WO2019214127A1 - 一种经颅三维脑血管复合成像方法及系统 - Google Patents

一种经颅三维脑血管复合成像方法及系统 Download PDF

Info

Publication number
WO2019214127A1
WO2019214127A1 PCT/CN2018/106031 CN2018106031W WO2019214127A1 WO 2019214127 A1 WO2019214127 A1 WO 2019214127A1 CN 2018106031 W CN2018106031 W CN 2018106031W WO 2019214127 A1 WO2019214127 A1 WO 2019214127A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
echo
array probe
dimensional
ring array
Prior art date
Application number
PCT/CN2018/106031
Other languages
English (en)
French (fr)
Inventor
杨弋
邢英琦
王筱毅
周果
欧阳俊华
梁志成
Original Assignee
深圳市德力凯医疗设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市德力凯医疗设备股份有限公司 filed Critical 深圳市德力凯医疗设备股份有限公司
Publication of WO2019214127A1 publication Critical patent/WO2019214127A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data

Definitions

  • the invention relates to the field of IT and medical technology, in particular to a transcranial three-dimensional cerebrovascular composite imaging method and system.
  • Stroke is the first factor that causes Chinese death.
  • the use of safe and effective equipment for the diagnosis of patients with cerebrovascular disease and screening for people at high risk of stroke has an urgent need.
  • the existing color Doppler ultrasound diagnostic equipment (TCCD) has clear diagnostic images of intracranial blood vessels and high resolution, but the detection rate is low due to the huge attenuation of the ultrasound on the skull, and the operation is difficult, and the dependence on personnel or equipment. Strong.
  • Ultrasound transcranial Doppler (TCD) detection rate is high, but there is no two-dimensional image, the operation is blind, and the personnel dependence is strong.
  • DSA is the gold standard for cerebrovascular disease detection.
  • CTA is more commonly used, but it has radiation, invasive, contrast agent, not suitable for multiple detection, and no blood flow dynamic data. It has limited clinical application and high cost. It is not suitable for Continuous monitoring, efficacy evaluation, and regular follow-up of stroke patients.
  • the present application provides a transcranial three-dimensional cerebrovascular composite imaging method and system, which has the advantages of TCCD and TCD, has high imaging accuracy and transmittance, and reduces personnel dependency.
  • a transcranial three-dimensional cerebrovascular composite imaging method comprising:
  • the ring-shaped array probe controlled by the mechanical device respectively performs ultrasonic focusing scan on the intracranial from at least two detection positions, and receives echo information of each detection position;
  • Each three-dimensional cerebrovascular spatial position map is combined according to its corresponding detection order to obtain a three-dimensional cerebrovascular image.
  • the present invention provides a transcranial three-dimensional cerebrovascular composite imaging method and system, which firstly uses an automatically scanable ring array probe to transmit different delays to different scanning positions in the skull.
  • the ultrasonic signal is such that the ultrasonic signals having different delays are focused on the beam axial at a predetermined depth to detect the intracranial cerebral blood vessels by the focused ultrasonic signals, and the received echo signals of the ultrasonic signals are digitally Delayed focusing makes the echo signal enhanced to improve the spatial morphology and positional accuracy and signal intensity of the acquired cerebrovascular, thereby improving the sharpness and detection rate of the spatial position map image of the three-dimensional cerebrovascular.
  • the three-dimensional cerebrovascular spatial position map is acquired from different detection positions, and the intracranial cerebral blood vessels are combined from multiple angles according to the three-dimensional cerebrovascular spatial position map, thereby further improving the definition of the three-dimensional cerebrovascular image.
  • the ring array probe has the characteristics of small volume and low frequency, so that it can be easily worn on the head, and can realize three-dimensional scanning and long-time monitoring of intracranial cerebral blood vessels.
  • FIG. 1 is a flow chart of a first embodiment of a transcranial three-dimensional cerebrovascular composite imaging method provided by the present invention.
  • FIG. 2 is a schematic diagram showing focusing of an ultrasonic signal in the first embodiment of the transcranial three-dimensional cerebrovascular composite imaging method provided by the present invention.
  • FIG. 3 is a schematic diagram showing focusing of an echo signal of an ultrasonic signal in the first embodiment of the transcranial three-dimensional cerebrovascular composite imaging method according to the present invention.
  • FIG. 4 is a schematic diagram of the movement process of the probe in the first embodiment of the transcranial three-dimensional cerebrovascular composite imaging method provided by the present invention.
  • FIG. 5 is a structural schematic diagram of a transcranial three-dimensional cerebrovascular imaging system provided by the present invention.
  • FIG. 6 is a structural schematic diagram of a terminal device in a transcranial three-dimensional cerebrovascular imaging system according to the present invention.
  • the present invention provides a transcranial three-dimensional cerebrovascular composite imaging method and system.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the present application provides a transcranial three-dimensional cerebrovascular composite imaging method, as shown in FIG. 1, the method includes:
  • the ring array probe controlled by the mechanical device respectively performs ultrasonic focus scan on the intracranial from at least two detection positions, and receives echo information of each detection position.
  • the mechanically controlled ring array probe may include a mechanical device and a ring array transducer for driving a mechanical structure of the ring array probe to oscillate, and the ring array transducer is used for the skull
  • the focused ultrasound signal is internally transmitted and the probe that receives the echo signal of the ultrasonic signal is focused.
  • the ring array transducer comprises a plurality of array elements, the array elements are arranged in concentric circles, and the area of each array element wafer is equal.
  • the ring array transducer includes five array element wafers, which are respectively referred to as a first array element wafer, a second array element wafer, a third array element wafer, a fourth array element wafer, and a fifth array element wafer.
  • the first array element wafer, the second array element wafer, the third array element wafer, the fourth array element wafer and the fifth array element wafer are sequentially arranged in a concentric manner, wherein the first array element wafer is circular, and The center of the first array of wafers is the center of concentric circles, the second array of wafers is located on the periphery of the first array of wafers and is concentric with the first array of wafers, the third array of wafers is located on the periphery of the second array of wafers and with the second The array element wafer is concentric, the fourth array element wafer is located on the periphery of the third array element wafer and is concentric with the third array element wafer, and the fifth array element wafer is located on the periphery of the fourth array element wafer and is concentric with the fourth array element wafer, and is first The array element wafer, the second array element wafer, the third array element wafer, the fourth array element wafer, and the fifth array element wafer have the
  • the beam diameter formed in the range of 20 mm to 100 mm in depth may be 2 mm to 3.5 mm, wherein the diameter is 15 mm
  • the single-chip has a diameter (transverse resolution) of 6mm, 4.5mm (-6dB bandwidth) in the beam direction at a frequency of 1.6MHz to 2.0MHz in the range of 20mm to 100mm.
  • the resolution of the end or the distal end is 10 mm or more.
  • the ring array probe of the present application has a frequency of 1.6 MHz to 2.0 MHz, and the beam diameter varies from 2 mm to 3.5 mm in the range of the depth range of 20 mm to 100 mm, which is about TCD. 1/3, so at the same low frequency / the same depth, the diameter of the ultrasonic wave emitted by the ring array probe is much smaller than the diameter of the ultrasonic wave emitted by the TCD probe, thereby improving the accuracy of the three-dimensional cerebrovascular.
  • the mechanical device can be two stepping motors and two connecting rods, one end of the connecting rod is connected with the ring array transducer, and the other end is connected with the stepping motor and stepped
  • the motor is eccentrically disposed, and the stepping motor drives the connecting rod to move, and the connecting rod drives the transducer to swing within a preset angle range, thereby realizing scanning of a cranial blood vessel in the skull.
  • the ring array probe may include a probe box, the ring array transducer and the mechanical device are all assembled in the probe box, the probe box is fixed on the head frame, and through the The headgear carries the probe cassette to the subject's head such that the ring array transducer is in contact with the head.
  • the mechanical device may also be a mechanical arm, the ring array transducer is connected to the mechanical arm, and the ring array is controlled by the mechanical arm.
  • the device is in contact with the head and drives the ring array transducer to swing within a preset angle range or to move within a preset range.
  • a stepping motor is taken as an example of a mechanical control device.
  • the detecting position refers to a position where the ring array probe performs ultrasonic scanning on the intracranial, and the ring array probe can swing according to a preset trajectory at each detecting position to obtain a preset number of backs at the detecting position. Wave information.
  • each detection position includes a plurality of scanning positions
  • the ring array probe transmits an ultrasonic signal to the skull at the first scanning position, and acquires echo data of the first scanning position according to the echo signal of the ultrasonic signal, after which Controlling the swing to the second scanning position by the mechanical device, transmitting the ultrasonic signal at the second scanning position to obtain the echo data of the second scanning position, and so on until all the scanning positions on the preset swinging track are completed, so that the first Detect all echo information corresponding to the location.
  • the control loop array probe moves to the second detection position, and repeats the process of swinging according to the preset trajectory and scanning to obtain the echo information of the second detection position, and so on. Until all probe positions are completed.
  • the ring array probe controlled by the mechanical device respectively performs ultrasonic focusing scan on the intracranial from at least two detection positions, and receiving the echo signals of each detection position specifically includes:
  • the loop array probe is placed in the first detecting position, and the loop detector is controlled by the mechanical device to swing according to the preset swinging trajectory, and a preset number of echo information corresponding to the first detecting position is acquired.
  • the preset swing trajectory is preset
  • the ring array probe is oscillated according to the preset swing trajectory by mechanical device control.
  • the ring array probe stays in accordance with a preset condition during the swinging process to determine each scanning position, and scans the intracranial portion at the scanning position.
  • the preset condition may be a preset angle per swing, for example, 0.6° or the like. That is to say, the ring array probe stops according to the preset swinging trajectory, and transmits an ultrasonic signal to the intracranial brain every time the swinging preset angle is received, and receives the echo signal of the ultrasonic signal.
  • the loop array probe is placed in the first detecting position, and the loop detector is controlled by the mechanical device to swing according to the preset swinging trajectory, and acquiring the preset number of echo information corresponding to the first detecting position comprises:
  • S111 The ring array probe is placed at a first scanning position of the first detecting position, and each array element of the control loop array probe transmits a first ultrasonic signal with a different delay to a preset depth range, so that the first ultrasonic signal is Focusing the beam axially on the predetermined depth range;
  • S112 Receive a first echo signal of the first ultrasonic signal, and extract a first preset number of first echo information in a first echo signal in a preset depth range;
  • the ring array probe is controlled by a mechanical device to swing a preset angle according to a preset trajectory, and send a second ultrasonic signal with a different delay to obtain a first preset number of second echo information;
  • S114 sequentially control the ring array probe to swing according to the preset trajectory until the end of the motion, to obtain a corresponding preset number of echo information of the first detection position.
  • the first scanning position is a position where the ring array probe is in contact with the head when the ring array probe is worn by the head frame in the first detecting position
  • the first scanning position is The position at which the ring array probe starts working at the first detection position.
  • the first scanning position of the first detecting position may be set as the reference position of the first detecting position, that is, the other scanning positions included in the first detecting position are referenced to the reference position.
  • the coordinate system is established with the first scanning position as an origin, and the positional relationship between the position of each scanning point and the first scanning position is determined according to the motion trajectory of the ring array probe and the preset condition, and the positional relationship is determined according to the positional relationship.
  • the coordinates in the coordinate system whose origin is the first scanning position and the positions of the corresponding scanning points are recorded by the coordinates, so that the positional information of each scanning position can constitute a two-dimensional array.
  • the distances of the array elements reaching the preset depth are different, and the corresponding time to reach the preset distance is also different, so that the array can be different according to each array.
