WO2019214217A1 - 一种光源模组以及车用前照灯 - Google Patents

一种光源模组以及车用前照灯 Download PDF

Info

Publication number
WO2019214217A1
WO2019214217A1 PCT/CN2018/118829 CN2018118829W WO2019214217A1 WO 2019214217 A1 WO2019214217 A1 WO 2019214217A1 CN 2018118829 W CN2018118829 W CN 2018118829W WO 2019214217 A1 WO2019214217 A1 WO 2019214217A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
reflecting
segment
lens
Prior art date
Application number
PCT/CN2018/118829
Other languages
English (en)
French (fr)
Inventor
陈良晓
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2019214217A1 publication Critical patent/WO2019214217A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/06Arrangement of electric circuit elements in or on lighting devices the elements being coupling devices, e.g. connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to a light source module and a vehicular headlamp.
  • the inventors of the present invention found in the long-term research and invention that the automobile headlights are lighting devices installed on both sides of the automobile head for night driving roads. There are two lights and four lights. The lighting effect of the headlights directly affects the operation and traffic safety of driving at night. Therefore, the traffic management departments of all countries in the world generally stipulate the lighting standards for automobile headlights in legal form to ensure the safety of driving at night.
  • the automobile headlamps widely used in the market due to the limitation of the internal structure of the headlights of the car, result in a small angle of the low beam expansion of the headlights of the car, and a small area illuminated by the lights, which will directly affect the driving of the car at night.
  • the visibility of the crew has an adverse effect on the driving operation of the driver at night and the safety of the driving.
  • the technical problem to be solved by the present invention is to provide a light source module and a vehicle headlight, which can increase the expansion angle of the light output by the light source module.
  • a technical solution adopted by the present invention is to provide a light source module, the light source module includes a light source, a reflecting device and a lens, and the light source is disposed in a space surrounded by the reflecting device, and the light emitting surface of the light source faces a reflecting surface of the reflecting device, wherein the reflecting surface is configured to reflect and guide the light outputted from the light source to the light exit opening of the reflecting device, the lens is disposed opposite to the light emitting opening of the reflecting device, and the incident light focus of the lens is disposed on the lens adjacent to the reflecting device.
  • a reflection device includes a first reflection segment and a second reflection segment, wherein the first reflection segment and the second reflection segment are sequentially disposed in a direction close to the lens, and the reflection surfaces of the first reflection segment and the second reflection segment are respectively used to output the light source
  • the light of different exit angles reflects and guides the light exiting port to the reflecting device;
  • the reflecting surface of the first reflecting segment is an ellipsoidal surface, the light source is disposed at the focal point of the first reflecting segment, and the reflected light focus and lens of the first reflecting segment
  • the incident light focus is overlapped;
  • the reflective surface of the second reflective segment is an ellipsoidal surface, and the incident light focus of the second reflective segment is set at the focus The source, and the reflected light focus of the second reflective segment is not coincident with the incident light focus of the lens.
  • the area of the reflective surface of the first reflective segment is smaller than the area of the reflective surface of the second reflective segment, and the luminous flux of the output light of the first reflective segment receiving the light source is greater than the luminous flux of the output light of the second reflective segment receiving light source.
  • the vertical plane of the reflected light focus of the second reflecting segment passes through the central axis of the lens.
  • the reflective device further includes a third reflective segment, the first reflective segment, the second reflective segment, and the third reflective segment are sequentially disposed in a direction close to the lens, and the third reflective segment is configured to reflect the light output from the light source to the third reflective segment. And guiding the light exiting port to the reflecting device; wherein the light flux of the third reflecting segment receiving the light output of the light source is much smaller than the light flux of the first reflecting segment and the second reflecting segment receiving the light output of the light source.
  • the light source module further includes a light shielding film disposed in the module space between the lens and the light source, and the reflected light focus of the second reflective segment is disposed in the module space between the light shielding film and the lens, the light shielding film Rotating between a first position and a second position about a rotating shaft; when the light shielding sheet is rotated to the first position, the light shielding sheet does not intersect with light reflected and guided through the first reflective segment and the second reflective segment, and the light source
  • the module outputs the first form of light; when the opaque sheet is rotated to the second position, the visor rotates to intersect with the central axis of the lens, the visor blocks the light output by the partial light source, and the light source module outputs the second form of light.
  • the light shielding sheet includes a concave reflecting surface disposed on the side of the light shielding sheet near the lens, and part of the light output by the light source is reflected by the third reflecting portion and guided to the concave reflecting surface of the light shielding sheet, and then reflected by the light shielding sheet and guided to the lens.
  • the reflective surface of the third reflective segment is a paraboloid, and the light source is disposed at the focal point of the incident light of the third reflective segment.
  • the lens includes a surface roughening region disposed on the path of the outgoing light of the third reflective segment.
  • the reflection device is a total reflection lens
  • the reflection surface of the reflection device is a total reflection surface of the total reflection lens
  • the light source comprises one or more light emitting diodes; or the light source comprises a first excitation light source and a first wavelength conversion device, the exit surface of the first wavelength conversion device is a light emitting surface of the light source, and the first excitation light source emits the first excitation light, At least a portion of the first excitation light is converted into a first received laser light by the first wavelength conversion device, and the combined light of the first received laser light and the unconverted first excitation light is emitted from the exit surface of the first wavelength conversion device, the first wavelength conversion The device is disposed at an incident light focus position of the first reflective segment and the second reflective segment.
  • another technical solution adopted by the present invention is to provide a vehicular headlamp, which includes the light source module described in the above embodiments.
  • the utility model has the beneficial effects that the automobile headlamp is limited to the internal structure, so that the output light expansion angle thereof is small, and the light source module provided by the invention comprises a light source, a reflecting device and a lens.
  • the light source is disposed in a space surrounded by the reflecting device, and the light emitting surface of the light source faces the reflecting surface of the reflecting device, and the reflecting surface is configured to reflect and guide the light outputted by the light source to the light exit port of the reflecting device, by setting two different reflecting segments.
  • the first reflective segment and the second reflective segment are such that the reflected light focus of the first reflective segment coincides with the incident light focus of the lens to ensure the original center high illumination, and the reflected light focus and lens of the second reflective segment
  • the incident light focus is not overlapped, so that the light guided and reflected by the second reflective segment is guided through the lens and has a larger light expansion angle, so as to increase the expansion angle of the light output by the light source module, using a single light source.
  • the purpose of maintaining the center illumination and expanding the total beam illumination angle is achieved.
  • FIG. 1 is a schematic structural view of a first embodiment of a light source module of the present invention
  • FIG. 2 is a schematic structural view of an embodiment of a first reflecting section and a second reflecting section according to the present invention
  • FIG. 3 is a schematic structural view of an embodiment of a lens of the present invention.
  • FIG. 4 is a schematic structural view of a second embodiment of a light source module according to the present invention.
  • Figure 5 is a schematic structural view of an embodiment of a light shielding sheet of the present invention.
  • Figure 6 is a schematic structural view of an embodiment of a lens spot of the present invention.
  • FIG. 7 is a schematic structural view of an embodiment of a spot pattern of a first form of light according to the present invention.
  • FIG. 8 is a schematic structural view of an embodiment of a spot pattern of a second form of light according to the present invention.
  • FIG. 9 is a schematic structural view of a third embodiment of a light source module according to the present invention.
  • FIG. 10 is a schematic structural view of a fourth embodiment of a light source module according to the present invention.
  • Figure 11 is a schematic view showing the structure of an embodiment of a vehicle headlamp according to the present invention.
  • the present invention provides a light source module including a light source, a reflection device, and a lens, and the light source is disposed in a space surrounded by the reflection device, in order to solve the technical problem that the expansion angle of the light output by the prior art automobile headlight is small.
  • the light-emitting surface of the light source faces the reflecting surface of the reflecting device, and the reflecting surface is used for reflecting and guiding the light outputted from the light source to the light-emitting opening of the reflecting device, and the lens is disposed opposite to the light-emitting opening of the reflecting device, and the incident light focus of the lens
  • the first reflective segment and the second reflective segment are sequentially disposed in a direction close to the lens, and the first reflective segment and the second reflective segment are disposed on the side of the lens adjacent to the reflective device.
  • the reflective device includes a first reflective segment and a second reflective segment.
  • the reflecting surfaces are respectively used for reflecting and guiding the light of the different output angles of the light source to the light exit opening of the reflecting device;
  • the reflecting surface of the first reflecting segment is an ellipsoidal surface, and the light source is disposed at the focal point of the first reflecting segment, and the first The reflected light focus of the reflective segment is coincident with the incident light focus of the lens;
  • the reflective surface of the second reflective segment is an ellipsoidal surface, and the second reflective segment is Light emitting source disposed at the focus, and the focus of the incident reflected light and the focus lens of the second reflector segment is disposed not to overlap. The details are explained below.
  • FIG. 1 is a schematic structural view of a first embodiment of a light source module according to the present invention.
  • the light source module 100 can be applied to a lighting device of a vehicle such as a vehicle, such as a vehicle headlight, etc., in a case where the light environment is poor, a device that needs to be illuminated around the vehicle to indicate the vehicle driving can be It is understood that the vehicle headlights, the rear lights, and other parts of the lighting device can be used in the applicable environment of the light source module 100 provided in this embodiment, thereby providing the vehicle with illumination lights with large expansion angle and high central brightness.
  • the light source module 100 of the present invention can also be applied to other lamps, such as searchlights, stage lights, and ship/airlights.
  • the light source module 100 includes a light source 101, a reflecting device 102, and a lens 103.
  • the light source 101 is disposed in a space surrounded by the reflecting device 102, and the light emitting surface of the light source 101 faces the reflecting surface 102a of the reflecting device 102, and the reflecting surface
  • the light emitted from the light source 101 is reflected and guided to the light exit opening 104 of the reflecting device 102.
  • the lens 103 is disposed opposite the light exit opening 104 of the reflecting device 102, and the incident light focus of the lens 103 is disposed on the lens 103 near the reflecting device 102.
  • the lens 103 has at least two focal points in the direction of its central axis 105, and the focus of the focal point on the central axis 105 of the lens 103 near the reflecting device 102 is the incident light focal point F1 of the lens 103.
  • the reflective device 102 includes a first reflective segment 106 and a second reflective segment 107.
