WO2019209453A1 - Plasma enhanced cvd with periodic high voltage bias - Google Patents
Plasma enhanced cvd with periodic high voltage bias Download PDFInfo
- Publication number
- WO2019209453A1 WO2019209453A1 PCT/US2019/024430 US2019024430W WO2019209453A1 WO 2019209453 A1 WO2019209453 A1 WO 2019209453A1 US 2019024430 W US2019024430 W US 2019024430W WO 2019209453 A1 WO2019209453 A1 WO 2019209453A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- source
- plasma
- duty cycle
- pulsed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/515—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/517—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02115—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
Definitions
- Embodiments relate to the field of semiconductor processing equipment and, in a particular embodiment, to a processing tool for plasma enhanced chemical vapor deposition with a pulsed high voltage bias applied to the substrate.
- Carbon films are typically formed with plasma enhanced chemical vapor deposition (CVD) processes.
- the plasma generated in plasma enhanced CVD processes may be a capacitively coupled plasma (CCP), inductively coupled plasma (ICP), a microwave plasma, or the like.
- CCP capacitively coupled plasma
- ICP inductively coupled plasma
- microwave plasma or the like.
- plasma enhanced CVD processes that use plasma sources such as these have several drawbacks.
- One drawback is that plasma enhanced CVD typically needs to be implemented at high substrate temperatures in order to form high quality films.
- the substrate temperature is typically greater than 500 °C.
- the plasma density and the maximum ion energy are not independent, and the maximum ion energy is not large.
- the typical ion energy in such plasma enhanced CVD processes is typically 1,000 eV or less.
- plasma enhanced CVD has a wide ion energy distribution due to the oscillating RF sheath potential. Accordingly, optimization of a deposition process by control of the population of ions at a given ion energy is not possible. The wide distribution of ion energies makes it difficult to predict the process results. Accordingly, it is difficult to tailor a plasma enhanced CVD process to provide desirable high quality film properties.
- Embodiments include a method of processing a substrate.
- the method comprises flowing one or more source gasses into a processing chamber, and inducing a plasma from the source gases with a plasma source that is operated in a first mode.
- the method may further comprise biasing the substrate with a DC power source that is operated in a second mode.
- the method may further comprise depositing a film on the substrate.
- Embodiments may also include a method of processing a substrate that comprises flowing one or more source gasses into a processing chamber and inducing a plasma from the source gases with a plasma source.
- the method may also comprise biasing the substrate with a pulsed DC power source.
- the pulsed DC power source provides pulses of at least a first voltage and a second voltage.
- the method further comprises depositing a film on the substrate.
- Embodiments may also comprise a processing tool for depositing a film on a workpiece.
- the processing tool comprises a chamber body.
- the processing tool further comprises a plasma source.
- the plasma source is operated in a first mode, and the plasma source induces a plasma from one or more processing gasses flown into the chamber body.
- the processing tool further comprises a chuck in the chamber body for supporting the workpiece.
- the chuck is electrically coupled to a DC power source, and the DC power source is operated in a second mode.
- the film comprises constituents of only the one or more processing gasses.
- Figure 1 is a graph of RF power and the effective DC voltage, in accordance with an
- Figure 2 is a graph of film density and film stress at two different voltages, in accordance with an embodiment.
- Figure 3 is a cross-sectional illustration of a processing tool that includes a chuck that is electrically coupled to a DC source, in accordance with an embodiment.
- Figure 4A is a cross-sectional illustration of a chuck that includes pins for contacting the backside surface of a substrate, where the pins are electrically coupled to a DC source, in accordance with an embodiment.
- Figure 4B is a cross-sectional illustration of a chuck that includes an embedded conductive mesh that is electrically coupled to a DC source, in accordance with an embodiment.
- Figure 4C is a cross-sectional illustration of a chuck that includes a conductive coating that is electrically coupled to a DC source, in accordance with an embodiment.
- Figure 5 is a process flow diagram of a substrate processing recipe that uses a DC biased chuck, in accordance with an embodiment.
- Figure 6 is a process flow diagram of a substrate processing recipe that uses a DC biased chuck at more than one voltage, in accordance with an embodiment.
- Figure 7 illustrates a block diagram of an exemplary computer system that may be used in conjunction with a processing tool that includes a DC biased chuck, in accordance with an embodiment.
- Devices in accordance with embodiments described herein include a plasma enhanced chemical vapor deposition (CVD) processing tool.
- a chuck of the plasma enhanced CVD processing tool is biased with a pulsed high voltage DC source.
- High quality film properties may refer to high density, high refractive index, and low film stress.