  • the distance between the meta-wafer and the preset depth and the propagation speed of the ultrasonic wave in the intracranial shape determine the time when the ultrasonic signal formed by each array element wafer reaches the preset depth, and determine the delay time corresponding to each array element wafer according to each time,
  • the ultrasonic signals formed by the array elements of the ring array probe are focused at a predetermined depth, thereby causing the ultrasonic waves to be focused.
  • a segment transmission method may be employed.
  • the preset depth range is divided into a plurality of sub-depth ranges, and ultrasonic signals are respectively sent to each sub-depth range to obtain echo signals of each sub-depth range, and finally a preset depth range is obtained according to echo signals of each sub-depth range.
  • the echo signal is transmitted.
  • the ring array probe is placed at a first scanning position of the first detecting position, and each array element of the control loop array probe transmits a first ultrasonic signal with a different delay to a preset depth range, so that the first
  • the focusing of the ultrasonic signal on the beam axis in the predetermined depth range specifically includes:
  • S1111 Obtain a preset depth range corresponding to the first scanning position of the first detecting position, and divide the preset depth range into a plurality of sub-depth ranges;
  • S1112 The array elements of the control loop array probe sequentially transmit the first ultrasonic signals having different delays to the respective sub-depth ranges, so that the first ultrasonic signals are respectively focused on the sub-depth ranges in the beam axial direction.
  • the preset depth range may be divided into equal parts and the like to obtain a plurality of sub-depth ranges. And after dividing the sub-depth ranges, the sub-depth ranges may be sorted in ascending order according to their corresponding depths to obtain a sub-depth range sequence.
  • each array element of the control loop detector first transmits a first sub-ultrasonic signal with a different delay to the first sub-depth range, and receives the first sub-echo signal of the first sub-ultrasonic signal;
  • Each of the array elements respectively transmits a second sub-ultrasonic signal having a different delay to the second sub-depth range, receives the second sub-echo signal of the second sub-ultrasonic signal, and so on until the ultrasonic signal is transmitted to the sub-depth range
  • the first echo data of the first preset data amount corresponding to the first scanning position is extracted according to the echo signal corresponding to each sub-depth range.
  • a plurality of sub-depth ranges are obtained by dividing the preset depth range into equal parts, and the number of the plurality of sub-depth ranges is obtained, and then determining the first pre-determination
  • the quotient of the quantity and the quantity is set, and the quotient echo data is extracted in an echo signal corresponding to each sub-depth range.
  • the quotient + remainder echo data can be selected in any sub-depth range.
  • the number of the plurality of sub-depth ranges is preferably a first preset number of factors, so that the quantity may be divisible by the first preset data.
  • the same acquisition process as the first scanning position may be employed.
  • the operation of transmitting the ultrasonic signal to each sub-depth range may be repeated to obtain the echo signals corresponding to the plurality of preset depth ranges, and according to the plurality of echo signals.
  • the composite obtains echo signals for each scanning position.
  • by transmitting the ultrasonic signal multiple times echo data not at different time points can be obtained, and the echo data stream is determined according to the echo data at different time points, so that the Doppler spectrum can be formed according to the echo data.
  • the ring array probe is placed at a first scanning position of the first detecting position, and each array element of the control loop array probe transmits a first ultrasonic signal with a different delay to a preset depth range, so that the first The ultrasonic signal is focused on the beam in the axial direction of the preset depth range, specifically: placing the ring array probe at a first scanning position of the first detecting position, and controlling each array element of the ring array probe to a preset depth within a preset time
  • the range transmits a plurality of first ultrasonic signals having different delays such that the first ultrasonic signals are focused on the predetermined depth range in the beam axial direction. This can improve the accuracy of the echo information of the first preset data.
  • the ring array probe may focus on the echo signal of the received ultrasonic signal, and select a first preset number of data points as the echo data in the focused echo signal in the preset depth range.
  • the receiving the first echo signal of the first ultrasonic signal and extracting the first preset number of first echo data of the first echo signal specifically includes:
  • S1122 Amplify and filter the focused echo signal, convert the filtered focused echo signal into a digital signal, and acquire a first preset number of first echo data according to the digital signal.
  • the ring array probe receives an echo signal of the first ultrasonic signal, converts the received echo signal into an electrical signal, performs amplification and filtering processing on the electrical signal, and then performs amplification filtering processing.
  • the electrical signal is converted into a digital signal by digital-to-analog, and each array of cells is delayedly output according to a preset focus delay time, and the output delay signals are summed by an adder to make an echo signal from the focus and focus.
  • the echo signals outside the focus area weaken or cancel each other to achieve the received focus echo signal.
  • the converted echo signal is converted into a digital signal, and the first preset number of data points may be selected on the digital signal, and the selected first preset number of data points is used as the first preset number of the first ultrasonic signal.
  • the echo data wherein the depths of the first preset number of echo data are all within a preset depth range.
  • the preset depth range is preset, for example, 20 mm to 100 mm or the like.
  • the first preset number is preset, for example, 128 or the like.
  • the receiving the first echo signal of the first ultrasonic signal and extracting the first preset number of first echo data of the first echo signal specifically includes:
  • S1121a receiving first echo information of each first ultrasonic signal, and respectively extracting a first preset number of first echo data of each first echo signal, wherein a corresponding first of each first echo signal Corresponding to the depth of an echo data;
  • A1122b respectively, performing operation on the first echo data corresponding to the first echo signals of different depths to obtain first echo data corresponding to each depth, so as to obtain a first preset number corresponding to the first ultrasonic signal. Echo data.
  • the ring array probe after receiving the signal, performs processing such as amplification filtering and digital-to-analog conversion into a digital signal, and processing the digital signal to obtain echo data of the first preset data on the receiving beam.
  • a plurality of pulses are transmitted at the same scanning position, and each pulse obtains a first predetermined number of echo data, wherein each echo data corresponds to a detection depth. That is to say, multiple echo data are acquired for each detection depth, and autocorrelation operations or fast Fourier transform (FFT) operations are performed on multiple echo data of each detection depth to obtain echo data corresponding to each detection depth.
  • FFT fast Fourier transform
  • the preset swing trajectory and the preset swing angle are all preset, and the ring array probe swings according to the preset swing trajectory, and presets in each swing After the swing angle, ultrasonic transmission and echo signal reception are sequentially performed.
  • the preset oscillating trajectory is a "back" shape
  • two stepping motors (referred to as a first stepping motor and a second stepping motor respectively) connected to the ring array transducer in the probe box
  • the control loop energy transducer reaches a maximum swing angle
  • the first stepper motor controls the loop array transducer to swing to a maximum swing angle in a first predetermined direction (eg, 11.5° on one side)
  • the second stepper motor controls
  • the ring array transducer swings to a maximum swing angle in a second predetermined direction
  • the second preset direction is preferably a direction perpendicular to the first preset direction.
  • the first component motor sequentially swings the preset swing angle along the maximum swing angle of the first preset direction and stops at the position after the swing, and repeatedly transmits the ultrasonic wave and receives the ultrasonic wave back.
  • the wave signal step after acquiring the first preset number of echo data, continues to swing the preset swing angle in the first preset direction until the ring array transducer reaches the maximum swing angle, thereby acquiring the first plane a first number of echo data; then the second stepping motor controls the ring array transducer to swing the preset swing angle in the second predetermined direction, and performs the steps of repeatedly transmitting the ultrasonic wave and receiving the echo signal of the ultrasonic wave, and acquiring After the first preset number of echo data, the first stepping motor repeats the above process, and swings from the current position to the maximum swing angle to obtain the first number of echo data of the second plane; The two stepping motor movement reaches a maximum deflection angle, and the first stepping motor repeats the above stepping process to obtain the first number of data strip echoes of the second number of screens According to this, the first quantity*the second quantity of ultrasonic echo data is accumulated in this way, thereby obtaining the echo data of the space first preset number*first quantity*second number of
  • the ring array probe can also scan according to other trajectories, for example, linear scanning, sector scanning, rotational scanning, back-type scanning, and the like.
  • the first stepping motor and the second stepping motor acquire the first ultrasonic beam echo data at 0 degrees, and then control the first stepping motor and the second component motor to swing, so that the ultrasonic beam is the first ultrasonic wave.
  • the beam position is center-scanned to obtain M1 scanning lines, and the circumferential diameter is gradually enlarged until the Mn strip scanning line is obtained.
  • the M1+M2+...+Mn lines are cumulatively obtained, thereby obtaining data of the first predetermined number of spaces*(M1+M2+...+Mn) points.
  • the control loop array probe moves to the second detecting position, and repeatedly controls the swing of the loop array probe and acquires echo information until the ring array probe moves to each detecting position to obtain echo information of each detecting position.
  • the second detecting position may be preset, or may be formed by the ring array probe moving according to a preset moving track and a preset moving condition.
  • the preset movement trajectory is a circular motion, and the preset movement condition may be a movement of 3 cm or the like. That is, after the ring array probe completes scanning at the first detecting position, it moves at the second detecting position, and repeats the operation performed by the first detecting position at the second detecting position, that is, the ring array probe is controlled according to the second detecting position.
  • the swinging track is swung and scanned at each scanning position to obtain echo information corresponding to the second detecting position. And so on until all probe position scans are completed.
  • the preset oscillating trajectories corresponding to the respective detection positions may be the same or different.
  • the preset oscillating trajectories corresponding to the detection positions and the manners of forming the respective scanning positions are the same. This can improve the accuracy of cerebral vascular complexing.
  • the echo signal may be an echo signal formed by different substances in the skull, and the echo signals formed by different substances are different, so that the echo signals corresponding to the cerebrovascular and the cerebral blood flow are determined according to the received echo signals.
  • the corresponding echo signal so that the cerebrovascular echo signal can be obtained.
  • the cerebrovascular spatial position map corresponding to each detection position can be generated by acquiring all cerebrovascular echo information corresponding to each detection position and including each scanning position. That is to say, the spatial position of each cerebral blood vessel can be determined according to all the scanning positions included in each detecting position, the swinging angle of each scanning position with respect to the first scanning position, and the preset depth range, thereby generating a spatial position map of each cerebral blood vessel.
  • the cerebral blood flow information may be determined based on the echo information, and the three-dimensional cerebral blood flow image and the three-dimensional cerebrovascular image carrying the cerebral blood flow information may be generated according to the cerebral blood flow information.
  • the spatial map of the cerebrovascular space is an image of an intracranial cerebral blood vessel, and the corresponding cerebral blood flow information is not disposed in the cerebrovascular image, and the cerebral blood flow image is formed by blood flow information in the intracranial cerebral blood vessel.
  • the image, the cerebrovascular image carrying the cerebral blood flow information is a cerebrovascular image and a corresponding cerebral blood flow image is arranged in the cerebrovascular.
  • the cerebral blood flow information may include a gray scale, a blood flow velocity, and a blood flow direction
  • the cerebral blood flow data corresponding to the first preset number* second preset number of echo data is obtained according to the
  • the three-dimensional imaging algorithm can obtain three-dimensional images of intracranial cerebral blood flow.
