WO2019208487A1 - 病原性微生物の核酸検出方法 - Google Patents

病原性微生物の核酸検出方法 Download PDF

Info

Publication number
WO2019208487A1
WO2019208487A1 PCT/JP2019/017001 JP2019017001W WO2019208487A1 WO 2019208487 A1 WO2019208487 A1 WO 2019208487A1 JP 2019017001 W JP2019017001 W JP 2019017001W WO 2019208487 A1 WO2019208487 A1 WO 2019208487A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
solution
biological sample
supernatant
acid amplification
Prior art date
Application number
PCT/JP2019/017001
Other languages
English (en)
French (fr)
Inventor
広道 鈴木
洋介 川嶋
Original Assignee
公益財団法人筑波メディカルセンター
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018092266A external-priority patent/JP7187175B2/ja
Application filed by 公益財団法人筑波メディカルセンター, 東洋紡株式会社 filed Critical 公益財団法人筑波メディカルセンター
Publication of WO2019208487A1 publication Critical patent/WO2019208487A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • the present invention relates to a method for detecting nucleic acids of pathogenic microorganisms.
  • infectious disease-causing microorganisms are detected by various inspection methods in clinical practice.
  • methods for detecting microorganisms in a sample include culture tests for growing microorganisms, antigen tests for detecting microorganisms by antigen-antibody reaction, and genetic tests for detecting nucleic acids of microorganisms. Particularly in recent years, attention has been focused on genetic testing with high sensitivity and accuracy.
  • the test target is often a biological sample.
  • a biological sample contains various contaminants mainly composed of human-derived components, and thus nucleic acid amplification or detection tends to be hindered.
  • nucleic acid amplification or detection tends to be hindered.
  • amplification and detection are possible even in the presence of contaminants by using ⁇ -type DNA polymerase.
  • the gene to be amplified and detected is the living body itself collected from tissue or blood.
  • Patent Document 1 For separation and removal of contaminants, for example, a method of filtering contaminants using a filter or the like is known (Patent Document 1).
  • Patent Document 2 In general genetic testing, only nucleic acids are extracted and purified from a sample. Thus, a sample suitable for an inspection from which impurities are removed is prepared.
  • a nucleic acid extraction method in addition to a method using an organic solvent such as phenol, a method using a column or magnetic silica particles is known.
  • Patent Document 2 a method for obtaining nucleic acids by crushing contaminants in a sample using beads
  • Patent Document 3 a method for localizing contaminants by heating and centrifugation
  • a protein denaturant and the like are added.
  • Patent Document 4 A method for extracting nucleic acid (Patent Document 4), a method for selectively lysing mammalian blood cells that can be contaminated from a blood sample containing microorganisms by adding 0.1% or more of a surfactant (Patent Document 5), etc. Is also known.
  • a complicated operation or a special apparatus is required for the pretreatment of the sample. Specifically, a reagent and apparatus for nucleic acid extraction, a heat block for heating, a centrifuge, and the like are required.
  • filtration by a filter is a method that can be carried out easily.
  • the filter in order to remove all impurities, there is a problem that the filter is clogged and cannot be filtered, or the target microorganism is not contained in the filtrate.
  • the components of the biological sample are not homogeneous due to their origin, it has been considered that it is difficult to remove a contaminant only by a method using a filter and obtain a sufficient amount of a sample suitable for inspection.
  • nucleic acid extraction process takes time.
  • extracting and purifying nucleic acid from a biological sample is a standard process in genetic testing.
  • this process takes several tens of minutes, the time required for this process can be shortened. For example, the time required for genetic testing can be greatly improved.
  • the present invention provides a nucleic acid amplification sample solution suitable for nucleic acid amplification by rapid and simple pretreatment of a biological sample in a method for detecting a nucleic acid of a pathogenic microorganism.
  • One object is to provide a method for detecting nucleic acids of microorganisms.
  • the present inventors have obtained a supernatant by stirring and leaving a diluent containing a biological sample, or by further filtering the supernatant to obtain a filtrate.
  • the present invention represented by the following was completed.
  • [Claim 1] A method for detecting nucleic acids of pathogenic microorganisms, (1) adding a biological sample collected from a subject to a diluent having a pH of 6.0 to 8.5 and a specific gravity of 1.0 to 1.2; (2) A step of stirring the diluted solution to which the biological sample is added, (3) A step of allowing the diluted diluent to stand for 3 seconds or more and obtaining a supernatant from the solution, and (4) amplifying a nucleic acid of a pathogenic microorganism using the obtained supernatant as a nucleic acid amplification sample solution. And then detecting, A method using a nucleic acid amplification sample solution containing a biological sample-derived material.
  • [Section 10] Item 10. The method according to any one of Items 1 to 9, wherein in step (4), the amplification and detection of the nucleic acid are performed by a PCR method or a real-time PCR method.
  • [Claim 12] A method for preparing a nucleic acid amplification sample solution for use in a nucleic acid detection method for pathogenic microorganisms, (1) adding a biological sample collected from a subject to a diluent having a pH of 6.0 to 8.5 and a specific gravity of 1.0 to 1.2; (2) a step of stirring the diluted solution to which the biological sample is added, and (3) a step of allowing the stirred diluted solution to stand for 3 seconds or more and obtaining a supernatant from the stationary solution, Including a method.
  • the present invention can further include the following inventions.
  • the collected biological sample has a pH of 6.0 to 8.5 and a specific gravity of 1.0 to 1.2. And amplifying nucleic acid derived from pathogenic microorganisms in a sample using a supernatant obtained by allowing the solution to be added, stirring and allowing to stand for 3 seconds or more, and detecting the amplification product A nucleic acid detection method for pathogenic microorganisms.
  • the biological sample is collected by a swab covered with hydrophilic fibers deposited by flocking.
  • nucleic acid amplification sample solution can be prepared easily and rapidly, the time required for nucleic acid extraction and purification is unnecessary, and the time required for nucleic acid detection of pathogenic microorganisms can be shortened. In one embodiment, since an effective protein denaturant is not used in the process of preparing a nucleic acid amplification sample solution, there is no risk of chemical injury.
  • FIG. 10 is a diagram illustrating a result of Example 5.
  • FIG. 10 is a diagram illustrating a result of Example 6.
  • a biological sample collected from a subject (for example, a human or non-human animal suspected to be infected with a pathogenic microorganism) is subjected to various treatments to prepare a nucleic acid amplification sample solution.
  • the solution is subjected to nucleic acid amplification to detect nucleic acids of pathogenic microorganisms in the amplification product.
  • One embodiment of the present invention is a nucleic acid detection method for pathogenic microorganisms using a nucleic acid amplification sample liquid containing a biological sample-derived substance, (1) adding a biological sample collected from a subject to a diluent having a pH of 6.0 to 8.5 and a specific gravity of 1.0 to 1.2; (2) A step of stirring the diluted solution to which the biological sample is added, (3) A step of allowing the diluted diluent to stand for 3 seconds or more and obtaining a supernatant from the solution, and (4) amplifying a nucleic acid of a pathogenic microorganism using the obtained supernatant as a nucleic acid amplification sample solution. And then detecting, Including a method.
  • the supernatant obtained in step (3) can be used as a nucleic acid amplification sample solution.
  • biological sample-derived materials other than nucleic acids have been almost completely removed by the nucleic acid extraction step and the nucleic acid purification step.
  • the supernatant is obtained by stirring and leaving the biological sample-containing diluent, and the biological sample has not been completely removed, and thus contains the biological sample-derived substance.
  • the supernatant obtained by simple and rapid processing that is, steps (1) to (3) can be used for nucleic acid amplification.
  • the filtrate obtained by further filtering the supernatant obtained in step (3) with a sintered filter in step (4) is used as a nucleic acid amplification sample solution.
  • the object in the present invention is, for example, a human or non-human animal.
  • Non-human animals are non-human mammals, such as dogs, cats, mice, rats, guinea pigs, hamsters, rabbits, pigs, cows, sheep, goats, and preferably dogs, cats, and the like.
  • Preferred subjects are humans, more preferably humans suspected of being infected with pathogenic microorganisms.
  • the biological sample in the present invention is a sample collected from a subject. Specifically, pharyngeal wiping liquid, oral wiping liquid, nasal cavity (including posterior nasal cavity) wiping liquid, nasopharyngeal wiping liquid, tympanotomy liquid, alveolar lavage liquid, gastric lavage liquid, intestinal lavage liquid, cervical wiping liquid, urethral scraping material , Sputum, pus, stool, rectal wipe, urine, vomit, plasma, serum, saliva, amniotic fluid, spinal fluid, organ extract, tissue extract, etc. If so, it can be included in the biological sample of the present invention.
  • Preferred biological samples in the present invention are pharyngeal wiping liquid, nasal cavity (including posterior nasal cavity) wiping liquid, nasopharyngeal wiping liquid, and sputum, and pharyngeal wiping liquid is more preferable.
  • a biological sample collecting tool can be used when collecting a biological sample from a target.
  • the biological sample collecting tool is used for collecting a biological sample from a human or other animal and is not particularly limited. For example, swab, platinum ear, dropper, spatula, spoon, etc., which can be appropriately selected according to the state of the target, the organ or tissue of the living body from which the sample is collected.
  • a preferred biological sample collection tool is a swab.
  • the size of the biological sample collecting tool may be a size that does not hinder the stirring of the diluent, and is, for example, a size that can be accommodated in a container that stores the diluent.
  • the biological sample collection tool after collecting the biological sample is deformed (for example, bent), or a part thereof is removed (for example, cut), so that it does not cause trouble. You may adjust it.
  • the rod-shaped swab may be cut into two, and the cut rod having the end containing the biological sample may be sized to fit in the storage container.
  • the swab in the present invention is a swab from which a biological sample can be collected, and is preferably a flox swab. Swabs in the form of rods are widely used in the medical field, and they can also be used in the present invention.
  • the tip of the rod-shaped swab is a biological sample collecting part, and the other end is a gripping part.
  • the swab rod may be hollow.
  • the swab biological sample collection part is sometimes referred to as a chip, and its shape is, for example, spherical or elliptical.
  • the swab grip is not particularly limited, but it is advantageous for gripping if it is flat, and it is convenient for closing the swab after it has been put into the diluent as long as it is integrated with the lid of the diluent container. .
  • the swab and the lid of the storage container are not an integral structure, but the gripping part can be integrated afterwards by inserting the gripping part of the swab into the insertion part provided on the storage space side of the lid of the storage container.
  • the biological sample collecting tool has a rod shape, and is a swab in which one end of the rod is covered with a biological sample collecting unit.
  • the biological sample collection part is a rod-shaped swab provided with a tip covered with hydrophilic fibers at the end, and more preferably a flox swab.
  • the Phloxwab has a uniform thickness that is attached to the tip by flocking in a rod with a tip at the end, and fibers arranged on the surface of the tip in a direction perpendicular to the longitudinal direction of the rod.
  • a hydrophilic fiber arranged as a layer having. Floxswab is advantageous in that the collected biological sample is easily released into the diluent.
  • the material of the fibers used for the swab chips is appropriately selected from synthetic or artificial fibers such as rayon, polyester, polyamide, carbon fiber, and alginate, natural fibers such as silk and cotton, and blends thereof. Selected.
  • Diluents can be widely used for nucleic acid detection tests for pathogenic microorganisms (sometimes commonly referred to as genetic tests), including pathogenic microorganism types, biological sample types, nucleic acid amplification types, etc. It can be appropriately selected depending on the situation.
  • the diluent is, for example, a buffer solution, water (for example, purified water, deionized water, ultrapure water, etc.), physiological saline, or the like.
  • the diluent may be a transport medium that is used for nucleic acid detection of pathogenic microorganisms.
  • the diluent may or may not contain a surfactant, but preferably does not contain a surfactant.
  • the diluent is an aqueous composition comprising, for example, a buffer.
  • the buffer is one that can be used in the biochemical field, such as Good buffer (eg, HEPES buffer, ACES buffer, PIPES buffer, Bis-Tris buffer, MOPS buffer, HEPPS buffer, TAPS buffer, etc.). Tris-HCl buffer, phosphate buffer, phosphate buffered saline (PBS), and the like.
  • the diluent may include salt, bovine serum albumin (BSA), gelatin, a dye, and the like.
  • the diluent may contain a saccharide, and the saccharide is, for example, one or more selected from the group consisting of sucrose, mannose and inositol, more preferably sucrose.
  • the diluted solution may contain an antibacterial substance from the viewpoint of bacteriostatic of microorganisms other than the target microorganism. Examples of the antibacterial substance include vancomycin, amphotericin B, colistin, polymyxin B, metronidazole, chloramphenicol, and the like.
  • the diluent may contain an amino acid, and the amino acid is, for example, one or more selected from the group consisting of L-cysteine and L-glutamic acid, more preferably a combination of L-cysteine and L-glutamic acid.
  • the diluent is a buffer containing sucrose, preferably a buffer containing sucrose, vancomycin, amphotericin B, colistin, L-cysteine and L-glutamic acid, more preferably UTM-RT.
  • Medium Copan Universal Transport Medium; manufactured by Copan).
  • the specific gravity of the diluent is, for example, 0.8 or more, 0.85 or more, 0.9 or more, 0.95 or more, 1.0 or more, 1.02 or more, 1.04 or more, 1.06 or more, or 1. May be greater than or equal to 08 and may be 1.4 or less, 1.35 or less, 1.3 or less, 1.25 or less, 1.2 or less, 1.18 or less, 1.16 or less, 1.14 or less, or 1.12 It can be: In one embodiment, the specific gravity of the diluent is, for example, 0.8 to 1.4, 0.85 to 1.35, 0.9 to 1.3, 0.95 to 1.25, 1.0 to 1.2. And preferably 1.04 to 1.16, more preferably 1.06 to 1.14.
  • the pH (25 ° C.) of the diluent may be, for example, 6.0 or more, 6.5 or more, 6.8 or more, 6.9 or more, 7.0 or more, or 7.1 or more, and 8.5 or less. 8.0 or less, 7.8 or less, 7.6 or less, 7.5 or less, or 7.4 or less.
  • the pH of the diluent is, for example, 6.0 to 8.5, 6.5 to 8.0, preferably 6.8 to 7.8, and more preferably 7.0 to 7 .4.
  • the amount of the diluent is not particularly limited, but from the viewpoint of improving the stability of nucleic acid amplification, for example, an amount of more than 1 ml, 1.2 ml or more, preferably 1.5 ml or more, more preferably 1.7 ml or more, particularly preferably 2 ml or more.
  • the upper limit of the amount of the diluent is not particularly limited as long as nucleic acid amplification can be performed appropriately, and can be, for example, 10 ml or less, preferably 5 ml or less.
  • the amount of diluent is, for example, greater than 1 ml to 10 ml, 1.2 ml to 10 ml, 1.5 ml to 10 ml, 1.7 ml to 10 ml, 2 ml to 10 ml, 1.2 ml to 5 ml, 1.5 ml to 5 ml, 1.7 ml to 5 ml, 2 ml to 5 ml.
  • the amount of the diluted solution is The amount may be smaller, for example, 0.8 ml or more, 1 ml or more, more than 1 ml, 1.2 ml or more, preferably 1.5 ml or more, more preferably 1.7 ml or more, particularly preferably 2 ml or more.
  • the upper limit of the amount is not particularly limited as long as nucleic acid amplification can be appropriately performed, and can be, for example, 10 ml or less, preferably 5 ml or less.
