WO2019208235A1 - 医療画像処理システム - Google Patents

医療画像処理システム Download PDF

Info

Publication number
WO2019208235A1
WO2019208235A1 PCT/JP2019/015757 JP2019015757W WO2019208235A1 WO 2019208235 A1 WO2019208235 A1 WO 2019208235A1 JP 2019015757 W JP2019015757 W JP 2019015757W WO 2019208235 A1 WO2019208235 A1 WO 2019208235A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
light
short wavelength
sensitivity
adjustment coefficient
Prior art date
Application number
PCT/JP2019/015757
Other languages
English (en)
French (fr)
Inventor
青山 達也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020516211A priority Critical patent/JP6987980B2/ja
Priority to CN201980027208.3A priority patent/CN112004455B/zh
Publication of WO2019208235A1 publication Critical patent/WO2019208235A1/ja
Priority to US17/035,936 priority patent/US11744437B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image

Definitions

  • the present invention relates to a medical image processing system that controls the light emission amount of narrow-band light having a short wavelength used for illumination of an observation target.
  • an endoscope system including a light source device, an endoscope, and a processor device is widely used.
  • an observation target is irradiated based on an RGB image signal obtained by irradiating an observation target with illumination light from the endoscope, and imaging the observation target under illumination with the imaging light of the endoscope. Is displayed on the monitor.
  • the brightness information of the observation object changes because the brightness of the observation object changes as the distance between the distal end of the endoscope having the imaging sensor and the observation object changes.
  • the amount of illumination light emitted is controlled.
  • observation corresponding to the light of the plurality of red bands The brightness information (light control reference signal) of the object is calculated, and the light emission amount of the illumination light is controlled (see Patent Document 1).
  • narrow-band light having a short wavelength of about 410 nm and around 450 nm is being used for illumination of an observation target. Even when using an observation target illuminated with such short-wavelength narrow-band light, the brightness information of the observation target is accurately calculated, and the amount of light emitted from the short-wavelength narrow-band light can be controlled stably. Was demanded.
  • An object of the present invention is to provide a medical image processing system capable of stably controlling the light emission amount of short-wavelength narrow-band light when short-wavelength narrow-band light is used for illumination of an observation target.
  • a medical image processing system of the present invention is a light source unit that emits a specific narrowband light having a short wavelength and an imaging sensor that images an observation target illuminated with the specific narrowband light, and includes a first pixel group including a first pixel And a second pixel group including at least a second pixel, and a light source control unit that controls a light emission amount of the specific narrowband light.
  • the first pixel has a specific narrowband light higher than the second pixel.
  • the second pixel is more sensitive to the first long wave light and the specific narrow band light, which are longer than the specific narrow band light, and the light source control unit obtains the first pixel obtained by the first pixel. Based on the pixel value of the pixel and the pixel value of the second pixel obtained by the second pixel, the light emission amount of the specific narrowband light is controlled.
  • the second pixel group includes a third pixel having sensitivity to broadband illumination light including the specific narrowband light and the first long wave light, and the light source control unit includes the pixel value of the first pixel and the pixel of the second pixel. In addition to the value, it is preferable to control the emission amount of the specific narrowband light based on the pixel value of the third pixel.
  • the second pixel group includes a fourth pixel that is more sensitive to the second long wave light and the specific narrow band light than the first long wave light, and the light source control unit includes the pixel value of the first pixel and the first pixel value. It is preferable to control the light emission amount of the specific narrowband light based on the pixel value of the fourth pixel in addition to the pixel value of the two pixels.
  • the brightness of the observation target is determined.
  • a light source control unit that controls the light emission amount of the specific narrowband light based on the brightness information, and a brightness adjustment coefficient for the first pixel, The ratio of the brightness adjustment coefficient for the second pixel is determined based on the short wavelength side sensitivity to the short wavelength light including the specific narrow band light and the short wavelength side sensitivity of the second pixel among the sensitivity of the first pixel. Is preferred.
  • the short wavelength side sensitivity of the second pixel is 10% or more of the maximum sensitivity of the second pixel, or 10% or more of the short wavelength side sensitivity of the first pixel.
  • the short wavelength side sensitivity of the second pixel is preferably 35% or less of the maximum sensitivity of the second pixel or 35% or less of the short wavelength side sensitivity of the first pixel.
  • the pixel value of the first pixel multiplied by the brightness adjustment coefficient for the first pixel, the pixel value of the second pixel multiplied by the brightness adjustment coefficient for the second pixel, and the brightness adjustment coefficient for the third pixel Based on the pixel value of the third pixel multiplied by the brightness information calculation unit that calculates the brightness information indicating the brightness of the observation target.
  • the light source control unit The light emission amount of the band light is controlled, and the ratio of the brightness adjustment coefficient for the first pixel, the brightness adjustment coefficient for the second pixel, and the brightness adjustment coefficient for the third pixel is determined based on the sensitivity of the first pixel. Of these, it is preferable to be determined based on the short wavelength side sensitivity to the short wavelength light including the specific narrow band light, the short wavelength side sensitivity of the second pixel, and the short wavelength side sensitivity of the third pixel.
  • the pixel value of the first pixel multiplied by the brightness adjustment coefficient for the first pixel, the pixel value of the second pixel multiplied by the brightness adjustment coefficient for the second pixel, and the brightness adjustment coefficient for the fourth pixel Based on the pixel value of the fourth pixel multiplied by the brightness information calculation unit that calculates the brightness information indicating the brightness of the observation target.
  • the light source control unit The light emission amount of the band light is controlled, and the ratio of the brightness adjustment coefficient for the first pixel, the brightness adjustment coefficient for the second pixel, and the brightness adjustment coefficient for the fourth pixel is determined by the sensitivity of the first pixel. Among these, it is preferable to be determined based on the short wavelength side sensitivity to the short wavelength light including the specific narrow band light, the short wavelength side sensitivity of the second pixel, and the short wavelength side sensitivity of the fourth pixel.
  • the number of pixels in the second pixel group is preferably larger than the number of pixels in the first pixel group.
  • the center wavelength of the specific narrow band light is preferably included in the range of 400 nm to 450 nm, and the half width of the specific narrow band light is preferably 40 nm or less.
  • the endoscope system 10 includes an endoscope 12, a light source device 14, a processor device 16, a monitor 18, and a user interface 19.
  • the endoscope 12 is optically connected to the light source device 14 and electrically connected to the processor device 16.
  • the endoscope 12 includes an insertion portion 12a to be inserted into a subject, an operation portion 12b provided at a proximal end portion of the insertion portion 12a, a bending portion 12c and a distal end portion 12d provided at the distal end side of the insertion portion 12a. have.
  • the angle knob 12e of the operation unit 12b By operating the angle knob 12e of the operation unit 12b, the bending unit 12c performs a bending operation. With this bending operation, the tip 12d is directed in a desired direction.
  • the user interface 19 includes a mouse as well as the illustrated keyboard.
  • the operation unit 12b is provided with a mode switching SW 13a and a still image acquisition instruction unit 13b.
  • the mode switching SW 13a is used for switching operation between the normal observation mode, the special observation mode, and the short wavelength observation mode.
  • the normal observation mode is a mode in which the normal image is displayed on the monitor 18 by illuminating the observation target with normal light such as white light (see FIGS. 9 and 10).
  • the special observation mode is a mode in which the observation target is illuminated with special light such as blue narrow-band light, and a special observation image in which a structure such as a blood vessel having a specific depth is emphasized is displayed on the monitor 18.
  • the short wavelength observation mode is a short wavelength representing a structure that can be observed with a specific narrow band light having a short wavelength by using a specific wavelength narrow band light (corresponding to violet light V described later) for illumination of an observation target.
  • a specific wavelength narrow band light corresponding to violet light V described later
  • the observation image is displayed on the monitor 18.
  • a foot switch may be used as the mode switching unit for switching the mode.
  • the processor device 16 is electrically connected to the monitor 18 and the user interface 19.
  • the monitor 18 outputs and displays image information and the like.
  • the user interface 19 functions as a UI (User Interface) that receives input operations such as function settings.
  • the processor device 16 may be connected to an external recording unit (not shown) for recording image information and the like.
  • the light source device 14 includes a light source unit 20, a light source control unit 21, and an optical path coupling unit 23.
  • the light source unit 20 includes a V-LED (Violet Light Emitting Diode) 20a, a B-LED (Blue Light Emitting Diode) 20b, a G-LED (Green Light Emitting Diode) 20c, and an R-LED (Red Light Emitting Diode) 20d. is doing.
  • the light source control unit 21 controls driving of the LEDs 20a to 20d.
  • the optical path coupling unit 23 couples the optical paths of the four colors of light emitted from the four colors of LEDs 20a to 20d.
  • the light coupled by the optical path coupling unit 23 is irradiated into the subject through the light guide 41 and the illumination lens 45 inserted into the insertion unit 12a.
  • An LD Laser Diode
  • the V-LED 20a generates violet light V having a center wavelength in the range of 400 nm to 450 nm (for example, 405 nm) and a half width of 40 nm or less.
  • the B-LED 20b generates blue light B having a center wavelength in the range of 450 nm to 500 nm (for example, 460 nm) and a half width of 40 nm or less.
  • the G-LED 20c generates green light G having a wavelength range of 480 to 600 nm.
  • the R-LED 20d generates red light R having a center wavelength of 620 to 630 nm and a wavelength range of 600 to 650 nm.
  • the light source control unit 21 performs control to turn on the V-LED 20a, the B-LED 20b, the G-LED 20c, and the R-LED 20d in the normal observation mode and the special observation mode.
  • the light source control unit 21 emits normal light in which the light intensity ratio among the violet light V, blue light B, green light G, and red light R is Vc: Bc: Gc: Rc.
  • the LEDs 20a to 20d are controlled.
  • the special observation mode the light source control unit 21 emits special light whose light intensity ratio among the violet light V, blue light B, green light G, and red light R is Vs: Bs: Gs: Rs.
  • the LEDs 20a to 20d are controlled.
  • the light source control unit 21 controls each of the LEDs 20a to 20d so as to emit violet light V, which is a specific narrowband light having a short wavelength, in the short wavelength observation mode.
  • the light intensity ratio includes a case where the ratio of at least one semiconductor light source is 0 (zero). Therefore, the case where any one or two or more of the respective semiconductor light sources are not lit is included. For example, as in the case where the light intensity ratio among the violet light V, the blue light B, the green light G, and the red light R is 1: 0: 0: 0, only one of the semiconductor light sources is turned on, and the other 3 Even if one does not light, it shall have a light intensity ratio.
  • the light source control unit 21 controls the amount of illumination light emitted from each of the LEDs 20a to 20d based on the brightness information transmitted from the brightness information calculation unit 54 of the processor device 16.
  • the light source control unit 21 controls the light emission amount of the normal light so as to satisfy the following formula A) based on the brightness information for the normal observation mode. For example, when “brightness information for normal observation mode / 256” is lower than a specified number, control for increasing the light emission amount of normal light is performed. On the other hand, when “brightness information for normal observation mode / 256” is higher than the specified number, control is performed to reduce the light emission amount of normal light.