  • the three-dimensional image of the cerebrovascular may include a cerebral vascular morphology and a mutual position between the cerebral vessels, wherein the cerebral vascular morphology may include positional information, shape information, and size information of the cerebral blood vessel.
  • the three-dimensional image of the cerebrovascular vessel carrying the cerebral blood flow information includes a cerebral vascular morphology and corresponding hemodynamic information, wherein the hemodynamic information can be determined according to a blood flow velocity and an energy value, the cerebral vascular morphology
  • the position between the cerebrovascular and the cerebrovascular can be reconstructed according to the echo data, and the three-dimensional image is extracted by three-dimensional image segmentation.
  • the three-dimensional image of the cerebrovascular is obtained by three-dimensional reconstruction imaging.
  • the three-dimensional reconstruction imaging may adopt a sampling filtering algorithm, an FFT transform, a Hilbert transform, an autocorrelation operation, an interpolation algorithm, a GPU-based parallel reconstruction real-time image, and a three-dimensional blood flow segmentation extraction technique.
  • the cerebrovascular three-dimensional cerebrovascular and/or cerebral blood flow images may be three-dimensional grayscale images or three-dimensional color images.
  • the generating the three-dimensional cerebral blood vessel and/or the cerebral blood flow image according to the cerebral blood flow information may include: extracting position information of each scanning position, and correspondingly returning according to the position information.
  • the wave signal acquires the position information corresponding to the cerebral blood flow information, wherein the cerebral blood flow information includes at least a blood flow direction and a blood flow velocity; and the intracranial three-dimensional is generated according to the position information and the position information corresponding to the cerebral blood flow information Brain blood vessels and / or cerebral blood flow images.
  • the three-dimensional cerebrovascular and/or cerebral blood flow images are obtained by three-dimensional reconstruction, and the three-dimensional reconstruction algorithm may adopt a Bessel three-dimensional interpolation algorithm.
  • generating three-dimensional cerebral blood vessels and/or cerebral blood flow images according to the cerebral blood flow information may include: extracting position information of each scanning position, and echoes according to the position information.
  • the signal acquiring the position information corresponds to cerebral blood flow information, wherein the cerebral blood flow information includes at least a blood flow velocity and gray scale information; generating a three-dimensional cerebral blood vessel according to the position information and the position information corresponding to cerebral blood flow information Grayscale image.
  • the two-dimensional image corresponding to each echo data can be mapped into the three-dimensional body according to the corresponding spatial position information, and then the three-dimensional interpolation reconstruction algorithm is used to obtain continuous Complete 3D grayscale map.
  • the three-dimensional gray scale map does not carry a gray-scale image without a blood flow direction, and when the three-dimensional gray scale map is displayed through the interface splitting section, a B-ultrasound image can be obtained.
  • the three-dimensional grayscale map can assist the doctor in clinical analysis by the brightness of different grayscale colors in the case where the small blood vessels are not obvious or the small blood vessels are filtered out.
  • the detection order is an order in which each detection position is detected in time.
  • the detection order may be determined according to the order of movement of the ring array probes. For example, as shown in FIG. 4, the ring array detection sequentially moves from point A to point D, and points A to point D are detection positions, and the order of detection from point A to point D is point A, point B, and C. Point and D point.
  • the three-dimensional cerebrovascular spatial position map is combined according to the corresponding detection sequence to obtain the three-dimensional cerebrovascular image, which may specifically include:
  • S32 Determine a composite sequence of the spatial position maps of the three-dimensional cerebrovascular vessels according to the detection sequence, and combine the spatial position maps of the three-dimensional blood vessels according to the composite sequence to generate a three-dimensional cerebrovascular image.
  • the composite three-dimensional blood vessel spatial position map according to the composite sequence refers to firstly merging the three-dimensional blood vessel spatial position maps in a composite order, that is, firstly, the first composite sequence of the three-dimensional blood vessel spatial position map. Composing a first three-dimensional blood vessel image with the second composite sequence of three-dimensional blood vessel spatial position maps, and then combining the first three-dimensional blood vessel image with the third composite sequential three-dimensional blood vessel spatial position map to obtain a second three-dimensional blood vessel image, and so on. Until the completion of all three-dimensional vascular spatial position maps.
  • each of the preset reference points is taken as a reference, and the preset reference point is acquired by the ring array probe.
  • the ring array probe includes two probes, and the two probes are simultaneously in contact with the head (for example, respectively placed at the left and right side of the head) and ultrasonically scanned at the same time, so that the two ring array transducers can be obtained.
  • the left and right centers of the head, where the left and right centers of the head are used as reference points.
  • determining a composite sequence of the spatial position maps of the three-dimensional cerebrovascular vessels according to the detection sequence, and combining the three-dimensional blood vessel spatial position maps according to the composite sequence to generate the three-dimensional cerebrovascular images specifically includes:
  • S321 Obtain a position of the left and right probes of the ring array probe, and determine an intracranial reference point according to the position of the left and right probes;
  • each three-dimensional blood vessel spatial position map is combined in a composite order to generate a three-dimensional blood vessel image.
  • the embodiment provides a transcranial three-dimensional cerebrovascular composite imaging method, which is the same as the imaging process of the first embodiment, and the difference is that the ring array probe acquires and collects echo data for each scanning position, thereby The loop array probe details the acquisition and acquisition process of the echo data at each scanning position.
  • the data acquisition process of the ring array probe may specifically include:
  • step C Sweep the first probe angle of the loop probe according to the scan position and the scan depth corresponding to each echo signal, and repeat the step of step B until all the probe angles in the probe angle sequence are covered.
  • the acquisition of the scanning position is performed, and the ring array probe is swung to the next scanning position and step AC until the preset swinging trajectory is completed.
  • the ring array probe sends an ultrasonic signal to the intracranial cerebrovascular corresponding to the scanning position, receives an echo signal of the ultrasonic signal, and extracts a first predetermined number of echo data in the echo signal, according to the A time point corresponding to the first preset number of echo data determines a depth of detection corresponding to each echo data to obtain a detection depth set corresponding to the scan position.
  • the loop probe For detecting the first depth of detection in the set of depths, first swinging the loop probe to a first predetermined angle, and sending the ultrasonic signal to the first depth of detection, and acquiring the current echo of the current echo signal of the ultrasonic signal Wave signal strength; if the current echo signal strength is greater than the stored echo signal strength, the stored echo signal strength and its corresponding ring array probe are updated using the current echo signal strength and its corresponding current loop probe angle Angle, until all probe angles in the preset probe angle sequence are covered, repeating the above process for the second depth of detection of the set of depths until all probe depths within the set of probe depths are covered.
  • the ring array probe is swung to the next scan point according to the preset swing trajectory and the preset swing angle.
  • hemodynamic information of continuous depth can be obtained in the longitudinal direction; the deflection angle of the probe is precisely adjusted by using a mechanical structure, and when the first point is scanned, the echo of the first point is obtained.
  • the signal calculates the spatial position corresponding to the first point through the deflection angle and depth of the loop probe; because it is a spherical swivel, the deflection angle can be conical in space, so that the position information of the cross section of the blood vessel can be measured;
  • the ring oscillator swings at the second point, the echo signal of the second point is obtained; and the angle of deflection reaches the third point, and the echo signal of the third point is obtained, thereby being able to be based on the first point, the second point, and the third point.
  • the point is determined by the strongest point of the echo signal and the position of the blood vessel boundary; at the same time, hemodynamic information can be obtained in other directions to form a vascular dynamics information of a blood vessel range.
  • the corresponding cerebral blood flow information can be obtained.
  • the position and size of the three-dimensional space of the blood vessel can be calculated through the position of the blood vessel, and the blood flow pattern can be calculated by the blood flow velocity and the energy value.
  • a plurality of ultrasonic pulses can be transmitted, and the echo data of the position is determined according to the echo signals of the multiple ultrasonic pulses. This process has been described in the first embodiment and will not be described here.
  • the current echo signal corresponding to the current probe angle can be received in real time, and the current echo signal strength corresponding to the current echo signal is obtained in real time, according to the preset echo signal.
  • Intensity Interval The signal display color list determines the signal display color of the current echo signal strength and displays it in real time on the corresponding display point of the display screen.
  • the echo signal strength interval may be pre-divided, and the echo signal intensity interval is correspondingly matched with the color.
  • the color of the echo signal is set. To use the color corresponding to the signal strength interval.
  • an echo signal strength interval-signal display color list is set in advance, wherein the echo signal intensity interval-signal display color list includes a first echo signal intensity interval, a second echo signal strength interval, and a third time. a wave signal intensity interval, a black signal display color corresponding to the first echo signal intensity interval, a blue signal display color corresponding to the second echo signal intensity interval, and a red signal display color corresponding to the third echo signal intensity interval .
  • the corresponding display point on the display screen is displayed in black; if the current echo signal strength is in the second echo signal intensity interval, corresponding on the display screen The display point is displayed in blue; if the current echo signal strength is in the third echo signal intensity interval, the corresponding display point on the display is displayed in red.
  • the present invention also provides a transcranial three-dimensional cerebrovascular imaging system, as shown in FIG. 5, which includes a ring array probe 100 and a control device 200, which is used for The intracranial ultrasound focus scan is performed by mechanical means to receive echo signals of the respective scanning positions; the control means is for implementing the steps in the transcranial three-dimensional cerebrovascular composite imaging method as described above.
  • the control device includes a transcranial processing device connected to a ring array probe and a terminal device, and a terminal device for controlling the terminal device
  • the signal is sent to the ring probe and the echo signal collected by the ring probe is stored.
  • the terminal device includes at least one processor 20; a display screen 21; and a memory 22, which may further include a communication interface (Communications Interface) 23 and bus 24.
  • the processor 20, the display screen 21, the memory 22, and the communication interface 23 can complete communication with each other through the bus 24.
  • the display screen 21 is set to display a user guidance interface preset in the initial setting mode.
  • the communication interface 23 can transmit information.
  • Processor 20 may invoke logic instructions in memory 22 to perform the methods in the above-described embodiments.
  • logic instructions in the memory 22 described above may be implemented in the form of software functional units and sold or used as separate products, and may be stored in a computer readable storage medium.
  • the memory 22 is a computer readable storage medium, and can be configured to store a software program, a computer executable program, a program instruction or a module corresponding to the method in the embodiment of the present disclosure.
  • the processor 20 performs the functional application and data processing by executing software programs, instructions or modules stored in the memory 22, i.e., implements the methods in the above embodiments.
  • the memory 22 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory 22 may include a high speed random access memory, and may also include a nonvolatile memory. For example, a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store a program code, may also be a transient state. Storage medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本申请公开了一种经颅三维脑血管复合成像方法及系统,所述方法首先利用可自动扫描的环阵探头向颅内不同扫描位置发送延时不同的超声波信号,使得超声波信号聚焦于波束轴向的预设深度,以通过聚焦超声波信号对颅内脑血管进行检测,并对接收到的回波信号进行数字延迟聚焦,以增强回波信号,提高获取到脑血管空间形态和位置精度,从而提高了三维脑血管图像的清晰度和检出率。此外,从不同探测位置获取三维脑血管图像,并根据三维脑血管图像从多角度对颅内脑血管进行复合,进一步提高了三维脑血管图像的清晰度。同时,通过环阵探头具有体积小频率低的特点,从而其可以方便佩戴于头部,可实现对颅内脑血管的三维扫描和长时间监控。