- embodiments described herein may include a PECVD processing tool that further includes a pulsed DC bias that is applied to the substrate being processed.
- a pulsed DC bias allows for improved film properties.
- a carbon film formed with processes described herein may have a density of 2.0 g/cm 3 or greater, a refractive index of 2.0 or greater, and a film stress magnitude less than 500 MPa.
- Such film properties may also be obtained with low temperature processing, such as less than approximately 200 °C.
- a pulsed DC bias that applies a periodic voltage across the plasma sheath over the substrate allows for ions from the plasma to be accelerated to the substrate at high energies (e.g., up to 20 keV). This provides an in-situ implant effect that results in an increase in the film density.
- the pulsed DC bias of the plasma sheath may ensure that substantially all of the ions impacting the substrate are at the same energy. This is a significant improvement over an oscillating RF sheath potential which, as described above, results in a distribution of ion energies. Accordingly, the ion energy distribution may be tuned to a single energy (e.g., from approximately 1 keV to 20 keV). For example, a pulse voltage of 6 kV may result in a flux of predominantly 6 keV ions to the substrate.
- pulse voltages may be alternated between a first voltage and a second voltage to provide a specific outcome in the film properties. For example a first pulse voltage of 2 kV and a second pulse voltage of 8 kV may be alternated to obtain desired film properties.
- a bias may be applied to a substrate with an RF source (i.e., to provide an effective DC bias on a substrate) it has been found that a pulsed DC power source, such as those described herein provide improved film properties. Particularly, the use of an RF source to bias a substrate requires much more power to obtain the desired effective DC bias. As illustrated in Figure 1, as the RF power increases, the effective DC voltage flattens out. Accordingly, significantly more RF power is needed to obtain the high DC voltages (e.g., greater than lkV) disclosed herein. In addition to the cost of running a process at such high powers, the majority of the power ends up heating the substrate. As such, low temperature PECVD processes, such as those disclosed herein become impracticable.
- the processing tool 300 may include a chamber body 380.
- the chamber body 380 may be any suitable vacuum chamber of any size to accommodate the processing of one or more substrates 350.
- the chamber body 380 may include a lid 341.
- the lid 341 may support a gas distribution plate 340, such as a showerhead.
- the gas distribution plate 340 may be electrically coupled to an RF source 365.
- the RF source 365 may be electrically coupled to an electrode separate from the gas distribution plate 340. While not illustrated, it is to be appreciated that one or more exhaust ports may also be formed through the chamber body 380.
- a pressure within the chamber body 380 may be maintained between approximately 1 mTorr and 500 mTorr, depending on the process being implemented.
- substrates 350 in the chamber body 380 may be supported by a chuck 352.
- the chuck 352 may be an electrostatic chuck in some embodiments.
- the chuck 352 may include heating and/or cooling systems to provide a desired substrate temperature during processing.
- the heating and/or cooling system may maintain a substrate temperature that is below 800 °C.
- the substrate temperature may be maintained below 200 °C.
- Embodiments may include a substrate temperature between approximately -250 °C and 800 °C.
- a process kit 330 may be coupled to the chuck 352 around an outer edge of the substrate 350.
- the chuck 352 may be coupled to a pedestal 354 that includes a port out of the chamber body 380.
- the chuck 352 may be electrically coupled to a DC power source 360.
- the DC power source 360 may be a pulsed DC power source.
- Embodiments may include a pulsed DC power source 360 that has a pulse frequency between approximately 1 kHz and 100 kHz.
- the DC power source 360 may be between -20 kV and 20 kV.
- Embodiments may also include a DC power source 360 that is tunable to different voltages between approximately -20 kV and 20 kV.
- a plurality of pulsed DC power sources 360 may be electrically coupled to the chuck 352.
- the pulsed DC power source may have a duty cycle between 1% and 100%. For example, at a 1% duty cycle for a 1 kHz frequency, the DC power is on for 0.01 seconds and the DC power is off for 0.99 seconds. In some embodiments, the DC power may always be on.
- the DC voltage from the power source 360 may be coupled to the substrate via electrical contact pins, a contact mesh, direct contact with a biased surface of the chuck 352 or capacitively coupled through the chuck 352. More detailed explanations of the various coupling embodiments are described below with respect to Figures 4A-4C.
- processing tool 300 described above is exemplary in nature, and that many different processing tool configurations may be used in conjunction with
- the processing tool 300 may include a capacitively coupled plasma (CCP) source, an inductively coupled plasma (ICP) source, or a microwave plasma source.
- CCP capacitively coupled plasma
- ICP inductively coupled plasma
- the DC biasing of the plasma sheath by the pulsed DC power source 360 may be implemented with the source plasma being in a continuous wave mode, synchronized with the DC bias pulsing, off-synchronized with DC bias pulsing, or in a pulsed mode while keeping the DC biasing always on.