  • Formula A) Brightness information for normal observation mode / 256 specified number
  • the light source control unit 21 controls the emission amount of the special light so as to satisfy the following formula B) based on the brightness information for the special observation mode. For example, when “(brightness information for special observation mode + addition coefficient for special observation mode) / 256” is lower than a specified number, control is performed to increase the emission amount of special light. On the other hand, when “(brightness information for special observation mode + addition coefficient for special observation mode) / 256” is higher than the specified number, control is performed to reduce the emission amount of special light.
  • Formula B) (Brightness information for special observation mode + addition coefficient for special observation mode) / 256 specified number
  • the light source controller 21 controls the light emission amount of the short wavelength specific narrowband light so as to satisfy the following formula C) based on the brightness information for the short wavelength observation mode.
  • the light source controller 21 controls the light emission amount of the short wavelength specific narrowband light so as to satisfy the following formula C) based on the brightness information for the short wavelength observation mode.
  • control is performed to increase the emission amount of specific narrowband light having a short wavelength.
  • the light emission amount of the specific narrowband light having a short wavelength is decreased.
  • Formula C) (Brightness information for short wavelength observation mode + addition coefficient for short wavelength observation mode) / 256 specified number
  • the brightness information for the short wavelength observation mode is calculated by including the G image signal having a signal value corresponding to the specific narrowband light in addition to the B image signal.
  • the amount of emitted light can be controlled stably. For example, when a blue-related pigment is scattered in the observation target, if the brightness information for the short wavelength observation mode is calculated based only on the B image signal, the specific narrow band of the short wavelength It is difficult to stably control the light emission amount.
  • the brightness information for the short wavelength observation mode is calculated based on the G image signal in addition to the B image signal, so that it is less susceptible to the influence of the blue-related pigment. Therefore, it is possible to stably control the light emission amount of the specific narrowband light having a short wavelength.
  • the W image signal is less affected by the blue-related pigment. Therefore, the emission amount of the specific narrow band light can be stably controlled according to the brightness information based on the B image signal, the G image signal, and the W image signal. Similarly, even when the brightness information for the short wavelength observation mode is calculated based on the B image signal, the G image signal, and the R image signal, the R image signal is hardly affected by the blue-related pigment. Therefore, the emission amount of the specific narrow band light can be stably controlled according to the brightness information based on the B image signal, the G image signal, and the R image signal.
  • the light guide 41 is built in the endoscope 12 and the universal cord (the cord connecting the endoscope 12, the light source device 14, and the processor device 16).
  • the combined light propagates to the distal end portion 12d of the endoscope 12.
  • a multimode fiber can be used as the light guide 41.
  • a thin fiber cable having a core diameter of 105 ⁇ m, a cladding diameter of 125 ⁇ m, and a diameter of ⁇ 0.3 to 0.5 mm including a protective layer serving as an outer shell can be used.
  • the distal end portion 12d of the endoscope 12 is provided with an illumination optical system 30a and an imaging optical system 30b.
  • the illumination optical system 30 a has an illumination lens 45, and light from the light guide 41 is irradiated to the observation target via the illumination lens 45.
  • the imaging optical system 30 b includes an objective lens 46 and an imaging sensor 48. Reflected light from the observation object enters the image sensor 48 through the objective lens 46. As a result, a reflected image of the observation object is formed on the image sensor 48.
  • the imaging sensor 48 is a color imaging sensor that captures a reflection image of a subject and outputs an image signal.
  • the image sensor 48 is a CCD (Charge Coupled Device) image sensor or a CMOS. (Complementary Metal-Oxide Semiconductor) An imaging sensor or the like is preferable.
  • the image sensor 48 used in the present invention is a color image sensor for obtaining RGBW image signals of four colors of R (red), G (green), B (blue), and W (white).
  • the image sensor 48 is 5, an R pixel (fourth pixel) provided with an R filter, a G pixel (second pixel) provided with a G filter, a B pixel (first pixel) provided with a B filter, and W A W pixel (third pixel) provided with a filter is provided.
  • the imaging sensor 48 is divided into two first pixel groups and a second pixel group, and the number of pixels in the second pixel group is larger than the number of pixels in the first pixel group.
  • the first pixel group includes B pixels
  • the second pixel group includes G pixels, R pixels, and W pixels.
  • the W pixels are arranged in a checkered pattern.
  • the sensitivity to the specific narrowband light is also constant in the G pixel as shown in a demosaicing process described later in order to improve the resolution.
  • a signal of specific narrowband light is obtained even at the G pixel position.
  • the R pixel a certain abnormal sensitivity to the specific narrow band light and using the correlation between the W pixel and the R pixel, a signal of the specific narrow band light can be obtained even at the R pixel position. ing.
  • the G pixel has a green band of 500 nm to 600 nm.
  • the short wavelength side sensitivity to the light of the short wavelength (the wavelength band is 450 nm or less, for example, 400 nm to 450 nm) including the specific narrow band light of the short wavelength is Set the transmittance of the filter.
  • the transmittance of the specific narrow band light, the G filter, and the reflectance of each part (in the case of FIG. 7, the reflectance of “esophagus” is used.
  • the reflectance of the stomach and large intestine is a dotted line.
  • the received light intensity corresponding to the wavelength range of the specific narrow band light is obtained as the received light intensity of the G pixel.
  • the light reception intensity of the B pixel is obtained by multiplying the specific narrow band light, the transmittance of the B filter (blue band of 400 nm to 500 nm) and the reflectance of each part, and is a certain multiple of the intensity value of the light reception intensity of the G pixel. It has become.
  • the G pixel at 400 to 450 nm The maximum sensitivity is preferably 10% or more. That is, in the G filter, the transmittance of 400 to 450 nm is preferably 10% or more of the transmittance in the wavelength range (for example, 540 to 560 nm) corresponding to the highest sensitivity of the G pixel.
  • the short wavelength side sensitivity of the G pixel is preferably 10% or more of the short wavelength side sensitivity of the B pixel.
  • the transmittance of 400 to 450 nm is preferably 10% or more of the transmittance of 400 to 450 nm of the B filter.
  • the maximum sensitivity of the G pixel means sensitivity to light in a wavelength region where the transmittance of the G color filter is equal to or higher than a certain value (for example, 70%). The same applies to the maximum sensitivity of the R pixel.
  • the short wavelength side sensitivity of the G pixel is 35% or less of the maximum sensitivity of the G pixel at 400 to 450 nm. It is preferable to do. That is, in the G filter, the transmittance of 400 to 450 nm is preferably 35% or less of the transmittance in the wavelength range (for example, 540 to 560 nm) corresponding to the highest sensitivity of the G pixel. Alternatively, the short wavelength side sensitivity of the G pixel is preferably 35% or less of the short wavelength side sensitivity of the B pixel. That is, in the G filter, the transmittance of 400 to 450 nm is preferably 35% or less of the transmittance of 400 to 450 nm of the B filter.
  • a red band light of 600 nm to 700 nm (The transmittance of the R filter is set so that it has not only the sensitivity to the second long wave light) but also the short wavelength side sensitivity to the short wavelength light (400 nm to 450 nm) including the specific narrow band light having the short wavelength.
  • the specific narrowband light, the transmittance of the R filter, and the reflectance for each part (In the case of FIG. 8, the reflectance of “esophagus” is used.
  • the received light intensity of the R pixel is the wavelength of the specific narrowband light.
  • the received light intensity corresponding to the area is obtained.
  • the light reception intensity of the B pixel is a fixed multiple of the light reception intensity of the R pixel.
  • the R pixel is 400 to 450 nm.
  • the maximum sensitivity is preferably 10% or more. That is, in the R filter, the transmittance of 400 to 450 nm is preferably 10% or more of the transmittance in the wavelength range (for example, 640 to 660 nm) corresponding to the highest sensitivity of the R pixel.
  • the short wavelength side sensitivity of the R pixel is preferably 10% or more of the short wavelength side sensitivity of the B pixel. That is, in the R filter, the transmittance of 400 to 450 nm is preferably 10% or more of the transmittance of 400 to 450 nm of the B filter.
  • the short wavelength side sensitivity of the R pixel is 35% or less of the maximum sensitivity of the R pixel at 400 to 450 nm. It is preferable to do. That is, in the R filter, the transmittance of 400 to 450 nm is preferably 35% or less of the transmittance in the wavelength range (for example, 640 to 660 nm) corresponding to the highest sensitivity of the R pixel. Alternatively, the short wavelength side sensitivity of the R pixel is preferably 35% or less of the short wavelength side sensitivity of the B pixel. That is, in the R filter, the transmittance of 400 to 450 nm is preferably 35% or less of the transmittance of 400 to 450 nm of the B filter.
  • spectral sensitivity is applied to illumination light of broadband light from the blue band to the red band so as to include specific narrow band light of short wavelength, light of green band, and light of red band. Therefore, the pixel value is saturated more quickly than other pixels such as B pixel, G pixel, and R pixel. Therefore, the sensitivity of the W pixel is set lower than the sensitivity of other pixels such as the B pixel, the G pixel, and the R pixel.
  • the sensitivity of the W pixel is 30% to 50% with respect to the highest sensitivity of the B pixel (for example, a sensitivity of 440 to 460 nm) or the highest sensitivity of the G pixel (for example, a sensitivity of 540 to 560 nm). It is preferable to do.
  • the received light intensity of the W pixel obtained by multiplying the light source spectrum of the normal light and the transmittance of the W filter is equal to that of the normal light.
  • the transmittance of the W filter is set so as to be about 50% (for example, 45% to 55%) of the received light intensity of the G pixel obtained by multiplying the light source spectrum and the transmittance of the G filter.
  • the received light intensity of the W pixel obtained by multiplying the light source spectrum of the normal light and the transmittance of the W filter is equal to that of the normal light.
  • the transmittance of the W filter is set so that it is about 50% (for example, 45% to 55%) of the received light intensity of the B pixel obtained by multiplying the light source spectrum, the transmittance of the B filter and the reflectance of the esophagus. To do.
  • the image sensor 48 is a so-called complementary color image sensor that includes complementary filters for C (cyan), M (magenta), Y (yellow), and G (green) instead of the RGBW color image sensor. May be.
  • complementary color imaging sensor When the complementary color imaging sensor is used, four color image signals of CMYG are output. Therefore, it is necessary to convert the four color image signals of CMYG to the three color image signals of RGB by complementary color-primary color conversion.
  • the image sensor 48 may be a monochrome image sensor not provided with a color filter.
  • the image signal output from the image sensor 48 is transmitted to the CDS / AGC circuit 50.
  • the CDS / AGC circuit 50 performs correlated double sampling (CDS (Correlated Double Sampling)) and automatic gain control (AGC (Auto Gain Control)) on an image signal which is an analog signal.
  • CDS Correlated Double Sampling
  • AGC Automatic gain control
  • the image signal that has passed through the CDS / AGC circuit 50 is converted into a digital image signal by an A / D converter (A / D (Analog / Digital) converter) 52.
  • a / D converted digital image signal is input to the processor device 16.
  • the processor device 16 includes an image acquisition unit 53, a brightness information calculation unit 54, a DSP (Digital Signal Processor) 56, a noise removal unit 58, an image processing unit 60, a parameter switching unit 62, and a display control unit 64. And.
  • a DSP Digital Signal Processor
  • the image acquisition unit 53 acquires an observation image obtained by imaging an observation target with the endoscope 12. Specifically, a digital color image signal from the endoscope 12 is input to the image acquisition unit 53 as an observation image.
  • the color image signal includes an R image signal (pixel value of R pixel) output from the R pixel of the imaging sensor 48, a G image signal (pixel value of G pixel) output from the G pixel of the imaging sensor 48, and imaging. It is an RGBW image signal composed of a B image signal (pixel value of B pixel) output from the B pixel of the sensor 48 and a W image signal (pixel value of W pixel) output from the W pixel of the image sensor 48. .