Description

一种经颅三维脑血管复合成像方法及系统 技术领域
本发明涉及IT和医疗技术领域,特别涉及一种经颅三维脑血管复合成像方法及系统。
背景技术
脑卒中是导致中国人死亡的第一因数。采用安全有效的设备对脑血管病患者进行诊断及对脑卒中风险高危人群进行筛查,有迫切巨大的需求。现有彩色多普勒超声诊断设备(TCCD)对颅内血管的诊断图像清晰,分辨率高,但由于颅骨对超声的巨大衰减使得检出率低,操作难度大,对人员或设备的依赖性强。超声经颅多普勒(TCD)检出率高,但没有二维图像,操作为盲打,人员依赖性强。DSA是脑血管病变检测的金标准,CTA更常用,但有辐射、有创、需造影剂,不适合多次检测,且无血流动态数据,临床应用有局限,成本高,不适用于对脑卒中患者的连续监测、疗效评估和定期随访。
因而现有技术还有待改进和提高。
发明内容
针对现有技术的不足,本申请要提供一种经颅三维脑血管复合成像方法及系统,兼具有TCCD和TCD的优势,有高的成像精度和穿透率,同时降低人员依赖性强。
为了解决上述技术问题,本发明所采用的技术方案如下:
一种经颅三维脑血管复合成像方法,其包括:
利用机械装置控制的环阵探头分别从至少两个探测位置对颅内进行超声波聚焦扫描,并接收各探测位置的回波信息;
分别根据各探测位置对应的回波信息生成相应的三维脑血管空间位置图;
将各三维脑血管空间位置图按照其对应的探测顺序进行复合,以得到三维脑血管图像。
有益效果:与现有技术相比,本发明提供了一种经颅三维脑血管复合成像方法及系统,所述方法首先利用可自动扫描的环阵探头向颅内不同扫描位置发送延时不同的超声波信号,使得延时不同的超声波信号聚焦在波束轴向若干预设深度,以通过所述聚焦超声波信号对颅内脑血管进行检测,并对接收到的所述超声波信 号的回波信号进行数字延迟聚焦,使得回波信号增强,以提高获取到脑血管空间形态和位置精度及信号强度,从而提高了三维脑血管空间位置图图像的清晰度和检出率。另外,在从不同探测位置获取三维脑血管空间位置图,并根据三维脑血管空间位置图从多角度对颅内脑血管进行复合,进一步提高了三维脑血管图像的清晰度。另外,通过所述环阵探头具有体积小频率低的特点,从而其可以方便佩戴于头部,可实现对颅内脑血管的三维扫描和长时间监控。
附图说明
图1为本发明提供的经颅三维脑血管复合成像方法的实施例一的流程图。
图2为本发明提供的经颅三维脑血管复合成像方法的实施例一中超声波信号聚焦示意图。
图3为本发明提供的经颅三维脑血管复合成像方法的实施例一中超声波信号的回波信号的聚焦示意图。
图4为本发明提供的经颅三维脑血管复合成像方法的实施例一中探头移动过程示意图。
图5为本发明提供的经颅三维脑血管成像系统的结构原理图。
图6为本发明提供的经颅三维脑血管成像系统中终端设备的结构原理图。
具体实施方式
本发明提供一种经颅三维脑血管复合成像方法及系统,为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
下面结合附图,通过对实施例的描述,对发明内容作进一步说明。
实施例一
本申请提供了一种经颅三维脑血管复合成像方法,如图1所示,所述方法包括:
S10、利用机械装置控制的环阵探头分别从至少两个探测位置对颅内进行超声波聚焦扫描,并接收各探测位置的回波信息。
具体地,所述机械装置控制的环阵探头可以包括机械装置以及环阵换能器,所述机械装置用于带动所述环阵探头摆动的机械结构,所述环阵换能器用于向颅内发射聚焦超声波信号,并聚焦接收所述超声波信号回波信号的探头。在本实施例中,所述环阵换能器包括若干阵元晶片,所述若干阵元晶片成同心圆排列,并且各阵元晶片的面积相等。例如,所述环阵换能器包括5个阵元晶片,分别记为第一阵元晶片,第二阵元晶片,第三阵元晶片、第四阵元晶片以及第五阵元晶片。所述第一阵元晶片,第二阵元晶片,第三阵元晶片,第四阵元晶片以及第五阵元晶片依次按同心圆方式排列,其中,第一阵元晶片为圆形,并且第一阵元晶片的圆心为同心圆的圆心,第二阵元晶片位于第一阵元晶片外围并与第一阵元晶片同心,第三阵元晶片位于第二阵元晶片外围并与第二阵元晶片同心,第四阵元晶片位于第三阵元晶片外围并与第三阵元晶片同心,第五阵元晶片位于第四阵元晶片外围并与第四阵元晶片同心,并且第一阵元晶片,第二阵元晶片,第三阵元晶片、第四阵元晶片以及第五阵元晶片的面积相等。此外,当所述5个阵元晶片构成的环阵探头的直径为15mm,其在深度范围为20mm至100mm的范围内形成的波束直径可以为2mm至3.5mm,其中,所述直径为15mm指的5个阵元晶片构成的同心形环阵的外径。相对于现有的TCD探头为单晶片,在频率为1.6MHz至2.0MHz,在20mm至100mm范围内波束方向的焦点处直径(横向分辨率)为6mm、4.5mm(-6dB带宽),在近端或远端的分辨率为10mm以上,本申请的 环阵探头在频率为1.6MHz至2.0MHz,在深度范围为20mm至100mm的范围内波束直径在2mm至3.5mm范围内变动,约为TCD的1/3,从而在同样低的频率/同样的深度情况下,环阵探头发射的超声波的直径比TCD探头发射的超声波直径小很多,从而可以提高三维脑血管的精度。
同时在本实施例中,所述机械装置可以两个步进电机以及两个连接杆,所述连接杆的一端与环阵换能器相连接,另一端与步进电机相连接且与步进电机偏心设置,所述步进电机带动所述连杆运动,所述连杆带动所述换能器在预设角度范围内摆转,从而实现对颅内的脑血管进行扫描。在实际应用中,所述环阵探头可以包括探头盒,所述环阵换能器以及所述机械装置均装配在所述探头盒内,所述探头盒固定在头架上,并通过所述头架将探头盒带于受测者头部,以使得所述环阵换能器与头部相接触。此外,在本实施例的变形实施例中,所述机械装置还可以为机械臂,所述环阵换能器与所述机械臂相连接,并通过所述机械臂控制所述环阵换能器与头部相接触,并带动所述环阵换能器在预设角度范围内摆转或者在预设范围内运动。在下面说明中以步进电机为机械控制装置为例。
此外,所述探测位置指的是环阵探头对颅内进行超声波扫描的位置,并且所述环阵探头可以在各探测位置按照预设轨迹摆动,以在所述探测位置获取预设数量的回波信息。也就是说,每个探测位置包含若干的扫描位置,环阵探头在第一各扫描位置对颅内发送超声波信号,并根据该超声波信号的回波信号获取第一扫描位置的回波数据,之后在通过机械装置控制摆动至第二扫描位置,在第二扫描位置发送超声波信号以获取第二扫描位置的回波数据,依次类推直至预设摆动轨迹上所有扫描位置完成,这样可以获取到第一探测位置对应的所有回波信息。在获取到第一探测位置的所有回波信息后,控制环阵探头移动至第二探测位置,并重复按照预设轨迹摆动以及扫描的过程,以得到第二探测位置的回波信息,依次类推直至完成所有探测位置。相应的,所述利用机械装置控制的环阵探头分别从至少两个探测位置对颅内进行超声波聚焦扫描,并接收各探测位置的回波信号具体包括:
S11、将环阵探头置于第一探测位置,通过机械装置控制环阵探头按照预设摆动轨迹摆动,并获取第一探测位置对应的预设数量的回波信息。
具体地,所述预设摆动轨迹为预先设置,所述环阵探头通过机械装置控制按照所述预设摆动轨迹进行摆动。并且,环阵探头在摆动过程中按照预设条件停留以确定各扫描位置,并在给扫描位置对颅内进行扫描。所述预设条件可以为每摆动预设角度,例如,0.6°等。也就是说,环阵探头按照预设摆动轨迹,每摆动预设角度停止并向颅内发送超声波信号,并接收所述超声波信号的回波信号。
示例性的,所述将环阵探头置于第一探测位置,通过机械装置控制环阵探头按照预设摆动轨迹摆动,并获取第一探测位置对应的预设数量的回波信息具体包括:
S111、将环阵探头置于第一探测位置的第一扫描位置,控制环阵探头的各阵元向预设深度范围发送延时不同的第一超声波信号,以使得所述第一超声波信号在波束轴向上聚焦于所述预设深度范围;
S112、接收所述第一超声波信号的第一回波信号,并在处于预设深度范围的第一回波信号中提取第一预设数量的第一回波信息;
S113、通过机械装置控制所述环阵探头按预设轨迹摆动预设角度,发送延时不同的第二超声波信号以获取第一预设数量的第二回波信息;
S114、依次控制环阵探头按照预设轨迹摆动直至运动结束,以获取第一探测位置的对应的预设数量的回波信息。
具体地,在所述步骤S111中,所述第一扫描位置为所述环阵探头通过头架佩戴于第一探测位置时,环阵探头与头部相接触的位置,所述第一扫描位置为环阵探头在第一探测位置开始工作的位置。在本实施例中,可将第一探测位置的第一扫描位置设置为第一探测位置的基准位置,即第一探测位置包含的其他扫描位置以所述基准位置为参考。例如,以所述第一扫描位置为原点建立坐标系,根据环阵探头的运动轨迹以及预设条件来确定各扫描点的位置与第一扫描位置的位置关系,并根据所述位置关系确定其在以第一扫描位置为原点的坐标系内的坐标,并通过所述坐标记录其对应的扫描点的位置,从而各扫描位置的位置信息可构成二维阵列。
此外,如图2所示,由于环阵探头各阵元晶片成同心圆布置,那么各阵元晶片到达预设深度的距离不同,相应的到达预设距离的时间也不同,从而可以根据各阵元晶片与预设深度之间的距离以及超声波在颅内的传播速度来确定各阵元 晶片形成的超声波信号到达预设深度的时间,根据各时间确定各阵元晶片对应的延时时间,以使得环阵探头的各阵元晶片形成的超声波信号在预设深度聚焦,从而使得超声波聚焦。
进一步,为了提高超声波的回波信号的精确性,在向预设深度范围发送超声波信号时,可以采用分段发送的方式。即将所述预设深度范围划分为若干子深度范围,分别向各子深度范围发送超声波信号,以获取各子深度范围的回波信号,最后根据各子深度范围的回波信号得到预设深度范围的回波信号。相应的,所述将环阵探头置于第一探测位置的第一扫描位置,控制环阵探头的各阵元向预设深度范围发送延时不同的第一超声波信号,以使得所述第一超声波信号在波束轴向上聚焦于所述预设深度范围具体包括:
S1111、获取所述第一探测位置的第一扫描位置对应的预设深度范围,并将所述预设深度范围划分为若干子深度范围;
S1112、控制环阵探头的各阵元向依次向各子深度范围发送延时不同的第一超声波信号,以使得第一超声波信号分别在波束轴向上聚焦于各子深度范围。
具体地,所述预设深度范围可以采用等分等方式进行划分,以得到若干子深度范围。并且在划分得到若干子深度范围后,可以将所述若干子深度范围按照其对应的深度升序排序,以得到子深度范围序列。同时,首先控制环阵探头的各阵元分别向第一子深度范围发送延时不同的第一子超声波信号,接收所述第一子超声波信号的第一子回波信号;再控制环阵探头的各阵元分别向第二子深度范围发送延时不同的第二子超声波信号,接收所述第二子超声波信号的第二子回波信号,依次类推直至向所述子深度范围发送超声波信号,最后根据各子深度范围对应的回波信号提取到第一扫描位置对应的第一预设数据量的第一回波数据。在本实施例中,采用将预设深度范围划等分的方式得到若干子深度范围(例如,5个子深度范围等),并获取所述若干子深度范围的数量,再确定所述第一预设数量与所述数量的商,并在每个子深度范围对应的回波信号中提取所述商个回波数据。当然,在第一预设数量无法整除数量时,可以任一子深度范围选取商+余数个回波数据。其中,所述若干子深度范围的数量优选为第一预设数量的因子,这样可以使得所述数量可以整除所述第一预设数据。此外,应当说明的,对于预设运动轨迹中的各扫描位置,均可以采用与第一扫描位置的过程相同的采集过程。
此外,在对各子深度范围发送完超声信号后,可以在重复向各子深度范围发送超声波信号的操作,以在获取多个预设深度范围对应的回波信号,并根据多个回波信号复合得到各扫描位置的回波信号。同时,通过多次发送超声波信号可以得到不是不同时间点的回波数据,根据不同时间点的回波数据确定形成回波数据流,从而可以根据回波数据形成多普勒频谱。相应的,所述将环阵探头置于第一探测位置的第一扫描位置,控制环阵探头的各阵元向预设深度范围发送延时不同的第一超声波信号,以使得所述第一超声波信号在波束轴向上聚焦于所述预设深度范围具体为:将环阵探头置于第一探测位置的第一扫描位置,控制环阵探头的各阵元在预设时间内向预设深度范围发送多束延时不同的第一超声波信号,以使得所述第一超声波信号在波束轴向上聚焦于所述预设深度范围。这样可以提高第一预设数据的回波信息的准确性。
进一步,在所述步骤S112中,所述环阵探头可以聚焦接收超声波信号的回波信号,并在预设深度范围内的聚焦回波信号中选取第一预设数量的数据点作为回波数据。相应的,所述接收所述第一超声波信号的第一回波信号,并提取第一回波信号的第一预设数量的第一回波数据具体包括:
S1121、接收所述第一超声波信号的第一回波信号,并根据预设聚焦延时时间延时输出所述第一回波信号以得到聚焦回波信号;
S1122、将所述聚焦回波信号进行放大滤波,将滤波后的聚焦回波信号转换为数字信号,并依据所述数字信号获取第一预设数量的第一回波数据。
具体地,如图3所示,所述环阵探头接收第一超声波信号的回波信号,将接收到的回波信号转换为电信号,对电信号进行放大滤波处理,再将放大滤波处理后的电信号通过数模转换成数字信号,并且各阵元晶片按照预设聚焦延迟时间进行延时输出,并用加法器对输出的延迟信号求和相加,使来自焦点和焦点附近的回波信号增强,聚焦区域以外的回波信号相互减弱以至抵消,从而达到接收聚焦回波信号。此外,在聚焦回波信号转换为数字信号,可以在数字信号上选取第一预设数量的数据点,将选取到的第一预设数量的数据点作为第一超声波信号的第一预设数量的回波数据,其中,各第一预设数量的回波数据的深度均属于预设深度范围内。在本实施例中,所述预设深度范围为预先设置的,例如,20mm至100mm等。所述第一预设数量为预先设置,例如,128等。
此外,所述接收所述第一超声波信号的第一回波信号,并提取第一回波信号的第一预设数量的第一回波数据具体包括:
S1121a、接收各第一超声波信号的第一回波信息,并分别提取各第一回波信号的第一预设数量的第一回波数据,其中,各第一回波信号中相对应的第一回波数据的深度相对应;
A1122b、分别对相同深度不同第一回波信号对应的第一回波数据进行运算,以得到各深度对应的第一回波数据,以得第一超声信号对应的第一预设数量的第一回波数据。
具体地,所述环阵探头接收到信号后进行放大滤波等处理并进行数模转化成数字信号,对数字信号进行处理可以获得接收波束上第一预设数据的回波数据。在同一扫描位置发射多次脉冲,每次脉冲得到第一预设数量的回波数据,其中,各回波数据对应一探测深度。也就是说,每个探测深度获取到多个回波数据,对于各探测深度的多个回波数据进行自相关运算或快速傅里叶(FFT)运算,以得到各探测深度对应的回波数据。
进一步,在所述步骤S113中,所述预设摆动轨迹以及预设摆动角度(例如,0.6°等)均为预先设置,环阵探头按照所述预设摆动轨迹摆动,并在每摆动预设摆动角度后进行依次超声波发射以及回波信号接收。
为了详细说明回波数据的采集过程,这里以两个具体例子加以说明。例如,所述预设摆动轨迹为“回”字型,探头盒内与环阵换能器相连接的两个步进电机(分别记为第一步进电机和第二步进电机)均可以控制环能换能器达到最大摆动角度,其中,第一步进电机控制环阵换能器沿第一预设方向摆动至最大摆动角度(例如,单边11.5°),第二步进电机控制环阵换能器沿第二预设方向摆动至最大摆动角度,所述第二预设方向优选为垂直于第一预设方向的方向。当环阵换能器扫描完第一扫描位置后,第一部件电机沿第一预设方向最大摆动角度依次摆动预设摆动角度并停止在摆动后的位置,并重复发送超声波以及接收超声波的回波信号的步骤,在获取到第一预设数量的回波数据后,继续沿第一预设方向摆动预设摆动角度直至环阵换能器达到最大摆动角度,从而在第一平面上获取到第一数量条回波数据;然后第二步进电机控制环阵换能器沿第二预设方向摆动预设摆动角度,并执行重复发送超声波以及接收超声波的回波信号的步骤,在获取到第一 预设数量的回波数据后,第一步进电机重复上述过程,从当前位置沿反向摆动至最大摆动角度,获取第二个平面的第一数量条回波数据;依次类推直至第二步进电机运动达到最大偏转角度,并且第一步进电机重复上述步进过程以获取第二数量各屏幕的第一数据条回波数据,这样累计获得第一数量*第二数量条超声回波数据,从而获得空间第一预设数量*第一数量*第二数量个点的回波数据。当然,在本发明的其他实施例中,所述环阵探头也可以按照其他轨迹进行扫描,例如,线性扫描,扇形扫描,旋转扫描,回字型扫描等。再如,第一步进电机和第二步进电机在0度是采集第一条超声波束回波数据,然后控制第一步进电机和第二部件电机摆动,使得超声波束以第一条超声波束位置为中心进行圆周扫描,获得M1条扫描线,逐步扩大圆周直径,直至获得Mn条扫描线。这样累计获得M1+M2+…+Mn条线,从而获得空间第一预设数量*(M1+M2+…+Mn)个点的数据。
S12、控制环阵探头移动至第二探测位置,重复控制环阵探头摆动以及获取回波信息的操作直至环阵探头移动至各探测位置,以获取各探测位置的回波信息。
具体地,如图4所示,所述第二探测位置可以是预先设置,也可以是环阵探头按照预设移动轨迹以及预设移动条件运动而形成。其中,所述预设移动轨迹为沿圆周运动,预设移动条件可以为移动3cm等。也就是说,环阵探头在第一探测位置完成扫描后,移动在第二探测位置,并在第二探测位置重复第一探测位置执行的操作,即在第二探测位置控制环阵探头按照预设摆动轨迹摆动并在各扫描位置进行扫描,以得到第二探测位置对应的回波信息。依次类推直至完成所有探测位置扫描。此外,在各探测位置对应的预设摆动轨迹可以相同也可以不同,在本实施例中,各探测位置对应的预设摆动轨迹以及包含的各扫描位置的形成方式均相同。这样可以提高脑血管复合的准确性。
S20、分别根据各探测位置对应的回波信息生成相应的三维脑血管空间位置图。
具体地,所述回波信号可以为颅内不同物质形成的回波信号,并且不同的物质形成的回波信号不同,从而根据接收到回波信号确定脑血管对应的回波信号以及脑血流对应的回波信号,这样可以获取到脑血管回波信号。在获取到各探测位置对应的所有脑血管回波信息以及其包含各扫描位置,可以生成各探测位置对应 的脑血管空间位置图。也就是说,根据各探测位置包含的所有扫描位置、各扫描位置相对于第一扫描位置的摆动角度以及预设深度范围可以确定各脑血管的空间位置,进而生成各脑血管的空间位置图。此外,在生成脑血管空间位置图时,还可以根据回波信息确定脑血流信息,根据脑血流信息生成三维脑血流图像和携带脑血流信息的三维脑血管图像。其中,所述脑血管空间位置图为颅内脑血管的图像,所述脑血管图像中未配置相应的脑血流信息,所述脑血流图像为颅内脑血管内的血流信息形成的图像,所述携带脑血流信息的脑血管图像为脑血管图像并且脑血管中配置相应的脑血流图像。
进一步,所述脑血流信息可以包括灰阶、血流速度、以及血流方向,根据所述获取到第一预设数量*第二预设数量的回波数据对应的脑血流数据,通过三维成像算法可以得到颅内脑血流三维图像。所述脑血管三维图像可以包括脑血管形态和和脑血管间相互位置,其中,脑血管形态可以包括脑血管的位置信息、形状信息以及尺寸信息等。所述携带脑血流信息的脑血管三维图像包括脑血管形态以及相应的血流动力学信息,其中,所述血流动力学信息可以根据血流速度以及能量值而确定,所述脑血管形态和脑血管间相互位置可以根据回波数据进行三维血管(血流)重建,再进行三维图像分割已提取三维血管,最后通过三维重建成像得到脑血管三维图像。其中,所述三维重建成像可以采用采样滤波算法、FFT变换、希尔伯特变换、自相关运算、插值算法、基于GPU的并行化重建实时呈像以及三维血流分割提取技术等。