  • the first reflective segment 106 and the second reflective segment 107 are sequentially disposed in a direction close to the lens 103, and the reflective surfaces of the first reflective segment 106 and the second reflective segment 107 are disposed.
  • the light for outputting the light source 101 at different exit angles is respectively reflected and guided to the light exit opening 104 of the reflecting device 102.
  • the reflecting surface of the first reflecting section 106 is an ellipsoidal surface.
  • the light source 101 is disposed at the incident light focus of the first reflecting section 106, and the reflected light focus of the first reflecting section 106 is disposed coincident with the incident light focal point F1 of the lens 103.
  • the reflecting surface of the second reflecting section 107 is an ellipsoidal surface, the light source 101 is disposed at the incident light focus of the second reflecting section 107, and the reflected light focal point F2 of the second reflecting section 107 is not coincident with the incident light focal point F1 of the lens 103.
  • the reflected light focus F2 of the second reflection segment 107 does not coincide with the incident light focus F1 of the lens 103 in this embodiment, as compared with the case where the reflected light focus F2 of the second reflection segment 107 is coincident with the incident light focus F1 of the lens 103. It is provided that the light that can be reflected by the second reflecting segment 107 and guided to the lens 103 has a larger angle of light spread after being guided out through the lens 103.
  • the light source 101 is disposed at the incident light focus of the first reflective segment 106 and the second reflective segment 107, and the light output by the light source 101 can be reflected by the first reflective segment 106 and the second reflective segment 107 and guided to the corresponding The reflected light focus.
  • the incident light focus of the first reflective segment 106 and the second reflective segment 107 is defined as the source of the reflected light reflected by the two, and the reflected light focus of the first reflective segment 106 and the second reflective segment 107 is defined as being from the first reflective segment.
  • 106 and the light input from the incident light focus of the second reflecting segment 107 are reflected by the two to guide the common intersection of the reflected light paths.
  • the light source 101 can be a halogen bulb, a xenon bulb, an LED (Light Emitting Diode), etc., and is a source of light output by the light source module 100.
  • the optical path of the light output by the light source 101 is adjusted and output in the light source module 100.
  • the illumination function of the light source module 100 is implemented.
  • the light source 101 is characterized in that the light-emitting surface emits light having an approximate Lambertian distribution, and the light distribution is uniform, which is advantageous for the illumination device to form a wide spread angle illuminance distribution after being reflected by the reflecting device 102.
  • the LED lamp bead is used as the light source 101 of the light source module 100, and the components of the light source module 100 provided by the embodiment are reliably combined with the advantages of simple structure, fast switching speed, high reliability and the like.
  • the overall structure is only required for discussion, and is not limited to the type of the light source 101 of the light source module 100 provided in this embodiment.
  • the type of the light source 101 described in this embodiment includes but is not limited to the above, and can be implemented with the light source module.
  • the type of the light source 101 that can be used for the light source module 100 to output the light of the different forms of the light source module 100 can be of the type of the light source 101 as described in the embodiment, which is not limited herein.
  • the light source 101 may include one or more light emitting diodes, and the number of the light emitting diodes included is determined according to the light energy outputted by the light emitting diodes and the light flux of the light source module 100.
  • the light energy output by the light emitting diodes included in the light source 101 is more, the light source mode is The larger the luminous flux of the group 100, the less the number of light-emitting diodes that the light source 101 needs to include, which is not limited herein.
  • the light source 101 can also be replaced with a laser fluorescent light source 101, as will be explained in detail below.
  • the reflecting surface 102a of the reflecting device 102 may be an ellipsoidal surface, and specifically may be a quarter-ellipsoid surface obtained by dividing an ellipsoid along a symmetry plane of the ellipsoid in which the long and short axes are located.
  • the ellipsoidal surface of other ratios may be used, but the reflecting surface 102a of the reflecting device 102 is preferably a symmetrical structure with the long and short axes of the ellipsoid as the axis of symmetry.
  • the light source 101 In order to ensure the maximum utilization of the light output by the light source 101, the light source 101 needs to be disposed in the space surrounded by the reflecting device 102, and furthermore, the light emitted from the reflecting device 102 after the light source 101 is reflected by the reflecting device 102 has sufficient expansion. Therefore, the light source 101 is disposed at an opening end surface of the light exit opening 104 away from the reflecting device 102, which corresponds to the bottom position of the reflecting device 102, and can ensure the maximum utilization of the light output by the light source 101 while ensuring the light source 101 via the reflecting device.
  • the light that exits the lens 103 after reflection 102 has a sufficient angle of expansion.
  • the light exit 104 of the reflecting device 102 corresponds to the cup position of the reflecting device 102, and the position of the reflecting device 102 where the light source 101 is disposed corresponds to the cup bottom position of the reflecting device 102.
  • the reflective device 102 includes a first reflective segment 106, a second reflective segment 107, and a third reflective segment 108.
  • the first reflective segment 106, the second reflective segment 107, and the third reflective segment 108 are sequentially disposed in a direction close to the lens 103.
  • the light outputted by the first reflecting section 106, the second reflecting section 107, and the third reflecting section 108 are respectively reflected to the lens 103, that is, the first reflecting section 106, the second reflecting section 107, and the third reflecting section 108 respectively reflect the light source. 101 outputs light with different exit angles.
  • the reflecting device 102 is a reflecting cup, and the reflecting cup is a hollow cavity structure, and the reflecting surface is disposed on the inner wall of the reflecting cup, and the reflecting surface may be, for example, a metal reflective film.
  • the reflector cup forms a semi-enclosed structure enclosing the light source 101 such that the light source 101 is in the interior space of the reflector cup.
  • the reflective device 102 can also be a total reflection lens, as will be explained in detail below.
  • the first reflecting segment 106, the second reflecting segment 107 and the third reflecting segment 108 are continuous structures.
  • the first reflective segment 106, the second reflective segment 107, and the third reflective segment 108 are connected to each other, and the curvatures of the adjacent reflective segments in the first reflective segment 106, the second reflective segment 107, and the third reflective segment 108 are different; or
  • the adjacent reflection segments of the first reflection segment 106, the second reflection segment 107, and the third reflection segment 108 are connected by a transition structure, and the reflection surface of the adjacent reflection segment does not have an intersection, which is not limited herein.
  • the light source module 100 of the embodiment is configured to reflect the light of different exit angles of the light source 101 by the multi-segment reflection structure, so that the light output by the light source module 100 has a large expansion angle and a high center brightness.
  • the exit angle ⁇ refers to the angle between the normal line of the light-emitting surface of the light source 101 and the outgoing light on the light source 101.
  • a large number of commercially available LEDs have an illumination angle of 120° (ie, The line is centered ⁇ 60°).
  • the reflecting surface of the first reflecting section 106 is an ellipsoidal surface, and the concave surface is opposite to the light source 101.
  • the incident light focus of the first reflecting section 106 is provided with a light source 101, and the reflected light focus is coincident with the incident light focus F1 of the lens 103.
  • the light output by the light source 101 is reflected by the first reflection section 106, propagates to the lens 103, and converges the optical path of the light reflected by the first reflection section 106 via the lens 103 and exits.
  • the reflecting surface of the second reflecting section 107 is an ellipsoidal surface, the concave surface is opposite to the light source 101, the light source 101 is disposed at the incident light focus of the second reflecting section 107, and the reflected light focus F2 of the second reflecting section 107 and the incident of the lens 103 are incident.
  • the light focus F1 is not overlapped.
  • the plane where the second reflection section 107 reflects the light focus F2 is perpendicular to the horizontal plane of the focus F1 of the lens 103 and intersects with the horizontal plane of the incident light focus F1 of the lens 103.
  • the central axis 105 of the 103, the reflected light focus F2 of the second reflective segment 107 and the incident light focus F1 of the lens 103 are not overlapped, so that the spot on the lens 103 corresponding to the reflected light of the second reflective segment 107 can have a larger expansion angle.
  • the range of light radiation is wider.
  • the second reflective segment 107 reflects the vertical plane of the light focus F2 through the central axis 105 of the lens 103.
  • the light reflected by the second reflective segment 107 on the lens 103 has a symmetrical structure, and its axis of symmetry is perpendicular to
  • the incident light focus of the lens 103 is at the horizontal plane and intersects the central axis 105 of the lens 103.
  • the first reflection segment 106 coincides with the rotational symmetry axis 201 of the reflection surface of the second reflection segment 107, and the reflected light focus of the first reflection segment 106 is coplanar with the reflected light focus of the second reflection segment 107. It is provided that the light spot reflected by the first reflecting section 106 on the lens 103 is also a symmetrical structure, and the spot symmetry axis coincides with the spot symmetry axis of the second reflecting section 107.
  • the rotational symmetry axis 201 of the reflective surface of the first reflective segment 106 and the second reflective segment 107 is parallel to the central axis 105 of the lens 103, and the distance from each point on the reflective surface of the second reflective segment 107 to the central axis 105 of the lens 103 is greater than The distance from each point on the reflective surface of a reflective segment 106 to the central axis 105 of the lens 103, and because the reflected light focus F2 of the second reflective segment 107 does not coincide with the incident optical focus F1 of the lens 103, such that the second reflective segment 107 reflects The light has a larger expansion angle, that is, the spot area of the lens 103 corresponding to the second reflection section 107 is larger than the spot area of the lens 103 corresponding to the first reflection section 106.
  • the reflective surface area of the first reflective segment 106 is smaller than the reflective surface area of the second reflective segment 107, and the proportion of the light output by the first reflective segment 106 receiving the light source 101 is greater than the light output by the second reflective segment 107 receiving the light source 101.
  • the ratio that is, the luminous flux of the first reflecting segment 106 is greater than the luminous flux of the second reflecting segment 107.
  • the ratio of the light output by the first reflecting section 106 to the light source 101 is greater than 45%, and the ratio of the light output by the second reflecting section 107 to the light source 101 is greater than 35% and less than 45%.
  • the technical solution makes the output illumination light satisfy the vehicle well. Lighting requirements.
  • the first reflecting segment 106 receives the light source 101 at a ratio of about 50%
  • the second reflecting segment 107 receives the light source 101 at a ratio of about 40%
  • the first reflecting segment 106 receives
  • the area of the light is small but the luminous flux is high. Therefore, the spot distribution on the lens 103 corresponding to the first reflection segment 106 is concentrated and the brightness is high, and the second reflection segment 107 receives a large area of the light but the luminous flux is low, so the lens 103 corresponds to the second reflection segment.
  • the flare spread angle of 107 is larger, and the distribution area is wider but the brightness is lower.
  • the light outputted by the light source 101 is removed from the light emitted from the first reflection section 106 and the second reflection section 107 to the lens 103, and includes light having a propagation direction away from the light source 101 and which is difficult to use (may be output by the light source 101).
  • the exiting angle of the light is the maximum exit angle and the optical path is close to the portion of the light exit 104 of the reflecting device 102.