  • the amount of diluent is, for example, 0.8 ml to 10 ml, 1 ml to 10 ml, more than 1 ml to 10 ml, 1.2 ml to 10 ml, 1.5 ml to 10 ml, 1.7 ml to 10 ml, 2 ml to 10 ml, 0.8 ml to 5 ml, 1 ml to 5 ml, more than 1 ml to 5 ml, 1.2 ml to 5 ml, 1.5 ml to 5 ml, 1.7 ml to 5 ml, 2 ml to 5 ml.
  • the diluent is usually contained in a container that can be tightly stoppered, which is composed of a lid and a main body. If it is not necessary to consider the leakage of the diluent, a tight stopper is not necessary. Therefore, in this case, a container that cannot be sealed or a container without a lid can be used.
  • the container containing the diluent is a tube that can be sealed.
  • the container containing the diluent is a tube of a shape and size that can accommodate the diluent, optionally with a biological sample collection tool.
  • the diameter of the tube is, for example, 10 mm to 30 mm, preferably 10 mm to 20 mm, and the height of the tube is 30 mm to 150 mm, preferably 35 mm to 100 mm.
  • the shape of the bottom portion of the tube is preferably a tapered shape that becomes thinner toward the bottom portion, which is advantageous in terms of stability at the time of standing and stability at the time of stirring. Since the container can be subjected to stirring, the material is preferably a material that does not deform or break during stirring.
  • the specific material of a storage container is not specifically limited, It may be a hard resin and specifically, polypropylene, polyethylene, polystyrene, ABS resin, etc. are mentioned.
  • a biological sample collected from a subject is added to a diluted solution having a pH of 6.0 to 8.5 and a specific gravity of 1.0 to 1.2, for example.
  • the method of adding a biological sample to a diluent includes, for example, collecting a biological sample from a target with a biological sample collecting tool and then housing a biological sample collecting part (biological sample collecting unit) of the biological sample collecting tool. This is a method of contacting a diluent contained in a container.
  • the collected biological sample is added as it is to the diluent contained in the container.
  • step (2) the diluted liquid added with the biological sample obtained in step (1) is stirred.
  • the diluent may be transferred from a container containing the diluent to a stirring container for stirring, or the container containing the diluent may be stirred.
  • the biological sample collecting part of the biological sample collecting tool may be stirred while being placed in the diluent.
  • a swab and a container for example, a tube
  • a container for example, a tube
  • a diluent can be used for stirring in a state where a biological sample collection part (usually a chip) of the swab is immersed in the diluent.
  • the tube in which the swab is placed may be sealed with a dedicated cap, or the upper part of the tube may be open.
  • a stirring method for example, a method of stirring the diluted solution in the tube together with a biological sample collecting part such as a swab by swirling the bottom of the tube with a vortex mixer or the like, a method of shaking the tube, a biological sample such as a swab
  • a method of stirring the diluted solution by vibrating the sampling part may be used.
  • the stirring temperature in the step (2) may be near room temperature, and may be, for example, 0 ° C or higher, 4 ° C or higher, 10 ° C or higher, or 15 ° C or higher, and 40 ° C or lower, 35 ° C or lower, or 30 ° C or lower. obtain.
  • the stirring temperature is 10 ° C to 35 ° C, preferably 15 ° C to 30 ° C.
  • the stirring time in this step may be, for example, 3 seconds or more, 5 seconds or more, or 20 seconds or more, and may be 1 minute or less, 45 seconds or less, 30 seconds or less, or 20 seconds or less.
  • the stirring time is from 3 seconds to 1 minute, preferably from 5 seconds to 20 seconds.
  • step (3) the stirred diluted liquid obtained in step (2) is allowed to stand for 3 seconds or more, and a supernatant is obtained from the stationary liquid.
  • the contaminants released in the diluent by the step (2) can be localized, for example, settled.
  • the standing is not particularly limited as long as the contaminants in the liquid medium are localized.
  • a method of placing a container containing a stirred diluent on a horizontal surface such as a desk, a tube rack, etc. It can be implemented by a method of holding with a container holder.
  • the lower limit of the standing time in this step is, for example, 3 seconds, and preferably 5 seconds.
  • the upper limit of the standing time is not particularly limited from the viewpoint of localization of the nucleic acid amplification inhibitor, but can be appropriately determined from the viewpoint of shortening the time required for detecting the nucleic acid, for example, 15 minutes, preferably 1 minute, More preferably, it is 30 seconds.
  • the standing time is, for example, 3 seconds to 15 minutes, 3 seconds to 1 minute, 3 seconds to 30 seconds, 5 seconds to 15 minutes, preferably 5 seconds to 1 minute, more preferably 5 seconds to 30 seconds. It can be.
  • the standing temperature in this step may be around normal temperature, and may be, for example, 0 ° C or higher, 4 ° C or higher, or 15 ° C or higher, and may be 40 ° C or lower, 35 ° C or lower, or 30 ° C or lower. In one embodiment, the standing temperature is 4 ° C. to 35 ° C., preferably 15 ° C. to 30 ° C.
  • the contaminant or nucleic acid amplification-inhibiting component is, for example, a biological substance or a swab-derived substance present in a swab to which a biological sample is attached, and is an inhibitor of nucleic acid detection tests, particularly nucleic acid amplification.
  • a biological substance or a swab-derived substance present in a swab to which a biological sample is attached
  • nucleic acid detection tests particularly nucleic acid amplification.
  • It refers to a possible substance.
  • examples of such substances include human cells, mucous membranes, nasal discharge, saliva, sputum, blood, plaque, and other biologically derived viscous components (for example, mucus glycoproteins such as mucin); proteins; glycosaminoglycans such as heparin; Examples thereof include metal chelate compounds such as acids; water-insoluble substances such as swab fibers.
  • the biological sample collecting tool may or may not be removed from the storage container before the step (1) and the subsequent step (2). If not removed before step (2), it is removed before step (3).
  • the suspended matter cannot be visually confirmed in a range of 1/10 with respect to the height of the stationary liquid ( This includes a condition in which the specific gravity that can be visually confirmed on the liquid surface is very light (for example, swab fibers) and the suspended matter cannot be visually confirmed in a range of 1/10 excluding the liquid surface.
  • the specific gravity that can be visually confirmed on the liquid surface is very light (for example, swab fibers) and the suspended matter cannot be visually confirmed in a range of 1/10 excluding the liquid surface.
  • a supernatant is collected from the standing solution, and nucleic acid is amplified and detected.
  • the supernatant should be collected from the standing solution in which suspended matter cannot be visually confirmed within a range of 1/5 from the upper end of the standing solution.
  • the supernatant is collected from the static solution in which suspended matter cannot be visually confirmed within a range of 1/3 from the upper end of the static solution.
  • the supernatant is obtained from the portion of the static solution where the suspended matter cannot be visually confirmed.
  • a method for obtaining the supernatant for example, a method such as sucking with a dropper or sucking with a pipette can be mentioned.
  • the amount of the supernatant to be obtained is not particularly limited as long as it is an amount necessary for nucleic acid amplification in step (4), and is, for example, 50 ⁇ l to 1000 ⁇ l, preferably 100 ⁇ l to 800 ⁇ l.
  • step (4) the supernatant obtained in step (3) is used as a nucleic acid amplification sample solution to amplify the nucleic acid of the pathogenic microorganism and then detect it.
  • the supernatant obtained in step (3) is further filtered through a sintered filter, and the resulting filtrate is used as a nucleic acid amplification sample solution.
  • the time required from the addition of the biological sample to the diluent to the preparation of the nucleic acid amplification sample solution is not particularly limited. However, from the viewpoint of shortening the test time, for example, 15 minutes or less, preferably 10 It can be set to 5 minutes or less, more preferably 5 minutes or less.
  • the material for the sintered filter used in the present invention is not particularly limited, and examples thereof include polypropylene, polyethylene, polystyrene, polymethyl methacrylate, alumina, and zirconia. It is preferable to use a material selected from the group consisting of polypropylene, polyethylene, polystyrene, and polymethyl methacrylate from the viewpoint of easy molding, and among these, polypropylene or polyethylene is preferable.
  • the pore size of the sintered filter is not particularly limited as long as a nucleic acid amplification sample solution can be prepared.
  • it can be 0.5 ⁇ m or more, 1 ⁇ m or more, 3 ⁇ m or 5 ⁇ m or more, and can be 200 ⁇ m or less, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the pore diameter is 1 ⁇ m to 200 ⁇ m or less, preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m.
  • the sintered filter may be configured by stacking a plurality of filters having different pore diameters, the pore diameter of the filter having the smallest pore diameter is 1 ⁇ m or more, and the pore diameter of the filter having the largest pore diameter is A filtration filter having a size of 200 ⁇ m or less can be used.
  • a sintered filter having a pore size of 100 ⁇ m to 200 ⁇ m and a sintered filter having a pore size of 1 ⁇ m to 100 ⁇ m can be filtered in this order.
  • step (4) the nucleic acid of the pathogenic microorganism is amplified using the supernatant obtained in step (3) or the filtrate obtained by filtering the supernatant with a sintered filter, and then detected.
  • the supernatant or filtrate can be subjected to a conventional nucleic acid extraction step, but in this case, the time for nucleic acid detection cannot be greatly reduced.
  • an embodiment that does not include a nucleic acid extraction step is preferred.
  • the method for detecting the amplified nucleic acid in the present invention is not particularly limited, and any method can be used as long as it can inspect diseases, infections, etc. based on gene sequence information. Specifically, for example, an embodiment for detecting a partial sequence of a gene in a microorganism, an embodiment for detecting a mutation in the gene, and the like can be mentioned.
  • the nucleic acid amplification method used for nucleic acid amplification is not particularly limited, and various known methods such as PCR method, real-time PCR method, SDA method, ICAN method, and LAMP method can be used. A PCR method or a real-time PCR method is more preferable.
  • the DNA polymerase used in the nucleic acid amplification step of the PCR method is not particularly limited. For example, ⁇ -type DNA polymerase such as KOD DNA polymerase and Pfu DNA polymerase; Pol I type such as Taq DNA polymerase and Tth DNA polymerase.
  • a DNA polymerase or the like can be used, and in a specific embodiment, it is preferable to use an ⁇ -type DNA polymerase excellent in accuracy or a DNA polymerase belonging to Family B.
  • the ⁇ -type DNA polymerase it is more preferable to use KOD DNA polymerase (Toyobo) or Pfu DNA polymerase (Takara Bio).
  • the nucleic acid amplification sample solution used in the nucleic acid amplification step is a nucleic acid source of pathogenic microorganisms to be subjected to nucleic acid amplification.
  • an appropriate reagent or the like according to the target nucleic acid, the applied nucleic acid amplification method, etc. for example, DNA polymerase, nucleic acid primer pair, nucleic acid probe (for example, QProbe, TaqmanProbe), etc.
  • DNA polymerase for example, nucleic acid primer pair, nucleic acid probe (for example, QProbe, TaqmanProbe), etc.
  • QProbe for example, QProbe, TaqmanProbe
  • the method used for detecting the nucleic acid of the pathogenic microorganism is not particularly limited, and a method for detecting amplified nucleic acid using agarose gel electrophoresis, RFLP method, intercalator, amplified nucleic acid And a method of detecting an amplified nucleic acid using a nucleic acid probe that specifically binds to the base sequence of More preferably, the amplified nucleic acid is detected using a nucleic acid probe.
  • the nucleic acid probe include TaqMqn probe, quenching probe (Quenching Probe; QProbe), and Molecular Beacon.
  • Other conditions in the nucleic acid amplification and nucleic acid detection in the step (4) can be appropriately selected in consideration of known nucleic acid amplification and nucleic acid detection techniques.
  • the nucleic acid detection method of the present invention is characterized in that general nucleic acid extraction and purification are not performed.
  • the supernatant is collected by stirring for 3 seconds or more after stirring with a swab placed in a dilute solution containing a biological sample, and is directly used for nucleic acid amplification and detection, or the supernatant is filtered with a sintered filter.
  • nucleic acid amplification and detection can be performed for microbial genes in a test sample without performing nucleic acid extraction and purification.
  • “Nucleic acid extraction and purification” in the present invention refers to a step of extracting and purifying only a nucleic acid to be tested from a biological sample.
  • a step of adsorbing only nucleic acid in a biological sample to a silica column, magnetic beads, etc., separating the nucleic acid from other components, and then eluting the nucleic acid from the column, beads, etc. to obtain a nucleic acid-only sample or Examples include a step of preparing a fraction containing nucleic acid with an organic solvent and then precipitating or remaining only the nucleic acid with alcohol.
  • the pathogenic microorganism in the present invention is not particularly limited, and examples thereof include respiratory infection causing microorganisms, gastrointestinal infection causing microorganisms, sexually transmitted infection causing microorganisms, and opportunistic infection causing microorganisms.
  • Preferred are microorganisms causing respiratory infections (for example, eubacteria that cause respiratory infections such as mycoplasma).
  • infectious disease-causing microorganisms include respiratory infections such as influenza virus, RS virus, adenovirus, pneumococci, bacteria belonging to the genus Mycoplasma, Chlamydia pneumoniae, Chlamyphila shitash, Bordetella pertussis, Bordetella parapertussis and Legionella Microorganisms causing diarrhea, such as norovirus, rotavirus, sapovirus, and diarrhea adenovirus.
  • respiratory infections such as influenza virus, RS virus, adenovirus, pneumococci, bacteria belonging to the genus Mycoplasma, Chlamydia pneumoniae, Chlamyphila shitash, Bordetella pertussis, Bordetella parapertussis and Legionella
  • diarrhea such as norovirus, rotavirus, sapovirus, and diarrhea adenovirus.
  • Bacteria belonging to the genus Mycoplasma are, for example, Mycoplasma arginini, Mycoplasma buccale, Mycoplasma faucium, Mycoplasma hominis, Mycoplasma hominis, Mycoplasma orale, Mycoplasma orale, ⁇ Salivarium (Mycoplasma fermentans), Mycoplasma lipophilum, Mycoplasma primatum, Mycoplasma hyorhinis, Mycoplasma hyorhinis, Mycoplasma e ⁇ Genitalium (Mycoplasma genitalium), Mycoplasma ⁇ pneumoniae, Mycoplasma galise Examples include petit cam (Mycoplasma gallisepticum).
  • the pathogenic microorganism is one or more selected from respiratory pathogenic microorganisms, preferably influenza virus, RS virus, adenovirus, pneumococci, mycoplasma genus, Chlamydophila pneumoniae , Chlamydia firsitta, Bordetella pertussis, Bordetella parapertussis or Legionella, more preferably one or more selected from bacteria belonging to the genus Mycoplasma, and even more preferably Mycoplasma pneumoniae.
  • respiratory pathogenic microorganisms preferably influenza virus, RS virus, adenovirus, pneumococci, mycoplasma genus, Chlamydophila pneumoniae , Chlamydia firsitta, Bordetella pertussis, Bordetella parapertussis or Legionella, more preferably one or more selected from bacteria belonging to the genus Mycoplasma, and even more preferably Mycoplasma pneumoniae.
  • One embodiment of the present invention is a nucleic acid amplification sample solution used in a method for detecting a nucleic acid of pathogenic microorganisms, having a pH of 6.0 to 8.5 and a specific gravity of 1.0 to 1.2. It is the sample liquid containing the filtrate which filtered the stationary supernatant of the biological sample containing dilution liquid, or the said stationary supernatant with a sintered filter.
