WO2019214198A1 - 一种带有非等深节流腔的气浮支承导向装置 - Google Patents

一种带有非等深节流腔的气浮支承导向装置 Download PDF

Info

Publication number
WO2019214198A1
WO2019214198A1 PCT/CN2018/114971 CN2018114971W WO2019214198A1 WO 2019214198 A1 WO2019214198 A1 WO 2019214198A1 CN 2018114971 W CN2018114971 W CN 2018114971W WO 2019214198 A1 WO2019214198 A1 WO 2019214198A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
airway
floating
longitudinal
main
Prior art date
Application number
PCT/CN2018/114971
Other languages
English (en)
French (fr)
Inventor
吴剑威
温众普
胡鹏程
崔继文
谭久彬
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to US16/973,598 priority Critical patent/US11326642B2/en
Publication of WO2019214198A1 publication Critical patent/WO2019214198A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • F16C32/0622Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via nozzles, restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments

Definitions

  • the invention belongs to the field of precision instruments and mechanical technologies, and in particular relates to an air bearing support guiding device with a non-isopiped throttling cavity.
  • gas static linear motion reference has become one of the key components in cutting lithography machines with its remarkable advantages such as high speed and high precision;
  • the high-speed, high-acceleration and high-motion precision requirements of the diaphragm in the engraved exposure system require high load-bearing capacity and high rotational stiffness for the gas static pressure guide in the gas static linear motion reference;
  • the diaphragm is mounted on the cantilever end of the linear motion reference, so it is necessary to increase the rotational stiffness of the gas static pressure guide to resist the rotational moment generated by the high acceleration movement of the diaphragm; and the lithography machine exposure system Complex and precise, the gas static pressure linear motion mechanism needs to be miniaturized, so the increase of the rotational rigidity per unit area becomes the main technical problem that restricts the application of the gas static pressure guide rail in the exposure system of the lithography machine.
  • the Twinscan XT 1950i lithography machine developed by ASML in the Netherlands can realize laser etching of 38nm chip.
  • the linear motion reference in the exposure system uses a mechanical guide structure and achieves an acceleration motion of 40 m/s 2 (YBPatrick Kwan, Erik L. Loopstra. Nullifying Acceleration Forces in Nano-Positioning Stages for Sub-0.1mm Lithography Tool for 300mm Wafers [J].proceeding of SPIC: Optical Microlithography, 2010, 4346: 544-557); but with the development of the chip manufacturing industry, the traditional sliding/rolling guide is difficult to meet the requirements of high acceleration motion and working temperature stability.
  • Patent CN201220540610 Multi-layer air-floating suspension device with two-dimensional frictionless long-distance motion proposes an air-floating-oriented hanging motion device, which mainly includes a single-layer hanging device and a deployment experimental frame, a single-layer hanging device
  • the utility model comprises a supporting component, an air floating follower component, a detecting component and a rail system, and the air floating follower component comprises a longitudinal air floating sleeve, two transverse air floating sleeves, two air floating seats, a telescopic air tube, a transverse air floating shaft and a hanging Tooling;
  • the device can realize large displacement long-distance follow-up motion and meet the cooperative movement between the multi-layer hanging devices; however, the invention device is a follow-up motion device, can not guarantee the motion precision, and needs to be installed in the unfolding experimental frame Used on the structure, the structure is not compact enough.
  • Patent CN201310436356 Air-floating suspension three-dimensional expansion experimental device proposes a three-dimensional motion device with high positioning accuracy and high response speed, which mainly includes a spatial distribution of more than a dozen air-floating motion mechanisms, and with the aid of pulleys, slings, counterweights, etc.
  • the mechanism is installed inside the support frame; however, although the device can satisfy a certain motion precision, due to a large number of motion links, in the high-frequency motion state, a fast and accurate displacement response cannot be ensured at the output end, and the structure is not compact enough.
  • Patent CN201410839808 proposes a small one-dimensional motion device, which mainly comprises two sets of air-floating guide rails installed in parallel, and is improved by means of fixing air-floating and sliding sleeves.
  • the motion stability of the scribing frame is achieved; the device can realize high-speed and high-frequency movement, but the air-floating guide is too large compared with the displacement output end of the device, such as the tool holder adapter plate and the characterization tool holder, so the unit
  • the rotational stiffness on the area is poor and the tool holder weight is required to maintain balance.
  • the patent CN201610130635 double-sided air-floating transport platform
  • the patent CN201710832517 a motion platform based on H-type air-floating guide rail
  • an air-floating device that realizes two-dimensional motion, which can achieve higher motion while achieving stability. And positioning accuracy, but the use of both devices is mounted, can not be used for hanging or cantilever motion, and the volume of the lithography exposure system is too large.