- a duty cycle of the DC bias is matched with a duty cycle of the plasma source.
- a duty cycle of the plasma source is different than a duty cycle of the DC bias.
- the DC bias and the source plasma may be on at the same time, and one of the DC bias or the source plasma turns off before the other.
- the source plasma and the pulsed DC bias may have different frequencies and the same duty cycle.
- the source plasma and the pulsed DC bias may have different frequencies and different duty cycles.
- the chuck 452 may be electrically coupled to a pulsed DC power source 460.
- the chuck 452 may comprise a plurality of conductive pins 461.
- the plurality of conductive pins 461 may be electrically coupled to the DC power source 460.
- the conductive pins 461 may directly contact a backside surface of the substrate 450.
- the DC bias pulsing may be directly coupled to the substrate 450.
- the pins 461 may be formed with any suitable conductive material.
- the pins may be aluminum.
- Embodiments may also include conductive pins 461 that comprise a plurality of material layers.
- the conductive pins 461 are shown as extending above a top surface of the chuck 452.
- the substrate 450 may be supported entirely by the conductive pins 452.
- a top surface of the conductive pins 461 may be substantially coplanar with a top surface of the chuck 452.
- the substrate 450 may be supported by the conductive pins 461 and the chuck 452.
- conductive pins 461 are illustrated as having rectangular cross-sections, it is to be appreciated embodiments may include conductive pins with any shape. In some embodiments, the conductive pins 461 may be substantially planar. Such embodiments may be considered conductive pads instead of pins. Furthermore, embodiments may include a plurality of conductive traces formed over the surface of the chuck 452 that are electrically coupled to the DC power source 460.
- a conductive mesh 462 that is embedded within the chuck 452 may be electrically coupled to the DC power source 460.
- the conductive mesh 462 may be electrically coupled to a substrate 450 that is supported by the chuck 452.
- Embedding the conductive mesh 462 may provide advantages over other embodiments because the conductive mesh is entirely protected from the processing environment. Additionally, embedding the conductive mesh 462 allows for the substrate 450 to be entirely supported by the chuck 452 without any other components between them.
- the conductive mesh 462 may comprise any suitable conductive material or conductive materials.
- the conductive mesh may be copper, aluminum, or the like. In an embodiment, the conductive mesh 462 may have any desired density. In some embodiments, the conductive mesh 462 may optionally be a conductive plate and/or a network of conductive traces embedded within the chuck 452.
- a conductive coating 463 is formed over a surface of the chuck 452.
- the conductive coating 463 may be electrically coupled to the DC power source 460.
- the conductive coating 463 may be any suitable conductive material, or layers of conductive materials.
- the conductive coating 463 may comprise aluminum.
- the conductive coating 463 is formed over all surfaces of the chuck 452. However, it is to be appreciated that the conductive coating 463 may be formed over some of the surfaces of the chuck 452. For example, the conductive coating 463 may optionally be formed over only a top surface of the chuck 452. In such embodiments, the substrate 450 may rest entirely on the conductive coating 463. The conductive coating 463 may electrically couple the DC power source 460 to the substrate 450.
- the conductive coating may be omitted when the chuck comprises conductive material.
- conductive material of the chuck 452 may be electrically coupled to the DC power source 460.
- the chuck 452 itself may electrically couple the DC power source 460 to the substrate 450.
- PECVD process 590 may be implemented with a processing tool that includes a pulsed DC power source for biasing the substrate.
- processing tool 300 described above may be used to implement PECVD process 590.
- PECVD process 590 may comprise operation 591 which includes flowing a processing gas into the processing chamber. It is to be appreciated that one or more processing gases may be flown into the processing chamber to provide the desired feed stock to form a particular film.
- the processing gasses may include one or more of acetylene, methane, propylene, ethylene, cyclopropane, ethane, propane, gases with the chemical formula CxHy, and other carbon containing source gases.
- the processing gasses may include one or more of silane, disilane, trisilane, tertrasilane, hydrogen, and any inert gas.
- the processing gasses may include one or more of silane, tetraethyl orthosilicate (TEOS), In embodiments where a nitride film is desired, the processing gasses may include one or more of silane, Ntb, N 2 , 3 ⁇ 4, and any inert gas. )In embodiments where a CHXFY film is desired, the processing gasses may include one or more fluorocarbons (to form CHXFY films). In embodiments where a metal or metal oxide film is desired, the processing gasses may include one or more metalorganic compounds. Embodiments may also include other source gasses needed to enable reactions, such as oxygen containing source gases, and/or inert gasses. In an embodiment, the film deposited on the substrate may comprise only constituents from the one or more source gasses. For example, the film formed is a distinct film that is deposited over the substrate and is not simply a surface modification of an existing film or material on the substrate.