  • the nucleic acid amplification sample solution is typically prepared by the above steps (1) to (3) or (1) to (4).
  • this nucleic acid amplification sample solution has not undergone the nucleic acid extraction step, it contains a biological sample, but the nucleic acid amplification inhibitor is reduced to a level suitable for nucleic acid amplification or more.
  • the nucleic acid amplification sample solution can be prepared more easily and quickly than a conventional nucleic acid amplification sample solution prepared by a conventional method, for example, a nucleic acid extraction method.
  • a nucleic acid extraction method for other matters of the nucleic acid amplification sample solution, the above description regarding the corresponding matters of the nucleic acid detection method of the present invention is applied.
  • One embodiment of the present invention is a method for preparing a nucleic acid amplification sample solution to be used in a nucleic acid detection method for pathogenic microorganisms, (1) adding a biological sample collected from a subject to a diluent having a pH of 6.0 to 8.5 and a specific gravity of 1.0 to 1.2; (2) a step of stirring the diluted solution to which the biological sample is added, and (3) a step of allowing the stirred diluted solution to stand for 3 seconds or more and obtaining a supernatant from the stationary solution, Including a method.
  • This preparation method may further include the step (4).
  • a nucleic acid amplification sample solution in which a nucleic acid amplification inhibitor is reduced to a level suitable for nucleic acid amplification or more can be prepared in a short time by a simple operation.
  • the above description regarding the corresponding items of the nucleic acid detection method of the present invention is applied to other items of the method for preparing the nucleic acid amplification sample solution.
  • the collected biological sample has a pH of 6.0 to 8.5.
  • a solution having a specific gravity of 1.0 to 1.2 is added, and after stirring, a nucleic acid derived from pathogenic microorganisms in the sample is amplified using the supernatant obtained by allowing to stand for 3 seconds or more,
  • the present invention relates to a nucleic acid detection method for pathogenic microorganisms characterized by detecting an amplification product.
  • the above description regarding the corresponding matters of the nucleic acid detection method according to Item 1 is applied.
  • one embodiment of the present invention may be a method for detecting a nucleic acid of a pathogenic microorganism according to any one of Items 1 to 10, and A to G, which does not include a nucleic acid extraction step.
  • One of the further embodiments of the present invention is a method of detecting a nucleic acid derived from a pathogenic microorganism contained in a biological sample, and the biological sample used for collecting the specimen in a container (for example, a tube) containing the diluent.
  • a container for example, a tube
  • the biological sample collection tool to which is attached is immersed, and allowing to stand for 3 seconds or more after the stirring, localize the biological sample or contaminants derived from the biological sample collection tool in the diluent, and Remove the supernatant of the diluted solution and remove the nucleic acid amplification-inhibiting component without separating it from the biological components or by filtering the supernatant with a sintered filter without extracting and purifying the nucleic acid.
  • It can be a nucleic acid detection method for pathogenic microorganisms.
  • the solution having a pH of 6.0 to 8.0 and a specific gravity of 1.0 to 1.2 used in the present invention is not particularly limited as long as the pH and specific gravity are within the above ranges.
  • the above solution used in the present invention may be any buffer known in the art (for example, Good buffer), or water (for example, purified water, deionized water, ultrapure water, etc.). , Physiological saline or the like, or the above-described diluted solution.
  • One feature of the present invention is that a pretreatment is performed by adding a collected biological sample to a solution.
  • the amount of the solution used here is not particularly limited, but from the viewpoint of more easily obtaining a stable and high effect, for example, an amount of more than 1 ml, 1.2 ml or more, preferably 1.5 ml or more, more preferably 1 0.7 ml or more, particularly preferably 2 ml or more.
  • the upper limit of the amount of the solution is not particularly limited as long as nucleic acid amplification can be appropriately performed, and can be, for example, 10 ml or less, preferably 5 ml or less.
  • the amount of solution is, for example, greater than 1 ml to 10 ml, 1.2 ml to 10 ml, 1.5 ml to 10 ml, 1.7 ml to 10 ml, 2 ml to 10 ml, 1.2 ml to 5 ml, 1.5 ml to 5 ml. 1.7 ml to 5 ml, 2 ml to 5 ml.
  • the quantity of the solution to be used may be smaller, for example, even if it is 1 ml, a pathogenic microorganism can be detected.
  • the upper limit of the amount of the solution used in the present invention is not particularly limited as long as the effect of the present invention is exhibited, but as an example, it can be 10 ml or less, preferably 5 ml or less.
  • the amount of the solution when the supernatant is further filtered through the sintered filter is, for example, 0.8 ml or more, 1 ml or more, more than 1 ml, 1.2 ml or more, preferably 1.5 ml or more, more preferably 1.7 ml or more, and particularly preferably 2 ml or more.
  • the upper limit of the amount of the solution is not particularly limited as long as nucleic acid amplification can be appropriately performed, but is, for example, 10 ml or less, preferably 5 ml or less. be able to.
  • the amount of solution when performing the sintered filter filtration process is, for example, 0.8 ml to 10 ml, 1 ml to 10 ml, more than 1 ml to 10 ml, 1.2 ml to 10 ml, 1.5 ml to 10 ml.
  • the solution or dilution liquid in the present invention is a solution or dilution liquid that does not contain an effective protein denaturant.
  • the protein denaturant refers to a substance added for the purpose of denaturing a biological sample, a protein of a microorganism to be examined, and the like. Specific substance names include urea, guanidine hydrochloride, and guanidine thiocyanate.
  • acids such as nitric acid and sulfuric acid, and alkaline substances such as sodium hydroxide and potassium hydroxide are also applicable.
  • steps (1) to (4), pretreatment (for example, steps (1) to (3)) or nucleic acid detection test in the present invention can be more stably performed.
  • the solution or dilution liquid may contain nutrient components and inorganic salts for preserving microorganisms, and is not particularly limited as long as it is a solution or dilution liquid having the properties described above.
  • Example 1 Detection of microbial nucleic acid by the method of the present invention
  • the examination was performed using FLOQSwab (Coppan) to which a pharyngeal wipe from a patient with confirmed mycoplasma infection was attached.
  • FLOQSwab Coppan
  • Example processing Five swabs were placed in a tube (Salstat 10 ml 60.9921.819S), and pH 7.2 Buffer (HEPES buffer; specific gravity 1.01) was added in an amount of 0.5 ml, 1 ml, 2 ml, 3 ml, 5 ml and vortexed. The entire swab was stirred using a mixer. After stirring, the sample was allowed to stand for 5 seconds to obtain a sample of this example.
  • HEPES buffer pH 7.2 Buffer
  • Gene testing conditions For detection of Mycoplasma pneumoniae DNA, a fully automatic gene analyzer GENECUBE and Genecube Mycoplasma pneumoniae (both manufactured by Toyobo Co., Ltd.) were used. GeneCube Mycoplasma pneumoniae is a genetic test reagent that uses a type ⁇ polymerase (KOD DNA Polymerase) and a nucleic acid probe and can detect nucleic acids by PCR amplification and melting curve analysis.
  • KOD DNA Polymerase KOD DNA Polymerase
  • the nucleic acid was not extracted and purified, and the supernatant was directly used as a nucleic acid amplification sample solution for the nucleic acid amplification step.
  • Gene Cube amplification detection was performed under the reaction conditions described in the Mycoplasma package insert. [result] The detection results are shown below.
  • Example 2 Detection of microbial nucleic acid by the method of the present invention
  • the examination was performed using FLOQSwab (Coppan) to which a pharyngeal wiping solution derived from a patient with confirmed mycoplasma infection was attached.
  • FLOQSwab Coppan
  • Example processing Five swabs were placed in a tube (Salstat 10 ml 60.9921.819S), and pH 7.2 Buffer (HEPES buffer; specific gravity 1.01) was added in an amount of 0.5 ml, 1 ml, 2 ml, 3 ml, 5 ml and vortexed. The entire swab was stirred using a mixer.
  • Gene testing conditions For detection of Mycoplasma pneumoniae DNA, a fully automatic gene analyzer GENECUBE and Genecube Mycoplasma pneumoniae (both manufactured by Toyobo Co., Ltd.) were used.
  • GeneCube Mycoplasma pneumoniae is a genetic test reagent that uses a type ⁇ polymerase (KOD DNA Polymerase) and a nucleic acid probe and can detect nucleic acids by PCR amplification and melting curve analysis.
  • the nucleic acid was not extracted and purified, and the filtrate was used as it was as a nucleic acid amplification sample solution for the nucleic acid amplification step.
  • Amplification detection was performed under the reaction conditions described in the package insert of GeneCube Mycoplasma. [result] The detection results are shown below.
  • Example 3 Detection of microbial nucleic acid by the method of the present invention
  • the examination was performed using FLOQSwab (Coppan) to which a pharyngeal wipe from a patient with confirmed mycoplasma infection was attached.
  • FLOQSwab Coppan
  • the 5 swabs were put into a tube (10 ml 60.9921.819S made by Sarstedt), pH 5.5 (ACES buffer; specific gravity 1.01), pH 6.0 (PIPES buffer; specific gravity 1.01), pH 7.2 (HEPES buffer).
  • a fully automatic gene analyzer GENECUBE and Genecube Mycoplasma pneumoniae are gene cubes Mycoplasma pneumoniae uses an ⁇ -type polymerase (KOD DNA Polymerase) and a nucleic acid probe, It is a genetic test reagent capable of nucleic acid amplification by PCR and nucleic acid detection by melting curve analysis. The nucleic acid was not extracted and purified, and the filtrate was directly used as a nucleic acid amplification sample solution for the nucleic acid amplification step.
  • PCR conditions Gene Cube amplification detection was performed under the reaction conditions described in the Mycoplasma package insert. [result] The detection results are shown below.
  • Example 4 Detection of microbial nucleic acid by the method of the present invention
  • the examination was performed using FLOQSwab (Coppan) to which a pharyngeal wipe from a patient with confirmed mycoplasma infection was attached.
  • FLOQSwab Coppan
  • Five swabs were placed in a tube (10 ml 60.9921.819S manufactured by Sarstedt), and a mixture of pH 7.2 Buffer (phosphate buffer) and NaCl were added, and the specific gravity was 1.0, 1.1, 1.2, 2 ml of each reagent adjusted to 1.5 was added and the swab was stirred using a vortex mixer.
  • a fully automatic gene analyzer GENECUBE and Genecube Mycoplasma pneumoniae are gene cubes Mycoplasma pneumoniae uses an ⁇ -type polymerase (KOD DNA Polymerase) and a nucleic acid probe, It is a genetic test reagent capable of nucleic acid amplification by PCR and nucleic acid detection by melting curve analysis.
  • the nucleic acid was not extracted and purified, and the filtrate was directly used as a nucleic acid amplification sample solution for the nucleic acid amplification step.
  • Gene Cube amplification detection was performed under the reaction conditions described in the Mycoplasma package insert. [result] The detection results are shown below.
  • Example 5 Detection of nucleic acid by the method of the present invention
  • the examination was carried out using FLOQSwab (Coppan) to which a throat swab collected from a human suffering from Mycoplasma pneumoniae was attached.
  • the swab to which the pharyngeal wiping solution is attached is referred to as a positive swab.
  • Two positive swabs and two unused swabs are placed in a Copan transport medium (product name: UTM liquid medium 3 ml; specific gravity 1.02; pH 7.3) filled in an attached tube, and a vortex mixer is used. The medium was stirred together with the swab.
  • a Copan transport medium product name: UTM liquid medium 3 ml; specific gravity 1.02; pH 7.3
  • the UTM liquid medium is a buffer containing sucrose, vancomycin, amphotericin B, colistin, bovine serum albumin, L-cysteine, L-glutamic acid and the like. After stirring, the mixture was allowed to stand for 5 seconds, and the filtrate obtained by filtering the supernatant of the stationary solution with a sintered filter (made of polyethylene, pore size: 20 ⁇ m) was used as a sample for the nucleic acid amplification step.
  • a sintered filter made of polyethylene, pore size: 20 ⁇ m
  • GeneCube Mycoplasma pneumoniae is a genetic test reagent that uses a type-a polymerase (KOD DNA Polymerase) and a nucleic acid probe (QProbe), and can detect nucleic acids by real-time PCR and nucleic acid amplification by melting curve analysis.
  • the nucleic acid was not subjected to extraction and purification, and the filtrate was directly subjected to the nucleic acid amplification step.
  • Real-time PCR conditions Gene Cube amplification detection was performed under the reaction conditions described in the Mycoplasma package insert. [result] The result of the experiment is shown in FIG. FIG.
  • 1 is a graph showing changes in fluorescence intensity detected in real time, with the horizontal axis of the graph representing the number of cycles and the vertical axis representing the fluorescence signal. In this graph, when mycoplasma DNA is detected, a decrease in the amount of fluorescence appears.
  • FIG. 1 shows a clear decrease in fluorescence intensity for positive swabs, indicating that mycoplasma DNA was detected in the sample. In the unused swab, no change in fluorescence was observed, indicating that no mycoplasma DNA was detected.
  • the method of the present invention can detect DNA stably without being affected by contaminants derived from biological components, although it is a simple method.
  • Example 6 Detection of nucleic acid by the method of the present invention
  • the examination was performed using FLOQSwab (Copan) and mycoplasma DNA to which a throat swab collected from a human was attached.
  • FLOQSwab Colesupra
  • mycoplasma DNA to which a throat swab collected from a human was attached.
  • the swab to which the pharyngeal wiping liquid adhered in this example is referred to as a negative swab.
  • Example processing Eight negative swabs are placed in a Copan transport medium (product name: UTM liquid medium 3 ml; specific gravity 1.02; pH 7.3) packed in an attached tube, and the medium is stirred with a swab using a vortex mixer. did. After stirring, the mixture was allowed to stand for 5 seconds, and filtered through a sintered filter (made of polyethylene, pore size: 20 ⁇ m). To the solution after filtration, Mycoplasma pneumoniae DNA was added to a final concentration of 25 copies / ⁇ L to prepare a sample for the nucleic acid amplification step.
  • a Copan transport medium product name: UTM liquid medium 3 ml; specific gravity 1.02; pH 7.3
  • Gene testing conditions For detection of Mycoplasma pneumoniae DNA, a fully automatic gene analyzer GENECUBE and Genecube Mycoplasma pneumoniae (both manufactured by Toyobo Co., Ltd.) are gene cubes Mycoplasma pneumoniae uses an ⁇ -type polymerase (KOD DNA Polymerase) and a nucleic acid probe, It is a genetic test reagent capable of nucleic acid amplification by PCR and nucleic acid detection by melting curve analysis. The nucleic acid was not subjected to extraction and purification, and the filtrate was directly subjected to the nucleic acid amplification step.
  • Gene Cube amplification detection was performed under the reaction conditions described in the Mycoplasma package insert.
  • FIG. 2 is a graph showing changes in fluorescence intensity detected in melting curve analysis, with the horizontal axis of the graph representing temperature and the vertical axis representing the differential value of the fluorescence signal.
  • FIG. 2 shows a clear peak, indicating that mycoplasma DNA was detected in the sample. It was shown that DNA can be detected without being affected by biological components contained in the negative swab.
  • Table 5 shows the results of the tests obtained using the eight swabs. Each shows a fluorescence change amount of around 30 and there is almost no difference in the fluorescence change amount between the swabs, and the internal control is stably detected. It was revealed that DNA can be detected stably without being affected by impurities derived from components.
  • a simple, safe and rapid genetic test is possible from a swab to which a biological sample is attached. It is expected that rapid genetic test results in outpatient clinics for infectious diseases will lead to appropriate diagnosis and treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