  • the common feature of the above invention is that small air-floating guide rails cannot be applied to high-speed, high-acceleration, high-frequency motion conditions.
  • high-speed and high-precision motion of the diaphragm needs to be supported by air flotation and
  • the guiding method is realized, which requires improving the rotational rigidity of the linear air-floating guide rail per unit area, thereby improving the reliability of the cantilever linear motion reference.
  • the object of the present invention is to solve the problems of the prior art mentioned above, and to provide an air bearing support guiding device with a non-equal-throttle throttling cavity, which is formed by regularly arranging a throttle plug on the air floating working surface.
  • the deep array throttling chamber can improve the rotational rigidity of the air-floating working surface per unit area under the premise of ensuring the bearing and stability of the air-floating guide rail, and finally achieve high speed, high acceleration and high by combining precision driving and feedback control.
  • the purpose of frequency movement is to solve the problems of the prior art mentioned above, and to provide an air bearing support guiding device with a non-equal-throttle throttling cavity, which is formed by regularly arranging a throttle plug on the air floating working surface.
  • the deep array throttling chamber can improve the rotational rigidity of the air-floating working surface per unit area under the premise of ensuring the bearing and stability of the air-floating guide rail, and finally achieve high speed, high acceleration and high by combining precision
  • An air bearing support guiding device with a non-isopiped throttling cavity comprising an air floating guide rail, a U-shaped air floating bottom plate, a gas sealing screw, an air floating cover plate, a load unit and a rail base; the U-shaped air floating
  • B, D and H There are three air floating working faces of B, D and H on the inner side of the bottom plate.
  • Several non-equal depth throttling plugs are installed on the three air floating working faces of B, D and H; respectively, on the outer sides of B, D and H respectively.
  • There are corresponding non-working faces A, C, G, and several sealing plugs are installed on the two non-working faces of A and C; there are several transverse cross-sections between faces A and B and between C and D.
  • the airway, the sealing plug and the throttle plug are installed at the outlets on both sides of the lateral airway; between the faces E and F, there are several longitudinal longitudinal air passages, and the end plugs are installed on both sides of the longitudinal airway Outlet; perpendicular to the surface H, there are several vertical abutments, the throttle plug is installed at the one-side outlet of the vertical abutment; the vertical main airways are processed perpendicular to the faces M and N, in the vertical direction A sealing ring is installed at the outlet of the main air passage; a transverse main air passage is processed perpendicular to the surface A, and an end plug is installed at the exit of the horizontal main air passage; a longitudinal main airway, an end plug is installed at the exit of the longitudinal main air passage; and an air inlet is processed perpendicular to the surface C;
  • the air inlet is connected and perpendicular to the longitudinal main air passage
  • the longitudinal main air passage is connected and perpendicular to the vertical main air passage
  • the vertical main air passage is connected and perpendicular to the horizontal main air passage
  • the airways are connected and perpendicular to the longitudinal airway
  • the longitudinal airways are connected and perpendicular to the lateral airways and the vertical airways.
  • the high pressure gas enters from the inlet passage, passes through the longitudinal main air passage, the vertical main air passage, the transverse main air passage, the longitudinal air passage, and finally passes through the throttle plug installed in the vertical main air passage and the horizontal main air passage. Enter the air floating working surface B, D, H;
  • the gas sealing screw connects the U-shaped air floating bottom plate and the air floating cover plate, the load unit is mounted on the air floating air floating cover plate, and the guide rail is installed on the U-shaped air floating bottom plate and the air floating cover plate to form a force-closed air floating device.
  • the air floating rail is fixed by the rail base, and the floating bottom plate, the air floating cover and the load unit move in the direction of the air floating rail.
  • a number of non-equal depth throttling plugs are installed on the three air-floating working faces of B, D and H, and a plurality of non-equal depth cavities are formed, and the working faces B, D, and H are regularly distributed.
  • the number of longitudinal airway, lateral airway and vertical airway varies regularly with the area of working face B, D, H.
  • the number of sealing plugs and throttling plugs varies with longitudinal airway and lateral branch.
  • the number of airways and vertical airways varies regularly.
  • the material hardness of the throttle plug is greater than that of the U-shaped air floating bottom plate and the air floating cover plate.
  • the throttle plug is made of alloy copper CuZn20Al2
  • the floating bottom plate and the air floating cover plate are made of aluminum alloy AlZnMgCu1.5.