  • the brightness information calculation unit 54 calculates brightness information indicating the brightness of the observation target for each observation mode based on the RGBW image signal input from the image acquisition unit 53.
  • the calculated brightness information is sent to the light source control unit 21 and used for controlling the amount of illumination light emitted.
  • the brightness information is represented by, for example, the number of bits.
  • brightness information for the normal observation mode is calculated by the following equation K).
  • Brightness information for normal observation mode brightness adjustment coefficient kcr ⁇ R image signal + brightness adjustment coefficient kcg ⁇ G image signal + brightness adjustment coefficient kcb ⁇ B image signal + brightness adjustment coefficient kcw ⁇ W image signal
  • brightness information for the special observation mode is calculated by the following formula L).
  • Brightness information for special observation mode brightness adjustment coefficient ksr ⁇ R image signal + brightness adjustment coefficient ksg ⁇ G image signal + brightness adjustment coefficient ksb ⁇ B image signal + brightness adjustment coefficient ksw ⁇ W image signal
  • brightness information for the short wavelength observation mode is calculated by the following equation M).
  • Brightness information for short wavelength observation mode brightness adjustment coefficient ktr ⁇ R image signal + brightness adjustment coefficient ktg ⁇ G image signal + brightness adjustment coefficient ktb ⁇ B image signal + brightness adjustment coefficient ktw ⁇ W Image signal
  • the B image having a pixel value corresponding to the short wavelength specific narrowband light in the calculation of the brightness information for the short wavelength observation mode.
  • the G pixel and the R pixel have short wavelength side sensitivity, the G image is used for calculating the brightness information for the short wavelength observation mode.
  • a signal and an R image signal are also used together.
  • Brightness adjustment coefficient ktr (brightness adjustment coefficient for the fourth pixel) and brightness adjustment to accurately calculate the brightness information for the short wavelength observation mode corresponding to the illumination of only the short wavelength specific narrowband light
  • the ratio of the coefficient ktg (brightness adjustment coefficient for the second pixel), the brightness adjustment coefficient ktb (brightness adjustment coefficient for the first pixel), and the brightness adjustment coefficient ktw (brightness adjustment coefficient for the third pixel) Is preferably determined based on the short wavelength side sensitivity of the R pixel, the G pixel, the B pixel, and the W pixel and the reflectance of the mucous membrane.
  • the spectral sensitivity of the W pixel is about 45% of the spectral sensitivity of 420 to 420 nm of the B pixel and 15 to 20% of the spectral sensitivity of 400 to 420 nm of the G pixel and R pixel.
  • the ratio of the brightness adjustment coefficient ktr, the brightness adjustment coefficient ktg, the brightness adjustment coefficient ktb, and the brightness adjustment coefficient ktw is set to “2: 2: 5: 4”. It is preferable.
  • the brightness information for the short wavelength observation mode is preferably calculated based on at least two image signals of the B image signal and the G image signal.
  • the calculation is performed by the equation M1).
  • 400 to 420 nm of the G pixel Is set to 15 to 20% of the B-pixel spectral sensitivity of 400 to 420 nm the mucosal reflectance is also taken into consideration, and the ratio of the brightness adjustment coefficient ktg to the brightness adjustment coefficient ktb is set to “2”. : 5 "is preferable.
  • the brightness adjustment coefficient ktg when the spectral sensitivity of the W pixel is set to about 45% of the spectral sensitivity of the B pixel of 400 to 420 nm, the brightness adjustment coefficient ktg, The ratio between the brightness adjustment coefficient ktb and the brightness adjustment coefficient ktw is preferably set to “2: 5: 4”.
  • the spectral sensitivity of 400 to 420 nm of G pixel and R pixel Is 15 to 20% of the spectral sensitivity of 400 to 420 nm of the B pixel, the ratio of the brightness adjustment coefficient ktr, the brightness adjustment coefficient ktg, and the brightness adjustment coefficient ktb in consideration of the reflectance of the mucous membrane Is preferably "2: 2: 5".
  • the DSP 56 performs various signal processing such as defect correction processing, offset processing, gain correction processing, linear matrix processing, or gamma conversion processing on the received image signal.
  • defect correction process the signal of the defective pixel of the image sensor 48 is corrected.
  • offset process the dark current component is removed from the image signal subjected to the defect correction process, and an accurate zero level is set.
  • gain correction process the signal level is adjusted by multiplying the image signal after the offset process by a specific gain.
  • the image signal after gain correction processing is subjected to linear matrix processing for improving color reproducibility. After that, brightness and saturation are adjusted by gamma conversion processing.
  • the demosaicization processing unit 56a performs demosaicization processing (also referred to as isotropic processing or synchronization processing) on the image signal after the linear matrix processing.
  • demosaicization processing also referred to as isotropic processing or synchronization processing
  • a signal of insufficient color in each pixel is generated by interpolation.
  • all the pixels have RGB signals.
  • a method described in Japanese Patent Application Laid-Open No. 2011-55038 can be used for demosaicing when a color imaging sensor for obtaining an RGBW image signal is used.
  • the short-wavelength observation mode only a specific narrow-band light having a short wavelength is illuminated on the observation target, but a normal RGB image sensor (image sensor composed of R, G, and B pixels) is as shown in FIG.
  • the G filter and the R filter have almost no transmittance in the specific narrow band, and the G pixel and the R pixel have little sensitivity to the specific narrow band light.
  • the short-wavelength observation image obtained based on the short wavelength specific narrowband light can only obtain signals from the B pixel and the W pixel having sensitivity to the specific narrowband light, and is almost from the G pixel and the R pixel. No signal is available.
  • each signal is called a short wavelength observation signal.
  • a method of calculating the pixel value of the B pixel at the G pixel position as the short wavelength observation signal by demosaicing processing based on the correlation with the pixel value of the W pixel is as follows. For example, as shown in FIG. 11, when calculating the pixel value Bd of the B pixel at the G pixel position at the specific position SP in the image signal 80 output from the imaging sensor 48, the discrete value included in the image signal 80 is used. For a typical W pixel signal, W pixel values at all pixel positions are calculated by direction discrimination interpolation according to neighboring W pixel values, and image blur is reduced by the Wiener filter processing for the calculated W pixel values.
  • a W pixel signal ( Wd) (a signal after the image blur reduction process) after the image blur reduction process is calculated.
  • the low-frequency component mW (first smoothing) is obtained by multiplying the pixel value of the 5 ⁇ 5 pixel region (specific pixel region) by the first smoothing filter 82. Filtered component).
  • the first smoothing filter 82 is provided with filter coefficients (“1”, “2”, etc.) for the position where the W pixel is present in the image signal 80.
  • the second smoothing filter 84 is a filter that is applied to each 5 ⁇ 5 pixel region in which the G pixel is located at the specific position SP, and a filter coefficient ( “1”) is provided.
  • filter coefficient setting is performed so that the pixel values of the B pixels at positions close to the specific position SP are obtained evenly.
  • the pixel value Bd of the B pixel at the G pixel position is calculated by the following equation X).
  • Formula X) Bd (mBx / mW) ⁇ Wd
  • the third smoothing filter 86 is a filter that is applied to each 5 ⁇ 5 pixel region in which the R pixel is located at the specific position SP, and the filter coefficient ( “1”) is provided. Then, the pixel value Bd of the B pixel at the R pixel position is calculated by the following equation Y).
  • Formula Y) Bd (mBy / mW) ⁇ Wd
  • the noise removal unit 58 removes noise from the RGB image signal by performing noise removal processing (for example, a moving average method, a median filter method, etc.) on the image signal that has been subjected to gamma correction or the like by the DSP 56.
  • the image signal from which the noise has been removed is transmitted to the image processing unit 60.
  • the image processing unit 60 performs image processing corresponding to each observation mode.
  • an image processing method for example, there is a method of preparing image processing parameters such as gradation processing and saturation enhancement corresponding to each observation mode, and multiplying the image signal according to each observation mode.
  • the normal observation mode parameter is multiplied by the RGB image signal.
  • the special observation mode parameter is multiplied by the RGB image signal.
  • the B image signal is multiplied by the short wavelength observation mode parameter.
  • the normal observation mode parameter, the special observation mode parameter, and the short wavelength observation parameter are switched by the parameter switching unit 62 in accordance with the mode switching of the mode switching SW 13a.
  • the display control unit 64 performs control for displaying the image signal input from the image signal as an image that can be displayed on the monitor 18.
  • the R image signal is assigned to the R channel of the monitor 18
  • the G image signal is assigned to the G channel of the monitor 18
  • the B image signal is assigned to the B channel of the monitor 18.
  • the special observation image is displayed on the monitor 18 by assigning the G image signal to the R channel of the monitor 18 and assigning the B image signal to the G channel and B channel of the monitor 18 ( When assigning, it is preferable to perform gradation processing and saturation enhancement).
  • the short wavelength observation signal is assigned to each of the R, G, and B channels of the monitor 18 and the short wavelength observation image is displayed on the monitor 18.
  • the short wavelength observation image is assigned to each channel after multiplying the gain for each channel of R, G, B and the like.
  • the short wavelength observation image showing the structure that can be observed with the specific narrowband light having the short wavelength is displayed on the monitor 18 as an image having a specific background color that is more visible than the gray image. Can be displayed.
  • an RGBW image sensor is used as the image sensor 48, but as shown in FIG. 15, the ratio of the number of G pixels, B pixels, and R pixels is 2: 1: 1.
  • An array of image sensors may be used.
  • the pixel value of the B pixel at the G pixel position is as follows. It is preferable to calculate the pixel value Br of the B pixel at the Bg and R pixel positions.
  • the demosaicing process in the short wavelength observation mode calculates the pixel value (B image signal) of the B pixel at the G pixel position and the R pixel position.
  • the pixel values of the R pixel, the G pixel, and the B pixel may be calculated at each pixel position.
  • the processing unit processing such as the image acquisition unit 53, the brightness information calculation unit 54, the DSP 56, the noise removal unit 58, the image processing unit 60, the parameter switching unit 62, the display control unit 64, etc.
  • the hardware structure of unit is the following various processors.
  • the circuit configuration is changed after manufacturing the CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), which is a general-purpose processor that functions as various processing units by executing software (programs).
  • a programmable logic device which is a possible processor, a dedicated electric circuit which is a processor having a circuit configuration specifically designed to execute various processes, and the like are included.
  • One processing unit may be composed of one of these various processors, or may be composed of a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or CPUs and FPGAs). May be. Further, the plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, as represented by a computer such as a client or server, one processor is configured with a combination of one or more CPUs and software, There is a form in which this processor functions as a plurality of processing units. Second, as represented by System On Chip (SoC), etc., the function of the entire system including a plurality of processing units is integrated into one IC (Integrated Circuit). There is a form in which a processor realized by a chip is used. As described above, various processing units are configured using one or more of the various processors as a hardware structure.
  • SoC System On Chip
  • the hardware structure of these various processors is more specifically an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined.
  • the present invention is applied to an endoscope system that processes an endoscopic image that is one of medical images.
  • a medical image other than an endoscopic image is processed.
  • the present invention can also be applied to a medical image processing system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Endoscopes (AREA)