病原性微生物の核酸検出検査において、特別に準備すべき機器を使用せず、迅速で簡便な方法により容易に試料の処理ができ、短時間で安定的に核酸検出検査が可能な方法を提供することを課題とする。 病原性微生物の核酸検出方法であって、 (1)対象から採取された生体試料をpHが6.0~8.5であり且つ比重が1.0~1.2である希釈液に添加する工程、 (2)生体試料が添加された希釈液を攪拌する工程、 (3)攪拌された希釈液を3秒以上静置して静置液から上清を取得する工程、及び (4)取得された上清を核酸増幅試料液として病原性微生物の核酸を増幅し、次いで検出する工程、 を含む、生体試料由来物質を含んだ核酸増幅試料液を用いた、方法。

Description

病原性微生物の核酸検出方法
 本発明は、病原性微生物の核酸の検出方法等に関する。
 感染症の診断および治療においては、感染症の原因となる微生物を検出することが極めて重要である。そのため、臨床現場では様々な検査方法により感染症原因微生物の検出が行われている。試料中の微生物を検出する方法としては、微生物を増殖させる培養検査、微生物を抗原抗体反応で検出する抗原検査、微生物の核酸を検出する遺伝子検査が挙げられる。特に近年では高い感度と正確性を有する遺伝子検査に注目が集まっている。
 微生物の遺伝子検査においては、検査対象は生体試料であることが多い。生体試料にはヒト由来の成分を主とする様々な夾雑物が含まれるため、核酸の増幅または検出が阻害されやすい。α型DNAポリメラーゼを用いることにより夾雑物の存在下においても増幅及び検出は可能との報告があるが、この報告において増幅及び検出の対象となる遺伝子は組織又は血液から採取されたその生体自身の遺伝子であり、生体試料中に含まれる微生物の遺伝子を検出する場合には、依然として、夾雑物の分離、あるいは除去が必要である。
 夾雑物の分離及び除去については、例えばフィルター等を用いて夾雑物を濾過する方法が知られている(特許文献1)が、一般的な遺伝子検査では、試料から核酸のみを抽出・精製することによって、夾雑物が除去された検査に適したサンプルを調製することが行われている。核酸抽出方法としては、フェノール等の有機溶媒を使用する方法の他、カラム又は磁性シリカ粒子を使用する方法が知られている。さらに、ビーズを用いて試料中の夾雑物を破砕し核酸を得る方法(特許文献2)、加熱と遠心分離により夾雑物を局在化させる方法(特許文献3)、タンパク質変性剤などを加えて核酸を抽出する方法(特許文献4)、0.1%以上の界面活性剤を加えて微生物を含む血液試料から夾雑物となりうる哺乳類の血液細胞を選択的に溶解させる方法(特許文献5)等も知られている。
 従来の方法では試料の前処理には、煩雑な操作又は特別な装置を必要としていた。具体的には、核酸抽出用の試薬および装置、加熱のためのヒートブロック、遠心分離機等が必要となる。
 一方、フィルターによる濾過は簡便に実施できる方法であるが、夾雑物全てを取り除くためには、フィルターが目詰まりを起こし濾過できない、あるいは濾液に対象となる微生物が含まれない問題が生じる。また生体試料の成分はその由来によって均質ではないため、フィルターを用いた方法のみで夾雑物を除去し、検査に適した試料を十分量得ることは困難であると考えられていた。
 微生物を対象とする遺伝子検査においては、夾雑物が残存した試料では検査が不良、あるいは検査工程自体は実行可能であっても正しい結果が得られないため、核酸を抽出および精製する工程が必要であった。
 しかしながら、核酸抽出工程には時間を要することが課題の一つである。前述の通り、生体試料から核酸を抽出及び精製することは、遺伝子検査において標準的な工程であるが、この工程には数十分間の時間を要するため、本工程に要する時間が短縮されれば、遺伝子検査に要する時間を大幅に改善することが可能である。
特許4339906号 特開2006-141292 特開2006-187221 特開平07-236499 特許6153516号
 本発明は、病原性微生物の核酸検出方法において、迅速で簡便な生体試料の前処理によって核酸増幅に適した核酸増幅試料液を調製し、この試料液を使用して核酸を増幅し、病原性微生物の核酸を検出する方法を提供することを1つの目的とする。
 本発明者らは、上記課題に鑑み鋭意検討した結果、生体試料を含む希釈液を攪拌及び静置して上清を得ることによって、又はさらに該上清を濾過して濾液を得ることによって、生体試料中の夾雑物を局在化及び除去でき、その結果、生体試料、生体試料採取具等に由来する核酸の増幅を阻害する物質(本明細書中、核酸増幅阻害物質と称することがある)を低減でき、安定的に核酸の増幅及び検出が可能であることを見出し、下記に代表される本発明を完成させた。
[項1]
病原性微生物の核酸検出方法であって、
(1)対象から採取された生体試料をpHが6.0~8.5であり且つ比重が1.0~1.2である希釈液に添加する工程、
(2)生体試料が添加された希釈液を攪拌する工程、
(3)攪拌された希釈液を3秒以上静置して静置液から上清を取得する工程、及び
(4)取得された上清を核酸増幅試料液として病原性微生物の核酸を増幅し、次いで検出する工程、
を含む、生体試料由来物質を含んだ核酸増幅試料液を用いた、方法。
[項2]
工程(4)において、取得された上清をさらに焼結フィルターで濾過して得られた濾液を核酸増幅試料液とする、項1に記載の方法。
[項3]
希釈液の量が1ml以上である項2に記載の方法。
[項4]
希釈液の量が1mlより多い量である項1または2に記載の方法。
[項5]
焼結フィルターの孔径が1μm~200μmである項2~4のいずれかに記載の方法。
[項6]
焼結フィルターの素材がポリプロピレン、ポリエチレン、ポリスチレン及びポリメチルメタクリレートからなる群から選択されるものである、項2~5のいずれかに記載の方法。
[項7]
工程(3)において、上清が、静置液中、浮遊物を目視確認できない部分から取得されるものである、項1~6のいずれかに記載の方法。
[項8]
生体試料が、フロックスワブで対象から採取したものである、項1~7のいずれかに記載の方法。
[項9]
工程(4)において、核酸の増幅がα型DNAポリメラーゼを使用するものである、項1~8のいずれかに記載の方法。
[項10]
工程(4)において、核酸の増幅及び検出を、PCR法又はリアルタイムPCR法で行う、項1~9のいずれかに記載の方法。
[項11]
病原性微生物の核酸検出方法に供される核酸増幅試料液であって、pHが6.0~8.5であり且つ比重が1.0~1.2である生体試料含有希釈液の静置上清又は当該静置上清を焼結フィルターでろ過した濾液を含む試料液。
[項12]
病原性微生物の核酸検出方法に供される核酸増幅試料液の調製方法であって、
(1)対象から採取された生体試料をpHが6.0~8.5であり且つ比重が1.0~1.2である希釈液に添加する工程、
(2)生体試料が添加された希釈液を攪拌する工程、及び
(3)攪拌された希釈液を3秒以上静置して静置液から上清を取得する工程、
を含む、方法。
 また、本発明は下記に代表される発明をさらに含みうる。
[項A]
 生体試料に含まれる病原性微生物の核酸を生体試料と混合したまま検出する方法において、採取された生体試料に、pHが6.0~8.5であり且つ比重が1.0~1.2である溶液を添加し、攪拌後、3秒以上静置させて得られた上清を用いて、試料中の病原性微生物由来の核酸を増幅させ、該増幅産物を検出することを特徴とする病原性微生物の核酸検出方法。
[項B]
 生体試料が、フロッキングにより被着した親水性の繊維で覆われたスワブにより採取されることを特徴とする、項Aに記載の方法。
[項C]
 更に、上清を焼結フィルターに通液する工程を含むことを特徴とする項A又はBに記載の方法。
[項D]
 前記方法で用いられる焼結フィルターの素材が、ポリプロピレン、ポリエチレン、ポリスチレンおよびポリメチルメタクリレートからなる群から選択される、項Cに記載の方法。
[項E]
 前記方法で用いられる焼結フィルターの孔径が1~100μmであることを特徴とする、項C又はDに記載の方法。
[項F]
 核酸増幅において、α型DNAポリメラーゼを用いることを特徴とする、項A~Eのいずれかに記載の方法。
[項G]
 3秒以上静置後、溶液の上端から1/10の範囲に浮遊物が確認できない状態になった溶液から得られる上清を用いることを特徴とする、項A~Fのいずれかに記載の方法。
[項H]
 pHが6.0~8.5であり且つ比重が1.0~1.2である溶液を含有することを特徴とする病原性微生物の核酸検出用組成物であって、採取された生体試料に添加されて攪拌され、3秒以上静置されて得られた上清を用い、試料中の病原性微生物の核酸を増幅させ、該増幅産物を検出するために用いられる、組成物。
 特別な機器や試薬を用いずに、核酸増幅工程に供するに適した(例えば、生体試料又は生体試料採取具に由来する核酸増幅に不適当な又は核酸増幅を阻害する夾雑物が低減された)核酸増幅試料液を簡便かつ迅速に調製できるため、核酸抽出及び精製に要する時間が不必要であり、病原性微生物の核酸検出に要する時間を短縮できる。また、一実施形態では、核酸増幅試料液を調製する過程において実効的なタンパク質変性剤が使用されないため、薬傷の危険性もない。
実施例5の結果を表す図である。 実施例6の結果を表す図である。
 以下、上述の代表的な発明を中心に説明する。
 病原性微生物の核酸検出方法では、対象(例えば、病原性微生物の感染が疑われるヒト又は非ヒト動物)から採取された生体試料に種々の処理を施して核酸増幅試料液を調製し、この試料液を核酸増幅に供し、増幅産物中の病原性微生物の核酸を検出することが一般的に行われている。本発明の一実施形態は、生体試料由来物質を含んだ核酸増幅試料液を用いた病原性微生物の核酸検出方法であって、
(1)対象から採取された生体試料をpHが6.0~8.5であり且つ比重が1.0~1.2である希釈液に添加する工程、
(2)生体試料が添加された希釈液を攪拌する工程、
(3)攪拌された希釈液を3秒以上静置して静置液から上清を取得する工程、及び
(4)取得された上清を核酸増幅試料液として病原性微生物の核酸を増幅し、次いで検出する工程、
を含む、方法、である。
 本発明では工程(3)で得られた上清を核酸増幅試料液として使用できる。従来は、核酸抽出工程及び核酸精製工程によって核酸以外の生体試料由来物質がほぼ完全に除去されていた。一方、前記上清は生体試料含有希釈液を攪拌及び静置することで得られるものであり生体試料が完全には除去されておらず、したがって生体試料由来物質を含んだままである。このように、本発明においては、核酸増幅に際して、生体試料由来物質を完全に除去する必要はない。本発明においては、簡便及び迅速な処理、すなわち工程(1)~(3)、で得られる前記上清を核酸増幅に使用しうる。
 また、本発明の一実施形態は、工程(4)において、工程(3)で取得された上清をさらに焼結フィルターで濾過して得られた濾液を核酸増幅試料液とする。
 本発明における対象は、例えばヒト又は非ヒト動物である。非ヒト動物は非ヒト哺乳動物であり、例えばイヌ、ネコ、マウス、ラット、モルモット、ハムスター、ウサギ、ブタ、ウシ、ヒツジ、ヤギなどであり、好ましくはイヌ、ネコなどである。好ましい対象はヒト、より好ましくは病原性微生物の感染が疑われるヒトである。
 本発明における生体試料は、対象から採取された試料である。具体的には、咽頭拭い液、口腔拭い液、鼻腔(後鼻腔を含む)拭い液、鼻咽頭拭い液、鼓膜切開液、肺胞洗浄液、胃洗浄液、腸洗浄液、子宮頸管拭い液、尿道擦過物、喀痰、膿、便、直腸拭い液、尿、吐しゃ物、血漿、血清、唾液、羊水、髄液、臓器抽出液、組織抽出液などが挙げられ、この他、スワブに付着するヒト由来試料であれば、本発明における生体試料に含まれうる。本発明において好ましい生体試料は、咽頭拭い液、鼻腔(後鼻腔を含む)拭い液、鼻咽頭拭い液、喀痰であり、咽頭拭い液がさらに好ましい。
 対象から生体試料を採取する際に生体試料採取具を使用することができる。生体試料採取具は生体試料をヒト、その他の動物から採取するために使用されるものであり特に限定されない。例えば、スワブ、白金耳、スポイト、へら、さじなどであり、対象の状態、採取元となる生体の器官、組織などに応じて適宜選択できる。好ましい生体試料採取具はスワブである。一実施形態において、生体試料採取具の大きさは、希釈液の撹拌の際に支障の出ない大きさであればよく、例えば希釈液を収容する容器に収まる大きさである。希釈液の撹拌の際に大きすぎる場合は、生体試料採取後の生体試料採取具を変形する(例えば曲げる)、その一部を除去する(例えば切断する)等の加工により支障の出ない大きさに調整してもよい。例えば、ロッド状スワブを二つに切断し、生体試料を含む末端を有する切断されたロッドを収容容器に収まる大きさとしてもよい。
