WO2019210481A1 - 一种微沟槽加工用的砂轮工具及其制造方法 - Google Patents

一种微沟槽加工用的砂轮工具及其制造方法 Download PDF

Info

Publication number
WO2019210481A1
WO2019210481A1 PCT/CN2018/085464 CN2018085464W WO2019210481A1 WO 2019210481 A1 WO2019210481 A1 WO 2019210481A1 CN 2018085464 W CN2018085464 W CN 2018085464W WO 2019210481 A1 WO2019210481 A1 WO 2019210481A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding wheel
thin
thin grinding
groove
micro
Prior art date
Application number
PCT/CN2018/085464
Other languages
English (en)
French (fr)
Inventor
伍晓宇
鲁艳军
雷建国
周超兰
吴稳
阮双琛
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2018/085464 priority Critical patent/WO2019210481A1/zh
Priority to CN201880000382.4A priority patent/CN109070315B/zh
Priority to US16/347,796 priority patent/US20200122300A1/en
Publication of WO2019210481A1 publication Critical patent/WO2019210481A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/18Wheels of special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/06Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
    • B24D5/066Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental with segments mounted axially one against the other

Definitions

  • the present invention belongs to the technical field of grinding processing tools, and more particularly to a grinding wheel tool for micro groove processing and a manufacturing method thereof.
  • micro-machining methods such as laser, electron beam, ion beam, and chemical etching.
  • these etching processing methods are expensive in production equipment, have a long production cycle, and are accompanied by corrosive liquids which are difficult to handle, and are liable to cause environmental pollution, thereby limiting their development.
  • Precision micro-grinding is one of the effective processing methods for preparing surface micro-trench structures.
  • the conventional grinding tool for fine grinding wears out, and the contour of the grinding wheel tool needs high-precision trimming to ensure the shape accuracy of the micro-groove structure processing. Therefore, the grinding wheel tool needs to be frequently offline or online. It is difficult to ensure long-term continuous processing and low production and processing efficiency.
  • the present invention provides a grinding wheel tool capable of maintaining the shape of the outer edge contour at all times, without repeated trimming of the grinding wheel tool.
  • the shape accuracy of the micro-groove grinding is always ensured, the processing efficiency of the microstructure is greatly improved, and the surface of the aluminum alloy, the titanium alloy, the mold steel, the tungsten carbide and the like is environmentally-friendly and highly efficient.
  • the purpose of the solution is to provide a grinding wheel tool for micro groove processing and a manufacturing method thereof, so as to solve the technology that the grinding wheel tool in the prior art wears fast, it is difficult to ensure continuous processing for a long time, and the processing efficiency is low. problem.
  • the technical solution adopted by the present invention is to provide a grinding wheel tool for micro-groove machining, comprising a grinding wheel tool body, wherein the grinding wheel tool body is sequentially formed by a plurality of thin grinding wheels along a thickness direction of the thin grinding wheel Stacked, the thin grinding wheel has an outer end surface, and all outer end faces of the thin grinding wheel form a machining end surface of the grinding wheel tool body, and each of the thin grinding wheels has a slit on the outer end surface thereof, and different thin grinding wheels
  • the width of the upper slit is different, and the outer circumference of the different thin grinding wheels is different; the smaller the width of the slit is, the larger the outer circumference of the thin grinding wheel is, and the outer end surface of the thin grinding wheel wears slowly;
  • the number of slots on each of the thin grinding wheels is plural, and a plurality of the slits on each of the thin grinding wheels are evenly arranged along the circumferential direction of the thin grinding wheel.
  • the slit includes a bottom surface of the groove and two groove side surfaces integrally connected with opposite side edges of the bottom surface of the groove, and an angle formed between the sides of the two grooves is 0° to 60°.
  • the depth of the slit is 0.5 to 10 mm.
  • the fret wheel includes a superabrasive and a binder.
  • the superabrasive has a particle size of 0.1 to 50 ⁇ m.
  • the superabrasive material comprises one or more of diamond, cubic boron nitride, silicon carbide
  • the bonding agent comprises one or more of a metal bonding agent, a resin bonding agent, and a ceramic bonding agent.
  • the shape of the thin grinding wheel is a circular ring, the outer diameter of the thin grinding wheel is 50 to 200 mm, the inner diameter of the thin grinding wheel is 15 to 45 mm, and the thickness of the thin grinding wheel is 10 to 200. Mm.
  • the number of the thin grinding wheels is at least three, and the width of the slits is gradually increased from the thin grinding wheel at the intermediate position toward the thin grinding wheel at the both sides.
  • contour shape of the machined end surface is V-shaped, U-shaped, inverted U-shaped, inverted V-shaped or obliquely-shaped.
  • the solution also provides a method for manufacturing a micro-groove, which is processed by the grinding wheel tool for micro-groove processing as described above, and includes the following steps:
  • step A The thin-plate grinding wheels obtained in step A are assembled in a preset stacking order to obtain a grinding wheel tool body;
  • step C Grinding the workpiece by the grinding wheel tool body obtained in step B, the width of the slit on different thin grinding wheels is different, and the outer circumference of different thin grinding wheels is different; the smaller the width of the slit The outer circumference of the thin grinding wheel is larger, the outer end surface of the thin grinding wheel wears slowly; the larger the width of the cutting groove is, the smaller the outer circumference of the thin grinding wheel is, and the outer end surface of the thin grinding wheel wears off quickly.
  • the contour shape of the machined end surface of the grinding wheel tool body is trimmed into a preset shape, and micro grooves having a longitudinal cross-sectional shape conforming to the contour shape of the machined end surface are machined on the workpiece.
  • the grinding wheel tool for micro-groove machining provided by the present scheme has different widths of the slits on different grinding wheel pieces, resulting in different wear speeds of the outer end faces of different grinding wheel pieces, and the groove is different.
  • the outer end surface of the grinding wheel piece having a large width is small, the wear is fast, and the outer end surface of the grinding wheel piece having a small groove width is large, and the wear is slow, so that the contour shape of the machined end surface of the grinding wheel tool body is gradually trimmed into a stable shape, and the machined end face is finished.
  • the contour shape can be kept constant, so that the grinding wheel tool has self-dressing ability, and does not need frequent sharpening trimming, thereby effectively improving the grinding efficiency and improving the shape precision of the micro-groove processing.