Abstract

観察対象の照明に短波長の狭帯域光を用いた場合において、短波長の狭帯域光の発光量の制御を安定的に行うことができる医療画像処理システムを提供する。光源部は、短波長の特定狭帯域光を発する。撮像センサは、B画素を含む第1画素群と、G画素を含む第2画素群を備えている。B画素はG画素よりも特定狭帯域光に対する感度が高くなっている。G画素は、緑色帯域の光と特定狭帯域光に対して感度を有している。光源制御部は、B画素の画素値及びG画素の画素値に基づいて、特定狭帯域光の発光量の制御を行う。

Description

医療画像処理システム

 本発明は、観察対象の照明に用いる短波長の狭帯域光の発光量の制御を行う医療画像処理システムに関する。

 医療分野では、光源装置、内視鏡、プロセッサ装置を備える内視鏡システムが広く用いられている。内視鏡システムでは、内視鏡から観察対象に照明光を照射し、その照明光で照明中の観察対象を内視鏡の撮像センサで撮像して得られるRGB画像信号に基づいて、観察対象の画像をモニタ上に表示する。

 また、内視鏡を用いる診断においては、撮像センサを有する内視鏡の先端部と観察対象との距離が変化することによって観察対象の明るさが変わることから、観察対象の明るさ情報の変化に合わせて、照明光の発光量を制御することが行われている。また、粘膜組織の深い位置ある血管を観察するために、照明光として、複数の赤色帯域(540nm、600nm、630nm)の光を用いる場合には、それら複数の赤色帯域の光に対応させた観察対象の明るさ情報(調光基準信号)を算出して、照明光の発光量の制御を行うようにしている(特許文献1参照)。

国際公開2013/145410号

 近年の内視鏡診断においては、表層血管や赤血球など特定の構造を観察するために、中心波長が410nm、450nm前後の短波長の狭帯域光が観察対象の照明に用いられつつある。このような短波長の狭帯域光が照明された観察対象を用いる場合においても、観察対象の明るさ情報を正確に算出し、短波長の狭帯域光の発光量の制御を安定的に行うことが求められていた。

 本発明は、観察対象の照明に短波長の狭帯域光を用いた場合において、短波長の狭帯域光の発光量の制御を安定的に行うことができる医療画像処理システムを提供することを目的とする。

 本発明の医療画像処理システムは、短波長の特定狭帯域光を発する光源部と、特定狭帯域光で照明された観察対象を撮像する撮像センサであって、第1画素を含む第1画素群と、第2画素を少なくとも含む第2画素群とを備える撮像センサと、特定狭帯域光の発光量を制御する光源制御部とを備え、第1画素は、第2画素よりも特定狭帯域光への感度が高く、第2画素は、特定狭帯域光よりも長波の第1長波光と特定狭帯域光に対して感度を有し、光源制御部は、第1画素にて得られる第1画素の画素値及び第2画素にて得られる第2画素の画素値に基づいて、特定狭帯域光の発光量の制御を行う。

 第2画素群には、特定狭帯域光及び第1長波光を含む広帯域の照明光に感度を有する第3画素が含まれ、光源制御部は、第1画素の画素値及び第2画素の画素値に加えて、第3画素の画素値に基づいて、特定狭帯域光の発光量の制御を行うことが好ましい。第2画素群には、第1長波光よりも長波の第2長波光と特定狭帯域光に対して感度を有する第4画素が含まれ、光源制御部は、第1画素の画素値及び第2画素の画素値に加えて、第4画素の画素値に基づいて、特定狭帯域光の発光量の制御を行うことが好ましい。

 第1画素用の明るさ調整係数を掛け合わせた第1画素の画素値と第2画素用の明るさ調整係数を掛け合わせた第2画素の画素値とに基づいて、観察対象の明るさを示す明るさ情報を算出する明るさ情報算出部を有し、光源制御部は、明るさ情報に基づいて、特定狭帯域光の発光量の制御を行い、第1画素用の明るさ調整係数と第2画素用の明るさ調整係数の比率は、第1画素の感度のうち特定狭帯域光を含む短波長の光に対する短波長側感度と第2画素の短波長側感度に基づいて定められることが好ましい。

 第2画素の短波長側感度は、第2画素の最高感度の10%以上、又は、第1画素の短波長側感度の10%以上であることが好ましい。第2画素の短波長側感度は、第2画素の最高感度の35%以下、又は、第1画素の短波長側感度の35%以下であることが好ましい。

 第1画素用の明るさ調整係数を掛け合わせた第1画素の画素値、第2画素用の明るさ調整係数を掛け合わせた第2画素の画素値、及び第3画素用の明るさ調整係数を掛け合わせた第3画素の画素値に基づいて、観察対象の明るさを示す明るさ情報を算出する明るさ情報算出部を有し、光源制御部は、明るさ情報に基づいて、特定狭帯域光の発光量の制御を行い、第1画素用の明るさ調整係数、第2画素用の明るさ調整係数、及び第3画素用の明るさ調整係数の比率は、第1画素の感度のうち特定狭帯域光を含む短波長の光に対する短波長側感度、第2画素の短波長側感度、及び第3画素の短波長側感度に基づいて定められることが好ましい。

 第1画素用の明るさ調整係数を掛け合わせた第1画素の画素値、第2画素用の明るさ調整係数を掛け合わせた第2画素の画素値、及び第4画素用の明るさ調整係数を掛け合わせた第4画素の画素値に基づいて、観察対象の明るさを示す明るさ情報を算出する明るさ情報算出部を有し、光源制御部は、明るさ情報に基づいて、特定狭帯域光の発光量の制御を行い、第1画素用の明るさ調整係数、第2画素用の明るさ調整係数、及び第4画素用の明るさ調整係数の比率は、第1画素の感度のうち特定狭帯域光を含む短波長の光に対する短波長側感度、第2画素の短波長側感度、及び第4画素の短波長側感度に基づいて定められることが好ましい。

 第2画素群の画素数は第1画素群の画素数よりも多いことが好ましい。特定狭帯域光の中心波長は400nm以上450nm以下に含まれ、特定狭帯域光の半値幅は40nm以下であることが好ましい。

 本発明によれば、観察対象の照明に短波長の狭帯域光を用いた場合において、短波長の狭帯域光の発光量の制御を安定的に行うことができる。

内視鏡システムの外観図である。 内視鏡システムの機能を示すブロック図である。 紫色光V、青色光B、緑色光G、赤色光Rのスペクトルを示すグラフである。 短波長の特定狭帯域光のスペクトルを示すグラフである。 撮像センサに設けられたR画素(R)、G画素(G)、B画素(B)、W画素(W)を示す説明図である。 本実施形態の撮像センサが有するBフィルタ、Gフィルタ、Rフィルタの分光透過率を示すグラフである。 短波長の特定狭帯域光を食道に照明した場合のB画素及びG画素の受光強度を示す説明図である。 短波長の特定狭帯域光を食道に照明した場合のB画素及びR画素の受光強度を示す説明図である。 通常光を観察対象に照明した場合のW画素及びG画素の受光強度を示す説明図である。 通常光を食道に照明した場合のW画素及びR画素の受光強度を示す説明図である。 画像信号のうち特定位置SPに位置するG画素を示す説明図である。 低周波成分mWの算出方法を示す説明図である。 低周波成分mBxの算出方法を示す説明図である。 低周波成分mByの算出方法を示す説明図である。 ベイヤー配列の撮像センサを示す説明図である。 ベイヤー配列の撮像センサにおけるG画素位置のB画素の画素値の算出方法の説明に用いる説明図である。 ベイヤー配列の撮像センサにおけるR画素位置のB画素の画素値の算出方法に用いる説明図である。 通常の撮像センサが有するBフィルタ、Gフィルタ、Rフィルタの分光透過率を示すグラフである。

 [第1実施形態]