  • the reflecting device 102 of the light source module 100 of the embodiment is provided with a third side on the side away from the light source 101.
  • the reflective segment 108, the first reflective segment 106, the second reflective segment 107, and the third reflective segment 108 are sequentially disposed in a direction toward the lens 103.
  • the third reflecting section 108 reflects the light output from the light source 101 to the third reflecting section 108 and guides it to the light exiting opening 104 of the reflecting device 102, and utilizes the light that is far away from the light source 101 and is difficult to utilize, thereby improving the light energy output by the light source 101. Utilization. Since the third reflecting segment 108 is disposed away from the light source 101, the luminous flux it receives is much smaller than the luminous flux received by the first reflecting segment 106 and the second reflecting segment 107.
  • the third reflecting segment 108 is a paraboloid whose concave surface is disposed opposite to the light source 101.
  • the parabolic slope of the reflecting surface of the third reflecting segment 108 gradually becomes gentle in the direction of the lens 103, that is, the slope approaches "0", and the third reflecting segment
  • the light source 101 is disposed at the incident light focus of 108, and the light paths of the light reflected to the lens 103 via the third reflective segment 108 are parallel to each other and parallel to the central axis 105 of the lens 103.
  • the lens 103 includes a surface roughened region 301 on which the surface is rough.
  • the region 301 is disposed on the path of the outgoing light of the third reflecting segment 108, as shown in FIG.
  • the proportion of the light in the light output from the light source 101 that is far away from the light source 101 and which is difficult to utilize is relatively low. Therefore, the proportion of the third reflecting section 108 receiving the light output from the light source 101 is much smaller than that of the first reflecting section 106 and the second reflecting section. 107
  • the ratio of the light output from the receiving light source 101 is about 5%, that is, the luminous flux of the third reflecting segment 108 is much smaller than the luminous flux of the first reflecting segment 106 and the second reflecting segment 107.
  • the light output by the light source 101 is reflected and guided to the reflection through the first reflection segment 106, the second reflection segment 107, and the third reflection segment 108 of the reflection device 102.
  • the light exit 104 of the device 102 finally exits the optical path via the lens 103 and exits.
  • the light source module 100 outputs light in the form of high beam.
  • the light source is disposed in a space surrounded by the reflecting device, and the light emitting surface of the light source faces the reflecting surface of the reflecting device, and the reflecting surface is used for reflecting and guiding the light outputted by the light source to the reflecting surface.
  • the light exit port of the device is provided with two different reflection segments, that is, the first reflection segment and the second reflection segment, so that the reflected light focus of the first reflection segment coincides with the incident light focus of the lens to ensure the original center height.
  • the expansion angle of the light output by the light source module achieves the purpose of maintaining the central illumination and expanding the total beam illumination angle with a single light source.
  • FIG. 4 is a schematic structural view of a second embodiment of a light source module according to the present invention.
  • the light source module 400 includes a light source 401, a reflection device 402, and a lens 403.
  • the light source 401 is disposed in a space surrounded by the reflection device 402, and the light-emitting surface of the light source 401 faces the reflection surface 402a of the reflection device 402.
  • 402a is used for reflecting and guiding the light output from the light source 401 to the light exit port 404 of the reflection device 402.
  • the lens 403 is disposed opposite to the light exit port 404 of the reflection device 402, and the incident light focus F1 of the lens 403 is disposed on the lens 403 near the reflection device.
  • the reflective device 402 includes a first reflective segment 405, a second reflective segment 406, and a third reflective segment 407.
  • the first reflective segment 405, the second reflective segment 406, and the third reflective segment 407 are sequentially disposed in a direction close to the lens 403.
  • the light outputted by the 401 is reflected by the first reflective segment 405, the second reflective segment 406, and the third reflective segment 407 to the lens 403, that is, the first reflective segment 405, the second reflective segment 406, and the third reflective segment 407 respectively reflect the light source.
  • 401 outputs light with different exit angles.
  • the reflected light focus F2 of the second reflection section 406 is not overlapped with the incident light focus F1 of the lens 403.
  • the reflected light focus F2 of the second reflection segment 406 does not coincide with the incident light focus F1 of the lens 403 in this embodiment, as compared with the case where the reflected light focus F2 of the second reflection segment 406 is coincident with the incident light focus F1 of the lens 403. It is provided that the light that can be reflected by the second reflecting segment 406 and directed to the lens 403 has a greater angle of light spread after being guided out through the lens 403.
  • the light source module 400 of the present embodiment further includes a light shielding sheet 408 disposed in the module space between the lens 403 and the light source 401, and second.
  • the reflected light focus F2 of the reflective segment 406 is disposed in the module space between the light shielding sheet 408 and the lens 403.
  • the light shielding sheet 408 includes a concave reflecting surface disposed on the side of the light shielding sheet 408 near the lens 403, and the light shielding sheet.
  • the rotation axis (not shown) of the 408 being rotated is perpendicular to the central axis 409 of the lens 403, and the visor is rotatable about the rotation axis between the first position S1 and the second position S2.
  • the light shielding sheet 408 When the light shielding sheet 408 is rotated to the first position S1, the light shielding sheet 408 does not intersect with the light reflected and guided through the first reflection portion 405 and the second reflection portion 406, and the light source module 400 outputs the first form light;
  • the light shielding sheet 408 When the 408 is rotated to the second position S2, the light shielding sheet 408 is rotated to intersect with the central axis 409 of the lens 403, the light shielding sheet 408 blocks the light output from the partial light source 401, and the light source module 400 outputs the second form light.
  • the end of the light shielding sheet 408 contacting the central axis 409 of the lens 403 is provided with a cut-off line 501.
  • the light shielding sheet 408 blocks the portion via the first reflective segment 405 and
  • the light reflected by the second reflecting section 406 is set by the light spot pattern of the light source 401 on the lens 403 corresponding to the cut-off line 501 on the light shielding sheet 408, and the cut-off line 501 is the end of the light blocking piece 408 contacting the central axis 409 of the lens 403.
  • the outer contour cuts the outer contour of the contact end of the light shield 408 with the central axis 409 of the lens 403 in accordance with the desired spot pattern of the second form of light on the lens 403.
  • the height of the vehicle is high, so that the driver of the vehicle is dazzling, and the vehicle light mode usually needs to be switched to the low beam when the vehicle meets.
  • the lamp outputs a second form of light, which requires that the spot on the lens 403 corresponding to the second form of light is on the side of the vertical axis of symmetry 601 of the lens 403 and the direction of light propagation corresponds to the spot directly in front of the lens 403, i.e., the first spot area 602.
  • the height is smaller than the spot height on the other side of the vertical axis of symmetry 601 of the lens 403, that is, the second spot area 603.
  • the boundary between the first spot area 602 and the second spot area 603 is perpendicular to the horizontal plane of the central axis 409 of the lens 403, specifically the vertical axis of symmetry 601 of the lens 403, and the spot height of the first spot area 602 is low, which can prevent When the vehicle meets, the vehicle driver is dazzled, and the second spot area 603 has a high spot height to ensure sufficient lateral visibility of the vehicle to ensure safe driving.
  • the height of the cutoff line 501 corresponding to the first spot area 602 and the second spot area 603 is different.
  • the high portion corresponds to the first spot region 602, and the lower the height of the cutoff line 501, the less the amount of light blocked by the light shielding sheet 408, so that the lower portion of the cutoff line 501 corresponds to the second spot region
  • the cut-off line 501 may be in the form of a straight line, or a curved form or the like.
  • the spot contour of the corresponding cut-off line 501 on the lens 403 is a corresponding straight line form or a curved form, that is, the cut-off line 501 is in a straight line form, and the lens 403 is on the lens 403.
  • the spot contour corresponding to the cut-off line 501 is in the form of a corresponding straight line
  • the cut-off line 501 is in the form of a curve
  • the spot contour on the lens 403 corresponding to the cut-off line 501 is in the form of a corresponding curve.
  • the spot pattern of the first form of light is as shown in FIG. 7, wherein the area A is a spot corresponding to the guided light reflected by the first reflection stage 405, and the area B is a corresponding second reflection. Segment 406 reflects the spot of the guided light.
  • the spot pattern of the second form of light is as shown in FIG. 8, wherein the area A' corresponds to the spot of the guiding light reflected by the first reflecting section 405, and the area B' corresponds to the spot of the guiding light reflected by the second reflecting section 406.
  • the light source module 400 outputs the second form of light
  • the third reflecting segment 407 is matched with the concave reflecting surface of the light shielding sheet 408, the light emitted by the light source 401 is transmitted away from the light source 401 and is difficult to utilize light in the lens.
  • the area spot corresponding to the third reflection segment 407 except the area spot corresponding to the first reflection segment 405 and the area spot corresponding to the second reflection segment 406 is implemented on the 403, and the spot corresponding to the light reflected by the third reflection segment 407 is as shown in FIG. As shown in the area C, the three-zone illumination of the light source module 400 is realized.
  • the lens 403 Since the spot corresponding to the third reflection segment 407 on the lens 403 is distributed in the upper region of the lens 403, the lens 403 is also required to prevent the driver from being dazzled to the driver.
  • the brightness of the spot corresponding to the third reflective segment 407 is controlled.
  • the brightness of the spot corresponding to the third reflective segment 407 on the lens 403 can be adjusted by adjusting the reflectance of the third reflective segment 407 and the light shielding plate 408.
  • Different degrees of roughening are performed on the reflective surfaces of the third reflective segment 407 and/or the visor 408 to cause the third reflective segment 407 and/or The reflecting surface 408 of the uneven sheet set, thereby adjusting the reflectance of the light shielding sheet 407, and a third reflecting segments 408, and thus control the corresponding spot brightness on the third reflecting section 407 of the lens 403.
  • the vehicle headlight is a near-integrated lamp, the first form of light is high beam, and the second form of light is low beam, the first form of light The intensity is greater than the intensity of the second form of light and the range of radiation of the first form of light is greater than the range of radiation of the second form of light.
  • the light shielding sheet 408 blocks the light outputted by the partial light source 401, the vehicle headlight emits a low beam; when the light shielding sheet 408 does not block the light output by the light source 401, the vehicle headlight emits a high beam.
  • the light shielding sheet 408 is not essential.
  • the light source module 400 does not include the light shielding sheet 408, the light source module 400 can be used as a high beam light for the vehicle headlight, wherein the light output by the light source 401 is guided by the reflection of the second reflection portion 406 of the reflection device 402.
  • the light output by the light source 401 is used to enhance the central illumination under the reflective guidance of the first reflective segment 405 of the reflective device 402.
  • the light shielding sheet 408 may also be provided as a non-movable light shielding structure for forming a cut-off line of the low beam, and correcting the illuminance distribution of the output light provided by the light source 401 to light satisfying the requirements of the low beam illumination.
  • the reflected light focus of the second reflection segment 406 is not coincident with the incident light focus of the lens 403, and is disposed in the module space between the light shielding sheet 408 and the lens 403.
  • the light shielding sheet 408 is rotated to the second position S2 since the reflected light focus of the second reflecting portion 406 is disposed in the module space between the light shielding sheet 408 and the lens 403, the light guided and reflected by the second reflecting portion 406 can be reduced.