  • the micro-groove processing technology of the grinding wheel tool provided by the scheme can ensure the shape precision of the micro-groove processing and achieve high efficiency and environmental protection compared with the existing photochemical etching processing techniques such as laser processing and hot stamping technology. High precision micromachining.
  • the grinding wheel tool of the present scheme can change the contour of the processing end surface of the grinding wheel tool body to a V shape, a U shape, or the like by changing the width of the cutting groove and the stacking order of the respective grinding wheels. Micro-grooves of various shapes are processed.
  • FIG. 1 is a schematic structural view of an abrasive wheel tool for micro-groove processing according to an embodiment of the present invention
  • Figure 2 is a side view of Figure 1;
  • FIG. 3 is a schematic view showing a state of a grinding wheel tool for micro-groove processing according to an embodiment of the present invention, wherein a contour shape of a machining end surface of the grinding wheel tool body is V-shaped;
  • Figure 4 is a side view of Figure 3;
  • Figure 5 is a schematic view showing the structure of the workpiece processed by the grinding wheel tool body of Figure 3;
  • Figure 6 is a front elevational view of one of the thin grinding wheels of Figure 3;
  • FIG. 7 is a schematic view showing a state of a grinding wheel tool for micro-groove processing according to an embodiment of the present invention, wherein a contour of a machining end surface of the grinding wheel tool body is U-shaped;
  • Figure 8 is a side view of Figure 7;
  • Figure 9 is a schematic view showing the structure of the workpiece processed by the grinding wheel tool body of Figure 7;
  • FIG. 10 is a schematic flow chart of a method for manufacturing a microgroove according to an embodiment of the present disclosure.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined.
  • the grinding wheel tool for micro-groove machining includes a grinding wheel tool body 10, and the grinding wheel tool body 10 is sequentially stacked by a plurality of thin grinding wheels 11 along a thickness direction of the thin grinding wheel, and the thin grinding wheel 11 has The outer end faces, the outer end faces of all the thin grinding wheels form the machined end faces 12 of the grinding wheel tool body 10, and the machined end faces 12 are used to machine the microgrooves 201.
  • a slit 101 is defined in an outer end surface of each of the thin grinding wheels 11, and the width W of the slit 101 on the different thin grinding wheels is different, and the outer circumference of the different thin grinding wheels 11 is different; the slit 101 The smaller the width of the outer periphery of the thin grinding wheel 11, the larger the outer end surface of the thin grinding wheel 11 is worn; the larger the width of the slit 101, the smaller the outer peripheral circumference of the thin grinding wheel 11, The outer end surface of the thin grinding wheel 11 is worn fast, thereby forming the machined end surface 12 having a contour shape of a predetermined shape.
  • each of the thin grinding wheels has the same initial diameter.
  • the outer end faces of all the thin grinding wheels are flush, that is, the machined end faces 12 of the grinding wheel tools are flat.
  • the outer peripheral circumferences of the different thin grinding wheels 11 are different, thereby making the difference The wear speed of the outer end surface of the thin grinding wheel is different. The smaller the width of the slit 101 is, the larger the outer circumference of the thin grinding wheel 11 is, and the outer end surface of the thin grinding wheel 11 wears slowly; the width of the slit 101 is larger.
  • the contour shape of the machining end surface of the grinding wheel tool body is gradually trimmed into a stable pre-preparation.
  • the shape is set so that the grinding wheel tool has the self-trimming ability, the contour shape of the machining end surface can be kept constant at all times, and frequent sharpening trimming is not required, thereby effectively improving the grinding efficiency and improving the shape precision of the micro-groove processing;
  • the invention solves the problem that the grinding wheel tool wears quickly in the micro-groove processing technology of the existing ordinary grinding wheel tool, and it is difficult to ensure continuous processing for a long time and processing Lower rate of problem.
  • the grinding wheel tool of the present embodiment can change the width of the cutting groove 101 to finally shape the contour shape of the machining end surface of the grinding wheel tool body into different shapes, so that micro-grooves of various shapes can be processed.
  • the number of slots 101 on each of the thin-plate grinding wheels is plural, each A plurality of slits 101 on the sheet grinding wheel are evenly arranged along the circumferential direction of the sheet grinding wheel, so that the shape of the outer end surface of the same sheet grinding wheel remains uniform during the processing of the microgroove.
  • the cutting groove 101 is along the radial direction of the thin grinding wheel.
  • the outer end of the thin grinding wheel faces the center of rotation of the thin grinding wheel.
  • the slit 101 includes a groove bottom surface 103 and two groove side surfaces 104 integrally connected with opposite side edges of the groove bottom surface 103, and an extension line between the intersections of the two groove side surfaces 104 passes through the thin-plate grinding wheel. The center of rotation.
  • the angle ⁇ formed between the two groove side faces 104 is 0° ⁇ 60°, and the angle ⁇ formed between the two groove side faces 104 may be 0°, 15°, 30°, 45°, 60°, etc., when the angle ⁇ formed between the two groove sides 104 is 0°, the width of the slit 101 on the thin grinding wheel is 0, that is, there is no slit on the thin grinding wheel.
  • the depth H of the slit 101 is 0.5 to 10 mm, for example, H may be 0.5 mm, 3 mm, 5 mm, 8 mm, 10 mm, or the like.
  • the thin-plate grinding wheel 11 comprises a super-hard abrasive and a bonding agent, and a super-abrasive abrasive and a thin-plate grinding wheel composed of a bonding agent are used.
  • High wear resistance Preferably, the superabrasive has a particle size of 0.1 to 50. ⁇ m, for example, may be 0.1 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 50 ⁇ m, or the like.
  • the superabrasive material comprises one or more of diamond, cubic boron nitride and silicon carbide
  • the bonding agent comprises one or more of a metal bonding agent, a resin bonding agent and a ceramic bonding agent.
  • the shape of the thin grinding wheel 11 is a circular ring, and the center of the thin grinding wheel 11 has The through hole, the outer diameter R1 of the thin grinding wheel is 50 to 200 mm.
  • the outer diameter R1 of the thin grinding wheel may be 50 mm, 100 mm, 150 mm, 200 mm, etc.
  • the inner diameter R2 of the thin grinding wheel is 15 ⁇ 45mm, for example, the inner diameter R2 of the thin grinding wheel may be 15 mm, 25 mm, 35 mm, 45 mm, etc.
  • the thickness of the thin grinding wheel 11 is 10 to 200 ⁇ m, for example, the thickness of the thin grinding wheel may be 10 ⁇ m, 50 ⁇ m, 100 ⁇ m, 200 ⁇ m, etc.