  • the U-shaped air floating bottom plate in the device of the present invention comprises an air inlet, a vertical main air passage, a longitudinal main air passage, a transverse main air passage, a vertical air support channel, a longitudinal air support channel and a horizontal air support channel, each of which
  • the air passages are staggered, and the high-pressure gas can be transported to the three air-floating working faces of B, D and H through the throttle plug, forming an elastic gas film that does not interfere with each other, and supports the air-floating guide rail with high stability and high precision.
  • the U-shaped air floating bottom plate and the air floating cover plate in the device of the invention form a force-closed air bearing and guiding structure, and a non-equal depth throttle cavity is regularly distributed on the working surface, and the high pressure gas can be realized. Secondary throttling, and contribute to pressure homogenization and increase the stiffness of the air film.
  • the gas film and the corresponding non-equal depth throttling chamber generate gas. The resistance is matched, and the eccentric load bearing force is formed, and finally the purpose of enhancing the rotational rigidity is achieved.
  • the device of the invention has wide application, and is especially suitable for high-speed, high-frequency and high-precision sports occasions of a small cantilever mechanism in a lithography machine exposure system.
  • Figure 1 is a schematic view of an air bearing support guide with a non-isopiped throttling cavity.
  • Figure 2 is a schematic view of a U-shaped air floating bottom plate.
  • Figure 3 is a front view of the U-shaped air floating bottom plate.
  • Figure 4 is a cross-sectional view of the vertical airway of the U-shaped air floating floor.
  • Figure 5 is a cross-sectional view of the longitudinal air branch of the U-shaped air floating floor.
  • an air bearing support guiding device with a non-equal-throttle cavity includes an air floating guide rail 1, a U-shaped air floating bottom plate 2, a gas sealing screw 3, an air floating cover 4, a load unit 5, and a guide rail
  • the cover plate 4 forms a force-closed air bearing and guiding structure; during operation, the air floating rail 1 is fixed by the rail base 6, and the floating bottom plate 2, the air floating cover 4 and the load unit 5 are moved along the air floating guide 1 .
  • the U-shaped air-floating bottom plate 2 is machined with three air-floating working faces B, D, and H, and several non-equal-throttle throttling devices are installed on the three air floating working faces of B, D, and H.
  • Plug 10 corresponding non-working faces A, C, G are respectively processed on the outer sides of B, D, H, and several sealing plugs 8 are installed on two non-working faces A and C; between faces A and B A plurality of transverse lateral air passages 13 are formed between C and D, and the sealing plug 8 and the throttle plug 10 are installed at the outlets on both sides of the lateral air passage 13; Longitudinal airway 12, end plugs 7 are mounted on both sides of the longitudinal abutment 12; a plurality of vertical abutments 15 are machined perpendicular to the face H, and the throttling plug 10 is mounted on the vertical abutment 15 a one-side outlet; a vertical main air passage 9 is formed perpendicularly to the faces M and N, a sealing ring 11 is installed at the exit of the vertical main air passage 9, and a transverse main air passage 17 is machined perpendicular to the surface A, An end plug 7 is installed at the exit of the transverse main air passage 7; a longitudinal main air passage 16
  • the inlet passage 14 communicates with and is perpendicular to the longitudinal main air passage 16, and the longitudinal main air passage 16 communicates with and is perpendicular to the vertical main air passage 9, and the vertical main air passage 9 communicates with and is perpendicular to the horizontal main air passage 17, and the main air is vertical.
  • the track 9 communicates with the transverse main air passage 17 and is perpendicular to the longitudinal airway 12, and the longitudinal airway 12 communicates and is perpendicular to the transverse airway 13 and the vertical airway 15; both high pressure gas enters from the air inlet 14, It passes through the longitudinal main air passage 16, the vertical main air passage 9, the horizontal main air passage 17, the longitudinal air passage 12, and finally enters the air through the throttle plug 10 installed in the vertical main air passage 9 and the horizontal main air passage 17. Floating working faces B, D, H;
  • a plurality of non-equal depth throttle plugs 10 are installed on the three air floating working faces of B, D, and H, and a plurality of non-equal depth cavities are formed, and are regularly distributed on the working faces B, D, and H.
  • the number of the longitudinal airway 12, the lateral airway 13 and the vertical airway 15 varies regularly with the area of the working surfaces B, D, H, and the number of the gas sealing plug 8 and the throttle plug 10 varies with the longitudinal branch.
  • the number of air passages 12, lateral air passages 13 and vertical air passages 15 varies regularly.
  • the material hardness of the throttle plug 10 is greater than the material hardness of the U-shaped air floating bottom plate 2 and the air floating cover plate 4.
  • the throttle plug 10 is made of alloy copper CuZn20Al2
  • the floating bottom plate 2 and the air floating cover plate 4 are made of an anode alloy aluminum AlZnMgCu1.5 material. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