- TEOS tetraethyl orthosilicate
- the PECVD process 590 may include exciting a plasma in the processing chamber with a plasma source.
- the plasma source may be a CCP source, an ICP source, a microwave plasma source, or any other source.
- the source plasma frequency may be between 100 kHz and 100 GHz.
- the plasma source may be top launched, bottom launched, or both.
- the plasma source may be operated in a pulsed mode.
- the frequency of the pulsing is a different frequency than the frequency of the electromagnetic radiation being emitted.
- the pulsing frequency may be between 1 kHz and 100 kHz, and the electromagnetic radiation emitted by the source plasma may be between approximately 100 kHz and 100 GHz.
- PECVD process 590 may include biasing a substrate with a pulsed DC bias.
- the pulsed DC bias may be between approximately 1 kV and 20 kV.
- the frequency of the pulsing may be between 1 kHz and 100 kHz.
- the pulsed DC bias allows for the ion energies to be tailored to a specific level. For example, the use of a pulsed DC bias will result in a flux of ions towards the substrate that all have substantially the same ion energy. Furthermore, due to the high ion energies (e.g., up to approximately 20 keV) an ion-bombardment effect is obtained.
- the ion-bombardment effect results in films with higher densities, better optical properties, and relatively lower film stress. Additionally, the PECVD process 590 allows for independent control of ion energy and plasma density since the ion energy is derived primarily from the DC biasing.
- the plasma source may be operated in a first mode and the DC power source may be operated in a second mode.
- the first mode comprises a first frequency and a first duty cycle
- the second mode is a pulsed mode that comprises a second frequency and a second duty cycle.
- the PECVD process 590 may comprise a first frequency that is equal to the second frequency, and a first duty cycle that is equal to the second duty cycle.
- the PECVD process 590 may comprise a first frequency that is equal to the second frequency, and a first duty cycle that is different than the second duty cycle.
- the PECVD process 590 may comprise a first frequency that is different than the second frequency, and the first duty cycle may be equal to the second duty cycle.
- the PECVD process 590 may comprise a first frequency that is different than the second frequency, and the first duty cycle may be different than the second duty cycle.
- the first and second duty cycles may be between 1% anf 99%.
- the DC bias may be operated in a second mode that comprises pulsing and the source plasma may be operated in a first mode that comprises a continuous wave mode.
- the DC bias pulsing may be operated with the source plasma being always on.
- the DC bias pulsing may be operated with the source plasma being off- synchronized with DC bias pulsing.
- the DC bias pulsing may be operated with the source plasma being in a pulsed mode while keeping the DC biasing always on.
- PECVD process 590 may be implemented with low substrate temperatures.
- PECVD process 590 may be implemented with a substrate temperature that is between approximately -250 °C and 800 °C. In a particular embodiment, the substrate temperature may be less than 200 °C.
- a large increase in RF power is needed, as illustrated in Figure 1. For example, to achieve an effective DC bias of 7.5 kV, it may require approximately 17 kW RF power. Because the source of power applied to the plasma will heat the substrate, such low temperature processes are not currently achievable with existing RF only PECVD processes.
- Films formed in accordance with PECVD process 590 have demonstrated superior film qualities compared to similar PECVD processes without the use of a substrate that is pulsed with a DC bias.
- a source gas of acetylene or methane to form a plasma between 2 mTorr and 15 mTorr using a source with 100 W to 1,000 W (162 MHz top launched CCP) power with and without a 1 kV substrate bias from a pulsed DC power source was used to demonstrate the superior film quality of films formed in accordance with PECVD process 590.
- the refractive index was 1.9
- the density was 1.5 g/cm 3
- the stress was - 300 MPa.
- the refractive index was 2.5
- the density was 2.0 g/cm 3
- the magnitude of the film stress was approximately 500 MPa.
- the improved film quality is at least in part attributable to the large flux of ions at a singular high ion energy that results in ion-bombardment at the surface of the substrate.
- Embodiments described herein include PECVD processes that include the ability to precisely tune the ion energies. Accordingly, PECVD processes in accordance with embodiments described herein allow for the films to be formed with ion fluxes of alternating ion energies.
- An example of such a PECVD process 690 is described with respect to the flow diagram in Figure 6.
- PECVD process 690 may comprise operation 691 which includes flowing a processing gas into the processing chamber. It is to be appreciated that one or more processing gases may be flown into the processing chamber to provide the desired feed stock to form a particular film.