  • the number of the thin grinding wheels 11 is at least three, and the cutting is performed.
  • the width W of the groove 101 is gradually increased from the sheet grinding wheel at the intermediate position toward the sheet grinding wheel located at the two sides, so that the degree of wear of the outer end surface of the sheet grinding wheel gradually increases from the middle to the both sides. Thereby the contour shape of the machined end face finally forms the desired shape.
  • the number of the thin grinding wheels 11 is seven, and the inner side of the second thin grinding wheel and the inner side of the third thin grinding wheel are attached to both sides of the first thin grinding wheel, The inner side of the four thin grinding wheels is fitted to the outer side of the second thin grinding wheel, the inner side of the fifth thin grinding wheel is fitted to the outer side of the third thin grinding wheel, and the inner side of the sixth thin grinding wheel is opposite to the first The outer sides of the four thin grinding wheels are attached, and the inner side of the seventh thin grinding wheel is fitted to the outer side of the fifth thin grinding wheel.
  • the width of the slit on the first sheet grinding wheel ⁇ the width of the slit on the second sheet grinding wheel ⁇ the width of the slit on the fourth sheet grinding wheel ⁇ the sixth sheet
  • the width of the slot on the grinding wheel, and the width of the slot on the third wafer wheel is equal to the width of the slot on the second sheet wheel
  • the width of the slot on the fifth sheet wheel Equal to the width of the slit on the fourth sheet grinding wheel
  • the width of the slit on the seventh sheet grinding wheel is equal to the width of the slit on the sixth sheet grinding wheel, using the sheet in the embodiment
  • the grinding wheel tool body composed of the grinding wheel processes the micro-groove, and the contour shape of the machining end surface of the grinding wheel tool body may finally be V-shaped or U-shaped.
  • the first lamella wheel, the second lamella wheel, the third lamella wheel, the fourth lamella wheel, the fifth lamella wheel, the sixth lamella wheel, and the seventh lamella wheel each have a thickness of 100 ⁇ m.
  • the outer diameter R1 is 55 mm
  • the inner diameter R2 is 40 mm
  • the depth H of the grinding wheel and the slit 101 on the seventh thin grinding wheel is 5 mm.
  • the angle ⁇ formed between the two groove sides 104 of the slit 101 on the first sheet grinding wheel is 0°
  • the second sheet grinding wheel and the two groove sides 104 of the slit 101 on the third sheet grinding wheel The angle ⁇ formed between each is 5°
  • the angle ⁇ formed between the fourth sheet grinding wheel and the two groove sides 104 of the slit 101 on the fifth sheet grinding wheel is 10°
  • the sixth sheet grinding wheel The angle ⁇ formed between the two groove sides 104 of the slit 101 on the seventh sheet grinding wheel is 15°.
  • the number of the thin grinding wheels 11 may also be set according to actual conditions, for example, eight, ten, or the like.
  • the width W of the slit 101 may also be gradually reduced from the sheet grinding wheel at the intermediate position toward the sheet grinding wheel located at the two sides, so that the degree of wear of the outer end surface of the sheet grinding wheel is from the middle to the both sides.
  • the upper portion is gradually reduced, or the width W of the slit 101 may be gradually decreased or gradually increased from the sheet grinding wheel located at one side toward the sheet grinding wheel at the other side position, thereby causing the sheet of the thin grinding wheel
  • the degree of wear of the outer end surface of the grinding wheel gradually decreases or gradually increases from one side to the other side.
  • the adjacent two thin grinding wheels 11 are connected and fixed by pasting.
  • the adhesive can be attached and fixed on the adhesive surface of the adjacent two thin grinding wheels 11 .
  • the manner of fixing the connection between the adjacent two thin grinding wheels 11 is not limited thereto, for example, In other preferred embodiments of the solution, the adjacent two thin grinding wheels can also be connected and fixed by threading or snapping.
  • the contour of the machining end surface 12 may be V-shaped or U-shaped. , inverted U-shaped, inverted V-shaped or diagonal.
  • the present solution further provides a method for manufacturing a micro-groove, which is processed by the grinding wheel tool for micro-groove processing as described above, and includes steps S10, S20, and S30:
  • the width and the number of the slots can be set according to actual needs, and no limitation is imposed here.
  • the outer end faces of all the thin grinding wheels form the machined end faces of the grinding wheel tool body, and the machined end faces are used to machine the micro grooves.
  • step S20 The thin-plate grinding wheels obtained in step S10 are assembled in a preset stacking order to obtain a grinding wheel tool body.
  • the “preset stacking order” refers to selecting the stacking order between the individual thin grinding wheels according to actual needs, for example, when it is required to process the V-shaped or U-shaped micro-grooves.
  • the width of the groove is increased by the way from the middle to the two sides.
  • the width of the groove can be gradually reduced from the middle to the sides.
  • step S30 grinding the workpiece by using the grinding wheel tool body obtained in step S20, the width of the slit on different thin grinding wheels is different, and the outer circumference of different thin grinding wheels is different; the width of the slit is smaller
  • the outer circumference of the thin grinding wheel is larger, the outer end surface of the thin grinding wheel wears slowly; the larger the width of the cutting groove is, the smaller the outer circumference of the thin grinding wheel is, and the outer end surface of the thin grinding wheel wears off quickly.
  • the contour shape of the machined end surface of the grinding wheel tool body is trimmed into a preset shape, and micro grooves having a longitudinal cross-sectional shape conforming to the contour shape of the machined end surface are machined on the workpiece.
  • the contour shape of the processed end face is related to the width of the slit of the thin grinding wheel and the arrangement of the thin grinding wheel. By changing the width of the slit of the thin grinding wheel and the arrangement of the thin grinding wheel, different contour shapes can be obtained.
  • the machined end faces ultimately result in micro-grooves having different longitudinal cross-sectional shapes.
  • the contour shape of the machined end face can be selected according to the longitudinal cross-sectional shape of the micro-groove required for the workpiece, for example, when the longitudinal cross-sectional shape of the micro-groove needs to be V-shaped, U-shaped, inverted U-shaped, inverted V-shaped or obliquely shaped, Correspondingly, the contour shape of the machined end face needs to be trimmed into a V shape, a U shape, an inverted U shape, an inverted V shape or a diagonal line shape.
  • the workpiece can be a hard and brittle material such as aluminum alloy, die steel or titanium alloy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