同时在实施例中,所述脑血管三维脑血管和/或及脑血流图像可以为三维灰阶图像,也可以是三维彩色图像。当所述图像为三维灰阶图像时,所述根据所述脑血流信息生成三维脑血管和/或及脑血流图像可以包括:提取各扫描位置的位置信息,并根据位置信息对应的回波信号获取所述位置信息对应脑血流信息,其中,所述脑血流信息至少包括血流方向、血流速度;根据所述位置信息以及所述位置信息对应脑血流信息生成颅内三维脑血管和/或及脑血流图像。其中,具体地,所述三维脑血管和/或及脑血流图像是通过三维重建成得到,所述三维重建算法可以采用贝塞尔三维插值算法。
此外,当所述图像为三维彩色图像时,根据所述脑血流信息生成三维脑血管和/或及脑血流图像可以包括:提取各扫描位置的位置信息,并根据位置信息对 应的回波信号获取所述位置信息对应脑血流信息,其中,所述脑血流信息至少包括血流速度、以及灰阶信息;根据所述位置信息以及所述位置信息对应脑血流信息生成三维脑血管灰阶图像。其中,根据获取到的回波数据、其对应的扫描位置以及扫描深度可以将根据相应的空间位置信息,将各回波数据对应的二维图像映射到三维体中,然后利用三维插值重建算法得到连续完整的三维灰阶图。其中,所述三维灰阶图未携带无血流方向的就为灰阶图像,并且当三维灰阶图通过界面分割剖面显示时,可以得到B超图像。在实际应用中,三维灰阶图可以在细小血管不明显或者把细小血管过滤掉的情况下,可以通过不同灰阶颜色的明暗程度协助医生进行临床分析。
S30、将各三维脑血管空间位置图按照其对应的探测顺序进行复合,以得到三维脑血管图像。
具体地,所述探测顺序为在时间上各探测位置被探测的顺序。所述探测顺序可以根据环阵探头的移动顺序而确定。例如,如图4所述,所述环阵探测依次从A点移动至D点,并且A点至D点均为探测位置,那么A点到D点的探测顺序为A点、B点、C点以及D点。相应的,所述将各三维脑血管空间位置图按照其对应的探测顺序进行复合,以得到三维脑血管图像具体可以包括:
S31、获取环阵探头的移动顺序,并根据所述移动顺序获取各探测位置的探测顺序;
S32、根据所述探测顺序确定各三维脑血管空间位置图的复合顺序,并按照所述复合顺序将各三维血管空间位置图进行复合,以生成三维脑血管图像。
具体地,所述按照复合顺序将各三维血管空间位置图进行复合指的是首先将处于将各三维血管空间位置图按照复合顺序依次进行复合,即首先将第一复合顺序的三维血管空间位置图和第二复合顺序的三维血管空间位置图进行复合以得到第一三维血管图像,再将第一三维血管图像与第三复合顺序的三维血管空间位置图进行复合得到第二三维血管图像,依次类推直至完成所有三维血管空间位置图的复合。
此外,在三维血管空间位置图进行复合时,是以各一预设参考点为参考进行的,所述预设参考点通过环阵探头获取。所述环阵探头包括两个探头,并两个探头同时与头部相接触(例如,分别置于头部左右颞窗位置)且同时进行超声波扫 描,这样根据两个环阵换能器可以获取头部左右中心,这里将所述头部左右中心作为参考点。相应的,所述根据所述探测顺序确定各三维脑血管空间位置图的复合顺序,并按照所述复合顺序将各三维血管空间位置图进行复合,以生成三维脑血管图像具体包括:
S321、获取所述环阵探头的左右探头的位置,并根据所述左右探头的位置确定颅内参考点;
S322、以所述参考点为依据,将各三维血管空间位置图按照复合顺序进行复合,以生成三维血管图像。
实施例二
本实施例提供了一种经颅三维脑血管复合成像方法,本实施与实施例一的成像过程相同,其不同之处在于环阵探头对于各扫描位置的回波数据的获取采集过程,从而这里环阵探头对于各扫描位置的回波数据的获取采集过程详细说明。所述环阵探头数据采集过程具体可以包括:
A、按照预设摆动轨迹调整探头角度和扫描深度,并在扫描位置向颅内发送多束聚焦超声波信号,分别接收多束超声波信号的回波信号并记录扫描位置以及各扫描深度的回波信号;
B、在所述扫描位置发送多束超声波信号并接收多次超声波信号的回波信号,并保留所述扫描位置的最强的回波信号;
C、根据扫描位置以及各扫描深度对个各回波信号对应的血管位置,将环阵探头摆动第一探头角度,并重复步骤B的步骤直至探头角度序列中所有的探头角度均被覆盖已完成所述扫描位置的采集,并将环阵探头摆动至下一扫描位置并步骤A-C直至完成预设摆动轨迹。
具体地,所述环阵探头向扫描位置对应的颅内的脑血管发出超声波信号,接收超声波信号的回波信号并在所述回波信号提取第一预设数量的回波数据,根据所述第一预设数量的回波数据对应的时间点确定各回波数据对应的探测深度,以得到扫描位置对应的探测深度集合。对于探测深度集合内的第一探测深度,首先摆转环阵探头至第一预设角度,并想所述第一探测深度发送超声波信号,并获取所述超声波信号的当前回波信号的当前回波信号强度;若当前回波信号强度大于已存储的回波信号强度,则采用当前回波信号强度及其对应的当前环阵探头角度 更新已存储的回波信号强度以及其对应的环阵探头角度,直至预设探头角度序列中所有的探头角度均被覆盖后,对探测深度集合的第二探测深度重复上述过程直至所述探测深度集合内的所有探测深度被覆盖。根据预设摆动轨迹以及预设摆动角度摆动环阵探头至下一扫描点。例如,在环阵探头的探测深度确定后,在纵向上可以获取连续深度的血流动力学信息;采用机械结构精确调整探头偏转角度,当扫描到第一点时,获取第一点的回波信号,在通过环阵探头的偏转角度、深度计算对第一点对应的空间位置;因为是球形转体,偏转角度可在空间形成圆锥形,从而可测得血管横截面的位置信息;再将环阵摆动在第二点进行扫描时,获取第二点的回波信号;再偏转角度到达第三点,获取第三点的回波信号,从而可以根据第一点、第二点以及第三点点确定回波信号最强点以及血管边界位置信息;同时在其它方位上同样可获取到血流动力学信息,从而组成一段血管范围的血管动力学信息。再通过调整探头深度,再获取不同深度范围的回波信号可以得到相应的脑血流信息,通过血管位置计算出血管三维空间位置及大小,通过血流速度、能量值计算出血管血流形态。当然,对于每个探测深度均可以发送多束超声波脉冲,根据多束超声波脉冲的回波信号来确定该位置的回波数据,这个过程在实施例一中已经说明,这里就不在赘述。
进一步,在获取探头角度和按探头角度序列扫描的同时,可实时接收当前探头角度对应的当前回波信号,并实时获取当前回波信号对应的当前回波信号强度,根据预先设置的回波信号强度区间-信号显示颜色列表判断当前回波信号强度的信号显示颜色,并在预设的显示屏对应的显示点上进行实时显示。当然,在实际应用中,可以预先划分回波信号强度区间,并将回波信号强度区间与颜色进行一样对应,当信号强度属于该回波信号强度区间时,将所述回波信号的颜色设置为用该信号强度区间对应的颜色。例如,预先设置回波信号强度区间-信号显示颜色列表,其中,所述回波信号强度区间-信号显示颜色列表中包括第一回波信号强度区间、第二回波信号强度区间及第三回波信号强度区间,与第一回波信号强度区间对应的黑色信号显示色、与第二回波信号强度区间对应的蓝色信号显示色及与第三回波信号强度区间对应的红色信号显示色。那么当接收当前探头角度对应的当前回波信号时,获取当前回波信号对应的当前回波信号强度,并将当前回波信号强度与所述回波信号强度区间-信号显示颜色列表进行匹配;若当前回波 信号强度处于第一回波信号强度区间,则在显示屏上对应的显示点以黑色进行显示;若当前回波信号强度处于第二回波信号强度区间,则在显示屏上对应的显示点以蓝色进行显示;若当前回波信号强度处于第三回波信号强度区间,则在显示屏上对应的显示点以红色进行显示。
基于上述经颅三维脑血管复合成像方法,本发明还提供了一种经颅三维脑血管成像系统,如图5所示,其包括环阵探头100以及控制装置200,所述环阵探头用于通过机械装置控制对颅内进行超声波聚焦扫描,接收各扫描位置的回波信号;所述控制装置用于实现如上所述的经颅三维脑血管复合成像方法中的步骤。
在经颅三维脑血管成像系统中,所述控制装置包括经颅处理装置以及终端设备,所述经颅处理装置连接环阵探头和终端设备,所述经颅处理装置用于将终端设备的控制信号发送至环阵探头,并存储环阵探头采集的回波信号。
在经颅三维脑血管成像系统中,如图6所示,所述终端设备包括至少一个处理器(processor)20;显示屏21;以及存储器(memory)22,还可以包括通信接口(Communications Interface)23和总线24。其中,处理器20、显示屏21、存储器22和通信接口23可以通过总线24完成相互间的通信。显示屏21设置为显示初始设置模式中预设的用户引导界面。通信接口23可以传输信息。处理器20可以调用存储器22中的逻辑指令,以执行上述实施例中的方法。
此外,上述的存储器22中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器22作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令或模块。处理器20通过运行存储在存储器22中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现上述实施例中的方法。
存储器22可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器22可以包括高速随机存取存储器,还可以包括非易失性存储器。例如,U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(RandomAccess Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
此外,上述存储介质以及移动终端中的多条指令处理器加载并执行的具体过程在上述方法中已经详细说明,在这里就不再一一陈述。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (16)