- the processing gasses may include one or more of acetylene, methane, or other carbon containing source gases.
- the processing gasses may include one or more of tetraethyl orthosilicate (TEOS) (to form a silicon or silicon oxide film), silane and nitrogen (to form SiN films), fluorocarbons (to form CH X F Y films), or metalorganic compounds (to form metal or metal oxide films).
- TEOS tetraethyl orthosilicate
- Embodiments may also include other source gasses needed to enable reactions, such as oxygen containing source gases, and/or inert gasses.
- the PECVD process 690 may include exciting a plasma in the processing chamber with a plasma source.
- the plasma source may be a CCP source, an ICP source, a microwave plasma source, or any other source.
- the source plasma frequency may be between 100 kHz and 100 GHz.
- the plasma source may be top launched, bottom launched, or both.
- PECVD process 690 may include biasing a substrate with a pulsed DC bias at a first voltage.
- the first pulsed DC bias may be between approximately -20 kV and 20 kV.
- the frequency of the pulsing may be between 1 kHz and 100 kHz. It is to be appreciated that the pulsed DC bias allows for the ion energies to be tailored to a specific level. For example, the use of a pulsed DC bias will result in a flux of ions towards the substrate that all have substantially the same first ion energy.
- PECVD process 690 may include biasing a substrate with a pulsed DC bias at a second voltage.
- the second pulsed DC bias may be between approximately -20 kV and 20 kV.
- the frequency of the pulsing may be between 1 kHz and 100 kHz. It is to be appreciated that the pulsed DC bias allows for the ion energies to be tailored to a specific level. For example, the use of a pulsed DC bias will result in a flux of ions towards the substrate that all have substantially the same second ion energy.
- the second voltage may be different than the first voltage.
- the first voltage may be 2 kV and the second voltage may be 8 kV.
- the first pulsed DC voltage may be pulsed for a first period of time
- the second pulsed DC voltage may be pulsed for a second period of time.
- the PECVD process 690 may end after the second period of time, without repeating the first pulsed DC voltage.
- the pulsed DC voltage may be alternated between the first pulsed DC voltage and the second pulsed DC voltage any number of times.
- more than two pulsed DC voltages may be used in a PECVD process 690.
- a first pulsed DC voltage, a second pulsed DC voltage, and a third pulsed DC voltage may be used to bias a substrate during a PECVD process 690.
- embodiments may also include a first voltage, a second voltage, a third voltage, etc. that is 0 V.
- the first voltage may be between -20 kV and 20 kV and the second voltage may be 0 V.
- PECVD process 590 includes three distinct processing operations (591, 592, and 593)m and PECVD process 690 includes four distinct processing operations (691, 692, 693, and 694).
- processing operations may be implemented in any order, and do not have to be implemented sequentially.
- two or more of the processing operations may be implemented simultaneously, or at least partially simultaneously.
- Computer system 760 is coupled to and controls processing in the processing tool.
- Computer system 760 may be connected (e.g., networked) to other machines in a Local Area Network (LAN), an intranet, an extranet, or the Internet.
- Computer system 760 may operate in the capacity of a server or a client machine in a client-server network environment, or as a peer machine in a peer- to-peer (or distributed) network environment.
- Computer system 760 may be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a server, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.
- PC personal computer
- PDA Personal Digital Assistant
- STB set-top box
- STB set-top box
- PDA Personal Digital Assistant
- a cellular telephone a web appliance
- server a server
- network router switch or bridge
- any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.
- machine shall also be taken to include any collection of machines (e.g., computers) that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies described herein.
- Computer system 760 may include a computer program product, or software 722, having a non- transitory machine -readable medium having stored thereon instructions, which may be used to program computer system 760 (or other electronic devices) to perform a process according to embodiments.
- a machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer).
- a machine- readable (e.g., computer-readable) medium includes a machine (e.g., a computer) readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory devices, etc.), a machine (e.g., computer) readable transmission medium (electrical, optical, acoustical or other form of propagated signals (e.g., infrared signals, digital signals, etc.)), etc.
- computer system 760 includes a system processor 702, a main memory 704 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), a static memory 706 (e.g., flash memory, static random access memory (SRAM), etc.), and a secondary memory 718 (e.g., a data storage device), which communicate with each other via a bus 730.
- main memory 704 e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.
- static memory 706 e.g., flash memory, static random access memory (SRAM), etc.