 図1に示すように、第1実施形態の内視鏡システム10は、内視鏡12と、光源装置14と、プロセッサ装置16と、モニタ18と、ユーザーインターフェース19とを有する。内視鏡12は光源装置14と光学的に接続され、且つ、プロセッサ装置16と電気的に接続される。内視鏡12は、被検体内に挿入される挿入部12aと、挿入部12aの基端部分に設けられた操作部12bと、挿入部12aの先端側に設けられる湾曲部12c及び先端部12dを有している。操作部12bのアングルノブ12eを操作することにより、湾曲部12cは湾曲動作する。この湾曲動作に伴って、先端部12dが所望の方向に向けられる。なお、ユーザーインターフェース19は図示したキーボードの他、マウスなどが含まれる。

 また、操作部12bには、アングルノブ12eの他、モード切替SW13a、静止画取得指示部13bが設けられている。モード切替SW13aは、通常観察モードと、特殊観察モードと、短波長観察モードとの切替操作に用いられる。通常観察モードは、白色光などの通常光(図9、図10参照)により観察対象の照明を行って、通常画像をモニタ18上に表示するモードである。特殊観察モードは、青色狭帯域光などの特殊光により観察対象の照明を行って、特定深さの血管などの構造を強調した特殊観察画像をモニタ18上に表示するモードである。短波長観察モードは、観察対象の照明に短波長の特定狭帯域光(後述の紫色光Vに対応する)を用いることによって、短波長の特定狭帯域光で観察可能な構造物を表す短波長観察画像をモニタ18上に表示するモードである。なお、モードを切り替えるためのモード切替部としては、モード切替SW13aの他に、フットスイッチを用いてもよい。

 プロセッサ装置16は、モニタ18及びユーザーインターフェース19と電気的に接続される。モニタ18は、画像情報等を出力表示する。ユーザーインターフェース19は、機能設定等の入力操作を受け付けるUI(User Interface:ユーザーインターフェース)として機能する。なお、プロセッサ装置16には、画像情報等を記録する外付けの記録部(図示省略)を接続してもよい。

 図2に示すように、光源装置14は、光源部20と、光源制御部21と、光路結合部23とを有している。光源部20は、V-LED(Violet Light Emitting Diode)20a、B-LED(Blue Light Emitting Diode)20b、G-LED(Green Light Emitting Diode)20c、R-LED(Red Light Emitting Diode)20dを有している。光源制御部21は、LED20a~20dの駆動を制御する。光路結合部23は、4色のLED20a~20dから発せられる4色の光の光路を結合する。光路結合部23で結合された光は、挿入部12a内に挿通されたライトガイド41及び照明レンズ45を介して、被検体内に照射される。なお、LEDの代わりに、LD(Laser Diode)を用いてもよい。

 図3に示すように、V-LED20aは、中心波長が400nm以上450nm(例えば、405nm)に含まれ、且つ、半値幅が40nm以下である紫色光Vを発生する。B-LED20bは、中心波長が450nm以上500nm以下(例えば、460nm)に含まれ、且つ、半値幅が40nm以下である青色光Bを発生する。G-LED20cは、波長範囲が480~600nmに及ぶ緑色光Gを発生する。R-LED20dは、中心波長620~630nmで、波長範囲が600~650nmに及ぶ赤色光Rを発生する。

 光源制御部21は、通常観察モード及び特殊観察モードにおいて、V-LED20a、B-LED20b、G-LED20c、及びR-LED20dを点灯する制御を行う。また、光源制御部21は、通常観察モード時には、紫色光V、青色光B、緑色光G、及び赤色光R間の光強度比がVc:Bc:Gc:Rcとなる通常光を発光するように、各LED20a~20dを制御する。また、光源制御部21は、特殊観察モード時には、紫色光V、青色光B、緑色光G、及び赤色光R間の光強度比がVs:Bs:Gs:Rsとなる特殊光を発光するように、各LED20a~20dを制御する。特殊光は、特定深さの血管などの構造を強調できることが好ましい。また、光源制御部21は、図4に示すように、短波長観察モード時には、短波長の特定狭帯域光である紫色光Vを発光するように、各LED20a~20dを制御する。

 なお、本明細書において、光強度比は、少なくとも1つの半導体光源の比率が0(ゼロ)の場合を含む。したがって、各半導体光源のいずれか1つまたは2つ以上が点灯しない場合を含む。例えば、紫色光V、青色光B、緑色光G、及び赤色光R間の光強度比が1:0:0:0の場合のように、半導体光源の1つのみを点灯し、他の3つは点灯しない場合も、光強度比を有するものとする。

 また、光源制御部21は、プロセッサ装置16の明るさ情報算出部54から送られる明るさ情報に基づいて、各LED20a~20dから発せられる照明光の発光量を制御する。通常観察モードの場合であれば、光源制御部21は、通常観察モード用の明るさ情報に基づいて、下記式A)を満たすように、通常光の発光量を制御する。例えば、「通常観察モード用の明るさ情報/256」が規定数よりも低い場合には、通常光の発光量を上げる制御を行う。これに対して、「通常観察モード用の明るさ情報/256」が規定数よりも高い場合には、通常光の発光量を下げる制御を行う。

式A)通常観察モード用の明るさ情報/256=規定数

 特殊観察モードの場合であれば、光源制御部21は、特殊観察モード用の明るさ情報に基づいて、下記式B)を満たすように、特殊光の発光量を制御する。例えば、「(特殊観察モード用の明るさ情報+特殊観察モード用加算係数)/256」が規定数よりも低い場合には、特殊光の発光量を上げる制御を行う。これに対して、「(特殊観察モード用の明るさ情報+特殊観察モード用加算係数)/256」が規定数よりも高い場合には、特殊光の発光量を下げる制御を行う。

式B)(特殊観察モード用の明るさ情報+特殊観察モード用加算係数)/256=規定数

 短波長観察モードの場合であれば、光源制御部21は、短波長観察モード用の明るさ情報に基づいて、下記式C)を満たすように、短波長の特定狭帯域光の発光量を制御する。例えば、「(短波長観察モード用の明るさ情報+短波長観察モード用加算係数)/256」が規定数よりも低い場合には、短波長の特定狭帯域光の発光量を上げる制御を行う。これに対して、「(短波長観察モード用の明るさ情報+短波長観察モード用加算係数)/256」が規定数よりも高い場合には、短波長の特定狭帯域光の発光量を下げる制御を行う。式C)(短波長観察モード用の明るさ情報+短波長観察モード用加算係数)/256=規定数

 なお、短波長観察モード用の明るさ情報は、B画像信号の他に、特定狭帯域光に対応する信号値を有するG画像信号を含めて、算出されたものであるため、特定狭帯域光の発光量の制御を安定して行うことができる。例えば、観察対象において青色関連の色素が散布されている場合には、短波長観察モード用の明るさ情報がB画像信号にのみ基づいて算出されているものであれば、短波長の特定狭帯域光の発光量の制御を安定的に行うことは難しい。本実施形態のように、短波長観察モード用の明るさ情報が、B画像信号の他に、G画像信号に基づいて算出されていることにより、青色関連の色素の影響を受けにくくなっているため、短波長の特定狭帯域光の発光量の制御を安定的に行うことができる。

 なお、短波長観察モード用の明るさ情報がB画像信号、G画像信号、W画像信号に基づいて算出されている場合においても、W画像信号は、青色関連の色素の影響を受けにくくなっているため、特定狭帯域光の発光量の制御は、B画像信号、G画像信号、W画像信号に基づく明るさ情報に従って、安定的に行うことができる。同様にして、短波長観察モード用の明るさ情報がB画像信号、G画像信号、R画像信号に基づいて算出されている場合においても、R画像信号は、青色関連の色素の影響を受けにくくなっているため、特定狭帯域光の発光量の制御は、B画像信号、G画像信号、R画像信号に基づく明るさ情報に従って、安定的に行うことができる。

 図2に示すように、ライトガイド41は、内視鏡12及びユニバーサルコード(内視鏡12と光源装置14及びプロセッサ装置16とを接続するコード)内に内蔵されており、光路結合部23で結合された光を内視鏡12の先端部12dまで伝搬する。なお、ライトガイド41としては、マルチモードファイバを使用することができる。一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた径がφ0.3~0.5mmの細径なファイバケーブルを使用することができる。

 内視鏡12の先端部12dには、照明光学系30aと撮像光学系30bが設けられている。照明光学系30aは照明レンズ45を有しており、この照明レンズ45を介して、ライトガイド41からの光が観察対象に照射される。撮像光学系30bは、対物レンズ46及び撮像センサ48を有している。観察対象からの反射光は、対物レンズ46を介して、撮像センサ48に入射する。これにより、撮像センサ48に観察対象の反射像が結像される。

 撮像センサ48はカラーの撮像センサであり、被検体の反射像を撮像して画像信号を出力する。この撮像センサ48は、CCD(Charge Coupled Device)撮像センサやCMOS

(Complementary Metal-Oxide Semiconductor)撮像センサ等であることが好ましい。本発明で用いられる撮像センサ48は、R(赤)、G(緑)B(青)、及びW(白)の4色のRGBW画像信号を得るためのカラーの撮像センサである。即ち、撮像センサ48は、図

5に示すように、Rフィルタが設けられたR画素(第4画素)、Gフィルタが設けられたG画素(第2画素)、Bフィルタが設けられたB画素(第1画素)、及びWフィルタが設けられたW画素(第3画素)を備えている。なお、撮像センサ48は2つの第1画素群と第2画素群に分けられ、第2画素群の画素数は第1画素群の画素数よりも多くなっている。第1画素群にはB画素が含まれ、第2画素群にはG画素、R画素、W画素が含まれる。

 撮像センサ48において、W画素は市松模様となるように配列されている。また、短波長観察モード時において撮像センサ48で得られる信号に対しては、解像度を向上させるために、後述のデモザイク化処理に示すように、G画素にも特定狭帯域光への感度を一定異常持たせて、W画素とG画素の相関を用いることによって、G画素位置においても特定狭帯域光の信号が得られるようにしている。同様にして、R画素にも特定狭帯域光への感度を一定異常持たせて、W画素とR画素の相関を用いることによって、R画素位置においても特定狭帯域光の信号が得られるようにしている。