  • the amount of light blocked by the light shielding sheet 408 ensures that the second form of light output by the light source module 400 has a sufficient illuminance distribution.
  • the third reflecting segment 407 is an ellipsoidal surface, and the concave surface is disposed opposite to the light source 401. Part of the light outputted by the light source 401 is reflected by the third reflecting segment 407 and guided to the concave reflecting surface of the light shielding sheet 408, and is passed through the light shielding film. 408 reflects and guides the lens 403 to exit, and cooperates with the light shielding plate 408 through the third reflecting segment 407 to transmit the light reflected by the third reflecting segment 407 to the lens 403, thereby causing the light source 401 to emit light in a direction away from the light.
  • the light source 401 and the light that is difficult to utilize are utilized.
  • the third reflecting segment 407 receives the light source 401 and the output light is much smaller than the first reflecting segment 405 and the second reflecting segment.
  • the ratio of the output light of the receiving light source 401 is about 5%, that is, the luminous flux of the third reflecting segment 407 is much smaller than the luminous flux of the first reflecting segment 405 and the second reflecting segment 406.
  • the light shielding sheet 408 when the light shielding sheet 408 is rotated to cover a different proportion of the light output by the light source 401 reflected by the reflecting device 402, the light flux of the light output by the light source 401 received by the lens 403 is correspondingly changed, so that the light source module 400 is The radiation range of the output light and the light intensity change. Therefore, in this embodiment, the light shielding sheet 408 is rotated to cause the light outputted by the light shielding sheet 408 and the light source 401 to be blocked to a different extent, thereby causing the light source module 400 to output different forms of light.
  • the outer contour of the lens 403 away from the light source 401 may be a circular arc transition form, or a polygonal cut surface form, etc., and the outer contour of the lens 403 is determined according to the environment applied by the light source module 400, when the light source module 400 is applied.
  • the external contour of the lens 403 is correspondingly designed according to the appearance requirements of the automobile model to which the light source module 400 is applied, without affecting the normal output of different forms of light functions by the light source module 400. Meet the consumer's appearance requirements for car models.
  • FIG. 9 is a schematic structural view of a third embodiment of a light source module according to the present invention.
  • the light source module 900 includes a light source 901, a reflecting device 902, and a lens 903.
  • the light source 901 is disposed in a space surrounded by the reflecting device 902, and the light emitting surface of the light source 901 faces the reflecting surface 902a of the reflecting device 902.
  • 902a is used for reflecting and guiding the light output from the light source 901 to the light exit port 904 of the reflection device 902.
  • the lens 903 is disposed opposite to the light exit port 904 of the reflection device 902, and the incident light focus F1 of the lens 903 is disposed on the lens 903 near the reflection device.
  • the reflecting device 902 includes a first reflecting segment 905, a second reflecting segment 906, and a third reflecting segment 907.
  • the first reflecting segment 905, the second reflecting segment 906, and the third reflecting segment 907 are sequentially disposed in a direction close to the lens 903, and the light source is disposed.
  • the light outputted by the 901 is reflected to the lens 903 through the first reflective segment 905, the second reflective segment 906, and the third reflective segment 907, that is, the first reflective segment 905, the second reflective segment 906, and the third reflective segment 907 respectively reflect the light source.
  • 901 output light with different exit angles.
  • the present embodiment is different from the above embodiment in that the light source 901 is a fluorescent excitation light source 901 including a first excitation light source 908 and a first wavelength conversion device 909.
  • the exit surface of the first wavelength conversion device 909 is the light emitting surface of the light source 901.
  • the first excitation light source 908 emits the first excitation light, and at least part of the first excitation light is converted into the first laser light by the first wavelength conversion device 909.
  • the combined light of the laser light and the unconverted first excitation light is emitted from the exit surface of the first wavelength conversion device 909.
  • the first wavelength conversion device 909 is disposed at the incident light focus position of the reflection device 902. It can be understood that the light source 901 in this embodiment can also be replaced by a reflective fluorescent excitation light source.
  • the technical solution can provide a through hole on the reflective surface, so that the excitation light is incident on the incident surface of the wavelength conversion device through the through hole (ie, Its exit surface) will not be described here.
  • the first excitation light source 908 can be a laser light source that excites the light generated by the wavelength conversion device to have high brightness and can provide an emission density superior to that of the LED.
  • the first excitation light source is not limited to a single laser, but may be a laser array light source.
  • the light emitted by the wavelength conversion device is approximately Lambertian-distributed light, and is capable of providing a wide spread angle illuminance distribution under the reflection of the reflecting device 902.
  • the first excitation light source 908 is a blue laser light source
  • the first wavelength conversion device 909 includes a yellow wavelength conversion material
  • the blue light is converted into a yellow light-receiving material by a yellow wavelength conversion material
  • the yellow light is received by the laser light.
  • the absorbed blue light is combined into white light and then emitted.
  • FIG. 10 is a schematic structural view of a fourth embodiment of a light source module according to the present invention.
  • the light source module 1000 includes a light source 1001, a reflection device 1002, and a lens 1003.
  • the light source 1001 is disposed in a space surrounded by the reflection device 1002, and the light-emitting surface of the light source 1001 faces the reflection surface 1002a of the reflection device 1002.
  • the light source 1001 is used to reflect and guide the light output from the light source 1001 to the light exit port 1004 of the reflection device 1002.
  • the lens 1003 is disposed opposite to the light exit port 1004 of the reflection device 1002, and the incident light focus F1 of the lens 1003 is disposed on the lens 1003 near the reflection device.
  • the reflective device 1002 includes a first reflective segment 1005, a second reflective segment 1006, and a third reflective segment 1007.
  • the first reflective segment 1005, the second reflective segment 1006, and the third reflective segment 1007 are sequentially disposed in a direction close to the lens 1003.
  • the light outputted by the 1001 is reflected by the first reflective segment 1005, the second reflective segment 1006, and the third reflective segment 1007 to the lens 1003, that is, the first reflective segment 1005, the second reflective segment 1006, and the third reflective segment 1007 respectively reflect the light source.
  • 1001 outputs light with different exit angles.
  • the present embodiment is different from the above embodiment in that the reflection device 1002 is a total reflection lens 1008, and the reflection surface 1002a of the reflection device 1002 is a total reflection surface of the total reflection lens 1008.
  • the internal space of the reflecting device 1002 is a solid lens, and "the light source is disposed in a space surrounded by the reflecting device” is understood to mean that the light source 1001 is disposed in a recess of the incident end of the total reflection lens 1008.
  • an opening 1009 is provided at the incident end of the reflecting device 1002.
  • the reflection device can be obtained by processing one lens, or the reflection device can be obtained by direct injection molding, thereby avoiding the problems of welding seams for welding multiple reflection segments in the above various technical solutions, and avoiding the problem. Uniformity problems when multiple reflective segments are coated with a reflective film.
  • the reflecting device 1002 in the above embodiments may also be replaced with the reflecting device 1002 of the total reflection lens 1008 in the figure, and details are not described herein again.
  • the light reflected by the reflecting segment has a larger light output through the lens.
  • the angle of expansion can increase the expansion angle of the light output by the light source module, and the reflected light density of the first reflection segment is high, and the light source module outputs high center brightness light, and further, by setting a third reflection segment, or
  • the three reflection segments cooperate with the light shielding sheet to realize the three-zone illumination of the light source module by using the light that is difficult to be used in the light output by the light source, and the light source module only includes one light source, which can be matched with the reflection device through the light shielding film, and then The light source module is used to output different forms of light by relying on a single light source.
  • FIG. 11 is a schematic structural view of an embodiment of a vehicle headlamp according to the present invention.
  • the vehicular headlamp 1100 includes a light source module (not shown), and the light source module is the light source module described in the above embodiments, and details are not described herein.
  • the vehicular headlamp 1100 further includes a structural member 1102 and a bottom support 1103.
  • the light source module is disposed on the bottom support 1103.
  • the lens 1104 of the light source module is connected to one end of the structural member 1102, and the structural member 1102 is away from the lens 1104.
  • One end is connected to the reflecting device 1105 of the light source module, and the structural member 1102 cooperates with the bottom supporting body 1103 to form a cavity space for the light output from the light source 1111 to propagate in the cavity space formed by the structural member 1102 and the bottom support 1103.
  • the cross-sectional shape of the end of the structural member 1102 connected to the lens 1104 corresponds to the cross-sectional shape of the lens 1104, and the corresponding assembly of the structural member 1102 and the lens 1104 is achieved, and the structural member 1102 and the reflecting device 1105 are in contact with each other.
  • the contours of the ends are correspondingly arranged to achieve a corresponding assembly of the structural member 1102 and the reflecting means 1105.
  • the vehicular headlamp 1100 further includes a solenoid valve 1106.
  • the visor 1107 of the light source module is respectively provided with a rotating shaft 1108 at two ends perpendicular to the optical axis direction of the lens 1104, and the bottom supporting body 1103 is provided with an assembly corresponding to the rotating shaft 1108.
  • the rotating shaft 1108 is rotatably coupled to the mounting position 1109 to achieve a rotatable arrangement of the visor 1107.
  • the solenoid valve 1106 is electrically coupled to the visor 1107 to control the visor 1107 to perform a pivoting motion about the rotational axis 1108.
  • the sheet 1107 When the sheet 1107 is rotated to different positions, it cooperates with the reflecting device 1105 to realize different forms of light output by the vehicular headlamp 1100.
  • the specific cooperation form has been elaborated in the above embodiments, and will not be described herein.
  • the vehicular headlamp 1100 further includes a heat sink 1110.
  • the heat sink 1110 and the bottom support body 1103 are integrated.
  • the heat sink 1110 is configured to discharge heat generated by the light source module when the light source module operates.
  • the vehicular headlamp 1100 further includes a connector terminal 1112 for carrying the light source 1111.
  • the connector terminal 1112 is provided with a recess corresponding to the light source 1111, and the light source 1111 is received in the recess, and the light source 1111 and the plug are inserted.
  • the terminal 1112 is electrically connected.
  • the light source 1111 may be a printed circuit board to which a lamp bead is connected, and the circuit trace is imprinted thereon.
  • the recess of the plug terminal 1112 includes a circuit pin through a circuit pin in the recess.
  • the circuit traces on the printed circuit board of the light source 1111 are electrically connected, and the light source 1111 is electrically connected to the plug terminal 1112 to electrically connect with an external circuit structure (such as a vehicle battery) for controlling the vehicular headlamp 1100.
  • an external circuit structure such as a vehicle battery
  • the light source 1111 turns on and outputs light energy to enable the vehicular headlamp 1100 to achieve its illumination function.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源模组(100)以及车用前照灯(1100),光源模组(100)包括光源(101)、反射装置(102)以及透镜(103),光源(101)设置于反射装置(102)包围的空间内,且光源(101)的发光面朝向反射装置(102)的反射面(102a),反射面(102a)用于将光源(101)输出的光反射并引导向反射装置(102)的出光口(104),透镜(103)与反射装置(102)的出光口(104)正对设置,且透镜(103)的入射光焦点(F1)设置于透镜(103)靠近反射装置(102)的一侧,反射装置(102)的第二反射段(107)的反射光焦点(F2)与透镜(103)的入射光焦点(F1)不重合设置。通过上述方式,能够增大光源模组(100)所输出光线的扩展角度。