一种微沟槽加工用的砂轮工具,包括砂轮工具本体(10),砂轮工具本体(10)由多个薄片砂轮(11)沿着薄片砂轮(11)的厚度方向依次叠设而成,各个薄片砂轮(11)的初始直径相同,通过切槽(101)使得各个薄片砂轮(11)的外缘周长不同,外缘周长大的薄片砂轮磨损慢,而周长小的磨损快,对相同深度微沟槽的磨削加工,砂轮工具本体(10)的加工端面(12)最终会形成稳定的轮廓形状,且通过切槽(101)可以调整各个薄片砂轮(11)外缘周长,从而形成不同的轮廓形状。以及一种制造微沟槽加工用的砂轮工具制造方法,该砂轮工具具有自修整能力,可始终保持加工端面的轮廓形状,无需进行频繁的修锐修整,有效提高磨削效率和加工形状精度,可加工不同形状的微沟槽。

Description

一种微沟槽加工用的砂轮工具及其制造方法 技术领域
本方案属于磨削加工工具技术领域,更具体地说,是涉及一种微沟槽加工用的砂轮工具及其制造方法。
背景技术
在光伏、生物化学和电子产品等的表面加工制造出尺寸为纳米到微米级的沟槽结构可以产生很多新的功能特性。目前,微纳结构表面的微细加工主要依赖于激光、电子束、离子束、化学腐蚀等微细加工方法。但是,这些蚀刻加工方法的生产设备昂贵,生产周期很长,且伴随有难以处理的腐蚀液等,容易造成环境污染的问题,从而限制了它们的发展。
精密微细磨削加工是制备表面微沟槽结构的有效加工手段之一。但是,传统的微细磨削用的砂轮工具会发生损耗,砂轮工具的外形轮廓需要进行高精度的修锐修整才能保证微沟槽结构加工的形状精度,因此需要对砂轮工具进行频繁的离线或者在线修锐和修整,难以保证长时间的持续加工,生产加工效率较低。
因此,为解决砂轮工具磨损较快,微沟槽结构加工效率较低等问题,本方案提供一种能够始终保持外缘轮廓形状的砂轮工具,不需要对砂轮工具进行反复的修锐修整,可以始终保证微沟槽磨削的形状精度,极大提高微结构加工效率,实现铝合金、钛合金、模具钢、碳化钨等材料表面环保、高效的精密微细加工。
技术问题
本方案的目的在于提供一种微沟槽加工用的砂轮工具及其制造方法,以解决现有技术中存在的砂轮工具磨损较快,难以保证长时间的持续加工,且加工效率较低的技术问题。
技术解决方案
为实现上述目的,本发明采用的技术方案是:提供一种微沟槽加工用的砂轮工具,包括砂轮工具本体,所述砂轮工具本体由多个薄片砂轮沿着所述薄片砂轮的厚度方向依次叠设而成,所述薄片砂轮具有外侧端面,所有所述薄片砂轮的外侧端面形成所述砂轮工具本体的加工端面,每个所述薄片砂轮的外侧端面上均开设有切槽,不同薄片砂轮上的所述切槽的宽度不同,不同薄片砂轮的外缘周长亦不同;所述切槽的宽度越小,所述薄片砂轮的外缘周长越大,所述薄片砂轮的外侧端面磨损慢;所述切槽的宽度越大,所述薄片砂轮的外缘周长越小,所述薄片砂轮的外侧端面磨损快,从而形成轮廓形状为预设形状的所述加工端面。
进一步地,每个所述薄片砂轮上的切槽的数量均为多个,每个所述薄片砂轮上的多个所述切槽沿着所述薄片砂轮的圆周方向均匀排布。
进一步地,所述切槽包括槽底面以及与所述槽底面的相对两侧边缘一体连接的两个槽侧面,两个所述槽侧面之间形成的夹角为0°~60°。
进一步地,所述切槽的深度为0.5~10 mm。
进一步地,所述薄片砂轮包括超硬磨料以及结合剂。
进一步地,所述超硬磨料的粒度为0.1~50 μm。
进一步地,所述超硬磨料包括金刚石、立方氮化硼、碳化硅中的一种或者几种,所述结合剂包括金属结合剂、树脂结合剂、陶瓷结合剂中的一种或者几种。
进一步地,所述薄片砂轮的形状为圆环形,所述薄片砂轮的外径为50~200 mm,所述薄片砂轮的内径为15~45 mm,所述薄片砂轮的厚度为10~200 µm。
进一步地,所述薄片砂轮的数量至少为三个,所述切槽的宽度由位于中间位置的薄片砂轮朝着位于两侧位置的薄片砂轮的方向上逐渐增大。
进一步地,相邻两个薄片砂轮之间通过粘贴的方式连接固定。
进一步地,所述加工端面的轮廓形状为V形、U形、倒U形、倒V形或者斜线状。
本方案还提供了一种微沟槽的制造方法,采用如上所述的微沟槽加工用的砂轮工具加工而成,包括以下步骤:
A、在若干薄片砂轮的外侧端面上开设宽度不同的切槽;
B、将步骤A得到的薄片砂轮按照预设叠设顺序组装得到砂轮工具本体;
C、利用步骤B得到的所述砂轮工具本体对工件进行磨削,不同薄片砂轮上的所述切槽的宽度不同,不同薄片砂轮的外缘周长亦不同;所述切槽的宽度越小,所述薄片砂轮的外缘周长越大,所述薄片砂轮的外侧端面磨损慢;所述切槽的宽度越大,所述薄片砂轮的外缘周长越小,所述薄片砂轮的外侧端面磨损快,从而将所述砂轮工具本体的加工端面的轮廓形状修整成预设形状,并在所述工件上加工出纵向截面形状与所述加工端面的轮廓形状一致的微沟槽。
有益效果
本方案提供的一种微沟槽加工用的砂轮工具及其制造方法的有益效果在于:与现有技术相比,本方案一种微沟槽加工用的砂轮工具及其制造方法具有以下优点:
(1)与现有普通砂轮工具相比,本方案提供的微沟槽加工用的砂轮工具,由于不同砂轮片上的切槽的宽度不同,造成不同砂轮片的外侧端面的磨损快慢不同,切槽宽度大的砂轮片的外侧端面小,磨损快,切槽宽度小的砂轮片的外侧端面大,磨损慢,因此使得砂轮工具本体的加工端面的轮廓形状逐渐修整成稳定的形状,且该加工端面的轮廓形状可以保持不变,从而使得砂轮工具具有自修整能力,不需要进行频繁的修锐修整,从而有效提高了磨削效率,提高微沟槽加工的形状精度。
(2)本方案提供的砂轮工具的微沟槽加工技术,与激光加工、热压印技术等现有光化学刻蚀加工技术相比,能够保证微沟槽加工的形状精度,实现高效、环保的高精度微细加工。
(3)本方案的砂轮工具可以通过改变切槽的宽度以及各薄片砂轮的叠设顺序,可以使得砂轮工具本体的加工端面的轮廓形状最终修整成V形、U形等不同的形状,从而可以加工出各种不同形状的微沟槽。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本方案实施例提供的一种微沟槽加工用的砂轮工具的组装后的结构示意图;