一种带有非等深节流腔的气浮支承导向装置,通过在气浮工作面上有规律的布置节流塞(10),形成非等深的阵列节流腔,在保证气浮导轨(1)承载和稳定性的前提下,可提高气浮工作面上单位面积的转动刚度,建立一种体积小、悬臂长、转矩载荷大的浮支承导向装置。

Description

一种带有非等深节流腔的气浮支承导向装置 技术领域
本发明属于精密仪器及机械技术领域,特别涉及一种带有非等深节流腔的气浮支承导向装置。
背景技术
近年来,随着先进芯片制造业逐渐朝向功能集成化和体积微小化发展,气体静压直线运动基准以其高速度和高精度等显著优点而成为尖端光刻机中的关键部件之一;光刻机曝光系统中光阑片的高速、高加速以及高运动精度需求,对气体静压直线运动基准中的气体静压导轨提出了高承载能力、高转动刚度的要求;为避免直线运动机构遮挡光路或触碰光学器件,光阑片安装在直线运动基准的悬臂端,因此需要提高气体静压导轨的转动刚度,来抵抗光阑片高加速运动时产生的转动力矩;而光刻机曝光系统复杂而精密,其气体静压直线运动机构需要小型化,因此提高单位面积上的转动刚度,成为制约气体静压导轨在光刻机曝光系统中应用的主要技术难题。
2008年,荷兰ASML公司所研发的Twinscan XT 1950i型光刻机,可以实现38nm芯片激光刻蚀。其曝光系统中的直线运动基准采用机械导轨结构,并达到了40m/s 2的加速度运动(Y.B.Patrick Kwan,Erik L.Loopstra.Nullifying Acceleration Forces in Nano-Positioning Stages for Sub-0.1mm Lithography Tool for 300mm Wafers[J].proceeding of SPIC:Optical Microlithography,2010,4346:544-557);但随着芯片制造业的发展,传统的滑动/滚动导轨难以满足高加速度运动以及工作温度稳定性的要求。
专利CN201220540610“二维无摩擦长距离运动的多层气浮吊挂装置”提出了一种气浮导向的吊挂式运动装置,主要包括单层吊挂装置和展开实验架,单层吊挂装置包括支撑部件、气浮随动部件、检测部件和导轨系统,气浮随动部件包括纵向气浮套、两个横向气浮套、两个气浮座、伸缩气管、横向气浮轴和吊挂工装;该装置可以实现大位移长距离随动运动,并满足多层吊挂装置间的配合运动;但是该发明装置是一种随动运动装置,不能保证运动精度,且需要安装在展开实验架上使用,结构不够紧凑。
专利CN201310436356“气浮悬挂式三维展开实验装置”提出一种定位精度高响应速度快的三维运动装置,主要包括十几个气浮运动机构空间上对应分布,并借助滑轮、吊绳、配重等机构安装在支承框架内部;但是该装置虽然可以满足一定的运动精度,但是由于运动环节较多,在高频运动状态下,在输出端不能够确保快速而准确的位移响应,且结构不够紧凑。
专利CN201410839808“一种双气浮导轨式光栅刻划刀架驱动装置”提出一种小型的一维运动装置,主要包括平行安装的两组气浮导轨,并通过固连气浮滑套的方式来提高刻划刀架的运动稳定性;该装置可以实现高速、高频运动,但是相比与该装置的位移输出端,如刀架转接板及刻画刀架,其气浮导轨过于庞大,因此单位面积上的转动刚度较差,且需要刀架配重块来保持平衡。