  1. 一种经颅三维脑血管复合成像方法,其特征在于,其包括:
    利用机械装置控制的环阵探头分别从至少两个探测位置对颅内进行超声波聚焦扫描,并接收各探测位置的回波信息;
    分别根据各探测位置对应的回波信息生成相应的三维脑血管空间位置图;
    将各三维脑血管空间位置图按照其对应的探测顺序进行复合,以得到三维脑血管图像。
  2. 根据权利要求1所述经颅三维脑血管复合成像方法,其特征在于,所述机械装置控制的环阵探头为由舵机和连杆控制的自动环阵探头或者由机械臂控制的环阵探头中的一种。
  3. 根据权利要求1或2所述经颅三维脑血管成像方法,其特征在于,所述机械装置用于带动所述环阵探头摆动,所述环阵探头用于向颅内发射聚焦超声波信号,并聚焦接收所述超声波信号回波信号的探头。
  4. 根据权利要求1所述经颅三维脑血管复合成像方法,其特征在于,所述利用机械装置控制的环阵探头分别从至少两个探测位置对颅内进行超声波聚焦扫描,并接收各探测位置的回波信号:
    将环阵探头置于第一探测位置,通过机械装置控制环阵探头按照预设摆动轨迹摆动,并获取第一探测位置对应的预设数量的回波信息;
    控制环阵探头移动至第二探测位置,重复控制环阵探头摆动以及获取回波信息的操作直至环阵探头移动至各探测位置,以获取各探测位置的回波信息。
  5. 根据权利要求4所述经颅三维脑血管复合成像方法,其特征在于,所述将环阵探头置于第一探测位置,通过机械装置控制环阵探头按照预设摆动轨迹摆动,并获取第一探测位置对应的预设数量的回波信息具体包括:
    将环阵探头置于第一探测位置的第一扫描位置,控制环阵探头的各阵元向预设深度范围发送延时不同的第一超声波信号,以使得所述第一超声波信号在波束轴向上聚焦于所述预设深度范围;
    接收所述第一超声波信号的第一回波信号,并在处于预设深度范围的第一回波信号中提取第一预设数量的第一回波信息;
    通过机械装置控制所述环阵探头按预设轨迹摆动预设角度,发送延时不同的第二超声波信号以获取第一预设数量的第二回波信息;
    依次控制环阵探头按照预设轨迹摆动直至运动结束,以获取第一探测位置的对应的预设数量的回波信息。
  6. 根据权利要求5所述经颅三维脑血管复合成像方法,其特征在于,所述将环阵探头置于第一探测位置的第一扫描位置,控制环阵探头的各阵元向预设深度范围发送延时不同的第一超声波信号,以使得所述第一超声波信号在波束轴向上聚焦于所述预设深度范围具体包括:
    获取所述第一探测位置的第一扫描位置对应的预设深度范围,并将所述预设深度范围划分为若干子深度范围;
    控制环阵探头的各阵元向依次向各子深度范围发送延时不同的第一超声波信号,以使得第一超声波信号分别在波束轴向上聚焦于各子深度范围。
  7. 根据权利要求6所述经颅三维脑血管复合成像方法,其特征在于,所述获取所述第一探测位置的第一扫描位置对应的预设深度范围,并将所述预设深度范围划分为若干子深度范围还包括:
    获取所述若干子深度范围的数量,并且确定所述第一预设数量与所述数量的商,并将所述商作为每个子深度范围对应的回波信号中提取所述回波数据的数量。
  8. 根据权利要求5或6所述经颅三维脑血管复合成像方法,其特征在于,所述将环阵探头置于第一探测位置的第一扫描位置,控制环阵探头的各阵元向预设深度范围发送延时不同的第一超声波信号,以使得所述第一超声波信号在波束轴向上聚焦于所述预设深度范围具体为:
    将环阵探头置于第一探测位置的第一扫描位置,控制环阵探头的各阵元在预设时间内向预设深度范围发送多束延时不同的第一超声波信号,以使得所述第一超声波信号在波束轴向上聚焦于所述预设深度范围。
  9. 根据权利要求8所述经颅三维脑血管复合成像方法,其特征在于,所述接收所述第一超声波信号的第一回波信号,并在处于预设深度范围的第一回波信号中提取第一预设数量的第一回波数据具体包括:
    依次接收各束第一超声波信号的各第一回波信号,并根据各阵元的接收聚焦延时时间对各第一回波信息进行延时输出累加运算,以得到各束第一超声波信号对应的聚焦回波信号;
    根据所述各聚焦回波信号获取第一预设数量的第一回波数据,并对各聚焦回 波信号进行筛选以得到第一扫描位置对应的回波信息,以及根据各聚焦回波信号形成频谱信息。
  10. 根据权利要求4所述经颅三维脑血管复合成像方法,其特征在于,所述预设摆动轨迹为“回”字型,所述预设角度为0.6度。
  11. 根据权利要求4所述经颅三维脑血管复合成像方法,其特征在于,所述预设深度范围为20mm至100mm。
  12. 根据权利要求1所述经颅三维脑血管成像方法,其特征在于,所述利用机械装置控制的环阵探头对颅内进行超声波聚焦扫描,接收各扫描位置的回波信号具体包括:
    按照预设摆动轨迹调整探头角度和扫描深度,并在扫描位置向颅内发送多束聚焦超声波信号,分别接收多束超声波信号的回波信号并记录扫描位置以及各扫描深度的回波信号;
    在所述扫描位置发送多束超声波信号并接收多次超声波信号的回波信号,并保留所述扫描位置的最强的回波信号;
    根据扫描位置以及各扫描深度对个各回波信号对应的血管位置,将环阵探头摆动第一探头角度,并重复发送发送多束超声波信号的步骤直至所有的探头角度均被覆盖;
    并将环阵探头摆动至下一扫描位置并重复发送发送多束超声波信以及环阵探头摆动至完成预设摆动轨迹。
  13. 根据权利要求1所述经颅三维脑血管成像方法,其特征在于,所述利用机械装置控制的环阵探头对颅内进行超声波聚焦扫描,接收各扫描位置的回波信号之后还包括:
    当接收到当前回波信号时,将获取当前回波信号对应的当前回波信号强度;
    根据预先设置的回波信号强度区间-信号显示颜色列表判断当前回波信号强度的信号显示颜色,并在预设的显示屏对应的显示点上进行实时显示。
  14. 根据权利要求1所述经颅三维脑血管复合成像方法,其特征在于,所述将各三维脑血管空间位置图按照其对应的探测顺序进行复合,以得到三维脑血管图像具体包括:
    获取环阵探头的移动顺序,并根据所述移动顺序获取各探测位置的探测顺序;
    根据所述探测顺序确定各三维脑血管空间位置图的复合顺序,并按照所述复合顺序将各三维血管空间位置图进行复合,以生成三维脑血管图像。
  15. 根据权利要求14所述经颅三维脑血管复合成像方法,其特征在于,所述根据所述探测顺序确定各三维脑血管空间位置图的复合顺序,并按照所述复合顺序将各三维血管空间位置图进行复合,以生成三维脑血管图像具体包括:
    获取所述环阵探头的左右探头的位置,并根据所述左右探头的位置确定颅内参考点;
    以所述参考点为依据,将各三维血管空间位置图按照复合顺序进行复合,以生成三维血管图像。
  16. 一种经颅三维脑血管成像系统,其特征在于,其包括环阵探头以及控制装置,所述环阵探头通过机械装置控制对颅内进行超声波聚焦扫描,接收各扫描位置的回波信号;所述控制装置用于实现如权利要求1-15任一所述的经颅三维脑血管复合成像方法中的步骤。
PCT/CN2018/106031 2018-05-07 2018-09-17 一种经颅三维脑血管复合成像方法及系统 WO2019214127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810425009.5A CN108852415A (zh) 2018-05-07 2018-05-07 一种经颅三维脑血管复合成像方法及系统
CN201810425009.5 2018-05-07