- secondary memory 718 e.g., a data storage device
- System processor 702 represents one or more general-purpose processing devices such as a microsystem processor, central processing unit, or the like. More particularly, the system processor may be a complex instruction set computing (CISC) microsystem processor, reduced instruction set computing (RISC) microsystem processor, very long instruction word (VLIW) microsystem processor, a system processor implementing other instruction sets, or system processors implementing a combination of instruction sets. System processor 702 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal system processor (DSP), network system processor, or the like. System processor 702 is configured to execute the processing logic 726 for performing the operations described herein.
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- DSP digital signal system processor
- the computer system 760 may further include a system network interface device 708 for communicating with other devices or machines.
- the computer system 760 may also include a video display unit 710 (e.g., a liquid crystal display (LCD), a light emitting diode display (LED), or a cathode ray tube (CRT)), an alphanumeric input device 712 (e.g., a keyboard), a cursor control device 714 (e.g., a mouse), and a signal generation device 716 (e.g., a speaker).
- a video display unit 710 e.g., a liquid crystal display (LCD), a light emitting diode display (LED), or a cathode ray tube (CRT)
- an alphanumeric input device 712 e.g., a keyboard
- a cursor control device 714 e.g., a mouse
- a signal generation device 716 e.g., a speaker
- the secondary memory 718 may include a machine-accessible storage medium 731 (or more specifically a computer-readable storage medium) on which is stored one or more sets of instructions (e.g., software 722) embodying any one or more of the methodologies or functions described herein.
- the software 722 may also reside, completely or at least partially, within the main memory 704 and/or within the system processor 702 during execution thereof by the computer system 760, the main memory 704 and the system processor 702 also constituting machine-readable storage media.
- the software 722 may further be transmitted or received over a network 720 via the system network interface device 708.
- machine-accessible storage medium 731 is shown in an exemplary embodiment to be a single medium, the term“machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions.
- the term“machine-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies.
- the term“machine-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020237040881A KR102849073B1 (ko) | 2018-04-27 | 2019-03-27 | 주기적인 고전압 바이어스를 갖는 플라즈마 강화 cvd |
| KR1020207033826A KR20200136048A (ko) | 2018-04-27 | 2019-03-27 | 주기적인 고전압 바이어스를 갖는 플라즈마 강화 cvd |
| CN201980028205.1A CN112020574A (zh) | 2018-04-27 | 2019-03-27 | 具有周期性高电压偏压的等离子体增强cvd |
| JP2020559532A JP7678670B2 (ja) | 2018-04-27 | 2019-03-27 | 周期的高電圧バイアスを用いたプラズマ化学気相堆積 |
| JP2023193056A JP2024028701A (ja) | 2018-04-27 | 2023-11-13 | 周期的高電圧バイアスを用いたプラズマ化学気相堆積 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/965,621 US10840086B2 (en) | 2018-04-27 | 2018-04-27 | Plasma enhanced CVD with periodic high voltage bias |
| US15/965,621 | 2018-04-27 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019209453A1 true WO2019209453A1 (en) | 2019-10-31 |
Family
ID=68292808
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2019/024430 Ceased WO2019209453A1 (en) | 2018-04-27 | 2019-03-27 | Plasma enhanced cvd with periodic high voltage bias |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US10840086B2 (enExample) |
| JP (2) | JP7678670B2 (enExample) |
| KR (2) | KR102849073B1 (enExample) |
| CN (1) | CN112020574A (enExample) |
| TW (1) | TWI771577B (enExample) |
| WO (1) | WO2019209453A1 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2023541831A (ja) * | 2020-09-08 | 2023-10-04 | アプライド マテリアルズ インコーポレイテッド | 単一のチャンバ流動性膜の形成及び処理 |