 本発明におけるスワブとは、生体試料が採取可能なスワブであり、好ましくはフロックスワブである。スワブは、ロッド状のものが医療分野において広く使用されており、本発明ではそれらも使用できる。通常、ロッド状スワブの先端は生体試料採取部であり、他端部は把持部である。スワブのロッドは中空であってもよい。スワブの生体試料採取部はチップと称されることもあり、その形状は例えば球状、楕円球状などである。スワブの把持部は特に制限されないが、扁平形状であれば把持に有利であり、希釈液の収容容器の蓋と一体となった構造であればスワブを希釈液に投入後の閉栓に便利である。また、スワブと収容容器の蓋とは一体構造ではないが、スワブの把持部を収容容器の蓋における収容スペース側に設けた挿入部に差し込むことで事後的に一体化できる把持部であってもよい。一実施形態において、生体試料採取具は、ロッド状であり、ロッドの一端が生体試料採取部で覆われたスワブである。好ましくは生体試料採取部が親水性の繊維で覆われたチップを端部に備えたロッド状スワブであり、さらに好ましくは、フロックスワブである。フロックスワブは、例えば、チップを端部に備えたロッドと、該チップの表面にロッド長手方向に対して垂直方向に繊維が配列した配置でフロッキングにより前記チップに被着した、均一な厚さを有する層として配置された親水性の繊維と、を含むスワブである。フロックスワブは採取した生体試料が希釈液中に放出されやすい点で有利である。
 一実施形態において、スワブのチップに使用される繊維の材質は、レーヨン、ポリエステル、ポリアミド、炭素繊維、アルギネート等の合成または人工的な繊維、絹、綿などの天然繊維、及びそれらの混紡より適宜選択される。
 希釈液は、病原性微生物の核酸検出検査(遺伝子検査と一般に称されることもある)に使用されているものを広く使用でき、病原性微生物の種類、生体試料の種類、核酸増幅の種類などに応じて適宜選択できる。希釈液は、例えば緩衝液、水(例えば、精製水、脱イオン水、超純水等)、生理食塩水等である。また、希釈液は、病原性微生物の核酸検出に使用されている輸送培地であってもよい。希釈液は、界面活性剤を含んでも含まなくてもよいが、含まないものが好ましい。一実施形態において、希釈液は例えば緩衝液を含む水性組成物である。一実施形態において、緩衝液は、生化学分野で使用されえるものであり、例えばグッド緩衝液(例えばHEPESバッファー、ACESバッファー、PIPESバッファー、Bis-Trisバッファー、MOPSバッファー、HEPPSバッファー、TAPSバッファーなど)、Tris-HClバッファー、リン酸バッファー、リン酸緩衝生理食塩水(PBS)などである。
 一実施形態において、希釈液は、塩、ウシ血清アルブミン(BSA)、ゼラチン、色素などを含んでもよい。また、希釈液は、糖を含有してもよく、糖としては、例えばスクロース、マンノース及びイノシトールからなる群から選択される1種以上であり、より好ましくはスクロースである。希釈液は標的微生物以外の微生物の静菌の点から、抗菌物質を含有してもよく、抗菌物質としては例えばバンコマイシン、アンホテリシンB、コリスチン、ポリミキシンB、メトロニダゾール、クロラムフェニコールなどが挙げられ、好ましくはバンコマイシン、アンホテリシンB及びコリスチンからなる群から選択される1種以上であり、より好ましくはバンコマイシン、アンホテリシンB、及びコリスチンの併用である。希釈液は、アミノ酸を含有してもよく、アミノ酸としては例えばL-システイン及びL-グルタミン酸からなる群から選択される1種以上であり、より好ましくはL-システイン及びL-グルタミン酸の併用である。一実施形態において、希釈液はスクロースを含有する緩衝液であり、好ましくは、スクロース、バンコマイシン、アンホテリシンB、コリスチン、L-システイン及びL-グルタミン酸を含む緩衝液であり、より好ましくは、UTM-RT培地(Copan Universal Transport Medium;Copan社製)である。
 希釈液の比重は、例えば、0.8以上、0.85以上、0.9以上、0.95以上、1.0以上、1.02以上、1.04以上、1.06以上又は1.08以上であり得、また1.4以下、1.35以下、1.3以下、1.25以下、1.2以下、1.18以下、1.16以下、1.14以下又は1.12以下であり得る。一実施形態において、希釈液の比重は例えば0.8~1.4、0.85~1.35、0.9~1.3、0.95~1.25、1.0~1.2であり、好ましくは1.04~1.16であり、より好ましくは1.06~1.14である。
 希釈液のpH(25℃)は、例えば、6.0以上、6.5以上、6.8以上、6.9以上、7.0以上又は7.1以上であり得、また8.5以下、8.0以下、7.8以下、7.6以下、7.5以下又は7.4以下であり得る。一実施形態において、希釈液のpHは、例えば6.0~8.5、6.5~8.0であり、好ましくは6.8~7.8であり、より好ましくは7.0~7.4である。pHが中性近傍にあることにより、夾雑物の一部の溶解、変性を抑制でき、結果として夾雑物の浮遊又は沈降による局在化の効率が向上する。
 希釈液の量は特に限定されないが、核酸増幅の安定性が向上する観点から、例えば1mlより多い量、1.2ml以上、好ましくは1.5ml以上、より好ましくは1.7ml以上、特に好ましくは2ml以上である。希釈液の量の上限は、核酸増幅が適切に行える限り特に制限されないが、例えば、10ml以下、好ましくは5ml以下とすることができる。一実施形態において、希釈液の量は例えば1mlより多い量~10ml、1.2ml~10ml、1.5ml~10ml、1.7ml~10ml、2ml~10ml、1.2ml~5ml、1.5ml~5ml、1.7ml~5ml、2ml~5mlである。
 また、上清を更に焼結フィルターで濾過した濾液を核酸増幅試料液とする場合には、核酸増幅試料液中の核酸増幅を阻害する物質がより低減されることから、希釈液の量は、より少量でもよく、例えば0.8ml以上、1ml以上、1mlより多い量、1.2ml以上、好ましくは1.5ml以上、より好ましくは1.7ml以上、特に好ましくは2ml以上であり、希釈液の量の上限は、核酸増幅が適切に行える限り特に制限されないが、例えば10ml以下、好ましくは5ml以下とすることができる。一実施形態において、希釈液の量は例えば0.8ml~10ml、1ml~10ml、1mlより多い量~10ml、1.2ml~10ml、1.5ml~10ml、1.7ml~10ml、2ml~10ml、0.8ml~5ml、1ml~5ml、1mlより多い量~5ml、1.2ml~5ml、1.5ml~5ml、1.7ml~5ml、2ml~5mlである。
 希釈液は、通常、蓋部と本体部から構成された、密栓可能な容器に収容されているが、生体試料採取後、短時間かつ短い希釈液移動距離で攪拌工程に供される場合などの希釈液の漏れを考慮する必要がない場合には密栓は不要であり、したがってこの場合、密栓できない容器、蓋のない容器も使用できる。一実施形態において、希釈液を収容する容器は密栓可能なチューブである。一実施形態において、希釈液を収容する容器は、希釈液を、任意に生体試料採取具とともに、収容可能な形状及び大きさのチューブである。一実施形態において、チューブの口径は例えば10mm~30mm、好ましくは10mm~20mmであり、チューブの高さは30mm~150mm、好ましくは35mm~100mmである。チューブの底部の形状は底部に向かうにつれて細くなるテーパード形状であることが静置時の安定性、攪拌時の安定性の点で有利であり、好ましい。収容容器は攪拌に供され得るため、その材質は、攪拌中に変形または破損が生じないような材質が望ましい。収容容器の具体的な材質は特に限定されないが、硬質樹脂であり得、具体的にはポリプロピレン、ポリエチレン、ポリスチレン、ABS樹脂などが挙げられる。
 工程(1)では、対象から採取された生体試料を例えばpHが6.0~8.5であり且つ比重が1.0~1.2である希釈液に添加する。一実施形態において、生体試料を希釈液に添加する方法は、例えば、対象から生体試料採取具で生体試料を採取後、生体試料採取具の生体試料の付着した部分(生体試料採取部)を収容容器に収容された希釈液に接触させる方法である。また、一実施形態において、生体試料採取具を使用せずに生体試料を採取できる場合には、採取された生体試料をそのまま収容容器に収容された希釈液に添加する方法である。
 工程(2)では、工程(1)で得られた生体試料が添加された希釈液を攪拌する。攪拌の際、希釈液を収容した容器から攪拌のための攪拌用容器に希釈液を移し替えてもよいし、希釈液を収容した容器のまま攪拌してもよい。また、攪拌の際には、生体試料採取具の生体試料採取部を希釈液に入れたまま攪拌してもよい。例えば、スワブの生体試料採取部(通常はチップ)を希釈液に浸漬した状態でスワブと希釈液を収容した容器(例えばチューブ)ごと攪拌に供することができる。攪拌においては、スワブが入った状態のチューブは専用のキャップで密封されていてもよいし、チューブの上部が開放状態であってもよい。攪拌の方法としては、チューブの底部を例えばボルテックスミキサーなどで高速旋回することでチューブ内の希釈液をスワブ等の生体試料採取部ごと攪拌する方法、チューブを振とうさせる方法、スワブ等の生体試料採取部を振動させて希釈液を攪拌する方法がなどが挙げられる。
 工程(2)における攪拌温度は、常温付近であればよく、例えば0℃以上、4℃以上、10℃以上又は15℃以上であり得、また40℃以下、35℃以下又は30℃以下であり得る。一実施形態において、攪拌温度は10℃~35℃であり、好ましくは15℃~30℃である。本工程における攪拌時間は、例えば3秒以上、5秒以上又は20秒以上であり得、また1分以下、45秒以下、30秒以下又は20秒以下であり得る。一実施形態において、攪拌時間は3秒~1分であり、好ましくは5秒~20秒である。
 工程(3)では、工程(2)で得られた攪拌された希釈液を3秒以上静置して静置液から上清を取得する。本工程では、工程(2)によって希釈液中に放出された夾雑物を局在化、例えば沈降できる。静置は、液体培地中の夾雑物が局在化される限り特に制限されないが、例えば攪拌された希釈液を収容する容器を、机のような水平な面に置く方法、チューブラックのような収容容器保持具で保持する方法などにより実施され得る。
 本工程における静置時間の下限は、例えば3秒であり、好ましくは5秒である。静置時間の上限は、核酸増幅阻害物質の局在化の観点からは特に制限されないが、核酸検出までに要する時間を短縮する観点から適宜定めることができ、例えば15分、好ましくは1分、より好ましくは30秒である。一実施形態において、静置時間は例えば3秒~15分、3秒~1分、3秒~30秒、5秒~15分、好ましくは5秒~1分、より好ましくは5秒~30秒であり得る。
 本工程における静置温度は、常温付近であればよく、例えば0℃以上、4℃以上又は15℃以上であり得、また40℃以下、35℃以下又は30℃以下であり得る。一実施形態において、静置温度は4℃~35℃であり、好ましくは15℃~30℃であり得る。
 かかる方法において、静置に替えて遠心分離により沈殿させた場合、病原性微生物が沈殿し、上清に測定対象となる病原性微生物が含まれなくなるか、又は、病原性微生物の量が著しく減少してしまうため好ましくない。
 一実施形態において、夾雑物または核酸増幅阻害成分は、例えば、生体試料が付着したスワブに存在する、生体由来の物質またはスワブ由来の物質であって、核酸検出検査、特に核酸増幅、の阻害要因となりうる物質を指す。該物質の例として、ヒト細胞、粘膜、鼻汁、唾液、痰、血液、歯垢、その他生体由来の粘性成分(例えば、ムチン等の粘液糖タンパク質);タンパク質;ヘパリン等のグリコサミノグリカン;クエン酸等の金属キレート化合物;スワブの繊維等の水不溶性物質などが挙げられる。
 なお、生体試料採取具は、工程(1)後工程(2)前に収容容器から除去してもよいし、除去しなくてもよい。工程(2)前に除去しない場合は工程(3)前に除去される。
 特定の実施形態においては、攪拌後の希釈液を静置して得られる静置液の上端から、静置液の高さに対して1/10の範囲に浮遊物が目視で確認できない状態(液面に目視で確認できる比重が非常に軽いもの(例えばスワブの繊維等)が浮いており、且つ液面を除く1/10の範囲に浮遊物が目視で確認できない状態を含む。後述の浮遊物が目視で確認できない状態についても同様である)になった静置液から上清を採取して、核酸の増幅及び検出を行う。好ましくは、攪拌後の希釈液を静置後、静置液の上端から1/5の範囲に浮遊物が目視で確認できない状態になった静置液から上清を採取するのがよく、更に好ましくは静置液の上端から1/3の範囲に浮遊物が目視で確認できない状態になった静置液から上清を採取するのがよい。
 より好ましくは、静置液中、浮遊物を目視確認できない部分から上清を取得する。
 また、上清を取得する方法としては、例えばスポイトで吸い取る、ピペットで吸引するなどの方法が挙げられる。取得する上清の量は、工程(4)における核酸増幅に必要な量であればよく特に制限されないが、例えば50μl~1000μl、好ましくは100μl~800μlである。