Publications (1)

Publication Number Publication Date
WO2019214127A1 true WO2019214127A1 (zh) 2019-11-14

Family

ID=64327363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106031 WO2019214127A1 (zh) 2018-05-07 2018-09-17 一种经颅三维脑血管复合成像方法及系统

Country Status (2)

Country Link
CN (1) CN108852415A (zh)
WO (1) WO2019214127A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108852414A (zh) * 2018-05-07 2018-11-23 深圳市德力凯医疗设备股份有限公司 一种经颅三维脑血管成像方法及系统
CN112057167B (zh) * 2019-05-22 2022-05-24 深圳市德力凯医疗设备股份有限公司 一种血管手术超声导航方法以及超声导航设备
CN110448334A (zh) * 2019-08-12 2019-11-15 云南中医药大学 一种血管成像的检测方法
CN110623686B (zh) * 2019-08-14 2023-03-21 深圳市德力凯医疗设备股份有限公司 一种脑血流数据的显示方法、存储介质及终端设备
CN110811688B (zh) * 2019-12-02 2021-10-01 云南大学 多角度平面波重复复合的超快超声多普勒血流估计方法
CN111110278B (zh) * 2019-12-30 2022-07-05 深圳市德力凯医疗设备股份有限公司 一种采集参数的配置方法、存储介质及超声设备
WO2021253230A1 (zh) * 2020-06-16 2021-12-23 深圳迈瑞生物医疗电子股份有限公司 超声成像方法、超声成像系统及计算机存储介质
CN112472126B (zh) * 2020-11-30 2024-05-28 中国科学院苏州生物医学工程技术研究所 非整数维机械扫描式超声探头及成像系统和成像方法
CN112353419B (zh) * 2020-11-30 2024-03-15 中国科学院苏州生物医学工程技术研究所 多阵元扫描式超声波探头及超声成像系统和超声成像方法
CN113040821B (zh) * 2021-03-02 2023-03-31 深圳市德力凯医疗设备股份有限公司 颅内脑血流三维成像去噪方法、装置、终端设备及存储介质
CN113616242A (zh) * 2021-07-05 2021-11-09 青岛大学附属医院 一种超声经颅多普勒采集装置及系统
CN113576624B (zh) * 2021-08-27 2023-03-31 珠海医凯电子科技有限公司 基于中心穿刺探头的穿刺深度检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050131295A1 (en) * 2003-12-11 2005-06-16 Koninklijke Philips Electronics N.V. Volumetric ultrasound imaging system using two-dimensional array transducer
CN101940479A (zh) * 2010-07-15 2011-01-12 重庆大学 基于分段动态变迹系数的超声成像波束合成方法及其装置
CN105030278A (zh) * 2015-05-21 2015-11-11 深圳市德力凯电子有限公司 一种用于自动扫描颅内脑血管的方法及系统
CN105232086A (zh) * 2015-10-29 2016-01-13 深圳市德力凯医疗设备股份有限公司 一种基于经颅多普勒的颅内血流三维信息显示方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3688566B2 (ja) * 2000-08-15 2005-08-31 アロカ株式会社 超音波診断装置
WO2012162272A1 (en) * 2011-05-20 2012-11-29 Doheny Eye Institute Ocular ultrasound probe
CN103186091A (zh) * 2011-12-30 2013-07-03 北京理工大学 一种全息三维数字图像叠加的显示方法
CN103549977A (zh) * 2013-11-05 2014-02-05 深圳大学 一种经颅多普勒平面环形相控阵探头
CN104068845B (zh) * 2014-03-06 2016-07-06 武汉培威医学科技有限公司 一种心电超声信号融合断层扫描成像系统及方法
JP6006249B2 (ja) * 2014-03-24 2016-10-12 富士フイルム株式会社 音響波処理装置、音響波処理装置の信号処理方法およびプログラム
CN106859695B (zh) * 2017-01-13 2020-04-14 飞依诺科技(苏州)有限公司 应用于超声探头的q帧t孔径复合发射成像方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050131295A1 (en) * 2003-12-11 2005-06-16 Koninklijke Philips Electronics N.V. Volumetric ultrasound imaging system using two-dimensional array transducer
CN101940479A (zh) * 2010-07-15 2011-01-12 重庆大学 基于分段动态变迹系数的超声成像波束合成方法及其装置
CN105030278A (zh) * 2015-05-21 2015-11-11 深圳市德力凯电子有限公司 一种用于自动扫描颅内脑血管的方法及系统
CN105232086A (zh) * 2015-10-29 2016-01-13 深圳市德力凯医疗设备股份有限公司 一种基于经颅多普勒的颅内血流三维信息显示方法及系统

Also Published As

Publication number Publication date
CN108852415A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2019214127A1 (zh) 一种经颅三维脑血管复合成像方法及系统
WO2019214134A1 (zh) 一种经颅三维脑血管成像方法及系统
US10653392B2 (en) Ultrasound imaging using apparent point-source transmit transducer
JP4730125B2 (ja) 血流画像表示装置
JP7346542B2 (ja) 超音波コントローラユニット及び方法
US8798342B2 (en) Method and system for ultrasound imaging with cross-plane images
JP2015085201A (ja) 被検体情報取得装置
US20080177182A1 (en) Ultrasonic imaging apparatus and method for acquiring ultrasonic image
EP2610641B1 (en) Ultrasound and system for forming a Doppler ultrasound image
CN111110277B (zh) 超声成像方法、超声设备及存储介质
JP7346586B2 (ja) 合成3d超音波画像を取得するための方法及びシステム
US10575823B2 (en) Medical diagnostic apparatus, medical image processing apparatus and medical image processing method
KR20150118493A (ko) 초음파 장치 및 그 제어 방법
CN108135570B (zh) 超声成像设备和超声成像设备的控制方法
JP7167045B2 (ja) 音響センサーを位置決めするためのロケーションデバイス及びシステム
WO2017051903A1 (ja) 超音波診断システム及び超音波診断方法
CN113164156A (zh) 用于引导式超声数据采集的系统和方法
US20100191115A1 (en) Ultrasound imaging system and method
WO2019058753A1 (ja) 超音波診断装置および超音波診断装置の制御方法
US20210059644A1 (en) Retrospective multimodal high frame rate imaging
KR20180096342A (ko) 초음파 영상장치 및 그 제어방법
JP5317391B2 (ja) 超音波診断装置
TWI431270B (zh) 高頻超音波成像系統及方法
KR20150118732A (ko) 초음파 장치 및 그 제어 방법
US20220361961A1 (en) An ultrasound system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918284

Country of ref document: EP

Kind code of ref document: A1