Description

一种光源模组以及车用前照灯 技术领域
本发明涉及光学技术领域,特别是涉及一种光源模组以及车用前照灯。
背景技术
本发明的发明人在长期的研究发明过程中发现,汽车前照灯是指装于汽车头部两侧,用于夜间行车道路的照明装置。有两灯制和四灯制之分。前照灯的照明效果直接影响夜间行车驾驶的操作和交通安全,因此世界各国交通管理部门一般都以法律形式规定了汽车前照灯的照明标准,以确保夜间行车的安全。
但目前市场上所广泛使用的汽车前照灯,由于汽车前照灯内部结构的限制,致使汽车前照灯近光扩展角度较小,灯光所照射区域较小,这将直接影响汽车夜间行车驾驶员的可视范围,对夜间行车驾驶员的行车操作以及行车安全造成不良影响。
发明内容
有鉴于此,本发明主要解决的技术问题是提供一种光源模组以及车用前照灯,能够增大光源模组所输出光线的扩展角度。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种光源模组,该光源模组包括光源、反射装置以及透镜,光源设置于反射装置包围的空间内,且光源的发光面朝向反射装置的反射面,反射面用于将光源输出的光反射并引导向反射装置的出光口,透镜与反射装置的出光口正对设置,且透镜的入射光焦点设置于透镜靠近反射装置的一侧;反射装置包括第一反射段以及第二反射段,第一反射段以及第二反射段沿靠近透镜的方向依次设置,第一反射段以及第二反射段的反射面分别用于将光源输出不同出射角度的光反射并引导向反射装置的出光口;第一反射段的反射面为一椭球面,第一反射段的入射光焦点处设置光源, 且第一反射段的反射光焦点与透镜的入射光焦点重合设置;第二反射段的反射面为一椭球面,第二反射段的入射光焦点处设置光源,且第二反射段的反射光焦点与透镜的入射光焦点不重合设置。
其中,第一反射段的反射面面积小于第二反射段的反射面面积,且第一反射段接收光源输出光线的光通量大于第二反射段接收光源输出光线的光通量。
其中,第二反射段的反射光焦点所处竖直面经过透镜的中心轴。
其中,反射装置进一步包括第三反射段,第一反射段、第二反射段以及第三反射段沿靠近透镜的方向依次设置,第三反射段用于将光源输出至第三反射段的光反射并引导向反射装置的出光口;其中,第三反射段接收光源输出光线的光通量远小于第一反射段以及第二反射段接收光源输出光线的光通量。
其中,光源模组进一步包括遮光片,遮光片设置于透镜与光源之间的模组空间内,并且第二反射段的反射光焦点设置于遮光片与透镜之间的模组空间内,遮光片可绕一转动轴在第一位置和第二位置间转动切换;当遮光片转动至第一位置时,遮光片与经由第一反射段以及第二反射段反射并引导的光不存在交点,光源模组输出第一形式光线;当遮光片转动至第二位置时,遮光片转动至与透镜的中心轴相交,遮光片遮挡部分光源输出的光,光源模组输出第二形式光线。
其中,遮光片包括一凹面反射面,设置于遮光片靠近透镜一侧,光源输出的部分光经由第三反射段反射并引导至遮光片的凹面反射面,再经由遮光片反射并引导向透镜。
其中,第三反射段的反射面为一抛物面,第三反射段的入射光焦点处设置光源,透镜包括一表面粗糙化区域,设置于第三反射段的出射光的路径上。
其中,反射装置为全反射透镜,反射装置的反射面为全反射透镜的全反射面。
其中,光源包括一个或多个发光二极管;或者,光源包括第一激发光源和第一波长转换装置,第一波长转换装置的出射面为光源的发光 面,第一激发光源发出第一激发光,至少部分第一激发光被第一波长转换装置转换为第一受激光,第一受激光与未被转换的第一激发光的合光从第一波长转换装置的出射面出射,第一波长转换装置设置于第一反射段以及第二反射段的入射光焦点位置。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种车用前照灯,该车用前照灯包括上述实施例所阐述的光源模组。
本发明的有益效果是:区别于现有技术,汽车前照灯受限于其内部结构,致使其所输出光线扩展角度较小,本发明所提供的光源模组包括光源、反射装置以及透镜,光源设置于反射装置包围的空间内,且光源的发光面朝向反射装置的反射面,反射面用于将光源输出的光反射并引导向反射装置的出光口,通过设置两个不同的反射段,即第一反射段和第二反射段,使得第一反射段的反射光焦点与透镜的入射光焦点重合设置,以保证原有的中心高照度,并且使得第二反射段的反射光焦点与透镜的入射光焦点不重合设置,从而使第二反射段所反射引导的光线经由透镜引导出射后拥有更大的光线扩展角度,以实现增大光源模组所输出光线的扩展角度,在使用单个光源的情况下实现了保持中心照度和扩展总光束照射角度的目的。
附图说明
图1是本发明光源模组第一实施例的结构示意图;
图2是本发明第一反射段与第二反射段设置方式一实施例的结构示意图;
图3是本发明透镜一实施例的结构示意图;
图4是本发明光源模组第二实施例的结构示意图;
图5是本发明遮光片一实施例的结构示意图;
图6是本发明透镜光斑一实施例的结构示意图;
图7是本发明第一形式光线的光斑图案一实施例的结构示意图;
图8是本发明第二形式光线的光斑图案一实施例的结构示意图;
图9是本发明光源模组第三实施例的结构示意图;
图10是本发明光源模组第四实施例的结构示意图;
图11是本发明车用前照灯一实施例的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
为解决现有技术汽车前照灯所输出光线的扩展角度较小的技术问题,本发明提供一种光源模组,该光源模组包括光源、反射装置以及透镜,光源设置于反射装置包围的空间内,且光源的发光面朝向反射装置的反射面,反射面用于将光源输出的光反射并引导向反射装置的出光口,透镜与反射装置的出光口正对设置,且透镜的入射光焦点设置于透镜靠近反射装置的一侧;反射装置包括第一反射段以及第二反射段,第一反射段以及第二反射段沿靠近透镜的方向依次设置,第一反射段以及第二反射段的反射面分别用于将光源输出不同出射角度的光反射并引导向反射装置的出光口;第一反射段的反射面为一椭球面,第一反射段的入射光焦点处设置光源,且第一反射段的反射光焦点与透镜的入射光焦点重合设置;第二反射段的反射面为一椭球面,第二反射段的入射光焦点处设置光源,且第二反射段的反射光焦点与透镜的入射光焦点不重合设置。以下进行详细阐述。
请参阅图1,图1是本发明光源模组第一实施例的结构示意图。
在本实施例中,光源模组100可以适用于汽车等交通工具的照明装置,例如车辆前照灯等,在光线环境较差的情况下,需要在车辆周围照明以指示车辆行车的装置,可以理解的是,车辆前车灯、后车灯以及其他部位的照明装置均可以为本实施例所提供的光源模组100的适用环境,从而为车辆提供扩展角度大以及中心亮度高的照明灯光。本发明的光源模组100还可以运用到其他灯具,如探照灯、舞台灯、船舶/飞机灯等应用领域。
在本实施例中,光源模组100包括光源101、反射装置102以及透镜103,光源101设置于反射装置102包围的空间内,且光源101的发光面朝向反射装置102的反射面102a,反射面102a用于将光源101输出的光反射并引导向反射装置102的出光口104,透镜103与反射装置 102的出光口104正对设置,且透镜103的入射光焦点设置于透镜103靠近反射装置102的一侧。其中,透镜103在其中心轴105方向上至少存在两个焦点,透镜103中心轴105上的焦点中靠近反射装置102的焦点为透镜103的入射光焦点F1。
反射装置102包括第一反射段106以及第二反射段107,第一反射段106以及第二反射段107沿靠近透镜103的方向依次设置,第一反射段106以及第二反射段107的反射面分别用于将光源101输出不同出射角度的光反射并引导向反射装置102的出光口104。
第一反射段106的反射面为一椭球面,第一反射段106的入射光焦点处设置光源101,且第一反射段106的反射光焦点与透镜103的入射光焦点F1重合设置。第二反射段107的反射面为一椭球面,第二反射段107的入射光焦点处设置光源101,且第二反射段107的反射光焦点F2与透镜103的入射光焦点F1不重合设置。相较于第二反射段107的反射光焦点F2与透镜103的入射光焦点F1重合设置的情况,本实施例中第二反射段107的反射光焦点F2与透镜103的入射光焦点F1不重合设置,能够使第二反射段107反射并引导至透镜103的光,在经由透镜103引导出射后拥有更大的光线扩展角度。
在本实施例中,第一反射段106以及第二反射段107的入射光焦点处设置有光源101,光源101输出的光能够通过第一反射段106以及第二反射段107反射并引导至对应的反射光焦点。第一反射段106以及第二反射段107的入射光焦点定义为二者所反射引导光的来源,并且第一反射段106以及第二反射段107的的反射光焦点定义为来自第一反射段106以及第二反射段107的入射光焦点输入的光经由二者反射引导后反射光光路的共同交点。
光源101可以为卤素灯泡、氙气灯泡以及LED(Light Emitting Diode,发光二极管)等,是光源模组100所输出光线的来源,光源101所输出光线的光路在光源模组100中经过调整后输出,实现光源模组100的照明功能。光源101的特点为,其发光面发出近似朗伯分布的光,该光分布均匀,有利于反射装置102反射后形成宽扩展角的照度分布。
本实施例采用LED灯珠作为光源模组100的光源101,利用其结构简易,开关速度快,高可靠性等优点,实现其与本实施例所提供光源模组100的各组成部分可靠结合成整体结构,仅为论述需要,并非因此对本实施例所提供光源模组100的光源101类型造成限定,本实施例所阐述的光源101类型包括但不限于上文所述,凡能够实现与光源模组100的各组成部分可靠结合,并且能够实现光源模组100输出不同形式光线的功能的光源101类型均可为本实施例所阐述的光源101类型,在此不做限定。
光源101可以为包括一个或多个发光二极管,其所包括发光二极管数量根据发光二极管所输出光能以及光源模组100的光通量确定,光源101所包括的发光二极管所输出光能越多,光源模组100的光通量越大,则光源101所需包括的发光二极管数量就越少,在此不做限定。
在本发明的其他实施例中,光源101还可以替换为激光荧光光源101,将在下文中详细阐述。
在本实施例中,反射装置102的反射面102a可以是一椭球面,具体可以为一椭球沿其长、短轴所处该椭球的对称面进行分割所得到的1/4椭球面,当然也可以为其他比例的椭球面,但反射装置102的反射面102a优选为以该椭球的长、短轴为对称轴的对称结构。为保证光源101所输出光线的最大利用率,因此光源101需要设置于反射装置102所包围的空间内,此外还要保证光源101经由反射装置102反射后在透镜103上出射的光线拥有足够的扩展角度,因此将光源101设置于远离反射装置102的出光口104的开口端面,相当于反射装置102的杯底位置,能够保证光源101所输出光线的最大利用率的同时,保证光源101经由反射装置102反射后在透镜103上出射的光线拥有足够的扩展角度。其中,反射装置102的出光口104相当于反射装置102的杯口位置,而设置光源101的反射装置102位置相当于反射装置102的杯底位置。
反射装置102包括有第一反射段106、第二反射段107以及第三反射段108,第一反射段106、第二反射段107以及第三反射段108沿靠近透镜103的方向依次设置,光源101输出的光线分别经由第一反射段 106、第二反射段107以及第三反射段108反射至透镜103出射,即第一反射段106、第二反射段107以及第三反射段108分别反射光源101输出的不同出射角度的光线。
在本实施例中,反射装置102为反射杯,反射杯为中空腔体结构,其反射面设置于反射杯的内壁,反射面可以例如是金属反射膜。反射杯形成半包围结构,将光源101包围,使得光源101处于反射杯的内部空间中。
在本发明的其他实施例中,反射装置102还可以为全反射透镜,将在下文中详细阐述。
进一步地,为避免光源101输出的光在经由反射装置102反射引导的过程中从反射装置102的杯体部分泄露,第一反射段106、第二反射段107以及第三反射段108为连续结构。举例而言第一反射段106、第二反射段107以及第三反射段108相互连接,第一反射段106、第二反射段107以及第三反射段108中相邻反射段交点曲率不同;或是第一反射段106、第二反射段107以及第三反射段108中相邻反射段通过过渡结构衔接并且相邻反射段的反射面不存在交点,在此不做限定。本实施例所阐述的光源模组100通过多段式反射结构以反射引导光源101输出的不同出射角度的光线,从而实现光源模组100输出的光线具有大扩展角度以及高中心亮度。如图1所示,出射角度θ是指光源101的发光面的法线与其上的出射光之间的夹角,在实际产品中,大量市售的LED的发光角度为120°(即以法线为中心±60°)。