 工程(4)では工程(3)で取得された上清を核酸増幅試料液として用いて、病原性微生物の核酸を増幅し、次いで検出する。さらなる実施形態では、工程(4)において、工程(3)で取得された上清をさらに焼結フィルターで濾過し、得られた濾液を核酸増幅試料液とする。上清を焼結フィルターを用いて濾過することにより、希釈液がより少量の場合でも核酸増幅試料液中の核酸増幅阻害物質が低減されるため、より安定して核酸増幅が可能となり、より高い感度で核酸を検出することが可能となる。本発明の方法において生体試料の希釈液への添加から核酸増幅試料液の調製までに要する時間は特に制限されるものではないが、検査時間を短縮する点から、例えば15分間以下、好ましくは10分間以下、より好ましくは5分間以下とできる。
 本発明において用いられる焼結フィルターの素材は特に限定されず、ポリプロピレン、ポリエチレン、ポリスチレン、ポリメチルメタクリレート、アルミナ、ジルコニア等を挙げることができる。ポリプロピレン、ポリエチレン、ポリスチレン及びポリメチルメタクリレートからなる群から選択される素材を使用することが成型が容易である点から好ましく、なかでもポリプロピレン又はポリエチレンが好ましい。
 焼結フィルターの孔径は、核酸増幅試料液を調製できる限り特に制限されないが、例えば、0.5μm以上、1μm以上、3μm又は5μm以上であり得、また200μm以下、100μm以下又は50μm以下であり得る。一実施形態において、孔径は、1μm~200μm以下、好ましくは1μm~100μm、より好ましくは5μm~50μmである。一実施形態においては、焼結フィルターは、その孔径が異なる複数のフィルターを重ねて構成されていてもよく、最小孔径を有するフィルターの孔径が、1μm以上であり、最大孔径を有するフィルターの孔径が200μm以下である濾過フィルターを用いることができる。一実施形態において、例えば孔径100μm~200μmの焼結フィルター、孔径1μm~100μmの焼結フィルターの順に濾過することができる。
 工程(4)では工程(3)で得られた上清又は上清を焼結フィルターで濾過した濾液を核酸増幅試料液として病原性微生物の核酸を増幅し、次いで検出する。当業者は、該上清又は濾液を従来の核酸抽出工程に供しうることを理解できるが、この場合核酸検出の時間を大きく短縮することはできない。本発明では核酸抽出工程を含まない実施形態が好ましい。
 本発明における増幅された核酸を検出する方法は特に限定されず、例えば遺伝子の配列情報を根拠に病気、感染などを検査できる方法であればよい。具体的には、例えば、微生物中の遺伝子の部分配列を検出する態様、遺伝子中の変異を検出する態様などが挙げられる。
 工程(4)において、核酸増幅に用いられる核酸増幅方法は特に限定されず、PCR法、リアルタイムPCR法、SDA法、ICAN法、LAMP法など種々の公知の方法を用いることができる。より好ましくはPCR法またはリアルタイムPCR法である。PCR法の核酸増幅工程で使用されるDNAポリメラーゼは特に限定されるものではないが、例えば、KOD DNA ポリメラーゼ、Pfu DNA ポリメラーゼ等のα型DNAポリメラーゼ;Taq DNA ポリメラーゼ、Tth DNA ポリメラーゼ等のPol I型DNAポリメラーゼ等を用いることができ、特定の実施形態では、正確性に優れたα型DNAポリメラーゼまたはファミリーBに属するDNAポリメラーゼを用いることが好ましい。特に限定はされないが、α型DNAポリメラーゼとしては、KOD DNA ポリメラーゼ(東洋紡製)、Pfu DNA ポリメラーゼ(タカラバイオ社製)を用いることがさらに好ましい。
 また、核酸増幅工程に供される核酸増幅試料液は核酸増幅の対象となる病原性微生物の核酸源である。このため、核酸増幅試料液には、対象となる核酸、適用される核酸増幅方法などに応じた適切な試薬等(例えばDNAポリメラーゼ、核酸プライマー対、核酸プローブ(例えばQProbe、TaqmanProbe)等)が適宜添加されて、核酸増幅に使用される。
 また、工程(4)において、病原性微生物の核酸の検出に用いられる方法は特に限定されず、アガロースゲル電気泳動法、RFLP法、インターカレーターを用いて増幅核酸を検出する方法、増幅された核酸の塩基配列に特異的に結合する核酸プローブを用いて増幅核酸を検出する方法が挙げられる。より好ましくは核酸プローブを用いて増幅核酸を検出する方法であり、当該核酸プローブとして、例えばTaqMqnプローブや消光プローブ(Quenching Probe;QProbe)、MolecularBeaconが挙げられる。工程(4)の核酸増幅及び核酸検出におけるその他の条件は公知の核酸増幅及び核酸検出技術を考慮して適宜選択することができる。
 本発明における核酸検出方法では、一般的な核酸の抽出精製を行わないことを特徴とする。本発明においては、生体試料を含む希釈液にスワブを入れたまま攪拌後に3秒以上静置して上清を採取し、そのまま核酸増幅及び検出に供するあるいは、上清を焼結フィルターで濾過することによって、核酸の抽出精製を行うことなく被検試料中の微生物遺伝子を対象とした核酸増幅および検出が可能となる。本発明における「核酸の抽出精製」とは、被検対象とする核酸のみを生体試料から抽出し精製する工程を指す。具体的にはシリカカラム、磁性ビーズなどに生体試料中の核酸のみを吸着させて、他成分から核酸を分離した後、カラム、ビーズなどから核酸を溶出させて核酸のみの試料を得る工程、または有機溶媒により核酸を含む画分を調製した後、アルコールにより核酸のみを沈殿又は残留させる工程が挙げられる。
 本発明における病原性微生物については特に限定されず、呼吸器感染症原因微生物、胃腸感染症原因微生物、性感染症原因微生物、日和見感染症原因微生物などが挙げられる。好ましくは呼吸器感染症原因微生物(例えば、マイコプラズマ等の呼吸器感染の原因となる真正細菌等)である。感染症原因微生物は、例えば、インフルエンザウイルス、RSウイルス、アデノウイルス、肺炎球菌、マイコプラズマ属に属する細菌、クラミドフィラニューモニエ、クラミドフィラシッタシ、百日咳菌、パラ百日咳菌、レジオネラなどの呼吸器感染症原因微生物、ノロウイルス、ロタウイルス、サポウイルス、下痢症アデノウイルスなどの下痢症原因微生物が挙げられる。マイコプラズマ属に属する細菌は、例えば、マイコプラズマ・アルギニニ(Mycoplasma arginini)、マイコプラズマ・ブカーレ(Mycoplasma buccale)、マイコプラズマ・ファウシウム(Mycoplasma faucium)、マイコプラズマ・ホミニス(Mycoplasma hominis)、マイコプラズマ・オラーレ(Mycoplasma orale)、マイコプラズマ・サリバリウム(Mycoplasma salivarium)、マイコプラズマ・フェルメンタンス(Mycoplasma fermentans)、マイコプラズマ・リポフィラム(Mycoplasma lipophilum)、マイコプラズマ・プリマタム(Mycoplasma primatum)、マイコプラズマ・ハイオリニス(Mycoplasma hyorhinis)、マイコプラズマ・シノビアエ(Mycoplasma synoviae)、マイコプラズマ・ゲニタリウム(Mycoplasma genitalium)、マイコプラズマ・ニューモニエ(Mycoplasma pneumoniae)、マイコプラズマ・ガリセプティカム(Mycoplasma gallisepticum)が挙げられる。一実施形態において、病原性微生物は、呼吸器感染症原因微生物から選択される1種以上であり、好ましくはインフルエンザウイルス、RSウイルス、アデノウイルス、肺炎球菌、マイコプラズマ属に属する細菌、クラミドフィラニューモニエ、クラミドフィラシッタシ、百日咳菌、パラ百日咳菌又はレジオネラであり、より好ましくはマイコプラズマ属に属する細菌から選択される1種以上であり、より一層好ましくはマイコプラズマニューモニエである。
 本発明の一実施形態は、病原性微生物の核酸検出方法に供される核酸増幅試料液であって、pHが6.0~8.5であり且つ比重が1.0~1.2である生体試料含有希釈液の静置上清又は当該静置上清を焼結フィルターでろ過した濾液を含む試料液、である。本核酸増幅試料液は、典型的には前記工程(1)~(3)又は(1)~(4)によって調製される。本核酸増幅試料液は、核酸抽出工程を経ていないため、生体由来試料を含有しているが、核酸増幅阻害物質は核酸増幅に適する程度又はそれ以上に低減されている。本核酸増幅試料液は従来法、例えば核酸抽出法により調製される従来の核酸増幅試料液より簡便及び迅速に調製できる。本核酸増幅試料液のその他の事項については、本発明の核酸検出方法の対応する事項に関する上記記載が適用される。
 また、本発明の一実施形態は、病原性微生物の核酸検出方法に供される核酸増幅試料液の調製方法であって、
(1)対象から採取された生体試料をpHが6.0~8.5であり且つ比重が1.0~1.2である希釈液に添加する工程、
(2)生体試料が添加された希釈液を攪拌する工程、及び
(3)攪拌された希釈液を3秒以上静置して静置液から上清を取得する工程、
を含む、方法、である。
 この調製方法は前記工程(4)をさらに含んでもよい。本核酸増幅試料液の調製方法では、簡便な操作により短時間で、核酸増幅阻害物質が核酸増幅に適する程度又はそれ以上に低減された核酸増幅試料液を調製できる。本核酸増幅試料液の調製方法のその他の事項については、本発明の核酸検出方法の対応する事項に関する上記記載が適用される。
 本発明は、一つの実施形態として、生体試料に含まれる病原性微生物の核酸を生体試料と混合したまま検出する方法において、採取された生体試料に、pHが6.0~8.5であり且つ比重が1.0~1.2である溶液を添加し、攪拌後、3秒以上静置させて得られた上清を用いて、試料中の病原性微生物由来の核酸を増幅させ、該増幅産物を検出することを特徴とする病原性微生物の核酸検出方法に関する。当該核酸検出方法のその他の事項については、項1に記載の核酸検出方法の対応する事項に関する上記記載が適用される。
 また、本発明の一実施形態は、項1~項10、項A~項Gのいずれかに記載の病原性微生物の核酸検出方法であって、核酸抽出工程を含まない方法であり得る。
 更なる本発明の実施形態の一つは、生体試料に含まれる病原性微生物由来の核酸を検出する方法において、上記希釈液が入った収容容器(例えばチューブ)に、検体採取に用いた生体試料が付着した生体試料採取具を浸漬したまま撹拌をし、撹拌後に3秒間以上静置することによって、生体試料または生体試料採取具に由来する夾雑物を希釈液内で局在化させ、さらに該希釈液の上清を一部採取して、生体成分から分離することなく、あるいは、当該上清を焼結フィルターで濾過することにより、核酸抽出及び精製をすることなく核酸増幅阻害成分を除去することを特徴とする、病原性微生物の核酸検出方法であり得る。
 本発明に用いるpHが6.0~8.0であり且つ比重が1.0~1.2である溶液は、pHと比重が上記の範囲内である限り特に限定されない。例えば、本発明に用いる上記の溶液は、当該分野で公知の任意の緩衝剤(例えば、グッド緩衝液)であってもよいし、水(例えば、精製水、脱イオン水、超純水等)、生理食塩水等であってもよいし、上記の希釈液であってもよい。
 本発明は、採取された生体試料を溶液に添加して前処理を行うことを特徴の一つとする。ここで使用される溶液の量は特に限定されないが、より安定して高い効果が得られ易いという観点から、例えば1mlより多い量、1.2ml以上、好ましくは1.5ml以上、より好ましくは1.7ml以上、特に好ましくは2ml以上である。溶液の量の上限は、核酸増幅が適切に行える限り特に制限されないが、例えば10ml以下、好ましくは5ml以下とすることができる。一実施形態において、溶液の量は例えば1mlより多い量~10ml、1.2ml~10ml、1.5ml~10ml、1.7ml~10ml、2ml~10ml、1.2ml~5ml、1.5ml~5ml、1.7ml~5ml、2ml~5mlである。
 なお、上清を更に焼結フィルターに通液する濾過処理を行う場合には、使用する溶液の量はより少量でもよく、例えば、1mlであっても病原性微生物の検出が可能であり得る。本発明に用いる溶液の量の上限値は、本発明の効果を奏する限り特に限定されないが、一例として、10ml以下、好ましくは5ml以下とすることができる。特定の実施形態では、上清を更に焼結フィルターに通液する濾過処理を行う場合の溶液の量としては、例えば0.8ml以上、1ml以上、1mlより多い量、1.2ml以上、好ましくは1.5ml以上、より好ましくは1.7ml以上、特に好ましくは2ml以上とでき、溶液の量の上限は、核酸増幅が適切に行える限り特に制限されないが、例えば10ml以下、好ましくは5ml以下とすることができる。一実施形態において、焼結フィルター濾過処理を行う場合の溶液の量は例えば0.8ml~10ml、1ml~10ml、1mlより多い量~10ml、1.2ml~10ml、1.5ml~10ml、1.7ml~10ml、2ml~10ml、0.8ml~5ml、1ml~5ml、1mlより多い量~5ml、1.2ml~5ml、1.5ml~5ml、1.7ml~5ml、2ml~5mlである。