| US12456602B2 (en) | 2020-09-08 | 2025-10-28 | Applied Materials, Inc. | Semiconductor processing chambers and methods for deposition and etch |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11515191B2 (en) * | 2018-10-26 | 2022-11-29 | Applied Materials, Inc. | Graded dimple height pattern on heater for lower backside damage and low chucking voltage |
| TWI718698B (zh) * | 2018-10-29 | 2021-02-11 | 瑞士商巴柏斯特麥克斯合資公司 | 全像箔供給裝置以及燙金印刷機 |
| US12131903B2 (en) * | 2020-08-06 | 2024-10-29 | Applied Materials, Inc. | Pulsed-plasma deposition of thin film layers |
| US20220298636A1 (en) * | 2021-03-22 | 2022-09-22 | Applied Materials, Inc. | Methods and apparatus for processing a substrate |
| FR3131433B1 (fr) * | 2021-12-29 | 2023-12-22 | Commissariat Energie Atomique | Procédé d’activation d’une couche exposée |
| JP2023170791A (ja) * | 2022-05-20 | 2023-12-01 | 東京エレクトロン株式会社 | 改質方法及び改質装置 |
| KR20240086485A (ko) * | 2022-12-09 | 2024-06-18 | 성균관대학교산학협력단 | 고 종횡 비 반도체 구조물의 갭을 채우기 위한 다중 펄스를 이용한 원자층 증착 장치 및 이를 이용한 원자층 증착방법 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5160397A (en) * | 1989-04-27 | 1992-11-03 | Fujitsu Limited and Fuji Electric Co., Ltd. | Plasma process apparatus and plasma processing method |
| US20010048980A1 (en) * | 1997-11-20 | 2001-12-06 | Koji Kishimoto | High density plasma enhanced chemical vapor deposition method |
| US20070119373A1 (en) * | 2005-07-29 | 2007-05-31 | Ajay Kumar | Chemical vapor deposition chamber with dual frequency bias and method for manufacturing a photomask using the same |
| US20130260057A1 (en) * | 2012-04-03 | 2013-10-03 | Novellus Systems, Inc. | Continuous plasma and rf bias to regulate damage in a substrate processing system |
| WO2014066541A1 (en) * | 2012-10-26 | 2014-05-01 | Applied Materials, Inc. | Pecvd apparatus and process |
Family Cites Families (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06314660A (ja) * | 1993-03-04 | 1994-11-08 | Mitsubishi Electric Corp | 薄膜形成法及びその装置 |
| JP2623475B2 (ja) * | 1993-10-22 | 1997-06-25 | 日本高周波株式会社 | 対向電極型マイクロ波プラズマ処理装置および処理方法 |
| JP2737720B2 (ja) * | 1995-10-12 | 1998-04-08 | 日本電気株式会社 | 薄膜形成方法及び装置 |
| JP4013271B2 (ja) * | 1997-01-16 | 2007-11-28 | 日新電機株式会社 | 物品表面処理方法及び装置 |
| US6765178B2 (en) * | 2000-12-29 | 2004-07-20 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US20060194516A1 (en) * | 2005-01-31 | 2006-08-31 | Tokyo Electron Limited | Processing apparatus and processing method |
| CN100530529C (zh) * | 2006-07-17 | 2009-08-19 | 应用材料公司 | 具有静电卡盘电压反馈控制的双偏置频率等离子体反应器 |
| CN100595321C (zh) * | 2007-09-11 | 2010-03-24 | 东华大学 | 常压等离子体气相沉积制备纳米硅基多孔发光材料的方法 |
| JP5319150B2 (ja) * | 2008-03-31 | 2013-10-16 | 東京エレクトロン株式会社 | プラズマ処理装置及びプラズマ処理方法及びコンピュータ読み取り可能な記憶媒体 |
| US20110236806A1 (en) * | 2010-03-25 | 2011-09-29 | Applied Materials, Inc. | Dc voltage charging of cathode for plasma striking |
| JP2012104382A (ja) * | 2010-11-10 | 2012-05-31 | Tokyo Electron Ltd | プラズマ処理装置及びプラズマ処理方法並びにプラズマ処理のバイアス電圧決定方法 |
| EP2738790A1 (en) * | 2012-11-28 | 2014-06-04 | Abengoa Solar New Technologies, S.A. | Procedure for preparing one single barrier and/or dielectric layer or multilayer on a substrate and device for the implementation thereof |
| KR102064914B1 (ko) * | 2013-03-06 | 2020-01-10 | 삼성전자주식회사 | 식각 공정 장치 및 식각 공정 방법 |
| WO2014164300A1 (en) * | 2013-03-13 | 2014-10-09 | Applied Materials, Inc | Pulsed pc plasma etching process and apparatus |
| US9280070B2 (en) * | 2014-07-10 | 2016-03-08 | Applied Materials, Inc. | Field guided exposure and post-exposure bake process |
| US10115567B2 (en) * | 2014-09-17 | 2018-10-30 | Tokyo Electron Limited | Plasma processing apparatus |
| US9490116B2 (en) * | 2015-01-09 | 2016-11-08 | Applied Materials, Inc. | Gate stack materials for semiconductor applications for lithographic overlay improvement |
| US10246772B2 (en) * | 2015-04-01 | 2019-04-02 | Applied Materials, Inc. | Plasma enhanced chemical vapor deposition of films for improved vertical etch performance in 3D NAND memory devices |
| US9966231B2 (en) | 2016-02-29 | 2018-05-08 | Lam Research Corporation | Direct current pulsing plasma systems |