第一反射段106的反射面为一椭球面,其凹面与光源101相对设置,第一反射段106的入射光焦点处设置有光源101,反射光焦点与透镜103的入射光焦点F1重合设置,光源101所输出的光线经由第一反射段106反射,传播至透镜103再经由透镜103收敛第一反射段106反射光的光路并出射。
第二反射段107的反射面为一椭球面,其凹面与光源101相对设置,第二反射段107的入射光焦点处设置光源101,第二反射段107的反射光焦点F2与透镜103的入射光焦点F1不重合设置,如图1所示,第二 反射段107反射光焦点F2所处平面垂直于透镜103的焦点F1所处水平面并且与透镜103的入射光焦点F1所处水平面相交于透镜103的中心轴105,第二反射段107的反射光焦点F2与透镜103的入射光焦点F1不重合设置,能够使透镜103上对应第二反射段107反射光的光斑拥有更大的扩展角度,光线辐射范围更广。
第二反射段107反射光焦点F2所处竖直面经过透镜103的中心轴105,通过上述方式,第二反射段107所反射的光线在透镜103上的光斑为对称结构,其对称轴垂直于透镜103的入射光焦点F1所处水平面并与透镜103的中心轴105相交。
如图2所示,由于第一反射段106与第二反射段107的反射面的旋转对称轴201重合,并且第一反射段106的反射光焦点与第二反射段107的反射光焦点共面设置,第一反射段106所反射的光线在透镜103上的光斑同样也为对称结构,并且光斑对称轴与第二反射段107的光斑对称轴重合。
第一反射段106以及第二反射段107的反射面的旋转对称轴201与透镜103的中心轴105平行,第二反射段107的反射面上各点到透镜103的中心轴105的距离大于第一反射段106的反射面上各点到透镜103的中心轴105的距离,并且由于第二反射段107的反射光焦点F2与透镜103入射光焦点F1不重合,使得第二反射段107所反射光拥有更大的扩展角度,即透镜103上对应第二反射段107的光斑面积大于透镜103上对应第一反射段106的光斑面积。
进一步地,第一反射段106的反射面面积小于第二反射段107的反射面面积,且第一反射段106接收光源101所输出光线的比例大于第二反射段107接收光源101所输出光线的比例,即第一反射段106的光通量大于第二反射段107的光通量。其中,第一反射段106接收光源101所输出光线的比例大于45%,第二反射段107接收光源101所输出光线的比例大于35%且小于45%,该技术方案使得输出照明光良好满足车辆照明要求。在一个优选的实施方案中,第一反射段106接收光源101所输出光线的比例约为50%,第二反射段107接收光源101所输出光线的 比例约为40%,第一反射段106接收光线的面积小但光通量高,因此透镜103上对应第一反射段106的光斑分布集中且亮度较高,第二反射段107接收光线的面积大但光通量低,因此透镜103上对应第二反射段107的光斑扩展角度较大,分布面积较广但亮度较低。
光源101所输出的光线中除去经由第一反射段106以及第二反射段107反射至透镜103出射的光线外,还包括有传播方向远离光源101且较难利用的光线(可以是光源101所输出的光中出射角度为最大出射角且光路靠近反射装置102出光口104的部分),为此本实施例所阐述光源模组100的反射装置102中在其远离光源101的一侧设置有第三反射段108,第一反射段106、第二反射段107以及第三反射段108沿靠近透镜103的方向依次设置。第三反射段108将光源101输出至第三反射段108的光反射并引导向反射装置102的出光口104,将传播方向远离光源101且难以利用的光线利用起来,提高光源101所输出光能的利用率。由于第三反射段108远离光源101设置,其所接收的光通量远小于第一反射段106以及第二反射段107所接收的光通量。
第三反射段108为一抛物面,其凹面相对光源101设置,第三反射段108反射面的抛物线斜率沿靠近透镜103的方向逐渐趋于平缓,即斜率趋近于“0”,第三反射段108的入射光焦点处设置有光源101,并且经由第三反射段108反射至透镜103的光线光路互相平行且平行于透镜103的中心轴105,透镜103上包括一表面粗糙化区域301,表面粗糙化区域301设置于第三反射段108的出射光的路径上,如图3所示,以使经由第三反射段108反射至透镜103的光线发散并在透镜103出射,从而使光源101所输出光线中传播方向远离光源101且较难利用的光线得到利用。当然,光源101所输出光线中传播方向远离光源101且较难利用的光线所占比例较低,因此第三反射段108接收光源101输出光线的比例远小于第一反射段106以及第二反射段107接收光源101输出光线的比例,约为5%,即第三反射段108的光通量远小于第一反射段106以及第二反射段107的光通量。
需要说明的是,本实施例所阐述的光源模组100中,光源101所输 出的光经由反射装置102的第一反射段106、第二反射段107以及第三反射段108反射并引导向反射装置102的出光口104,最后经由透镜103整合光路后出射。通过上述方式,光源模组100输出远光形式的光线。
以上可以看出,本发明所提供的光源模组,光源设置于反射装置包围的空间内,且光源的发光面朝向反射装置的反射面,反射面用于将光源输出的光反射并引导向反射装置的出光口,通过设置两个不同的反射段,即第一反射段和第二反射段,使得第一反射段的反射光焦点与透镜的入射光焦点重合设置,以保证原有的中心高照度,并且使得第二反射段的反射光焦点与透镜的入射光焦点不重合设置,从而使第二反射段所反射引导的光线经由透镜引导出射后拥有更大的光线扩展角度,以实现增大光源模组所输出光线的扩展角度,在使用单个光源的情况下实现了保持中心照度和扩展总光束照射角度的目的。
请参阅图4,图4是本发明光源模组第二实施例的结构示意图。
在本实施例中,光源模组400包括光源401、反射装置402以及透镜403,光源401设置于反射装置402包围的空间内,且光源401的发光面朝向反射装置402的反射面402a,反射面402a用于将光源401输出的光反射并引导向反射装置402的出光口404,透镜403与反射装置402的出光口404正对设置,且透镜403的入射光焦点F1设置于透镜403靠近反射装置402的一侧。
反射装置402包括有第一反射段405、第二反射段406以及第三反射段407,第一反射段405、第二反射段406以及第三反射段407沿靠近透镜403的方向依次设置,光源401输出的光线分别经由第一反射段405、第二反射段406以及第三反射段407反射至透镜403出射,即第一反射段405、第二反射段406以及第三反射段407分别反射光源401输出的不同出射角度的光线。第二反射段406的反射光焦点F2与透镜403的入射光焦点F1不重合设置。相较于第二反射段406的反射光焦点F2与透镜403的入射光焦点F1重合设置的情况,本实施例中第二反射段406的反射光焦点F2与透镜403的入射光焦点F1不重合设置,能够使第二反射段406反射并引导至透镜403的光,在经由透镜403引导出 射后拥有更大的光线扩展角度。
本实施例与上述实施例的不同之处在于,本实施例所阐述的光源模组400进一步包括遮光片408,遮光片408设置于透镜403与光源401之间的模组空间内,并且第二反射段406的反射光焦点F2设置于遮光片408与透镜403之间的模组空间内,遮光片408包括一凹面反射面,该凹面反射面设置于遮光片408靠近透镜403一侧,遮光片408被执行转动动作的转动轴(图中未标识)与透镜403的中心轴409垂直,遮光片可绕该转动轴在第一位置S1和第二位置S2间转动切换。
当遮光片408转动至第一位置S1时,遮光片408与经由第一反射段405以及第二反射段406反射并引导的光不存在交点,光源模组400输出第一形式光线;当遮光片408转动至第二位置S2时,遮光片408转动至与透镜403的中心轴409相交,遮光片408遮挡部分光源401输出的光,光源模组400输出第二形式光线。
请参阅图5,遮光片408与透镜403的中心轴409接触的端部设置有截止线501,当光源模组400输出第二形式光线时,遮光片408遮挡住部分经由第一反射段405以及第二反射段406反射的光线,则光源401所输出光线在透镜403上的光斑图案对应遮光片408上的截止线501设置,截止线501为遮光片408与透镜403的中心轴409接触端部的外部轮廓,根据第二形式光线在透镜403上所需要的光斑图案,对遮光片408与透镜403的中心轴409接触端部的外部轮廓进行裁切。
请参阅图6,举例而言,为防止车辆交汇时来向车的车灯光线辐射高度较高,致使本车驾驶员炫目,并且车辆交汇时车灯模式通常需要切换为近光灯,即车灯输出第二形式光线,这就要求透镜403上对应第二形式光线的光斑在透镜403竖向对称轴601一侧并且光线传播方向对应透镜403正前方的光斑,即第一光斑区域602,其高度小于位于透镜403竖向对称轴601另一侧的光斑高度,即第二光斑区域603。第一光斑区域602与第二光斑区域603的分界线垂直于透镜403的中心轴409所处水平面,具体为透镜403的竖向对称轴601,第一光斑区域602的光斑高度较低,能够防止车辆交汇时致使来向车驾驶员炫目,同时第二光斑 区域603的光斑高度较高能够保证拥有足够的车辆侧向可视范围,保证行车安全,这就需要通过设置相对应的截止线501实现,具体为截止线501对应第一光斑区域602以及第二光斑区域603的部分存在高度差,截止线501高度越高,则被遮光片408遮挡住的光量越多,因此截止线501中高度较高部分对应第一光斑区域602,截止线501高度越低,则被遮光片408遮挡住的光量越少,因此截止线501中高度较低部分对应第二光斑区域603。
可选地,截止线501可以为直线形式,或者是曲线形式等,则透镜403上对应截止线501的光斑轮廓为对应的直线形式或者是曲线形式,即截止线501为直线形式,透镜403上对应截止线501的光斑轮廓为对应的直线形式,截止线501为曲线形式,透镜403上对应截止线501的光斑轮廓为对应的曲线形式。
在图5所示的遮光片408结构下,第一形式光线的光斑图案如图7所示,其中,区域A为对应第一反射段405所反射引导光线的光斑,区域B为对应第二反射段406所反射引导光线的光斑。第二形式光线的光斑图案如图8所示,其中,区域A'对应第一反射段405所反射引导光线的光斑,区域B'对应第二反射段406所反射引导光线的光斑。
在光源模组400输出第二形式光线的情况下,由于第三反射段407与遮光片408的凹面反射面配合,利用光源401所输出光线中传播方向远离光源401且难以利用的光线,在透镜403上实现除对应第一反射段405的区域光斑以及对应第二反射段406的区域光斑之外对应第三反射段407的区域光斑,第三反射段407所反射光对应的光斑如图8中区域C所示,从而实现光源模组400的三区照明,由于透镜403上对应第三反射段407的光斑多分布于透镜403上部区域,同样为防止来向车驾驶员炫目,需要对透镜403上对应第三反射段407的光斑亮度进行控制,其中,可以为通过调整第三反射段407以及遮光片408的反射率,以调整透镜403上对应第三反射段407的光斑亮度,具体为可以在第三反射段407和/或遮光片408的反射面上进行不同程度的粗糙化处理(例如增加粗糙面等),以使第三反射段407和/或遮光片408的反射面不平整设 置,从而调整第三反射段407以及遮光片408的反射率,进而对透镜403上对应第三反射段407的光斑亮度的控制。
当车用前照灯采用该实施方式中的光源模组400时,该车用前照灯为远近一体灯,第一形式光线为远光,第二形式光线为近光,第一形式光线的强度大于第二形式光线的强度并且第一形式光线的辐射范围大于第二形式光线的辐射范围。当遮光片408遮挡部分光源401输出的光时,该车用前照灯出射近光;当遮光片408不遮挡光源401输出的光时,该车用前照灯出射远光。
在本发明中,遮光片408并非必须的。当光源模组400不包含遮光片408时,光源模组400可作为车用前照灯的远光灯使用,其中光源401所输出的光在反射装置402的第二反射段406的反射引导下用于获得宽扩展角的照明区域,光源401所输出的光在反射装置402的第一反射段405的反射引导下用于加强中心照度。
在本发明中,遮光片408也可以设置为不可运动的遮光结构,用于形成近光灯的截止线,将光源401提供的输出光的照度分布修正为满足近光照射需求的光。
需要说明的是,第二反射段406的反射光焦点与透镜403的入射光焦点不重合设置,并且设置于遮光片408与透镜403之间的模组空间内。当遮光片408转动至第二位置S2时,由于第二反射段406的反射光焦点设置于遮光片408与透镜403之间的模组空间内,能够减少第二反射段406所反射引导的光被遮光片408遮挡的光量,以保证光源模组400输出的第二形式光线具备足够的照度分布。