 本発明における溶液又は希釈液の一態様は、実効的なタンパク質変性剤を含まない溶液又は希釈液である。タンパク質変性剤とは、生体試料、被検対象となる微生物のタンパク質などを変性させる目的で添加される物質のことを指す。具体的な物質名としては尿素、塩酸グアニジン、グアニジンチオシアネートが挙げられる。この他、硝酸、硫酸などの酸、水酸化ナトリウム、水酸化カリウムなどのアルカリ性物質も該当する。ただしタンパク質変性剤として作用しうる物質であっても、溶液又は希釈液中に含まれる濃度が低いなどの理由で実質的にタンパク質変性が生じない条件である場合には、本発明で定義する実効的なタンパク質変性剤には該当しない。
 溶液又は希釈液中に有効濃度のタンパク質変性剤が含まれると、変性剤の作用によってヒト由来のタンパク質が変性して、夾雑物の局在化および核酸増幅工程が阻害されるため、溶液又は希釈液にタンパク質変性剤を含まないことで、本発明における工程(1)~(4)、前処理(例えば工程(1)~(3))または核酸検出検査をより安定的に実施できる。
 また、溶液又は希釈液には微生物を保存するための栄養成分、無機塩が含まれてもよく、前述した性質の溶液又は希釈液であれば、特に限定されるものではない。
 以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
[実施例1:本発明方法による微生物核酸の検出]
 マイコプラズマ感染が確認されている患者由来の咽頭拭い液が付着したFLOQSwab(コパン社)を用いて検討を行った。
[試料処理]
 前記スワブ5本を、チューブ(ザルスタット製10ml 60.9921.819S)に入れ、pH7.2のBuffer(HEPESバッファー;比重1.01)を0.5ml、1ml、2ml、3ml、5mlの量で添加しボルテックスミキサーを用いてスワブごと攪拌した。攪拌後、5秒間静置し本実施例の試料とした。なお、静置後の溶液は、溶液の上端から1/3の範囲では浮遊物を目視で確認できない状態になったことを確認してから、上清を採取した。
[遺伝子検査条件]
 マイコプラズマ・ニューモニエDNAの検出には全自動遺伝子解析装置GENECUBEおよびジーンキューブ マイコプラズマ・ニューモニエ(共に東洋紡社製)を用いた。ジーンキューブ マイコプラズマ・ニューモニエはα型ポリメラーゼ(KOD DNA Polymerase)および核酸プローブを使用し、PCR法による核酸増幅と融解曲線解析による核酸検出が可能な遺伝子検査試薬である。核酸の抽出精製は行わず、上清をそのまま核酸増幅試料液とし核酸増幅工程に供した。
[PCR条件]
 ジーンキューブ マイコプラズマ添付文書記載の反応条件で増幅検出を実施した。
[結果]
 検出結果を以下に示す。
Figure JPOXMLDOC01-appb-T000001
 上記結果に示されるように、1mlを超える量の溶液を用いた場合では、陽性の結果が得られたが、1ml以下では、増幅不良のため結果が得られなかった。
[実施例2:本発明方法による微生物核酸の検出]
 マイコプラズマ感染が確認されている患者由来の咽頭拭い液が付着したFLOQSwab(コパン社)を用いて検討を行った。
[試料処理]
 前記スワブ5本を、チューブ(ザルスタット製10ml 60.9921.819S)に入れ、pH7.2のBuffer(HEPESバッファー;比重1.01)を0.5ml、1ml、2ml、3ml、5mlの量で添加しボルテックスミキサーを用いてスワブごと攪拌した。攪拌後、5秒間静置し、焼結フィルター(ポリプロピレン製、孔径20μm)で濾過して得られた濾液を核酸増幅工程用の試料とした。
[遺伝子検査条件]
 マイコプラズマ・ニューモニエDNAの検出には全自動遺伝子解析装置GENECUBEおよびジーンキューブ マイコプラズマ・ニューモニエ(共に東洋紡社製)を用いた。ジーンキューブ マイコプラズマ・ニューモニエはα型ポリメラーゼ(KOD DNA Polymerase)および核酸プローブを使用し、PCR法による核酸増幅と融解曲線解析による核酸検出が可能な遺伝子検査試薬である。核酸の抽出精製は行わず、濾液をそのまま核酸増幅試料液とし核酸増幅工程に供した。
[PCR条件]
 ジーンキューブ・マイコプラズマ添付文書記載の反応条件で増幅検出を実施した。
[結果]
 検出結果を以下に示す。
Figure JPOXMLDOC01-appb-T000002
 上記結果に示されるように、焼結フィルターでの通液処理を行うことにより、1ml以上では、陽性の結果が得られたが、0.5mlでは、増幅不良のため結果が得られなかった。
[実施例3:本発明方法による微生物核酸の検出]
 マイコプラズマ感染が確認されている患者由来の咽頭拭い液が付着したFLOQSwab(コパン社)を用いて検討を行った。
[試料処理]
 前記スワブ5本を、チューブ(ザルスタット製10ml 60.9921.819S)に入れ、pH5.5(ACESバッファー;比重1.01)、pH6.0(PIPESバッファー;比重1.01)、pH7.2(HEPESバッファー;比重1.01)、pH8.5(Trisバッファー;比重1.01)、pH9.0(Bis-Trisバッファー;比重1.01)の各Bufferを各2ml添加しボルテックスミキサーを用いてスワブごと攪拌した。攪拌後、5秒間静置し、焼結フィルター(ポリプロピレン製、孔径20μm)で濾過して得られた濾液を核酸増幅工程用の試料とした。
[遺伝子検査条件]
 マイコプラズマ・ニューモニエDNAの検出には全自動遺伝子解析装置GENECUBEおよびジーンキューブ マイコプラズマ・ニューモニエ(共に東洋紡社製)を用いたジーンキューブ マイコプラズマ・ニューモニエはα型ポリメラーゼ(KOD DNA Polymerase)および核酸プローブを使用し、PCR法による核酸増幅と融解曲線解析による核酸検出が可能な遺伝子検査試薬である。核酸の抽出精製は行わず、濾液をそのまま核酸増幅試料液とし核酸増幅工程に供した。
[PCR条件]
 ジーンキューブ マイコプラズマ添付文書記載の反応条件で増幅検出を実施した。
[結果]
 検出結果を以下に示す。
Figure JPOXMLDOC01-appb-T000003
 上記結果に示されるように、pH6.0~pH8.5の溶液を用いた場合では、陽性の結果が得られたが、pH5.0、pH9.0では陰性の結果であった。
[実施例4:本発明方法による微生物核酸の検出]
 マイコプラズマ感染が確認されている患者由来の咽頭拭い液が付着したFLOQSwab(コパン社)を用いて検討を行った。
[試料処理]
 前記スワブ5本を、チューブ(ザルスタット製10ml 60.9921.819S)に入れ、pH7.2のBuffer(リン酸バッファー)の混合物および、NaClを添加し比重を1.0、1.1、1.2、1.5に調整した試薬各2ml添加しボルテックスミキサーを用いてスワブごと攪拌した。攪拌後、5秒間静置し、焼結フィルター(ポリプロピレン製、孔径20μm)で濾過して得られた濾液を核酸増幅工程用の試料とした。
[遺伝子検査条件]
 マイコプラズマ・ニューモニエDNAの検出には全自動遺伝子解析装置GENECUBEおよびジーンキューブ マイコプラズマ・ニューモニエ(共に東洋紡社製)を用いたジーンキューブ マイコプラズマ・ニューモニエはα型ポリメラーゼ(KOD DNA Polymerase)および核酸プローブを使用し、PCR法による核酸増幅と融解曲線解析による核酸検出が可能な遺伝子検査試薬である。核酸の抽出精製は行わず、濾液をそのまま核酸増幅試料液とし核酸増幅工程に供した。
[PCR条件]
 ジーンキューブ マイコプラズマ添付文書記載の反応条件で増幅検出を実施した。
[結果]
 検出結果を以下に示す。
Figure JPOXMLDOC01-appb-T000004
 上記結果に示されるように、比重が1.0~1.2の溶液を用いた場合では、陽性の結果が得られたが、1.5では陰性の結果であった。
[実施例5:本発明方法による核酸の検出]
 マイコプラズマ・ニューモニエに罹患したヒトから採取した咽頭拭い液が付着したFLOQSwab(コパン社)を用いて検討を行った。本実施例において該咽頭拭い液が付着したスワブを陽性スワブと称する。
[試料処理]
 陽性スワブ2本および未使用のスワブ2本を、付属のチューブに充填されているコパン社製輸送培地(製品名:UTM液体培地3ml;比重1.02;pH7.3)に入れ、ボルテックスミキサーを用いて培地をスワブごと撹拌した。UTM液体培地は、スクロース、バンコマイシン、アンホテリシンB、コリスチン、ウシ血清アルブミン、L-システイン、L-グルタミン酸等を含む緩衝液である。撹拌後、5秒間静置し、静置液の上清を焼結フィルター(ポリエチレン製、孔径20μm)で濾過して得られた濾液を核酸増幅工程用の試料とした。
[遺伝子検査条件]
 マイコプラズマ・ニューモニエDNAの検出には全自動遺伝子解析装置GENECUBEおよびジーンキューブ マイコプラズマ・ニューモニエ(共に東洋紡社製)を用いた。ジーンキューブ マイコプラズマ・ニューモニエはα型ポリメラーゼ(KOD DNA Polymerase)および核酸プローブ(QProbe)を使用し、リアルタイムPCR法による核酸増幅と融解曲線解析による核酸検出が可能な遺伝子検査試薬である。核酸の抽出精製は行わず、濾液をそのまま核酸増幅工程に供した。
[リアルタイムPCR条件]
 ジーンキューブ マイコプラズマ添付文書記載の反応条件で増幅検出を実施した。
[結果]
 実験の結果を図1として示す。
 図1は、リアルタイム検出された蛍光強度の変化を、グラフの横軸をサイクル数、縦軸を蛍光シグナルとして結果を表したグラフである。このグラフでは、マイコプラズマDNAが検出された場合は、蛍光量の低下が現れる。
 図1では陽性スワブについて明確な蛍光強度の減少が示されており、試料中のマイコプラズマDNAが検出されたことを示している。未使用スワブでは蛍光量の変化は観察されず、マイコプラズマDNAが検出されなかったことを示している。
 以上の結果から、本発明の方法により、簡便な方法でありながら、生体成分由来の夾雑物の影響を受けずに安定してDNAの検出が可能であることが明らかとなった。
[実施例6:本発明方法による核酸の検出]
 ヒトから採取した咽頭拭い液が付着したFLOQSwab(コパン社)およびマイコプラズマDNAを用いて検討を行った。なお、本実施例に用いた咽頭拭い液からはマイコプラズマ・ニューモニエが検出されていないため、本実施例において該咽頭拭い液が付着したスワブを陰性スワブと称する。
[試料処理]
 陰性スワブ8本を、付属のチューブに充填されているコパン社製輸送培地(製品名:UTM液体培地3ml;比重1.02;pH7.3)に入れ、ボルテックスミキサーを用いて培地をスワブごと攪拌した。攪拌後、5秒間静置し、焼結フィルター(ポリエチレン製、孔径20μm)で濾過した。濾過後の溶液に、マイコプラズマ・ニューモニエDNAを、終濃度が25コピー/μLになるように加えて、核酸増幅工程用の試料とした。
[遺伝子検査条件]
 マイコプラズマ・ニューモニエDNAの検出には全自動遺伝子解析装置GENECUBEおよびジーンキューブ マイコプラズマ・ニューモニエ(共に東洋紡社製)を用いたジーンキューブ マイコプラズマ・ニューモニエはα型ポリメラーゼ(KOD DNA Polymerase)および核酸プローブを使用し、PCR法による核酸増幅と融解曲線解析による核酸検出が可能な遺伝子検査試薬である。核酸の抽出精製は行わず、濾液をそのまま核酸増幅工程に供した。
[PCR条件]
 ジーンキューブ マイコプラズマ添付文書記載の反応条件で増幅検出を実施した。
[結果]
 実験の結果を図2として示す。
 図2は、融解曲線解析において検出された蛍光強度の変化を、グラフの横軸を温度、縦軸を蛍光シグナルの微分値として解析結果を表した図である。マイコプラズマDNAが検出された場合は、融解曲線解析工程において蛍光量の変化が検出され、蛍光変化量は前記グラフにピークとして現れる。
 図2では明確なピークが示されており、試料中のマイコプラズマDNAが検出されたことを示している。陰性スワブに含まれる生体成分の影響を受けずにDNAの検出が可能であることが示された。
 更に、8本のスワブを用いて得られた各試験結果を表5に示す。いずれも30前後の蛍光変化量を示しており、各スワブ間での蛍光変化量の差は殆ど認められず、また、内部コントロールも安定して検出されていることから、本発明の方法によって生体成分由来の夾雑物の影響を受けずに安定してDNAの検出が可能であることが明らかとなった。
Figure JPOXMLDOC01-appb-T000005
 本発明により、生体試料が付着したスワブから簡便、安全かつ迅速な遺伝子検査が可能である。感染症外来診療において迅速に遺伝子検査結果が得られることは、適切な診断および治療につながることが期待される。