 以上のように、短波長の特定狭帯域光の照明時に、G画素位置で特定狭帯域光の信号を得るためには、図6に示すように、G画素については、500nm~600nmの緑色帯域の光(第1長波光)に対する感度だけでなく、短波長の特定狭帯域光を含む短波長(波長帯域は450nm以下、例えば400nm~450nm)の光に対する短波長側感度も有するように、Gフィルタの透過率を設定する。これにより、図7に示すように、特定狭帯域光とGフィルタの透過率と部位別反射率(図7の場合であれば「食道」の反射率を用いる。胃、大腸の反射率は点線で表示。)を掛け合わせた場合には、G画素の受光強度として、特定狭帯域光の波長域に対応する受光強度が得られる。なお、B画素の受光強度は、特定狭帯域光とBフィルタの透過率(400nm~500nmの青色帯域)と部位別反射率を掛け合わせて得られ、G画素の受光強度の強度値の一定倍となっている。

 なお、G画素で得られる信号値が小さいとノイズの影響が大きくなり、デモザイク化処理後の画像の画質が悪化するため、例えば、G画素の短波長側感度については、400~450nmにおいてG画素の最高感度の10%以上とすることが好ましい。即ち、Gフィルタにおいて、400~450nmの透過率を、G画素の最高感度に対応する波長範囲(例えば、540~560nm)の透過率の10%以上とすることが好ましい。もしくは、G画素の短波長側感度については、B画素の短波長側感度の10%以上とすることが好ましい。即ち、Gフィルタにおいて、400~450nmの透過率を、Bフィルタの400~450nmの透過率の10%以上とすることが好ましい。なお、G画素の最高感度とは、Gカラーフィルタの透過率が一定以上(例えば、70%)である波長域の光に対する感度のことをいう。R画素の最高感度についても同様である。

 一方、G画素の短波長側感度が高くなりすぎると、通常画像における色再現性が低下するため、G画素の短波長側感度については、400~450nmにおいてG画素の最高感度の35%以下とすることが好ましい。即ち、Gフィルタにおいて、400~450nmの透過率を、G画素の最高感度に対応する波長範囲(例えば、540~560nm)の透過率の35%以下とすることが好ましい。もしくは、G画素の短波長側感度については、B画素の短波長側感度の35%以下とすることが好ましい。即ち、Gフィルタにおいて、400~450nmの透過率を、Bフィルタの400~450nmの透過率の35%以下とすることが好ましい。

 また、短波長の特定狭帯域光の照明時に、R画素位置で特定狭帯域光の信号を得るためには、図6に示すように、R画素については、600nm~700nmの赤色帯域の光(第2長波光)に対する感度だけでなく、短波長の特定狭帯域光を含む短波長の光(400nm~450nm)に対する短波長側感度も有するように、Rフィルタの透過率を設定する。これにより、図8に示すように、特定狭帯域光とRフィルタの透過率と部位別反射率

(図8の場合であれば「食道」の反射率を用いる。胃、大腸の反射率は点線で表示。)を掛け合わせた場合には、R画素の受光強度として、特定狭帯域光の波長域に対応する受光強度が得られる。なお、B画素の受光強度は、R画素の受光強度の一定倍となっている。

 ただし、R画素で得られる信号値が小さいとノイズの影響が大きくなり、デモザイク化処理後の画像の画質が悪化するため、例えば、R画素の短波長側感度については、400~450nmにおいてR画素の最高感度の10%以上とすることが好ましい。即ち、Rフィルタにおいて、400~450nmの透過率を、R画素の最高感度に対応する波長範囲(例えば、640~660nm)の透過率の10%以上とすることが好ましい。もしくは、R画素の短波長側感度については、B画素の短波長側感度の10%以上とすることが好ましい。即ち、Rフィルタにおいて、400~450nmの透過率を、Bフィルタの400~450nmの透過率の10%以上とすることが好ましい。

 一方、R画素の短波長側感度が高くなりすぎると、通常画像における色再現性が低下するため、R画素の短波長側感度については、400~450nmにおいてR画素の最高感度の35%以下とすることが好ましい。即ち、Rフィルタにおいて、400~450nmの透過率を、R画素の最高感度に対応する波長範囲(例えば、640~660nm)の透過率の35%以下とすることが好ましい。もしくは、R画素の短波長側感度については、B画素の短波長側感度の35%以下とすることが好ましい。即ち、Rフィルタにおいて、400~450nmの透過率を、Bフィルタの400~450nmの透過率の35%以下とすることが好ましい。

 撮像センサ48において、W画素については、短波長の特定狭帯域光、緑色帯域の光、赤色帯域の光を含むように、青色帯域から赤色帯域に至るまでの広帯域光の照明光に分光感度を有していることから、B画素、G画素、R画素など他の画素と比較して、画素値の飽和が速い。したがって、W画素の感度は、B画素、G画素、R画素など他の画素の感度よりも低く設定されている。具体的には、W画素の感度は、B画素の最高感度(例えば、440~460nmの感度)又はG画素の最高感度(例えば、540~560nmの感度)に対して、30%~50%とすることが好ましい。

 例えば、W画素とG画素との感度に関する関係においては、図9に示すように、通常光の光源スペクトルとWフィルタの透過率とを掛け合わせて得られるW画素の受光強度が、通常光の光源スペクトルとGフィルタの透過率とを掛け合わせて得られるG画素の受光強度の50%程度(例えば、45%~55%)となるように、Wフィルタの透過率を設定する。もしくは、W画素とB画素との感度に関する関係においては、図10に示すように、通常光の光源スペクトルとWフィルタの透過率とを掛け合わせて得られるW画素の受光強度が、通常光の光源スペクトルとBフィルタの透過率と食道の反射率とを掛け合わせて得られるB画素の受光強度の50%程度(例えば、45%~55%)となるように、Wフィルタの透過率を設定する。

 なお、撮像センサ48としては、RGBWのカラーの撮像センサの代わりに、C(シアン)、M(マゼンタ)、Y(イエロー)及びG(緑)の補色フィルタを備えた、いわゆる補色撮像センサであっても良い。補色撮像センサを用いる場合には、CMYGの4色の画像信号が出力されるため、補色-原色色変換によって、CMYGの4色の画像信号をRGBの3色の画像信号に変換する必要がある。また、撮像センサ48はカラーフィルタを設けていないモノクロ撮像センサであっても良い。

 図2に示すように、撮像センサ48から出力される画像信号は、CDS・AGC回路50に送信される。CDS・AGC回路50は、アナログ信号である画像信号に相関二重サンプリング(CDS(Correlated Double Sampling))や自動利得制御(AGC(Auto Gain Control))を行う。CDS・AGC回路50を経た画像信号は、A/D変換器(A/D(Analog /Digital)コンバータ)52により、デジタル画像信号に変換される。A/D変換されたデジタル画像信号は、プロセッサ装置16に入力される。

 プロセッサ装置16は、画像取得部53と、明るさ情報算出部54と、DSP(Digital Signal Processor)56と、ノイズ除去部58と、画像処理部60と、パラメータ切替部62と、表示制御部64とを備えている。

 画像取得部53は、内視鏡12において観察対象を撮像することにより得られた観察画像を取得する。具体的には、観察画像として、内視鏡12からのデジタルのカラー画像信号が画像取得部53に入力される。カラー画像信号は、撮像センサ48のR画素から出力されるR画像信号(R画素の画素値)と、撮像センサ48のG画素から出力されるG画像信号(G画素の画素値)と、撮像センサ48のB画素から出力されるB画像信号(B画素の画素値)と、撮像センサ48のW画素から出力されるW画像信号(W画素の画素値)から構成されるRGBW画像信号である。

 明るさ情報算出部54は、画像取得部53から入力されるRGBW画像信号に基づいて、観察モード毎に、観察対象の明るさを示す明るさ情報を算出する。算出した明るさ情報は光源制御部21に送られ、照明光の発光量の制御に用いられる。明るさ情報は、例えば、ビット数などで表される。

 通常観察モードの場合であれば、下記式K)によって、通常観察モード用の明るさ情報が算出される。

式K)通常観察モード用の明るさ情報=明るさ調整係数kcr×R画像信号+明るさ調整係数kcg×G画像信号+明るさ調整係数kcb×B画像信号+明るさ調整係数kcw×W画像信号

 特殊観察モードの場合であれば、下記式L)によって、特殊観察モード用の明るさ情報が算出される。

式L)特殊観察モード用の明るさ情報=明るさ調整係数ksr×R画像信号+明るさ調整係数ksg×G画像信号+明るさ調整係数ksb×B画像信号+明るさ調整係数ksw×W画像信号

 短波長観察モードの場合であれば、下記式M)によって、短波長観察モード用の明るさ情報が算出される。

式M)短波長観察モード用の明るさ情報=明るさ調整係数ktr×R画像信号+明るさ調整係数ktg×G画像信号+明るさ調整係数ktb×B画像信号+明るさ調整係数ktw×W画像信号

 短波長観察モードにおいては、短波長の特定狭帯域光のみの照明であるため、短波長観察モード用の明るさ情報の算出において、短波長の特定狭帯域光に対応する画素値を有するB画像信号とW画像信号のみを用いればよいが、本実施形態においては、G画素及びR画素において短波長側感度を有しているため、短波長観察モード用の明るさ情報の算出に、G画像信号及びR画像信号も合わせて用いる。

 短波長の特定狭帯域光のみの照明に対応する短波長観察モード用の明るさ情報を正確に算出するために、明るさ調整係数ktr(第4画素用の明るさ調整係数)、明るさ調整係数ktg(第2画素用の明るさ調整係数)、明るさ調整係数ktb(第1画素用の明るさ調整係数)、明るさ調整係数ktw(第3画素用の明るさ調整係数)の比率については、R画素、G画素、B画素、W画素の短波長側感度と粘膜の反射率に基づいて、定めることが好ましい。

 ここで、式M)を用いる場合、W画素の分光感度をB画素の420~420nmの分光感度の45%程度、G画素及びR画素の400~420nmの分光感度の15~20%とする場合には、粘膜の反射率も考慮し、明るさ調整係数ktr、明るさ調整係数ktg、明るさ調整係数ktb、及び明るさ調整係数ktwの比率を、「2:2:5:4」とすることが好ましい。

 なお、短波長観察モード用の明るさ情報については、少なくともB画像信号とG画像信号の2つの画像信号に基づいて算出することが好ましい。B画像信号とG画像信号に基づいて、短波長観察モード用の明るさ情報を算出する場合には、式M1)により算出を行う。式M1)短波長観察モード用の明るさ情報=明るさ調整係数ktg×G画像信号+明るさ調整係数ktb×B画像信号ここで、式M1)を用いる場合には、G画素の400~420nmの分光感度を、B画素の400~420nmの分光感度の15~20%とする場合には、粘膜の反射率も考慮し、明るさ調整係数ktgと明るさ調整係数ktbとの比率を「2:5」にすることが好ましい。