专利CN201610130635“双面气浮运输台”和专利CN201710832517“一种基于H型气浮导轨的运动平台”分别提出了实现二维运动的气浮装置,可以在兼顾稳定性的同时实现较高的运动和定位精度,但是两种装置的使用方法均为搭载式,无法用于悬挂式或悬臂式的运动场合,且对于光刻机曝光系统来说,体积过于庞大。
上述发明的共同之处是均不能将小型的气浮导轨应用在高速、高加速、高频运动状况,然而在光刻机曝光系统中,光阑片的高速高精度运动需要通过气浮支承及导向的方式来实现,这就要求提高直线气浮导轨在单位面积上承载与的转动刚度,进而提高悬臂式直线运动基准的可靠准确性。
发明内容
本发明的目的就是针对上述已有技术存在的问题,提出一种带有非等深节流腔的气浮支承导向装置,通过在气浮工作面上有规律的布置节流塞,形成非等深的阵列节流腔,在保证气浮导轨承载和稳定性的前提下,可提高单位面积的气浮工作面上的转动刚度,最终通过结合精密驱动与反馈控制,达到高速、高加速、高频运动的目的。
上述目的通过以下的技术方案实现:
一种带有非等深节流腔的气浮支承导向装置,包括气浮导轨、U型气浮底板、气封螺钉、气浮盖板、负载单元以及导轨基座;所述U型气浮底板内侧加工有B、D、H三个气浮工作面,在B、D、H三个气浮工作面上安装有若干个非等 深的节流塞;在B、D、H的外侧分别加工有对应的非工作面A、C、G,在A、C两个非工作面上安装有若干个封气塞;面A与B之间、C与D之间加工有若干条贯通的横向支气道,封气塞与节流塞安装在横向支气道的两侧出口;面E、F之间加工有若干条贯通的纵向支气道,端塞安装在纵向支气道的两侧出口;垂直于面H加工有若干条垂向支气道,节流塞安装在垂向支气道的单侧出口;垂直于面M和N各加工有一条垂向主气道,在垂向主气道出口处安装有密封圈;垂直于面A加工有一条横向主气道,在横向主气道出口处安装有端塞;垂直于面E加工有一条纵向主气道,在纵向主气道出口处安装有端塞;垂直于面C加工有一条进气道;
所述进气道连通并垂直于纵向主气道,纵向主气道连通并垂直于垂向主气道,垂向主气道连通并垂直于横向主气道,垂向主气道和横向主气道连通并垂直于纵向支气道,纵向支气道连通并垂直于横向支气道和垂向支气道。既高压气体从进气道进入,依次经过纵向主气道、垂向主气道、横向主气道、纵向支气道,最后通过安装在垂向主气道和横向主气道的节流塞进入气浮工作面B、D、H;
所述气封螺钉将U型气浮底板与气浮盖板连接,负载单元安装在气浮气浮盖板上,导轨安装在U型气浮底板与气浮盖板所形成力封闭式气浮支承及导向结构中;工作时,气浮导轨通过导轨基座固定,浮底板、气浮盖板和负载单元沿气浮导轨方向运动。
在B、D、H三个气浮工作面上安装有若干个非等深的节流塞,形成了若干个非等深的腔,并在工作面B、D、H有规律的分布。
纵向支气道、横向支气道和垂向支气道的条数随工作面B、D、H的面积而规律变化,封气塞与节流塞的个数随纵向支气道、横向支气道和垂向支气道的条数而规律变化。
节流塞的材料硬度大于U型气浮底板和气浮盖板的材料硬度,如节流塞采用合金铜CuZn20Al2材质,浮底板和气浮盖板采用便面阳极合金铝AlZnMgCu1.5材质。
本发明具有以下特点及有益效果:
1、本发明装置中的U型气浮底板包含进气道、垂向主气道、纵向主气道、横向主气道、垂向支气道、纵向支气道与横向支气道,各气道交错分布,可将 高压气体通过节流塞输送至B、D、H三个气浮工作面,形成了互不干扰的弹性气膜,对气浮导轨进行高稳定性的支承和高精度的导向。