Claims (12)

  1. 病原性微生物の核酸検出方法であって、
    (1)対象から採取された生体試料をpHが6.0~8.5であり且つ比重が1.0~1.2である希釈液に添加する工程、
    (2)生体試料が添加された希釈液を攪拌する工程、
    (3)攪拌された希釈液を3秒以上静置して静置液から上清を取得する工程、及び
    (4)取得された上清を核酸増幅試料液として病原性微生物の核酸を増幅し、次いで検出する工程、
    を含む、生体試料由来物質を含んだ核酸増幅試料液を用いた、方法。
  2. 工程(4)において、取得された上清をさらに焼結フィルターで濾過して得られた濾液を核酸増幅試料液とする、請求項1に記載の方法。
  3. 希釈液の量が1ml以上である請求項2に記載の方法。
  4. 希釈液の量が1mlより多い量である請求項1または2に記載の方法。
  5. 焼結フィルターの孔径が1μm~200μmである請求項2~4のいずれかに記載の方法。
  6. 焼結フィルターの素材がポリプロピレン、ポリエチレン、ポリスチレン及びポリメチルメタクリレートからなる群から選択されるものである、請求項2~5のいずれかに記載の方法。
  7. 工程(3)において、上清が、静置液中、浮遊物を目視確認できない部分から取得されるものである、請求項1~6のいずれかに記載の方法。
  8. 生体試料が、フロックスワブで対象から採取したものである、請求項1~7のいずれかに記載の方法。
  9. 工程(4)において、核酸の増幅がα型DNAポリメラーゼを使用するものである、請求項1~8のいずれかに記載の方法。
  10. 工程(4)において、核酸の増幅及び検出を、PCR法又はリアルタイムPCR法で行う、請求項1~9のいずれかに記載の方法。
  11. 病原性微生物の核酸検出方法に供される核酸増幅試料液であって、pHが6.0~8.5であり且つ比重が1.0~1.2である生体試料含有希釈液の静置上清又は当該静置上清を焼結フィルターでろ過した濾液を含む試料液。
  12. 病原性微生物の核酸検出方法に供される核酸増幅試料液の調製方法であって、
    (1)対象から採取された生体試料をpHが6.0~8.5であり且つ比重が1.0~1.2である希釈液に添加する工程、
    (2)生体試料が添加された希釈液を攪拌する工程、及び
    (3)攪拌された希釈液を3秒以上静置して静置液から上清を取得する工程、
    を含む、方法。 
PCT/JP2019/017001 2018-04-27 2019-04-22 病原性微生物の核酸検出方法 WO2019208487A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-086508 2018-04-27
JP2018086508 2018-04-27
JP2018-092266 2018-05-11
JP2018092266A JP7187175B2 (ja) 2018-04-27 2018-05-11 病原性微生物の核酸検出方法

Publications (1)

Publication Number Publication Date
WO2019208487A1 true WO2019208487A1 (ja) 2019-10-31

Family

ID=68294552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017001 WO2019208487A1 (ja) 2018-04-27 2019-04-22 病原性微生物の核酸検出方法

Country Status (1)

Country Link
WO (1) WO2019208487A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073595A (ja) * 2003-09-01 2005-03-24 Food Safety Innovation Gijutsu Kenkyu Kumiai 核酸試料調製法及び核酸増幅法
JP2008122372A (ja) * 2006-10-19 2008-05-29 Denka Seiken Co Ltd 試料ろ過フィルターを用いる簡易メンブレンアッセイ方法及びキット
WO2018168986A1 (ja) * 2017-03-15 2018-09-20 東洋紡株式会社 遺伝子検査方法及び遺伝子検査キット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073595A (ja) * 2003-09-01 2005-03-24 Food Safety Innovation Gijutsu Kenkyu Kumiai 核酸試料調製法及び核酸増幅法
JP2008122372A (ja) * 2006-10-19 2008-05-29 Denka Seiken Co Ltd 試料ろ過フィルターを用いる簡易メンブレンアッセイ方法及びキット
WO2018168986A1 (ja) * 2017-03-15 2018-09-20 東洋紡株式会社 遺伝子検査方法及び遺伝子検査キット

Similar Documents

Publication Publication Date Title
JP7026604B2 (ja) ポリヌクレオチド捕捉材料およびその使用方法
JP6254117B2 (ja) 制御された移転生体試料採取装置およびその装置を使用する方法
US10774300B2 (en) Methods and kits for isolating microorganisms from culture
JP5290987B2 (ja) 核酸増幅用サンプルの調製方法及び調製キット
US10150118B2 (en) Controlled transfer biological sample collection devices and methods of using such devices
JP5911861B2 (ja) 医療現場における迅速検査結果を試験所ベースの方法と関連づける方法
CN108410951A (zh) 一种新的核酸提取试剂及其应用
JP7187175B2 (ja) 病原性微生物の核酸検出方法
WO2019208487A1 (ja) 病原性微生物の核酸検出方法
JP7329912B2 (ja) 微生物の検出方法
US20050089948A1 (en) Decontamination and concentration kit for mycobacteria
JP2022033527A (ja) Rnaろ過器及びrnaろ過方法
JP6437250B2 (ja) 前処理方法及びそれに用いられる核酸抽出キット
WO2020075695A1 (ja) 微生物の検出方法
JP2718823B2 (ja) 臨床検体のハイブリダイゼーションアッセイに対する適性評価法および評価用キット
JP2024050211A (ja) 液状試料の簡易的な前処理方法
JP2005073595A (ja) 核酸試料調製法及び核酸増幅法
JP2008125457A (ja) 微生物の検出方法
EP1676113A2 (en) Decontamination and concentration kit for mycobacteria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791495

Country of ref document: EP

Kind code of ref document: A1