 また、B画像信号、G画像信号、W画像信号に基づいて、短波長観察モード用の明るさ情報を算出する場合には、式M2)により算出を行う。

式M2)短波長観察モード用の明るさ情報=明るさ調整係数ktg×G画像信号+明るさ調整係数ktb×B画像信号+明るさ調整係数kgw×W画像信号

 ここで、式M2)を用いる場合、W画素の分光感度を、B画素の400~420nmの分光感度を45%程度とする場合には、粘膜の反射率も考慮し、明るさ調整係数ktg、明るさ調整係数ktb、及び明るさ調整係数ktwの比率を、「2:5:4」にすることが好ましい。

 また、B画像信号、G画像信号、R画像信号に基づいて、短波長観察モード用の明るさ情報を算出する場合には、式M3)により算出を行う。

式M3)短波長観察モード用の明るさ情報=明るさ調整係数ktr×R画像信号+明るさ調整係数ktg×G画像信号+明るさ調整係数ktb×B画像信号ここで、式M3)を用いる場合には、G画素及びR画素の400~420nmの分光感度

を、B画素の400~420nmの分光感度の15~20%とする場合には、粘膜の反射率も考慮し、明るさ調整係数ktr、明るさ調整係数ktg、及び明るさ調整係数ktbの比率を、「2:2:5」にすることが好ましい。

 DSP56は、受信した画像信号に対して、欠陥補正処理、オフセット処理、ゲイン補正処理、リニアマトリクス処理、又はガンマ変換処理等の各種信号処理を施す。欠陥補正処理では、撮像センサ48の欠陥画素の信号が補正される。オフセット処理では、欠陥補正処理が施された画像信号から暗電流成分が除かれ、正確な零レベルが設定される。ゲイン補正処理では、オフセット処理後の画像信号に特定のゲインを乗じることにより信号レベルが整えられる。ゲイン補正処理後の画像信号には、色再現性を高めるためのリニアマトリクス処理が施される。その後、ガンマ変換処理によって明るさや彩度が整えられる。

 リニアマトリクス処理後の画像信号には、デモザイク化処理部56aにおいて、デモザイク化処理(等方化処理、同時化処理とも言う)が施される。通常観察モードと特殊観察モードにおいては、各画素で不足した色の信号が補間によって生成される。このデモザイク処理によって、全画素がRGB各色の信号を有するようになる。なお、RGBW画像信号を得るためのカラーの撮像センサを用いる場合のデモザイク処理については、例えば、特開2011-55038号公報に記載の方法を用いることができる。

 短波長観察モードでは、短波長の特定狭帯域光のみが観察対象に照明されるが、通常のRGBの撮像センサ(R画素、G画素、B画素からなる撮像センサ)は、図18に示すように、Gフィルタ及びRフィルタは特定狭帯域においてほとんど透過率を有さず、G画素及びR画素は特定狭帯域光に感度がほとんどない。このため、短波長の特定狭帯域光に基づいて得られる短波長観察画像は、特定狭帯域光に感度を有するB画素及びW画素から信号が得られるのみで、G画素とR画素からはほとんど信号が得られない。このためW画素との相関に基づくデモザイク処理を行っても、解像度の高い短波長観察画像は得られない。しかし、本実施形態に示すように、特定狭帯域光に対する感度をG画素とR画素に持たせることで、G画素とR画素からも特定狭帯域光に対応する一定の信号が得られるようになり、W画素との相関に基づくデモザイク処理により、解像度の高い短波長観察画像が得られる。なお、通常のRGBの撮像センサは、図18に示すように、Gフィルタ及びRフィルタが青色帯域においてほとんど透過率を有しないことから、G画素及びR画素が青色帯域に感度がほとんどない。

 なお、以下において、短波長観察モードにて、B画素及びW画素から得られる信号と、W画素との相関に基づくデモザイク処理により、G画素とR画素から得られる信号については、特定狭帯域光に対応する一定の信号を有していることから、それぞれの信号を短波長観察信号という。

 W画素の画素値との相関に基づくデモザイク化処理により、短波長観察信号として、G画素位置におけるB画素の画素値を算出する方法については、以下のとおりである。例えば、図11に示すように、撮像センサ48から出力される画像信号80において、特定位置SPにあるG画素位置のB画素の画素値Bdを算出する場合には、画像信号80に含まれる離散的なW画素信号に対して、近傍のW画素値に応じた方向判別補間によって全画素位置におけるW画素値を算出し、算出されたW画素値に対してウィナーフィルタ処理によって画像ぼけを削減する画像ぼけ削減処理を行い、画像ぼけ削減処理後のW画素信号(=Wd)(画像ぼけ削減処理済みの信号)を算出する。次に、図12に示すように、5×5の画素領域(特定の画素領域)の画素値に対して、第1平滑化フィルタ82を掛け合わせることにより、低周波成分mW(第1平滑化フィルタ済みの成分)を得る。第1平滑化フィルタ82は、画像信号80のうちW画素がある位置に対して、フィルタ係数(「1」や「2」など)を設けている。

 次に、図13に示すように、5×5の画素領域の画素値に対して、第2平滑化フィルタ84を掛け合わせることにより、低周波成分mBx(第2平滑化フィルタ済みの成分)を得る。第2平滑化フィルタ84は、G画素が特定位置SPに位置する5×5の画素領域毎に施されるフィルタであって、画像信号80のうちB画素がある位置に対して、フィルタ係数(「1」)を設けている。この第2平滑化フィルタ84では、特定位置SPに近い位置のB画素の画素値を均等に取得する設定としたフィルタ係数設定が行われている。そして、以下の式X)により、G画素位置におけるB画素の画素値Bdを算出する。

式X)Bd=(mBx/mW)×Wd

 W画素の画素値との相関に基づくデモザイク化処理により、短波長観察信号として、R画素位置におけるB画素の画素値を算出する方法については、以下のとおりである。上記の場合と同様に、ぼけ補正ホワイト(W)信号(=Wd)と、低周波成分mWを取得する。そして、図14に示すように、5×5の画素領域の画素値に対して、第3平滑化フィルタ86を掛け合わせることにより、低周波成分mBy(第3平滑化処理済みの成分)を取得する。第3平滑化フィルタ86は、R画素が特定位置SPに位置する5×5の画素領域毎に施されるフィルタであって、画像信号80のうちB画素がある位置に対して、フィルタ係数(「1」)を設けている。そして、以下の式Y)により、R画素位置におけるB画素の画素値Bdを算出する。

式Y)Bd=(mBy/mW)×Wd

 ノイズ除去部58は、DSP56でガンマ補正等が施された画像信号に対してノイズ除去処理(例えば移動平均法やメディアンフィルタ法等)を施すことによって、RGB画像信号からノイズを除去する。ノイズが除去された画像信号は、画像処理部60に送信される。

 画像処理部60は、各観察モードに対応する画像処理を行う。画像処理の方法としては、例えば、各観察モードに対応する階調処理や彩度強調などの画像処理パラメータを用意しておき、各観察モードに応じて画像信号に掛け合わせる方法がある。通常観察モードの場合であれば、通常観察モード用パラメータをRGB画像信号に掛け合わせ、特殊観察モードの場合でれば、特殊観察モード用パラメータをRGB画像信号に掛け合わせる。また、短波長観察モードの場合であれば、短波長観察モード用パラメータをB画像信号に掛け合わせる。以上の通常観察モード用パラメータ、特殊観察モード用パラメータ、及び短波長観察用パラメータは、モード切替SW13aのモード切替に伴って、パラメータ切替部62により切り替えられる。

 表示制御部64は、画像信号から入力された画像信号を、モニタ18で表示可能な画像として表示するための制御を行う。通常観察モードの場合であれば、R画像信号をモニタ18のRチャンネルに、G画像信号をモニタ18のGチャンネルに、B画像信号をモニタ18のBチャンネルに割り当てることによって、通常画像をモニタ18に表示する。また、特殊光観察モードの場合であれば、G画像信号をモニタ18のRチャンネルに、B画像信号をモニタ18のGチャンネル及びBチャンネルに割り当てることによって、特殊観察画像をモニタ18に表示する(割り当てる際には、階調処理、彩度強調を行うことが好ましい)。一方、短波長観察モードの場合であれば、短波長観察信号をモニタ18のR、G、Bの各チャンネルに割り当てて、短波長観察画像をモニタ18に表示する。短波長観察信号を割り当てる際には、短波長観察画像にR、G、Bの各チャンネル用のゲイン等を掛け合わせてから各チャンネルに割り当てる。これにより、短波長の特定狭帯域光で観察可能な構造物が表された短波長観察画像を、グレー画像よりも、血管などの構造の視認性が良い特定背景色を持つ画像としてモニタ18に表示することができる。

 [第2実施形態]

 第1実施形態では、撮像センサ48として、RGBWの撮像センサを用いているが、図15に示すように、G画素、B画素、R画素の画素数の比率が2:1:1であるベイヤー配列の撮像センサを用いるようにしてもよい。ベイヤー配列の撮像センサを用いる場合には、全画素位置においてモノクロのB画像信号を得るための短波長観察モードのデモザイク化処理としては、以下のようにして、G画素位置におけるB画素の画素値BgとR画素位置におけるB画素の画素値Brを算出することが好ましい。

 例えば、図16に示すように、特定位置SPにあるG画素(G22)の画素位置におけるB画素の画素値Bg(22)を算出する場合には、式Z1)によって算出を行う。

式Z1)Bg(22)=

G22×2(B21+B23)/(G11+G13+G31+G33)

この式Z1)によれば、特定位置SPの周辺のB画素の画素値だけでなく、G画素の画素値を用いることで、Bg(22)についてより現実に近い画素値を得ることができる。

 なお、図17に示すように、特定位置SPにあるR画素(G32)の画素位置におけるB画素の画素値Br(32)を算出する場合には、式Z2)によって算出を行う。

式Z2)Br(32)=(B21+B23+B41+B43)/4

 なお、上記第1及び第2実施形態では、短波長観察モードにおけるデモザイク化処理は、G画素位置及びR画素位置におけるB画素の画素値(B画像信号)を算出するようにしているが、通常観察モード又は特殊観察モードと同様にして、各画素位置においてR画素、G画素、B画素の画素値をそれぞれ算出するようにしてもよい。