| JP6292244B2 (ja) * | 2016-03-01 | 2018-03-14 | トヨタ自動車株式会社 | 成膜方法及びプラズマ化学気相成長装置 |
| US10510575B2 (en) * | 2017-09-20 | 2019-12-17 | Applied Materials, Inc. | Substrate support with multiple embedded electrodes |
| US20190088518A1 (en) * | 2017-09-20 | 2019-03-21 | Applied Materials, Inc. | Substrate support with cooled and conducting pins |
-
2018
- 2018-04-27 US US15/965,621 patent/US10840086B2/en active Active
-
2019
- 2019-03-27 CN CN201980028205.1A patent/CN112020574A/zh active Pending
- 2019-03-27 KR KR1020237040881A patent/KR102849073B1/ko active Active
- 2019-03-27 WO PCT/US2019/024430 patent/WO2019209453A1/en not_active Ceased
- 2019-03-27 JP JP2020559532A patent/JP7678670B2/ja active Active
- 2019-03-27 KR KR1020207033826A patent/KR20200136048A/ko not_active Ceased
- 2019-04-02 TW TW108111626A patent/TWI771577B/zh active
-
2020
- 2020-10-14 US US17/070,821 patent/US12094707B2/en active Active
-
2023
- 2023-11-13 JP JP2023193056A patent/JP2024028701A/ja active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5160397A (en) * | 1989-04-27 | 1992-11-03 | Fujitsu Limited and Fuji Electric Co., Ltd. | Plasma process apparatus and plasma processing method |
| US20010048980A1 (en) * | 1997-11-20 | 2001-12-06 | Koji Kishimoto | High density plasma enhanced chemical vapor deposition method |
| US20070119373A1 (en) * | 2005-07-29 | 2007-05-31 | Ajay Kumar | Chemical vapor deposition chamber with dual frequency bias and method for manufacturing a photomask using the same |
| US20130260057A1 (en) * | 2012-04-03 | 2013-10-03 | Novellus Systems, Inc. | Continuous plasma and rf bias to regulate damage in a substrate processing system |
| WO2014066541A1 (en) * | 2012-10-26 | 2014-05-01 | Applied Materials, Inc. | Pecvd apparatus and process |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2023541831A (ja) * | 2020-09-08 | 2023-10-04 | アプライド マテリアルズ インコーポレイテッド | 単一のチャンバ流動性膜の形成及び処理 |
| JP7560662B2 (ja) | 2020-09-08 | 2024-10-02 | アプライド マテリアルズ インコーポレイテッド | 単一のチャンバ流動性膜の形成及び処理 |
| US12142459B2 (en) | 2020-09-08 | 2024-11-12 | Applied Materials, Inc. | Single chamber flowable film formation and treatments |
| JP2025016438A (ja) * | 2020-09-08 | 2025-02-04 | アプライド マテリアルズ インコーポレイテッド | 単一のチャンバ流動性膜の形成及び処理 |
| US12456602B2 (en) | 2020-09-08 | 2025-10-28 | Applied Materials, Inc. | Semiconductor processing chambers and methods for deposition and etch |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112020574A (zh) | 2020-12-01 |
| JP2024028701A (ja) | 2024-03-05 |
| TWI771577B (zh) | 2022-07-21 |
| TW201945586A (zh) | 2019-12-01 |
| JP7678670B2 (ja) | 2025-05-16 |
| KR102849073B1 (ko) | 2025-08-25 |
| KR20230165880A (ko) | 2023-12-05 |
| US20190333764A1 (en) | 2019-10-31 |
| KR20200136048A (ko) | 2020-12-04 |
| US20210028012A1 (en) | 2021-01-28 |
| US10840086B2 (en) | 2020-11-17 |
| US12094707B2 (en) | 2024-09-17 |
| JP2021522415A (ja) | 2021-08-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12094707B2 (en) | Plasma enhanced CVD with periodic high voltage bias | |
| US20220344131A1 (en) | Modular microwave plasma source | |
| US11217443B2 (en) | Sequential deposition and high frequency plasma treatment of deposited film on patterned and un-patterned substrates | |
| US12300497B2 (en) | Method and apparatus of low temperature plasma enhanced chemical vapor deposition of graphene | |
| US10720311B2 (en) | Phased array modular high-frequency source | |
| CN110391127B (zh) | 模块化高频源 | |
| KR102851415B1 (ko) | 모놀리식 모듈러 고주파 플라즈마 소스 | |
| US11564292B2 (en) | Monolithic modular microwave source with integrated temperature control | |
| US20250308852A1 (en) | Dynamic frequency tuning for microwave power amplifiers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19792013 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2020559532 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20207033826 Country of ref document: KR Kind code of ref document: A |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 19792013 Country of ref document: EP Kind code of ref document: A1 |