进一步地,第三反射段407为一椭球面,其凹面相对光源401设置,光源401所输出光线中部分光线经由第三反射段407反射并引导至遮光片408的凹面反射面,并经由遮光片408反射并引导至透镜403出射,通过第三反射段407与遮光片408的配合,以使经由第三反射段407反射的光线传播至透镜403出射,从而使光源401所输出光线中传播方向远离光源401且较难利用的光线得到利用。当然,光源401所输出光线中传播方向远离光源401且较难利用的光线所占比例较低,因此第三反 射段407接收光源401输出光线的比例远小于第一反射段405以及第二反射段406接收光源401输出光线的比例,约为5%,即第三反射段407的光通量远小于第一反射段405以及第二反射段406的光通量。
可以理解的是,遮光片408转动至其遮挡反射装置402所反射光源401所输出光线不同比例的情况下,透镜403所接收光源401所输出光线的光通量相应发生改变,以使光源模组400所输出光线的辐射范围以及光线强度发生变化,因此本实施例通过转动遮光片408,以使遮光片408与光源401所输出光线存在不同程度的遮挡,进而使光源模组400输出不同形式的光线。
可选地,透镜403远离光源401一侧的外部轮廓可以为圆弧过渡形式,或者是多边形切面形式等,透镜403的外部轮廓根据光源模组400所应用的环境决定,当光源模组400应用于汽车等交通工具时,根据光源模组400所应用汽车车型的外观要求,对透镜403的外部轮廓进行相对应的设计处理,在不影响光源模组400正常输出不同形式光线功能的前提下,满足消费者对汽车车型的外观需求。
请参阅图9,图9是本发明光源模组第三实施例的结构示意图。
在本实施例中,光源模组900包括光源901、反射装置902以及透镜903,光源901设置于反射装置902包围的空间内,且光源901的发光面朝向反射装置902的反射面902a,反射面902a用于将光源901输出的光反射并引导向反射装置902的出光口904,透镜903与反射装置902的出光口904正对设置,且透镜903的入射光焦点F1设置于透镜903靠近反射装置902的一侧。
反射装置902包括有第一反射段905、第二反射段906以及第三反射段907,第一反射段905、第二反射段906以及第三反射段907沿靠近透镜903的方向依次设置,光源901输出的光线分别经由第一反射段905、第二反射段906以及第三反射段907反射至透镜903出射,即第一反射段905、第二反射段906以及第三反射段907分别反射光源901输出的不同出射角度的光线。
本实施例与上述实施例的不同之处在于,光源901为荧光激发光源 901,包括第一激发光源908和第一波长转换装置909。第一波长转换装置909的出射面为光源901的发光面,第一激发光源908发出第一激发光,至少部分第一激发光被第一波长转换装置909转换为第一受激光,第一受激光与未被转换的第一激发光的合光从第一波长转换装置909的出射面出射。其中,第一波长转换装置909设置于反射装置902的入射光焦点位置。可以理解,本实施例中的光源901也可以替换为反射式的荧光激发光源,该技术方案可以通过在反射面上设置通孔,使得激发光经通孔入射到波长转换装置的入射面(即其出射面),此处不再赘述。
第一激发光源908可以为激光光源,激光光源激发波长转换装置产生的光具有高亮度,能够提供优于LED的发光密度。第一激发光源不限于单颗激光器,也可以是激光阵列光源。同样地,波长转换装置发出的光为近似朗伯分布的光,能够在反射装置902的反射作用下提供宽扩展角的照度分布。
在一个具体实施方式中,第一激发光源908为蓝光激光光源,第一波长转换装置909包括黄色波长转换材料,蓝光被黄色波长转换材料转换为黄光受激光,该黄光受激光与未被吸收的蓝光合光成为白光后出射。
请参阅图10,图10是本发明光源模组第四实施例的结构示意图。
在本实施例中,光源模组1000包括光源1001、反射装置1002以及透镜1003,光源1001设置于反射装置1002包围的空间内,且光源1001的发光面朝向反射装置1002的反射面1002a,反射面1002a用于将光源1001输出的光反射并引导向反射装置1002的出光口1004,透镜1003与反射装置1002的出光口1004正对设置,且透镜1003的入射光焦点F1设置于透镜1003靠近反射装置1002的一侧。
反射装置1002包括有第一反射段1005、第二反射段1006以及第三反射段1007,第一反射段1005、第二反射段1006以及第三反射段1007沿靠近透镜1003的方向依次设置,光源1001输出的光线分别经由第一反射段1005、第二反射段1006以及第三反射段1007反射至透镜1003出射,即第一反射段1005、第二反射段1006以及第三反射段1007分别 反射光源1001输出的不同出射角度的光线。
本实施例与上述实施例的不同之处在于,反射装置1002为全反射透镜1008,反射装置1002的反射面1002a为全反射透镜1008的全反射面。此处,反射装置1002的内部空间为实心透镜,“所述光源设置于所述反射装置包围的空间内”可以理解为光源1001设置在全反射透镜1008入射端的凹坑内。如图10所示,在反射装置1002的入射端设有开口1009。该技术方案下,可以通过将一个透镜进行加工得到反射装置,也可以通过直接注塑成型的方式得到反射装置,避免了上述各技术方案中将多个反射段焊接的焊缝等问题,也避免了多个反射段镀反射膜时的均匀性问题。
可以理解,上述各实施例中的反射装置1002也可以替换为图中的全反射透镜1008类型的反射装置1002,在此不再赘述。
综上所述,本发明所提供的光源模组中由于反射装置中第二反射段的反射光焦点与透镜的焦点不重合,因此该反射段所反射的光线经透镜输出后拥有更大的光线扩展角度,从而能够增大光源模组所输出光线的扩展角度,同时第一反射段反射光密度较高,实现光源模组输出高中心亮度的光线,此外通过设置第三反射段,或是第三反射段与遮光片相互配合,以利用光源所输出光线中难以利用的光线实现光源模组的三区照明,再者光源模组只包括有一个光源,可通过遮光片与反射装置配合,进而依靠单光源实现光源模组输出不同形式的光线。
请参阅图11,图11是本发明车用前照灯一实施例的结构示意图。
在本实施例中,车用前照灯1100包括光源模组(图中未标识),光源模组为上述实施例所阐述的光源模组,在此就不再赘述。
车用前照灯1100进一步包括有结构件1102以及底部支撑体1103,光源模组设置于底部支撑体1103上,光源模组的透镜1104与结构件1102的一端连接,结构件1102远离透镜1104的一端与光源模组的反射装置1105连接,结构件1102与底部支撑体1103配合形成一腔体空间以使光源1111输出的光线在结构件1102与底部支撑体1103所形成的腔体空间内传播。
可选地,结构件1102与透镜1104连接的端部的横截面形状对应透镜1104的截面形状设置,实现结构件1102与透镜1104的对应装配,并且结构件1102与反射装置1105二者相互接触连接的端部的轮廓弧度对应设置,以实现结构件1102与反射装置1105的对应装配。
车用前照灯1100还包括有电磁阀1106,光源模组的遮光片1107沿垂直于透镜1104光轴方向的两端分别设置有转动轴1108,底部支撑体1103设置有对应转动轴1108的装配位1109,转动轴1108与装配位1109可转动连接,以实现遮光片1107的可转动设置,电磁阀1106与遮光片1107电连接,以控制遮光片1107执行绕转动轴1108的转动动作,当遮光片1107转动至不同位置时,其与反射装置1105配合以实现车用前照灯1100输出不同形式的光线,具体配合形式已在上述实施例中进行了详细阐述,在此就不再赘述。
车用前照灯1100还包括有散热器1110,散热器1110与底部支撑体1103为一体结构,散热器1110用以在光源模组工作时排出光源模组所产生的热量。
可选地,车用前照灯1100还包括有承载光源1111的接插端子1112,接插端子1112设置有对应光源1111的凹槽,将光源1111容置于凹槽中,光源1111与接插端子1112存在电连接,光源1111可以是连接有灯珠的印刷电路板,其上印刻有电路走线,接插端子1112的凹槽中包括有电路引脚,通过凹槽中的电路引脚与光源1111印刷电路板上的电路走线电连接,光源1111通过与接插端子1112的电连接,实现其与控制车用前照灯1100的外部电路结构(例如车载蓄电池等)电连接,当外部电路结构向车用前照灯1100供电时,光源1111开启并输出光能,以使车用前照灯1100实现其照明的功用。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种光源模组,其特征在于,所述光源模组包括光源、反射装置以及透镜,所述光源设置于所述反射装置包围的空间内,且所述光源的发光面朝向所述反射装置的反射面,所述反射面用于将所述光源输出的光反射并引导向所述反射装置的出光口,所述透镜与所述反射装置的出光口正对设置,且所述透镜的入射光焦点设置于所述透镜靠近所述反射装置的一侧;
    所述反射装置包括第一反射段以及第二反射段,所述第一反射段以及所述第二反射段沿靠近所述透镜的方向依次设置,所述第一反射段以及所述第二反射段的反射面分别用于将所述光源输出的不同出射角度的光反射并引导向所述反射装置的出光口;
    所述第一反射段的反射面为一椭球面,所述第一反射段的入射光焦点处设置所述光源,且所述第一反射段的反射光焦点与所述透镜的入射光焦点重合设置;
    所述第二反射段的反射面为一椭球面,所述第二反射段的入射光焦点处设置所述光源,且所述第二反射段的反射光焦点与所述透镜的入射光焦点不重合设置。
  2. 根据权利要求1所述的光源模组,其特征在于,所述第一反射段的反射面面积小于所述第二反射段的反射面面积,且所述第一反射段接收所述光源输出光线的光通量大于所述第二反射段接收所述光源输出光线的光通量。
  3. 根据权利要求1所述的光源模组,其特征在于,所述第二反射段的反射光焦点所处竖直面经过所述透镜的中心轴。
  4. 根据权利要求1所述的光源模组,其特征在于,所述反射装置进一步包括第三反射段,所述第一反射段、所述第二反射段以及所述第三反射段沿靠近所述透镜的方向依次设置,所述第三反射段用于将所述光源输出至所述第三反射段的光反射并引导向所述反射装置的出光口;其中,所述第三反射段接收所述光源输出光线的光通量远小于所述第一 反射段以及所述第二反射段接收所述光源输出光线的光通量。
  5. 根据权利要求4所述的光源模组,其特征在于,所述光源模组进一步包括遮光片,所述遮光片设置于所述透镜与所述光源之间的模组空间内,并且所述第二反射段的反射光焦点设置于所述遮光片与所述透镜之间的模组空间内,所述遮光片可绕一转动轴在第一位置和第二位置间转动切换;
    当所述遮光片转动至所述第一位置时,所述遮光片与经由所述第一反射段以及所述第二反射段反射并引导的光不存在交点,所述光源模组输出第一形式光线;
    当所述遮光片转动至所述第二位置时,所述遮光片转动至与所述透镜的中心轴相交,所述遮光片遮挡部分所述光源输出的光,所述光源模组输出第二形式光线。
  6. 根据权利要求5所述的光源模组,其特征在于,所述遮光片包括一凹面反射面,设置于所述遮光片靠近所述透镜一侧,所述光源输出的部分光经由所述第三反射段反射并引导至所述遮光片的凹面反射面,再经由所述遮光片反射并引导向所述透镜。
  7. 根据权利要求4所述的光源模组,其特征在于,所述第三反射段的反射面为一抛物面,所述第三反射段的入射光焦点处设置所述光源,所述透镜包括一表面粗糙化区域,设置于所述第三反射段的出射光的路径上。
  8. 根据权利要求1所述的光源模组,其特征在于,所述反射装置为全反射透镜,所述反射装置的反射面为所述全反射透镜的全反射面。
  9. 根据权利要求1至8任一项所述的光源模组,其特征在于,所述光源包括一个或多个发光二极管;
    或者,所述光源包括第一激发光源和第一波长转换装置,所述第一波长转换装置的出射面为所述光源的发光面,所述第一激发光源发出第一激发光,至少部分所述第一激发光被所述第一波长转换装置转换为第一受激光,所述第一受激光与未被转换的第一激发光的合光从所述第一波长转换装置的出射面出射,所述第一波长转换装置设置于所述第一反 射段以及所述第二反射段的入射光焦点位置。
  10. 一种车用前照灯,其特征在于,所述车用前照灯包括如权利要求1至9任一项所述的光源模组。
PCT/CN2018/118829 2018-05-08 2018-12-03 一种光源模组以及车用前照灯 WO2019214217A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810432517.6A CN110454744B (zh) 2018-05-08 2018-05-08 一种光源模组以及车用前照灯
CN201810432517.6 2018-05-08