图2为图1的侧视图;
图3为本方案实施例提供的一种微沟槽加工用的砂轮工具的状态示意图,其中,砂轮工具本体的加工端面的轮廓形状为V形;
图4为图3的侧视图;
图5为采用图3的砂轮工具本体加工后的工件的结构示意图;
图6为图3中的其中一个薄片砂轮的正视图;
图7为本方案实施例提供的另一个微沟槽加工用的砂轮工具的状态示意图,其中,砂轮工具本体的加工端面的轮廓形状为U形;
图8为图7的侧视图;
图9为采用图7的砂轮工具本体对工件进行加工的结构示意图;
图10为本方案实施例提供的微沟槽的制造方法的流程示意图。
其中,图中各附图标记:
10-砂轮工具本体;11-薄片砂轮;101-切槽;103-槽底面;104-槽侧面;12-加工端面;20-工件;201-微沟槽。
本发明的实施方式
为了使本方案所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本方案进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本方案,并不用于限定本方案。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本方案和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本方案的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本方案的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请一并参阅图1至图6,现对本方案提供的一种微沟槽加工用的砂轮工具进行说明。所述微沟槽加工用的砂轮工具,包括砂轮工具本体10,所述砂轮工具本体10由多个薄片砂轮11沿着所述薄片砂轮的厚度方向依次叠设而成,所述薄片砂轮11具有外侧端面,所有所述薄片砂轮的外侧端面形成所述砂轮工具本体10的加工端面12,加工端面12用于加工微沟槽201。每个所述薄片砂轮11的外侧端面上均开设有切槽101,不同薄片砂轮上的所述切槽101的宽度W不同,不同薄片砂轮11的外缘周长亦不同;所述切槽101的宽度越小,所述薄片砂轮11的外缘周长越大,所述薄片砂轮11的外侧端面磨损慢;所述切槽101的宽度越大,所述薄片砂轮11的外缘周长越小,所述薄片砂轮11的外侧端面磨损快,从而形成轮廓形状为预设形状的所述加工端面12。
其中,每个所述薄片砂轮的初始直径均相同。初始状态下,所有薄片砂轮的外侧端面均平齐,即所述砂轮工具的加工端面12为平面。在利用砂轮工具本体在工件20上进行磨削加工微沟槽201的过程中,由于不同薄片砂轮上的切槽101的宽度不同,使得不同薄片砂轮11的外缘周长亦不同,从而使得不同薄片砂轮的外侧端面的磨损快慢不同,所述切槽101的宽度越小,所述薄片砂轮11的外缘周长越大,所述薄片砂轮11的外侧端面磨损慢;所述切槽101的宽度越大,所述薄片砂轮11的外缘周长越小,所述薄片砂轮11的外侧端面磨损快,对于相同深度微沟槽的磨削加工,砂轮工具本体的加工端面的轮廓形状逐渐修整成稳定的预设形状,从而使得砂轮工具具有自修整能力,加工端面的轮廓形状可以始终保持不变,不需要进行频繁的修锐修整,从而有效提高了磨削效率,提高微沟槽加工的形状精度;有效解决了现有普通砂轮工具微沟槽加工技术中砂轮工具磨损较快、难以保证长时间的持续加工、且加工效率较低的问题。另外,本方案的砂轮工具可以通过改变切槽101的宽度,可以使得砂轮工具本体的加工端面的轮廓形状最终修整成不同的形状,从而可以加工出各种不同形状的微沟槽。
进一步地,请参阅图6,作为本方案提供的一种微沟槽加工用的砂轮工具的一种具体实施方式,每个所述薄片砂轮上的切槽101的数量均为多个,每个所述薄片砂轮上的多个切槽101沿着所述薄片砂轮的圆周方向均匀排布,从而使得在微沟槽的加工过程中,同一个薄片砂轮的外侧端面的形状处处保持一致。
进一步地,请一并参阅图1至图6,作为本方案提供的一种微沟槽加工用的砂轮工具的一种具体实施方式,所述切槽101沿着所述薄片砂轮的径向方向由所述薄片砂轮的外侧端面向所述薄片砂轮的转动中心延伸。所述切槽101包括槽底面103以及与所述槽底面103的相对两侧边缘一体连接的两个槽侧面104,两个所述槽侧面104之间的交点所在的延长线经过所述薄片砂轮的转动中心。优选的,两个槽侧面104之间形成的夹角β为0°~60°,所述两个槽侧面104之间形成的夹角β可以为0°、15°、30°、45°、60°等,当两个槽侧面104之间形成的夹角β为0°时,薄片砂轮上的切槽101宽度为0,即薄片砂轮上没有切槽。所述切槽101的深度H为0.5~10 mm,例如H可以为0.5 mm、3 mm、5 mm、8 mm、10 mm等。
进一步地,作为本方案提供的一种微沟槽加工用的砂轮工具的一种具体实施方式,所述薄片砂轮11包括超硬磨料以及结合剂,选用超硬磨料以及结合剂组成的薄片砂轮,耐磨损程度高。优选的,所述超硬磨料的粒度为0.1~50 μm,例如可以为0.1 μm、10 μm 、20 μm 、30 μm 、50 μm等。具体的,所述超硬磨料包括金刚石、立方氮化硼、碳化硅中的一种或者几种,所述结合剂包括金属结合剂、树脂结合剂、陶瓷结合剂中的一种或者几种。
进一步地,请参阅图6,作为本方案提供的一种微沟槽加工用的砂轮工具的一种具体实施方式,所述薄片砂轮11的形状为圆环形,所述薄片砂轮11的中心具有通孔,所述薄片砂轮的外径R1为50~200 mm,例如,所述薄片砂轮的外径R1可以为50mm、100 mm、150 mm、200 mm等,所述薄片砂轮的内径R2为15~45mm,例如,所述薄片砂轮的内径R2可以为15 mm、25 mm、35 mm、45 mm等,所述薄片砂轮11的厚度为10~200 µm,例如,所述薄片砂轮的厚度可以为10 µm、50 µm、100 µm、200 µm等。