2、本发明装置中的U型气浮底板与气浮盖板配合所形成力封闭式气浮支承及导向结构,其工作面上规律分布着非等深节流腔,可以实现高压气体的二次节流,并有助于压力匀化并提高气膜刚度,当U型气浮底板与气浮盖板相对于气浮导轨产生转动时,气膜与对应的非等深节流腔产生气阻匹配,并形成偏载支承力,最终实现增强转动刚度的目的。
本发明装置用途广泛,尤其适用于光刻机曝光系统中小型悬臂机构的高速、高频及高精度运动场合。
附图说明
图1为一种带有非等深节流腔的气浮支承导向装置示意图。
图2为U型气浮底板示意图。
图3为U型气浮底板主视图。
图4为U型气浮底板垂向支气道剖视图。
图5为U型气浮底板纵向支气道剖视图。
图中:1、气浮导轨;2、U型气浮底板;3、气封螺钉;4、气浮盖板;5、负载单元;6、导轨基座;7、端塞;8、封气塞;9、垂向主气道;10、节流塞;11、密封圈;12、纵向支气道;13、横向支气道;14、进气道;15、垂向支气道;16、纵向主气道;17、横向主气道。
具体实施方式
下面结合附图对本发明的实施例作详细说明。
参考图1,一种带有非等深节流腔的气浮支承导向装置,包括气浮导轨1、U型气浮底板2、气封螺钉3、气浮盖板4、负载单元5以及导轨基座6;气封螺钉3将U型气浮底板2与气浮盖板4连接,负载单元5安装在气浮气浮盖板4上,导轨1安装在U型气浮底板2与气浮盖板4所形成力封闭式气浮支承及导向结构中;工作时,气浮导轨1通过导轨基座6固定,浮底板2、气浮盖板4和负载单元5沿气浮导轨1方向运动。
参考图2-5,U型气浮底板2内侧加工有B、D、H三个气浮工作面,在B、D、H三个气浮工作面上安装有若干个非等深的节流塞10;在B、D、H的外侧 分别加工有对应的非工作面A、C、G,在A、C两个非工作面上安装有若干个封气塞8;面A与B之间、C与D之间加工有若干条贯通的横向支气道13,封气塞8与节流塞10安装在横向支气道13的两侧出口;面E、F之间加工有若干条贯通的纵向支气道12,端塞7安装在纵向支气道12的两侧出口;垂直于面H加工有若干条垂向支气道15,节流塞10安装在垂向支气道15的单侧出口;垂直于面M和N各加工有一条垂向主气道9,在垂向主气道9出口处安装有密封圈11;垂直于面A加工有一条横向主气道17,在横向主气道7出口处安装有端塞7;垂直于面E加工有一条纵向主气道16,在纵向主气道16出口处安装有端塞7;垂直于面C加工有一条进气道14;
进气道14连通并垂直于纵向主气道16,纵向主气道16连通并垂直于垂向主气道9,垂向主气道9连通并垂直于横向主气道17,垂向主气道9和横向主气道17连通并垂直于纵向支气道12,纵向支气道12连通并垂直于横向支气道13和垂向支气道15;既高压气体从进气道14进入,依次经过纵向主气道16、垂向主气道9、横向主气道17、纵向支气道12,最后通过安装在垂向主气道9和横向主气道17的节流塞10进入气浮工作面B、D、H;
在B、D、H三个气浮工作面上安装有若干个非等深的节流塞10,形成了若干个非等深的腔,并在工作面B、D、H有规律的分布。
纵向支气道12、横向支气道13和垂向支气道15的条数随工作面B、D、H的面积而规律变化,封气塞8与节流塞10的个数随纵向支气道12、横向支气道13和垂向支气道15的条数而规律变化。
节流塞10的材料硬度大于U型气浮底板2和气浮盖板4的材料硬度,如节流塞10采用合金铜CuZn20Al2材质,浮底板2和气浮盖板4采用阳极合金铝AlZnMgCu1.5材质。