Publications (1)

Publication Number Publication Date
WO2019214217A1 true WO2019214217A1 (zh) 2019-11-14

Family

ID=68466893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118829 WO2019214217A1 (zh) 2018-05-08 2018-12-03 一种光源模组以及车用前照灯

Country Status (2)

Country Link
CN (1) CN110454744B (zh)
WO (1) WO2019214217A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114033978A (zh) * 2021-12-02 2022-02-11 深圳市源立信照明科技有限公司 一种电动调焦的照明电路及其的控制方法、灯具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460811A (zh) * 2002-04-23 2003-12-10 株式会社小糸制作所 光源设备
CN104075208A (zh) * 2013-03-29 2014-10-01 株式会社小糸制作所 车辆用前照灯
CN105090855A (zh) * 2014-05-23 2015-11-25 株式会社小糸制作所 车辆用前照灯
US20170088034A1 (en) * 2015-09-24 2017-03-30 Stanley Electric Co., Ltd. Vehicle lighting apparatus
CN106838758A (zh) * 2015-12-04 2017-06-13 松下知识产权经营株式会社 前照灯以及移动体
CN207279528U (zh) * 2017-05-19 2018-04-27 常州文通光电有限公司 一种具有大光距调节范围的远近一体车灯

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460811A (zh) * 2002-04-23 2003-12-10 株式会社小糸制作所 光源设备
CN104075208A (zh) * 2013-03-29 2014-10-01 株式会社小糸制作所 车辆用前照灯
CN105090855A (zh) * 2014-05-23 2015-11-25 株式会社小糸制作所 车辆用前照灯
US20170088034A1 (en) * 2015-09-24 2017-03-30 Stanley Electric Co., Ltd. Vehicle lighting apparatus
CN106838758A (zh) * 2015-12-04 2017-06-13 松下知识产权经营株式会社 前照灯以及移动体
CN207279528U (zh) * 2017-05-19 2018-04-27 常州文通光电有限公司 一种具有大光距调节范围的远近一体车灯

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114033978A (zh) * 2021-12-02 2022-02-11 深圳市源立信照明科技有限公司 一种电动调焦的照明电路及其的控制方法、灯具
CN114033978B (zh) * 2021-12-02 2024-02-06 深圳市源立信照明科技有限公司 一种电动调焦的照明电路及其的控制方法、灯具

Also Published As

Publication number Publication date
CN110454744A (zh) 2019-11-15
CN110454744B (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
JP4089866B2 (ja) 投光ユニットおよび該投光ユニットを具備するled車両用照明灯具
US7441928B2 (en) Lighting device
US7416322B2 (en) Vehicle lighting device
TWI565605B (zh) 車前燈燈具模組
US8851726B2 (en) Vehicle lighting apparatus
US20070127253A1 (en) Vehicle lamp
JP2011146133A (ja) 車両用ヘッドランプ
JP2011023299A (ja) Led光源
CN110107857B (zh) 近光iii区照明模组、车辆前照灯及车辆
US10612743B2 (en) Vehicle lamp
JP5368233B2 (ja) 車両用灯具
KR102099792B1 (ko) 차량용 헤드 램프
CN210740251U (zh) 远近光一体前照灯模组、前照灯及车辆
KR101461550B1 (ko) 차량용 램프
WO2019214217A1 (zh) 一种光源模组以及车用前照灯
CN110822366A (zh) 一种汽车前照灯
CN207122859U (zh) 一种光源模组及照明灯
CN210601443U (zh) 一种汽车前照灯
CN212841333U (zh) Led车灯模组
KR20150134876A (ko) 차량용 헤드 램프
KR101614849B1 (ko) 상·하향 일체형 led 전조등 구조
KR20200079863A (ko) 차량용 램프
CN220338283U (zh) 车辆用灯具
CN210601449U (zh) 一种基于激光与led混合的汽车前照灯
JP2015076319A (ja) 車両用前照灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918058

Country of ref document: EP

Kind code of ref document: A1