进一步地,请一并参阅图1至图9,作为本方案提供的一种微沟槽加工用的砂轮工具的一种具体实施方式,所述薄片砂轮11的数量至少为三个,所述切槽101的宽度W由位于中间位置的薄片砂轮朝着位于两侧位置的薄片砂轮的方向上逐渐增大,从而使得薄片砂轮的外侧端面的磨损程度由中间向两侧的方向上逐渐增大,从而使得加工端面的轮廓形状最终形成所需的形状。具体的,在本实施例中,所述薄片砂轮11的数量为七个,第二个薄片砂轮的内侧、第三个薄片砂轮的内侧与所述第一个薄片砂轮的两侧贴合,第四个薄片砂轮的内侧与所述第二个薄片砂轮的外侧贴合,第五个薄片砂轮的内侧与所述第三个薄片砂轮的外侧贴合,第六个薄片砂轮的内侧与所述第四个薄片砂轮的外侧贴合,第七个薄片砂轮的内侧与所述第五个薄片砂轮的外侧贴合。其中,所述第一个薄片砂轮上的切槽的宽度<所述第二个薄片砂轮上的切槽的宽度<所述第四个薄片砂轮上的切槽的宽度<所述第六个薄片砂轮上的切槽的宽度,且所述第三个薄片砂轮上的切槽的宽度等于所述第二个薄片砂轮上的切槽的宽度,所述第五个薄片砂轮上的切槽的宽度等于所述第四个薄片砂轮上的切槽的宽度,所述第七个薄片砂轮上的切槽的宽度等于所述第六个薄片砂轮上的切槽的宽度,利用本实施例中的薄片砂轮组成的砂轮工具本体加工微沟槽,砂轮工具本体的加工端面的的轮廓形状最终可以呈V形或者U形。具体的,第一个薄片砂轮、第二个薄片砂轮、第三个薄片砂轮、第四个薄片砂轮、第五个薄片砂轮、第六个薄片砂轮以及第七个薄片砂轮的厚度均为100 μm、外径R1均为55 mm、内径R2均为40 mm,第一个薄片砂轮、第二个薄片砂轮、第三个薄片砂轮、第四个薄片砂轮、第五个薄片砂轮、第六个薄片砂轮以及第七个薄片砂轮上的切槽101的深度H均为5 mm。第一个薄片砂轮上的切槽101的两个槽侧面104之间形成的夹角β为0°,第二个薄片砂轮及第三个薄片砂轮上的切槽101的两个槽侧面104之间形成的夹角β均为5°,第四个薄片砂轮与第五个薄片砂轮上的切槽101的两个槽侧面104之间形成的夹角β均为10°,第六个薄片砂轮与第七个薄片砂轮上的切槽101的两个槽侧面104之间形成的夹角β均为15°。应当说明的是,在本方案的其他较佳实施例中,所述薄片砂轮11的数量还可以根据实际情况设置,例如可以为八个、十个等。所述切槽101的宽度W也可以由位于中间位置的薄片砂轮朝着位于两侧位置的薄片砂轮的方向上逐渐减小,从而使得薄片砂轮的外侧端面的磨损程度由中间向两侧的方向上逐渐减小,或者所述切槽101的宽度W也可以由位于一侧的薄片砂轮朝着位于另一侧位置的薄片砂轮的方向上逐渐减小或者逐渐增大,从而使得薄片砂轮的薄片砂轮的外侧端面的磨损程度由一侧到另一侧的方向上逐渐减小或者逐渐增大。
进一步地,请一并参阅图1至图6,作为本方案提供的一种微沟槽加工用的砂轮工具的一种具体实施方式,相邻两个薄片砂轮11之间通过粘贴的方式连接固定,可以通过在相邻两个薄片砂轮11的粘贴面上设置粘胶使得其连接固定,应当说明的是,相邻两个薄片砂轮11之间连接固定的方式并不局限于此,例如,在本方案的其他较佳实施例中,相邻两个薄片砂轮之间还可以通过螺纹或者卡接的方式连接固定。
进一步地,请一并参阅图1至图9,作为本方案提供的一种微沟槽加工用的砂轮工具的一种具体实施方式,所述加工端面12的轮廓形状可以为V形、U形、倒U形、倒V形或者斜线状。
请参阅图10,本方案还提供了一种微沟槽的制造方法,采用如上所述的微沟槽加工用的砂轮工具加工而成,包括步骤S10、S20、S30:
S10、在若干薄片砂轮的外侧端面上开设宽度不同的切槽。
其中,切槽的宽度以及数量可以根据实际需要设置,在此不作任何限制。所有薄片砂轮的外侧端面形成砂轮工具本体的加工端面,加工端面用于加工微沟槽。
S20、将步骤S10得到的薄片砂轮按照预设叠设顺序组装得到砂轮工具本体。
其中,步骤S20 中,“预设的叠设顺序”指的是根据实际需要选择各个薄片砂轮之间的叠设顺序,例如,当需要加工V形或者U形的微沟槽时,可以按照切槽的宽度由中间到两侧逐渐增大的方式叠设薄片砂轮,当需要加工倒V形或者倒U形的微沟槽时,可以按照切槽的宽度由中间到两侧逐渐减小的方式来叠设薄片砂轮,当需要加工不对称的微沟槽时,还可以将具有不同宽度的切槽的薄片砂轮按照不对称方式进行叠设。
S30、利用步骤S20得到的所述砂轮工具本体对工件进行磨削,不同薄片砂轮上的所述切槽的宽度不同,不同薄片砂轮的外缘周长亦不同;所述切槽的宽度越小,所述薄片砂轮的外缘周长越大,所述薄片砂轮的外侧端面磨损慢;所述切槽的宽度越大,所述薄片砂轮的外缘周长越小,所述薄片砂轮的外侧端面磨损快,从而将所述砂轮工具本体的加工端面的轮廓形状修整成预设形状,并在所述工件上加工出纵向截面形状与所述加工端面的轮廓形状一致的微沟槽。
其中,加工端面的修整后的轮廓形状与薄片砂轮的切槽的宽度大小及薄片砂轮的排布方式均相关,通过改变薄片砂轮切槽的宽度以及薄片砂轮的排布方式可以得到具有不同轮廓形状的加工端面,最终得到具有不同纵向截面形状的微沟槽。可以根据工件所需的微沟槽的纵向截面形状选择加工端面的轮廓形状,例如当微沟槽的纵向截面形状需要呈V形、U形、倒U形、倒V形或者斜线状时,则对应的,加工端面的轮廓形状需要修整为V形、U形、倒U形、倒V形或者斜线状。工件可以为铝合金、模具钢、钛合金等硬脆性材料件。
以上所述仅为本方案的较佳实施例而已,并不用以限制本方案,凡在本方案的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本方案的保护范围之内。