Claims (4)

  1. 一种带有非等深节流腔的气浮支承导向装置,包括气浮导轨(1)、U型气浮底板(2)、气封螺钉(3)、气浮盖板(4)、负载单元(5)以及导轨基座(6);其特征在于:所述U型气浮底板(2)内侧加工有B、D、H三个气浮工作面,在B、D、H三个气浮工作面上安装有若干个非等深的节流塞(10);在B、D、H的外侧分别加工有对应的非工作面A、C、G,在A、C两个非工作面上安装有若干个封气塞(8);面A与B之间、C与D之间加工有若干条贯通的横向支气道(13),封气塞(8)与节流塞(10)安装在横向支气道(13)的两侧出口;面E、F之间加工有若干条贯通的纵向支气道(12),端塞(7)安装在纵向支气道(12)的两侧出口;垂直于面H加工有若干条垂向支气道(15),节流塞(10)安装在垂向支气道(15)的单侧出口;垂直于面M和N各加工有一条垂向主气道(9),在垂向主气道(9)出口处安装有密封圈(11);垂直于面A加工有一条横向主气道(17),在横向主气道(17)出口处安装有端塞(7);垂直于面E加工有一条纵向主气道(16),在纵向主气道(16)出口处安装有端塞(7);垂直于面C加工有一条进气道(14);
    所述进气道(14)连通并垂直于纵向主气道(16),纵向主气道(16)连通并垂直于垂向主气道(9),垂向主气道(9)连通并垂直于横向主气道(17),垂向主气道(9)和横向主气道(17)连通并垂直于纵向支气道(12),纵向支气道(12)连通并垂直于横向支气道(13)和垂向支气道(15);既高压气体从进气道(14)进入,依次经过纵向主气道(16)、垂向主气道(9)、横向主气道(17)、纵向支气道(12),最后通过安装在垂向主气道(9)和横向主气道(17)的节流塞(10)进入气浮工作面B、D、H;
    所述气封螺钉(3)将U型气浮底板(2)与气浮盖板(4)连接,负载单元(5)安装在气浮气浮盖板(4)上,导轨(1)安装在U型气浮底板(2)与气浮盖板(4)所形成力封闭式气浮支承及导向结构中;工作时,气浮导轨(1)通过导轨基座(6)固定,U型气浮底板(2)、气浮盖板(4)和负载单元(5)沿气浮导轨(1)方向运动。
  2. 根据权利要求1所述的一种带有非等深节流腔的气浮支承导向装置,其特征在于:在B、D、H三个气浮工作面上安装有若干个非等深的节流塞(10),形成了若干个非等深的腔,并在工作面B、D、H有规律的分布。
  3. 根据权利要求1所述的一种带有非等深节流腔的气浮支承导向装置,其特征在于:纵向支气道(12)、横向支气道(13)和垂向支气道(15)的条数随工作面B、D、H的面积而规律变化,封气塞(8)与节流塞(10)的个数随纵向支气道(12)、横向支气道(13)和垂向支气道(15)的条数而规律变化。
  4. 根据权利要求1所述的一种带有非等深节流腔的气浮支承导向装置,其特征在于:节流塞(10)的材料硬度大于U型气浮底板(2)和气浮盖板(4)的材料硬度,如节流塞(10)采用合金铜CuZn20Al2材质,浮底板(2)和气浮盖板(4)采用阳极合金铝AlZnMgCu1.5材质。
PCT/CN2018/114971 2018-05-09 2018-11-12 一种带有非等深节流腔的气浮支承导向装置 WO2019214198A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/973,598 US11326642B2 (en) 2018-05-09 2018-11-12 Air suspension support and motion guiding device having unequal-depth throttling chambers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810436968.7A CN108547870B (zh) 2018-05-09 2018-05-09 一种带有非等深节流腔的气浮支承导向装置
CN201810436968.7 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019214198A1 true WO2019214198A1 (zh) 2019-11-14

Family

ID=63494464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114971 WO2019214198A1 (zh) 2018-05-09 2018-11-12 一种带有非等深节流腔的气浮支承导向装置

Country Status (3)