 上記実施形態において、画像取得部53、明るさ情報算出部54、DSP56、ノイズ除去部58、画像処理部60、パラメータ切替部62、表示制御部64など、プロセッサ装置16に含まれる処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウエア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA (Field Programmable Gate Array) などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、各種の処理を実行するために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。

 1つの処理部は、これら各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合せ(例えば、複数のFPGAや、CPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウエアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)

チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。

 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた形態の電気回路(circuitry)である。

 なお、上記実施形態では、医療画像の一つである内視鏡画像の処理を行う内視鏡システムに対して、本発明の適用を行っているが、内視鏡画像以外の医療画像を処理する医療画像処理システムに対しても本発明の適用は可能である。

10 内視鏡システム

12 内視鏡

12a 挿入部

12b 操作部

12c 湾曲部

12d 先端部

12e アングルノブ

13a モード切替SW13b 静止画取得指示部

14 光源装置

16 プロセッサ装置

18 モニタ

19 ユーザーインターフェース

20 光源部

20a V-LED(Violet Light Emitting Diode)

20b B-LED(Blue Light Emitting Diode)

20c G-LED(Green Light Emitting Diode)

20d R-LED(Red Light Emitting Diode)

21 光源制御部

23 光路結合部

30a 照明光学系

30b 撮像光学系

41 ライトガイド

45 照明レンズ

46 対物レンズ

48 撮像センサ

50 CDS・AGC回路

52 A/D53 画像取得部

54 明るさ情報算出部

56 DSP(Digital Signal Processor)

56a デモザイク化処理部

58 ノイズ除去部

60 画像処理部

62 パラメータ切替部

64 表示制御部

80 画像信号

82 第1平滑化フィルタ

84 第2平滑化フィルタ

86 第3平滑化フィルタ

Claims (10)


  1.  短波長の特定狭帯域光を発する光源部と、

     前記特定狭帯域光で照明された観察対象を撮像する撮像センサであって、第1画素を含む第1画素群と、第2画素を少なくとも含む第2画素群とを備える撮像センサと、

     前記特定狭帯域光の発光量を制御する光源制御部とを備え、

     前記第1画素は、前記第2画素よりも前記特定狭帯域光への感度が高く、

     前記第2画素は、前記特定狭帯域光よりも長波の第1長波光と前記特定狭帯域光に対して感度を有し、

     前記光源制御部は、前記第1画素にて得られる前記第1画素の画素値及び前記第2画素にて得られる前記第2画素の画素値に基づいて、前記特定狭帯域光の発光量の制御を行う医療画像処理システム。

  2.  前記第2画素群には、前記特定狭帯域光及び第1長波光を含む広帯域の照明光に感度を有する第3画素が含まれ、

     前記光源制御部は、前記第1画素の画素値及び前記第2画素の画素値に加えて、前記第3画素の画素値に基づいて、前記特定狭帯域光の発光量の制御を行う請求項1記載の医療画像処理システム。

  3.  前記第2画素群には、前記第1長波光よりも長波の第2長波光と前記特定狭帯域光に対して感度を有する第4画素が含まれ、

     前記光源制御部は、前記第1画素の画素値及び前記第2画素の画素値に加えて、前記第4画素の画素値に基づいて、前記特定狭帯域光の発光量の制御を行う請求項1記載の医療画像処理システム。

  4.  第1画素用の明るさ調整係数を掛け合わせた前記第1画素の画素値と第2画素用の明るさ調整係数を掛け合わせた前記第2画素の画素値とに基づいて、前記観察対象の明るさを示す明るさ情報を算出する明るさ情報算出部を有し、

     前記光源制御部は、前記明るさ情報に基づいて、前記特定狭帯域光の発光量の制御を行い、

     前記第1画素用の明るさ調整係数と前記第2画素用の明るさ調整係数の比率は、前記第1画素の感度のうち前記特定狭帯域光を含む短波長の光に対する短波長側感度と前記第2画素の前記短波長側感度に基づいて定められる請求項1記載の医療画像処理システム。

  5.  前記第2画素の前記短波長側感度は、前記第2画素の最高感度の10%以上、又は、前記第1画素の前記短波長側感度の10%以上である請求項4記載の医療画像処理システム。

  6.  前記第2画素の前記短波長側感度は、前記第2画素の最高感度の35%以下、又は、前記第1画素の前記短波長側感度の35%以下である請求項4記載の医療画像処理システム。

  7.  第1画素用の明るさ調整係数を掛け合わせた前記第1画素の画素値、第2画素用の明るさ調整係数を掛け合わせた前記第2画素の画素値、及び第3画素用の明るさ調整係数を掛け合わせた前記第3画素の画素値に基づいて、前記観察対象の明るさを示す明るさ情報を算出する明るさ情報算出部を有し、

     前記光源制御部は、前記明るさ情報に基づいて、前記特定狭帯域光の発光量の制御を行い、

     前記第1画素用の明るさ調整係数、前記第2画素用の明るさ調整係数、及び前記第3画素用の明るさ調整係数の比率は、前記第1画素の感度のうち前記特定狭帯域光を含む短波長の光に対する短波長側感度、前記第2画素の前記短波長側感度、及び前記第3画素の前記短波長側感度に基づいて定められる請求項2記載の医療画像処理システム。

  8.  第1画素用の明るさ調整係数を掛け合わせた前記第1画素の画素値、第2画素用の明るさ調整係数を掛け合わせた前記第2画素の画素値、及び第4画素用の明るさ調整係数を掛け合わせた前記第4画素の画素値に基づいて、前記観察対象の明るさを示す明るさ情報を算出する明るさ情報算出部を有し、

     前記光源制御部は、前記明るさ情報に基づいて、前記特定狭帯域光の発光量の制御を行い、

     前記第1画素用の明るさ調整係数、前記第2画素用の明るさ調整係数、及び前記第4画素用の明るさ調整係数の比率は、前記第1画素の感度のうち前記特定狭帯域光を含む短波長の光に対する短波長側感度、前記第2画素の前記短波長側感度、及び前記第4画素の前記短波長側感度に基づいて定められる請求項3記載の医療画像処理システム。

  9.  前記第2画素群の画素数は前記第1画素群の画素数よりも多い請求項1ないし6いずれか1項記載の医療画像処理システム。

  10.  前記特定狭帯域光の中心波長は400nm以上450nm以下に含まれ、前記特定狭帯域光の半値幅は40nm以下である請求項1ないし7いずれか1項記載の医療画像処理システム。
PCT/JP2019/015757 2018-04-23 2019-04-11 医療画像処理システム WO2019208235A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020516211A JP6987980B2 (ja) 2018-04-23 2019-04-11 医療画像処理システム
CN201980027208.3A CN112004455B (zh) 2018-04-23 2019-04-11 医疗图像处理系统
US17/035,936 US11744437B2 (en) 2018-04-23 2020-09-29 Medical image processing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018082158 2018-04-23
JP2018-082158 2018-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/035,936 Continuation US11744437B2 (en) 2018-04-23 2020-09-29 Medical image processing system

Publications (1)

Publication Number Publication Date
WO2019208235A1 true WO2019208235A1 (ja) 2019-10-31

Family

ID=68295415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015757 WO2019208235A1 (ja) 2018-04-23 2019-04-11 医療画像処理システム

Country Status (4)

Country Link
US (1) US11744437B2 (ja)
JP (1) JP6987980B2 (ja)
CN (1) CN112004455B (ja)
WO (1) WO2019208235A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6810812B2 (ja) * 2017-09-13 2021-01-06 オリンパス株式会社 内視鏡装置、内視鏡装置の作動方法及びプログラム
CN111970954B (zh) * 2018-04-23 2024-07-16 富士胶片株式会社 医疗图像处理系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080130A1 (ja) * 2014-11-20 2016-05-26 オリンパス株式会社 観察装置
JP2016174921A (ja) * 2016-04-25 2016-10-06 富士フイルム株式会社 内視鏡システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326943B2 (ja) 2009-08-31 2013-10-30 ソニー株式会社 画像処理装置、および画像処理方法、並びにプログラム
JP5485215B2 (ja) * 2011-04-01 2014-05-07 富士フイルム株式会社 内視鏡装置
EP2702927A4 (en) 2012-03-30 2015-08-26 Olympus Medical Systems Corp ENDOSCOPIC DEVICE
JP6304953B2 (ja) * 2013-06-27 2018-04-04 オリンパス株式会社 観察装置
JP5654167B1 (ja) * 2013-07-03 2015-01-14 富士フイルム株式会社 内視鏡システム及びその作動方法
JPWO2017046857A1 (ja) * 2015-09-14 2018-07-05 オリンパス株式会社 内視鏡装置
JP6562554B2 (ja) * 2016-05-13 2019-08-21 富士フイルム株式会社 内視鏡システム、プロセッサ装置、及び内視鏡システムの信号処理方法
JP6245710B2 (ja) * 2016-09-12 2017-12-13 富士フイルム株式会社 内視鏡システム及びその作動方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080130A1 (ja) * 2014-11-20 2016-05-26 オリンパス株式会社 観察装置
JP2016174921A (ja) * 2016-04-25 2016-10-06 富士フイルム株式会社 内視鏡システム

Also Published As

Publication number Publication date
US11744437B2 (en) 2023-09-05
JPWO2019208235A1 (ja) 2021-04-08
US20210007578A1 (en) 2021-01-14
CN112004455B (zh) 2024-04-26
JP6987980B2 (ja) 2022-01-05
CN112004455A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
JP6909856B2 (ja) 内視鏡システム
WO2019093355A1 (ja) 内視鏡システム及びその作動方法
JP6690003B2 (ja) 内視鏡システム及びその作動方法
US11937788B2 (en) Endoscope system
WO2019163540A1 (ja) 内視鏡システム
US11744437B2 (en) Medical image processing system
US20200260941A1 (en) Endoscope system
US11969152B2 (en) Medical image processing system
JP6891294B2 (ja) 内視鏡システム及びその作動方法
WO2020158165A1 (ja) 内視鏡システム
WO2019159817A1 (ja) 内視鏡システム及びその作動方法
JP7116223B2 (ja) 内視鏡システム及びその作動方法
JP7171885B2 (ja) 内視鏡システム
WO2021065939A1 (ja) 内視鏡システム及びその作動方法
JP7163243B2 (ja) プロセッサ装置及び内視鏡システム並びにプロセッサ装置の作動方法
JPWO2017170232A1 (ja) 内視鏡画像信号処理装置および方法並びにプログラム
JP2022160298A (ja) 医用画像処理装置及びその作動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516211

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792378

Country of ref document: EP

Kind code of ref document: A1