Claims (12)

  1. 一种微沟槽加工用的砂轮工具,其特征在于:包括砂轮工具本体,所述砂轮工具本体由多个薄片砂轮沿着所述薄片砂轮的厚度方向依次叠设而成,所述薄片砂轮具有外侧端面,所有所述薄片砂轮的外侧端面形成所述砂轮工具本体的加工端面,每个所述薄片砂轮的外侧端面上均开设有切槽,不同薄片砂轮上的所述切槽的宽度不同,不同薄片砂轮的外缘周长亦不同;所述切槽的宽度越小,所述薄片砂轮的外缘周长越大,所述薄片砂轮的外侧端面磨损慢;所述切槽的宽度越大,所述薄片砂轮的外缘周长越小,所述薄片砂轮的外侧端面磨损快,从而形成轮廓形状为预设形状的所述加工端面。
  2. 如权利要求1所述的一种微沟槽加工用的砂轮工具,其特征在于:每个所述薄片砂轮上的切槽的数量均为多个,每个所述薄片砂轮上的多个所述切槽沿着所述薄片砂轮的圆周方向均匀排布。
  3. 如权利要求1所述的一种微沟槽加工用的砂轮工具,其特征在于:所述切槽包括槽底面以及与所述槽底面的相对两侧边缘一体连接的两个槽侧面,两个所述槽侧面之间形成的夹角为0°~60°。
  4. 如权利要求3所述的一种微沟槽加工用的砂轮工具,其特征在于:所述切槽的深度为0.5~10 mm。
  5. 如权利要求1所述的一种微沟槽加工用的砂轮工具,其特征在于:所述薄片砂轮包括超硬磨料以及结合剂。
  6. 如权利要求5所述的一种微沟槽加工用的砂轮工具,其特征在于:所述超硬磨料的粒度为0.1~50 μm。
  7. 如权利要求5所述的一种微沟槽加工用的砂轮工具,其特征在于:所述超硬磨料包括金刚石、立方氮化硼、碳化硅中的一种或者几种,所述结合剂包括金属结合剂、树脂结合剂、陶瓷结合剂中的一种或者几种。
  8. 如权利要求1所述的一种微沟槽加工用的砂轮工具,其特征在于:所述薄片砂轮的形状为圆环形,所述薄片砂轮的外径为50~200 mm,所述薄片砂轮的内径为15~45 mm,所述薄片砂轮的厚度为10~200 µm。
  9. 如权利要求1所述的一种微沟槽加工用的砂轮工具,其特征在于:所述薄片砂轮的数量至少为三个,所述切槽的宽度由位于中间位置的薄片砂轮朝着位于两侧位置的薄片砂轮的方向上逐渐增大。
  10. 如权利要求1所述的一种微沟槽加工用的砂轮工具,其特征在于:相邻两个薄片砂轮之间通过粘贴的方式连接固定。
  11. 如权利要求1所述的一种微沟槽加工用的砂轮工具,其特征在于:所述加工端面的轮廓形状为V形、U形、倒U形、倒V形或者斜线状。
  12. 一种微沟槽的制造方法,其特征在于:采用权利要求1-11任一项所述的微沟槽加工用的砂轮工具加工而成,包括以下步骤:
    A、在若干薄片砂轮的外侧端面上开设宽度不同的切槽;
    B、将步骤A得到的薄片砂轮按照预设叠设顺序组装得到砂轮工具本体;
    C、利用步骤B得到的所述砂轮工具本体对工件进行磨削,不同薄片砂轮上的所述切槽的宽度不同,不同薄片砂轮的外缘周长亦不同;所述切槽的宽度越小,所述薄片砂轮的外缘周长越大,所述薄片砂轮的外侧端面磨损慢;所述切槽的宽度越大,所述薄片砂轮的外缘周长越小,所述薄片砂轮的外侧端面磨损快,从而将所述砂轮工具本体的加工端面的轮廓形状修整成预设形状,并在所述工件上加工出纵向截面形状与所述加工端面的轮廓形状一致的微沟槽。
PCT/CN2018/085464 2018-05-03 2018-05-03 一种微沟槽加工用的砂轮工具及其制造方法 WO2019210481A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/085464 WO2019210481A1 (zh) 2018-05-03 2018-05-03 一种微沟槽加工用的砂轮工具及其制造方法
CN201880000382.4A CN109070315B (zh) 2018-05-03 2018-05-03 一种微沟槽加工用的砂轮工具及其制造方法
US16/347,796 US20200122300A1 (en) 2018-05-03 2018-05-03 Grinding wheel tool for microgroove processing and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085464 WO2019210481A1 (zh) 2018-05-03 2018-05-03 一种微沟槽加工用的砂轮工具及其制造方法