Country Link
US (1) US11326642B2 (zh)
CN (1) CN108547870B (zh)
WO (1) WO2019214198A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108547870B (zh) * 2018-05-09 2019-03-29 哈尔滨工业大学 一种带有非等深节流腔的气浮支承导向装置
CN114772246B (zh) * 2022-04-29 2022-12-20 深圳格芯集成电路装备有限公司 料盘输送装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103011A (ja) * 1984-10-24 1986-05-21 Hitachi Ltd 静圧気体軸受
CN101403627A (zh) * 2008-11-14 2009-04-08 哈尔滨工业大学 一种立式直线基准方法与装置
CN101737426A (zh) * 2009-12-18 2010-06-16 北京工业大学 一种真空负压的气体静压超精密导轨
CN105109712A (zh) * 2015-08-21 2015-12-02 哈尔滨工业大学 基于六自由度气浮台z向控制的气浮轴
CN107429742A (zh) * 2015-03-31 2017-12-01 住友重机械工业株式会社 静压气体轴承
CN108547870A (zh) * 2018-05-09 2018-09-18 哈尔滨工业大学 一种带有非等深节流腔的气浮支承导向装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170527A (ja) * 1983-03-17 1984-09-26 Matsushita Electric Ind Co Ltd 静圧流体軸受
JP3082991B2 (ja) * 1992-04-13 2000-09-04 株式会社東京精密 直動式エアベアリングのロック機構
CN1200321C (zh) * 2003-08-29 2005-05-04 清华大学 步进投影光刻机双台轮换曝光超精密定位硅片台系统
JP5082929B2 (ja) * 2008-02-29 2012-11-28 株式会社ニコン 流体軸受、ステージ装置、露光装置、及びデバイス製造方法
JP4992986B2 (ja) * 2010-01-22 2012-08-08 新東工業株式会社 静圧軸受装置および静圧軸受装置を備えたステージ
BR102013003056A2 (pt) * 2013-02-07 2014-09-16 Whirlpool Sa Restritor de fluxo e compressor de gás
DE102013102922B4 (de) * 2013-03-21 2020-06-25 AeroLas GmbH Aerostatische Lager- Lasertechnik Linearmotor und Verfahren zur Herstellung eines gasgelagerten Läufers eines Linearmotors
CN103899644B (zh) * 2014-03-12 2016-11-23 哈尔滨工程大学 阶梯式复合节流气浮导轨
CN107855545A (zh) * 2017-12-27 2018-03-30 东莞市显隆电机有限公司 一种气浮高速电主轴

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103011A (ja) * 1984-10-24 1986-05-21 Hitachi Ltd 静圧気体軸受
CN101403627A (zh) * 2008-11-14 2009-04-08 哈尔滨工业大学 一种立式直线基准方法与装置
CN101737426A (zh) * 2009-12-18 2010-06-16 北京工业大学 一种真空负压的气体静压超精密导轨
CN107429742A (zh) * 2015-03-31 2017-12-01 住友重机械工业株式会社 静压气体轴承
CN105109712A (zh) * 2015-08-21 2015-12-02 哈尔滨工业大学 基于六自由度气浮台z向控制的气浮轴
CN108547870A (zh) * 2018-05-09 2018-09-18 哈尔滨工业大学 一种带有非等深节流腔的气浮支承导向装置

Also Published As

Publication number Publication date
US11326642B2 (en) 2022-05-10
US20210246946A1 (en) 2021-08-12
CN108547870A (zh) 2018-09-18
CN108547870B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
CN103592824B (zh) 一种二自由度高精度大行程气浮工件台
WO2019214198A1 (zh) 一种带有非等深节流腔的气浮支承导向装置
CN108890324B (zh) 基于方箱的超精密x-y气浮平面定位平台
CN104148952A (zh) 一种纳米级精度的直驱闭式液体静压竖直导轨系统
CN108533612B (zh) 基于玻璃导轨的高精度气浮轴系及其玻璃导轨加工方法
CN101477316B (zh) 重力补偿器
CN104303282A (zh) 工作台装置及输送装置
JPWO2007108399A1 (ja) 静圧スライダ、これを備えた搬送装置および処理装置
CN103345126B (zh) 一种三自由度纳米定位微动硅片台
WO2019214197A1 (zh) 基于双层气浮的悬臂式直线运动基准装置
Zha et al. Effect of working position on vertical motion straightness of open hydrostatic guideways in grinding machine
CN217452969U (zh) 一种气浮运动平台
JP4134193B2 (ja) 静圧気体軸受
TWI642858B (zh) 氣浮軸承模組
CN114406454A (zh) 一种气浮切割平台
JP4106618B2 (ja) 位置決め装置
CN110757176B (zh) 直驱式高精度高刚度闭式静压导轨
US20220074737A1 (en) Positioning system for positioning an object
JP2005273882A (ja) 真空対応型静圧流体軸受
CN117260651A (zh) 一种真空环境下多自由度气浮精密运动台及其工作方法
CN109163013B (zh) 一种直线轴与回转轴复合的高精度两维静压运动系统
JP4496678B2 (ja) 位置決め装置
JP4273743B2 (ja) 位置決め装置
CN109578436B (zh) 一种高精度无摩擦竖直运动导轨
CN217253651U (zh) 一种应用于激光刻印机的气浮导轨移动模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918205

Country of ref document: EP

Kind code of ref document: A1