to improve contrast and driving method therefor
CN110867162B (zh) * 2019-11-28 2023-04-14 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板
CN111369941B (zh) 2020-03-19 2021-04-27 武汉华星光电半导体显示技术有限公司 像素电路及显示面板
US11888470B2 (en) * 2021-11-23 2024-01-30 Innolux Corporation Electronic device
CN115171608B (zh) 2022-09-08 2022-12-23 惠科股份有限公司 驱动电路、驱动方法及显示面板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1361510A (zh) * 2000-12-29 2002-07-31 三星Sdi株式会社 有机电发光显示器及其驱动方法和像素电路
CN1542718A (zh) * 2003-04-30 2004-11-03 ����Sdi��ʽ���� 图像显示设备、显示面板及其驱动方法和象素电路
US20110074757A1 (en) * 2009-09-30 2011-03-31 Bo-Yong Chung Pixel circuit and organic electroluminescent display including the same
US20110267319A1 (en) * 2010-05-03 2011-11-03 Sam-Il Han Pixel and organic light emitting display using the same
CN102290027A (zh) * 2010-06-21 2011-12-21 北京大学深圳研究生院 一种像素电路及显示设备
CN104637445A (zh) * 2015-02-03 2015-05-20 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法
CN105206222A (zh) * 2014-06-20 2015-12-30 上海和辉光电有限公司 Oled像素补偿电路和oled像素驱动方法
CN107424570A (zh) * 2017-08-11 2017-12-01 京东方科技集团股份有限公司 像素单元电路、像素电路、驱动方法和显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101385064B (zh) * 2006-02-10 2011-06-29 皇家飞利浦电子股份有限公司 大面积薄膜电路
EP2239723B1 (en) * 2008-02-08 2015-01-28 Sharp Kabushiki Kaisha Pixel circuit and display device
KR101493220B1 (ko) * 2008-05-26 2015-02-17 엘지디스플레이 주식회사 유기발광표시장치
US20110248973A1 (en) * 2010-04-09 2011-10-13 Delphi Technologies, Inc. Brightness control drive circuit for a current-driven display device
CN103218972B (zh) * 2013-04-15 2015-08-05 京东方科技集团股份有限公司 像素电路、像素电路驱动方法及显示装置
WO2015016007A1 (ja) * 2013-07-30 2015-02-05 シャープ株式会社 表示装置およびその駆動方法
CN104392689A (zh) * 2014-10-28 2015-03-04 中国电子科技集团公司第五十五研究所 用于硅基amoled驱动芯片的像素电路
CN104778917B (zh) * 2015-01-30 2017-12-19 京东方科技集团股份有限公司 像素驱动电路及其驱动方法和显示设备
CN107342043B (zh) * 2017-08-15 2019-10-01 上海天马微电子有限公司 像素驱动电路及其控制方法、显示面板和显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1361510A (zh) * 2000-12-29 2002-07-31 三星Sdi株式会社 有机电发光显示器及其驱动方法和像素电路
CN1542718A (zh) * 2003-04-30 2004-11-03 ����Sdi��ʽ���� 图像显示设备、显示面板及其驱动方法和象素电路
US20110074757A1 (en) * 2009-09-30 2011-03-31 Bo-Yong Chung Pixel circuit and organic electroluminescent display including the same
US20110267319A1 (en) * 2010-05-03 2011-11-03 Sam-Il Han Pixel and organic light emitting display using the same
CN102290027A (zh) * 2010-06-21 2011-12-21 北京大学深圳研究生院 一种像素电路及显示设备
CN105206222A (zh) * 2014-06-20 2015-12-30 上海和辉光电有限公司 Oled像素补偿电路和oled像素驱动方法
CN104637445A (zh) * 2015-02-03 2015-05-20 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法
CN107424570A (zh) * 2017-08-11 2017-12-01 京东方科技集团股份有限公司 像素单元电路、像素电路、驱动方法和显示装置

Also Published As

Publication number Publication date
US11250779B2 (en) 2022-02-15
CN110459167A (zh) 2019-11-15
CN110459167B (zh) 2021-01-26
US20210358414A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
US20240119897A1 (en) Pixel Circuit and Driving Method Therefor and Display Panel
US10796641B2 (en) Pixel unit circuit, pixel circuit, driving method and display device
WO2020216128A1 (zh) 像素驱动电路、像素驱动方法和显示装置
US10978002B2 (en) Pixel circuit and driving method thereof, and display panel
WO2019214260A1 (zh) 像素电路及其驱动方法和显示装置
US20210327347A1 (en) Pixel circuit and driving method thereof, and display panel
JP7159182B2 (ja) 画素回路及びその駆動方法、表示パネル
US20200234633A1 (en) Pixel driving circuit and operating method thereof, and display panel
WO2020001026A1 (zh) 像素驱动电路及方法、显示面板
US10515590B2 (en) Pixel compensation circuit, driving method, display panel and display device
US11270638B2 (en) Display compensation circuit and method for controlling the same, and display apparatus
US11443694B2 (en) Pixel circuit, method for driving the same, display panel and display device
WO2019109673A1 (zh) 像素电路及其驱动方法、显示面板和显示设备
CN110021275B (zh) 像素驱动电路、像素驱动方法、像素电路和显示装置
US8207918B2 (en) Image display device having a set period during which a step signal is supplied at different levels to provide a uniform display
CN110164375B (zh) 像素补偿电路、驱动方法、电致发光显示面板及显示装置
CN108806591B (zh) 像素装置、像素装置的驱动方法以及显示设备
CN108376534A (zh) 像素电路及其驱动方法、显示面板
US11620939B2 (en) Pixel driving circuit and driving method therefor, display panel, and display apparatus
CN112992071A (zh) 像素电路及其驱动方法、显示装置
GB2620507A (en) Pixel circuit and driving method therefor and display panel
WO2018153096A1 (zh) 像素驱动电路、像素驱动电路的驱动方法及显示装置
CN207966467U (zh) 像素电路及显示面板
CN114155813A (zh) 像素电路、像素电路的驱动方法和显示面板
US11455947B2 (en) Pixel circuit, driving method thereof and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918141

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18918141

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18918141

Country of ref document: EP

Kind code of ref document: A1