Publications (1)

Publication Number Publication Date
WO2019210481A1 true WO2019210481A1 (zh) 2019-11-07

Family

ID=64789381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085464 WO2019210481A1 (zh) 2018-05-03 2018-05-03 一种微沟槽加工用的砂轮工具及其制造方法

Country Status (3)

Country Link
US (1) US20200122300A1 (zh)
CN (1) CN109070315B (zh)
WO (1) WO2019210481A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200122300A1 (en) * 2018-05-03 2020-04-23 Shenzhen University Grinding wheel tool for microgroove processing and fabrication method thereof
CN110774177B (zh) * 2019-11-05 2021-03-30 湖南科技大学 一种制备结构化成形砂轮的工具及方法
CN112792753A (zh) * 2021-01-20 2021-05-14 海安玻克超硬材料有限公司 一种光伏磨轮加工工艺
CN115194572B (zh) * 2022-07-05 2024-01-12 山东理工大学 一种对称磨削曲轴轴颈的方法
EP4360805A1 (de) 2022-10-24 2024-05-01 Gühring KG Schleifscheibe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2036675B1 (de) * 2007-09-12 2014-10-29 Präwema Antriebstechnik GmbH Abrichtrad und Abrichtwerkzeug für das Abrichten von eine Verzahnung aufweisenden Werkzeugen für die Feinbearbeitung eines Werkstücks, insbesondere eines Zahnrades
CN104526588A (zh) * 2014-12-23 2015-04-22 常熟市巨力砂轮有限责任公司 薄片砂轮的制造方法
CN204450250U (zh) * 2015-02-10 2015-07-08 杭州天工机床制造有限公司 一种用于加工特殊齿形的砂轮
CN106312848A (zh) * 2016-08-30 2017-01-11 洛阳希微磨料磨具有限公司 一种陶瓷结合剂高速薄片砂轮的制作工艺
CN206550876U (zh) * 2016-12-30 2017-10-13 上海中羽工业钻石股份有限公司 一种拼装式砂轮
CN207014132U (zh) * 2017-03-23 2018-02-16 江苏莲源机械制造有限公司 多层复合砂轮机
CN109070315A (zh) * 2018-05-03 2018-12-21 深圳大学 一种微沟槽加工用的砂轮工具及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728233A1 (de) * 1987-08-25 1989-03-16 Tusch Kg Diamant Trennscheibe, insbes. diamant-trennscheibe
US5142829A (en) * 1992-01-31 1992-09-01 Minnesota Minning And Manufacturing Company Abrasive article
CN107225515B (zh) * 2017-07-11 2023-06-30 苏州精协机械制造有限公司 挤压丝锥螺纹磨床的组合式多线磨轮

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2036675B1 (de) * 2007-09-12 2014-10-29 Präwema Antriebstechnik GmbH Abrichtrad und Abrichtwerkzeug für das Abrichten von eine Verzahnung aufweisenden Werkzeugen für die Feinbearbeitung eines Werkstücks, insbesondere eines Zahnrades
CN104526588A (zh) * 2014-12-23 2015-04-22 常熟市巨力砂轮有限责任公司 薄片砂轮的制造方法
CN204450250U (zh) * 2015-02-10 2015-07-08 杭州天工机床制造有限公司 一种用于加工特殊齿形的砂轮
CN106312848A (zh) * 2016-08-30 2017-01-11 洛阳希微磨料磨具有限公司 一种陶瓷结合剂高速薄片砂轮的制作工艺
CN206550876U (zh) * 2016-12-30 2017-10-13 上海中羽工业钻石股份有限公司 一种拼装式砂轮
CN207014132U (zh) * 2017-03-23 2018-02-16 江苏莲源机械制造有限公司 多层复合砂轮机
CN109070315A (zh) * 2018-05-03 2018-12-21 深圳大学 一种微沟槽加工用的砂轮工具及其制造方法

Also Published As

Publication number Publication date
CN109070315A (zh) 2018-12-21
US20200122300A1 (en) 2020-04-23
CN109070315B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2019210481A1 (zh) 一种微沟槽加工用的砂轮工具及其制造方法
Kakinuma et al. Ultra-precision cryogenic machining of viscoelastic polymers
US7883398B2 (en) Abrasive tool
CN109333385B (zh) 一种带有微结构的金刚石砂轮及其制备方法
CN103934732B (zh) 氧化铝陶瓷材料带轴薄壁凸球面结构的旋转超声磨削加工方法
JP7061371B2 (ja) 工作部品及びその切削加工における応用
KR101611889B1 (ko) 스크라이빙 휠
TWI423867B (zh) Scribe wheel
JP6913295B2 (ja) ガラス板、及びガラス板の製造方法
JP2006198743A (ja) 小径回転工具及び高硬度材料ワークの切削方法
JP2005096399A (ja) ボールエンドミル加工方法及びスクエアエンドミル加工方法
KR20110056310A (ko) 연마재로 함침되어 있는, 전자 주조된 얇은 벽의 절삭 톱 및 코어 드릴
Fujita et al. Ultra-fine grooving technology with high aspect ratio for cemented carbide by PCD (poly-crystalline diamond) blade
WO2017213026A1 (ja) 微細加工方法および金型の製造方法および微細加工装置
US11305277B2 (en) Micro-structured mold-core of microfluidic chip and its manufacturing method
JP2001018164A (ja) 半導体デバイス加工用硬質発泡樹脂溝付パッド及びそのパッド旋削溝加工用工具
JP2017217720A5 (zh)
JP2008173785A (ja) ハニカム構造体成形用金型の製造方法
JP6458372B2 (ja) マルチポイントダイヤモンドツール及びマルチポイントダイヤモンドツールの製造方法
CN207758298U (zh) 一种新型砂轮片
JP2002184730A (ja) 半導体デバイス加工用硬質発泡樹脂溝付パッド及びそのパッド旋削溝加工用工具
TWM603493U (zh) 離心扇葉結構
JP5586401B2 (ja) 切断刃およびその製造方法並びにスリッティング工具
JP2011016224A (ja) 微細加工用工具および脆性材料の微細加工方法
US10745313B2 (en) Method for micro-grinding tip-accurately induced brittle fracture forming of curved mirror surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18917509

Country of ref document: EP

Kind code of ref document: A1